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a b s t r a c t

In this paper we present an overview of the field of deterministic approximation ofMarkov
processes, both in discrete and continuous times.Wewill discussmean field approximation
of discrete timeMarkov chains and fluid approximation of continuous timeMarkov chains,
considering the cases in which the deterministic limit process lives in continuous time or
discrete time. We also consider some more advanced results, especially those relating to
the limit stationary behaviour. We assume a knowledge of modelling with Markov chains,
but not of more advanced topics in stochastic processes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Markovian stochastic processes have found widespread use in computer science and beyond, for quantitative modelling
in both discrete and continuous times. In addition to performance evaluation, they have recently been used in areas as
diverse as computational systems biology [1] andmodelling user experience [2]. A commonproblem facedwith suchmodels
is that the number of elements constituting a system, as well as the number of local states of those elements, can be large,
leading to state space explosion. This poses practical limitations on our ability to analyse these systems using standard
approaches, like steady state computation and transient analysis of Markov chains [3], or more sophisticated techniques,
like stochastic model-checking [4].

In the last few years, there has been a growing interest in techniques that try to tackle the state space explosion by
treating large state spaces in a continuous fashion, approximating the stochastic dynamics with a deterministic dynamical
system, usually described by means of a differential equation. This is particularly fruitful for systems which are composed
of large clusters of (relatively simple) components.

Such techniques have been developed in different contexts andwith different flavours, yet their approach is very similar.
Broadly speaking, nomenclature is (at least) twofold: continuous approximation is known under the name of both fluid
approximation andmean field approximation. The term deterministic approximation is sometimes also used.

Fluid approximation has been introduced and applied in the last five years in order to analyse the collective behaviour
of stochastic process algebra (SPA) models of large populations [5–9]. Stochastic process algebras [10–12] are modelling
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languages, designed to describe systems of interacting agents, which have Continuous Time Markov Chains (CTMCs) as
the relevant semantic domain [13]. Fluid approximation can be applied if in a model there are many instances of a few
agent types, and it works by treating the variables counting how many agents of each type are in each state in the system
as continuous variables, and treating the global rates of the stochastic transitions as flows, thus obtaining an ordinary
differential equation (ODE). After observing that, for large populations, the behaviour of the stochastic system and that of the
deterministic one were very close [5], it was proved that the solution of the differential equation obtained was the limit of a
sequence of CTMC models, for increasing population levels [6], exploiting previous results on deterministic approximation
of stochastic processes [14]. Fluid approximation of SPA models has been used successfully to describe different kinds of
systems: computer epidemics [15], biological systems [7,9,16,17], computer networks [18], queues [19], gridworkloads [20],
and crowd models [21,22], just to cite a few.

Another use of fluid techniques can be found in Petri Nets. There have been a variety of different Petri net developments
involving fluid levels, either as alternatives to, or in addition to, the usual discrete tokens [23–25]. Perhaps closest to
the process algebra results outlined above is the work of Silva and Recalde [26] where the motivation is again the state
space explosion problem, and the authors present their work in terms of a relaxation of integer token counts for state
representation.

Mean field approximation is very similar in spirit to fluid approximation. Mean field techniques have a long history:
originally developed in statistical physics (in the context of stochastic models of plasma and dense gases [27]), they have
been applied in epidemiology [28–30], game theory [31,32], approximation algorithms [33], and in performance modelling
of computer networks [34–40]. Usually, mean field approaches start from a stochasticmodel expressed directly in terms of a
Discrete Time Markov Chain (DTMC), describing a system consisting of a large number of interacting entities, each of which
can be in one of a relatively small set of states. Then, one constructs a continuous system, describing the continuous evolution
of the number of these entities (more specifically, the variables counting how many entities are in a given state), proving a
limit theoremsimilar to the one for fluid approximation.Many applications ofmean field approximation in computer science
are concerned with communication networks [34,35,37,40], and the limit theorems are proved just for the specific model
in each case. More recently, mean field results for more general frameworks have been presented [41–43], and applied, for
instance, to study properties of gossip protocols [44], random replacement caching [45], and resource polling [46].

Broadly speaking, there are three different classes of approaches that have been labelled as mean field. The first one
deals with DTMC models that have a deterministic limit in discrete time (i.e. a discrete time dynamical system) [41], the
second one considers DTMCs that have a limit in continuous time, described in terms of differential equations [42], and the
last one deals with CTMCs which have a limit in continuous time [14,47]. This last approach is essentially the same as fluid
approximation, the only difference being that the authors work directly on a CTMC model, instead of manipulating a SPA
model. The second class of mean field techniques, i.e. those concerned with DTMCmodels that have a deterministic limit in
continuous time, is also strongly related to continuous approximations for CTMCs, as will be made clear later in this paper.
The first class, instead, is intrinsically different, and can be applied to DTMC models that assume a different mechanism of
interaction. In particular, mean field limits in discrete time require us to workwith a DTMC inwhich all entities of themodel
(try to) perform a move at each step of the process, while mean field limits in continuous time assume that just one or few
entities perform a move in each step.

From the previous discussion, it is clear that fluid approximation andmean field techniques are strongly related, and that
there is a certain amount of notational and terminological confusion in the literature. This can create some difficulties to a
modelling practitioner or a student wishing to approach the field.

In this paper we seek to overcome these issues by providing a uniform introduction to these techniques. Our intended
audience will be computer scientists who have a background in modelling, but we will not assume prior knowledge of
continuous approximation. Readers may be motivated by a desire to apply these techniques to a particular problem or by a
more general curiosity, but in either case we aim to introduce these methods in a gentleway. We will start our presentation
from the simplest class of mean field limits, namely those in discrete time (Section 2). Then, we will move to mean field and
fluid approximation in continuous time. We will discuss these methods using a very simple modelling language (basically
a direct description of a Markov chain, either in discrete or in continuous time), in order to focus more on aspects related to
the dynamics (Section 3). After discussing general issues of the continuous approximation (Section 3), we will first describe
the continuous approximation for CTMCswith ODEs (Section 4), and then focus on the ODE, continuous time, approximation
of DTMCs (Section 5), followed by a discussion of how these two approaches are related (Section 6). Then we will discuss
some general applications, mainly concerned with stationary behaviour (Section 7) and independence (Section 8), pointing
out various extensions which have recently appeared in the literature. Throughout the paper, we will make use of a running
example, a simple model of a computer network epidemic, to illustrate all the approaches (Sections 2.1 and 3.2). Notational
conventions are briefly summarised in Appendix A. Sections and remarks marked with an asterisk can be safely skipped at
a first reading.

2. Deterministic approximation for synchronous DTMCs

We will start the presentation of deterministic approximation results from what is arguably the simplest setting when
dealing with Markov chains: we will consider a discrete time Markov chain model of a population composed of N agents all
moving synchronously at each step. The material in this section is mainly based on [41].
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To be more precise, let us introduce some notation. Agents in the population can be in one of n internal states S =

{1, . . . , n}. We indicate the state of them-th agent by Y (N)
m ∈ S. Therefore, the state of the DTMC after k steps is given by the

vector (Y (N)
1 (k), . . . , Y (N)

N (k)) ∈ SN .
In population models, one usually makes the assumption that single individuals are indistinguishable, hence what is

relevant is how many of them are in each state. Formally, this is enforced by requiring that the evolution of the DTMC is
equivalent under any permutation of (Y (N)

1 (k), . . . , Y (N)
N (k)). Practically, one forgets about single individuals and describes

the state of the system by means of counting variables X (N)
i , one for each state i ∈ S, defined by

X (N)
i (k) =

N
j=1

1{Y (N)
j (k) = i}, (1)

where 1{φ(X)} is the indicator function of the predicate φ(X), equal to 1 if and only if φ(X) is true. Notice that X (N)
i (k) ∈

{0, . . . ,N}, and
n

i=1 X
(N)
i (k) = N . We indicate by X(N)(k) the vector of variables (X (N)

1 (k), . . . , X (N)
n (k)). The initial

configuration of the system will be indicated by X(N)(0) = d(N)
0 .

In addition to the counting variables X (N)
i , we also consider the normalised variables X̂ (N)

i = X (N)
i /N , which take values

in [0, 1] and sum up to 1. The vector of normalised variables is denoted by X̂(N), and it takes value in the unit simplex Sn in
Rn, Sn

= {d̂ ∈ [0, 1]n |
n

i=1 d̂i = 1}. The normalised initial conditions are d̂(N)
0 = d(N)

0 /N . Normalised variables describe
the probability of finding a randomly chosen agent in a given state at step k, and they are usually known under the name
of occupancy measure [41]. Normalised variables are also important as they allow the comparison of the DTMC dynamics
for different population levels. In fact, they are all defined on the same scale [0, 1], and so it makes sense to compute the
distance between two models for different population levels. As we will see, this normalisation step is also crucial for the
deterministic approximation to hold.

We are now ready to describe the DTMC under consideration. We will define a probability matrix describing the jump
probability for a single agent, as a function of the global state of the system, given by the normalised counting variables.
More precisely, let P (N)

: Sn
→ [0, 1]n

2
be a continuous function associating with each d̂ ∈ Sn a n × n stochastic matrix

P (N)(d̂). P (N)
ij (d̂) gives the probability that a generic agent, say the h-th, in state i at step k, jumps to state j, given that the

global state of the system is X̂(N)(k) = d̂:

P (N)
ij (d̂) = P{Y (N)

h (k + 1) = j | Y (N)
h (k) = i, X̂(N)(k) = d̂}.

2.1. Main example: the epidemic model

We introduce now a simple example that will be used throughout the paper to present the various aspects of the
techniques involved in deterministic approximation. We consider a model of a worm epidemic in a network of computers.
The model describes a network of computers in which each node can be infected by a worm. Once this occurs, the worm
remains latent for a while, and then activates. When it is active, it tries to propagate over the network by sending messages
to other nodes. After some time, an infected computer can be patched, so that the infection is recovered. We assume that
recovered computers can become susceptible to infection again after a while, hence modelling the appearance of a new
version of the worm. Non-infected computers may also be patched, but this event happens less frequently. Each node in the
network can acquire infection from two sources, i.e. by the activity of a worm of an infected node or by an external source
(for instance, by an email attachment received from outside the network).

In this scenario, we have one single entity class (a computer in the network), each element of which can be in one of
several local states: susceptible (s), exposed (e—this is the latent infection period), actively infected (i), and recovered (r).
Consequently, each agent Y (N)

j in a network with N nodes takes values in S = {s, e, i, r}, while the counting variables are
given by the vector X(N)

= (X (N)
s , X (N)

e , X (N)
i , X (N)

r ) and the normalised variables by X̂(N)
= (X̂ (N)

s , X̂ (N)
e , X̂ (N)

i , X̂ (N)
r ). The

possible transitions that an agent can make, depicted in Fig. 1, are listed below, where in brackets we report the names of
the states and the transitions used in the figure:

• Infection (inf) of a susceptible node (s) from an external source, with probability αe;
• Infection (ext) of a susceptible node (s) from a malicious contact with an infected node, with probability αiX̂

(N)
i , i.e. the

probability of infection given a contact with an infected node (αi) times the probability of establishing a contact with an
infected node (X̂ (N)

i );
• Activation (act) of the infection in an exposed node (e), with probability αa;
• Patching (rec) of an infected node (i), with probability αr ;
• Patching (rec) of a susceptible node (s), with probability αp < αr ;
• Patching (rec) of an exposed node (e), with probability αq < αr ;
• Loss (loss) of immunity of a recovered node (r), with probability αs;
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Fig. 1. States and transitions of a single computer in the network epidemic model.

The previous list can be easily captured in the probabilitymatrix for a single computer node, fixing the ordering (s, e, i, r)
of states in S:

P (N)(X̂(N)) =

1 − αe − αiX̂
(N)
i − αp αe + αiX̂

(N)
i 0 αp

0 1 − αa − αq αa αq
0 0 1 − αr αr
αs 0 0 1 − αs

 .

Obviously, the values of the α constants have to satisfy some constraints that can be deduced from the previous matrix. For
instance, looking at the first row, it must hold that αe + αi + αp ≤ 1.

2.2. The deterministic approximation theorem

The basic result for the deterministic approximation of a stochastic model is that the effect of ‘‘noise’’ (i.e. stochastic
fluctuations) becomes more and more irrelevant as the population size grows larger: different random individual choices
will tend to average out when many individuals are interacting. For instance, in the computer epidemic example just
discussed, if the size of the network (the number of connected computers) is large, the stochastic fluctuations of the model
become irrelevant, and a deterministic description will capture all the relevant features of the dynamics (see Fig. 2 for a
visual insight). Furthermore, the change of state of a single agent in a large population will have negligible impact on the
value of normalised counting variables. Hence, it makes sense to approximate them by continuous quantities.

The deterministic approximation theorem, therefore, will approximate the dynamics of the normalised counting
variables by a deterministic system in continuous space but in discrete time, hence a Discrete Time Dynamical System
(DTDS). Formally, a DTDS on a subset E ⊆ Rn is specified by a function f : E → E and an initial point x̂(0) = d̂0. The
DTDS x̂(k) at step k satisfies the relation x̂(k) = f (x̂(k − 1)), giving rise to what is usually referred to as a set of difference
equations.

To further proceed in the discussion, we need to specify the DTMC dynamics in terms of the counting variables X(N). To
do this, for each step k we introduce n independent random vectors Bi(X

(N)
i , P(N)

i (X̂(N))), for i = 1, . . . n, depending on the
current state X(N), each distributed according to a multinomial distribution on Xi

(N) objects with probabilities given by the
i-th row of the matrix P (N): P(N)

i (X̂(N)) = (P (N)
i1 (X̂(N)), . . . , P (N)

in (X̂(N))). Denoting by Bi,j(X
(N)
i , Pi(X̂(N))) the j-th element of

the random vector Bi(X
(N)
i , Pi(X̂(N))) and by X(N)(k) the DTMC defined in this way, we have that

X (N)
j (k + 1) =

n
i=1

Bi,j(X
(N)
i (k), P(N)

i (X̂(N)(k))). (2)

If we consider the normalised variables, then we can obtain an equation for X̂(N)(k + 1) as a function of X̂(N)(k) from (2) as

X̂ (N)
j (k + 1) =

n
i=1

1
N
Bi,j(NX̂ (N)

i (k), P(N)
i (X̂(N)(k))). (3)

Now, assume that P (N)(d̂) converges uniformly to a continuous function P(d̂), meaning that

lim
N→∞

sup
d̂∈Sn

∥P (N)(d̂) − P(d̂)∥ = 0.
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Fig. 2. Comparison between the deterministic system and stochastic trajectories of synchronous DTMC of the network epidemic example for increasing
population sizes. Parameters of the model are αe = 0.1, αi = 0.2, αa = 0.4, αr = 0.2, αp = 0, αq = 0, and αs = 0.1, while initial conditions are X̂s(0) = 1,
X̂e(0) = 0, X̂i(0) = 0, and X̂r (0) = 0. All simulations were performed by a dedicated R implementation. All charts in the paper were generated using R.

If we write

X̂ (N)
j (k + 1) =

n
i=1

X̂ (N)
i (k)

1

NX̂ (N)
i (k)

Bi,j(NX̂ (N)
i (k), P(N)

i (X̂(N)(k))),

defining an addend to be equal to zero when X̂ (N)
i (k) = 0, and we further assume that X̂(N)(k) converges almost surely to a

deterministic value x̂(k) as N goes to infinity, we can apply the law of large numbers for multinomial random variables1 to
deduce that almost surely,

lim
N→∞

X̂ (N)
j (k + 1) =

n
i=1

x̂i(k)Pij(x̂(k)).

Therefore, if we define the following discrete time deterministic system
x̂(k + 1) = x̂(k) · P(x̂(k))
x̂(0) = d̂0

(4)

and assume that the initial conditions d̂(N)
0 of the DTMC converge almost surely to d̂0, by applying the law of large number

for multinomial distributions inductively on the step k, we can prove the following theorem:

Theorem 2.1 (Mean Field Limit in Discrete Time [41]). Let X̂(N)(k) and x̂(k) be defined as above. Assume P (N)(d̂) converges
uniformly in Sn to the continuous function P(d̂), and that d̂(N)

0 → d̂0 almost surely. Then, for any k > 0, almost surely

lim
N→∞

X̂(N)(k) = x̂(k). �

The theorem states that, for any finite time horizon k, the behaviour of X̂(N)(k) can be approximated by x̂(k).

Remark 2.1. The results in [41] are more general than those presented here, as they allow the probability matrix P (N) at
step k to depend on the past history of the DTMC (with bounded depth). However, a limit result similar to Theorem 2.1 is
proved.

1 The law of large number of multinomial random variables states that 1
N B(N, p) → p almost surely. Here it can be applied after a little calculus to deal

with the fact that the probabilities of the multinomial distribution depend on N , but converge almost surely to the continuous limit Pi(x̂(k)).
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Example revisited.We now turn back to the example of the computer network epidemic. It is easy to see that the probability
matrix P does not depend on N and it is continuous, hence, assuming initial conditions converge, we satisfy the hypothesis
of Theorem 2.1. Therefore, the synchronous DTMC is asymptotically approximated by the following deterministic system:

x̂s(k + 1) = x̂s(k) − αe · x̂s(k) − αi · x̂i(k) · x̂s(k) − αp · x̂s(k) + αs · x̂r(k)
x̂e(k + 1) = x̂e(k) + αe · x̂s(k) + αi · x̂i(k) · x̂s(k) − αa · x̂e(k) − αq · x̂e(k)
x̂i(k + 1) = x̂i(k) + αa · x̂e(k) − αr · x̂i(k)
x̂r(k + 1) = x̂r(k) + αp · x̂s(k) + αq · x̂e(k) + αr · x̂i(k) − αs · x̂r(k).

A visual representation of this result is given in Fig. 2, where we compare trajectories of the DTMC for increasing N with the
trajectory of the deterministic limit.

Remark* 2.2. In this section, we considered a restricted form of interaction between the objects constituting a given sys-
tem. Essentially, the interaction between two objects is mediated by the environment (more precisely, by sensing the global
distribution of object’s states), and direct cooperation is not allowed. This restriction has the advantage of simplifying the
description of the functional form of interaction probabilities as well as simplifying the description of the one-step evolu-
tion of the system (cf. Eq. (2)). Considering direct forms of cooperation, involving two or more objects, makes the matter
muchmore complex. One approach in this direction is the one of [48], where the authors define amean field semantics for a
(clock-)synchronous process algebra (WSCCS—Weighted Synchronous Calculus of Communicating Systems) which encom-
passes a (restricted) form of direct interaction. However, this introduces some notational overhead, hence we omitted it.

Dealing with birth and death events in this context, instead, is less problematic, but requires a different formalisation of
the DTMC. In that case, it is more convenient to work directly with (normalised) counting variables, and include birth and
death events in Eq. (2), so that a fraction of agents is removed at each step (death events) and another fraction is added (birth
events). In this case, however, normalised variables no longer represent a probability distribution, but rather they count the
fraction of objects in any state, relatively to the initial population size. This kind of approach is typical in theoretical ecol-
ogy, where discrete time mean field equations are often used to describe the evolution of a well-mixed population. In this
context, the normalised variables are referred to as population density [49].

3. Basics of deterministic approximation in continuous time

In the previous section we considered a DTMC model in which all agents move synchronously at each step. A CTMC
model, instead, is inherently asynchronous, because the probability of two events happening at the same time is zero, due
to the continuity of the exponential distribution. Intuitively, for these asynchronousmodels,whenwe increase the size of the
population, we are also increasing the number of potential events that can be observed (think of the infection of a computer
in the network epidemic model, in which each infection happens at a different time). Hence, the larger the population, the
more events will be observed per unit of time. In the limit of an infinite population, the density of events will be infinite,
and the change in normalised counting variables induced by one event infinitesimal: discrete jumps are now replaced by a
continuous flow. Hence, for CTMCs, limit processes are flows in continuous time, in fact solutions of Ordinary Differential
Equations (ODE).

Similarly, we can consider a DTMC model in which only a constant number of agents moves at each discrete step. The
integer time of these models is an abstract time, which can be embedded in the real continuous time, associating a constant
duration with each step of the DTMC. We will then decrease this duration proportionally with the population growth, in
order to obtain a limit process. We can intuitively understand the rationale of this operation if we think of these DTMC
models as sampling the state of a system at a constant frequency. In this case, when we increase the population size, we are
increasing the density of events, hence, ifwewant to observe themall,we also need to increase the sampling frequency, i.e. to
reduce the duration between two consecutive samplings. The limit process will again be a continuous flow in continuous
time.

3.1. Modelling language

In order to formalise these intuitions, and to discuss precisely under which assumptions there is a deterministic limit, we
need to introduce some basic concepts but also to fix the notation to describe CTMC and the above-mentioned asynchronous
DTMC. The first step in this direction is to present a simplemodelling language, that is close to the descriptive level ofMarkov
Chains (MCs), but facilitates a compact description of population processes at the system level, by representing the different
possible transitions parametrically. We will define a language framework that can be used to specify both population CTMC
models and, with minor modifications, population DTMC models.2

2 The language is similar to the one of the PRISMmodel checker [50]; it resembles also the language used in [51]. Themain difference is that our language
lacks an explicit treatment of guards, which can be incorporated into the functions associated with transitions (as we will see in Section 4.5). We chose
to use a low level modelling language, instead of a more expressive stochastic process algebra (SPA), because most of the approaches to deterministic
approximation are formulated directly in terms of MCs, and the relevant ideas are better captured at this level. Higher level languages, like SPAs, can be
mapped to this language in a more or less straightforward way. For instance, SPAs with a fluid semantics in terms of ODEs can be easily mapped to this
language along the lines of the ODE derivation (see, for instance, [52,53]). Similar translations can be defined for probabilistic process algebras and PDTMCs.
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Population continuous time Markov chain models. We will start our discussion from Population Continuous Time Markov
Chain (PCTMC) models.

Definition 3.1. A Population Continuous Time Markov Chain (PCTMC) model is a tuple3 XC = (X, D, T , d0), where:

1. X = (X1, . . . , Xn) is a vector of variables.
2. Each Xi takes values in a finite or countable domain Di. We usually assume that Di ⊂ R. Hence, D =


i Di is the state

space of the model.
3. d0 ∈ D is the initial state of the model.
4. T = {τ1, . . . , τm} is the set of transitions of the form τj = (a, s, t, r), where:

(a) a is the label of the transition;
(b) s ∈ Rn, s ≥ 0 is the pre-vector, i.e. a vector of non-negative components specifying how many units of each variable

are consumed by the transition.
(c) t ∈ Rn, t ≥ 0 is the post-vector, i.e. a vector of non-negative components specifying howmany units of each variable

are created by the transition.
(d) r : D → R≥0 is the rate function of the transition. We require r(d) = 0 whenever d + t − s ∉ D .
The pre-vectors and post-vectors are combined in the state-change vector v = t−s, giving the net change on each variable
due to the transition. �

For transition τ = (a, s, t, r)we let aτ denote the label of τ and similarly for the other components. In the context of this
tutorial, it is convenient tomakemodels depend on an indexN , which represents the total population (or it can be associated
with a more general notion of size, see below). We will use N to index a sequence of models for increasing populations. We
denote this by X(N), where it is intended that each component of X(N) may depend on N , thus we get D (N), r (N)

τ , etc.
Given a PCTMCmodelX(N), we can easily extract the associated CTMC, by specifying the state space and the infinitesimal

generatormatrixQ. The former is simply the setD (N), while the latter is defined by adding up all the rates inducing the same
state change. Formally:

Q(d, d′) =


τ∈T (N)|vτ =d′−d

r (N)
τ (d), d ≠ d′.

When the summation set is empty, we assume the corresponding rate to be zero.
Population discrete time Markov chain models. We can describe Population Discrete Time Markov Chain (PDTMC) models in
a similar way to PCTMC ones, simply by replacing the rate of a transition by its probability.

Definition 3.2. A Population Discrete Time Markov Chain (PDTMC) model is a tuple XD = (X, D, T , d0), where:

1. X, D , and d0 are as in Definition 3.1;
2. T = {τ1, . . . , τm} is the set of transitions, of the form τj = (a, s, t, p), where:

(a) a, s, t are as in Definition 3.1;
(b) p : D → R≥0 is the probability function of the transition, and defines a sub-probability distribution, i.e. for each

d ∈ D , it is required that:


τ∈T pτ (d) ≤ 1. �

The DTMC associated with a PDTMCmodel X(N)
D has state space D (N) and probabilistic transitionmatrix P, defined using

the transition probability functions, as follows:

P(d, d′) =


τ∈T (N)|vτ =d′−d

p(N)
τ (d), d ≠ d′,

i.e. we add the probability of all transitions changing state from d to d′. As the transition functions form a sub-probability
distribution in each state, we must concentrate the remaining probability mass in the identity transition:

P(d, d) = 1 −


τ∈T (N)|vτ ≠0

p(N)
τ (d).

3.2. Main example (continued)

We turn back to the example of Section 2.1, showing how to describe the epidemicmodel as a PCTMC or a PDTMCmodel.
The language presented here describes the system from a global point of view. Hence, we will use variables to count how
many instances of each agent type are in the system (e.g. howmany susceptible or exposed computers are in the network).
Transitions will model a single event, like the infection or the patching of a single computer. In the case of PCTMC, the rate
of a transition is the global rate of observing it. In the PDTMC case, the probability of a transition is the probability that the
next event is the one described by the transition itself. Recall that, in the PDTMC case, we are modelling an asynchronous

3 We will drop the subscript from XC when there is no chance of confusion with population DTMC models.
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(a) N = 100. (b) N = 1000.

Fig. 3. Trajectories of the PCTMC model of the network infection example of Section 2.1, for different population levels. The parameters of the model are
λe = 1, λi = 2, λa = 4, λr = 2, λp = 0, λq = 0, and λs = 1, with initial conditions S0 = N , E0 = 0, I0 = 0, and R0 = 0. All the simulations for PCTMCs
were performed with Dizzy [54].

DTMC, so that in each step only one event happens. For instance, in the epidemic model, at each step only one computer is
infected, or one is patched, and so on.
PCTMC model of the network epidemic. To construct a PCTMC model we need four variables, counting how many agents
are in each state: susceptible Xs, exposed Xe, infected Xi, or recovered Xr , with X = (Xs, Xe, Xi, Xr). The state space is
D (N)

= {0, . . . ,N}
4, with the additional constraint that the sumof agents is constantly equal toN . To specify the transitions,

instead, we will use the unit vectors eS =def (1, 0, 0, 0), eE =def (0, 1, 0, 0), eI =def (0, 0, 1, 0), and eR =def (0, 0, 0, 1).

• Infection of a susceptible node from an external source: τe = (ext, eS, eE, r
(N)
e ), with r (N)

e (X) =def λe · Xs. Notice that the
infection rate is proportional to the number of susceptibles, as we have to add up the infection rate4 for each individual
to properly describe the rate at which we observe these events at the network level.

• Infection of a susceptible node fromamalicious contactwith an infectednode: τi = (inf, eS, eE, r
(N)
i ), with r (N)

i (X) =def λi·
Xs
N · Xi. Here λi is the basic rate of infection, i.e. the rate at which a single infected node can spread the infection by
contacting other nodes. This rate is then multiplied by the probability that a random contact is with a susceptible node
( XsN ). A second multiplication by the number of infected nodes gives the global rate of infection.

• Activation of the infection in an exposed node: τa = (act, eE, eI, r
(N)
a ), with r (N)

a (X) =def λa · Xe.
• Patching of an infected node: τr = (rec, eI, eR, r

(N)
r ), with r (N)

r (X) =def λr · Xi.
• Patching of a non-infected node: τp = (rec, eS, eR, r

(N)
p ), and τq = (rec, eE, eR, r

(N)
q ), with r (N)

p (X) =def λp · Xs and
r (N)
q (X) =def λq · Xe (here λp, λq < λr ).

• Loss of immunity of a recovered node: τs = (rec, eR, eS, r
(N)
s ), with r (N)

s (X) = λs · Xr .

We will indicate by E
(N)
C the PCTMC epidemic model with N nodes in the network. Two simulation trajectories for the

CTMC model are shown in Fig. 3, for two different population levels.

PDTMC model of the network epidemic. The PDTMC model E (N)
D of the network epidemic is obtained by replacing rates with

probabilities in the previous list of transitions as follows:

• Infection from an external source. We assume that each susceptible node is infected in any step with a constant
probability αe. Hence, the probability that we observe an external infection is αe times the probability that a susceptible
node is involved in the next transition, given that each node can be chosen with the same probability:

p(N)
e (X) =def αe ·

Xs

N
.

• Infection fromamalicious contact. Amessage sent froman infected nodewill arrive at a susceptible nodewith probability
Xs
N . In this case, the infection will happen with probability αi. Hence, the probability of observing an infection due to a
malicious contact is p(N)

i (X) =def αi ·
Xs
N ·

Xi
N .

• Activation of the infection. A worm in an exposed node will activate with probability αa, so that p(N)
a (X) =def αa ·

Xe
N .

• Patching of an infected node. Each infected node will be patched with probability αr , so that p(N)
r (X) =def αr ·

Xi
N .

• Patching of a non-infected node. Non-infected nodes can be patchedwith probabilityαp, αq < αr , so that p(N)
p (X) =def αp ·

Xs
N and p(N)

q (X) =def αq ·
Xe
N .

• Loss of immunity. Each recovered node will lose immunity with probability αs, so that p(N)
s (X) =def αs ·

Xr
N .

4 To make the notation lighter, we write the rate function of transition τe as r
(N)
e rather than as r (N)

τe
, and similarly for other transitions.
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(a) N = 100. (b) N = 1000.

Fig. 4. Trajectories of the PDTMC model of the network infection example of Section 2.1, for different population levels. The parameters of the model are
αe = 0.1, αi = 0.2, αa = 0.4, αr = 0.2, αp = 0, αq = 0, and αs = 0.1, with initial conditions S0 = N , E0 = 0, I0 = 0, and R0 = 0. All the simulations of
PDTMCs were performed by a dedicated Java implementation.

The specific values of α constants must be defined in order to study the evolution model. They must satisfy some
constraints tomake themodel compatible with the DTMC semantics based on probabilities. In fact, these constraints are the
same as the ones in Section 2.1. In Fig. 4 we show a simulated trajectory for the PDTMC model for two different population
levels.

3.3. System size and normalisation

In order to give a formal account of the assertion that, as the size of the system grows, a deterministic description will
capture the relevant dynamics, we need two things: a notion of the ‘‘size’’ of the system, and a limit theorem stating that the
stochastic model converges to its deterministic counterpart (to be defined, too), as the size of the system goes to infinity. All
the approximation results in literature that we will consider follow this scheme [14,29,55,56,32,57,42].

Given a PCTMC or a PDTMCmodelX(N)
=def(X(N), D (N), T (N), d(N)

0 ), indexed byN , we associatewith it the size γN , which
is a positive real number, for each N . In the context of this paper, the size of a system will always be the total population N ,
i.e. γN = N . In the epidemicmodel E (N), for instance, the size is the number of computers in the network, which is a quantity
that remains constant throughout the evolution of the epidemic.

If the total population of the model can vary, because there are birth and death events (e.g. the connection or
disconnection of a computer in the network), the size γN can no longer be equal to the total population, since γN is required
to be a constant. In such cases, the size of the system is often chosen to be the total initial population.

The notion of system size is by nomeans limited to a population level, as variables are not required to take integer values.
For instance, inmodels of biochemical reactions, the system size is usually the volume of the container inwhich the reactions
happen (multiplied by the Avogadro constant). In dividing the variables representing molecular counts by this volume, we
obtain the molar concentration of reactants.

The notion of size is of course intimately related to that of normalisation: as we have already seen in Section 2, in order to
compare the evolution for different population levels, we divide each variable by γN . When the total population of amodel is
constant, the normalised variables can be interpreted as a probability distribution;when instead there are births and deaths,
the normalised variables cannot be interpreted as a probability distribution, but rather as a proportion of agents relative to
the initial population.

If γN = N , by normalising counting variables with respect to N , the unit increment in the normalised variables is of the
order of 1

N ; hence we can think of our process as being defined in a grid of width 1
N in [0, 1]. As N increases, the step size of

this grid becomes smaller and smaller, and the limit process will live in the continuous world.
We turn now to a more precise description of the formal setting in which we will discuss deterministic limits. Suppose

we have a sequence of PCTMC models (X(N))N≥N0 , where N ∈ N, N0 > 1 is a problem-specific value,5 and X(N)
=

(X(N), D (N), T (N), d(N)
0 ). The index N is closely related to the size γN of X(N): we require limN→∞ γN = ∞. Normalisation

essentially consists of dividing variables by γN , modifying rates and increments accordingly. In this way, the basic step
increment at level N becomes δN =def

1
γN

with limN→∞ δN = 0. For instance, in the computer network epidemic model, the
range of each variable is {0, . . . ,N} and δN =

1
N .

When we rescale a model according to this recipe, we need to rescale appropriately all the quantities involved; we do
this as described below. For all (PCTMC) models X(N)

= (X(N), D (N), T (N), d(N)
0 ), we define a normalising operator (·̂) as

follows:

• for all d ∈ D (N), d̂=def δN · d;
• D̂ (N)

=def{d̂ | d ∈ D (N)
};

5 For instance, in the epidemic example we would have N0 = 2, in order to allow interactions to take place.
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Fig. 5. Intuitive graphical visualisation of deterministic approximation theorems. As the step size and the magnitude of jumps go to zero, the impact of
fluctuations becomes negligible, hence stochastic trajectories start to look like the smooth deterministic one. Here we represented two situations, halving
the step size and magnitude in passing from Fig. 5 (a) to (b).

• for all τ ∈ T (N), with τ = (a, s(N), t(N), r (N)), τ̂ =def(a, ŝ(N), t̂(N), r̂ (N)), where:
– ŝ(N)

=def δN · s(N);
– t̂(N)

=def δN · t(N);
– Consequently, v̂(N)

=def δN · v(N);
– for all d̂ ∈ D̂, r̂ (N)(d̂) =def r (N)(γN · d̂);

• T̂ (N)
=def{τ̂ | τ ∈ T (N)

}.

Given a model X(N)
= (X(N), D (N), T (N), d(N)

0 ), the corresponding normalised model X̂(N) is then X̂(N)
=def(X̂(N), D̂ (N),

T̂ (N), d̂(N)
0 ), where X̂(N) is a fresh new variable tuple of the same size as X(N).

Notice that the following relationship holds between the variables of the normalised model and those of the non-
normalised one: X̂(N)

= δN · X(N)
=

1
γN

· X(N).

The normalisation X̂D of a PDTMC model XD is defined similarly, just replacing rates with probabilities.
In the following, we will first state themain theorems for PCTMCmodels. This will be done in the next section, where we

will also discuss several examples. Then, we will turn our attention to results for PDTMCmodels. We will interpret PDTMCs
as timedmodels, where the duration of each step of a DTMC of level N is ϵN , again presenting both theorems and examples.
In particular, in Section 6 we will show that the asymptotic behaviour of such PDTMCs and PCTMCs, whenever certain
conditions of probabilities and rates are fulfilled, is essentially the same: in the limit of large N , the difference between
these two classes of processes is negligible.

After presenting the limit theorems, wewill discuss more advanced topics, like the limit results for the stationary regime
and the decoupling assumption (Sections 7 and 8).

4. Deterministic approximation for PCTMCs

The main results on deterministic approximation for continuous time Markov chains date back at least to the work of
Kurtz [14,47]. The key concept is a sequence of Markov processes for which both the magnitude of jumps, i.e. ∥v(N)

τ ∥, for all
transitions τ , and the average time between consecutive jumps, go to zero. In this situation, fluctuations become negligible,
and as the time step andmagnitude become infinitesimal, we can approximate a discrete jumpwith a continuous derivative,
thus obtaining a deterministic model in terms of ordinary differential equations. This situation is graphically illustrated in
Fig. 5.

In order for these results to hold, the time step and the jump magnitude must go to zero in a consistent way, i.e. they
must scale in the same way with respect to the system size parameter γN . One classical scaling condition requirement
is density dependence, discussed below, which is satisfied by many models, such as most models of chemical reactions and
most epidemicmodels. However, the conditions underwhich the limit theoremholds are farmore general. Herewewill first
discuss deterministic approximation for density dependent models, and present subsequently a more general formulation,
following [56] and [57]. These papers, in fact, present a formulation which is a good compromise between generality and
simplicity in verifying conditions that must hold for the theorem to work. In particular, [57] extends the validity of the
results in [56], also providing an explicit formula for error bounds, which are shown to decay exponentially with N .

We decided to begin the presentation with PCTMCs instead of PDTMCs for two reasons. Firstly, continuous time must
enter the picture in this class of deterministic approximation results, and in CTMCs continuous time is naturally considered,
whilst introducing it in DTMCs is slightly less intuitive. Secondly, it is quite easy to deduce the limit results for DTMCs from
those for CTMCs [58], and we will pursue that line of reasoning here.
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4.1. Deterministic approximation for density dependent models

Let X
(N)
C = (X(N), D (N), T (N), d(N)

0 ) be a PCTMC model and X̂
(N)
C = (X̂(N), D̂ (N), T̂ (N), d̂(N)

0 ) be the corresponding nor-
malised model. We will consider the sequence (X̂

(N)
C )N≥N0 with respect to an increasing system size γN .

Density dependence is a typical scaling law of rate functions. To formally define density dependence, let E be a closed
set in Rn such that


N D̂ (N)

⊆ E. This is the space in which all processes of the sequence of normalised PCTMC and their
deterministic approximation live. The sequence of normalised PCTMCmodels (X̂

(N)
C )N≥N0 is density dependent if and only if:

• the system size grows linearly with N , i.e. γN = Θ(N), and
• for each N and τ ∈ T̂ (N):

– there is a vector vτ such that v̂(N)
τ =

1
γN

vτ . This means that increments v(N)
τ in the non-normalised model are

independent of N: v(N)
τ = vτ ;

– there is a Lipschitz continuous and bounded function6 gτ : E → R≥0 such that the rate function r̂ (N)
τ : D̂ (N)

→ R
scales with system size as

r̂ (N)
τ (d̂) = γN · gτ (d̂),

for all d̂ ∈ D̂ (N).

The drift F : E → Rn of a generic element of the sequence of normalised PCTMC models (X̂
(N)
C )N≥N0 describes the mean

instantaneous increment from a state d̂ of the model. For density dependent models, the drift can be defined as

F(d̂) =def


τ∈T (N)

vτ · gτ (d̂),

The drift defines the vector field of the deterministic limit, whose trajectories x̂(t) are solutions of the initial value problem
dx̂(t)
dt = F(x̂(t)), with x̂(0) = d̂0 ∈ E. We require that x̂(t) remains in E (for all time instants in which x̂ is defined). This can

be accomplished by choosing E appropriately.
We further require that there is some point d̂0 ∈ E such that

lim
N→∞

d̂(N)
0 = d̂0, (5)

i.e. the initial conditions of X̂
(N)
C converge.7

Under this assumption, and letting X̂(N)(t) be the continuous-time Markov process associated with X̂
(N)
C , the following

theorem holds:

Theorem 4.1 (Deterministic Approximation for Density Dependent PCTMCs). Let (X̂(N)(t))N≥N0 be the sequence of Markov
processes associatedwith the density dependent sequence of PCTMCmodels (X̂(N)

C )N≥N0 , x̂(t) as above, and assumeCondition (5) is
satisfied. Then, for any finite time horizon T < ∞, it holds that:

P{ lim
N→∞

sup
0≤t≤T

∥X̂(N)(t) − x̂(t)∥ = 0} = 1,

i.e. sup0≤t≤T ∥X̂(N)(t) − x̂(t)∥ converges to zero almost surely. �

This theorem is a law of large numbers for Markov processes, and a reasonably simple proof will be presented in
Appendix B. It states that, whenever the appropriate assumptions are in place, the probability of observing a significant
difference between any single trajectory of the Markov process and the solution of the ODE goes to zero as N grows.
Essentially, for largeN we cannot distinguish the individual trajectories of the CTMCs from the trajectory of the ODE. The validity
of this theorem is for any finite time horizon T , chosen so that the solution of the ODE remains in E in [0, T ]. The behaviour
as T → ∞ will be discussed in Section 7.

4.2. Main example (continued)

We return to the main example of the computer network epidemic. Recall that we have a fixed number of nodes, N , in
the network, each being in one of four different states: susceptible (with count Xs), exposed (Xe), infected (Xi), and recovered
(Xr ). The interactions and their rates are described in Section 3.2.

6 A function g(d̂) is Lipschitz continuous if and only if there is a constant L > 0 such that ∥g(d̂1) − g(d̂2)∥ ≤ L∥d̂1 − d̂2∥. A function g(d̂) is bounded
if there is M > 0 such that g(d̂) ≤ M for all d̂ ∈ E. The Lipschitz condition can be relaxed by requiring that g is locally Lipschitz continuous, i.e. for each
compact K ⊂ E, g is Lipschitz in K , with constant LK . Similarly, we can relax boundedness to local boundedness.
7 In this case, convergence of initial conditions is sure, as the sequence of PCTMCmodels starts from a fixed point. When the sequence of PCTMCmodels

starts from an initial distribution, which is a possibility not encompassed by our modelling language but can be easily included, then one should require
almost sure convergence to the limit point d̂0 .
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In order to apply the deterministic approximation theorem, we need to check that the rates are density dependent. In
this case, the system size is simply γN = N , and the sequence of normalised models (Ê

(N)
C )N≥N0 is derived according to the

recipe described in Section 3.
Notice that, as X̂s + X̂e + X̂i + X̂r = 1, each D̂ (N) is contained in the unit simplex S4

= {d̂ ∈ [0, 1]4 |
4

i=1 d̂i = 1}, hence
we can take E =def S

4. Inspecting the model, it is straightforward to verify the density dependence condition on update
vectors and rate functions. In fact, the update vectors in the non-normalised model are clearly independent of N , while for
the rate function we have:

• The external infection rate is r̂ (N)
e (X̂) =def N · λe · X̂s, which is density dependent with ge(X̂) = λe · X̂s;

• The infection by contact rate is r̂ (N)
i (X̂) =def N · λi · X̂s · X̂i, which is density dependent with gi(X̂) = λi · X̂s · X̂i.

The other rates have the same form as the external infection, hence they are all density dependent. Notice that all rate
functions satisfy the Lipschitz condition, as they are continuously differentiable functions in a compact set.

The limit set of ODEs dx̂
dt = F(x̂) of the sequence is easily constructed by computing the drift F according to the recipe of

the previous section.

dx̂s(t)
dt

= −λe · x̂s(t) − λi · x̂s(t) · x̂i(t) − λp · x̂s(t) + λs · x̂r(t)

dx̂e(t)
dt

= λe · x̂s(t) + λi · x̂s(t) · x̂i(t) − λa · x̂e(t) − λq · x̂e(t)

dx̂i(t)
dt

= λa · x̂e(t) − λr · x̂i(t)

dx̂r(t)
dt

= λr · x̂i(t) + λp · x̂s(t) + λq · x̂e(t) − λs · x̂r(t).

(6)

Note that this set of ODEs is defined in the state space E, and its trajectories can never leave it, as x̂s(t)+x̂e(t)+x̂i(t)+x̂r(t)
is a conserved quantity.

As far as convergence of initial conditions is concerned, let d̂0 be an initial point in the state space E. We define d̂(N)
0 as

follows: d̂(N)
0 =def

1
N · ⌊N · d̂0⌋. Clearly, limN→∞ d̂(N)

0 = d̂0.8
In Fig. 6 we can see a comparison between the solution of the ODEs and some trajectories of the stochastic process for

different population levels. Aswe can see, asN increases, the trajectories can no longer be distinguished from the limit ODEs.

4.3. Deterministic approximation: general formulation

We turn now to state more general conditions for the deterministic approximation theorem to hold. After introducing
some notation, we present the scaling conditions and the limit theorems.

4.3.1. Notation
Let X̂

(N)
C = (X̂(N), D̂ (N), T̂ (N), d̂(N)

0 ) be a normalised PCTMC model. We define some derived quantities of interest, that
will be needed later on. The point here is that the simple description of the PCTMC model in terms of transitions allows the
computation of these quantities in a straightforward way.

• The exit rate function R(N)
: D̂ (N)

→ R associates each state d̂with its exit rate, which is the speed at which we see some
transition happening when the system is in state d̂:

R(N)(d̂) =def


τ∈T̂ (N)

r̂ (N)
τ (d̂). (7)

• The mean increment function µ(N)
: D̂ (N)

→ Rn associates each state d̂ with the mean increment in d̂, i.e. the average
variation of each variable in a single discrete step of the underlying CTMC. Since in each state d̂, the probability that the

next transition is τ equals r̂(N)
τ (d̂)

R(N)(d̂)
, and v̂(N)

τ is the variation of system variables due to transition τ , we get:

µ(N)(d̂) =


τ∈T̂ (N)

v̂(N)
τ

r̂ (N)
τ (d̂)

R(N)(d̂)
. (8)

Notice that the µ(N)(d̂) may have negative components.

8 Note that for N sufficiently large, the rounding error introduced by the floor function will become negligible.
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Fig. 6. Comparisonbetween the solution of theODEand stochastic trajectories for increasing population sizes of the PCTMCmodel of the network epidemic.
Parameters of the model are λe = 0.2, λi = 0.2, λa = 0.4, λr = 0.2, λp = 0, λq = 0, and λs = 0.2, while initial conditions of ODE are ŝ0 = 1, ê0 = 0,
î0 = 0, and r̂0 = 0.

• The covariance matrix9 Σ (N)(d̂) of the increments in state d̂, i.e. the matrix storing the covariances of the increments
between each pair of variables, can be easily shown to be

Σ
(N)
ij (d̂) =


τ∈T̂ (N)

v̂
(N)
τ ,i v̂

(N)
τ ,j

r̂ (N)
τ (d̂)

R(N)(d̂)
− µ

(N)
i (d̂)µ

(N)
j (d̂). (9)

In particular, the variance of the increments of variable X̂ (N)
i is

Σ
(N)
ii (d̂) =


τ∈T̂ (N)

(v̂
(N)
τ ,i )

2 r̂
(N)
τ (d̂)

R(N)(d̂)
− µ

(N)
i (d̂)2. (10)

Mean increment and the covariance matrix are concepts needed to describe the local average dynamics of the CTMC
and the local structure of noise. By imposing suitable conditions on their dependence on the parameter N , which will be
discussed in the next section, we can guarantee that noise goes to zero in the limit.

• Themean dynamics or drift F (N)
: D̂ (N)

→ Rn of the model in state d̂ is

F (N)(d̂) =def R(N)(d̂)µ(N)(d̂) =


τ∈T̂ (N)

v̂(N)
τ r̂ (N)

τ (d̂). (11)

The concept of mean dynamics, by multiplying the mean increment by the exit rate, essentially captures the (average)
local variation of the CTMC with respect to the passing of time.

Notice that all the above definitions apply also to non-normalised models, although we need them only for normalised
ones.

4.3.2. Scaling assumptions
Let X̂

(N)
C = (X̂(N), D̂ (N), T̂ (N), d̂0

(N)) be a normalised model and let us consider the sequence (X̂
(N)
C )N≥N0 with respect to

an increasing system size γN .
State space. Let E be a closed set in Rn such that


N D̂ (N)

⊆ E, the space in which all processes of the sequence and their
deterministic approximation live. We will, however, state the convergence result for a (appropriate) relatively open subset

9 Formally, the covariance matrix Σ(x) is defined by Σij(x) = E[(X̃i(k+ 1)− X̃i(k))(X̃j(k+ 1)− X̃j(k)) | X̃i(k) = xi, X̃j(k) = xj]− E[(X̃i(k+ 1)− X̃i(k)) |

X̃i(k) = xi]E[(X̃j(k + 1) − X̃j(k)) | X̃j(k) = xj], where X̃(k) is the embedded DTMC [13] associated to the CTMC X(t).
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of S ⊆ E.10This is convenient because we can localise all the scaling assumptions to S. We will further denote S ∩ D̂ (N)

by S(N).

Convergence of initial conditions.We assume that there is some point d̂0 ∈ S such that11

lim
N→∞

d̂0
(N)

= d̂0. (12)

Convergence of drift.We assume that the drift vectors behave coherently in the limit, i.e. we assume that there is a Lipschitz
vector field F : E → Rn such that the drift F (N) converges uniformly to F . This means that

lim
N→∞

sup
d̂∈S(N)

∥F (N)(d̂) − F(d̂)∥ = 0. (13)

We further assume that, by appropriately choosing E, all the trajectories x(t) which are solutions of the initial value
problem dx̂(t)

dt = F(x̂(t)), when d̂0 ∈ E, remain in E (for all time instants in which x̂ is defined). Note that the supremum is
taken in S(N), i.e. we are just requiring convergence in S, not in E. This means that only what happens in S is relevant for the
validity of the theorem. In particular, F is required to be Lipschitz only in S: its behaviour outside S is not relevant.12 In our
setting, it is usually easier to focus attention on single transitions, proving for each transition τ the existence of a Lipschitz
function (in S) fτ : E → R such that r̂ (N)

τ converges uniformly to fτ on S.
Convergence to zero of noise. The other hypotheses consider the dependence of the exit rate and of the jump size on N , plus
a condition on their cross-relation (which is essentially a condition on the variance). Usually, the scaling conditions are
such that the exit rate goes to infinity with N , while the step size goes to zero, both at the same speed (typically linearly
with respect to N). Here, however, we consider more general scaling laws, that subsume the standard ones and allow the
application of mean field results to a larger class of systems. We require three things:

1. The exit rate is bounded for each N , i.e. there exists ΛN ∈ R≥0, ΛN < ∞, such that

sup
d̂∈S(N)

R(N)(d̂) = ΛN . (14)

Usually, limN→∞ ΛN = ∞, so that the frequency of jumps increases with N .
2. The magnitude of jumps goes to zero. More precisely, there exists JN ∈ R≥0, such that

max
τ∈T̂ (N)

∥v̂(N)
τ ∥ = JN . (15)

Moreover limN→∞ JN = 0 and, in particular, JN is O(N−1); this means that the magnitude of jumps goes to zero at least
as quickly as N−1.

3. The scaling of jump magnitude and exit rate must be compatible, according to the following condition:

J2NΛN is O(N−1). (16)

This is essentially a condition on noise, and it enforces that the variance of the system goes to zero.

In our setting, the previous conditions can be simplified whenever the non-normalised increments are independent of N ,
i.e. whenever, for each transition τ , there is a vector vτ such that v(N)

τ = vτ for all N , so that v̂(N)
τ = δN · v(N)

τ = δN · vτ , with
δN =

1
γN

. In particular, the second condition can be restated in terms of system size γN : we have that ∥v̂(N)
τ ∥ = δN · ∥vτ∥,

where ∥vτ∥ isO(1). Hence JN = δN · J , where J = maxτ∈T (N) ∥vτ∥. Therefore, the second condition is satisfied as δN converges
to 0, with order O(N−1), while the third condition can be restated as δ2

NΛN = O(N−1). In practical applications, one usually
has that ΛN = Θ(N) and γN = Θ(N), so that δN = Θ(N−1), hence condition (16) holds straightforwardly.

4.3.3. The deterministic approximation theorem
We now state the general approximation theorems for PCTMCs [14,29,55,56,58]. Consider a sequence of normalised

PCTMCmodels (X̂
(N)
C )N≥N0 with X̂

(N)
C = (X̂(N), D̂ (N), T̂ (N), d̂(N)

0 ), and denote by X̂(N)(t) the continuous-timeMarkov process
associatedwith X̂

(N)
C . Furthermore, denote by x̂(t) the solution of the initial value problem dx̂(t)

dt = F(x̂(t)), x̂(0) = d̂0, where
F is as in (13). We will also need the following definitions: the exit time from S of the ODE solution x̂(t) is ζ (S) =def inf{t ≥

0 | x̂(t) ∉ S}, and the exit time from S of the Markov processes X̂(N)(t) is ζ (N)(S) =def inf{t ≥ 0 | X̂(N)(t) ∉ S}.

10 A relatively open subset S is an open set in the subspace topology on E. The subspace topology is defined in the following way: the open sets of E are
obtained by intersecting E with open sets U ⊆ RN . Therefore, S is relatively open in E if and only if there exists an open set U ⊆ RN such that S = E ∩ U .
Note that E = E ∩ Rn is relatively open in E.
11 For the approximation theorem, we can allow the PCTMC model to start from an initial distribution converging in probability to d̂0 ∈ S.
12 It is always possible to redefine F outside S to make it Lipschitz in E.
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Theorem 4.2 (Deterministic Approximation of PCTMCs). Let (X̂(N)(t))N≥N0 be the sequence of Markov processes associated with
the sequence of PCTMCmodels (X̂(N)

C )N≥N0 , x̂(t) as above, and assumeConditions (12)–(16) apply. Then, for any finite time horizon
T < ζ(S), it holds that:

1. limN→∞ P{ζ (N)(S) < T } = 0;
2. for all ε ∈ R>0, limN→∞ P{sup0≤t≤T ∥X̂(N)(t) − x̂(t)∥ > ε} = 0.

Furthermore, both P{ζ (N)(S) < T } and P{sup0≤t≤T ∥X̂(N)(t) − x̂(t)∥ > ε} are O(e−N). �

Similarly to Theorem 4.1, this theorem gives a law of large numbers for PCTMC models. Also in this case, the validity of
the theorem is for any finite time horizon T , chosen so that the solution of the ODE remains in S in [0, T ]. Nothing is said
about asymptotic behaviour.We now give a slightly stronger result than the previous theorem, for the case inwhich the ODE
solution leaves S in finite time, i.e. ζ (S) < ∞. For this result to hold, we need that x̂(t) leaves S transversally at time ζ (S),
meaning that x̂(t) remains outside (the closure of) S for some time after leaving S. More precisely, x̂(t) leaves transversally
S at time ζ (S) if and only if there is δ > 0 such that, for t ∈]ζ (S), ζ (S) + δ[, x̂(t) ∉ cl(S) (hence x̂(t) remains for some time
in int(Sc), the interior of the complement of S).

Theorem 4.3 (Deterministic Approximation for PCTMCs with Finite Exit Times). Let the sequence (X̂(N)(t))N≥N0 of Markov
processes and x̂(t) be defined as before, and assume Conditions (12)–(16) are in force. Then, if ζ (S) < ∞ and x̂(t) leaves
transversally S at time ζ (S), it holds that, for all ε ∈ R>0:

1. limN→∞ P{sup0≤t≤ζ (S) ∥X̂(N)(min{t, ζ (N)(S)}) − x̂(t)∥ > ε} = 0;
2. limN→∞ P{∥ζ (N)(S) − ζ (S)∥ > ε} = 0.

Furthermore, both of the probabilities P{∥ζ (N)(S) − ζ (S)∥ > ε} and P{sup0≤t≤ζ (S) ∥X̂(N)(min{t, ζ (N)(S)}) − x̂(t)∥ > ε} are
O(e−N). �

This second theorem states that the CTMC trajectories are indistinguishable from the ODE solution provided that we look
at what happens while the ODE trajectory is in S. Furthermore, it states that the exit time from S of the CTMCs converges to
that of the ODE, meaning that for large N we can estimate ζ (N)(S) by ζ (S).

Remark 4.1. The scaling assumptionswe are taking into account are fairly general, and encompassmany scaling laws found
in the literature. For instance, in [56], the author assumes that ΛN = O(N) and he requires the following scaling condition
on the variance of all variables:

sup
d̂∈S(N)

n
i=1

Σ
(N)
ii (d) + ∥µ(N)(d̂)∥2

= O(N−2).

Provided v(N)
τ does not depend on N , this can be rewritten in our setting as

sup
d̂∈S(N)


τ∈T (N)

δ2
N∥vτ∥

2 r̂
(N)
τ (d̂)

R(N)(d̂)
= O(N−2),

which essentially amounts to requiring that δN = O(N−1). Notice that, in this case, condition (16) is satisfied. In particular,
this argument justifies the fact that we refer to (16) as a condition on noise.

The density dependence condition introduced in Section 4.1 is also implied by this more general scaling law. Note that
there are many examples of models that are not density dependent but for which the deterministic approximation holds.
One example about multi-type particle interactions is given in [56]. Additionally, all mass action models of biochemical
reactions inwhich twomolecules of the same kind react are not density dependent, but they satisfy themore general scaling
conditions of this section (see [59]). A similar situation is found in epidemic models (see for instance the malware example
of [42]).

Remark 4.2. Theorems 4.2 and 4.3 state that the sequence of PCTMCs X̂(N)(t) converges to x̂(t), the solution of the ODE
dx̂(t)
dt = F(x̂(t)) for the limit vector field F . In case the drift F (N) of X̂(N)(t) depends on N , a simple consequence of those

theorems is that we can replace the vector field F with the N-dependent vector field F (N). More specifically, letting x̂(N)(t)
be the solution of the ODE dx̂(N)(t)

dt = F (N)(x̂(N)(t)), it can be proved that ∥X̂(N)(t) − x̂(N)(t)∥ converges to zero in probability
as N goes to infinity. In some situations, the vector field F (N) can be more effective in capturing the behaviour of the PCTMC
model for a fixed N . An example of this kind is the Bianchi paper analysing the IEEE 802.11 protocol [60]. Another example
will be given in Section 4.4 below.

Remark* 4.3. There are several proof techniques that have been used to prove these two theorems. Probably the most used
approach is based on martingale theory [58]. Martingales are particular stochastic processes, whose conditional expected
value at future times, given the present, is equal to the observed value at the present. Specifically, in this context [56,57]
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one can construct a martingale as the difference between the CTMC and its compensator (i.e. the process that accumulates
the mean increments, computed according to the mean dynamics, and ‘‘compensates’’ the deviation from the mean of
the CTMC). After showing that this is indeed a martingale with zero mean, the theorem is proved by applying standard
martingale inequalities, like Doob’s inequality or an exponential martingale inequality [57]. In this way, one shows that the
CTMC, in the limit, behaves like a deterministic process, which is the solution of an integral equation. Then, one proves that
this is indeed the solution of the fluid ODE, by applying the Gronwall inequality [58], a functional inequality used to prove
properties of ODE solutions in worst case scenarios (see also Remark 4.4).

In the density dependent case, the theorem can be proved using a random time change argument to represent the CTMCs
in terms of Poisson processes, counting how many times each transition fired up to time t . Then, the law of large numbers
for Poisson processes is exploited to get convergence (see [55] and the proof in Appendix B).

A different proof technique, having a broader spectrum of applications but using more advanced mathematical tools,
is based on infinitesimal generators [14,55,58], which are operators on functional spaces (usually the space of bounded
measurable functions or the space of continuous functions vanishing at infinity) encoding information about the expected
value of the CTMC for any function of the space. There is a large body of theory showing connections between properties of
the stochastic processes and properties of their generators. In particular, convergence of stochastic processes is equivalent
to the convergence of their infinitesimal generators, which may be easier to prove [14,55,58].

Remark* 4.4. Useful companions of limit theorems are bounds on the error introduced in replacing a stochastic process by
its deterministic limit. In Theorems 4.2 and 4.3, error bounds are provably exponentially decreasing in N . Despite this, they
are still quite loose [57,61]. In fact, the error bounds depend (doubly) exponentially on the time horizon T , so that, despite
going exponentially to zero as N grows, they tend to be too large for any practical application.

More precisely, error bounds have the following form:

P


sup
0≤t≤T

∥X̂(N)(t) − x̂(t)∥ > ε


≤ 2 · N · eW ,

whereW stands for− ε2

18 ·
1

T ·e2·K ·T
1
AN

,K is the Lipschitz constant of F andAN = max{e, (δN ·ΛN)−1
}·δ2

N ·ΛN , so that 1
AN

= Ω(N),
if conditions (12) to (16) are in force. This is related to the fact that Theorem 4.2 holds for any arbitrary trajectory of the limit
ODE. In particular, it holds for trajectories that are unstable, meaning that even small fluctuations can lead exponentially far
away from them. Indeed, the appearance of T as an exponent is typical of the use of Gronwall’s inequality, which is used to
prove global properties of ODE solutions, including unstable trajectories.

In practical applications, however, we usually have to deal with trajectories with much nicer stability properties, hence
the behaviour of the deterministic approximation in terms of error bounds is much better than the one predicted by the
worst-case error bounds. Proving bounds for such situations is an active and challenging research area [61].

4.3.4. Main example (continued)
Consider again the epidemic model, whose limit behaviour has been discussed in Section 4.2. Theorems 4.2 and 4.3 can

also be used to estimate properties of the stochastic sequence of models, such as exit times. Consider, for instance, the
following question: ‘‘when will one third of the nodes be contaminated by the virus?’’ In this case, we need to compute the
exit time from the set S = {(d1, d2, d3, d4) ∈ E | d2+d3 < 1

3 }. If we consider the set of ODEs, we obtain that ζ (S) = 0.43043
(for parameters as in Fig. 6). It is easy to check that the ODE trajectory leaves S transversally: d(x̂e+x̂i)

dt is positive at time ζ (S)
(hence x̂e(t) + x̂i(t) > 1/3 for ζ (S) < t < ζ(S) + δ for some δ > 0). Let ζ (N)(S) be the exit time for the sequence of PCTMC
models. Theorem 4.3 states that ζ (N)(S) converges to ζ (S) in probability, so that, if N is large, ζ (S) is a good estimate. We
can see this fact visually by looking at the distributions of exit times for different values of N , as shown in Fig. 7, obtained
from a batch of simulations of the CTMCs. Notice that for N = 106, ζ (N)(S) = 0.43043 in all the simulation runs.

4.4. Example: crowd dynamics

In this section, we consider a PCTMCmodel of crowd dynamics, presented in [22]. Themodel tries to capture an emergent
phenomenon happening in certain cities in southern Spain, where people wandering around city’s squares during the
evening suddenly start gathering in a single square, giving rise to a big (and noisy) party.

In this example, we assume we have 4 squares, connected in a ring topology (but more squares and more general
topologies can be considered). The main idea is that each person is willing to remain in a square only if she finds someone
to talk with. Hence, she will encounter a certain number of other people in the square, and may talk with them, depending
on several factors (she knows these people, she likes them, they want to talk to her or not, etc.). This event is modelled in a
simple way, namely as a Bernoulli random variable with probability c , called the chat probability. Hence, a person will leave
the square if she finds nobody to chat with, i.e. with a probability (1 − c)k, where k is the number of people that she meets
in the square. In the context of CTMCs, we will interpret this probability as a rate. We will describe the number of people in
each square by the variables Xi, i = 1, . . . , 4. The model assumes that a person will meet everybody currently in the square.
Hence, the rate at which an individual in square iwill leave that square in the next step is (1 − c)Xi−1. Therefore, the rate at
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Fig. 7. Distributions of exit times from the set S = {(d1, d2, d3, d4) ∈ E | d2 + d3 ≤
1
3 }, for different population levels, estimated from 1000 simulation

runs. Parameters are as specified in Fig. 6. The deterministic limit to which the exit time sequence converges is ζ (S) = 0.43043.

which someone will leave square i is Xi · (1 − c)Xi−1. When someone leaves, she may go to the preceding or the following
square with the same probability, which in this case is 1

2 .
In this way, we can construct a sequence of models F

(N)
C , for system size γN = N , with variables X = (X1, X2, X3, X4),

state spaces S4
N = {d ∈ {0, . . . ,N}

4
|
4

i=1 di = N}, and with 8 transitions, two per square. For instance, the transition
modelling the event of moving from square 1 to square 2 is (a1,2, e1, e2, r

(N)
1,2 )where r (N)

1,2 (X) =def
1
2X1 · (1− c)X1−1. The other

transitions are defined similarly.
This model shows the following behaviour: if c is sufficiently high, larger than 4

N , i.e. the number of squares divided by
the population size, all the people tend to converge to the same square (a party emerges!). This phenomenon is observed
both in the CTMCs and in the fluid model, as can be seen in Fig. 8, where we show the behaviour of two models for different
population levels, keeping c = 0.01 fixed. One model (N = 80) is below the threshold (no convergence, but random
distribution of people among squares) and the other one (N = 800) is above it (convergence to a single square).

If we compute the drift for the normalised model with N people, we see that it depends on N (differently from other
examples). For instance, the first component of F (N) is

−X̂1 · (1 − c)N·X̂1−1
+ 0.5 · X̂2 · (1 − c)N·X̂2−1

+ 0.5 · X̂4 · (1 − c)N·X̂4−1.

For fixed c , letting the state space E be unit simplex in [0, 1]4, we have that

lim
N→∞

sup
X̂∈E

∥F (N)(X̂)∥ = 0,

so that the drift F (N) converges uniformly to the constant function yielding 0 for each point in E. Hence, the fluid limit
of the sequence is the constant function x̂(t) = x̂0! The ODE dynamics shown in Fig. 8 is the solution of the ODE
dx̂(N)(t)

dt = F (N)(x̂(N)(t)), where we distinguish the different solutions for different N , hence it is not the fluid limit. However,
increasing N , we observe that the ODE solution x̂(N)(t) converges to a constant function. In Fig. 9, we see what happens for
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Fig. 8. Comparison of deterministic and stochastic trajectories (for increasing population levels) of the crowd dynamics model for initial conditions
x̂1 = 0.5, x̂2 = 0.25, x̂3 = 0.25, and x̂4 = 0.0, and chat probability c = 0.01. For N = 80 (Figs. 8(a) and (b)), c is below the threshold, and no
emergent crowding behaviour is observed. For N = 800, instead, this phenomenon holds.

N = 8000. In this case, it seems that no-onemoves in the CTMC and similarly in the ODEmodel (Figs. 9(a) and (b)). However,
running the simulation for a much longer time period (of the order of 1012), we can still observe that people converge to the
same square. This will happen for every finite N , both for the CTMC model and the N-dependent fluid limit (Figs. 9(c) and
(d)). However, as N grows, the time at which all agents converge to the same square for the solution x̂(N)(t), i.e. the time at
which x̂(N)(t) departs from the constant solution x̂(t), will go to infinity.

Although this behaviour seems to contradict the use of deterministic approximation theorems to study this model, there
is a reasonable agreement between ODE and CTMCs for large N . Indeed, deterministic approximation results can still be
used in this context for two complementary reasons:

1. x̂(N)(t) is, in any case, an approximation of the average of the stochastic process (this will be discussed in Section 8, see
also [22]);

2. in the light of Remark 4.2, we can always approximate the CTMC with x̂(N)(t), the solution of dx̂(N)(t)
dt = F (N)(x̂(N)(t)), if

N is sufficiently large.

4.5. Example: a queueing model

In this section we will briefly discuss a queueing model studied in [43], in which the authors consider a CTMC model
representing N servers, each with buffer size equal to 1. The policy for the incoming customers is to redirect them to the
serverwith the shortest queue available, if there is one. Servers cannot be distinguished fromone another, sowe can describe
the state of the queueing network by three variables, X0, X1, and X2, describing the number of servers dealing with 0, 1, and
2 customers, respectively. We assume that the arrival rate scales with N , i.e. it is equal to N · λ, and that the service rate is
ρ for each queue. We assume that arrivals are suspended when all queues are full. We can easily construct a model:

Q
(N)
C =def (X(N), S3

N , T (N), d(N)
0 )

of such a system, where X(N)
= (X0, X1, X2), S3

N = {d ∈ {0,N}
3

|
n

i=1 di = N}, and d0
(N)

∈ {0, . . . ,N}
3 such that we have

limN→∞ d̂(N)
0 = d̂0 for some d̂0 ∈ [0, 1]3. The transition set T (N) is composed of four transitions, defined below, where, in a

similar way to before, ej is the unit vector in R3 with 1 as j-component and 0 in the others:

• Incoming client directed to an idle server: state change vector vτ ie =def e1 − e0 and rate function r (N)
ie (X) =def N · λ ·

1{X0 > 0}.
• Incoming client directed to a busy server with empty queue: state change vector vτ io =def e2 − e1 and rate function

r (N)
io (X) =def N · λ · 1{X0 = 0} · 1{X1 > 0}.
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(c) CTMC N = 8000, Tf = 1012 . (d) ODE N = 8000, Tf = 1012 .

Fig. 9. Comparison of deterministic and stochastic trajectories of the crowd dynamics model with N = 8000 people, for initial conditions x̂1 = 0.5,
x̂2 = 0.25, x̂3 = 0.25, and x̂4 = 0.0, and chat probability c = 0.01. In Figs. 9(a) and (b), the system seems to remain constant. However, if we observe it for
a very long time (up to time Tf = 1012), we can still see the emergent behaviour typical of the model.

• Servicing of a client froma serverwith buffer empty: state change vector vτ se =def e0−e1 and rate function r (N)
se (X) =def ρ ·

X1.
• Servicing of a client from a serverwith buffer full: state change vector vτ sf =def e1−e2 and rate function r (N)

sf (X) =def ρ ·X2.

Notice that the shortest queue policy requires the use of indicator functions (which are discontinuous). In fact, we must
direct a customer to an idle server as long as there is one, while we direct the customer to a server already servicing a client
(and with an empty queue) only if there are no idle servers.

We consider a sequence (Q̂
(N)
C )N≥N0 of models, normalised with respect to the system size γN = N , according to the

recipe of Section 3, and check that the scaling assumptions are satisfied. The state space of these models is the unit simplex
E in R3, E =def S

3. Convergence of initial conditions is immediate by definition. The exit rate is Θ(N) and the step size is
δN =

1
N , hence the noise conditions hold. As for the drift, we have that

F (N)

x̂0
x̂1
x̂2


=


ρ · x̂1 − λ · 1{x̂0 > 0}

λ · 1{x̂0 > 0} + ρ · x̂2 − λ · 1{x̂0 = 0} · 1{x̂1 > 0} − ρ · x̂1
λ · 1{x̂0 = 0} · 1{x̂1 > 0} − ρ · x̂2


.

In this example, we have that function F (N) does not depend on N; thus we denote it by F . However, note that there is a
problem here: the function F is not Lipschitz in E, because of the discontinuities introduced by the indicator functions. These
functions introduce a discontinuity between (part of) the border of the simplex E and its interior; F jumps from the boundary
of E to its interior when there are no idle servers (i.e. X0 = 0) and no busy servers with an empty buffer (i.e. X1 = 0). In
order to circumvent this problem, we can focus our attention on a subset S ⊂ E, contained in the interior of E, in which F
is Lipschitz. If we localise the theorem in this subset, we can still prove that the solution x̂(t) of the ODE dx̂(t)

dt = F(x̂(t)),
x̂(0) = x̂0, is the limit of the sequence of CTMCs X̂(N)(t) in S. A necessary condition for this to hold is that x̂0 ∈ S. Hence we
must choose an initial configuration with a non-null fraction of idle servers and busy servers with empty buffer. If the initial
conditions are sufficiently far away from the boundary ∂E of E, and ρ > λ, then x̂(t) will always remain inside E, hence the
theorem is valid for all stop times T (see Fig. 10). On the other hand, if the initial conditions are close to the point (0, 0, 1),
then the ODE solutionwill reach a statewith no empty queues, will remain in ∂E for awhile (until x̂1 > λ

ρ
, i.e. until the vector

field just outside ∂E will point inside E, which will occur when the ODE for x̂0 in E is positive: ρ · x̂1 −λ > 0), and then enter
the interior of E again (see Fig. 11 (d)). During this period, we cannot invoke the theorems of Section 4 to obtain convergence.
Nevertheless, the manifested behaviour of the system seems to obey the pattern of deterministic approximation (Fig. 11).
This switching behaviour of the ODE may be dealt with using hybrid techniques, as will be discussed in Section 8.
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Fig. 10. Comparison of deterministic and stochastic trajectories (for increasing population levels) of the queueing model for initial conditions x̂0 = 0.5,
x̂1 = 0.3, x̂2 = 0.2, and parameters λ = 1.5 and ρ = 2.
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Fig. 11. Comparison of deterministic and stochastic trajectories (for increasing population levels) of the queueing model for initial conditions x̂0 = 0.1,
x̂1 = 0.1, x̂2 = 0.8, and parameters λ = 1.5 and ρ = 2. Fig. 11(b) shows the average over 1000 runs for the model with N = 100.

5. Deterministic approximation for PDTMCs

There are many approaches in the literature for the deterministic approximation of DTMCs. Some of them are focused on
specific examples [40,39], while others are more general [32,42]. Usually, these approximation results are referred to under
the name of mean field approximation. Broadly speaking, there are two main classes of mean field results for DTMC: those
resulting in a set of difference equations, discussed in Section 2, and those resulting in a set of ODEs, which we address in
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the present section. We stress that in PDTMCs, only one transition is executed per step, resulting in a constant number of
agents moving per step. This is in contrast with synchronous DTMCs, where all agents move in each step. The ODE limit for
PDTMCs is obtained by embedding its trajectories in real time, assuming the duration of each step to be constant and equal
to ϵN , with ϵN decreasing to zero as N increases. In other words, increasing N , the density of events in each unit of time also
increases, so that in the limit the evolution of the system becomes continuous. This argument must be made rigorous by
stating clearly what the scaling assumptions are.

In the following, we will first introduce some notation and define the scaling assumptions. Then, we will state the main
approximation theorems and discuss again the network epidemic example. In Section 6, instead, wewill focus our attention
on comparing the approximation results for PDTMCs and PCTMCs.

5.1. Notation and scaling assumptions

Consider a normalised PDTMC model X̂(N)
D = (X̂(N), D̂ (N), T̂ (N), d̂(N)

0 ), where X̂(N) is a vector of n variables. The relevant
notion in this context is that ofmean increment, i.e. the function µ(N)

: D̂ (N)
→ Rn defined as follows:

µ(N)(d̂) =


τ∈T̂ (N)

v̂(N)
τ p(N)

τ (d̂). (17)

Consider now the sequence (X̂
(N)
D )N≥N0 with respect to an increasing system size γN .

We recall the fact that, in the context of mean field approximation of PDTMCs, usually γN = N , and the normalised
variables lie in [0, 1] and define a probability distribution, called the occupancy measure, although different notions of γN
could, in general, be defined.

We now list the scaling assumptions required for the theorem to hold.
State space. The state space is defined as for the PCTMC case, i.e. it is a closed set E in Rn such that


N D̂ (N)

⊆ E.
Convergence of the initial conditions. Also the requirement on the initial condition is the same as for the PCTMC case: there
must exist some point d̂0 ∈ E such that

lim
N→∞

d̂(N)
0 = d̂0. (18)

Intensity and scaling of time. We assume that the temporal duration of each global step equals ϵN , with limN→∞ ϵN = 0. ϵN
is usually referred to as the intensity [42], as further discussed in Remark 5.1.
Convergence of drifts. Intensity is further involved in the scaling of the mean increments. In the PDTMC case, the drift is
defined as follows:

F (N)(d̂) =def
µ(N)(d̂)

ϵN
. (19)

As in the PCTMC case, we assume that there exists a (locally) Lipschitz vector field F : E → Rn, such that F (N) converges
uniformly to F :

lim
N→∞

sup
d̂∈E

∥F (N)(d̂) − F(d̂)∥ = 0. (20)

We furthermore assume that all the trajectories of the vector field F lie in E (this can be accomplished by choosing E
appropriately). In our framework, the notion of intensity coincides with the step-size δN =

1
γN

: ϵN = δN , and we usually
have ϵN =

1
N . This is consistent with many applications, in which the number of local entities evolving in each step of

the DTMC is constant, hence the fraction of entities evolving goes to zero as 1
N . It is easy to see that, under the assumption

ϵN = δN , and assuming that for each N and τ there is a vector vτ such that v̂(N)
τ = δN · vτ , we furthermore have that:

F (N)(d̂) =


τ∈T̂ (N)

vτ · p̂(N)
τ (d̂). (21)

so that (20) can be proved by showing that each p̂(N)
τ (d̂) has a Lipschitz limit pτ (d̂). This condition will be automatically

verified if p̂(N)
τ (d̂) does not depend on N and is Lipschitz, as is the case in many applications.

Remark* 5.1. The notion of intensity is often found in the mean field literature for DTMCs with a more general flavour.
In general, it is introduced in the context of models of N interacting objects the evolution of which is described from a
local perspective, namely from the point of view of a single object. In contrast, in our modelling approach we take a global
perspective, describing the evolution at the system level.

According to the local description approach, if we have a system composed of N objects/entities, as is the case for the
example of Section 2.1, the intensity ϵN is usually interpreted as the probability with which a specific object makes a
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transition in a step of the global DTMC (derived from the local description), or equivalently as the expected fraction of
objects performing a transition in a single step.13

According to this interpretation, in our context, by assigning temporal duration δN to each step of the PDTMC, we are
essentially assuming that the expected number of global steps necessary in order to let each object execute a local transition
is 1

δN
, so that the expected time for an object to make two successive transitions (i.e. the expected delay between the same

object being selected twice to execute a transition) is kept equal to 1 for each N . This justifies the use of the word intensity
to denote the scaling factor for time.

Note that, in general, the intensity is not forced to be equal to 1
δN

, but can encompass more general situations, like those
in which the number of entities evolving per step is Θ(logN). The results of the following section, however, remain valid
also in this more general setting, as long as intensity goes to zero with N and drift scales appropriately, see also [42].

Finally,we observe that the scaling conditions presented here are slightlymore restrictive than those of [42]. In particular,
condition (H3) of [42], which is a condition on the variance of the number of agents moving at each step, is automatically
satisfied because in our modelling framework this number is bounded above by a constant (independent of N). Note also
that in [42] more complex models are also considered, in which a resource component, representing the environment, is
present in a single copy but interacts with increasing speed with the population of agents. The limit behaviour for this class
of models will be discussed in Section 8.

5.2. Deterministic approximation theorems

We can now state the main approximation theorem for PDTMCs [32,42]. Consider a sequence of normalised PDTMC
models (X̂

(N)
D )N≥N0 with X̂

(N)
D = (X̂(N), D̂ (N), T̂ (N), d̂(N)

0 ), and denote by X̂(N)(k) the discrete-timeMarkov process associated
with X̂

(N)
D . In addition, let X̂(N)

c (t) =def X̂(N)(⌊ t
ϵN

⌋) be the process in continuous time associated with X̂(N)(k) and let x̂(t) be

the solution of the initial value problem dx̂(t)
dt = F(x̂(t)), x̂(0) = d̂0, where F is as in (20).

Theorem 5.1 (Deterministic Approximation of PDTMCs). Let the sequence (X̂(N)
c (t))N≥N0 and x̂(t) be defined as above, and

assume Condition (18) and (20) hold. Then, for any T < ∞, it holds that:

lim
N→∞

P


sup
0≤t≤T

∥X̂(N)
c (t) − x̂(t)∥ > ε


= 0. �

Note that this result is different from those for PCTMCmodels, as we deliberately avoided any discussion about exit times
and restrictions of the state space. We will present the justification for this in Section 6.

5.3. Main example (continued)

We consider again the PDTMC version of the network epidemic model of Section 2.1. Proceeding as in Section 4.2, we
set γN = N , so that we are studying the behaviour of the system for large populations. Consequently, the sequence of
non-normalised PDTMC models of interest to us is (E

(N)
D )N≥N0 , for E

(N)
D as defined in Section 3.2.

The sequence of normalised models is (Ê
(N)
D )N≥N0 , where Ê

(N)
D is derived as described in Section 3. Notice that δN =

1
N

and D̂ (N)
⊆ S4 for all N , i.e. X̂s + X̂e + X̂i + X̂r = 1. Consequently, we choose the state space E as E =def S

4, the unit simplex
in R4.

A simple inspection of the probability functions in Section 3.2 allows us to conclude that the probability functions do not
depend on N and they are Lipschitz; consequently, also the drift does not depend on N and is Lipschitz. Therefore, we take
the drift itself as the vector field according to (20) in order to get the following system of ODEs:

dx̂s(t)
dt

= −αe · x̂s(t) − αi · x̂s(t) · x̂i(t) − αp · x̂s(t) + αs · x̂r(t)

dx̂e(t)
dt

= αe · x̂s(t) + αi · x̂s(t) · x̂i(t) − αa · x̂e(t) − αq · x̂e(t)

dx̂i(t)
dt

= αa · x̂e(t) − αr · x̂i(t)

dx̂r(t)
dt

= αr · x̂i(t) + αp · x̂s(t) + αq · x̂e(t) − αs · x̂r(t).

(22)

A visual depiction of the theorem can be found in Fig. 12, where the ODE trajectories are compared with trajectories of the
DTMCs with different population levels.

13 We are implicitly assuming here that all local components can always perform at least one transition in each step. This can be always enforced by
appropriately adding dummy transitions.
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Fig. 12. Comparison between the solution of the ODE and stochastic trajectories of DTMCs for increasing population sizes. Parameters of the model are
αe = 0.1, αi = 0.2, αa = 0.4, αr = 0.2, αp = 0, αq = 0, and αs = 0.1, while initial conditions of ODE are Ŝ0 = 1, Ê0 = 0, Î0 = 0, and R̂0 = 0.

6. Comparing PCTMC and PDTMC deterministic approximations∗

In this section we will compare the deterministic approximation results for PCTMCs and PDTMCs. We will not provide
many technical details, but the interested reader can find these in Appendix C.

Consider again the network epidemic example of Section 2.1, for which we presented both a PCTMCmodel and a PDTMC
one, and fix a constant Λ > 0 such that the exit rate of the PCTMC model with population size N , X(N)

C (t), is bounded
in each state d by NΛ. Such a constant exists, because the normalised rates are defined in a compact set; hence their
sum has a maximum value. Now, consider the PDTMC model XD(k) (see Section 5.3), and assume that the constants ασ ,
σ ∈ {e, i, a, r, p, q, s}, of the model satisfy the relation ασ =

λσ

Λ
, where λσ are the rate constants of the PCTMC model.

Under this assumption, an easy calculation shows that FD(X̂) =
1
Λ

· FC (X̂): the two limit dynamics are essentially the same
(modulo a rescaling of time), as can also be seen looking at Figs. 6 and 12.

In fact, this is not a coincidence. Readers familiar with uniformisation14 [62] will easily recognise that the relationship
ασ =

λσ

Λ
is the one occurring between a PCTMC and the PDTMC associated with it by uniformisation, using NΛ as an upper

bound for the rates. More precisely, the previous relation between vector fields is always in force between a PCTMC model
and the PDTMC model associated with it via uniformisation. This means that, for each sequence of PCTMC models, we can
construct, using the probabilities obtained byuniformisation, a sequence of PDTMCmodels sharing the same limit behaviour.
Furthermore, given a sequence of PDTMC models, we can always construct a sequence of PCTMC models having the same
limit behaviour. Essentially, this means that there is a very close relationship between the limit theorems of Sections 4 and
5: in a certain sense, they are two facets of the same result. This relationship is not only of theoretical interest, but also
pragmatic. It means that one can apply results about limit behaviour proved for PDTMC models to PCTMC ones and vice
versa.

A formal argument for this will be given in Theorem 6.1 below. To fix the notation, let (X̂
(N)
C )N≥N0 be a sequence of

normalised PCTMC models, with respect to an increasing system size γN , admitting deterministic approximation, and let
(X̂

(N)
D )N≥N0 the sequence of normalised PDTMCmodels, associated with the PCTMCmodels by uniformisation, for constants

ΛN ≥ supd̂∈E R
(N)(d̂), such thatΛN = Θ(γN). Now, we define two processes: X̂(N)

ds (t) =def X̂
(N)
D (⌊ t

ϵN
⌋), obtained by assuming

that the length of each step in the DTMC is deterministically fixed and equal to ϵN , and X̂(N)
rs (t) =def X̂

(N)
D (N ( t

ϵN
)), where N

is a Poisson random variable, hence the number of steps at time t is random (and, consequently, X̂(N)
rs (t) is a CTMC).

Theorem 6.1. Let X̂(N)
ds (t) and X̂(N)

rs (t) be defined as above. If either of the processes X̂(N)
ds (t) and X̂(N)

rs (t) converges to a limit
process X̂(t) weakly, then so does the other, and moreover X̂(N)

ds (t) converges to X̂(N)
rs (t) weakly.

14 A quick introduction to uniformisation, for readers not familiar with it, can be found in Appendix C.
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This result has an interesting corollary, namely that in the limit, considering steps of fixed (DTMCs) or variable (CTMCs)
length is irrelevant, as the limit behaviour is the same in both cases.

Furthermore, every limit result holding for PDTMCs models holds also for PCTMCs models, and vice versa, provided that
both models satisfy the same scaling assumptions.

An immediate application of this fact is the extension of Theorem 5.1 (deterministic approximation of PDTMCs) along
the lines of Theorem 4.3 (deterministic approximation of PCTMCs): if we have a subset S ⊆ E, we can study the exit time
distribution from S in the limit of N → ∞ in the same way as for PCTMC models. Moreover, we can also estimate the
number of steps required to escape from S, for large N .

7. The stationary regime

The deterministic approximation theorems for PCTMC and PDTMC models we presented in Sections 4 and 5 do not
assume any special property of the limit system of ODEs (apart from the existence and uniqueness of solutions, guaranteed
by the Lipschitz property of the vector field). A consequence of this very general setting is that these theorems provide
convergence in any finite time horizon. However, they do not give any indication about the relationship to the stationary
regime of the sequence of Markov models, i.e. their behaviour as time goes to infinity. Indeed, as we argued in Remark 4.4,
this is connected with the fact that the theorems have to work even for unstable trajectories, or in chaotic situations, i.e. for
systems extremely sensitive to their initial conditions. It is therefore reasonable to expect that, assuming some stability
properties of the system of ODEs, we may be able to obtain results also for the stationary regime. Indeed, this is the case: if
the system of ODEs has a unique globally stable stationary point,15 we can show that the sequence of stochastic processes
will end up precisely in that point [32,42,61].

Such results have been obtained both for the PDTMC case [32,42] and the PCTMC case [32,63]. Note that, by virtue of
the discussion in Section 6, results for PDTMC and PCTMC are interchangeable. Moreover, the results essentially depend
on having exponential bounds for convergence in probability; hence they can be straightforwardly exported to the more
general setting of this paper (see Remark 4.4). A different proof, assuming a weaker hypothesis,16can be found in [64].

For any vector field F , the Birkhoff centre, B, is informally the set of limit points within the trajectories generated by the
field F from any initial starting point.17

Consider a sequence ofMarkov chains (in either discrete or continuous time) that admits a deterministic limit, defined by
a vector field F , and suppose that each chain in the sequence has one or more invariant probability distributions (invariant
measure or steady state) [13], i.e. distributions that are invariant under the dynamics of the process.18 Let µN be one such
invariant measure, for each N .

Theorem 7.1 ([42,61]). Every limit measure µ of a sequence of invariant measures µN has support contained in the Birkhoff
centre B .

Suppose now the state space E of the limit process is compact. Then any sequence (µN)N≥0 of invariant measures
is tight19, hence, from the Prokhorov’s Theorem, it follows that each subsequence one can extract another subsequence
convergent (weakly) to a limit measure [65]. Furthermore, each such Markov chain model has a finite state space (since E
is compact) and so, if the chain is irreducible, and in the case of DTMCs also aperiodic, then the invariant measure µN is
unique [13].

If, in addition, the system of ODEs has a unique globally stable fixed point d̂∗, then its Birkhoff centre is B = {d̂∗}. In this
case, in fact, all trajectories of the ODE converge to d̂∗ as time goes to infinity.

If the sequence µN is tight and the ODEs have a unique globally stable fixed point, the following corollary can be derived
from the previous theorem.

Corollary 7.1 ([42]). Every sequence of invariant measures µN converges weakly to the Dirac distribution on d̂∗ (i.e. the
distribution with mass concentrated on d̂∗). Furthermore,

lim
N→∞

lim
t→∞

X̂(N)(t) = lim
t→∞

lim
N→∞

X̂(N)(t) = d̂∗.

Hence, in this case we can exchange the limit in t and in N , an operation not possible in general.

15 A system of ODEs has a unique globally stable stationary point if and only if there is a point d∗ ∈ E such that all trajectories converge to it in the limit,
i.e. if for all x0 ∈ E, denoting x(t) be the solution of ODE with initial point x0 , it holds that limt→∞ x(t) = d∗ .
16 Essentially weak convergence of X̂(N)(t) to x̂(t) for each t ≥ 0.
17 Formally, we can define the set of omega points of d̂, ω(d̂), as the set of all those points d̂1 for which there exists a divergent sequence of time instants
tk → ∞ such that limk→∞ x̂(tk) = d̂1 , where x̂(t) is the solution of dx̂(t)

dt = F(x̂(t)) starting from d̂ at time 0. The Birkhoff centre is then defined as
B = cl{d̂ | d̂ ∈ ω(d̂)}.
18 If the process X̂(N)(t) is initially distributed according to the invariant distribution µ, then its probability distribution at each time t will always be µ.
19 A sequence (µN )N≥0 is tight if and only if, for each ϵ > 0, there is a compact set Kϵ such that µN (Kϵ) > 1 − ϵ for each N .
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(a) Globally attracting fixed point. (b) Limit cycle.

Fig. 13. Phase portrait of themain epidemic example (left) and of themalware epidemic example (right). On the left we can see the trajectories converging
to a fixed point, depicted as a blue sphere in the figure. On the right, we can see that trajectories converge to a limit cycle, in black in the figure. The fixed
point, shown as a blue sphere, is an unstable equilibrium, and trajectories starting nearby spiral out towards the limit cycle. Parameters in the model are
λi = 0.1, λe = 0.0002, λaa = 0.01, kaa = 0.1, λr = 0.005, λq = 0.0001, λp = 0, λa = 0.001, λs = 0.01.

This corollary is at the basis of the so-called fixed point method [42], which approximates the stationary distribution of
X̂(N)(t) (assuming it is unique) with d̂∗, when the equation F(d̂) = 0 has a unique solution.
Main example (continued). Consider again the epidemic example of Sections 3.2 and 4.2. If we solve the equation F(x̂) = 0,
under the additional constraint that x̂s + x̂e + x̂i + x̂r = 1, one can verify that, for parameters as in Fig. 3, the solution is
unique and equal to x̂∗

s = 0.2889, x̂∗
e = 0.106, x̂∗

i = 0.2032, and x̂∗
r = 0.4063. To apply the previous corollary, we should

additionally verify that this point is globally stable. In general, this is quite difficult to prove. For instance, one can prove its
stability by looking at the eigenvalues of the Jacobian matrix and then exhibit a Lyapunov function defined on the whole
state space [66]. We refrain from doing this here. However, a quick inspection of the phase space picture of the system in
Fig. 13(a), suggests that this is indeed the case.

Example: malware system. We stress here the fact that Corollary 7.1 can be applied if and only if F(d̂) = 0 has a unique
solution and one proves that the obtained fixed point is globally stable. Unfortunately, there are cases in which the second
hypothesis does not hold.

We illustrate this by considering a simple modification of the running example (see Section 3.1), taking inspiration
from [42]. In particular, we consider a modified mechanism for the infection of susceptible nodes, in the following sense:

• we assume that the worm epidemic is spread by exposed nodes (called dormant in [42]). Hence, we modify the rate in
the transition τi = (inf, eS, eE, r

(N)
i ) to r (N)

i (X) =def λi · Xs ·
Xe
N ;

• we assume that the worm behaves like a piece of malware: when it becomes active, it damages the normal operation
status of the node. It also tries to activate other exposed nodes, using a communication channel with limited bandwidth
(e.g. a wireless network). This is captured by modelling this activation by a saturating function, adding to the epidemic
model the transition τaa = (inf, eE, eI, r

(N)
aa ), with r (N)

aa (X) =def λaa ·Xi ·
Xe

kaaN+Xe
. Note the dependency onN of the parameter

in the denominator of the saturating function Xe
kaaN+Xe

, guaranteeing that the normalised rate is NλaaX̂i
X̂e

kaa+X̂e
.

If we consider the parameter set as in Fig. 13, we can easily check that the set of ODEs associated with this modified
epidemic model has a unique fixed point, namely x̂∗

s = 0.23803, x̂∗
e = 0.09207, x̂∗

i = 0.44599, and x̂∗
r = 0.22391. However,

as evident in Fig. 13(b), the system has a limit cycle, and the fixed point is an unstable equilibrium. In this case, Theorem 7.1
cannot be applied to estimate the steady state behaviour of the CTMCmodel. The cyclic nature of this epidemic is intuitively
caused by the non-linear recruitment of exposed nodes by infected ones and by the fact that, once the malware is active, it
cannot spread the infection anymore. This creates phases in the epidemic: when there is a large number of exposed nodes
the activation rate of the malware is high. The infected nodes so generated then quickly activate the exposed ones, reducing
the number of exposed nodes to a small value. The recruitment effect remains large until patching reduces the number of
infected nodes to the point at which a new wave of exposed nodes can spread in the network.

8. Further topics

In this section, we briefly discuss some more advanced topics in order to give the reader an impression of some of the
consequences of the limit results. Detailed coverage of these research areas would be the basis of a further tutorial, and
beyond the scope of this paper. Our intention here is just to offer a broader perspective on continuous approximation. Of
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course, even this cannot be exhaustive andwedonot considermean fieldmethods for stochasticmodelswith spatial aspects,
whose limits are generally expressed in terms of partial differential equations [67,68], continuous approximation of Markov
Decision Processes [69], in which limit results are used for the solution of optimisation problems, fluid approximation
and mean field limits for infinite dimensional systems, like Supermarket models [70,71], or deterministic approximation
algorithms [33], where these techniques, and many variations of them, have been widely applied.
Fluid ODE and average behaviour of PCTMC models. Consider a sequence X̂(N) of PCTMC models amenable of deterministic
approximation. For any given N , one can compute the average value E[X̂(N)(t)] of variables X̂(N), for any fixed time t . The
deterministic approximation results of Section 4 guarantee that E[X̂(N)(t)] converges in probability to x̂(t), uniformly in any
bounded time interval.

However, for any N , it is also possible to derive an ODE describing the exact evolution of E[X̂(N)(t)], applying the Dynkin
formula [72] or using standard arguments involving the Kolmogorov Forward Equation (or Master Equation) of the CTMC
[73,74] — the set of ODEs describing the time evolution of the probability mass in the state space of the CTMC. More
specifically, the exact evolution of E[X̂(N)(t)] is given by the following set of ODEs:

d
dt

E[X̂(N)(t)] = E[F (N)(X̂(N)(t))]. (23)

Using Taylor expansion or generating function arguments [73,74,8], it can be shown that the limit ODE is a first order
approximation of the true average equation. To see why this is true, assume F (N)(X̂) is smooth and expand it around
E[X̂(N)(t)]: F (N)(X̂(N)(t)) ≈ F (N)(E[X̂(N)(t)]) + ∇F (N)(E[X̂(N)(t)]) · (X̂(N)(t) − E[X̂(N)(t)]). By inserting this formula into
Eq. (23), observing that E[(X̂(N)(t) − E[X̂(N)(t)])] = 0, one gets

d
dt

E[X̂(N)(t)] ≈ F (N)(E[X̂(N)(t)]).

It is also possible to show that higher order terms in the approximation vanish in the limit as N goes to infinity (hence,
the larger N , the better the approximation works). Furthermore, the second order terms in the approximation depend
on the variance and covariance of the process, third order terms depend on third order moments, and so on. Hence, it is
also possible to derive coupled differential equations describing the variance and higher order moments, at the price of
introducing further variables in the system of ODEs (precisely, Θ(nk) new variables to include terms up to order k) [74,8].
Techniques constructing ODEs approximating moments of a Markov chain, not necessarily based on Taylor expansions, are
generally known as moment closure techniques [8,72].
Decoupling of joint probability. A perhaps surprising consequence of the deterministic results is that in a system comprised
of N interacting objects, each of which may be in k distinct states, the joint distribution over the local states of the model
displays asymptotic independence. Let Y (N)(t) ∈ {1, . . . , k} denote the state of a single ‘‘tagged’’ object, in the N-th CTMC,
at time t , and let Y (t) denote its state in the limit model. Due to the (implicit) assumption that objects are indistinguishable,
the probability that Y (N)(t) = k1 equals X̂ (N)

k1
(t), i.e. the probability of choosing at random one object in state k1. By taking

the limit, it follows that

P{Y (t) = k1} = x̂k1(t).
Furthermore, it can be proved [57] that agents become asymptotically independent, hence

P{Y1(t) = k1, . . . , Yh(t) = kh} = P{Y1(t) = k1} · . . . · P{Yh(t) = kh}
= x̂k1(t) · . . . · x̂kh(t).

Moreover, the deterministic approximation theorems presented in Sections 2, 4 and 5, guarantee that

P{Y (N)
1 (t) = k1, . . . , Y

(N)
h (t) = kh} → P{Y1(t) = k1, . . . , Yh(t) = kh},

and hence, for large N ,

P{Y (N)
1 (t) = k1, . . . , Y

(N)
h (t) = kh} ≈ x̂k1(t) · · · · · x̂kh(t).

This asymptotic independence property is known as the decoupling assumption [41,42] or propagation of chaos [27].
Basically, it means that, in the limit, the evolution of each object becomes independent from the other objects. This happens
even in models with explicit cooperation. Consider, for instance, a model in which an object in state s1 and an object in
state s2 cooperate and evolve to states s3 and s4, respectively, at rate kX1X2. In this case, there is a clear dependency in the
model between objects in states s1 and s2, as their states change simultaneously. Nevertheless, in the limit, this dependence
is lost. In fact, we obtain the same limit process as for a model in which objects in state s1 evolve to s3 independently
of objects in s2 evolving to s4, in both cases with rate kX1X2. In terms of transitions, the model containing the transition
(aτ , e1 + e2, e3 + e4, kX1X2) has the same limit behaviour of the model containing the transitions (aτ1 , e1, e3, kX1X2) and
(aτ2 , e2, e4, kX1X2). Note that, by splitting the transition into two, the global rate R doubles, and so does the density of events.

This asymptotic independence property is a key result that allows us to estimate stochastic properties of single agents in
large populations by using the mean field limit [75]. This property has been recently exploited for the computation of fluid
passage times [76] and also for fluid model checking of continuous stochastic logic properties [77].
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It is also important to note that the asymptotic independence holds for any fixed time t , but not necessarily in the limit
for t → ∞. This is because the decoupling is based on theorems of Sections 2, 4 and 5, which hold in a finite time horizon.
However, under the assumptions of Corollary 7.1, one can extend independence to the stationary regime:

lim
t→∞

P{Y1(t) = k1, . . . , Yh(t) = kh} = x̂∗

k1 · . . . · x̂∗

kh .

Fast simulation. The asymptotic independence property shared by models of interacting objects discussed above has an
interesting consequence: it allows us to track the evolution of a single object ignoring all other objects, if N is sufficiently
large. More specifically, we can consider the process (Y (N)(t), X̂(N)(t)), where Y tracks the evolution of the selected object,
which is a Markov process. A consequence of the deterministic approximation theorems shows that (Y (N)(t), X̂(N)(t))
converges to a jump process (Y (t), x̂(t)), where x̂(t) follows the solution of the fluid differential equation (and is not
influenced by the discrete state of the tracked object), while Y (t) evolves according to a time-inhomogeneous process
depending on the state of the other objects only through x̂(t). This kind of fast simulation scheme can be defined both
for a PDTMC [75] or a PCTMC [57] model.

As an example, consider again the PCTMC network epidemic model of Section 2.1. If we look at a single node in the
network, we can define the time dependent infinitesimal generator matrix Q(N)(t) at level N for Y (N)(t) as

Q(N)(t) =

−λe − λiX̂
(N)
i (t) − λp λe + λiX̂

(N)
i (t) 0 λp

0 −λa − λq λa λq
0 0 −λr λr
λs 0 0 −λs

 ,

which depends on N only via the fraction of infected agents present in the network at time t . Hence, in the limit of N going
to infinity, (Y (N)(t), X̂(N)(t)) converges to the process (Y (t), x̂(t)), in which x̂(t) is the solution of the system of ODE shown
in Section 4, and Y (t) is a continuous-time jump process on the state space, with time-dependent generator matrix Q(t),
defined as Q (N)(t), with X̂ (N)

i (t) replaced by x̂i(t).

Hybrid approximations. The deterministic approximation results we considered in this paper rely on crucial assumptions on
how the system scales as its size increases. In particular, they require that all variables of the model increase proportionally
to the system size. This condition holds inmany cases, but itmay happen that some parts of our system cannot be assumed to
behave in thisway. Typical examples include networkmodelswherewehave a constant number of servers and an increasing
number of clients, or models of biological cellular systems explicitly representing genes, which are present in one or few
copies within a cell [78–80].

In these cases, one may still want to consider deterministic approximation results only for those parts of the model
which can be assumed to scale correctly with system size. The rest of the system, instead, has to be kept discrete. This leads
to different deterministic approximation schemes, in which a sequence of stochastic models converges to a limit process
whose nature depends on the structure of themodel. In particular, wewill briefly consider here sequences of PCTMCmodels
converging to hybrid limit processes, i.e. processes presenting an evolution in terms of differential equations and stochastic
jumps [81,82,80], and sequences of PDTMC models in which the intrinsically discrete component evolves so fast that it
immediately reaches the equilibrium [42].

The former class of systems emerges naturallywhenwe consider systemswith entitieswhosenumber does not growwith
N , such as genes in a cellularmodel. The evolution of the rest of the system, however, can dependon the internal state of these
discrete entities. In this case, as we increase the size of the system, the sequence of PCTMCmodels converges [82] to a hybrid
system, inwhich the evolution is given in terms ofODEs (for those components scalingwithN) and of a time-inhomogeneous
jump process (for the components independent of N). These models belong to the class of Piecewise Deterministic Markov
Processes [81].

The second class has been studied e.g. in [42,38], and includes models of objects interacting with a rapidly changing
environment. In these models, we have N objects interacting with a resource R, which changes its state at each step of the
DTMC. When we consider the sequence of PDTMC models for increasing population levels and scale the time accordingly,
the resource performs an increasing number of transitions per unit of time. When R has an equilibrium distribution, in the
limit this equilibriumwill provably have been reached, and the ODEs are consequently modified to include these effects, by
averaging transition probabilities that depend on the state of the resource with respect to the equilibrium distribution of R.
For example, if the limit probability pτ of a transition τ depends on the state r of the resource, pτ = pτ (x̂, r), then in the
ODE we use pτ =


r πR(r) · pτ (x̂, r). The convergence to such a limit ODE has been proved in [42].

Finally, a different class of hybrid limit processes is obtained when the rate functions of a CTMC are discontinuous [83].
In these situations, assuming a certain regularity in the nature of discontinuity of the rate functions, the sequence of CTMC
converges to the solution of a Piecewise Smooth Dynamical System [84]. In particular, the queueing model of Section 4.5
falls into this last class of models. This approach can be generalised by considering mean field limits in terms of differential
inclusions [63].
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9. Conclusions

In this paper, we have presented continuous approximation results for stochastic Markov models, both in discrete time
and in continuous time. These results have been well known in the literature of stochastic approximations for 40 years.
However they have only relatively recently attracted thewidespread attention of the performance community. Nevertheless
they are rapidly becoming important tools for studying models of systems composed of many interacting objects, thus
circumventing the state space explosion problem.

Our objective has been to give a tutorial that presents the main ideas of the field at a level which is accessible to
those who do not necessarily have a detailed background in the relevant theory of stochastic processes and deterministic
approximation. We have included a bibliography which references the relevant papers for the theory as well as some of
those presenting applications and more advanced approximation techniques.

Our presentation has discussed themain approximation theorems, and several applications and extensions, in a uniform
way. We have refrained from showing the mathematical details of the proofs, which can be found in excellent reference
papers and books, such as [57,55,58], in order to emphasise a more intuitive account of the results. In particular, we have
focused on the conditions that must be satisfied in order for the theorems to be applied, showing how to check them in
practical examples.

Appendix A. Notation

• X , Y , Z denote (random) variables of non-normalised CTMC or DTMC models.
• X, Y, Z indicate vectors of (random) variables of non-normalised CTMC or DTMC models.
• X̂ , Ŷ , Ẑ denote (random) variables of normalised CTMC or DTMC models.
• X̂, Ŷ, Ẑ indicate vectors of (random) variables of normalised CTMC or DTMC models.
• x̂, ŷ, ẑ denote variables of deterministic systems.
• x̂, ŷ, ẑ indicate vectors of variables of deterministic systems.
• d, d1, and so on, denote points in D (non-normalised systems).
• d̂, d̂1, and so on, denote points in Rn and D̂ (normalised systems).
• 1{φ(X)} is the indicator function of a predicate φ on variables X.
• Sn

N = {x ∈ {0, . . . ,N}
n

|
n

i=1 xi = N} is the N-simplex in Nn

• Sn
= {x̂ ∈ [0, 1]n |

n
i=1 x̂i = 1} is the unit simplex in Rn.

• τ denotes a transition of a PCTMC or PDTMC.
• v(N)

τ and v̂(N)
τ are the non-normalised and normalised update vectors of transition τ .

• r (N)
τ and r̂ (N)

τ are the non-normalised and normalised rate functions of transition τ , for PCTMC models.
• p(N)

τ and p̂(N)
τ are the non-normalised and normalised probability functions of transition τ , for PDTMC models.

• g(N)
τ is the density dependent function for a density dependent transition τ of a PCTMC model.

• R(N) is the exit rate function of a PCTMC model.
• µ(N) is the mean increment in a step of a PCTMC or PDTMC model.
• Σ (N) is the covariance matrix of one-step increments of a PCTMC or PDTMC model.
• F (N) and F are the drift and limit drift of a PCTMC or PDTMC model.
• ϵN is the intensity of a PDTMC model.
• cl(A) denotes the closure of a set A, int(A) denotes its interior, ∂A its boundary, and Ac its complement.

Appendix B. Proof of Theorem 4.1

Theorem 4.1 (Deterministic Approximation for DensityDependent PCTMCs). Let the sequence (X̂(N)(t))N≥N0 ofMarkov processes
be density dependent and satisfy conditions of Section 4.1. Let x̂(t) be the solution of dx̂(t)

dt = F(x̂(t)) starting from x0. Then, for
any finite time horizon T < ∞, it holds that:

P


lim
N→∞

sup
0≤t≤T

∥X̂(N)(t) − x̂(t)∥ = 0


= 1,

i.e. sup0≤t≤T ∥X̂(N)(t) − x̂(t)∥ converges to zero almost surely.

Proof. We assume that all functions gτ defining the rate of density dependent transitions are bounded, say by Bτ , and
Lipschitz, say with Lipschitz constant Lτ .20

20 Intuitively, the result of the theorem is a limit result, hence it depends only on what happens in a neighbourhood Bε(x̂([0, T ])) of the solution, where
by Bε(d̂) we indicate the ball of radius ε centred in d̂, while Bε(x̂([0, T ]) =


t∈[0,T ]

Bε(x̂(t))). Thus, by restricting our attention to a compact set K ⊂ E
containing Bε(x̂([0, T ])) ∩ E for some ε, invoking the local Lipschitz property of functions gτ , we can find the constants Bτ and Lτ . This assumption is not
limiting, as we can always extend the functions gτ on the whole of E so that they are globally bounded and Lipschitz continuous. Clearly, x̂(t) will remain
unchanged by this operation, as it depends only on the value of gτ in K .
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Consider now the representation of the CTMC X̂(N)(t) in terms of Poisson processes [29,55]. We will use one Poisson
process Nτ for each transition τ ,

X̂(N)(t) = X̂0
(N)

+


τ∈T

1
N
vτ Nτ


N
 t

0
gτ (X̂(N)(s))ds


. (B.1)

Furthermore, recalling that F(d̂) =


τ∈T vτ gτ (d̂), we have that x̂(t) in integral form is:

x̂(t) = x̂0 +

 t

0


τ∈T

vτ gτ (x̂(s))ds. (B.2)

In the following, we need the notion of centred Poisson process [55], defined by Ñ (λt) = N (λt) − λt , for which the
following law of large numbers holds: supt≤T

1
N Ñ (Nλt) → 0 almost surely, as N → ∞.

Now, we define

ε(N)(t) = X̂(N)(t) − X̂(N)(0) −

 t

0


τ∈T

vτ gτ (X̂(N)(s))ds

=


τ∈T

vτ

N
Ñτ


N
 t

0
gτ (X̂(N)(s))ds


,

so that, as gτ (d̂) ≤ Bτ , it holds that

∥ε(N)(t)∥ ≤


τ∈T

∥vτ∥

N
Ñτ (NBτ t) .

By the law of large numbers for centred Poisson processes and the finiteness of the sum over τ ∈ T (N), we conclude that
supt≤T ∥ε(N)(t)∥ → 0. Therefore, we have that

sup
t≤T

∥X̂(N)(t) − x̂(t)∥ ≤ ∥X̂(N)
0 − x̂0∥ + sup

t≤T
∥ε(N)(t)∥  

=δ(N)(T )→0 a.s.

+

 T

0
sup
t≤s

∥F(X̂(N)(t)) − F(x̂(t))∥ds.

Calling β(N)(T ) = supt≤T ∥X̂(N)(t) − x̂(t)∥ and applying Lipschitz condition to the last term,21we have that

β(N)(T ) ≤ δ(N)(T ) + L
 T

0
β(N)(t)dt,

where δ(N)(T ) = ∥X̂(N)
0 − x̂0∥ + supt≤T ∥ε(N)(t)∥ as above. By applying Gronwall’s inequality,22 we finally obtain β(N)(T ) ≤

δ(N)(T )eLT , hence

lim
N→∞

β(N)(T ) = 0 almost surely. �

Appendix C. Further details on the comparison between PCTMC and PDTMC deterministic approximations

In this appendix we will provide further details on the comparison between the deterministic approximation results for
PCTMCs and PDTMCs. We will start by recalling the notion of uniformisation of a CTMC, which plays a central role in this
discussion, and explore in more detail its implications for the example of Section 2.1.
Uniformisation. Consider a D-valued CTMC XC(t) with infinitesimal generator matrix Q. Assume that the exit rate
of XC(t) is bounded by a constant Λ > 0. The Λ-uniformisation [62] (or simply uniformisation) of XC(t) is a pair
UFZΛ(XC(t)) =def(XD(k), N (Λ · t)) where XD(k) is a D-valued DTMC with probability transition matrix P = I + Q/Λ,
and N (Λt) is the companion Poisson process with rate Λ. XC(t) is equivalent to the stochastic process XD(N (Λt)).

The uniformisation procedure can easily be lifted from CTMCs to PCTMC models specified in the language defined in
Section 3.1, as described in the sequel. Let X

(N)
C = (X(N)

C , D (N), T
(N)
C , x(N)

0 ) be one suchmodel, with transition rate functions

21 The Lipschitz constant L for F can be easily constructed from those of gτ .
22 Gronwall’s inequality states that, for any real valued integrable function f on the interval [0, T ], if f (t) ≤ C+D

 t
0 f (s)ds, then f (T ) ≤ CeDT , see e.g. [55].
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r (N)
τ (d) and exit rate function R(N)(d). Assuming R(N)(d) is bounded, fix ΛN ≥ supd∈D R(N)(d), and define the PDTMCmodel
as X

(N)
D = (X(N)

D , D (N), T
(N)
D , x(N)

0 ) where

TD
(N)

=def {(a, s, t, p(N)
τ ) | (a, s, t, r (N)

τ ) ∈ TC
(N)

}

with p(N)
τ (d) =def

r(N)
τ (d)

ΛN
, for all d ∈ D (N). Furthermore, let N (N)(t) = N (ΛN · t) be a Poisson process with rate ΛN . The

ΛN -uniformisation of X
(N)
C is UFZΛN (X

(N)
C ) =def(X

(N)
D , N (N)(t)). Of course, the uniformisation procedure can be applied to

normalised PCTMC models and to sequences of PCTMC models as well.
Consider again the network epidemic example of Section 2.1, for which we presented both a PCTMCmodel and a PDTMC

one. It is easily seen that the exit rate function R(N)(d) is bounded byN ·


σ∈{e,i,a,r,p,q,s} λσ , since Xs+Xe+Xi+Xr = N implies
r (N)
σ (X) ≤ N · λσ for σ ∈ {e, i, a, r, p, q, s}. Letting Λ =def


σ∈{e,i,a,r,p,q,s} λσ and ΛN =def N · Λ, we get that the transition

probabilities of the PDTMC model associated with E
(N)
C by ΛN -uniformisation are p(N)

σ (X) =def
r(N)
σ (X)

ΛN
for σ as above. For

instance, for the rate of external infection, we have that r (N)
e (X) = λe · Xs, so that p(N)

e (X) =def
λe·Xs
NΛ

. Under the assumption
that αe =

λe
Λ

we get that p(N)
e (X) is exactly the same as the external infection probability in the PDTMC model E

(N)
D we

defined in Section 3.2. Therefore, the two network epidemic models E
(N)
D and E

(N)
C we have considered are strongly related,

via the uniformisation construction.
We now recall that the vector field for the limit ODE of the normalised PDTMC model Ê

(N)
D is its drift F (N)

D and, since it
does not depend on N , we use the abbreviation FD. Similarly, we use FC for the drift F (N)

C of the normalised PCTMC model
Ê

(N)
C . Again, under the assumption that ασ =

λσ

Λ
, we get that FD(X̂) =

1
Λ

· FC (X̂).
We now present the relationship between a sequence of PCTMCmodels and the corresponding sequence of PDTMC ones

and then the converse relationship between a sequence of PDTMC models and the corresponding sequence of PCTMC ones,
followed by discussion of the convergence results.

From PCTMCs to PDTMCs. Let X̂
(N)
C = (X̂(N), D̂ (N), T̂ (N), d̂(N)

0 ) be a normalised PCTMC model and suppose the sequence
(X̂

(N)
C )N≥N0 with respect to an increasing system size γN admits deterministic approximation. Let us construct the sequence

of PDTMC models (X̂
(N)
D )N≥N0 , by uniformisation, for constants ΛN ≥ supd̂∈E R

(N)(d̂), such that ΛN = Θ(γN). The previous
hypothesis on ΛN implies that limN→∞ ΛNδN = Λ > 0.

Furthermore let FC and FD be the vector fields according to Eqs. (13) and (20) respectively and recall our assumption that
ϵN = δN . We obtain the following:

F (N)
D (d̂) =


τ∈T̂ (N)

v̂(N)
τ ·

r̂ (N)
τ (d̂)

δN · ΛN
=

1
δN · ΛN

·


τ∈T̂ (N)

v̂(N)
τ · r̂ (N)

τ (d̂)

=
1

δN · ΛN
· F (N)

C (d̂),

from which, by taking the limit N → ∞, we get FD(d̂) =
1
Λ
FC (d̂).

Hence, we have shown that the deterministic limit of the associated sequence of PDTMC models satisfies the ODE
dx̂(t)
dt =

1
Λ
FC (x̂(t)), which is the same as the ODE for the sequence of PCTMC models, except for the rescaling factor 1/Λ.

This means that if we rescale time from t to t ′ = t/Λ, we obtain from the sequence of PDTMC models constructed by
uniformisation, the same set of ODE as the one derived from the sequence of PCTMC ones: dx̂(t ′)

dt ′ = FC (x̂(t ′)).

From PDTMCs to PCTMCs. Let X̂
(N)
D = (X̂(N), D̂ (N), T̂ (N), d̂(N)

0 ) be a normalised PDTMC model and consider the sequence
(X̂

(N)
D )N≥N0 .
We can associate it with a sequence (X̂

(N)
C )N≥N0 of normalised PCTMC models simply by interpreting probabilities,

multiplied by the system size, as rates. Then we define the set of transitions T̂ d(N). These are formed from the transitions of
T̂ (N) by replacing the probability transition functions with rate functions defined as r̂ (N)

τ = γN · p̂(N)
τ . The associated PCTMC

model is therefore X̂
(N)
C = (X̂(N), D̂ (N), T̂ d(N), d̂(N)

0 ) whose mean dynamics is

F (N)
C (d̂) =


τ∈T̂ d(N)

δN · v(N)
τ · r̂ (N)

τ (d̂) =


τ∈T̂ d(N)

v(N)
τ p̂(N)

τ (d̂) = F (N)
D (d̂).

Thus the mean dynamics of the constructed PCTMC model is equal to the mean dynamics of the PDTMC model. As a
consequence, (X̂(N)

D )N≥N0 and (X̂
(N)
C )N≥N0 will have the same deterministic limit.

Convergence. If we inspect a (normalised) PCTMC model X̂
(N)
C and its associated PDTMC model, X̂(N)

D , or vice versa, we can
observe that the jump process underlying the PCTMCmodel is in fact that of the PDTMCmodel. The only difference between
the two is that the PCTMC has a variable delay between two consecutive events, exponentially distributed with rate R(N)(d̂),
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while the time delay between two steps is constant for the PDTMC. Nevertheless, in the limit, both delays go to zero at the
same speed, namely as δN , which is equal to the intensity ϵN .

We now give an intuitive argument showing that in this setting these two processes must behave in the sameway in the
limit (i.e. for large N), before stating a theorem which gives a precise statement of this property.

Consider a sequence of (normalised) PDTMC models (X̂
(N)
D )N≥N0 and let (X̂(N)

D (k))N≥N0 be the corresponding sequence
of PDTMCs; furthermore let ϵN be the intensity of the sequence, with limN→∞ ϵN = 0. We construct two sequences of
stochastic process on t ∈ [0, ∞). One is X̂(N)

ds (t) =def X̂
(N)
D (⌊ t

ϵN
⌋), obtained by assuming that the length of each step in the

DTMC is deterministically fixed and equal to ϵN . The other one is X̂(N)
rs (t) =def X̂

(N)
D (N ( t

ϵN
)), where N is a Poisson random

variable, hence the number of steps at time t is random (and, consequently, X̂(N)
rs (t) is a CTMC).

Now, N ( t
ϵN

)/⌊ t
ϵN

⌋ =


N ( t

ϵN
)/ t

ϵN


·


t

ϵN
/⌊ t

ϵN
⌋


, hence by the law of large numbers for Poisson processes, we get that

almost surely

lim
N→∞

N


t
ϵN


t
ϵN


= 1.

This intuitively shows that, at any time t , the two processes X̂(N)
ds (t) and X̂(N)

rs (t) will have the same distribution in the limit
asN goes to∞: the same number of events will have fired. This intuition can be formalised in the following theorem, whose
proof can be found, for instance, in [58] (cf. proof of Theorem 17.28 of [58]).

Theorem (6.1). Let X̂(N)
ds (t) and X̂(N)

rs (t) be defined as above. If either of the processes X̂(N)
ds (t) and X̂(N)

rs (t) converges to a limit
process X̂(t) weakly,23 then so does the other24, and moreover X̂(N)

ds (t) converges to X̂(N)
rs (t) weakly.
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