COMPUTATIONAL MODELLING INTRODUCTION

Luca Bortolussi¹

¹Department of Mathematics and Geosciences University of Trieste

Office 328, third floor, H2bis luca@dmi.units.it

Trieste, Summer Semester 2016/2017

COURSE ORGANISATION

LECTURES AND LAB

- "Standard" lectures introducing basic concepts and techniques
- Computational Lab: implementation
- Modelling lab: model analysis
- "Non-standard" lectures (?): paper discussions, paper reading in group.

EXAM

 Seminar on a project work: Modelling and analysis of a system (to be chosen).

TIMETABLE

• 72 hours course!!! Better if we do 7 hours per week....

OUTLINE

Introduction by examples

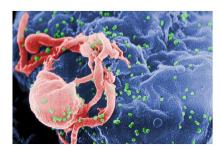
Course topics: an overview

MODELLING: AN INTRODUCTION

A MOTIVATIONAL QUOTE

Science is the driver of our times.

Stephen Emmott Chief of Computational Sciences Microsoft Research Cambridge


DATA CENTRE EFFICIENCY

- We want to reply to all customer requests with small latency.
- We want to consume as few energy as possible.
- There is a trade off between these two goals. How many servers do we need for a good compromise?

HIV DRUG DOSAGE

- HIV therapies require the assumption of drug cocktails for long periods of time.
- How do we find the best cocktail for a given patient?
- And how do we plan the drug dosage for it to be the most effective for a given patient?

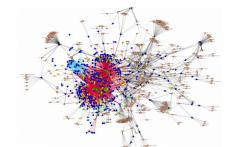
CANCER AND THE IMPORTANCE OF NETWORKS

Coloured scanning-electron micrograph ISEN of two T lymphocyte cells attached to a cance

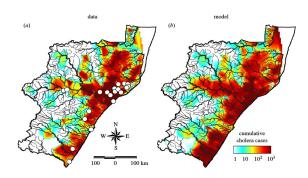
WHAT IS CANCER?

- Is Cancer a disease of genes?
- Is Cancer a disease of biological pathways?
- Is Cancer a disease of interaction networks?
- Is Cancer a disease of the ecology of cell populations?

CANCER AND THE IMPORTANCE OF NETWORKS



WHAT IS CANCER?


- Is Cancer a disease of genes?
- Is Cancer a disease of biological pathways?
- Is Cancer a disease of interaction networks?
- Is Cancer a disease of the ecology of cell populations?

To better fight Cancer, we need to better understand the dynamical aspects of the (gene, protein, cell) interaction networks.

We need large-scale data analysis + modelling

SPREADING OF CHOLERA EPIDEMICS

- Cholera is a waterborne disease, diffusing through water.
- How can we predict the spreading of cholera in a given geographical region?
- How can we counter-act to a rising epidemic, to stop it, e.g. by vaccination?

OPTIMAL FISHING POLICY

- Fishing alters the equilibrium of the see ecosystem.
- The number of prey and predators tend to follow a cycle at equilibrium (from many preys, few predators to few preys, many predators)
- Can we find a fishing policy that does not destroy the system, but rather stabilises it?

LOAD CONTROL IN SMART GRIDS

- Renewable energies introduce a high volatility and unpredictability in energy production.
- If the demand of energy exceeds the production, then we need to activate standard plants, to to reduce consumption by switching off devices (e.g. water boilers remotely controlled by smart meters).
- What is the optimal policy to achieve this?

AN EXAMPLE: SIS EPIDEMIC

SUSCEPTIBLE -IN

OUTLINE

INTRODUCTION BY EXAMPLES

2 COURSE TOPICS: AN OVERVIEW

MODELLING: AN INTRODUCTION

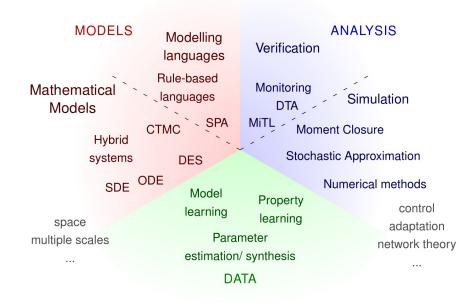
AN HIGH LEVEL VIEW ON CS

HIGH LEVEL VIEW

We will look at complex systems as systems made up of entities interacting in complex ways.

ENTITIES?

Entities can be of different nature: molecules, cells, animals, computer jobs, processors, humans, ...


INTERACTIONS?

Interactions can involve a small or large number of entities, and may depend in complex ways from the environment or the global state of the system (non-linearity)

FEATURES

Non-linearity, emergent behaviour, self-organization, adaptivity, openness, robustness, evolutionary aspects,

A MAP OF COURSE TOPICS

