Exercise n. I
 Basics

1. Overflow and underflow

In order to investigate which are (within a factor of 2) the overflow (the greatest number that can be stored) and underflow (the smallest) limits, you can write a code doing something like that (note: this is a pseudocode to have an idea of the algorithm, it is not written in a precise language):

```
under = 1.
over = 1.
    do until.... (or: do N times, with N =...)
    under = under/2.
    over = over * 2.
    write: number of iteration, over, under
    end of cycle
```

If you want, you can use the available codes (where $r=r e a l$, $s=$ single precision, $\mathrm{d}=$ double precision) which can be compiled with gfortran (or g95, F, fort, or other fortran compilers).
(a) Check overflow and underflow for floating point numbers in single precision. (see rs_under_over.f90)
(b) Do the same in double precision. (see rd_under_over.f90)
(c) Do the same for integers (Hint: to be more precise, consider also the numbers obtained by multiplying times 2 and subtracting $1 . .$.) (see i_min_max.f90):
(d) (Optional) Some compilers convert "underflow" with " 0 "; same are able to handle exceptions...If you have other fortran compilers installed, compare what you obtain in (a)-(c) using different compilers. (For instance, if you use F instead of g95: use F without/with the option -ieee=full (for exception handling): F -o test.out -ieee=full. What do you get by compiling the code with/without the option and running again?)

2. Machine precision

Write a program to determine the machine precision ε (i.e. the smallest positive number that -added to the unit- does change its value stored in memory). For instance you could do something like that (pseudocode):

```
eps = 1.
    do until.... (or: do N times, with N =...)
    eps = eps/2.
    uno = 1. + eps
    write: number of iteration, over, under
    end of cycle
```

(a) Check the machine precision for floating point in single precision. (see rs_limit.f90)
(b) Do the same in double precision. (see rd_limit.f90)
(c) Check your results calling the intrinsic function epsilon() (see strano.f90 and d_strano.f90).

3. Good and bad algorithms, truncation and roundoff

A typical numerical problem is to calculate a function for a given value of a variable as the sum of a series. For instance:

$$
e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

(a) Write a program to calculate in single precision e^{-x} as the sum of the series above, with an absolute error that you choose, and save the results in a table like this:

```
X
```

```
i(no. of terms of sum) sum |sum-exp(-x)|/exp(-x)
```

```
i(no. of terms of sum) sum |sum-exp(-x)|/exp(-x)
```

where sum is the sum of the first i terms of the series and $\exp (-x)$ is calculated with the intrinsic function, and it can be therefore considered as the value of the infinite series, so that \mid sum-exp $(-x) \mid / \exp (-x)$ is the relative error.
As an exercise, you could write and compare different codes:
i. Using the factorial function (see test_factorial.f90 for the use of a recursive function). Make some tests fixing x but changing the number of terms of the series, checking if (and up to which term) the factorial is correctly calculated.
ii. Avoiding the use of the factorial. You have an example of code avoiding the factorial: (exp-good.f90. It also avoids odd powers of x, and does a smart use of the previous terms.

Which program works better?
(b) Consider the best code. Use it for small and large x, for instance $x=0.1,1,10,100,1000$, and consider the results obtained. In particular: what about overflow o underflow? Change the code to calculate $e^{-x}=1 / e^{x}$ and not directly the series above. Is it better? Why?
(c) Consider the most efficient way to calculate e^{-x} as a series of negative and positive terms; change the code using the double precision. Compile, run, and comment on the results.

4. Roundoff: derivative

- Write a code (e.g., see deriv.f90) to calculate the derivative of $f(x)=\sin (x)$ in $x=1$ with the formulas:
- 3-point symmetric: $\quad f^{\prime}(x) \sim \frac{f_{1}-f_{-1}}{2 h}$
- 2-point "forward": $\quad f^{\prime}(x) \sim \frac{f_{1}-f_{0}}{h}$
- 2-point "backwards": $f^{\prime}(x) \sim \frac{f_{0}-f_{-1}}{h}$
where $f_{0}=f(x), f_{1}=f(x+h)$, e $f_{-1}=f(x-h)$.
- Use $h=0.5,0.2,0.1$, then $h / 10, h / 100, h / 1000, h / 10000$, and reports the results in a table to compare the three algorithms. It's more convenient to report the error ('calculated-exact' value, since in this case we know the exact value...)
- Comment the results. What about roundoff errors?


```
! calculates the factorial using a recursive function; use of module
```



```
module fact
public :: f
contains
recursive function f(n) result (factorial_result)
    integer, intent (in) :: n
    integer :: factorial_result
    if (n <= 0) then
        factorial_result = 1
    else
        factorial_result = n*f(n-1)
    end if
end function f
end module fact
program test_factorial
    use fact
    integer :: n
    print *, "integer n?"
    read *, n
    print "(i4, a, i10)", n, "! = ", f(n)
end program test_factorial
```



```
! exp-good.f : a GOOD ALGORITHM to calculate e^-x
                                    as a FINITE sum of a series
                                    (to compare with exp-bad.f
                                    and with the machine intrinsic function)
```



```
program expgood
!
    ! variable declaration:
                x
                accuracy limit: min
    implicit none
    real :: element, sum, x, min = 1.e-10
    integer :: n
    open(unit=7,file="exp-good.dat",position="append",action="write")
    write(unit=7,fmt=*) "x, n, sum, exp(-x), abs(sum-exp(-x))/sum"
    !
    ! execute
    !
    write(*,*)' enter x:'
    read(*,*) x
    sum = 1
    element = 1
    do n=1, 10000
        element = element*(-x)/n
        sum = sum + element
        if((abs(element/sum) < min) .and. (sum /= 0)) then
            write(*,*) x, n, sum, exp(-x), abs(sum-exp(-x))/sum
            write(unit=7,fmt=*) x, n, sum, exp(-x), abs(sum-exp(-x))/sum
                go to 10
            endif
    enddo
1 0 ~ c o n t i n u e ~
    close(7)
    ! stop "data saved in exp-good.dat"
end program expgood
```

 program deriv
$!$
numerical derivative: left, right, symmetric in SINGLE PRECISION
!

real :: h(8)
real :: x, exact
integer :: i, N=8
data h/0.5, 0.2, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001 /
!
print*, " h, f'_ds, error, f'_sin, error, f'_simm, error "
$\mathrm{x}=1.0 \quad$! inizialize variables
exact $=\cos (x)$
do $i=1, N$
deriv_ds $=(\sin (x+h(i))-\sin (x)) / h(i)$
deriv_sin $=(\sin (x)-\sin (x-h(i))) / h(i)$ deriv_simm = (sin(x+h(i))-sin(x-h(i))) / (2*h(i))
print*, h(i), deriv_ds, deriv_ds - exact, deriv_sin, deriv_sin - exact, \& \& deriv_simm, deriv_simm - exact
end do
stop
end program deriv

A few notes on these exercises:

- "do loops":

$$
\text { do } i=1, n
$$

...(i)...
...
end do
or "named do":
myloop : do
end do myloop
Note the condition to exit from a loop:

```
do i=1,n
    if (...) then
    ...
    exit
    end do
```

interrupts the loop, which is the same of (older style):

```
    do i=1,n
    if (...) then
    ...
    go to 10
    end do
    continue
```

 10
 whereas:

```
    do \(\mathrm{i}=1, \mathrm{n}\)
        if (...) then
        cycle
    end do
```

go to the next value of i (skipping lines after cycle) and continues the loop.

- open/close files (remeber: default reading/writing units: $5 / 6$)
- unformatted output (print* or write(...,fmt=*))
- variable and type declarations (better to use implicit none+...)

