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Numerical Python
Numerical Python by Robert Johansson shows you how to leverage the numerical 
and mathematical modules in Python and its Standard Library as well as popular 
open source numerical Python packages like NumPy, FiPy, matplotlib and more to 
numerically compute solutions and mathematically model applications in a number 
of areas like big data, cloud computing, financial engineering, business management 
and more.

After reading and using this book, you’ll have some case study examples of 
applications that can be found in areas like business management, big data/cloud 
computing, financial engineering (i.e., options trading investment alternatives), and 
even games.

Up until very recently, Python was mostly regarded as just a web scripting 
language. Well, computational scientists and engineers have recently discovered 
the flexibility and power of Python to do more. Big data analytics and cloud 
computing programmers are seeing Python’s immense use. Financial engineers are 
also now employing Python in their work. Python seems to be evolving as a language 
that can even rival C++, Fortran, and Pascal/Delphi for numerical and mathematical 
computations.

• How to plot and graph with matplotlib
• How to construct vectors and matrices with NumPy
• How to solve linear/non-linear equations with NumPy
• How to solve equations with finite element methods using FiPy
• How to handle image processing with Pillow, matplotlib and OpenCV
• How to do numerical computations, interpolations and optimizations using SciPy
• How to handle file I/O, data encoding/compression, and text/date/time processing
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Introduction

Scientific and numerical computing is a booming field in research, engineering, and analytics. The 
revolution in the computer industry over the last several decades has provided new and powerful tools for 
computational practitioners. This has enabled computational undertakings of previously unprecedented 
scale and complexity. Entire fields and industries have sprung up as a result. This development is still on 
going, and it is creating new opportunities as hardware, software, and algorithms keep improving. Ultimately 
the enabling technology for this movement is the powerful computing hardware that has been developed in 
recent decades. However, for a computational practitioner, the software environment used for computational 
work is as important as, if not more important than, the hardware on which the computations are carried 
out. This book is about one popular and fast growing environment for numerical computing: the Python 
programming language and its vibrant ecosystem of libraries and extensions for computational work.

Computing is an interdisciplinary activity that requires experience and expertise in both theoretical 
and practical subjects: a firm understanding of mathematics and scientific thinking is a fundamental 
requirement for effective computational work. Equally important is solid training in computer programming 
and computer science. The role of this book is to bridge these two subjects by introducing how scientific 
computing can be done using the Python programming language and the computing environment that 
has appeared around this language. In this book the reader is assumed to have some previous training in 
mathematics and numerical methods, and basic knowledge about Python programming. The focus of the 
book is to give a practical introduction to computational problem solving with Python. Brief introductions to 
the theory of the covered topics are given in each chapter, to introduce notation and remind readers of the 
basic methods and algorithms. However, this book is not a self-consistent treatment of numerical methods. 
To assist readers that are not previously familiar with some of the topics of this book, references for further 
reading are given at the end of each chapter. Likewise, readers without experience in Python programming 
will probably find it useful to read this book together with a book that focus on the Python programming 
language itself.

How This Book is Organized
The first chapter in this book introduces general principles for scientific computing, and the main 
development environments that are available for work with computing in Python: The focus is on IPython 
and its interactive Python prompt and its excellent notebook application, and the Spyder IDE.

In Chapter 2, an introduction to the NumPy library is given, and here we also discuss more generally 
array-based computing and its virtues. In Chapter 3 we turn our attention to symbolic computing – 
which in many respects complements array-based computing – using the SymPy library. In Chapter 4 
we cover plotting and visualization using the Matplotlib library. Together, Chapters 2 to 4 provide the 
basic computational tools that will be used for domain specific problems throughout the rest of the book: 
numerics, symbolics, and visualization.

In Chapter 5, the topic of study is equation solving, which we explore with both numerical and 
symbolic methods, using the SciPy and SymPy libraries. In Chapter 6, we explore optimization, which is 
a natural extension of equation solving. Here we mainly work with the SciPy library, and briefly with the 
cvxopt library. Chapter 7 deals with interpolation, which is another basic mathematical method with many 
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applications of its own, and important roles in higher-level algorithms and methods. In Chapter 8 we cover 
numerical and symbolic integration. Chapters 5 to 8 cover core computational techniques that are pervasive 
in all types of computational work. Most of the methods from these chapters are found in the SciPy library.

In Chapter 9, we proceed to cover ordinary differential equations. Chapter 10 is a detour into sparse 
matrices and graph methods, which helps prepare the field for the following chapter. In Chapter 11, 
we discuss partial differential equations, which conceptually are closely related to ordinary differential 
equations, but require a different set of techniques that necessitates the introduction of sparse matrices, the 
topic of Chapter 10.

Starting with Chapter 12, we make a change of direction and begin exploring data analysis and statistics. 
In Chapter 12 we introduce the Pandas library and its excellent data analysis framework. In Chapter 13, we 
cover basic statistical analysis and methods from the SciPy stats package. In Chapter 14, we move on to 
statistical modeling, using the statsmodels library. In Chapter 15, the theme of statistics and data analysis 
is continued with a discussion of machine learning, using the scikit-learn library. In Chapter 16, we wrap 
up the statistics-related chapters with a discussion of Bayesian statistics and the PyMC library. Together, 
Chapters 12 to 16 provide an introduction to the broad field of statistics and data analytics: a field that has 
been developing rapidly within and outside of the scientific Python community in recent years.

In Chapter 17 we briefly return to a core subject in scientific computing: signal processing. In  
Chapter 18, we discuss data input and output, and several methods for reading and writing numerical data 
to files, which is a basic topic that is required for most types of computational work. In Chapter 19, the final 
regular chapter in this book, two methods for speeding up Python code are introduced, using the Numba 
and Cython libraries.

The appendix covers the installation of the software used in this book. To install the required software 
(mostly Python libraries), we use the conda package manager. Conda can also be used to create virtual 
and isolated Python environments, which is an important topic for creating stable and reproducible 
computational environments. The appendix also discusses how to work with such environments using the 
conda package manager.

Source Code Listings
Each chapter in this book has an accompanying IPython notebook that contains the chapter’s source code 
listings. These notebooks, and the data files required to run them, can be downloaded from the Source Code 
page on the Apress web site, at www.apress.com/9781484205549.
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Chapter 1

Introduction to Computing  
with Python

This book is about using Python for numerical computing. Python is a high-level, general-purpose interpreted 
programming language that is widely used in scientific computing and engineering. As a general-purpose 
language, Python was not specifically designed for numerical computing, but many of its characteristics make 
it well suited for this task. First and foremost, Python is well known for its clean and easy-to-read code syntax. 
Good code readability improves maintainability, which in general results in less bugs and better applications 
overall, but it also encourages rapid code development. This readability and expressiveness is essential in 
exploratory and interactive computing, which requires fast turnaround for testing various ideas and models.

In computational problem solving, it is of course important to consider the performance of algorithms 
and their implementations. It is natural to strive for efficient high-performance code, and optimal 
performance is indeed crucial in many computational situations. In such cases it may be necessary to use 
a low-level program language, such as C or Fortran, to obtain the best performance out of the hardware 
that runs the code. However, it is not always the case that optimal runtime performance is the most suitable 
objective. It is also important to consider the development time required to implement a solution to a 
problem in a given programming language or environment. While the best possible runtime performance 
can be achieved in a low-level programming language, working in a high-level language such as Python 
usually reduces the development time, and often results in more flexible and extensible code.

These conflicting objectives present a trade-off between high performance and long development time, 
and lower performance but shorter development time. See Figure 1-1 for a schematic visualization of this 
concept. When choosing a computational environment for solving a particular problem, it is important to 
consider this trade-off and to decide whether man-hours spent on the development or CPU-hours spent on 
running the computations is more valuable. It is worth noting that CPU-hours are cheap already and are getting 
even cheaper, but man-hours are expensive. In particular, your own time is of course a very valuable resource. 
This makes a strong case for minimizing development time rather than the runtime of a computation by using a 
high-level programming language and environment such as Python and its scientific computing libraries.

A solution that partially avoids the trade-off between high- and low-level languages is to use a multi-
language model, where a high-level language is used to interface libraries and software packages written 
in low-level languages. In a high-level scientific computing environment, this type of interoperability 
with software packages written in low-level languages (for example Fortran, C, or C++) is an important 
requirement. Python excels at this type of integration, and as a result Python has become a popular “glue 
language” used as an interface for setting up and controlling computations that use code written in low-level 
programming languages for time-consuming number crunching. This is an important reason why Python is 
a popular language for numerical computing. The multi-language model enables rapid code development in 
a high-level language, while retaining most of the performance of low-level languages.

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-0553-2_1) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0553-2_1
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As a consequence of the multi-language model, scientific and technical computing with Python 
involves much more than just the Python language itself. In fact, the Python language is only a piece of an 
entire ecosystem of software and solutions that provide a complete environment for scientific and technical 
computing. This ecosystem includes development tools and interactive programming environments, such 
as Spyder and IPython, which are designed particularly with scientific computing in mind. It also includes 
a vast collection of Python packages for scientific computing. This ecosystem of scientifically oriented 
libraries ranges from generic core libraries – such as NumPy, SciPy, and Matplotlib – to more specific 
libraries for particular problem domains. Another crucial layer in the scientific Python stack exists below the 
various Python modules. Many scientific Python libraries interface, in one way or another: low-level high-
performance scientific software packages, such as, for example, optimized LAPACK and BLAS libraries1 for 
low-level vector, matrix, and linear algebra routines; or other specialized libraries for specific computational 
tasks. These libraries are typically implemented in a compiled low-level language and can therefore be 
optimized and efficient. Without the foundation that such libraries provide, scientific computing with 
Python would not be practical. See Figure 1-2 for and overview of the various layers of the software stack for 
computing with Python.

Development time

CPU time

high-level language

low-level language

Development effort until first runnable
code that solves the problem

Best possible
performance

after a significant
amount of

development
effort

Trade-off between
low- and high-level languages 

Figure 1-1.  Trade-off between low- and high-level programming languages. While a low-level language 
typically gives the best performance when a significant amount of development time is invested in the 
implemenation of a problem, the development time required to obtain a first runnable code that solve the 
problem is typically shorter in a high-level language such as Python

1For example, MKL, the Math Kernel Library from Intel, https://software.intel.com/en-us/intel-mkl, or 
ATLAS, the Automatically Tuned Linear Algebra Software, available at http://math-atlas.sourceforge.net.

https://software.intel.com/en-us/intel-mkl
http://math-atlas.sourceforge.net/
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■■ Tip   The SciPy organization and its web site http://www.scipy.org provide a centralized resource for 
information about the core packages in the scientific Python ecosystem, and lists of additional specialized 
packages, as well as documentation and tutorials. As such, it is an indispensable asset when working with 
scientific and technical computing in Python. Another great resource is the Numeric and Scientific page on the 
official Python Wiki: http://wiki.python.org/moin/NumericAndScientific.

Apart from the technical reasons for why Python provides a good environment for computational work, it 
is also significant that Python and its scientific computing libraries are free and open source. This eliminates 
artificial constraints on when and how applications developed with the environment can be deployed and 
distributed by its users. Equally significant, it makes it possible for a dedicated user to obtain complete insight 
in how the language and the domain-specific packages are implemented and what methods are used. For 
academic work where transparency and reproducibility are hallmarks, this is increasingly recognized as an 
important requirement on software used in research. For commercial use, it provides freedom in how the 
environment is used and integrated in products and how such solutions are distributed to customers. All 
users benefit from the relief of not having to pay license fees, which may otherwise inhibit deployments on 
large computing environments, such as clusters and cloud computing platforms.

The social component of the scientific computing ecosystem for Python is another important aspect 
of its success. Vibrant user communities have emerged around the core packages and many of the domain-
specific projects. Project specific mailing lists, stack overflow groups, and issue trackers (for example, on 
Github, http://www.github.com) are typically very active and provide forums for discussing problems and 
obtaining help, as well as a way of getting involved in the development of these tools. The Python computing 
community also organizes yearly conferences and meet-ups at many venues around the world, such as the 
SciPy (http://conference.scipy.org) and PyData (http://pydata.org) conference series.

Environments

IPython console, IPython notebook, Spyder, ...

Python language

Python packages

System and system libraries

Python 2, Python 3, ...

numpy, scipy, matplotlib, ...

OS, BLAS, LAPACK, ...

IPython

Python 3

numpy

ATLAS BLAS
(optional)

Figure 1-2.  An overview of the components and layers in the scientific computing environment for Python, 
from a user’s perspective, from top to bottom. Users typically only interact with the top three layers, but 
the bottom layer constitutes a very important part of the software stack. An example of specific software 
components from each layer in the stack is shown in the right part of the figure

http://www.scipy.org/
http://wiki.python.org/moin/NumericAndScientific
http://www.github.com/
http://conference.scipy.org/
http://pydata.org/
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Environments for Computing with Python
There are a number of different environments that are suitable for working with Python for scientific and 
technical computing. This diversity has both advantages and disadvantages compared to a single endorsed 
environment that is common in propriety computing products: diversity provides flexibility and dynamism 
that lends itself to specialization for particular use-cases, but on the other hand it can also be confusing 
and distracting for new users, and it can be more complicated to set up a full productive environment. 
Here I give an orientation of common environments for scientific computing, so that their benefits can 
be weighted against each other and an informed decision can be reached regarding which one to use in 
different situations and for different purposes. The three environments discussed here are the following:

•	 The Python interpreter or the IPython console to run code interactively. Together 
with a text editor for writing code, this provides a lightweight development 
environment.

•	 The IPython notebook, which is a web application in which Python code can 
be written and executed through a web browser. This environment is great for 
numerical computing, analysis, and problem solving, because it allows one to 
collect the code, the output produced by the code, related technical documentation, 
analysis and interpretation, all in one document.

•	 The Spyder Integrated Development Environment, which can be used to write and 
interactively run Python code. An IDE such as Spyder is a great tool for developing 
libraries and reusable Python modules.

All of these environments have justified use-cases, and it is largely a matter of personal preference 
which one to use. However, I do in particular recommend exploring the IPython notebook environment, 
because it is highly suitable for interactive and exploratory computing and data analysis, where data, code, 
documentation, and results are tightly connected. For development of Python modules and packages, 
I recommend using the Spyder IDE, because of its integration with code analysis tools and the Python 
debugger.

Python, and the rest of the software stack required for scientific computing with Python, can be 
installed and configured in a large number of ways, and in general the installation details also vary from 
system to system. In Appendix 1, we go through one popular cross-platform method to install the tools and 
libraries that are required for this book.

Python
The Python programming language and the standard implementation of the Python interpreter are 
frequently updated and made available through new releases.2 Currently there are two active versions of 
Python available for production use: Python 2 and Python 3. In this book we will mainly work Python 3, 
which will eventually supersede Python 2. However, for some applications, using Python 2 is still the 
only option because not all Python libraries have been made compatible with Python 3 yet. It is also 
sometimes the case that only Python 2 is available in institutionally provided environments, such as on 
high-performance clusters or universities’ computer systems. When developing Python code for such 
environments it might be necessary to use Python 2, but otherwise I recommend using Python 3 in new 
projects. The vast majority of computing-oriented libraries for Python now support Python 3, so it is no 
longer common to be forced to stay with Python 2 for dependency reasons. For the purpose of this book, 
we require version 2.7 or greater for the Python 2 series, or Python 3.2 or greater for the Python 3 series.

2The Python language and the default Python interpreter are managed and maintained by the Python Software 
Foundation: http://www.python.org.

http://www.python.org/
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Interpreter
The standard way to execute Python code is to run the program directly through the Python interpreter. On 
most systems, the Python interpreter is invoked using the python command. When a Python source file is 
passed as an argument to this command, the Python code in the file is executed.

$ python hello.py
Hello from Python!

Here the file hello.py contains the single line:

print("Hello from Python!")

To see which version of Python is installed, one can invoke the python command with the --version 
argument, as shown in the following example:

$ python --version
Python 3.4.1

It is common to have more than one version of Python installed on the same system. Each version of 
Python maintains its own set of libraries (so each Python environment can have different libraries installed) 
and provides its own interpreter command. On many systems, specific versions of the Python interpreter are 
available through the commands such as, for example, python2.7 and python3.4. It is also possible to setup 
virtual Python environments that are independent of the system-provided environments. This has many 
advantages and I strongly recommend to become familiar with this way of working with Python. Appendix 1 
provides details of how to set up and work with these kind of environments.

In addition to exectuting Python script files, a Python interpreter can also be used as an interactive 
console (also known as a REPL: Read – Evaluate – Print – Loop). Entering python at the command prompt 
(without any Python files as argument) launches the Python interpreter in an interactive mode. When doing 
so you are presented with a prompt:

$ python
Python 3.4.1 (default, Sep 20 2014, 19:44:17)
[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

From here Python code can be entered, and for each statement the interpreter evaluates the code and 
prints the result to the screen. The Python interpreter itself already provides a very useful environment for 
interactively exploring Python code, especially since the release of Python 3.4, which includes basic facilities 
such as a command history and basic autocompletion (not available by default in Python 2).

IPython Console
Although the interactive command-line interface provided by the standard Python interpreter has been greatly 
improved in recent versions of Python 3, it is still in certain aspects rudimentary, and it does not by itself 
provide a satisfactory environment for interactive computing. IPython3 is an enhanced command-line REPL 

3See the IPython project web page, http://ipython.org, for more information and its official documentation.

http://ipython.org/


Chapter 1 ■ Introduction to Computing with Python 

6

environment for Python, with additional features for interactive and exploratory computing. For example, 
IPython provides improved command history browsing (also between sessions), an input and output caching 
system, improved autocompletion, more verbose and helpful exception tracebacks, and much more. In fact, 
IPython is now much more than an enhanced Python command-line interface, which we will explore in more 
detail later in this chapter and throughout the book. For instance, under the hood IPython is client-server 
application, which separates the front-end (user interface) from the back-end (kernel) that executes the Python 
code. This allows multiple types of user interfaces to communicate and work with the same kernel, and a user-
interface application can connect multiple kernels using IPython’s powerful framework for parallel computing.

Running the ipython command launches the IPython command prompt:

$ ipython
Python 3.4.1 (default, Sep 20 2014, 19:44:17)
Type "copyright", "credits" or "license" for more information.

IPython 3.2.1 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]:

■■ Caution   Note that each IPython installation corresponds to a specific version of Python, and if you have 
several versions of Python available on your system, you may also have several versions of IPython as well. On 
many systems IPython for Python 2 is invoked with the command ipython2, and for Python 3 with ipython3, 
although the exact setup varies from system to system. Note that here the “2” and “3” refers to the Python 
version, which is different from the version of IPython itself (which at the time of writing is 3.2.1).

In the following sections I give a brief overview of some of the IPython features that are most relevant 
to interactive computing. It is worth noting that IPython is used in many different contexts in scientific 
computing with Python (for example, inside the IPython Notebook application and the Spyder IDE, which 
is covered in more detail later in this chapter), and it is well worth spending time on getting familiar with 
the tricks and techniques that IPython offers to improve your productivity when working with interactive 
computing.

Input and Output Caching
In the IPython console the input prompt is denoted as In [1]: and the corresponding output is denoted as 
Out [1]:, where the numbers within the square brackets are incremented for each new input and output. 
These input and outputs are called cells in IPython. Both the input and the output of previous cells can 
later be accessed through the In and Out variables that are automatically created by IPython. The In and 
Out variables are a list and a dictionary, respectively, and can be indexed with a cell number. For instance, 
consider the following IPython session:

In [1]: 3 * 3
Out[1]: 9
In [2]: In[1]
Out[2]: '3 * 3'



Chapter 1 ■ Introduction to Computing with Python 

7

In [3]: Out[1]
Out[3]: 9
In [4]: In
Out[4]: ['', '3 * 3', 'In[1]', 'Out[1]', 'In']
In [5]: Out
Out[5]: {1: 9, 2: '3 * 3', 3: 9, 4: ['', '3 * 3', 'In[1]', 'Out[1]', 'In', 'Out']}

Here, the first input was 3 * 3 and the result was 9, which later is available as In[1] and Out[1].  
A single underscore _ is a shorthand notation for referring to the most recent output, and a double 
underscore __ refers to the output that preceded the most recent output. Input and output caching is often 
useful in interactive and exploratory computing, since the result of a computation can be accessed even if it 
was not explicitly assigned to a variable.

Note that when a cell is executed, the value of the last statement in an input cell is by default displayed 
in the corresponding output cell, unless the statement is an assignment or if the value is the Python null 
value None. The output can be suppressed by ending the statement with a semicolon:

In [6]: 1 + 2
Out[6]: 3
In [7]: 1 + 2;    # output suppressed by the semicolon
In [8]: x = 1     # no output for assignments
In [9]: x = 2; x  �# these are two statements. The value of statement 'x' is shown in the 

output
Out[9]: 2

Autocompletion and Object Introspection
In IPython, pressing the TAB key activates autocompletion, which display a list of symbols (variables, 
functions, classes, etc.) with names that are valid completions of what has already been typed. The 
autocompletion in IPython is contextual and will look for matching variables and functions in the current 
namespace, or among the attributes and methods of a class when invoked after the name of a class instance. 
For example, os.<TAB> produces a list of the variables, functions, and classes in the os module, and pressing 
TAB after having typed os.w results in a list of symbols in the os module that starts with w:

In [10]: import os
In [11]: os.w<TAB>
os.wait     os.wait3    os.wait4    os.waitpid  os.walk     os.write    os.writev

This feature is called object introspection, and it provides a powerful tool for interactively exploring 
the properties of Python objects. Object introspection works on modules, classes and their attributes and 
methods, and on functions and their arguments.

Documentation
Object introspection is convenient for exploring the API of a module and its member classes and functions, 
and together with the documentation strings, or “docstrings,” which are commonly provided in Python code, 
it provides a built-in dynamic reference manual for almost any Python module that is installed and can be 
imported. A Python object followed by a question mark displays the documentation string for the object. 
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This is similar to the Python function help. An object can also be followed by two question marks, in which 
case IPython tries to display more detailed documentation, including the Python source code if available. 
For example, to display help for the cos function in the math library:

In [12]: import math
In [13]: math.cos?
Type:        builtin_function_or_method
String form: <built-in function cos>
Docstring:
cos(x)

Return the cosine of x (measured in radians).

Docstrings can be specified for Python modules, functions, classes, and their attributes and methods.  
A well-documented module therefore includes a full API documentation in the code itself. From a 
developer’s point of view, it is convenient to be able to document code together with the implementation. 
This encourages writing and maintaining documentation, and Python modules tend to be well documented.

Interaction with the System Shell
IPython also provides extensions to the Python language that makes it convenient to interact with the 
underlying system. Anything that follows an exclamation mark is evaluated using the system shell (such as 
bash). For example, on a UNIX-like system, such as Linux or Mac OS X, listing files in the current directory 
can be done using:

In [14]: !ls
file1.py    file2.py    file3.py

On Microsoft Windows, the equivalent command would be !dir. This method for interacting with the 
OS is a very powerful feature that makes it easy to navigate the file system and to use the IPython console as 
a system shell. The output generated by a command following an exclamation mark can easily be captured 
in a Python variable. For example, a file listing produced by !ls can be stored in a Python list using:

In [15]: files = !ls
In [16]: len(files)
Out[16]: 3
In [17]: files
Out[17]: ['file1.py', 'file2.py', 'file3.py']

Likewise, we can pass the values of Python variables to shell commands by prefixing the variable name 
with a $ sign:

In [18]: file = "file1.py"
In [19]: !ls -l $file
-rw-r--r--  1 rob  staff 131 Oct 22 16:38 file1.py

This two-way communication with the IPython console and the system shell can be very convenient 
when, for example, processing data files.
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IPython Extensions
IPython provides extension commands that are called magic commands in the IPython terminology. These 
commands all start with one or two % signs.4 A single % sign is used for one-line commands, and two % signs 
are used for commands that operate on cells (multiple lines). For a complete list of available extension 
commands type %lsmagic, and documentation for each command can be obtained by typing the magic 
command followed by a question mark:

In [20]: %lsmagic?
Type:            Magic function
String form:    <bound method BasicMagics.lsmagic of <IPython.core.magics.basic.BasicMagics 
object at 0x10e3d28d0>>
Namespace:       IPython internal
File:           /usr/local//lib/python3.4/site-packages/IPython/core/magics/basic.py
Definition:     %lsmagic(self, parameter_s='')
Docstring:      List currently available magic functions.

File system navigation
In addition to the interaction with the system shell described in the previous section, IPython provides 
commands for navigating and exploring the file system. The commands will be familiar to UNIX shell users: %ls 
(list files), %pwd (return current working directory), %cd (change working directory), %cp (copy file), %less (show 
the content of a file in the pager), %%writefile filename (write content of a cell to the file filename). Note that 
autocomplete in IPython also works with the files in the current working directory, which makes IPython as 
convenient to explore the file system as is the system shell. It is worth noting that these IPython commands are 
system independent, and can therefore be used on both UNIX-like operating systems and on Windows.

Running scripts from the IPython console
The command %run is an important and useful extension: perhaps one of the most important features of 
the IPython console. With this command, an external Python source code file can be executed within an 
interactive IPython session. Keeping a session active between multiple runs of a script makes it possible 
to explore the variables and functions defined in a script interactively after the execution of the script has 
finished. To demonstrate this functionality, consider a script file fib.py that contains the following code:

def fib(n):
    """
    Return a list of the first n Fibonacci numbers.
    """
    f0, f1 = 0, 1
    f = [1] * n
    for i in range(1, n):
        f[i] = f0 + f1
        f0, f1 = f1, f[i]

    return f

print(fib(10))

4When %automagic is activated (type %automagic at the IPython prompt to toggle this feature), the % sign that precedes 
the IPython commands can be omitted, unless there is a name conflict with a Python variable or function. However, for 
clarity, the % signs are explicitly shown here.
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It defines a function that generates a sequence of n Fibonacci numbers, and prints the result for n = 10 
to the standard output. It can be run from the system terminal using the standard Python interpreter:

$ python fib.py
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

It can also be run from an interactive IPython session, which produces the same out, but also adds the 
symbols defined in the file to the local namespace, so that the fib function is available in the interactive 
session after the %run command has been issued.

In [21]: %run fib.py
Out[22]: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In [23]: %who
fib

In [24]: fib(6)
Out[24]: [1, 1, 2, 3, 5, 8]

In the above example we also made use of the %who command, which lists all defined symbols (variables 
and functions).5 The %whos command is similar, but also gives more detailed information about the type and 
value of each symbol, when applicable.

Debugger
IPython includes a handy debugger mode, which can be invoked postmortem after a Python exception 
(error) has been raised. After the traceback of an unintercepted exception has been printed to the IPython 
console, it is possible to step directly into the Python debugger using the IPython command %debug. This 
possibility can eliminate the need to rerun the program from the beginning using the debugger, or after 
having used the frequently employed debugging method of sprinkling print statements into the code. If 
the exception was unexpected and happened late in a time-consuming computation, this can be a huge 
time saver.

To see how the %debug command can be used, consider the following incorrect invocation of the 
fib function defined earlier. It is incorrect because a float is passed to the function, while the function is 
implemented with the assumption that the argument passed to it is an integer. On line 7 the code ran into 
a type error, and the Python interpreter raises an exception of the type TypeError. IPython catches the 
exception and prints out a useful traceback of the call sequence on the console. If we are clueless as to why 
the code on line 7 contains an error, it could be useful to enter the debugger by typing %debug in the IPython 
console. We then get access to the local namespace at the source of the exception, which can allow us to 
explore in more detail why the exception was raised.

In [24]: fib(1.0)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-24-874ca58a3dfb> in <module>()
 ----> 1 fib.fib(1.0)

/Users/rob/code/fib.py in fib(n)
      5     """
      6     f0, f1 = 0, 1

5The Python function dir provides a similar feature.
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 ----> 7     f = [1] * n
      8      for i in range(1, n):
      9         f[n] = f0 + f1

TypeError: can't multiply sequence by non-int of type 'float'

In [25]: %debug
> /Users/rob/code/fib.py(7)fib()
      6     f0, f1 = 0, 1
----> 7     f = [1] * n
      8     for i in range(1, n):

ipdb> print(n)
1.0

■■ Tip   Type a question mark at the debugger prompt to show a help menu that lists available commands:

 ipdb> ?

More information about the Python debugger and its features is also available in the Python Standard Library 
documentation: http://docs.python.org/3/library/pdb.html.

Reset
Resetting the namespace of an IPython session is often useful to ensure that a program is run in a pristine 
environment, uncluttered by existing variables and functions. The %reset command provides this 
functionality (use the flag –f to force the reset). Using this command can often eliminate the need for 
otherwise common exit–restart cycles of the console. Although it is necessary to reimport modules after 
the %reset command has been used, it is important to known that even if the modules have changed since 
the last import, a new import after a %reset will not import the new module but rather reenable a cached 
version of the module from the previous import. When developing Python modules, this is usually not the 
desired behavior. In that case, a reimport of a previously imported (and since updated) module, can often be 
achieved by using the dreload function. However, this method does not always work, in which case the only 
option might be to terminate and restart the IPython interpreter.

Timing and profiling code
The %timeit and %time commands provide simple benchmarking facilities that are useful when looking for 
bottlenecks and attempting to optimize code. The %timeit command runs a Python statement a number 
of times and gives an estimate of the runtime (use %%timeit to do the same for a multiline cell). The exact 
number of times the statement is run is determined heuristically, unless explicitly set using the –n and –r 
flags. See %timeit? for details. The %timeit command does not return the resulting value of the expression. 
If the result of the computation is required, the %time command can be used instead, but %time only run the 
statement once, and therefore gives a less accurate estimate of the average runtime.

http://docs.python.org/3/library/pdb.html
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The following example demonstrates a typical usage of the %timeit and %time commands:

In [26]: %timeit fib(100)
100000 loops, best of 3: 16.9 ms per loop
In [27]: %time result = fib(100)
CPU times: user 33 ms, sys: 0 ns, total: 33 ms
Wall time: 48.2 ms

While the %timeit and %time commands are useful for measuring the elapsed runtime of a 
computation, they do not give any detailed information about what part of the computation takes more 
time. Such analyses require a more sophisticated code profiler, such as the one provided by Python standard 
library module cProfile.6 The Python profiler is accessible in IPython through the commands %prun (for 
statements) and %run with the flag –p (for running external script files). The output from the profiler is rather 
verbose, and can be customized using optional flags to the %prun and %run -p commands (see %prun? for a 
detailed description of the available options).

As an example, consider a function that simulates N random walkers each taking M steps, and then 
calculates the furthest distance from the starting point achieved by any of the random walkers:

In [28]: import numpy as np
In [29]: def random_walker_max_distance(M, N):
    ...:     """
    ...:     Simulate N random walkers taking M steps, and return the largest distance
    ...:     from the starting point achieved by any of the random walkers.
    ...:     """
    ...:     trajectories = [np.random.randn(M).cumsum() for _ in range(N)]
    ...:     return np.max(np.abs(trajectories))

Calling this function using the profiler with %prun results in the following output, which includes 
information about how many times each function was called and a breakdown of the total and cumulative 
time spent in each function. From this information we can conclude that in this simple example, the calls to 
the function np.random.randn consume the bulk of the elapsed computation time.

In [30]: %prun random_walker_max_distance(400, 10000)

   20008 function calls in 0.254 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    10000    0.169    0.000    0.169    0.000 {method 'randn' of 'mtrand.RandomState' objects}
    10000    0.036    0.000    0.036    0.000 {method 'cumsum' of 'numpy.ndarray' objects}
        1    0.030    0.030    0.249    0.249 <ipython-input-30>:18(random_walker_max_distance)
        1    0.012    0.012    0.217    0.217 <ipython-input-30>:19(<listcomp>)
        1    0.005    0.005    0.254    0.254 <string>:1(<module>)
        1    0.002    0.002    0.002    0.002 {method 'reduce' of 'numpy.ufunc' objects}
        1    0.000    0.000    0.254    0.254 {built-in method exec}
        1    0.000    0.000    0.002    0.002 _methods.py:25(_amax)
        1    0.000    0.000    0.002    0.002 fromnumeric.py:2050(amax)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

6Which can, for example, be used with the standard Python interpreter to profile scripts by running python -m  
cProfile script.py.
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The IPython Qt Console
The IPython Qt console is an enhanced console application provided by IPython that can serve as a 
substitute to the standard IPython console. The Qt console is launched by passing the qtconsole argument 
to the ipython command:

$ ipython qtconsole

This opens up a new IPython application in an enhanced terminal, which is capable of displaying  
rich media objects such as images, figures, and mathematical equations directly in the terminal window.  
It also provides a menu-based mechanism for displaying autocompletion results, and it shows docstrings  
for functions in a pop-up window when typing the opening parenthesis of a function or a method call.  
A screenshot of the IPython Qtconsole is shown in Figure 1-3.

Figure 1-3.  A screenshot of the IPython Qtconsole application
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Interpreter and text editor as development environment
In principle, the Python or the IPython interpreter and a good text editor is all that is required for a full 
productive Python development environment. This simple setup is, in fact, the preferred development 
environment for many experienced programmers. However, in the following sections we will look into the 
IPython notebook and the integrated development environment Spyder. These environments provide richer 
features that improve productivity when working with interactive and exploratory computing applications.

IPython Notebook
In addition to the interactive console, IPython also provides a web-based notebook application.7 The 
notebook offers many advantages over a traditional development environment when working with data 
analysis and computational problem solving. In particular, the notebook environment allows one to write 
and to run code, to display the output produced by the code, and to document and interpret the code and 
the results – all in one document. This means that the entire analysis workflow is captured in one file, which 
can be saved, restored, and reused later on. In contrast, when working with a text editor or an IDE, the code, 
the corresponding data files and figures, and the documentation are spread out over multiple files in the file 
system, and it takes a significant effort and discipline to keep such a workflow organized.

The IPython notebook features a rich display system that can display media such as equations, 
figures, and videos as embedded objects in the notebook. It is also possible to create GUI (graphical user 
interface) elements with HTML and JavaScript, using IPython’s widget system. These widgets can be 
used in interactive applications that connect the web application with Python code that is executed in the 
IPython kernel (on the server side). These and many other features of the IPython notebook make it a great 
environment for interactive and literate computing, as we will see examples of throughout this book.

To launch the IPython notebook environment, the notebook argument is passed to the ipython 
command-line application.

$ ipython notebook

This launches a notebook kernel and a web application that, by default, will serve up a web server 
on port 8888 on localhost, which is accessed using the local address http://localhost:8888/ in a web 
browser.8 By default, running ipython notebook will open a dashboard web page in the default web browser 
(see Figure 1-4). The dashboard lists all notebooks that are available in the directory from where the IPython 
notebook was launched, as well as a simple directory browser that can be used to navigate subdirectories, 
and to open notebooks from therein, relative to the location where the notebook server was launched. 
Figure 1-5 shows a screenshot of a web browser and the IPython Notebook page.

7Currently the IPython notebook project is in the process of restructuring the application into a Python agnostic tool, and 
the project is being renamed to Jupyter. To follow this development, see http://jupyter.org.
8This web application is by default only accessible locally from the system where the notebook application was launched.

http://jupyter.org/
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Clicking on the “New Notebook” button creates a new notebook and opens it in a new page in the 
browser. A newly created notebook is named Untitled0, or Untitled1, etc., depending on the availability of 
unused filenames. A notebook can be renamed by clicking on the title field on the top of the notebook page. 
The IPython notebook files are stored in a JSON file format using the file name extension ipynb. An IPython 
notebook is not pure Python code, but if necessary the Python code in a notebook can easily be extracted 
using either “File ➤ Download as ➤ Python,” or using the IPython utility nbconvert (see below).

Figure 1-4.  A screenshot of the IPython notebook dashboard page
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Cell Types
The main content of the notebooks, below the menu bar and the toolbar, is organized in input and output 
cells. The cells can be of several types, and the type of the selected cell can be changed using the cell-type 
drop-down menu in the toolbar (which initially displays “Code”). The most important types are:

•	 Code: A code cell can contain an arbitrary amount of multiline Python code. 
Pressing SHIFT-Enter sends the code in the cell to the kernel process, where the 
kernel evaluates it using the Python interpreter. The result is sent back to the browser 
and displayed in the corresponding output cell.

•	 Markdown: The content of a markdown cell can contain marked-up plain text, 
which is interpreted using the Markdown language and HTML. A markdown cell can 
also contain LaTeX formatted equations, which are rendered in the notebook using 
the JavaScript-based LaTeX engine MathJax.

•	 Headings: Heading cells, of level 1 to 6, can be used to structure a notebook into sections.

•	 Raw: A raw text cell, which is displayed without any processing.

Figure 1-5.  A newly created and empty IPython notebook
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Editing Cells
Using the menu bar and the toolbar, cells can be added, removed, moved up and down, cut and pasted, and 
so on. These functions are also mapped to keyboard shortcuts, which are convenient and time saving when 
working with IPython notebooks. The IPython notebook uses a two-mode input interface, with an edit mode 
and a command mode. The edit mode can be entered by clicking on a cell, or by pressing the ENTER key on 
the keyboard, when a cell is in focus. Once in edit mode, the content of the input cell can be edited. Leaving the 
edit mode is done by pressing the ESC key, or by using SHIFT-ENTER to execute the cell. When in command 
mode, the up and down arrows can be used to move focus between cells, and a number of keyboard shortcuts 
are mapped to the basic cell manipulation actions that are available through the toolbar and the menu bar. 
Table 1-1 summarizes the most important IPython notebook keyboard shortcuts for the command mode.

Table 1-1.  A summary of keyboard shortcuts in the IPython notebook command mode

Keyboard Shortcut Description

b Create a new cell below the currently selected cell.

a Create a new cell above the currently selected cell.

d – d Delete the currently selected cell.

1 to 6 Heading cell of level 1 to 6.

x Cut currently selected cell.

c Copy currently selected cell.

v Paste cell from clipboard.

m Convert a cell to a Markdown cell.

y Convert a cell to a Code cell.

UP Select previous cell.

DOWN Select next cell.

ENTER Enter edit mode.

ESCAPE Exit edit mode.

SHIFT – ENTER Run the cell.

h Display a help window with a list of all available keyboard shortcuts.

0 – 0 Restart the kernel.

i - i Interrupt an executing cell.

s Save the notebook.

While a notebook cell is being executed, the input prompt number is represented with an asterisk, 
In[*], and an indicator in the upper-right corner of the page signals that the IPython kernel is busy. The 
execution of a cell can be interrupted using the menu option “Kernel – Interrupt,” or by typing i-i in the 
command mode (i.e., press the i key twice in a row).
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Markdown Cells
One of the key features of the IPython Notebook is that code cells and output cells can be complemented 
with documentation contained in text cells. Text input cells are called markdown cells. The input text is 
interpreted and reformatted using the Markdown markup language. The Markdown language is designed 
to be a lightweight typesetting system that allows text with simple markup rules to be converted to HTML 
and other formats for richer display. The markup rules are designed to be user friendly and readable as-is in 
plain-text format. For example, a piece of text can be made italics by surrounding it with asterisks, *text*, 
and it can be made bold by surrounding it with double asterisks, **text**. Markdown also allows creating 
enumerated and bulleted lists, tables, and hyper-references. An extension to Markdown supported by IPython 
is that mathematical expressions can be typeset in LaTeX, using the JavaScript LaTeX library MathJax. Taking 
full advantage of what IPython notebooks offers includes generously documenting the code and resulting 
output using markdown cells and the many rich display options they provide. Table 1-2 introduces basic 
Markdown and equation formatting features that can be used in an IPython notebook Markdown cell.

Table 1-2.  Summary of Markdown syntax for IPython notebook markdown cells

Function Syntax by example

Italics *text*

Bold **text**

Strike-through ~~text~~

Fixed-width font `text`

URL [URL text](http://www.example.com)

New paragraph Separate the text of two paragraphs with an empty line.

Verbatim Lines that start with four blank spaces are displayed as-is, without any 
further processing, using a fixed-width font. This is useful for code-like text 
segments.
␣␣␣␣def func(x):
␣␣␣␣  return x ** 2

Table | A | B | C |
|---|---|---|
| 1 | 2 | 3 |
| 4 | 5 | 6 |

Horizontal line A line containing three dashes is rendered as a horizontal line separator:
---

Heading # Level 1 heading
## Level 2 heading
### Level 3 heading
...

Block quote Lines that start with a '>' are rendered as a block quote.
> Text here is indented and offset
> from the main text body.

Unordered list * Item one
* Item two
* Item three

(continued)

http://www.example.com
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Markdown cells can also contain HTML code, and the IPython notebook interface will display it as 
rendered HTML. This is a very powerful feature for the IPython notebook, but its disadvantage is that such 
HTML code cannot be converted to other formats, such as PDF, using the nbconvert tool (see the next 
section). Therefore, it is generally better to use Markdown formatting when possible, and resorting to HTML 
only when absolutely necessary.

More information about MathJax and markdown is available at the projects web pages at  
http://www.mathjax.com and http://daringfireball.net/projects/markdown, respectively.

nbconvert
IPython notebooks can be converted to a number of different read-only formats using the nbconvert 
application, which is invoked by passing nbconvert as first argument to the ipython command line. 
Supported formats include, among others, PDF and HTML. Converting IPython notebooks to PDF or HTML 
is useful when sharing notebooks with colleagues or when publishing them online, when the reader does 
not necessarily need to run the code, but primarily view the results contained in the notebooks.

HTML
In the notebook web interface, the menu option “File – Download as - HTML” can be used to generate a 
HTML document representing a static view of a notebook. A HTML document can also be generated from 
the command prompt using the nbconvert application. For example, a notebook called Notebook.ipynb can 
be converted to HTML using the command:

$ ipython nbconvert Notebook.ipynb --to html

This generates an HTML page that is self-contained in terms of style sheets and JavaScript resources 
(which are loaded from public CDN servers), and it can be published as-is online. However, image resources 
that are included using Markdown or HTML tags are not included and must be distributed together with the 
resulting HTML file.

Function Syntax by example

Ordered list 1. Item one
2. Item two
3. Item three

Image ![Alternative text](image-file.png)9

or
![Alternative text](http://www.example.com/image.png)

Inline LaTeX equation $\LaTeX$

Displayed LaTeX equation 
(centered, and on a new line)

$$\LaTeX$$ or \begin{env}...\end{env} where env can be a LaTeX 
environment such as equation, eqnarray, align, etc.

Table 1-2.  (continued)

9The path/filename is relative to the notebook directory.

http://www.mathjax.com/
http://daringfireball.net/projects/markdown/
http://www.example.com/image.png
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For public online publishing of IPython notebooks, the IPython project provides a convenient web 
service called nbviewer, available at http://nbviewer.ipython.org. By feeding it a URL to a public notebook 
file, the nbviewer application automatically converts the notebook to HTML and displays the result. One of 
the many benefits of this method of publishing IPython notebooks is that the notebook author only needs 
to maintain one file – the notebook file itself – and when it is updated and uploaded to its online location, 
the static view of the notebook provided by nbviewer is automatically updated as well. However, it requires 
publishing the source notebook at a publicly accessible URL, so it can only be used for public sharing.

■■ Tip   The IPython project maintains a Wiki page that indexes many interesting IPython notebooks that are 
published online at http://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-
Notebooks. These notebooks demonstrate many of IPython’s more advanced features and can be a great 
resource for learning more about IPython notebooks as well as the many topics covered by those notebooks.

PDF
Converting a notebook to PDF requires to first convert the IPython notebook-to-LaTeX, and then compiling 
the LaTeX document to PDF. To be able to do the LaTeX-to-PDF conversion, a LaTeX environment must be 
available on the system (see Appendix 1 for points on how to install these tools). The nbconvert application 
can do both the notebook-to-LaTeX and the LaTeX-to-PDF conversions in one go, using the --to pdf flag 
instead of  --to latex:

$ ipython nbconvert Notebook.ipynb --to pdf

The style of the resulting document can be selected by specifying a template using the --template 
name flag, where built-in templates include base, article and report. (these templates can be found in 
the IPython/nbconvert/templates/latex directory where IPython is installed). By extending one of 
the existing templates,10 it is easy to customize the appearance for the resulting document. For example, 
in LaTeX it is common to include additional information about the document that is not available in 
IPython notebooks, such as a document title (if different from the notebook file name) and the author of 
the document. This information can be added to a LaTeX document that is generated by the nbconvert 
application by creating a custom template. The following template extends the built-in template article, 
and overrides the title and author blocks to accomplish this:

((*- extends 'article.tplx' -*))

((* block title *)) \title{Document title} ((* endblock title *))
((* block author *)) \author{Author's Name} ((* endblock author *))

Assuming the this template is stored in a file called custom_template.tplx, the following command can 
be used to convert a notebook to PDF using this modified template:

$ ipython nbconvert Notebook.ipynb --to pdf --template custom_template.tplx

The result is LaTeX and PDF documents where the title and the author fields are set as requested in the 
custom template.

10The IPython nbconvert application uses the jinja2 template engine. See http://jinja.pocoo.org for more  
information and documentation its the syntax.

http://nbviewer.ipython.org
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://jinja.pocoo.org
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Python
An IPython notebook in its JSON-based file format can be converted to pure Python code using the 
nbconvert application and the python format:

$ ipython nbconvert Notebook.ipynb --to python

This generates the file Notebook.py, which only contains executable Python code (or if IPython 
extensions were used in the notebook, a file that is executable with ipython). The non-code content of the 
notebook is also included in the resulting Python code file in the form of comments that do not prevent the 
file from being interpreted by the Python interpreter. Converting a notebook to pure Python code is useful, 
for example, when using the IPython notebooks to develop functions and classes that need to be imported in 
other Python files or notebooks.

Spyder: An Integrated Development Environment
An integrated development environment is an enhanced text editor that also provides features such as 
integrated code execution, documentation and debugging. Many free and commercial IDE environments 
have good support for Python-based projects. Spyder11 is an excellent free IDE that is particularly well suited 
for Python programming for computing and data analysis. The rest of this section focus on Spyder and 
explores its features in more detail. However, there are also many other suitable IDEs. For example, Eclipse12 
is a popular and powerful multi-language IDE, and the PyDev13 extension to Eclipse provides a good Python 
environment. PyCharm14 is another powerful Python IDE that has gained a significant popularity among 
Python developers recently. For readers with previous experience with any of these tools, they could be a 
productive and familiar environment also for computional work.

However, the Spyder IDE was specifically created for Python programming, and in particular for 
scientific computing with Python. As such it has features that are particularly useful for interactive and 
exploratory computing: most notably, integration with the IPython console directly in the IDE. The Spyder 
user-interface consists of several optional panes, which in turn can be arranged in a nearly arbitrary manner 
within the IDE application. The most important panes are:

•	 Source code editor;

•	 Consoles for the Python and the IPython interpreters, and the system shell;

•	 Object inspector, for showing documentation for Python objects;

•	 Variable explorer;

•	 File explorer;

•	 Command history;

•	 Profiler.

11http://code.google.com/p/spyderlib.
12http://www.eclipse.org.
13http://pydev.org.
14http://www.jetbrains.com/pycharm.

http://code.google.com/p/spyderlib
http://www.eclipse.org
http://pydev.org
http://www.jetbrains.com/pycharm
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Each pane can be configured to be shown or hidden, depending on the user’s preferences and needs, 
using the “View – Panes” menu option. Furthermore, panes can be organized together in tabbed groups. In 
the default layout three pane groups are displayed. The left pane group contains the source code editor. The 
top-right pane group contains the variable explorer, the file explorer, and the object inspector. The bottom 
right pane group contains Python and IPython consoles.

Running the command spyder at the shell prompt launches the Spyder IDE. See Figure 1-6 for a 
screenshot of the default layout of the Spyder application. The code editor is shown in the left panel, the top-
right panel shows the object inspector, and the botton right panel shows an IPython console.

Source Code Editor
The source code editor in Spyder supports code highlighting, intelligent autocompletion, working with 
multiple open files simultaneously, parenthesis matching, indentation guidance, and many other features 
that one would expect from a modern source code editor. The added benefit from using an IDE is that 
code in the editor can be run – as a whole (shortcut F5) or a selection (shortcut F9) – in attached Python or 
IPython consoles with persistent sessions between successive runs.

In addition, the Spyder editor has very useful support for static code checking with pylint,15 pyflakes,16 and 
pep8,17 which are external tools that analyze Python source code and reports errors such as undefined symbols, 
syntax errors, coding-style violations, and more. Such warnings and errors are shown on a line-by-line basis 

Figure 1-6.  A screenshot of the Spyder IDE application

15http://www.pylint.org.
16http://github.com/pyflakes/pyflakes.
17http://pep8.readthedocs.org.

http://www.pylint.org
http://github.com/pyflakes/pyflakes
http://pep8.readthedocs.org
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as a yellow triangle with an exclamation mark in the left margin of the editor, next to the line number. Static 
code checking is extremely useful in Python programming. Since Python is an interpreted and lazily evaluated 
language, simple bugs like undefined symbols may not be discovered until the offending code line is reached 
at runtime, and for rarely used code paths sometimes such bugs can be very hard to discover. Real-time static 
code checking and coding-style checks in the Spyder editor can be activated and deactivated in the “Editor” 
section of the preference window (Python – Preferences, in the menu on OS X, and Tools – Preferences on 
Linux and Windows). In the Editor section, I recommend checking the “Code analysis” and “Style analysis” 
boxes in the “Code Introspection/Analysis” tab.

■■ Tip   The Python language is versatile, and equivalent Python source code can be written in a vast variety 
of styles and manners. However, a Python coding-style standard, PEP8, has been put forward to encourage 
a uniform appearance of Python code. I strongly recommend studying the PEP8 coding-style standard, and 
complying to it in your code. The PEP8 is described at http://www.python.org/dev/peps/pep-0008.

Consoles in Spyder
The integrated Python and IPython consoles can be used to execute a file that is being edited in the text 
editor window, or for running interactively typed Python code. When executing Python source code files 
from the editor, the namespace variables created in the script are retained in the IPython or Python session 
in the console. This is an important feature that makes Spyder an interactive computing environment, in 
addition to a traditional IDE application, since it allows exploring the values of variables after a script has 
finished executing. Spyder supports having multiple Python and IPython consoles opened simultaneously, 
and, for example, a new IPython console can be launched through the “Consoles – Open an IPython 
console” menu. When running a script from the editor, by pressing F5 or pressing the run button in the 
toolbar, the script is by default run in the most recently activated console. This allows maintaining different 
consoles, with independent namespaces, for different scripts or projects.

When possible, use the %reset command and the dreload function to clear a namespace and reloading 
updated modules. If that is insufficient it is possible to restart the IPython kernel corresponding to an 
IPython console, or the Python interpreter, via the drop-down menu for the top-right icon in the console 
panel. Finally, a handy feature is that IPython console sessions can be exported as an HTML file by right-
clicking on the console window and selecting “Save as HTML/XML” in the pop-up menu.

Object Inspector 
The object inspector is a great aid when writing Python code. It can display richly formatted documentation 
strings for objects defined in source code created with the editor and for symbols defined in library modules 
that are installed on the system. The object text field at the top of the object inspector panel can be used to 
type the name of a module, function, or class for which to display the documentation string. Modules and 
symbols do not need to be imported into the local namesace to be able to display their docstrings using 
the object inspector. The documentation for an object in the editor or the console can also be opened in 
the object inspector by selecting the object with the cursor and using the shortcut Ctrl-i (Cmd-i on OS X). 
It is even possible to automatically display docstrings for callable objects when its opening left parenthesis 
is typed. This gives an immediate reminder of the arguments and their order for the callable object, which 
can be a great productivity booster. To activate this feature, navigate to the “Object inspector” page in the 
“Preferences” window and check the boxes in the “Automatic connections” section.

http://www.python.org/dev/peps/pep-0008
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Summary
In this chapter we introduced the Python environment for scientific and technical computing. This 
environment is in fact an entire ecosystem of libraries and tools for computing, which includes not only 
Python software, but everything from low-level number crunching libraries up to graphical user-interface 
applications and web applications. In this multi-language ecosystem, Python is the language that ties it 
all together into a coherent and productive environment for computing. IPython is a core component of 
Python’s computing environment, and we briefly surveyed some of its most important features before 
covering the higher-level user environments provided by the IPython Notebook and the Spyder IDE. These 
are the tools in which the majority of exploratory and interactive computing is carried out. In the rest of 
this book we focus on computing using Python libraries, assuming that we are working within one of the 
environments provided by IPython, the IPython Notebook, or Spyder.

Further Reading
The IPython Notebook is a particularly rich platform for interactive computing, and it is also a very actively 
developed software. One of the most recent developments within the IPython Notebook is its widget system, 
which are user-interface components that can be used to create interactive interfaces within the browser 
that is displaying the Notebook. In this book we do not use IPython widgets, but it is a very interesting and 
rapidly developing part of the IPython project, and I do recommend exploring their potential applications 
for interactive computing. The IPython Notebook widgets, and many other parts of IPython, is documented 
through examples in IPython Notebook form that are available here: http://nbviewer.ipython.org/
github/ipython/ipython/tree/3.x/examples/. There are also two interesting books on this topic (Rossant, 
Learning IPython for Interactive Computing and Data Visualization, 2013; and Rossant, IPython Interactive 
Computing and Visualization Cookbook, 2014) that I highly recommend.
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Chapter 2

Vectors, Matrices, and 
Multidimensional Arrays

Vectors, matrices, and arrays of higher dimensions are essential tools in numerical computing. When a 
computation must be repeated for a set of input values, it is natural and advantageous to represent the 
data as arrays and the computation in terms of array operations. Computations that are formulated this 
way are said to be vectorized.1 Vectorized computing eliminates the need for many explicit loops over the 
array elements by applying batch operations on the array data. The result is concise and more maintainable 
code, and it enables delegating the implementation of (for example, elementwise) array operations to more 
efficient low-level libraries. Vectorized computations can therefore be significantly faster than sequential 
element-by-element computations. This is particularly important in an interpreted language such as Python, 
where looping over arrays element-by-element entails a significant performance overhead.

In Python's scientific computing environment, efficient data structures for working with arrays are 
provided by the NumPy library. The core of NumPy is implemented in C, and provide efficient functions 
for manipulating and processing arrays. At a first glance, NumPy arrays bear some resemblance to Python’s 
list data structure. But an important difference is that while Python lists are generic containers of objects, 
NumPy arrays are homogenous and typed arrays of fixed size. Homogenous means that all elements in the 
array have the same data type. Fixed size means that an array cannot be resized (without creating a new 
array). For these and other reasons, operations and functions acting on NumPy arrays can be much more 
efficient than operations on Python lists. In addition to the data structures for arrays, NumPy also provides 
a large collection of basic operators and functions that act on these data structures, as well as submodules 
with higher-level algorithms such as linear algebra and fast Fourier transformations.

In this chapter we first look at the basic NumPy data structure for arrays and various methods to 
create such NumPy arrays. Next we look at operations for manipulating arrays and for doing computations 
with arrays. The multidimensional data array provided by NumPy is a foundation for nearly all numerical 
libraries for Python. Spending time on getting familiar with NumPy and develop an understanding for how 
NumPy works is therefore important.

1Many modern processors provide instructions that operate on arrays. These are also known as vectorized operations, but 
here vectorized refers to high-level array-based operations, regardless of how they are implemented at the processor level.

© Robert Johansson 2015 
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■■ NumPy T he NumPy library provides data structures for representing a rich variety of arrays, and  
methods and functions for operating on such arrays. NumPy provides the numerical back end for nearly every 
scientific or technical library for Python. It is therefore a very important part of the scientific Python ecosystem. 
At the time of writing, the latest version of NumPy is 1.9.2. More information about NumPy is available at 
http://www.numpy.org.

Importing NumPy
In order to use the NumPy library, we need to import it in our program. By convention, the numpy module 
imported under the alias np, like so:

In [1]: import numpy as np

After this, we can access functions and classes in the numpy module using the np namespace. 
Throughout this book, we assume that the NumPy module is imported in this way.

The NumPy Array Object
The core of the NumPy library is the data structures for representing multidimensional arrays of 
homogeneous data. Homogeneous refers to that all elements in an array have the same data type.2 The main 
data structure for multidimensional arrays in NumPy is the ndarray class. In addition to the data stored in the 
array, this data structure also contains important metadata about the array, such as its shape, size, data type, 
and other attributes. See Table 2-1 for a more detailed description of these attributes. A full list of attributes 
with descriptions is available in the ndarray docstring, which can be accessed by calling help(np.ndarray) 
in the Python interpreter or np.ndarray? in an IPython console.

Table 2-1.  Basic attributes of the ndarray class

Attribute Description

shape A tuple that contains the number of elements (i.e., the length) for each dimension (axis) 
of the array.

size The total number of elements in the array.

ndim Number of dimensions (axes).

nbytes Number of bytes used to store the data.

dtype The data type of the elements in the array.

2This does not necessarily need to be the case for Python lists, which therefore can be heterogeneous.

http://www.numpy.org/
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The following example demonstrates how these attributes are accessed for an instance data of the  
class ndarray:

In [2]: data = np.array([[1, 2], [3, 4], [5, 6]])
In [3]: type(data)
Out[3]: <class 'numpy.ndarray'>
In [4]: data
Out[4]: array([[1, 2],
               [3, 4],
               [5, 6]])
In [5]: data.ndim
Out[5]: 2
In [6]: data.shape
Out[6]: (3, 2)
In [7]: data.size
Out[7]: 6
In [8]: data.dtype
Out[8]: dtype('int64')
In [9]: data.nbytes
Out[9]: 48

Here the ndarray instance data is created from a nested Python list using the function np.array. The 
following section introduces more ways to create ndarray instances from data and from rules of various 
kinds. In the example above, the data is a two-dimensional array (data.ndim) of shape 3 2´ , as indicated by 
data.shape, and in total it contains 6 elements (data.size) of type int64 (data.dtype), which amounts to a 
total size of 48 bytes (data.nbytes).

Data Types
In the previous section we encountered the dtype attribute of the ndarray object. This attribute describes 
the data type of each element in the array (remember, since NumPy arrays are homogeneous, all elements 
have the same data type). The basic numerical data types supported in NumPy are shown in Table 2-2.  
Non-numerical data types, such as strings, objects, and user-defined compound types are also supported.

Table 2-2.  Basic numerical data types available in NumPy

dtype Variants Description

int int8, int16, int32, int64 Integers.

uint uint8, uint16, uint32, uint64 Unsigned (non-negative) integers.

bool bool Boolean (True or False).

float float16, float32, float64, float128 Floating-point numbers.

complex complex64, complex128, complex256 Complex-valued floating-point numbers.

For numerical work the most important data types are int (for integers), float (for floating-point 
numbers) and complex (complex floating-point numbers). Each of these data types come in different sizes, 
such as int32 for 32-bit integers, int64 for 64-bit integers, etc. This offers more fine-grained control over 
data types than the standard Python types, which only provides one type for integers and one type for 
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floats. It is usually not necessary to explicitly choose the bit size of the data type to work with, but it is often 
necessary to explicitly choose whether to use arrays of integers, floating-point numbers, or complex values.

The following example demonstrates how to use the dtype attribute to generate arrays of integer-, float-, 
and complex-valued elements:

In [10]: np.array([1, 2, 3], dtype=np.int)
Out[10]: array([1, 2, 3])
In [11]: np.array([1, 2, 3], dtype=np.float)
Out[11]: array([ 1.,  2.,  3.])
In [12]: np.array([1, 2, 3], dtype=np.complex)
Out[12]: array([ 1.+0.j,  2.+0.j,  3.+0.j])

Once a NumPy array is created its dtype cannot be changed, other than by creating a new copy with 
type-casted array values. Typecasting an array is straightforward, and can be done using either the np.array 
function:

In [13]: data = np.array([1, 2, 3], dtype=np.float)
In [14]: data
Out[14]: array([ 1.,  2.,  3.])
In [15]: data.dtype
Out[15]: dtype('float64')
In [16]: data = np.array(data, dtype=np.int)
In [17]: data.dtype
Out[17]: dtype('int64')
In [18]: data
Out[18]: array([1, 2, 3])

or by using the astype attribute of the ndarray class:

In [19]: data = np.array([1, 2, 3], dtype=np.float)
In [20]: data
Out[20]: array([ 1.,  2.,  3.])
In [21]: data.astype(np.int)
Out[21]: array([1, 2, 3])

When computing with NumPy arrays, the data type might get promoted from one type to another, if 
required by the operation. For example, adding float-valued and complex-valued arrays, the resulting array 
is a complex-valued array:

In [22]: d1 = np.array([1, 2, 3], dtype=float)
In [23]: d2 = np.array([1, 2, 3], dtype=complex)
In [24]: d1 + d2
Out[24]: array([ 2.+0.j,  4.+0.j,  6.+0.j])
In [25]: (d1 + d2).dtype
Out[25]: dtype('complex128')
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In some cases, depending on the application and its requirements, it is essential to create arrays  
with data type appropriately set to, for example, int or complex. The default type is float. Consider the 
following example:

In [26]: np.sqrt(np.array([-1, 0, 1]))
Out[26]: RuntimeWarning: invalid value encountered in sqrt
         array([ nan,   0.,   1.])
In [27]: np.sqrt(np.array([-1, 0, 1], dtype=complex))
Out[27]: array([ 0.+1.j,  0.+0.j,  1.+0.j])

Here, using the np.sqrt function to compute the square root of each element in an array gives different 
results depending on the data type of the array. Only when the data type of the array is complex is the square 
root of -1 giving in the imaginary unit (denoted as 1j in Python).

Real and Imaginary Parts
Regardless of the value of the dtype attribute, all NumPy array instances have the attributes real and imag 
for extracting the real and imaginary parts of the array, respectively:

In [28]: data = np.array([1, 2, 3], dtype=complex)
In [29]: data
Out[29]: array([ 1.+0.j,  2.+0.j,  3.+0.j])
In [30]: data.real
Out[30]: array([ 1.,  2.,  3.])
In [31]: data.imag
Out[31]: array([ 0.,  0.,  0.])

The same functionality is also provided by the functions np.real and np.imag, which also can be 
applied to other array-like objects, such as Python lists. Note that Python itself has support of complex 
numbers, and the imag and real attributes are also available for Python scalars.

Order of Array Data in Memory
Multidimensional arrays are stored as contiguous data in memory. There is a freedom of choice in how 
to arrange the array elements in this memory segment. Consider the case of a two-dimensional array, 
containing rows and columns: One possible way to store this array as a consecutive sequence of values  
is to store the rows after each other, and another equally valid approach is to store the columns one after 
another. The former is called row-major format and the latter is column-major format. Whether to use  
row-major or column-major is a matter of conventions, and row-major format is used for example in the  
C programming language, and Fortran uses the column-major format. A NumPy array can be specified to 
be stored in row-major format, using the keyword argument order='C', and column-major format, using 
the keyword argument order='F', when the array is created or reshaped. The default format is row-major. 
The 'C' or 'F' ordering of NumPy array is particularly relevant when NumPy arrays are used in interfacing 
software written in C and Fortran, which is frequently required when working with numerical computing 
with Python.

Row-major and column-major ordering are special cases of strategies for mapping the index used to 
address an element, to the offset for the element in the array’s memory segment. In general, the NumPy 
array attribute ndarray.strides defines exactly how this mapping is done. The strides attribute is a tuple 
of the same length as the number of axes (dimensions) of the array. Each value in strides is the factor by 
which the index for the corresponding axis is multiplied when calculating the memory offset (in bytes) for a 
given index expression.
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For example, consider a C-order array A with shape (2, 3), which corresponds to a two-dimensional 
array with two and three elements along the first and the second dimension, respectively. If the data type is 
int32, then each element uses 4 bytes, and the total memory buffer for the array therefore uses 2 3 4 24´ ´ =  
bytes. The strides attribute of this array is therefore 4 3 4 1 12 4´ ´( ) = ( ), , , because each increment of m in 
A[n, m] increases the memory offset with 1 item, or 4 bytes. Likewise, each increment of n increases the 
memory offset with 3 items, or 12 bytes (because the second dimension of the array has length 3). If, on the 
other hand, the same array were stored in 'F' order, the strides would instead be (4, 8). Using strides to 
describe the mapping of array index to array memory offset is clever because it can be used to describe 
different mapping strategies, and many common operations on arrays, such as for example the transpose, 
can be implemented by simply changing the strides attribute, which can eliminate the need for moving 
data around in the memory. Operations that only require changing the strides attribute result in new 
ndarray objects that refer to the same data as the original array. Such arrays are called views. For efficiency, 
NumPy strives to create views rather than copies of arrays when applying operations on arrays. This is 
generally a good thing, but it is important to be aware of that some array operations results in views rather 
than new independent arrays, because modifying their data also modifies the data of the original array. Later 
in this chapter we will see several examples of this behavior.

Creating Arrays
In the previous section, we looked at NumPy's basic data structure for representing arrays, the ndarray class, 
and we looked at basic attributes of this class. In this section we focus on functions from the NumPy library 
that can be used to create ndarray instances.

Arrays can be generated in a number of ways, depending their properties and the applications they are 
used for. For example, as we saw in the previous section, one way to initialize an ndarray instance is to use 
the np.array function on a Python list, which, for example, can be explicitly defined. However, this method 
is obviously limited to small arrays. In many situations it is necessary to generate arrays with elements 
that follow some given rule, such as filled with constant values, increasing integers, uniformly spaced 
numbers, random numbers, etc. In other cases we might need to create arrays from data stored in a file. The 
requirements are many and varied, and the NumPy library provides a comprehensive set of functions for 
generating arrays of various types. In this section we look in more detail at many of these functions. For a 
complete list, see the NumPy reference manual or the docstrings that is available by typing help(np) or using 
the autocompletion np.<TAB>. A summary of frequently used array-generating functions is given in Table 2-3.

Table 2-3.  Summary of NumPy functions for generating arrays

Function name Type of array

np.array Creates an array for which the elements are given by an array-like object, which, 
for example, can be a (nested) Python list, a tuple, an iterable sequence, or another 
ndarray instance.

np.zeros Creates an array – with the specified dimensions and data type – that is filled with zeros.

np.ones Creates an array – with the specified dimensions and data type – that is filled with ones.

np.diag Creates a diagonal array with specified values along the diagonal, and zeros elsewhere.

np.arange Creates an array with evenly spaced values between specified start, end, and 
increment values.

(continued)
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Arrays Created from Lists and Other Array-like Objects
Using the np.array function, NumPy arrays can be constructed from explicit Python lists, iterable 
expressions, and other array-like objects (such as other ndarray instances). For example, to create a 
one-dimensional array from a Python list, we simply pass the Python list as an argument to the np.array 
function: 

In [32]: np.array([1, 2, 3, 4])
Out[32]: array([ 1,  2,  3, 4])
In [33]: data.ndim
Out[33]: 1
In [34]: data.shape
Out[34]: (4,)

To create a two-dimensional array with the same data as in the previous example, we can use a nested 
Python list:

In [35]: np.array([[1, 2], [3, 4]])
Out[35]: array([[1, 2],
                [3, 4]])
In [36]: data.ndim
Out[36]: 2
In [37]: data.shape
Out[37]: (2, 2)

Function name Type of array

np.linspace Creates an array with evenly spaced values between specified start and end values, 
using a specified number of elements.

np.logspace Creates an array with values that are logarithmically spaced between the given start 
and end values.

np.meshgrid Generate coordinate matrices (and higher-dimensional coordinate arrays) from one-
dimensional coordinate vectors.

np.fromfunction Create an array and fill it with values specified by a given function, which is evaluated 
for each combination of indices for the given array size.

np.fromfile Create an array with the data from a binary (or text) file. NumPy also provides a 
corresponding function np.tofile with which NumPy arrays can be stored to disk, 
and later read back using np.fromfile.

np.genfromtxt, 
np.loadtxt

Creates an array from data read from a text file. For example, a comma-separated value 
(CSV) file. The function np.genfromtxt also supports data files with missing values.

np.random.rand Generates an array with random numbers that are uniformly distributed between 0 
and 1. Other types of distributions are also available in the np.random module.

Table 2-3.  (continued)
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Arrays Filled with Constant Values
The functions np.zeros and np.ones create and return arrays filled with zeros and ones, respectively. They 
take, as first argument, an integer or a tuple that describes the number of elements along each dimension of 
the array. For example, to create a 2 3´  array filled with zeros, and an array of length 4 filled with ones, we 
can use:

In [38]: np.zeros((2, 3))
Out[38]: array([[ 0.,  0.,  0.],
                [ 0.,  0.,  0.]])
In [39]: np.ones(4)
Out[39]: array([ 1.,  1.,  1., 1.])

Like other array-generating functions, the np.zeros and np.ones functions also accept an optional 
keyword argument that specifies the data type for the elements in the array. By default, the data type is 
float64, and it can be changed to the required type by explicitly specify the dtype argument.

In [40]: data = np.ones(4)
In [41]: data.dtype
Out[41]: dtype('float64')
In [42]: data = np.ones(4, dtype=np.int64)
In [43]: data.dtype
Out[43]: dtype('int64')

An array filled with an arbitrary constant value can be generated by first creating an array filled with 
ones, and then multiply the array with the desired fill value. However, NumPy also provides the function 
np.full that does exactly this in one step. The following two ways of constructing arrays with 10 elements, 
which are initialized to the numerical value 5.4 in this example, produces the same results, but using  
np.full is slightly more efficient since it avoids the multiplication.

In [44]: x1 = 5.4 * np.ones(10)
In [45]: x2 = np.full(10, 5.4)

An already created array can also be filled with constant values using the np.fill function, which takes 
an array and a value as arguments, and set all elements in the array to the given value. The following two 
methods to create an array therefore give the same results:

In [46]: x1 = np.empty(5)
In [47]: x1.fill(3.0)
In [48]: x1
Out[48]: array([ 3.,  3.,  3.,  3.,  3.])
In [49]: x2 = np.full(5, 3.0)
In [50]: x2
Out[50]: array([ 3.,  3.,  3.,  3.,  3.])

In this last example we also used the np.empty function, which generates an array with uninitialized 
values, of the given size. This function should only be used when the initialization of all elements can be 
guaranteed by other means, such as an explicit loop over the array elements or another explicit assignment. 
This function is described in more detail later in this chapter.
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Arrays Filled with Incremental Sequences
In numerical computing it is very common to require arrays with evenly spaced values between a start value 
and end value. NumPy provides two similar functions to create such arrays: np.arange and np.linspace. 
Both functions takes three arguments, where the first two arguments are the start and end values. The third 
argument of np.arange is the increment, while for np.linspace it is the total number of points in the array. 

For example, to generate arrays with values between 1 and 10, with increment 1, we could use either of 
the following:

In [51]: np.arange(0.0, 10, 1)
Out[51]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])
In [52]: np.linspace(0, 10, 11)
Out[52]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.,  10.])

However, note that np.arange does not include the end value (10), while by default np.linspace does 
(although this behavior can be changed using the optional endpoint keyword argument). Whether to use 
np.arange or np.linspace is mostly a matter of personal preference, but it is generally recommended to use 
np.linspace whenever the increment is a non-integer.

Arrays Filled with Logarithmic Sequences
The function np.logspace is similar to np.linspace, but the increments between the elements in the array 
are logarithmically distributed, and the first two arguments are the powers of the optional base keyword 
argument (which defaults to 10) for the start and end values. For example, to generate an array with 
logarithmically distributed values between 1 and 100, we can use:

In [53]: np.logspace(0, 2, 5)  # 5 data points between 10**0=1 to 10**2=100
Out[53]: array([ 1. , 3.16227766, 10. , 31.6227766 , 100.])

Mesh-grid Arrays
Multidimensional coordinate grids can be generated using the function np.meshgrid. Given two one-
dimensional coordinate arrays (that is, arrays containing a set of coordinates along a given dimension), we 
can generate two-dimensional coordinate arrays using the np.meshgrid function. An illustration of this is 
given in the following example:

In [54]: x = np.array([-1, 0, 1])
In [55]: y = np.array([-2, 0, 2])
In [56]: X, Y = np.meshgrid(x, y)
In [57]: X
Out[57]: array([[-1,  0,  1],
                [-1,  0,  1],
                [-1,  0,  1]])
In [58]: Y
Out[58]: array([[-2, -2, -2],
                [ 0,  0,  0],
                [ 2,  2,  2]])
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A common use-case of the two-dimensional coordinate arrays, like X and Y in this example, is to 
evaluate functions over two variables x and y. This can be used when plotting functions over two variables, 
as color-map plots and contour plots. For example, to evaluate the expression x y+( )2

 at all combinations of 
values from the x and y arrays above, we can use the two-dimensional coordinate arrays X and Y:

In [59]: Z = (X + Y) ** 2
In [60]: Z
Out[60]: array([[9, 4, 1],
                [1, 0, 1],
                [1, 4, 9]])

It is also possible to generate higher-dimensional coordinate arrays by passing more arrays as argument 
to the np.meshgrid function. Alternatively, the functions np.mgrid and np.ogrid can also be used to 
generate coordinate arrays, using a slightly different syntax based on indexing and slice objects. See their 
docstrings or the NumPy documentation for details.

Creating Uninitialized Arrays
To create an array of specific size and data type, but without initializing the elements in the array to any 
particular values, we can use the function np.empty. The advantage of using this function, for example, 
instead of np.zeros, which creates an array initialized with zero-valued elements, is that we can avoid the 
initiation step. If all elements are guaranteed to be initialized later in the code, this can save a little bit of 
time, especially when working with large arrays. To illustrate the use of the np.empty function, consider the 
following example:

In [61]: np.empty(3, dtype=np.float)
Out[61]: array([  1.28822975e-231,   1.28822975e-231,   2.13677905e-314])

Here we generated a new array with three elements of type float. There is no guarantee that the 
elements have any particular values, and the actual values will vary from time to time. For this reason is it 
important that all values are explicitly assigned before the array is used, otherwise unpredictable errors are 
likely to arise. Often the np.zeros function is a safer alternative to np.empty, and if the performance gain is 
not essential it is better to use np.zeros, to minimize the likelihood of subtle and hard to reproduce bugs 
due to uninitialized values in the array returned by np.empty.

Creating Arrays with Properties of Other Arrays
It is often necessary to create new arrays that share properties, such as shape and data type, with another 
array. NumPy provides a family of functions for this purpose: np.ones_like, np.zeros_like, np.full_like, 
and np.empty_like. A typical use-case is a function that takes arrays of unspecified type and size as 
arguments, and requires working arrays of the same size and type. For example, a boilerplate example of this 
situation is given in the following function:

def f(x):
    y = np.ones_like(x)
    # compute with x and y
    return y

At the first line of the body of this function, a new array y is created using np.ones_like, which results 
in an array of the same size and data type as x, and filled with ones.
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Creating Matrix Arrays
Matrices, or two-dimensional arrays, are an important case for numerical computing. NumPy provides 
functions for generating commonly used matrices. In particular, the function np.identity generates a 
square matrix with ones on the diagonal and zeros elsewhere:

In [62]: np.identity(4)
Out[62]: array([[ 1.,  0.,  0.,  0.],
                [ 0.,  1.,  0.,  0.],
                [ 0.,  0.,  1.,  0.],
                [ 0.,  0.,  0.,  1.]])

The similar function numpy.eye generates matrices with ones on a diagonal (optionally offset), as illustrated 
in the following example, which produces matrices with nonzero diagonals above and below the diagonal, 
respectively:

In [63]: np.eye(3, k=1)
Out[63]: array([[ 0.,  1.,  0.],
                [ 0.,  0.,  1.],
                [ 0.,  0.,  0.]])

In [64]: np.eye(3, k=-1)
Out[64]: array([[ 0.,  0.,  0.],
                [ 1.,  0.,  0.],
                [ 0.,  1.,  0.]])

To construct a matrix with an arbitrary one-dimensional array on the diagonal we can use the np.diag 
function (which also takes the optional keyword argument k to specify an offset from the diagonal),  
as demonstrated here:

In [65]: np.diag(np.arange(0, 20, 5))
Out[65]: array([[0,  0,  0,  0],
                [0,  5,  0,  0],
                [0,  0, 10,  0],
                [0,  0,  0, 15]])

Here we gave a third argument to the np.arange function, which specifies the step size in the 
enumeration of elements in the array returned by the function. The resulting array therefore contains the 
values [0, 5, 10, 15], which are inserted on the diagonal of a two-dimensional matrix by the np.diag function.

Indexing and Slicing
Elements and subarrays of NumPy arrays are accessed using the standard square bracket notation that is 
also used with for example Python lists. Within the square bracket, a variety of different index formats are 
used for different types of element selection. In general, the expression within the bracket is a tuple, where 
each item in the tuple is a specification of which elements to select from each axis (dimension) of the array.

One-dimensional Arrays
Along a single axis, integers are used to select single elements, and so-called slices are used to select ranges 
and sequences of elements. Positive integers are used to index elements from the beginning of the array 
(index starts at 0), and negative integers are used to index elements from the end of the array, where the last 
element is indexed with -1, the second-to-last element with -2, and so on.
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Slices are specified using the : notation that is also used for Python lists. In this notation, a range of 
elements can be selected using an expressions like m:n, which selects elements starting with m and ending 
with n −1 (note that the nth element is not included). The slice m:n can also be written more explicitly as 
m:n:1, where the number 1 specifies that every element between m and n should be selected. To select every 
second element between m and n, use m:n:2, and to select every p element, use m:n:p, and so on. If p is 
negative, elements are returned in reversed order starting from m to n +1 (which implies that m has be larger 
than n in this case). See Table 2-4 for a summary of indexing and slicing operations for NumPy arrays.

Table 2-4.  Examples of array indexing and slicing expressions

Expression Description

a[m] Select element at index m, where m is an integer (start counting form 0).

a[-m] Select the mth element from the end of the list, where m is an integer. The last 
element in the list is addressed as -1, the second-to-last element as -2, and so on.

a[m:n] Select elements with index starting at m and ending at n −1 (m and n are integers).

a[:] or a[0:-1] Select all elements in the given axis.

a[:n] Select elements starting with index 0 and going up to index n −1 (integer).

a[m:] or a[m:-1] Select elements starting with index m (integer) and going up to the last element in 
the array.

a[m:n:p] Select elements with index m through n (exclusive), with increment p.

a[::-1] Select all the elements, in reverse order.

The following examples demonstrate index and slicing operations for NumPy arrays. To begin with, 
consider an array with a single axis (dimension) that contains a sequence of integers between 0 and 10:

In [66]: a = np.arange(0, 11)
In [67]: a
Out[67]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10])

Note that the end value 11 is not included in the array. To select specific elements from this array, for 
example the first, the last, and the 5th element we can use integer indexing:

In [68]: a[0]  # the first element
Out[68]: 0
In [69]: a[-1] # the last element
Out[69]: 10
In [70]: a[4]  # the fifth element, at index 4
Out[70]: 4

To select a range of elements, say from the second to the second-to-last element, selecting every 
element and every second element, respectively, we can use index slices:

In [71]: a[1:-1]
Out[71]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])
In [72]: a[1:-1:2]
Out[72]: array([1, 3, 5, 7, 9])
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To select the first five and the last five elements from an array, we can use the slices :5 and -5:, since if m 
or n is omitted in m:n, the defaults are the beginning and the end of the array, respectively.

In [73]: a[:5]
Out[73]: array([0, 1, 2, 3, 4])
In [74]: a[-5:]
Out[74]: array([6, 7, 8, 9, 10])

To reverse the array and select only every second value, we can use the slice ::-2, as shown in the 
following example:

In [75]: a[::-2]
Out[75]: array([10,  8,  6,  4,  2,  0])

Multidimensional Arrays
With multidimensional arrays, element selections like those introduced in the previous section can be 
applied on each axis (dimension). The result is a reduced array where each element matches the given 
selection rules. As a specific example, consider the following two-dimensional array:

In [76]: f = lambda m, n: n + 10 * m
In [77]: A = np.fromfunction(f, (6, 6), dtype=int)
In [78]: A
Out[78]: array([[ 0,  1,  2,  3,  4,  5],
                [10, 11, 12, 13, 14, 15],
                [20, 21, 22, 23, 24, 25],
                [30, 31, 32, 33, 34, 35],
                [40, 41, 42, 43, 44, 45],
                [50, 51, 52, 53, 54, 55]])

We can extract columns and rows from this two-dimensional array using a combination of slice and 
integer indexing:

In [79]: A[:, 1]  # the second column
Out[79]: array([ 1, 11, 21, 31, 41, 51])
In [80]: A[1, :]  # the second row
Out[80]: array([10, 11, 12, 13, 14, 15])

By applying a slice on each of the array axes, we can extract subarrays (submatrices in this two-
dimensional example):

In [81]: A[:3, :3]  # upper half diagonal block matrix
Out[81]: array([[ 0,  1,  2],
                [10, 11, 12],
                [20, 21, 22]])
In [82]: A[3:, :3]  # lower left off-diagonal block matrix
Out[82]: array([[30, 31, 32],
                [40, 41, 42],
                [50, 51, 52]])
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With element spacing other that 1, submatrices made up from nonconsecutive elements can be extracted:

In [83]: A[::2, ::2]  # every second element starting from 0, 0
Out[83]: array([[ 0,  2,  4],
                [20, 22, 24],
                [40, 42, 44]])
In [84]: A[1::2, 1::3]  # every second and third element starting from 1, 1
Out[84]: array([[11, 14],
                [31, 34],
                [51, 54]])

This ability to extract subsets of data from a multidimensional array is a simple but very powerful 
feature that is useful in many data processing applications.

Views
Subarrays that are extracted from arrays using slice operations are alternative views of the same underlying 
array data. That is, they are arrays that refer to the same data in memory as the original array, but with a 
different strides configuration. When elements in a view are assigned new values, the values of the original 
array are therefore also updated. For example,

In [85]: B = A[1:5, 1:5]
In [86]: B
Out[86]: array([[11, 12, 13, 14],
                [21, 22, 23, 24],
                [31, 32, 33, 34],
                [41, 42, 43, 44]])
In [87]: B[:, :] = 0
In [88]: A
Out[88]: array([[ 0,  1,  2,  3,  4,  5],
                [10,  0,  0,  0,  0, 15],
                [20,  0,  0,  0,  0, 25],
                [30,  0,  0,  0,  0, 35],
                [40,  0,  0,  0,  0, 45],
                [50, 51, 52, 53, 54, 55]])

Here, assigning new values to the elements in an array B, which is created from the array A, also 
modifies the values in A (since both arrays refer to the same data in the memory). The fact that extracting 
subarrays results in views rather than new independent arrays eliminates the need for copying data and 
improves performance. When a copy rather than a view is needed, the view can be copied explicitly by using 
the copy method of the ndarray instance.

In [89]: C = B[1:3, 1:3].copy()
In [90]: C
Out[90]: array([[0, 0],
                [0, 0]])
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In [91]: C[:, :] = 1  # this does not affect B since C is a copy of the view B[1:3, 1:3]
In [92]: C
Out[92]: array([[1, 1],
                [1, 1]])
In [93]: B
Out[93]: array([[0, 0, 0, 0],
                [0, 0, 0, 0],
                [0, 0, 0, 0],
                [0, 0, 0, 0]])

In addition to the copy attribute of the ndarray class, an array can also be copied using the function  
np.copy, or, equivalently, using the np.array function with the keyword argument copy=True.

Fancy Indexing and Boolean-valued Indexing
In the previous section we looked at indexing NumPy arrays with integers and slices, to extract individual 
elements or ranges of elements. NumPy provides another convenient method to index arrays, called fancy 
indexing. With fancy indexing, an array can be indexed with another NumPy array, a Python list, or a 
sequence of integers, whose values select elements in the indexed array. To clarify this concept, consider the 
following example: we first create a NumPy array with 11 floating-point numbers, and then index the array 
with another NumPy array (or Python list), to extract element number 0, 2 and 4 from the original array:

In [94]: A = np.linspace(0, 1, 11)
Out[94]: array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1. ])
In [95]: A[np.array([0, 2, 4])]
Out[95]: array([ 0. ,  0.2,  0.4])
In [96]: A[[0, 2, 4]]  # The same thing can be accomplished by indexing with a Python list
Out[96]: array([ 0. ,  0.2,  0.4])

This method of indexing can be used along each axis (dimension) of a multidimensional NumPy array. 
It requires that the elements in the array or list used for indexing are integers.

Another variant of indexing NumPy arrays with another NumPy array uses Boolean-valued index arrays. 
In this case, each element (with values True or False) indicates whether or not to select the element from 
the array with the corresponding index. That is, if element n in the indexing array of Boolean values is True, 
then element n is selected from the indexed array. If the value is False, then element n is not selected. This 
index method is handy when filtering out elements from an array. For example, to select all the elements 
from the array A (as defined above) that exceed the value 0.5, we can use the following combination of the 
comparison operator applied to a NumPy array, and array indexing using a Boolean-valued array:

In [97]: A > 0.5
Out[97]: array([False, False, False, False, False, False, True, True, True, True, True],
         dtype=bool)
In [98]: A[A > 0.5]
Out[98]: array([ 0.6,  0.7,  0.8,  0.9,  1. ])
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Unlike arrays created by using slices, the arrays returned using fancy indexing and Boolean-valued 
indexing are not views, but rather new independent arrays. Nonetheless, it is possible to assign values to 
elements selected using fancy indexing:

In [99]: A = np.arange(10)
In [100]: indices = [2, 4, 6]
In [101]: B = A[indices]
In [102]: B[0] = -1  # this does not affect A
In [103]: A
Out[103]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [104]: A[indices] = -1
In [105]: A
Out[105]: array([ 0,  1, -1,  3, -1,  5, -1,  7,  8,  9])

and likewise for Boolean-valued indexing:

In [106]: A = np.arange(10)
In [107]: B = A[A > 5]
In [108]: B[0] = -1  # this does not affect A
In [109]: A
Out[109]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [110]: A[A > 5] = -1
In [111]: A
Out[111]: array([ 0,  1,  2,  3,  4,  5, -1, -1, -1, -1])

A visual summary of different methods to index NumPy arrays is given in Figure 2-1. Note that each type 
of indexing we have discussed here can be independently applied to each dimension of an array.

Reshaping and Resizing
When working with data in array form, it is often useful to rearrange arrays and alter the way they are 
interpreted. For example, an N N´  matrix array could be rearranged into a vector of length N 2, or a set of 
one-dimensional arrays could be concatenated together, or stacked next to each other to form a matrix. 
NumPy provides a rich set of functions of this type of manipulation. See the Table 2-5 for a summary of a 
selection of these functions. 
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Figure 2-1.  Visual summary of indexing methods for NumPy arrays. These diagrams represent NumPy arrays 
of shape (4, 4), and the highlighted elements are those that are selected using the indexing expression shown 
above the block representations of the arrays
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Reshaping an array does not require modifying the underlying array data; it only changes in how the 
data is interpreted, by redefining the array’s strides attribute. An example of this type of operation is a 2 2´  
array (matrix) that is reinterpreted as a 1 4´  array (vector). In NumPy, the function np.reshape, or the 
ndarray class method reshape, can be used to reconfigure how the underlying data is interpreted. It takes an 
array and the new shape of the array as arguments:

In [112]: data = np.array([[1, 2], [3, 4]])
In [113]: np.reshape(data, (1, 4))
Out[113]: array([[1, 2, 3, 4]])
In [114]: data.reshape(4)
Out[114]: array([1, 2, 3, 4])

It is necessary that the requested new shape of the array match the number of elements in the original 
size. However, the number axes (dimensions) does not need to be conserved, as illustrated in the previous 
example, where in the first case the new array has dimension 2 and shape (1,4), while in the second case 
the new array has dimension 1 and shape (4,). This example also demonstrates two different ways of 
invoking the reshape operation: using the function np.reshape and the ndarray method reshape. Note that 

Table 2-5.  Summary of NumPy functions for manipulating the dimensions and the shape of arrays

Function / method Description

np.reshape,
np.ndarray.reshape

Reshape an N-dimensional array. The total number of elements must remain 
the same.

np.ndarray.flatten Create a copy of an N-dimensional array and reinterpret it as a one-
dimensional array (that is, all dimensions are collapsed into one).

np.ravel,
np.ndarray.ravel

Create a view (if possible, otherwise a copy) of an N-dimensional array in 
which it is interpreted as a one-dimensional array.

np.squeeze Remove axes with length 1.

np.expand_dims,  
np.newaxis

Adds a new axis (dimension) of length 1 to an array, where np.newaxis is used 
with array indexing.

np.transpose,
np.ndarray.transpose, 
np.ndarray.T

Transpose the array. The transpose operation corresponds to reversing  
(or more generally, permuting) the axes of the array.

np.hstack Stack a list of arrays horizontally (along axis 1): For example, given a list of 
column vectors, append the columns to form a matrix.

np.vstack Stack a list of arrays vertically (along axis 0): For example, given a list of row 
vectors, append the rows to form a matrix.

np.dstack Stack arrays depth-wise (along axis 2).

np.concatenate Create a new array by appending arrays after each other, along a given axis.

np.resize Resize an array. Creates a new copy of the original array, with the requested 
size. If necessary, the orignal array will repeated to fill up the new array.

np.append Append an element to an array. Creates a new copy of the array.

np.insert Insert a new element at a given position. Creates a new copy of the array.

np.delete Delete an element at a given position. Creates a new copy of the array.



Chapter 2 ■ Vectors, Matrices, and Multidimensional Arrays

43

reshaping an array produce a view of the array, and if an independent copy of the array is needed the view 
has to be copied explicitly (for example using np.copy).

The np.ravel (and its corresponding ndarray method) is a special case of reshape, which collapses all 
dimensions of an array and returns a flattened one-dimensional array with length that corresponds to the 
total number of elements in the original array. The ndarray method flatten perform the same function, but 
returns a copy instead of a view.

In [115]: data = np.array([[1, 2], [3, 4]])
In [116]: data
Out[116]: array([[1, 2],
                 [3, 4]])
In [117]: data.flatten()
Out[117]: array([ 1,  2,  3,  4])
In [118]: data.flatten().shape
Out[118]: (4,)

While np.ravel and np.flatten collapse the axes of an array into a one-dimensional array, it is also 
possible to introduce new axes into an array, either by using np.reshape, or when adding new empty axes, 
using indexing notation and the np.newaxis keyword at the place of a new axis. In the following example 
the array data has one axis, so it should normally be indexed with tuple with one element. However, if it is 
indexed with a tuple with more than one element, and if the extra indices in the tuple have the value  
np.newaxis, then corresponding new axes are added:

In [119]: data = np.arange(0, 5)
In [120]: column = data[:, np.newaxis]
In [121]: column
Out[121]: array([[0],
                 [1],
                 [2],
                 [3],
                 [4]])
In [122]: row = data[np.newaxis, :]
In [123]: row
Out[123]: array([[0, 1, 2, 3, 4]])

The function np.expand_dims can also be used to add new dimensions to an array, and in the  
example above the expression data[:, np.newaxis] is equivalent to np.expand_dims(data, axis=1) and 
data[np.newaxis, :] is equivalent to np.expand_dims(data, axis=0). Here the axis argument specifies 
the location among the existing axes where the new axis is to be inserted.

We have up to now looked at methods to rearrange arrays in ways that do not affect the underlying 
data. Earlier in this chapter we also looked at how to extract subarrays using various indexing techniques. 
In addition to reshaping and selecting subarrays, it is often necessary to merge arrays into bigger arrays: for 
example, when joining separately computed or measured data series into a higher-dimensional array, such 
as a matrix. For this task, NumPy provides the functions np.vstack, for vertically stacking for example rows 
into a matrix, and np.hstack for horizontally stacking, for example columns into a matrix. The function  
np.concatenate provides similar functionality, but it takes a keyword argument axis that specifies the axis 
along which the arrays are to be concatenated.

The shape of the arrays passed to np.hstack, np.vstack and np.concatenate is important to achieve 
the desired type of array joining. For example, consider the following cases. Say we have one-dimensional 
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arrays of data, and we want to stack them vertically to obtain a matrix where the rows are made up of the 
one-dimensional arrays. We can use np.vstack to achieve this:

In [124]: data = np.arange(5)
In [125]: data
Out[125]: array([0, 1, 2, 3, 4])
In [126]: np.vstack((data, data, data))
Out[126]: array([[0, 1, 2, 3, 4],
                 [0, 1, 2, 3, 4],
                 [0, 1, 2, 3, 4]])

If we instead want to stack the arrays horizontally, to obtain a matrix where the arrays are the column 
vectors, we might first attempt something similar using np.hstack:

In [127]: data = np.arange(5)
In [128]: data
Out[128]: array([0, 1, 2, 3, 4])
In [129]: np.hstack((data, data, data))
Out[129]: array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4])

This indeed stacks the arrays horizontally, but not in the way intended here. To make np.hstack treat 
the input arrays as columns and stack them accordingly, we need to make the input arrays two-dimensional 
arrays of shape (1, 5) rather than one-dimensional arrays of shape (5,). As discussed earlier, we can insert 
a new axis by indexing with np.newaxis:

In [130]: data = data[:, np.newaxis]
In [131]: np.hstack((data, data, data))
Out[131]: array([[0, 0, 0],
                 [1, 1, 1],
                 [2, 2, 2],
                 [3, 3, 3],
                 [4, 4, 4]])

The behavior of the functions for horizontal and vertical stacking, as well as concatenating arrays using 
np.concatenate, is clearest when the stacked arrays have the same number of dimensions as the final array, 
and when the input arrays are stacked along an axis for which the they have length one.

The number of elements in a NumPy array cannot be changed once the array has been created. To 
insert, append, and remove elements from a NumPy array, for example, using the function np.append,  
np.insert, and np.delete, a new array must be created and the data copied to it. It may sometimes be 
tempting to use these functions to grow or shrink the size of a NumPy array, but due to the overhead of 
creating new arrays and copying the data, it is usually a good idea to preallocate arrays with size such that 
they do not later need to be resized.

Vectorized Expressions
The purpose of storing numerical data in arrays is to be able to process the data with concise vectorized 
expressions that represent batch operations that are applied to all elements in the arrays. Efficient use 
of vectorized expressions eliminates the need of many explicit for loops. This results in less verbose 
code, better maintainability, and higher-performing code. NumPy implements functions and vectorized 
operations corresponding to most fundamental mathematical functions and operators. Many of these 
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functions and operations act on arrays on an elementwise basis, and binary operations require all arrays in 
an expression to be of compatible size. The meaning of compatible size is normally that the variables in an 
expression represent either scalars or arrays of the same size and shape. More generally, a binary operation 
involving two arrays is well defined if the arrays can be broadcasted into the same shape and size.

In the case of an operation between a scalar and an array, broadcasting refers to the scalar being 
distributed and the operation applied to each element in the array. When an expression contains arrays 
of unequal size, the operations may still be well-defined if the smaller of the array can be broadcasted 
(“effectively expanded”) to match the larger array according to NumPy’s broadcasting rule: An array can be 
broadcasted over another array if their axes on a one-by-one basis either have the same length or if either of 
them have length 1. If the number of axes of the two arrays is not equal, the array with fewer axes is padded 
with new axes of length 1 from the left until the numbers of dimensions of the two arrays agree.

Two simple examples that illustrates array broadcasting is shown in Figure 2-2: A 3 3´  matrix is added  
to a 1 3´  row vector and a 3 1´  column vector, respectively, and the in both cases the result is a 3 3´  matrix. 
However, the elements in the two resulting matrices are different, because the way the elements of the row 
and column vectors are broadcasted to the shape of the larger array is different depending on the shape of 
the arrays, according to NumPy’s broadcasting rule.

Figure 2-2.  Visualization of broadcasting of row and column vectors into the shape of a matrix. The 
highlighted elements represent true elements of the arrays, while the light gray shaded elements describe the 
broadcasting of the elements of the array of smaller size
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Arithmetic Operations
The standard arithmetic operations with NumPy arrays perform elementwise operations. Consider, for 
example, the addition, subtraction, multiplication and division of equal-sized arrays:

In [132]: x = np.array([[1, 2], [3, 4]])
In [133]: y = np.array([[5, 6], [7, 8]])
In [134]: x + y
Out[134]: array([[ 6,  8],
                 [10, 12]])
In [135]: y - x
Out[135]: array([[4, 4],
                 [4, 4]])
In [136]: x * y
Out[136]: array([[ 5, 12],
                 [21, 32]])
In [137]: y / x
Out[137]: array([[ 5.        ,  3.        ],
                 [ 2.33333333,  2.        ]])

In operations between scalars and arrays, the scalar value is applied to each element in the array, as one 
could expect:

In [138]: x * 2
Out[138]: array([[2, 4],
                 [6, 8]])
In [139]: 2 ** x
Out[139]: array([[ 2,  4],
                 [ 8, 16]])
In [140]: y / 2
Out[140]: array([[ 2.5,  3. ],
                 [ 3.5,  4. ]])
In [141]: (y / 2).dtype
Out[141]: dtype('float64')

Note that the dtype of the resulting array for an expression can be promoted if the computation requires 
it, as shown in the example above with division between an integer array and an integer scalar, which in that 
case resulted in an array with a dtype that is np.float64.

If an arithmetic operation is performed on arrays with incompatible size or shape, a ValueError 
exception is raised:

In [142]: x = np.array([1, 2, 3, 4]).reshape(2, 2)
In [143]: z = np.array([1, 2, 3, 4])
In [144]: x / z
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-144-b88ced08eb6a> in <module>()
----> 1 x / z
ValueError: operands could not be broadcast together with shapes (2,2) (4,)

Here the array x has shape (2, 2) and array z has shape (4,), which cannot be broadcasted into a 
form that is compatible with (2, 2). If, on the other hand, z has shape (2,), (2, 1), or (1, 2), then it can 
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broadcasted to the shape (2, 2) by effectively repeating the array z along the axis with length 1. Let’s first 
consider an example with an array z of shape (1, 2), where the first axis (axis 0) has length 1:

In [145]: z = np.array([[2, 4]])
In [146]: z.shape
Out[146]: (1, 2)

Dividing the array x with array z is equivalent to dividing x with an array zz that is constructed by repeating 
(here using np.concatenate) the row vector z to obtain an array zz that has the same dimensions as x:

In [147]: x / z
Out[147]: array([[ 0.5,  0.5],
                 [ 1.5,  1. ]])
In [148]: zz = np.concatenate([z, z], axis=0)
In [149]: zz
Out[149]: array([[2, 4],
                 [2, 4]])
In [150]: x / zz
Out[150]: array([[ 0.5,  0.5],
                 [ 1.5,  1. ]])

Let’s also consider the example in which the array z has shape (2, 1), and where the second axis  
(axis 1) has length 1:

In [151]: z = np.array([[2], [4]])
In [152]: z.shape
Out[152]: (2, 1)

In this case, dividing x with z is equivalent to dividing x with an array zz that is constructed by repeating 
the column vector z until a matrix with same dimension as x is obtained.

In [153]: x / z
Out[153]: array([[ 0.5 ,  1.  ],
                 [ 0.75,  1.  ]])
In [154]: zz = np.concatenate([z, z], axis=1)
In [155]: zz
Out[155]: array([[2, 2],
                 [4, 4]])
In [156]: x / zz
Out[156]: array([[ 0.5 ,  1.  ],
                 [ 0.75,  1.  ]])

In summary, these examples show how arrays with shape (1, 2) and (2, 1) are broadcasted to the 
shape (2, 2) of the array x when the operation x / z is performed. In both cases, the result of the operation 
x / z is the same as first repeating the smaller array z along its axis of length 1 to obtain a new array zz with 
the same shape as x, and then perform the equal-size array operation x / zz. However, the implementation 
of the broadcasting does not explicitly perform this expansion and the corresponding memory copies, but it 
can be helpful to think of the array broadcasting in these terms.

A summary of the operators for arithmetic operations with NumPy arrays is given in Table 2-6. These 
operators use the standard symbols used in Python. The result of an arithmetic operation with one or two 
arrays is a new independent array, with its own data in the memory. Evaluating a complicated arithmetic 
expression might therefore trigger many memory allocation and copy operations, and when working with 
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large arrays this can lead to a large memory footprint, and impact the performance negatively. In such cases, 
using in-place operation (see Table 2-6.) can reduce the memory footprint and improve performance. As an 
example of in-place operators, consider the following two statements, which have the same effect:

In [157]: x = x + y
In [158]: x += y

The two expressions have the same effect, but in the first case x is reassigned to a new array, while in the 
second case the values of array x are updated in place. Extensive use of in-place operators tends to impair 
code readability, and in-place operators should therefore be used only when necessary.

Table 2-6.  Operators for elementwise arithmetic operation on NumPy arrays

Operator Operation

+, += Addition

-, -= Subtraction

*, *= Multiplication

/, /= Division

//, //= Integer division

**, **= Exponentiation

Elementwise Functions
In addition to arithmetic expressions using operators, NumPy provides vectorized functions for elementwise 
evaluation of many elementary mathematical functions and operations. Table 2-7 gives a summary of 
elementary mathematical functions in NumPy.3 Each of these functions takes a single array (of arbitrary 
dimension) as input and returns a new array of the same shape, where for each element the function has 
been applied to the corresponding element in the input array. The data type of the output array is not 
necessarily the same as that of the input array.

3Note that this is not a complete list of the available elementwise functions in NumPy. See the NumPy reference 
documentation for comprehensive lists.

Table 2-7.  Selection of NumPy functions for elementwise elementary mathematical functions

NumPy function Description

np.cos, np.sin, np.tan Trigonometric functions.

np.arccos, np.arcsin. np.arctan Inverse trigonometric functions.

np.cosh, np.sinh, np.tanh Hyperbolic trigonometric functions.

np.arccosh, np.arcsinh, np.arctanh Inverse hyperbolic trigonometric functions.

np.sqrt Square root.

np.exp Exponential.

np.log, np.log2, np.log10 Logarithms of base e, 2, and 10, respectively.
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For example, the np.sin function (which takes only one argument) is used to compute the sine function 
for all values in the array:

In [159]: x = np.linspace(-1, 1, 11)
In [160]: x
Out[160]: array([-1. , -0.8, -0.6, -0.4, -0.2,  0. ,  0.2,  0.4,  0.6,  0.8,  1.])
In [161]: y = np.sin(np.pi * x)
In [162]: np.round(y, decimals=4)
Out[162]: �array([-0., -0.5878, -0.9511, -0.9511, -0.5878, 0., 0.5878, 0.9511,  

0.9511, 0.5878, 0.])

Here we also used the constant np.pi and the function np.round to round the values of y to four 
decimals. Like the np.sin function, many of the elementary math functions take one input array and 
produce one output array. In contrast, many of the mathematical operator functions (Table 2-8) operates on 
two input arrays and returns one array:

In [163]: np.add(np.sin(x) ** 2, np.cos(x) ** 2)
Out[163]: array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])
In [164]: np.sin(x) ** 2 + np.cos(x) ** 2
Out[164]: array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])

Table 2-8.  Summary of NumPy functions for elementwise mathematical operations

NumPy function Description

np.add, np.subtract,  
np.multiply, np.divide

Addition, subtraction, multiplication and division of two NumPy arrays.

np.power Raise first input argument to the power of the second input argument 
(applied elementwise).

np.remainder The remainder of division.

np.reciprocal The reciprocal (inverse) of each element.

np.real, np.imag, np.conj The real part, imaginary part, and the complex conjugate of the 
elements in the input arrays.

np.sign, np.abs The sign and the absolute value.

np.floor, np.ceil, np.rint Convert to integer values.

np.round Round to a given number of decimals.

Note that in this example, using np.add and the operator + are equivalent, and for normal use the 
operator should be used.
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Occasionally it is necessary to define new functions that operate on NumPy arrays on an  
element-by-element basis. A good way to implement such functions is to express it in terms of already 
existing NumPy operators and expressions, but in cases when this is not possible, the np.vectorize function 
can be a convenient tool. This function takes a non-vectorized function and returns a vectorized function. 
For example, consider the following implementation of the Heaviside step function, which works for  
scalar input:

In [165]: def heaviside(x):
     ...:     return 1 if x > 0 else 0
In [166]: heaviside(-1)
Out[166]: 0
In [167]: heaviside(1.5)
Out[167]: 1

However, unfortunately this function does not work for NumPy array input:

In [168]: x = np.linspace(-5, 5, 11)
In [169]: heaviside(x)
...
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() 
or a.all()

Using np.vectorize the scalar heaviside function can be converted into a vectorized function that 
works with NumPy arrays as input:

In [170]: heaviside = np.vectorize(heaviside)
In [171]: heaviside(x)
Out[171]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])

Although the function returned by np.vectorize works with arrays, it will be relatively slow since the 
original function must be called for each element in the array. There are much better ways to implementing 
this particular function using arithmetic with Boolean-valued arrays, as discussed later in this chapter:

In [172]: def heaviside(x):
     ...:     return 1.0 * (x > 0)

Nonetheless, np.vectorize can often be a quick and convenient way to vectorize a function written for 
scalar input.

In addition to NumPy’s functions for elementary mathematical function, as summarized in Table 2-7, 
there are also a numerous functions in NumPy for mathematical operations. A summary of a selection of 
these functions is given in Table 2-8.

Aggregate Functions
NumPy provides another set of functions for calculating aggregates for NumPy arrays, which take an array as 
input and by default return a scalar as output. For example, statistics such as averages, standard deviations, 
and variances of the values in the input array, and functions for calculating the sum and the product of 
elements in an array, are all aggregate functions.
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A summary of aggregate functions is given in Table 2-9. All of these functions are also available as 
methods in the ndarray class. For example, np.mean(data) and data.mean() in the following example are 
equivalent:

In [173]: data = np.random.normal(size=(15, 15))
In [174]: np.mean(data)
Out[174]: -0.032423651106794522
In [175]: data.mean()
Out[175]: -0.032423651106794522

By default, the functions in Table 2-9 aggregate over the entire input array. Using the axis keyword 
argument with these functions, and their corresponding ndarray methods, it is possible to control over 
which axis in the array aggregation is carried out. The axis argument can be an integer, which specifies the 
axis to aggregate values over. In many cases the axis argument can also be a tuple of integers, which specifies 
multiple axes to aggregate over. The following example demonstrates how calling the aggregate function  
np.sum on the array of shape (5, 10, 15) reduces the dimensionality of the array depending of the values of 
the axis argument:

In [176]: data = np.random.normal(size=(5, 10, 15))
In [177]: data.sum(axis=0).shape
Out[177]: (10, 15)
In [178]: data.sum(axis=(0, 2)).shape
Out[178]: (10,)
In [179]: data.sum()
Out[179]: -31.983793284860798

Table 2-9.  NumPy functions for calculating aggregrates of NumPy arrays

NumPy Function Description

np.mean The average of all values in the array.

np.std Standard deviation.

np.var Variance.

np.sum Sum of all elements.

np.prod Product of all elements.

np.cumsum Cumulative sum of all elements.

np.cumprod Cumulative product of all elements.

np.min, np.max The minimum / maximum value in an array.

np.argmin, np.argmax The index of the minimum / maximum value in an array.

np.all Return True if all elements in the argument array are nonzero.

np.any Return True if any of the elements in the argument array is nonzero.
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A visual illustration of how aggregation over all elements, over the first axis, and over the second axis of 
a 3 3´  array is shown in Figure 2-3. In this example, the data array is filled with integers between 1 and 9:

In [180]: data = np.arange(1,10).reshape(3,3)
In [181]: data
Out[181]: array([[1, 2, 3],
                 [4, 5, 6],
                 [7, 8, 9]])

and we compute the aggregate sum of the entire array, over the axis 0, and over axis 1, respectively:

In [182]: data.sum()
Out[182]: 45
In [183]: data.sum(axis=0)
Out[183]: array([12, 15, 18])
In [184]: data.sum(axis=1)
Out[184]: array([ 6, 15, 24])

Figure 2-3.  Illustration of array aggregation functions along all axes (left), first axis (center), and the second 
axis (right) of a two-dimensional array of shape 3 3´

Boolean Arrays and Conditional Expressions
When computing with NumPy arrays, there is often a need to compare elements in different arrays, and 
perform conditional computations based on the results of such comparisons. Like with arithmetic operators, 
NumPy arrays can be used with the usual comparison operators, for example >, <, >=, <=, == and !=, and the 
comparisons are made on an element-by-element basis. The broadcasting rules also applies to comparison 
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operators, and if two operators have compatible shapes and sizes, the result of the comparison is a new array 
with Boolean values (with dtype as np.bool) that gives the result of the comparison for each element:

In [185]: a = np.array([1, 2, 3, 4])
In [186]: b = np.array([4, 3, 2, 1])
In [187]: a < b
Out[187]: array([ True,  True, False, False], dtype=bool)

To use the result of a comparison between arrays in for example an if statement, we need to aggregate 
the Boolean values of the resulting arrays in some suitable fashion, to obtain a single True or False value. A 
common use-case is to apply the np.all or np.any aggregation functions, depending on the situation at hand:

In [188]: np.all(a < b)
Out[188]: False
In [189]: np.any(a < b)
Out[189]: True
In [190]: if np.all(a < b):
     ...:     print("All elements in a are smaller than their corresponding element in b")
     ...: elif np.any(a < b):
     ...:     print("Some elements in a are smaller than their corresponding elemment in b")
     ...: else:
     ...:     print("All elements in b are smaller than their corresponding element in a")
Some elements in a are smaller than their corresponding elemment in b

The advantage of Boolean-valued arrays, however, is that they often make it possible to avoid 
conditional if statements altogether. By using Boolean-valued arrays in arithmetic expressions, it is possible 
to write conditional computations in vectorized form. When appearing in an arithmetic expression together 
with a scalar number, or another NumPy array with a numerical data type, a Boolean array is converted to a 
numerical-valued array with values 0 and 1 in place of False and True, respectively.

In [191]: x = np.array([-2, -1, 0, 1, 2])
In [192]: x > 0
Out[192]: array([False, False, False,  True,  True], dtype=bool)
In [193]: 1 * (x > 0)
Out[193]: array([0, 0, 0, 1, 1])
In [194]: x * (x > 0)
Out[194]: array([0, 0, 0, 1, 2])

This is a useful property for conditional computing, such as when defining piecewise functions. For 
example, if we need to define a function describing a pulse of given height, width and position, we can 
implement this function by multiplying the height (a scalar variable) with two Boolean-valued arrays for the 
spatial extension of the pulse:

In [195]: def pulse(x, position, height, width):
     ...:     return height * (x >= position) * (x <= (position + width))
In [196]: x = np.linspace(-5, 5, 11)
In [197]: pulse(x, position=-2, height=1, width=5)
Out[197]: array([0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0])
In [198]: pulse(x, position=1, height=1, width=5)
Out[198]: array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
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In this example, the expression (x >= position) * (x <= (position + width)) is a multiplication 
of two Boolean-valued arrays, and for this case the multiplication operator act as an elementwise AND 
operator. The function pulse could also be implemented using NumPy’s function for elementwise AND 
operations, np.logical_and:

In [199]: def pulse(x, position, height, width):
     ...:     return height * np.logical_and(x >= position, x <= (position + width))

There are also functions for other logical operations, such as NOT, OR and XOR, and functions for 
selectively picking values from different arrays depending on a given condition np.where, list of conditions 
np.select, and an array of indices np.choose. See Table 2-10 for a summary of such functions, and the 
following examples demonstrate the basic usage of some of these functions. The np.where function selects 
elements from two arrays (second and third arguments), given a Boolean-valued array condition (the first 
argument). For elements where the condition is True, the corresponding values from the array given as 
second argument are selected, and if the condition is False, elements from the third argument array are 
selected:

In [200]: x = np.linspace(-4, 4, 9)
In [201]: np.where(x < 0, x**2, x**3)
Out[201]: array([ 16.,   9.,   4.,   1.,   0.,   1.,   8.,  27.,  64.])

Table 2-10.  NumPy functions for conditional and logical expressions

Function Description

np.where Choose values from two arrays depending on the value of a 
condition array.

np.choose Choose values from a list of arrays depending on the values of a 
given index array.

np.select Choose values from a list of arrays depending on a list of conditions.

np.nonzero Return an array with indices of nonzero elements.

np.logical_and Perform and elementwise AND operation.

np.logical_or, np.logical_xor Elementwise OR/XOR operations.

np.logical_not Elementwise NOT operation (inverting).

The np.select function works similarly, but instead of a Boolean-valued condition array it expects a list 
of Boolean-valued condition arrays, and a corresponding list of value arrays:

In [202]: np.select([x < -1, x < 2, x >= 2],
     ...:           [x**2  , x**3 , x**4])
Out[202]: array([  16.,    9.,    4.,   -1.,    0.,    1.,   16.,   81.,  256.])

The np.choose takes as a first argument a list or an array with indices that determine from which array 
in a given list of arrays an element is picked from:

In [203]: np.choose([0, 0, 0, 1, 1, 1, 2, 2, 2],
     ...:           [x**2,  x**3,  x**4])
Out[203]: array([  16.,    9.,    4.,   -1.,    0.,    1.,   16.,   81.,  256.])
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The function np.nonzero returns a tuple of indices that can be used to index the array (for example  
the one that the condition was based on). This has the same results as indexing the array directly with 
abs(x) > 2, but it uses fancy indexing with the indices returned by np.nonzero rather than Boolean-valued 
array indexing.

In [204]: np.nonzero(abs(x) > 2)
Out[204]: (array([0, 1, 7, 8]),)
In [205]: x[np.nonzero(abs(x) > 2)]
Out[205]: array([-4., -3.,  3.,  4.])
In [206]: x[abs(x) > 2]
Out[206]: array([-4., -3.,  3.,  4.])

Set Operations
The Python language provides a convenient set data structure for managing unordered collections of 
unique objects. The NumPy array class ndarray can also be used to describe such sets, and NumPy contains 
functions for operating on sets stored as NumPy arrays. These functions are summarized in Table 2-11. 
Using NumPy arrays to describe and operate on sets allows expressing certain operations in vectorized 
form. For example, testing if the values in a NumPy array are included in a set can be done using the np.in1d 
function, which tests for the existence of each element of its first argument in the array passed as second 
argument. To see how this works, consider the follow example: first, to ensure that a NumPy array is a proper 
set, we can use the np.unique function, which returns a new array with unique values:

In [207]: a = np.unique([1, 2, 3, 3])
In [208]: b = np.unique([2, 3, 4, 4, 5, 6, 5])
In [209]: np.in1d(a, b)
Out[209]: array([False,  True,  True], dtype=bool)

Here, the existence of each element in a in the set b was tested, and the result is a Boolean-valued 
array. Note that we can use the in keyword to test for the existence of single elements in a set represented as 
NumPy array:

In [210]: 1 in a
Out[210]: True
In [211]: 1 in b
Out[211]: False

To test if a is a subset of b, we can use the np.in1d, as in the previous example, together with the 
aggregation function np.all (or the corresponding ndarray method):

In [212]: np.all(np.in1d(a, b))
Out[212]: False

The standard set operations union (the set of elements included in either or both sets), intersection 
(elements included in both sets), and difference (elements included in one of the sets but not the other) are 
provided by np.union1d, np.intersect1d, and np.setdiff1d, respectively:

In [213]: np.union1d(a, b)
Out[213]: array([1, 2, 3, 4, 5, 6])
In [214]: np.intersect1d(a, b)
Out[214]: array([2, 3])
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In [215]: np.setdiff1d(a, b)
Out[215]: array([1])
In [216]: np.setdiff1d(b, a)
Out[216]: array([4, 5, 6])

Table 2-11.  NumPy functions for operating on sets

Function Description

np.unique Create a new array with unique elements, where each value only appears once.

np.in1d Test for the existence of an array of elements in another array.

np.intersect1d Return an array with elements that are contained in two given arrays.

np.setdiff1d Return an array with elements that are contained in one but not the other, of two given arrays.

np.union1d Return an array with elements that are contained in either, or both, of two given arrays.

Operations on Arrays
In addition to elementwise and aggregation functions, some operations act on arrays as a whole, and 
produce transformed array of the same size. An example of this type of operation is the transpose, which 
flips the order of the axes of an array. For the special case of a two-dimensional array, that is, a matrix, the 
transpose simply exchanges rows and columns:

In [217]: data = np.arange(9).reshape(3, 3)
In [218]: data
Out[218]: array([[0, 1, 2],
                 [3, 4, 5],
                 [6, 7, 8]])
In [219]: np.transpose(data)
Out[219]: array([[0, 3, 6],
                 [1, 4, 7],
                 [2, 5, 8]])

The transpose function np.transpose also exists as a method in ndarray, and as the special method 
name ndarray.T. For an arbitrary N-dimensional array, the transpose operation reverses all the axes, as 
can be seen from the following example (note that here the shape attribute is used to display the number of 
values along each axis of the array):

In [220]: data = np.random.randn(1, 2, 3, 4, 5)
In [221]: data.shape
Out[221]: (1, 2, 3, 4, 5)
In [222]: data.T.shape
Out[222]: (5, 4, 3, 2, 1)

The np.fliplr (flip left-right) and np.flipud (flip up-down) functions perform operations that are 
similar to the transpose: they reshuffle the elements of an array so that the elements in rows (np.fliplr) or 
columns (np.flipud) are reversed, and the shape of the output array is the same as the input. The np.rot90 
function rotates the elements in the first two axes in an array by 90 degrees, and like the transpose function 
it can change the shape of the array. Table 2-12 gives a summary of NumPy functions for common array 
operations.
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Matrix and Vector Operations
We have so far discussed general N-dimensional arrays. One of the main applications of such arrays is to 
represent the mathematical concepts of vectors, matrices, and tensors, and in this use-case we also frequently 
need to calculate vector and matrix operations such as scalar (inner) products, dot (matrix) products, and 
tensor (outer) products. A summary of NumPy’s functions for matrix operations is given in Table 2-13.

Table 2-13.  Summary of NumPy functions for matrix operations

NumPy Function Description

np.dot Matrix multiplication (dot product) between two given arrays representing vectors, 
arrays, or tensors.

np.inner Scalar multiplication (inner product) between two arrays representing vectors.

np.cross The cross product between two arrays that represent vectors.

np.tensordot Dot product along specified axes of multidimensional arrays.

np.outer Outer product (tensor product of vectors) between two arrays representing vectors.

np.kron Kronecker product (tensor product of matrices) between arrays representing 
matrices and higher-dimensional arrays.

np.einsum Evaluates Einstein’s summation convention for multidimensional arrays.

Table 2-12.  Summary of NumPy functions for array operations

Function Description

np.transpose,
np.ndarray.transpose, np.ndarray.T

The transpose (reverse axes) of an array.

np.fliplr / np.flipud Reverse the elements in each row / column.

np.rot90 Rotate the elements along the first two axes by 90 degrees.

np.sort,
np.ndarray.sort

Sort the element of an array along a given specified axis (which 
default to the last axis of the array). The np.ndarray method sort 
performs the sorting in place, modifying the input array.

In NumPy, the * operator is used for elementwise multiplication. For two two-dimensional arrays A and B, 
the expression A * B therefore does not compute a matrix product (in contrast to many other computing 
environments). Currently there is no operator for denoting matrix multiplication,4 and instead the NumPy 
function np.dot is used for this purpose. There is also a corresponding method in the ndarray class. To compute 
the product of two matrices A and B, of size N M´  and M P´ , which results in a matrix of size N P´ , we can use:

In [223]: A = np.arange(1, 7).reshape(2, 3)
In [224]: A
Out[224]: array([[1, 2, 3],
                 [4, 5, 6]])

4Python recently adopted the @ symbol for denoting matrix multiplication. However, at the time of writing, this proposal 
has not yet been implemented. See http://legacy.python.org/dev/peps/pep-0465 for details.

http://legacy.python.org/dev/peps/pep-0465
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In [225]: B = np.arange(1, 7).reshape(3, 2)
In [226]: B
Out[226]: array([[1, 2],
                 [3, 4],
                 [5, 6]])
In [227]: np.dot(A, B)
Out[227]: array([[22, 28],
                 [49, 64]])
In [228]: np.dot(B, A)
Out[228]: array([[ 9, 12, 15],
                 [19, 26, 33],
                 [29, 40, 51]])

The np.dot function is also be used for matrix-vector multiplication (that is, multiplication of a  
two-dimension array, that represent a matrix, with a one-dimensional array representing a vector).  
For example:

In [229]: A = np.arange(9).reshape(3, 3)
In [230]: A
Out[230]: array([[0, 1, 2],
                 [3, 4, 5],
                 [6, 7, 8]])
In [231]: x = np.arange(3)
In [232]: x
Out[232]: array([0, 1, 2])
In [233]: np.dot(A, x)
Out[233]: array([5, 14, 23])

In this example, x can be either a two-dimensional array of shape (1, 3) or a one-dimensional array 
with shape (3,). In addition to the function np.dot, there is also a corresponding method dot in ndarray, 
which can be used as in the following example:

In [234]: A.dot(x)
Out[234]: array([5, 14, 23])

Unfortunately, nontrivial matrix multiplication expressions can often become complex and hard to read 
when using either np.dot or np.ndarray.dot. For example, even a relatively simple matrix expression like 
the one for a similarity transform, A' = BAB-1, must be represented with relatively cryptic nested expressions,5 
such as either

In [235]: A = np.random.rand(3, 3)
In [236]: B = np.random.rand(3, 3)
In [237]: Ap = np.dot(B, np.dot(A, np.linalg.inv(B)))

or

In [238]: Ap = B.dot(A.dot(np.linalg.inv(B)))

5With the new proposed infix matrix multiplication operator this same expression could be expressed as the considerably 
more readable: Ap = B @ A @ np.linalg.inv(B).
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To improve this situation, NumPy provides an alternative data structure to ndarray named matrix, for 
which expressions like A * B are implemented as matrix multiplication. It also provides some convenient 
special attributes, like matrix.I for the inverse matrix, and matrix.H for the complex-conjugate transpose of 
a matrix. Using instances of this matrix class, one can therefore use the vastly more readable expression:

In [239]: A = np.matrix(A)
In [240]: B = np.matrix(B)
In [241]: Ap = B * A * B.I

This may seem like a practical compromise, but unfortunately using the matrix class does have a 
few disadvantages, and its use is therefore often discouraged. The main objection against using matrix is 
that expression like A * B are then context dependent: that is, it is not immediately clear if A * B denotes 
elementwise or matrix multiplication, because it depends on the type of A and B, and this creates another 
code-readability problem. This can be a particularly relevant issue if A and B are user-supplied arguments to 
a function, in which case it would be necessary to cast all input arrays explicitly to matrix instances, using, 
for example, np.asmatrix or the function np.matrix (since there would be no guarantee that the user calls 
the function with arguments of type matrix rather than ndarray). The np.asmatrix function creates a view 
of the original array in the form of an np.matrix instance. This does not add much in computational costs, 
but explicitly casting arrays back and forth between ndarray and matrix does offset much of the benefits of 
the improved readability of matrix expressions. A related issue is that some functions that operate on arrays 
and matrices might not respect the type of the input, and may return an ndarray even though it was called 
with an input argument of type matrix. This way, a matrix of type matrix might be unintentionally converted 
to ndarray, which in turn would change the behavior of expressions like A * B. This type of behavior is not 
likely to occur when using NumPy’s array and matrix functions, but it is not unlikely to happen when using 
functions from other packages. However, in spite of all the arguments for not using matrix matrices too 
extensively, personally I think that using matrix class instances for complicated matrix expressions is an 
important use-case, and in these cases it might be a good idea to explicitly cast arrays to matrices before the 
computation, and explicitly cast the result back to the ndarray type, following the pattern:

In [242]: A = np.asmatrix(A)
In [243]: B = np.asmatrix(B)
In [244]: Ap = B * A * B.I
In [245]: Ap = np.asarray(Ap)

The inner product (scalar product) between two arrays representing vectors can be computed using the 
np.inner function:

In [246]: np.inner(x, x)
Out[246]: 5

or, equivalently, using np.dot:

In [247]: np.dot(x, x)
Out[247]: 5
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The main difference is that np.inner expects two input arguments with the same dimension, while  
np.dot can take input vectors of shape 1´N  and N ×1, respectively:

In [248]: y = x[:, np.newaxis]
In [249]: y
Out[249]: array([[0],
                 [1],
                 [2]])
In [250]: np.dot(y.T, y)
Out[250]: array([[5]])

While the inner product maps two vectors to a scalar, the outer product performs the complementary 
operation of mapping two vectors to a matrix.

In [251]: x = np.array([1, 2, 3])
In [252]: np.outer(x, x)
Out[252]: array([[1, 2, 3],
                 [2, 4, 6],
                 [3, 6, 9]])

The outer product can also be calculated using the Kronecker product using the function np.kron, 
which, however, in contrast to np.outer, produce an output array of shape (M*P, N*Q) if the input arrays 
have shapes (M, N) and (P, Q), respectively. Thus, for the case of two one-dimensional arrays of length M 
and P, the resulting array has shape (M*P,):

In [253]: np.kron(x, x)
Out[253]: array([1, 2, 3, 2, 4, 6, 3, 6, 9])

To obtain the result that corresponds to np.outer(x, x), the input array x must be expanded to shape 
(N, 1) and (1, N), in the first and second argument to np.kron, respectively:

In [254]: np.kron(x[:, np.newaxis], x[np.newaxis, :])
Out[254]: array([[1, 2, 3],
                 [2, 4, 6],
                 [3, 6, 9]])

In general, while the np.outer function is primarily intended for vectors as input, the np.kron function 
can be used for computing tensor products of arrays of arbitrary dimension (but both inputs must have the 
same number of axes). For example, to compute the tensor product of two 2 2´  matrices, we can use:

In [255]: np.kron(np.ones((2,2)), np.identity(2))
Out[255]: array([[ 1.,  0.,  1.,  0.],
                 [ 0.,  1.,  0.,  1.],
                 [ 1.,  0.,  1.,  0.],
                 [ 0.,  1.,  0.,  1.]])
In [256]: np.kron(np.identity(2), np.ones((2,2)))
Out[256]: array([[ 1.,  1.,  0.,  0.],
                 [ 1.,  1.,  0.,  0.],
                 [ 0.,  0.,  1.,  1.],
                 [ 0.,  0.,  1.,  1.]])
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When working with multidimensional arrays it is often possible to express common array operations 
concisely using Einstein’s summation convention, in which an implicit summation is assumed over each 
index that occurs multiple times in an expression. For example, the scalar product between two vectors x 
and y can is compactly expressed as x

n 
y

n
 and the matrix multiplication of two matrices A and B is expressed 

as A
mk 

B
kn

. NumPy provides the function np.einsum for carrying out Einstein summations. Its first argument 
is an index expression, followed by an arbitrary number of arrays that are included in the expression. The 
index expression is a string with comma-separated indices, where each comma separates the indices of each 
array. Each array can have any number of indices. For example, the scalar product expression x

n
 y

n
 can be 

evaluated with np.einsum using the index expression "n,n", that is using np.einsum("n,n", x, y):

In [257]: x = np.array([1, 2, 3, 4])
In [258]: y = np.array([5, 6, 7, 8])
In [259]: np.einsum("n,n", x, y)
Out[259]: 70
In [260]: np.inner(x, y)
Out[260]: 70

Similarly, the matrix multiplication A
mk

 B
kn

 can be evaluated using np.einsum and the index expression 
"mk,kn":

In [261]: A = np.arange(9).reshape(3, 3)
In [262]: B = A.T
In [263]: np.einsum("mk,kn", A, B)
Out[263]: array([[  5,  14,  23],
                 [ 14,  50,  86],
                 [ 23,  86, 149]])
In [264]: np.alltrue(np.einsum("mk,kn", A, B) == np.dot(A, B))
Out[264]: True

The Einstein summation convention can be particularly convenient when dealing with 
multidimensional arrays, since the index expression that defines the operation makes it explicit which 
operation is carried out, and along which axes it is performed. An equivalent computation using, for 
example, np.tensordot might require giving the axes along which the dot product is to be evaluated.

Summary
In this chapter we have given a brief introduction to array-based programming with the NumPy library 
that can serve as a reference for the following chapters in this book. NumPy is a core library for computing 
with Python that provides a foundation for nearly all computational libraries for Python. Familiarity with 
the NumPy library and its usage patterns is a fundamental skill for using Python for scientific and technical 
computing. Here we started with introducing NumPy’s data structure for n-dimensional arrays – the ndarray 
object – and we continued by discussing functions for creating and manipulating arrays, including indexing 
and slicing for extracting elements from arrays. We also discussed functions and operators for performing 
computations with ndarray objects, with an emphasis on vectorized expressions and operators for efficient 
computation with arrays. Throughout the rest of this book we will see examples of higher-level libraries for 
specific fields in scientific computing that use the array framework provided by NumPy.
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Further Reading
The NumPy library is the topic of several books, including the Guide to NumPy, by the creator of the NumPy 
T. Oliphant, available for free online at http://web.mit.edu/dvp/Public/numpybook.pdf, and a series of 
books by Ivan Idris and one by Wes McKinney.
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Chapter 3

Symbolic Computing

Symbolic computing is an entirely different paradigm in computing compared to the numerical array-based 
computing introduced in the previous chapter. In symbolic computing software, also known as computer 
algebra systems (CASs), representations of mathematical objects and expressions are manipulated and 
transformed analytically. Symbolic computing is mainly about using computers to automate analytical 
computations that can in principle be done by hand with pen and paper. However, by automating the 
bookkeeping and the manipulations of mathematical expressions using a computer algebra system, it 
is possible to take analytical computing much further than can realistically be done by hand. Symbolic 
computing is a great tool for checking and debugging analytical calculations that are done by hand, but more 
importantly it enables carrying out analytical analysis that may not otherwise be possible.

Analytical and symbolic computing is a key part of the scientific and technical computing landscape, and 
even for problems that can only be solved numerically (which is common, because analytical methods are 
not feasible in many practical problems), it can make a big difference to push the limits for what can be done 
analytically before resorting to numerical techniques. This can, for example, reduce the complexity or size of the 
numerical problem that finally needs to be solved. In other words, instead of tackling a problem in its original 
form directly using numerical methods, it may be possible to use analytical methods to simplify the problem first.

In the scientific Python environment, the main library for symbolic computing is SymPy (Symbolic Python). 
SymPy is entirely written in Python, and provides tools for a wide range of analytical and symbolic problems. In 
this chapter, we look in detail into how SymPy can be used for symbolic computing with Python.

■■ SymPy  The Symbolic Python (SymPy) library aims to provide a full-featured computer algebra system (CAS). 
In contrast to many other CASs, SymPy is primarily a library, rather than a full environment. This makes SymPy 
ideally suited for integration in applications and computations that also use other Python libraries. At the time of 
writing, the latest version is 0.7.6. More information about SymPy is available at http://www.sympy.org.

�Importing SymPy
The SymPy project provides the Python module named sympy. It is common to import all symbols from 
this module when working with SymPy, using from sympy import *, but in the interest of clarity and for 
avoiding namespace conflicts between functions and variables from SymPy and from other packages such 
as NumPy and SciPy (see, later chapters), here we will import the library in its entirety as sympy. In the rest of 
this book we will assume that SymPy is imported in this way.

http://www.sympy.org/
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In [1]: import sympy
In [2]: sympy.init_printing()

Here we have also called the sympy.init_printing function, which configures SymPy’s printing system 
to display nicely formatted renditions of mathematical expressions, as we will see examples of later in this 
chapter. In the IPython notebook, this sets up printing so that the MathJax JavaScript library renders SymPy 
expressions, and the results are displayed on the browser page of the IPython notebook.

For the sake of convenience and readability of the example codes in this chapter, we will also assume 
that the following frequently used symbols are explicitly imported from SymPy into the local namespace:

In [3]: from sympy import I, pi, oo

■■ Caution N ote that NumPy and SymPy, as well as many other libraries, provide many functions and 
variables with the same name. But these symbols are rarely interchangeable. For example, numpy.pi is a 
numerical approximation of the mathematical symbol p, while sympy.pi is a symbolic representation of p.  
It is therefore important to not mix them up, and use for instance numpy.pi in place of sympy.pi when doing 
symbolic computations, or vice versa. The same holds true for many fundamental mathematical functions, such 
as, for example, numpy.sin versus sympy.sin. Therefore, when using more than one package in computing 
with Python it is important to consistently use namespaces.

�Symbols
A core feature in SymPy is to represent mathematical symbols as Python objects. In the SymPy library, for 
example, the class sympy.Symbol can be used for this purpose. An instance of Symbol has a name and set 
of attributes describing its properties, and methods for querying those properties and for operating on the 
symbol object. A symbol by itself is not of much practical use, but they are used as nodes in expression trees 
to represent algebraic expressions (see next section). Among the first steps in setting up and analyzing a 
problem with SymPy is to create symbols for the various mathematical variables and quantities that are 
required to describe the problem.

The symbol name is a string, which optionally can contain LaTeX-like markup to make the symbol 
name display well in, for example, IPython’s rich display system. The name of a Symbol objects is given to 
the object when it is created. Symbols can be created in a few different ways in SymPy, for example, using 
sympy.Symbol, sympy.symbols, and sympy.var. Normally it is desirable to associate SymPy symbols with 
Python variables with the same name, or a name that closely corresponds to the symbol name. For example, 
to create a symbol named x, and binding it to the Python variable with the same name, we can use the 
constructor of the Symbol class and pass a string containing the symbol name as first argument:

In [4]: x = sympy.Symbol("x")

The variable x now represents an abstract mathematical symbol x of which very little information 
is known by default. At this point, x could represent, for example, a real number, an integer, a complex 
number, a function, as well as a large number of other possibilities. In many cases it is sufficient to represent 
a mathematical symbol with this abstract, unspecified Symbol object, but sometimes it is necessary to give 
the SymPy library more hints about exactly what type of symbol a Symbol object is representing. This may, 
for example, help SymPy to more efficiently manipulate analytical expressions. We can add on various 
assumptions that narrow down the possible properties of a symbol by adding optional keyword arguments 
to the symbol-creating functions, such as Symbol. Table 3-1 summarizes a selection of frequently used 
assumptions that can be associated with a Symbol class instance. For example, if we have a mathematical 
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variable y that is known to be a real number, we can use the real=True keyword argument when creating the 
corresponding symbol instance. We can verify that SymPy indeed recognizes that the symbol is real by using 
the is_real attribute of the Symbol class:

In [5]: y = sympy.Symbol("y", real=True)
In [6]: y.is_real
Out[6]: True

If, on the other hand we were to use is_real to query the previously defined symbol x, which was not 
explicitly specified to real, and therefore can represent both real and nonreal variables, we get None as result:

In [7]: x.is_real is None
Out[7]: True

Note that the is_real returns True if the symbol is known to be real, False if the symbol is known to not 
be real, and None if it is not known if the symbol is real or not. Other attributes (see Table 3-1) for querying 
assumptions on Symbol objects work in the same way. For an example that demonstrates a symbol with 
is_real attribute that is False, consider:

In [8]: sympy.Symbol("z", imaginary=True).is_real
Out[8]: False

Among the assumptions in Table 3-1, the most important ones to explicitly specify when creating new 
symbols are real and positive. When applicable, adding these assumptions to symbols can frequently help 
SymPy to simplify various expressions further than otherwise possible. Consider the following simple example:

In  [9]: x = sympy.Symbol("x")
In [10]: y = sympy.Symbol("y", positive=True)
In [11]: sympy.sqrt(x ** 2)
Out[11]: x 2

In [12]: sympy.sqrt(y ** 2)
Out[12]: y

Table 3-1.  Selected assumptions and their corresponding keyword for Symbol objects. For a complete list see 
the docstring for sympy.Symbol

Assumption Keyword Arguments Attributes Description

real, imaginary is_real, is_imaginary Specify that a symbol represents a real 
or imaginary number.

positive, negative is_positive, is_negative Specify that a symbol is positive or 
negative.

integer is_integer The symbol represents an integer.

odd, even is_odd, is_even The symbol represents an odd or even 
integer.

prime is_prime The symbol is a prime number, and is 
therefore also an integer.

finite, infinite is_finite, is_infinite The symbol represents a quantity that 
is finite or infinite.
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Here we have created two symbols, x and y, and computed the square root of the square of that symbol 
using the SymPy function sympy.sqrt. If nothing is known about the symbol in the computation, then no 
simplification can be done. If, on the other hand, the symbol is known to be representing a positive number, 
then obviously y y2 =  and SymPy correctly recognize this in the latter example.

When working with mathematical symbols that represent integers, rather than real numbers, it is also 
useful to explicitly specify this when creating the corresponding SymPy symbols, using, for example, the 
integer=True, or even=True or odd=True, if applicable. This may also allow SymPy to analytically simplify 
certain expressions and function evaluations, such as in the following example:

In [13]: n1 = sympy.Symbol("n")
In [14]: n2 = sympy.Symbol("n", integer=True)
In [15]: n3 = sympy.Symbol("n", odd=True)
In [16]: sympy.cos(n1 * pi)
Out[16]: cos(p n)
In [17]: sympy.cos(n2 * pi)
Out[17]: ( )-1 n

In [18]: sympy.cos(n3 * pi)
Out[18]: -1

To formulate a nontrivial mathematical problem, it is often necessary to define a large number of 
symbols. Using Symbol to specify each symbol one-by-one may become tedious, and for convenience SymPy 
contains a function sympy.symbols for creating multiple symbols in one function call. This function takes 
a comma-separated string of symbol names, as well as an arbitrary set of keyword arguments (which apply 
to all the symbols), and it returns a tuple of newly created symbols. Using Python’s tuple unpacking syntax 
together with a call to sympy.symbols is a convenient way to create symbols:

In [19]: a, b, c = sympy.symbols("a, b, c", negative=True)
In [20]: d, e, f = sympy.symbols("d, e, f", positive=True)

Numbers
The purpose of representing mathematical symbols as Python objects is to use them in expression trees that 
represent mathematical expressions. To be able to do this, we also need to represent other mathematical 
objects, such as numbers, functions, and constants. In this section we look at SymPy’s classes for 
representing number objects. All of these classes have many methods and attributes shared with instances 
of Symbol, which allows us to treat symbols and numbers on equal footing when representing expressions.

For example, in the previous section we saw that Symbol instances have attributes for querying 
properties of symbol objects, such as for example is_real. We need to be able to use the same attributes 
for all types of objects, including, for example, numbers such as integers and floating-point numbers, when 
manipulating symbolic expressions in SymPy. For this reason, we cannot directly use the built-in Python 
objects for integers, int, and floating-point numbers, float, and so on. Instead, SymPy provides the classes 
sympy.Integer and sympy.Float for representing integers and floating-point numbers within the SymPy 
framework. This distinction is important to be aware of when working with SymPy, but fortunately we rarely 
need to concern ourselves with creating objects of type sympy.Integer and sympy.Float to representing 
specific numbers, since SymPy automatically promotes Python numbers to instances of these classes when 
they occur in SymPy expressions. However, to demonstrate this difference between Python’s built-in number 
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types and the corresponding types in SymPy, in the following example we explicitly create instances of 
sympy.Integer and sympy.Float and use some of their attributes to query their properties:

In [19]: i = sympy.Integer(19)
In [20]: type(i)
Out[20]: sympy.core.numbers.Integer
In [21]: i.is_Integer, i.is_real, i.is_odd
Out[21]: (True, True, True)
In [22]: f = sympy.Float(2.3)
In [23]: type(f)
Out[23]: sympy.core.numbers.Float
In [24]: f.is_Integer, f.is_real, f.is_odd
Out[24]: (False, True, False)

■■ Tip  We can cast instances of sympy.Integer and sympy.Float back to Python built-in types using the 
standard type casting int(i) and float(f).

To create a SymPy representation of a number, or in general, an arbitrary expression, we can also use 
the sympy.sympify function. This function takes a wide range of inputs and derives a SymPy compatible 
expression, and it eliminates the need for specifying explicitly what types of objects are to be created. For the 
simple case of number input we can use:

In [25]: i, f = sympy.sympify(19), sympy.sympify(2.3)
In [26]: type(i), type(f)
Out[26]: (sympy.core.numbers.Integer, sympy.core.numbers.Float)

�Integer
In the previous section we have already used the Integer class to represent integers. It’s worth pointing out 
that there is a difference between a Symbol instance with the assumption integer=True, and an instance of 
Integer. While the Symbol with integer=True represents some integer, the Integer instance represents a 
specific integer. For both cases, the is_integer attribute is True, but there is also an attribute is_Integer 
(note the capital I), which is only True for Integer instances. In general, attributes with names on the form 
is_Name indicates if the object is of type Name, and attributes with names on the form is_name indicates if 
the object is known to satisfy the condition name. Thus, there is also an attribute is_Symbol that is True for 
Symbol instances.

In [27]: n = sympy.Symbol("n", integer=True)
In [28]: n.is_integer, n.is_Integer, n.is_positive, n.is_Symbol
Out[28]: (True, False, None, True)

In [29]: i = sympy.Integer(19)
In [30]: i.is_integer, i.is_Integer, i.is_positive, i.is_Symbol
Out[30]: (True, True, True, False)
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Integers in SymPy are arbitrary precision, meaning that they have no fixed lower and upper bounds, 
which is the case when representing integers with a specific bit-size, as, for example, in NumPy. It is 
therefore possible to work with very large numbers, as shown in the following examples:

In [31]: i ** 50
Out[31]: 8663234049605954426644038200675212212900743262211018069459689001

In [32]: sympy.factorial(100)
Out[32]: �9332621544394415268169923885626670049071596826438162146859296389 

5217599993229915608941463976156518286253697920827223758251185210 
916864000000000000000000000000

�Float
We have also already encountered the type sympy.Float in the previous sections. Like Integer, Float is 
arbitrary precision, in contrast to Python’s built-in float type and the float types in NumPy. This means 
that any Float can represent a float with arbitrary number of decimals. When a Float instance is created 
using its constructor, there are two arguments: the first argument is a Python float or a string representing a 
floating-point number, and the second (optional) argument is the precision (number of significant decimal 
digits) of the Float object. For example, it is well known that the real number 0.3 cannot be represented 
exactly as a normal fixed bit-size floating-point number, and when printing 0.3 to 20 significant digits, it is 
displaced as 0.2999999999999999888977698. The SymPy Float object can represent the real number 0.3 
without the limitations of floating-point numbers:

In [33]: "%.25f" % 0.3  # create a string represention with 25 decimals
Out[33]: '0.2999999999999999888977698'
In [34]: sympy.Float(0.3, 25)
Out[34]: 0.2999999999999999888977698
In [35]: sympy.Float('0.3', 25)
Out[35]: 0.3

However, note that to correctly represent 0.3 as a Float object, it is necessary to initialize it from a  
string ‘0.3’ rather than the Python float 0.3, which is already contains a floating-point error.

�Rational
A rational number is a fraction p/q of two integers, the numerator p and the denominator q. SymPy 
represents this type of numbers using the sympy.Rational class. Rational numbers can be created explicitly, 
using sympy.Rational and the numerator and denominator as arguments:

In [36]: sympy.Rational(11, 13)

Out[36]: 
11

13

or they can be a result of a simplification carried out by SymPy. In either case, arithmetic operations between 
rational and integers remain rational.

In [37]: r1 = sympy.Rational(2, 3)
In [38]: r2 = sympy.Rational(4, 5)
In [39]: r1 * r2

Out[39]: 
8

15
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In [40]: r1 / r2

Out[40]: 
5

6

�Constants and Special Symbols
SymPy provides predefined symbols for various mathematical constants and special objects, such as the 
imaginary unit i and infinity. These are summarized Table 3-2, together with their corresponding symbols in 
SymPy. Note in particular that the imaginary unit is written as I in SymPy.

�Functions
In SymPy, objects that represent functions can be created with sympy.Function. Like Symbol, this Function 
object takes a name as first argument. SymPy distinguish between defined and undefined functions, as well 
as between applied and unapplied functions. Creating a function with Function results in an undefined 
(abstract) and unapplied function, which has a name but cannot be evaluated because its expression, or body, 
is not defined. Such a function can represent an arbitrary function of arbitrary number of input variables, 
since it also has not yet been applied to any particular symbols or input variables. An unapplied function can 
be applied to a set of input symbols that represent the domain of the function by calling the function instance 
with those symbols as arguments.1 The result is still an unevaluated function, but one that has been applied to 
the specified input variables, and therefore has a set of dependent variables. As an example of these concepts, 
consider the following code listing where we create an undefined function f, which we apply to the symbol x, 
and another function g, which we directly apply to the set of symbols x, y, z:

In [41]: x, y, z = sympy.symbols("x, y, z")
In [42]: f = sympy.Function("f")
In [43]: type(f)
Out[43]: sympy.core.function.UndefinedFunction
In [44]: f(x)
Out[44]: f (x)
In [45]: g = sympy.Function("g")(x, y, z)
In [46]: g
Out[46]: g(x, y, z)
In [47]: g.free_symbols
Out[47]: {x, y, z}

Table 3-2.  Selected mathematical constants and special symbols and their corresponding symbols in SymPy

Mathematical Symbol SymPy Symbol Description

p sympy.pi Ratio of the circumference to the diameter of a circle.

e sympy.E The base of the natural logarithm e = ( )exp 1 .

g sympy.EulerGamma Euler’s constant.

i sympy.I The imaginary unit.

∞ sympy.oo Infinity.

1Here it is important to keep in mind the distinction between a Python function, or callable Python object such as  
sympy.Function, and the symbolic function that a sympy.Function class instance represents.
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Here we have also used the property free_symbols, which returns a set of unique symbols contained in 
a given expression (in this case the applied undefined function g), to demonstrate that an applied function 
indeed is associated with a specific set of input symbols. This will be important later in this chapter, for 
examples when we consider derivatives of abstract functions. One important application of undefined 
functions is for specifying differential equations or, in other words, when an equation for the function is 
known, but the function itself is unknown.

In contrast to undefined functions, a defined function is one that has a specific implementation and 
can be numerically evaluated for all valid input parameters. It is possible to define this type of function for 
example by subclassing sympy.Function, but in most cases it is sufficient to use the mathematical functions 
provided by SymPy. Naturally, SymPy has built-in functions for many standard mathematical functions that 
are available in the global SymPy namespace (see module documentation for sympy.functions.elementary, 
sympy.functions.combinatorial, and sympy.functions.special and their submodules for comprehensive 
lists of the numerous functions that are available, using the Python help function). For example, the SymPy 
function for the sine function is available as sympy.sin (with our import convention). Note that this is not 
a function in the Python sense of the word (it is, in fact, a subclass of sympy.Function), and it represents an 
unevaluated sine function that can be applied to a numerical value, a symbol, or an expression.

In [48]: sympy.sin
Out[48]: sympy.functions.elementary.trigonometric.sin
In [49]: sympy.sin(x)
Out[49]: sin(x)
In [50]: sympy.sin(pi * 1.5)
Out[50]: -1

When applied to an abstract symbol, such as x, the sin function remains unevaluated, but when 
possible it is evaluated to a numerical value, for example, when applied to a number, or in some cases when 
applied to expressions with certain properties, as in the following example:

In [51]: n = sympy.Symbol("n", integer=True)
In [52]: sympy.sin(pi * n)
Out[52]: 0

A third type of function in SymPy is lambda functions, or anonymous functions, which do not have 
names associated with them, but do have a specific function body that can be evaluated. Lambda functions 
can be created with sympy.Lambda:

In [53]: h = sympy.Lambda(x, x**2)
In [54]: h

Out[54]: ( )x x

2

In [55]: h(5)
Out[55]: 25
In [56]: h(1 + x)
Out[56]: ( )1 2+ x

�Expressions
The various symbols introduced in the previous section are the fundamental building blocks required to 
express mathematical expressions. In SymPy, mathematical expressions are represented as trees where 
leafs are symbols, and nodes are class instances that represent mathematical operations. Examples of these 
classes are Add, Mul, and Pow for basic arithmetic operators, and Sum, Product, Integral, and Derivative,  



Chapter 3 ■ Symbolic Computing

71

for analytical mathematical operations. In addition, there are many other classes for mathematical 
operations, which we will see more examples of later in this chapter.

Consider, for example, the mathematical expression 1 2 32 3+ +x x . To represent this in SymPy, we only 
need to create the symbol x, and then write the expression as Python code:

In [54]: x = sympy.Symbol("x")
In [55]: expr = 1 + 2 * x**2 + 3 * x**3
In [56]: expr
Out[56]: 3 2 13 2x x+ +

Here expr is an instance of Add, with the sub expressions 1, 2*x**2, and 3*x**3. The entire expression 
tree for expr is visualized in Figure 3-1. Note that we do not need to explicitly construct the expression 
tree, since it is automatically built up from the expression with symbols and operators. Nevertheless, to 
understand how SymPy works it is important to understand how expressions are represented.

The expression tree can be traversed explicitly using the args attribute, which all SymPy operations and 
symbols provide. For an operator, the args attribute is a tuple of subexpressions that are combined with the 
rule implemented by the operator class. For symbols, the args attribute is an empty tuple, which signifies 
that it is a leaf in the expression tree. The following example demonstrates how the expression tree can be 
explicitly accessed:

In [57]: expr.args
Out[57]: (1, 2x2, 3x3)
In [58]: expr.args[1]
Out[58]: 2x2

In [59]: expr.args[1].args[1]
Out[59]: x2

In [60]: expr.args[1].args[1].args[0]
Out[60]: x
In [61]: expr.args[1].args[1].args[0].args
Out[61]: ()

Figure 3-1.  Visualization of the expression tree for 1 + 2*x**2 + 3*x**3
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In basic use of SymPy it is rarely necessary to explicitly manipulate expression trees, but when the 
methods for manipulating expressions that are introduced in the following section are not sufficient, it is 
useful to be able to implement functions of your own that traverse and manipulate the expression tree using 
the args attribute.

�Manipulating Expressions
Manipulating expressions trees are one of the main jobs for SymPy, and numerous functions are provided 
for different types of transformations. The general idea is that expression trees can be transformed between 
mathematically equivalent forms using simplification and rewrite functions. These functions generally 
do not change the expression that are passed to the functions, but rather creates a new expression that 
corresponds to the modified expression. Expressions in SymPy should thus be considered immutable 
objects (that cannot be changed). All the functions we consider in this section treat SymPy expressions as 
immutable objects, and return new expression trees rather than modifying expressions in place.

�Simplification
The most desirable manipulation of a mathematical expression is to simplify it. This is perhaps and also 
the most ambiguous operation, since it is nontrivial to determine algorithmically if one expression appears 
simpler than another to a human being, and in general it is also not obvious which methods should be 
employed to arrive at a simpler expression. Nonetheless, black-box simplification is an important part of any 
CAS, and SymPy includes the function sympy.simplify that attempts to simplify a given expression using 
a variety of methods and approaches. The simplification function can also be invoked through the method 
simplify, as illustrated in the following example.

In [67]: expr = 2 * (x**2 - x) - x * (x + 1)
In [68]: expr
Out[68]: 2 1 22x x x x- + -( )
In [69]: sympy.simplify(expr)
Out[69]: x x( )- 3
In [70]: expr.simplify()
Out[70]: x x( )- 3
In [71]: expr
Out[71]: 2 1 22x x x x- + -( )

Note that here both sympy.simplify(expr) and expr.simplify() return new expression trees and 
leave the expression expr untouched, as mentioned earlier. In this example, the expression expr can be 
simplified by expanding the products, canceling terms, and then factoring the expression again. In general, 
sympy.simplify will attempt a variety of different strategies, and will also simplify for example trigonometric 
and power expressions, as exemplified here:

In [72]: expr = 2 * sympy.cos(x) * sympy.sin(x)
In [73]: expr
Out[73]: 2 sin(x) cos(x)
In [74]: sympy.simplify(expr)
Out[74]: sin(2x)
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and

In [75]: expr = sympy.exp(x) * sympy.exp(y)
In [76]: expr
Out[76]: exp(x) exp( y)
In [77]: sympy.simplify(expr)
Out[77]: exp( )x y+

Each specific type of simplification can also be carried out with more specialized functions, such as 
sympy.trigsimp and sympy.powsimp, for trigonometric and power simplifications, respectively. These 
functions only perform the simplification that their names indicate, and leave other parts of an expression in 
its original form. A summary of simplification functions in is given in Table 3-3. When the exact simplification 
steps are known, it is in general better to rely on the more specific simplification functions, since their actions 
are more well defined and less likely to change in future versions of SymPy. The sympy.simplify function, on 
the other hand, relies on heuristic approaches that may change in the future, and as a consequence produce 
different results for a particular input expression.

�Expand
When the black-box simplification provided by sympy.simplify does not produce satisfying results, it is 
often possible to make progress by manually guiding SymPy using more specific algebraic operations. An 
important tool in this process is to expand expression in various ways. The function sympy.expand performs 
a variety of expansions, depending on the values of optional keyword arguments. By default the function 
distributes products over additions, into a fully expanded expression. For example, a product of the type 
( )( )x x+ +1 2  can be expanded to x x2 3 2+ +  using:

In [78]: expr = (x + 1) * (x + 2)
In [79]: sympy.expand(expr)
Out[79]: x x2 3 2+ +

Some of the available keyword arguments are mul=True for expanding products (as in the example above), 
trig=True for trigonometric expansions,

In [80]: sympy.sin(x + y).expand(trig=True)
Out[80]: sin( ) cos( ) sin( ) cos( )x y y x+

Table 3-3.  Summary of selected SymPy functions for simplifying expressions

Function Description

sympy.simplify Attempt various methods and approaches to obtain a simpler form of a given 
expression.

sympy.trigsimp Attempt to simplify an expression using trigonometric identities.

sympy.powsimp Attempt to simplify an expression using laws of powers.

sympy.compsimp Simplify combinatorial expressions.

sympy.ratsimp Simplify an expression by writing on a common denominator.
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log=True for expanding logarithms,

In [81]: a, b = sympy.symbols("a, b", positive=True)
In [82]: sympy.log(a * b).expand(log=True)
Out[82]: log( ) log( )a b+

complex=True for separating real and imaginary parts of an expression,

In [83]: sympy.exp(I*a + b).expand(complex=True)
Out[83]: ie a e ab bsin( ) cos( )+

and power_base=True and power_exp=True for expanding the base and the exponent of a power expression, 
respectively.

In [84]: sympy.expand((a * b)**x, power_base=True)
Out[84]: axbx

In [85]: sympy.exp((a-b)*x).expand(power_exp=True)
Out[85]: e eiax ibx-

Calling the sympy.expand function with these keyword arguments set to True is equivalent to calling 
the more specific functions sympy.expand_mul, sympy.expand_trig, sympy.expand_log, sympy.expand_
complex, sympy.expand_power_base, and sympy.expand_power_exp, respectively, but an advantage of the 
sympy.expand function is that several types of expansions can be performed in a single function call.

�Factor, Collect, and Combine
A common use-pattern for the sympy.expand function is to expand an expression, let SymPy cancel terms or 
factors, and then factor or combine the expression again. The sympy.factor function attempts to factor an 
expression as far as possible, and is, in some sense, the opposite to sympy.expand with mul=True. It can be 
used to factor algebraic expressions, such as:

In [86]: sympy.factor(x**2 - 1)
Out[86]: ( )( )x x- +1 1
In [87]: sympy.factor(x * sympy.cos(y) + sympy.sin(z) * x)
Out[87]: x x y(sin( ) cos( ))+

The inverse of the other types of expansions in the previous section can be carried out using  
sympy.trigsimp, sympy.powsimp, and sympy.logcombine, for example:

In [90]: sympy.logcombine(sympy.log(a) - sympy.log(b))

Out[90]: log
a

b
æ
è
ç

ö
ø
÷

When working with mathematical expressions, it is often necessary have fine-grained controlled over 
factoring. The SymPy function sympy.collect factors terms that contain a given symbol or list of symbols. 
For example, x y xyz+ +  cannot be completely factorized, but we can partially factor terms contain x or y:

In [89]: expr = x + y + x * y * z
In [90]: expr.collect(x)
Out[90]: x yz y( )+ +1
In [91]: expr.collect(y)
Out[91]: x y xz+ +( )1
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By passing a list of symbols or expressions to the sympy.collect function or to the corresponding 
collect method, we can collect multiple symbols in one function call. Also, when using the method 
collect, which returns the new expression, it is possible to chain multiple method calls in the following way:

In [93]: expr = sympy.cos(x + y) + sympy.sin(x - y)
In [94]: expr.expand(trig=True).collect([sympy.cos(x),
    ...:                                 sympy.sin(x)]).collect(sympy.cos(y) - sympy.sin(y))
Out[95]: (sin( ) cos( ))( sin( ) cos( ))x x y y+ - +

�Apart, Together, and Cancel
The final type of mathematical simplification that we will consider here is the rewriting of fractions. The 
functions sympy.apart and sympy.together, which, respectively, rewrite a fraction as a partial fraction, and 
combine partial fractions to a single fraction, can be used in the following way:

In [95]: sympy.apart(1/(x**2 + 3*x + 2), x)

Out[95]: -
+

+
+

1

2

1

1x x
In [96]: sympy.together(1 / (y * x + y) + 1 / (1+x))

Out[96]: 
y

y x

+
+( )
1

1
In [97]: sympy.cancel(y / (y * x + y))

Out[97]: 
1

1x +

In the first example we used sympy.apart to rewrite the expression x x2 1
3 2+ +( )-  as the partial fraction 

-
+

+
+

1

2

1

1x x
, and we used sympy.together to combine the sum of fractions 1 1 1/( ) /( )yx y x+ + +  into an 

expression on the form of a single fraction. In this example we also used the function sympy.cancel to cancel 
shared factors between numerator and the denominator in the expression y yx y/( )+ .

�Substitutions
The previous sections have been concerned with rewriting expressions using various mathematical 
identities. Another frequently used form of manipulation of mathematical expressions is substitutions 
of symbols or subexpressions within an expression. For example, we may want to perform a variable 
substitution, and replace the variable x with y, or replace a symbol with another expression. In SymPy 
there are two methods for carrying out substitutions: subs and replace. Usually subs is the most suitable 
alternative, but in some cases replace provides a more powerful tool, which, for example, can make 
replacements based on wild card expressions (see docstring for sympy.Symbol.replace for details).

In the most basic use of subs, the method is called on an expression and the symbol or expression that 
is to be replaced (x) is given as first argument, and the new symbol or the expression (y) is given as second 
argument. The result is that all occurrences of x in the expression are replaced with y:

In [98]: (x + y).subs(x, y)
Out[98]: 2y
In [99]: sympy.sin(x * sympy.exp(x)).subs(x, y)
Out[99]: sin( yey)
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Instead of chaining multiple subs calls when multiple substitutions are required, we can alternatively 
pass a dictionary as first and only argument to subs, which maps old symbols or expressions to new symbols 
or expressions:

In [100]: sympy.sin(x * z).subs({z: sympy.exp(y), x: y, sympy.sin: sympy.cos})
Out[100]: cos( ye y)

A typical application of the subs method is to substitute numerical values in place of symbolic number, 
for numerical evaluation (see the following section for more details). A convenient way of doing this is to 
define a dictionary that translates the symbols to numerical values, and passing this dictionary as argument 
to the subs method. For example, consider:

In [101]: expr = x * y + z**2 *x
In [102]: values = {x: 1.25, y: 0.4, z: 3.2}
In [103]: expr.subs(values)
Out[103]: 13.3

�Numerical Evaluation
Even when working with symbolic mathematics, it is almost invariably sooner or later required to evaluate 
the symbolic expressions numerically, for example, when producing plots or concrete numerical results. 
A SymPy expression can be evaluated using either the sympy.N function, or the evalf method of SymPy 
expression instances:

In [104]: sympy.N(1 + pi)
Out[104]: 4.14159265358979
In [105]: sympy.N(pi, 50)
Out[105]: 3.1415926535897932384626433832795028841971693993751
In [106]: (x + 1/pi).evalf(10)
Out[106]: x + 0 3183098862.

Both sympy.N and the evalf method take an optional argument that specifies the number of significant 
digits to which the expression is to be evaluated, as shown in the previous example where SymPy’s 
multiprecision float capabilities were leveraged to evaluate the value of p up to 50 digits.

When we need to evaluate an expression numerically for a range of input values, we could in principle 
loop over the values and perform successive evalf calls, for example:

In [114]: expr = sympy.sin(pi * x * sympy.exp(x))
In [115]: [expr.subs(x, xx).evalf(3) for xx in range(0, 10)]
Out[115]: 0 0 774 0 642 0 722 0 944 0 205 0 974 0 977 0 870 0 695, . , . , . , . , . , . , . , . , .- -[ ]]

However, this method is rather slow, and SymPy provides a more efficient method for doing this 
operation using the function sympy.lambdify. This function takes a set of free symbols and an expression 
as arguments, and generates a function that efficiently evaluates the numerical value of the expression. 
The produced function takes the same number of arguments as the number of free symbols passed as first 
argument to sympy.lambdify.

In [109]: expr_func = sympy.lambdify(x, expr)
In [110]: expr_func(1.0)
Out[110]: 0.773942685266709
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Note that the function expr_func expects numerical (scalar) values as arguments, so we cannot for 
example pass a symbol, as argument to this function; it is strictly for numerical evaluation. The expr_func 
created in the previous example is a scalar function, and is not directly compatible with vectorized input in 
the form of NumPy arrays, as discussed in Chapter 2. However, SymPy is also able to generate functions that 
are NumPy-array aware: by passing the optional argument 'numpy' as third argument to sympy.lambdify 
SymPy creates a vectorized function that accepts NumPy arrays as input. This is in general the most efficient 
way to numerically evaluate symbolic expressions for a large number of input parameters. The following 
code exemplifies how the SymPy expression expr is converted into a NumPy-array aware vectorized 
function that can be efficiently evaluated:

In [111]: expr_func = sympy.lambdify(x, expr, 'numpy')
In [112]: import numpy as np
In [113]: xvalues = np.arange(0, 10)
In [114]: expr_func(xvalues)
Out[114]: array([ 0.        ,  0.77394269,  0.64198244,  0.72163867,  0.94361635,
                  0.20523391,  0.97398794,  0.97734066, -0.87034418, -0.69512687])

This is in general an efficient method for generating data from SymPy expressions,2 for example, for 
plotting and other data oriented applications.

�Calculus
So far we have looked at how to represent mathematical expression in SymPy, and how to perform basic 
simplification and transformation of such expressions. With this framework in place, we are now ready 
to explore symbolic calculus, or analysis, which is a cornerstone in applied mathematics and has a great 
number of applications throughout science and engineering. The central concept in calculus is the change 
of functions as input variables are varied, as quantified by derivatives and differentials; and accumulations 
of functions over ranges of input, as quantified by integrals. In this section we look at how to compute 
derivatives and integrals of functions in SymPy.

�Derivatives
The derivative of a function describes its rate of change at a given point. In SymPy we can calculate the 
derivative of a function using sympy.diff, or alternatively by using the diff method of SymPy expression 
instances. These functions take as argument a symbol, or a number of symbols, for which the function or the 
expression is to be derived with respect to. To represent the first order derivative of an abstract function f (x) 
with respect to x, we can do

In [119]: f = sympy.Function('f')(x)
In [120]: sympy.diff(f, x)               # equivalent to f.diff(x)

Out[120]: 
d

dx
f x( )

2See also the ufuncity from the sympy.utilities.autowrap module and the theano_function from the  
sympy.printing.theanocode module. These provide similar functionality as sympy.lambdify, but using different 
computational back ends.

http://dx.doi.org/10.1007/978-1-4842-0553-2_2
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and to represent higher-order derivatives, all we need to do is to repeat the symbol x in the argument list in 
the call to sympy.diff, or equivalently by specifying an integer as an argument following a symbol, which 
defines the number of times the expression should be derived with respect to that symbol:

In [117]: sympy.diff(f, x, x)

Out[117]: 
d

dx
f x

2

2 ( )

In [118]: sympy.diff(f, x, 3)       # equivalent to sympy.diff(f, x, x, x)

Out[118]: 
d

dx
f x

3

3 ( )

This method is readily extended to multivariate functions:

In [119]: g = sympy.Function('g')(x, y)
In [120]: g.diff(x, y)               # equivalent to sympy.diff(g, x, y)

Out[120]: 
¶
¶ ¶

( )
2

x y
g x y,

In [121]: g.diff(x, 3, y, 2)         # equivalent to sympy.diff(g, x, x, x, y, y)

Out[121]: 
¶

¶ ¶
( )

5

3 2x y
g x y,

These examples so far only involve formal derivatives of undefined functions. Naturally, we can 
also evaluate the derivatives of defined functions and expressions, which result in new expressions that 
correspond to the evaluated derivatives. For example, using sympy.diff we can easily evaluate derivatives of 
arbitrary mathematical expressions, such as polynomials:

In [122]: expr = x**4 + x**3 + x**2 + x + 1
In [123]: expr.diff(x)
Out[123]: 4 3 2 13 2x x x+ + +
In [124]: expr.diff(x, x)
Out[124]: 2 6 3 12( )x x+ +
In [125]: expr = (x + 1)**3 * y ** 2 * (z - 1)
In [126]: expr.diff(x, y, z)
Out[126]: 6 1 2y x( )+

as well as trigonometric and other more complicated mathematical expressions:

In [127]: expr = sympy.sin(x * y) * sympy.cos(x / 2)
In [128]: expr.diff(x)

Out[128]: y
x

xy
x

xycos cos sin sin
2

1

2 2
æ
è
ç

ö
ø
÷ ( ) - æ

è
ç

ö
ø
÷ ( )

In [129]: expr = sympy.special.polynomials.hermite(x, 0)
In [130]: expr.diff(x).doit()

Out[130]: 
2 0

2
1
2

2
2

1
2

2 2

2
1
2

x
x

x

x x

p ppolygamma ,
log

- +æ
è
ç

ö
ø
÷

- +æ
è
ç

ö
ø
÷

+
( )

- +æG G
èè
ç

ö
ø
÷

Derivatives are usually relatively easy to compute, and sympy.diff should be able to evaluate the 
derivative of most standard mathematical functions defined in SymPy.
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Note that in these examples, calling sympy.diff on an expression directly results in a new expression. If 
we want instead to symbolically represent the derivative of a definite expression, we can create an instance 
of the class sympy.Derivative, passing the expression as first argument, followed by the symbols with 
respect to the derivative that is to be computed:

In [131]: d = sympy.Derivative(sympy.exp(sympy.cos(x)), x)
In [132]: d

Out[132]: 
d

dx
e xcos( )

This formal representation of a derivative can then be evaluated by calling the doit method on the 
sympy.Derivative instance:

In [133]: d.doit()
Out[133]: - ( )e xxcos sin( )

This pattern of delayed evaluation is reoccurring throughout SymPy, and full control of when a formal 
expression is evaluated to a specific result is useful in many situations, in particular with expressions that 
can be simplified or manipulated while represented as a formal expression rather than after it has been 
evaluated.

�Integrals
In SymPy, integrals are evaluated using the function sympy.integrate, and formal integrals can be 
represented using sympy.Integral (which, as the case with sympy.Derviative, can be explicitly evaluated 
by calling the doit method). Integrals come in two basic forms: definite and indefinite, where a definite 
integral has specified integration limits, and can be interpreted as an area or volume; while an indefinite 
integral does not have integration limits, and denotes the antiderivative (inverse of the derivative of a 
function). SymPy handles both indefinite and definite integrals using the sympy.integrate function.

If the sympy.integrate function is called with only an expression as argument, the indefinite integral is 
computed. On the other hand, a definite integral is computed if the sympy.integrate function additionally 
is passed a tuple on the form (x, a, b), where x is the integration variable and a and b are the integration 
limits. For a single-variable function f (x), the indefinite and definite integrals are therefore computed using:

In [135]: a, b, x, y = sympy.symbols("a, b, x, y")
     ...: f = sympy.Function("f")(x)
In [136]: sympy.integrate(f)

Out[136]: ò f x dx( )
In [137]: sympy.integrate(f, (x, a, b))

Out[137]: 
a

b

f x dxò ( )

and when these methods are applied to explicit functions the integrals are evaluated accordingly:

In [138]: sympy.integrate(sympy.sin(x))
Out[138]: -cos( )x
In [139]: sympy.integrate(sympy.sin(x), (x, a, b))
Out[139]: cos( ) cos( )a b-
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Definite integrals can also include limits that extend from negative infinity, and/or to positive infinite, 
using SymPy’s symbol for infinity oo:

In [139]: sympy.integrate(sympy.exp(-x**2), (x, 0, oo))

Out[139]: 
p
2

In [140]: a, b, c = sympy.symbols("a, b, c", positive=True)
In [141]: sympy.integrate(a * sympy.exp(-((x-b)/c)**2), (x, -oo, oo))
Out[141]: p ac

Computing integrals symbolically is in general a difficult problem, and SymPy will not be able to 
give symbolic results for any integral you can come up with. When SymPy fails to evaluate an integral, an 
instance of sympy.Integral, representing the formal integral, is returned instead.

In [142]: sympy.integrate(sympy.sin(x * sympy.cos(x)))

Out[142]: ò ( )( )sin cosx x dx

Multivariable expression can also be integrated with sympy.integrate. In the case of indefinite integral 
of a multivariable expression, the integration variable has to be specified explicitly:

In [140]: expr = sympy.sin(x*sympy.exp(y))
In [141]: sympy.integrate(expr, x)

Out[141]: - -e xey ycos( )
In [142]: expr = (x + y)**2
In [143]: sympy.integrate(expr, x)

Out[143]: 
x

x y xy
3

2 2

3
+ +

By passing more than one symbol, or more than one tuple that contain symbols and their integration 
limits, we can carry out multiple integration:

In [144]: sympy.integrate(expr, x, y)

Out[144]: 
x y x y xy3 2 2 3

3 2 3
+ +

In [145]: sympy.integrate(expr, (x, 0, 1), (y, 0, 1))

Out[145]: 
7

6

�Series
Series expansions are an important tool in many disciplines in computing. With a series expansion, an arbitrary 
function can be written as a polynomial, with coefficients given by the derivatives of the function at the point 
around which the series expansion is made. By truncating the series expansion at some order n, the nth order 
approximation of the function is obtained. In SymPy, the series expansion of a function or an expression can 
be computed using the function sympy.series or the series method available in SymPy expression instances. 
The first argument to sympy.series is a function or expression that is to be expanded, followed by a symbol 
with respect to which the expansion is to be computed (it can be omitted for single-variable expressions and 
function). In addition, it is also possible to request a particular point around which the series expansions is to be 
performed (using the x0 keyword argument, with default x0 = 0), specifying the order of the expansion (using  
the n keyword argument, with default n = 6), and specifying the direction from which the series is computed,  
that is, from below or above x0 (using the dir keyword argument, which defaults to dir ='+').
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For an undefined function f (x), the expansion up to sixth order around x0 = 0 is computed using:

In [147]: x = sympy.Symbol("x")
In [148]: f = sympy.Function("f")(x)
In [149]: sympy.series(f, x)

Out[149]: f x
d

dx
f x

x d

dx
f x

x d

dx
f x

x d

dxx x x
( ) ( ) ( ) ( )0

2 6 240

2 2

2 0

3 3

3 0

4 4

4
+ + + +

= = =
ff x

x d

dx
f x x

x x
( ) ( ) ( )

= =
+ +

0

5 5

5 0

6

120


To change the point around which the function is expanded, we specify the x0 argument as in the 
following example:

In [147]: x0 = sympy.Symbol("{x_0}")
In [151]: f.series(x, x0, n = 2)

Out[151]: f x x x
d

d
f x x x x

x
( ) ( ) ( ) ( ) ;( )0 0

1
1 0

2
0

1 0
+ - + - ®

=x
x

x


Here we also specified n = 2, to request a series expansion with only terms up to second order. Note that 
the errors due to the truncated terms are represented by the order object  ¼( ). The order object is useful for 
keeping track of the order of an expression when computing with series expansions, such as multiplying or 
adding different expansions. However, for concrete numerical evolution, it is necessary to remove the order 
term from the expression, which can be done using the method removeO:

In [152]: f.series(x, x0, n = 2).removeO()

Out[152]: f x x x
d

d
f

x
( ) ( ) ( )0 0

1
1

1 0
+ -

=x
x

x

While the expansions shown above were computed for an unspecified function f (x), we can naturally 
also compute the series expansions of specific functions and expressions, and in those cases we obtain 
specific evaluated results. For example, we can easily generate the well-known expansions of many standard 
mathematical functions:

In [153]: sympy.cos(x).series()

Out[153]: 1
2 24

2 4
6- + +

x x
x ( )

In [154]: sympy.sin(x).series()

Out[154]: x
x x

x- + +
3 5

6

6 120
( )

In [155]: sympy.exp(x).series()

Out[155]: 1
2 6 24 120

2 3 4 5
6+ + + + + +x

x x x x
x( )

In [156]: 1/(1+x)).series()

Out[156]: 1 2 3 4 5 6- + - + - +x x x x x x( )

as well as arbitrary expressions of symbols and functions, which in general can also be multivariable functions:

In [157]: expr = sympy.cos(x) / (1 + sympy.sin(x * y))
In [158]: expr.series(x, n = 4)

Out[158]: 1
1

2

5

6 2
2 2 3

3
4- + -æ

è
ç

ö
ø
÷ + - +

æ

è
ç

ö

ø
÷ + ( )xy x y x

y y
x

In [159]: expr.series(y, n = 4)

Out[159]: cos( ) cos( ) cos( )
cos( )

( )x xy x x y x
x y x

y- + - +2 2
3 3

45

6

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�Limits
Another important tool in calculus is limits, which denotes the value of a function as one of its dependent 
variables approaches a specific value, or as the value of the variable approach negative or positive infinity. 
An example of a limit is one of the definitions of the derivative:

d

dx
f x

f x h f x

hh
( ) = + -

®
lim

( ) ( )
0

.

While limits are more of a theoretical tool, and do not have as many practical applications as, say, series 
expansions, it is still useful to be able to compute limits using SymPy. In SymPy, limits can be evaluated 
using the sympy.limit function, which takes an expression, a symbol it depends on, as well as the value 
that the symbol approaches in the limit. For example, to compute the limit of the function sin(x)/x, as the 
variable x goes to zero, that is limsin /

x
x x

®
( )

0
, we can use:

In [161]: sympy.limit(sympy.sin(x) / x, x, 0)
Out[161]: 1

Here we obtained the well-known answer 1 for this limit. We can also use sympy.limit to compute 
symbolic limits, which can be illustrated by computing derivatives using the previous definition (although it 
is, of course, more efficient to use sympy.diff),

In [162]: f = sympy.Function('f')
     ...: x, h = sympy.symbols("x, h")
In [163]: diff_limit = (f(x + h) - f(x))/h
In [164]: sympy.limit(diff_limit.subs(f, sympy.cos), h, 0)
Out[164]: -sin( )x
In [165]: sympy.limit(diff_limit.subs(f, sympy.sin), h, 0)
Out[165]: cos(x)

A more practical example of using limits is to find the asymptotic behavior as a function, for example 
as its dependent variable approach infinity. As an example, consider the function f x x x x( ) = - -( ) /( )2 3 2 2 ,  
and suppose we are interested in the large-x dependence of this function. It will be on the form 
f x px q( )® + , and we can compute p and q using sympy.limit as in the following:

In [166]: expr = (x**2 - 3*x) / (2*x - 2)
In [167]: p = sympy.limit(expr/x, x, sympy.oo)
In [168]: q = sympy.limit(expr - p*x, x, sympy.oo)
In [169]: p, q

Out[169]: 
1

2
1,-æ

è
ç

ö
ø
÷

Thus, the asymptotic behavior of f (x) as x becomes large is the linear function f x x( )® -/ 2 1.

�Sums and Products
Sums and products can be symbolically represented using the SymPy classes sympy.Sum and sympy.Product. 
They both take an expression as their first argument, and as a second argument they take a tuple of the form 
(n, n1, n2), where n is a symbol and n1 and n2 are the lower and upper limits for the symbol n, in the sum 
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or product, respectively. After sympy.Sum or sympy.Product objects have been created, they can be evaluated 
using the doit method:

In [171]: n = sympy.symbols("n", integer=True)
In [172]: x = sympy.Sum(1/(n**2), (n, 1, oo))
In [173]: x

Out[173]: 
n n=

¥

å
1

2

1

In [174]: x.doit()

Out[174]: 
p 2

6

In [175]: x = sympy.Product(n, (n, 1, 7))
In [176]: x

Out[176]: 
n

n
=
Õ

1

7

In [177]: x.doit()
Out[177]: 5040

Note that the sum in the previous example was specified with an upper limit of infinity. It is therefore 
clear that this sum was not evaluated by explicit summation, but was rather computed analytically. SymPy 
can evaluate many summations of this type, including when the summand contains symbolic variables 
other than the summation index, such as in the following example:

In [178]: x = sympy.Symbol("x")
In [179]: sympy.Sum((x)**n/(sympy.factorial(n)), (n, 1, oo)).doit().simplify()
Out[179]: ex -1

�Equations
Equation solving is a fundamental part of mathematics with applications in nearly every branch of science 
and technology, and it is therefore immensely important. SymPy can solve a wide variety of equations 
symbolically, although many equations cannot be solved analytically even in principle. If an equation, 
or a system or equations, can be solved analytically, there is a good chance that SymPy is able to find the 
solution. If not, numerical methods might be the only option. 

In its simplest form, equation solving involves a single equation with a single unknown variable, and 
no additional parameters: for example, finding the value of x that satisfy the second-degree polynomial 
equation x x2 2 3 0+ =– . This equation is of course easy to solve, even by hand, but in SymPy we can use the 
function sympy.solve to find the solutions of x that satisfy this equation using:

In [170]: x = sympy.Symbol("x")
In [171]: sympy.solve(x**2 + 2*x - 3)
Out[171]: -[ ]3 1,

That is, the solutions are x = -3 and x = 1. The argument to the sympy.solve function is an expression 
that will be solved under the assumption that it equals zero. When this expression contains more than one 
symbol, the variable that is to be solved for must be given as a second argument. For example,

In [172]: a, b, c = sympy.symbols("a, b, c")
In [173]: sympy.solve(a * x**2 + b * x + c, x)

Out[173]: 
1

2
4

1

2
42 2

a
b ac b

a
b ac b- + - +( ) - + - +( )é

ëê
ù
ûú

,
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and in this case the resulting solutions are expressions that depend on the symbols representing the 
parameters in the equation.

The sympy.solve function is also capable of solving other types of equations, for example including 
trigonometric expressions:

In [174]: sympy.solve(sympy.sin(x) - sympy.cos(x), x)

Out[174]: -é
ëê

ù
ûú

3

4

p
,

and equations whose solution can be expressed in terms of special functions:

In [180]: sympy.solve(sympy.exp(x) + 2 * x, x)

Out[180]: - æ
è
ç

ö
ø
÷

é

ë
ê

ù

û
úLambertW

1

2

However, when dealing with general equations, even in for a univariate case, it is not uncommon to 
encounter equations that are not solvable algebraically, or that SymPy is unable to solve. In these cases 
SymPy will return a formal solution, which can be evaluated numerically if needed, or raise an error if no 
method is available for that particular type of equation:

In [176]: sympy.solve(x**5 - x**2 + 1, x)

Out[176]: �RootOf ( ) RootOf ( ) RootOf ( ),x x x x x x5 2 5 2 5 21 0 1 1 1 2- + - + - +éë , , , , ,  

RootOf ( ) RootOf ( )x x x x5 2 5 21 3 1 4- + - + ùû, , ,

In [177]: sympy.solve(sympy.tan(x) + x, x)
---------------------------------------------------------------------------
NotImplementedError                       Traceback (most recent call last)
...
NotImplementedError: multiple generators [x, tan(x)] No algorithms are implemented to solve 
equation x + tan(x)

Solving a system of equations for more than one unknown variable in SymPy is a straightforward 
generalization of the procedure used for univariate equations. Instead of passing a single expression as first 
argument to sympy.solve, a list of expressions that represent the system of equations is used, and in this 
case the second argument should be a list of symbols to solve for. For example, the following two examples 
demonstrate how to solve two systems that are linear and nonlinear equations in x and y, respectively:

In [178]: eq1 = x + 2 * y – 1
     ...: eq2 = x - y + 1
In [179]: sympy.solve([eq1, eq2], [x, y], dict=True)

Out[179]: x y: , :-ì
í
î

ü
ý
þ

é

ë
ê

ù

û
ú
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3

2

3
In [180]: eq1 = x**2 - y
     ...: eq2 = y**2 - x
In [181]: sols = sympy.solve([eq1, eq2], [x, y], dict=True)
In [182]: sols

Out[182]: x y x y x
i

y
i

x
i

: , : , : , : , : , : , :0 0 1 1
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Note that in both these examples, the function sympy.solve returns a list where each element 
represents a solution to the equation system. The optional keyword argument dict = True was also used, to 
request that each solution is return in dictionary format, which maps the symbols that have been solved for 
to their values. This dictionary can conveniently be used in, for example, calls to subs, which is used in the 
following code that checks that each solution indeed satisfies the two equations:

In [183]: [eq1.subs(sol).simplify() == 0 and eq2.subs(sol).simplify() == 0 for sol in sols]
Out[183]: [True, True, True, True]

�Linear Algebra
Linear algebra is another fundamental branch of mathematics with important applications throughout 
scientific and technical computing. It concerns vectors, vector spaces, and linear mappings between vector 
spaces, which can be represented as matrices. In SymPy we can represent vectors and matrices symbolically 
using the sympy.Matrix class, whose elements can in turn be represented by numbers, symbols, or even 
arbitrary symbolic expressions. To create a matrix with numerical entries we can, as in the case of NumPy 
arrays in Chapter 2, pass a Python list to sympy.Matrix:

In [184]: sympy.Matrix([1,2])

Out[184]: 
1

2

é

ë
ê
ù

û
ú

In [185]: sympy.Matrix([[1,2]])
Out[185]: 1 2[ ]
In [186]: sympy.Matrix([[1, 2], [3, 4]])

Out[186]: 
1 2

3 4

é
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ê
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û
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As this example demonstrates, a single list generates a column vector, while a matrix requires a  
nested list of values. Note that unlike the multidimensional arrays in NumPy discussed in Chapter 2, the 
sympy.Matrix object in SymPy is only for two-dimensional arrays, that is, matrices. Another way of creating 
new sympy.Matrix objects is to pass as arguments the number of rows, the number of columns, and a 
function that takes the row and column index as arguments and returns the value of the corresponding 
element:

In [187]: sympy.Matrix(3, 4, lambda m, n: 10 * m + n)

Out[187]: 

0 1 2 3

10 11 12 13

20 21 22 23
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The most powerful features of SymPy’s matrix objects, which distinguish it from for example NumPy 
arrays, are of course that its elements themselves can be symbolic expressions. For example, an arbitrary  
2x2 matrix can be represented with a symbolic variable for each of its elements:

In [188]: a, b, c, d = sympy.symbols("a, b, c, d")
In [189]: M = sympy.Matrix([[a, b], [c, d]])
In [190]: M

Out[190]: 
a b

c d
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http://dx.doi.org/10.1007/978-1-4842-0553-2_2
http://dx.doi.org/10.1007/978-1-4842-0553-2_2
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and such matrices can naturally also be used in computations, which then remains parameterized with the 
symbolic values of the elements. The usual arithmetic operators are implemented for matrix objects, but 
note that multiplication operator * in this case denotes matrix multiplication:

In [191]: M * M

Out[191]: 
a bc ab bd

ac cd bc d
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2

+ +
+ +
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In [192]: x = sympy.Matrix(sympy.symbols("x_1, x_2"))
In [194]: M * x

Out[194]: 
ax bx

cx dx
1 2

1 2
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In addition to arithmetic operations, many standard linear algebra operations on vectors and matrices 
are also implemented as SymPy functions and methods of the sympy.Matrix class. Table 3-4 gives a 
summary of frequently used linear-algebra related functions (see the docstring for sympy.Matrix for a 
complete list), and SymPy matrices can also be operated in an element-oriented fashion using indexing and 
slicing operations that closely resembles those discussed for NumPy arrays in Chapter 2.

Table 3-4.  Selected functions and methods for operating on SymPy matrices

Function / Method Description

transpose / T Compute the transpose of a matrix.

adjoint / H Compute the adjoint of a matrix.

trace Compute the trace (sum of diagonal elements) of a matrix.

det Compute the determinant of a matrix.

inv Compute the inverse of a matrix.

LUdecomposition Compute the LU decomposition of a matrix.

LUsolve Solve a linear system of equations on the form Mx b= , for the unknown vector x, 
using LU factorization.

QRdecomposition Compute the QR decomposition of a matrix.

QRsolve Solve a linear system of equations on the form Mx b= , for the unknown vector x, 
using QR factorization.

diagonalize Diagonalize a matrix M, such that it can be written on the form D P MP= -1 , where 
D is diagonal.

norm Compute the norm of a matrix.

nullspace Compute a set of vectors that spans the null space of a matrix.

rank Compute the rank of a matrix.

singular_values Compute the singular values of a matrix.

solve Solve a linear system of equations on the form Mx b= .

http://dx.doi.org/10.1007/978-1-4842-0553-2_2
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As an example of a problem that can be solved with symbolic linear algebra using SymPy, but which 
is not directly solvable with purely numerical approaches, consider the following parameterized linear 
equation system:

x p y b+ = 1 ,

q x y b+ = 2 ,

which we would like to solve for the unknown variables x and y. Here p, q, b
1
 and b

2
 are unspecified 

parameters. On matrix form, we can write these two equations as
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With purely numerical methods, we would have to choose particular values of the parameters p and 
q before we could begin to solve this problem, for example, using an LU factorization (or by computing 
the inverse) of the matrix on the left-hand side of the equation. With a symbolic computing approach, on 
the other hand, we can directly proceed with computing the solution, as if we carried out the calculation 
analytically by hand. With SymPy, we can simply define symbols for the unknown variables and parameters, 
and setup the required matrix objects:

In [195]: p, q = sympy.symbols("p, q")
In [196]: M = sympy.Matrix([[1, p], [q, 1]])
In [203]: M

Out[203]: 
1

1

p

q
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In [197]: b = sympy.Matrix(sympy.symbols("b_1, b_2"))
In [198]: b
Out[198]: b b1 2[ ]

and then use, for example, the LUsolve method to solve the linear equation system:

In [199]: x = M.LUsolve(b)
In [200]: x

Out[200]: 
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Alternatively, we could also directly compute the inverse of the matrix M, and multiply it with the vector b:

In [201]: x = M.inv() * b
In [202]: x

Out[202]: 
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However, computing the inverse of a matrix is more difficult than performing the LU factorization, so if 
solving the equation Mx b=  is the objective, as it was here, then using LU factorization is more efficient. This 
becomes particularly noticeable for larger equation systems. With both methods considered here, we obtain 
a symbolic expression for the solution that is trivial to evaluate for any parameter values, without having to 
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recompute the solution. This is the strength of symbolic computing, and an example of how it sometimes 
can excel over direct numerical computing. The example considered here could of course also be solved 
easily by hand, but as the number of equations and unspecified parameters grow, analytical treatment by 
hand quickly becomes prohibitively lengthy and tedious. With the help of a computer algebra system such as 
SymPy, we can push the limits of which problems can be treated analytically.

�Summary
This chapter introduced computer-assisted symbolic computing using Python and the SymPy library. 
Although analytical and numerical techniques are often considered separately, it is a fact that analytical 
methods underpin everything in computing, and are essential in developing algorithms and numerical 
methods. Whether analytical mathematics is carried by hand, or using a computer algebra system such as 
SymPy, it is an essential tool for computational work. The view and approach that I would like to encourage 
is therefore the following: analytical and numerical methods are closely intertwined, and it is often 
worthwhile to start analyzing a computational problem with analytical and symbolic methods. When such 
methods turn out to be unfeasible, it is time to resort to numerical methods. However, by directly applying 
numerical methods to a problem, before analyzing it analytically, it is likely that one ends up solving a more 
difficult computational problem than is really necessary.

�Further Reading
For a quick and short introduction to SymPy, see, for example, Instant SymPyStarter. The official  
SymPy documentation also provides a great tutorial for getting started with SymPy. It is available at  
http://docs.sympy.org/latest/tutorial/index.html.

�References
Lamy, R. (2013). Instant SymPy Starter. Mumbai: Packt.

http://docs.sympy.org/latest/tutorial/index.html
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Chapter 4

Plotting and Visualization

Visualization is a universal tool for investigating and communicating results of computational studies, and it 
is hardly an exaggeration to say that the end product of nearly all computations – be it numeric or symbolic 
– is a plot or a graph of some sort. It is when visualized in graphical form that knowledge and insights can be 
most easily gained from computational results. Visualization is therefore a tremendously important part of 
the workflow in all fields of computational studies.

In the scientific computing environment for Python, there are a number of high-quality visualization 
libraries. The most popular general-purpose visualization library is Matplotlib; its main focus is on generating 
static publication-quality 2D and 3D graphs. Many other libraries focus on niche areas of visualization.  
A few prominent examples are Bokeh (http://bokeh.pydata.org) and Plotly (http://plot.ly), which both 
primarily focus on interactivity and web connectivity. Seaborn (http://stanford.edu/~mwaskom/software/
seaborn), which is a high-level plotting library, targets statistical data analysis and is based on the Matplotlib 
library. The Mayavi library (http://docs.enthought.com/mayavi/mayavi) for high-quality 3D visualization 
uses the venerable VTK software (http://www.vtk.org) for heavy-duty scientific visualization. It is also 
worth noting that other VTK-based visualization software, such as Paraview (http://www.paraview.org), is 
scriptable with Python and can also be used from Python applications. In the 3D visualization space there are 
also more recent players, such as VisPy (http://vispy.org), which is an OpenGL-based 2D and  
3D visualization library with great interactivity and connectivity with browser-based environments, such as 
the IPython notebook.

The visualization landscape in the scientific computing environment for Python is vibrant and diverse, 
and it provides ample options for various visualization needs. In this chapter we focus on exploring 
traditional scientific visualization in Python using the Matplotlib library. With traditional visualization, 
I mean plots and figures that are commonly used to visualize results and data in scientific and technical 
disciplines, such as line plots, bar plots, contour plots, colormap plots, and 3D surface plots.

■■ Matplotlib  Matplotlib is a Python library for publication-quality 2D and 3D graphics, with support for a 
variety of different output formats. At the time of writing, the latest version is 1.4.2. More information about 
Matplotlib is available at the project’s web site http://www.matplotlib.org. This web site contains detailed 
documentation and an extensive gallery that showcases the various types of graphs that can be generated 
using the Matplotlib library, together with the code for each example. This gallery is a great source of inspiration 
for visualization ideas, and I highly recommend exploring Matplotlib by browsing this gallery.

http://bokeh.pydata.org/
http://plot.ly/
http://stanford.edu/~mwaskom/software/seaborn
http://stanford.edu/~mwaskom/software/seaborn
http://docs.enthought.com/mayavi/mayavi
http://www.vtk.org/
http://www.paraview.org/
http://vispy.org/
http://www.matplotlib.org/
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There are two common approaches to creating scientific visualizations: using a graphical user interface 
to manually build up graphs, and using a programmatic approach where the graphs are created with code. 
Both approaches have their advantages and disadvantages. In this chapter we will take the programmatic 
approach, and we will explore how to use the Matplotlib API to create graphs and control every aspect of 
their appearance. The programmatic approach is a particularly suitable method for creating graphics for 
scientific and technical applications, and in particular for creating publication-quality figures. An important 
part of the motivation for this is that programmatically created graphics can guarantee consistency across 
multiple figures, can be made reproducible, and can easily be revised and adjusted without having to redo 
potentially lengthy and tedious procedures in a graphical user interface.

Importing Matplotlib
Unlike most Python libraries, Matplotlib actually provides multiple entry points into the library, with 
different application programming interfaces (APIs). Specifically, it provides a stateful API and an object-
oriented API, both provided by the module matplotlib.pyplot. I strongly recommend only using the 
object-oriented approach, and the remainder of this chapter will solely focus on this part of Matplotlib.1

To use the object-oriented Matplotlib API, we first need to import its Python modules. In the following, 
we will assume that Matplotlib is imported using the following standard convention:

In [1]: %matplotlib inline
In [2]: import matplotlib as mpl
In [3]: import matplotlib.pyplot as plt
In [4]: from mpl_toolkits.mplot3d.axes3d import Axes3D

The first line is assuming that we are working in an IPython environment, and more specifically in the 
IPython notebook or the IPython QtConsole. The IPython magic command %matplotlib inline configures 
the Matplotlib to use the “inline” back end, which results in the created figures being displayed directly in, 
for example, the IPython notebook, rather than in a new window. The statement import matplotlib as 
mpl imports the main Matplotlib module, and the import statement import matplotlib.pyplot as plt is 
for convenient access to the submodule matplotlib.pyplot that provides the functions that we will use to 
create new figure instances.

Throughout this chapter we also make frequent use of the NumPy library, and as in Chapter 2, we 
assume that NumPy is imported using:

In [5]: import numpy as np

and we also use the SymPy library, imported as:

In [6]: import sympy

Getting Started
Before we delve deeper into the details of how to create graphics with Matplotlib, we begin here with a quick 
example of how to create a simple but typical graph. We also cover some of the fundamental principles of the 
Matplotlib library, to build up an understanding for how graphics can be produced with the library.

1Although the stateful API may be convenient and simple for small examples, the readability and maintainability of code 
written for stateful APIs scales poorly, and the context-dependent nature of such code makes it hard to rearrange or reuse. 
I therefore recommend to avoid it altogether, and to only use the object-oriented API.

http://dx.doi.org/10.1007/978-1-4842-0553-2_2
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A Figure can contain multiple Axes instances, for example, to show multiple panels in a figure or to 
show insets within another Axes instance. An Axes instance can manually be assigned to an arbitrary region 
of a figure canvas; or, alternatively, Axes instances can be automatically added to a figure canvas using one 
of several layout managers provided by Matplotlib. The Axes instance provides a coordinate system that can 
be used to plot data in a variety of plot styles, including line graphs, scatter plots, bar plots, and many other 
styles. In addition, the Axes instance also determines how the coordinate axes are displayed, for example, 
with respect to the axis labels, ticks and tick labels, and so on. In fact, when working with Matplotlib’s object-
oriented API, most functions that are needed to tune the appearance of a graph are methods of the Axes class.

As a simple example for getting started with Matplotlib, say that we would like to graph the function 
y x x x( ) = + +3 25 10, together with its first and second derivative, over the range xÎ -[ ]5 2, . To do this we first 
create NumPy arrays for the x range, and then compute the three functions we want to graph. When the data 
for the graph is prepared, we need to create Matplotlib Figure and Axes instances, then use the plot method 
of the Axes instance to plot the data, and set basic graph properties such as x and y axis labels, using the 
set_xlabel and set_ylabel methods, and generating a legend using the legend method. These steps are 
carried out in the following code, and the resulting graph is shown in Figure 4-2.

In [7]: x = np.linspace(-5, 2, 100)
   ...: y1 = x**3 + 5*x**2 + 10
   ...: y2 = 3*x**2 + 10*x
   ...: y3 = 6*x + 10
   ...:
   ...: fig, ax = plt.subplots()
   ...: ax.plot(x, y1, color="blue", label="y(x)")
   ...: ax.plot(x, y2, color="red", label="y'(x)")
   ...: ax.plot(x, y3, color="green", label="y''(x)")
   ...: ax.set_xlabel("x")
   ...: ax.set_ylabel("y")
   ...: ax.legend()

Figure 4-1.  Illustration of the arrangement of a Matplotlib Figure instance and an Axes instance. The Axes 
instance provides a coordinate system for plotting, and the Axes instance itself is assigned to a region within 
the figure canvas. The figure canvas has a simple coordinate system where (0, 0) is the lower-left corner, and 
(1,1) is the upper right corner. This coordinate system is only used when placing elements, such as an Axes, 
directly on the figure canvas

A graph in Matplotlib is structured in terms of a Figure instance and one or more Axes instances 
within the figure. The Figure instance provides a canvas area for drawing, and the Axes instances provide 
coordinate systems that are assigned to fixed regions of the total figure canvas; see Figure 4-1.
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Here we used the plt.subplots function to generate Figure and Axes instances. This function can be 
used to create grids of Axes instances within a newly created Figure instance, but here it was merely used as 
a convenient way of creating a Figure and an Axes instance in one function call. Once the Axes instance is 
available, note that all the remaining steps involve calling methods of this Axes instance. To create the actual 
graphs we use ax.plot, which takes as first and second arguments NumPy arrays with numerical data for the 
x and y values of the graph, and it draws a line connecting these data points. We also used the optional color 
and label keyword arguments to specify the color of each line, and assign a text label to each line that is used 
in the legend. These few lines of code are enough to generate the graph we set out to produce, but as a bare 
minimum we should also set labels on the x and y axis and, if suitable, add a legend for the curves we have 
plotted. The axis labels are set with ax.set_xlabel and ax.set_ylabel methods, which takes as argument 
a text string with the corresponding label. The legend is added using the ax.legend method, which does not 
require any arguments in this case since we used the label keyword argument when plotting the curves.

These are the typical steps required to create a graph using Matplotlib. While this graph, Figure 4-2, is 
complete and fully functional, there is certainly room for improvements in many aspects of its appearance. 
For example, to meet publication or production standards, we may need to change the font and the font size 
of the axis labels, the tick labels, and the legend, and we should probably move the legend to a part of the 
graph where it does not interfere with the curves we are plotting. We might even want to change the number 
of axis ticks and label, and add annotations and additional help lines to emphasize certain aspects of the 
graph, and so on. With a few changes along these lines the figure may, for example, appear like in Figure 4-3, 
which is considerably more presentable. In the remainder of this chapter we look at how to fully control the 
appearance of the graphics produced using Matplotlib.

Figure 4-3.  Revised version of Figure 4-2

Figure 4-2.  Example of a simple graph created with Matplotlib
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�Interactive and Noninteractive Modes
The Matplotlib library is designed to work well with many different environments and platforms. As such, 
the library does not only contain routines for generating graphs, but it also contains support for displaying 
graphs in different graphical environments. To this end, Matplotlib provides back ends for generating 
graphics in different formats (for example, PNG, PDF, Postscript, and SVG), and for displaying graphics in 
a graphical user interface using variety of different widget toolkits (for example, Qt, GTK, wxWidgets and 
Cocoa for Mac OS X) that are suitable for different platforms.

Which back end to use can be selected in the Matplotlib resource file,2 or using the function mpl.use, 
which must be called right after importing matplotlib, before importing the matplotlib.pyplot module. 
For example, to select the Qt4Agg back end, we can use:

import matplotlib as mpl
mpl.use('qt4agg')
import matplotlib.pyplot as plt

The graphical user interface for displaying Matplotlib figures, as shown in Figure 4-4 is useful for 
interactive use with Python script files or the IPython console, and it allows to interactively explore figures, 
for example, by zooming and panning. When using an interactive back end, which displays the figure 
in a graphical user interface, it is necessary to call the function plt.show to get the window to appear 
on the screen. By default, the plt.show call will hang until the window is closed. For a more interactive 
experience, we can activate interactive mode by calling the function plt.ion. This instructs Matplotlib to 
take over the GUI event loop, and show a window for a figure as soon as it is created, and returning the 
control flow to the Python or IPython interpreter. To have changes to a figure take effect, we need to issue a 
redraw command using the function plt.draw. We can deactivate the interactive mode using the function 
plt.ioff, and we can use the function mpl.is_interactive to check if Matplotlib is in interactive or 
noninteractive mode.

2The Matplotlib resource file, matplotlibrc, can be used to set default values of many Matplotlib parameters, including 
which back end to use. The location of the file is platform dependent. For details, see http://matplotlib.org/users/
customizing.html.

http://matplotlib.org/users/customizing.html
http://matplotlib.org/users/customizing.html
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While the interactive graphical user interfaces has unique advantages, when working the IPython 
Notebook or Qtconsole, it is often more convenient to display Matplotlib-produced graphics embedded 
directly in the notebook. This behavior is activated using the IPython command %matplotlib inline, which 
activates the “inline back end” provided for IPython. This configures Matplotlib to use a noninteractive 
back end to generate graphics images, which is then displayed as static images in, for example, the IPython 
Notebook. The IPython “inline back end” for Matplotlib can be fine tuned using the IPython %config 
command. For example, we can select output format for the generated graphics using the InlineBackend.
figure_format option,3 which, for example, we can set to 'svg' to generate SVG graphics rather than PNG files:

In [8]: %matplotlib inline
In [9]: %config InlineBackend.figure_format='svg'

With this approach the interactive aspect of the graphical user interface is lost (for example, zooming 
and panning), but embedding the graphics directly in the notebook has many other advantages. For 
example, keeping the code that was used to generate a figure together with the resulting figure in the same 
document eliminates the need for rerunning the code to display a figure, and the interactive nature of the 
IPython Notebook itself replaces some of the interactivity of Matplotlib’s graphical user interface.

Figure 4-4.  A screenshot of the Matplotlib graphical user interface for displaying figures, using the Qt4 back 
end on Mac OS X. The detailed appearance varies across platforms and back ends, but the basic functionality 
is the same

3For Max OS X users, %config InlineBackend.figure_format='retina' is another useful option, which improves 
the quality of the Matplotlib graphics when viewed on retina displays.
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When using the IPython inline back end, it is not necessary to use plt.show and plt.draw, since the 
IPython rich display system is responsible for triggering the rendering and the displaying of the figures. 
In this book, I will assume that code examples are executed in the IPython notebooks, and the calls to 
the function plt.show are therefore not in the code examples. When using an interactive back end, it is 
necessary to add this function call at the end of each example.

Figure
As introduced in the previous section, the Figure object is used in Matplotlib to represent a graph. In 
addition to providing a canvas on which, for example, Axes instances can be placed, the Figure object 
also provides methods for performing actions on figures, and it has several attributes that can be used to 
configure the properties of a figure.

A Figure object can be created using the function plt.figure, which takes several optional keyword 
arguments for setting figure properties. In particular, it accepts the figsize keyword argument, which 
should be assigned to a tuple on the form (width, height), specifying the width and height of the figure 
canvas in inches. It can also be useful to specify the color of the figure canvas by setting the facecolor 
keyword argument.

Once a Figure is created, we can use the add_axes method to create a new Axes instance and assign 
it to a region on the figure canvas. The add_axes takes one mandatory argument: a list containing the 
coordinates of the lower-left corner and the width and height of the Axes in the figure canvas coordinate 
system, on the format (left, bottom, width, height).4 The coordinates and the width and height of the 
Axes object are expressed as fractions of total canvas width and height, see Figure 4-1. For example, an Axes 
object that completely fills the canvas corresponds to (0, 0, 1, 1), but this leaves no space for axis labels 
and ticks. A more practical size could be (0.1, 0.1, 0.8, 0.8), which corresponds to a centered Axes 
instance that covers 80% of the width and height of the canvas. The add_axes method takes a large number 
of keyword arguments for setting properties of the new Axes instance. These will be described in more 
details later in this chapter, when we discuss the Axes object in depth. However, one keyword argument 
that is worth to emphasize here is axisbg, with which we can assign a background color for the Axes object. 
Together with the facecolor argument of plt.figure, this allows us to select colors of both the canvas and 
the regions covered by Axes instances.

With the Figure and Axes objects obtained from plt.figure and fig.add_axes, we have the necessary 
preparations to start plotting data using the methods of the Axes objects. For more details on this, see the 
next section of this chapter. However, once the required plots have been created, there are more methods in 
the Figure objects that are important in graph creation workflow. For example, to set an overall figure title, 
we can use suptitle, which takes a string with the title as argument. To save a figure to a file, we can use the 
savefig method. This method takes a string with the output filename as first argument, as well as several 
optional keyword arguments. By default, the output file format will be determined from the file extension of 
the filename argument, but we can also specify the format explicitly using the format argument. The available 
output formats depend on which Matplotlib back end is used, but commonly available options are PNG, PDF, 
EPS, and SVG format. The resolution of the generated image can be set with the dpi argument. DPI stands for 
“dots per inch,” and since the figure size is specified in inches using the figsize argument, multiplying these 
numbers gives the output image size in pixels. For example, with figsize=(8, 6) and dpi=100, the size of the 
generated image is 800 x 600 pixels. The savefig method also takes some arguments that are similar to those 
of the plt.figure function, such as the facecolor argument. Note that even though the facecolor argument 
is used with a plt.figure, it also needs to be specified with savefig for it to apply to the generated image file. 
Finally, the figure canvas can also be made transparent using the transparent=True argument to savefig. 
The result is shown in Figure 4-5.

4An alternative to passing a coordinate and size tuple to add_axes, is to pass an already existing Axes instance.
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In [10]: fig = plt.figure(figsize=(8, 2.5), facecolor="#f1f1f1")
    ...:
    ...: # axes coordinates as fractions of the canvas width and height
    ...: left, bottom, width, height = 0.1, 0.1, 0.8, 0.8
    ...: ax = fig.add_axes((left, bottom, width, height), axisbg="#e1e1e1")
    ...:
    ...: x = np.linspace(-2, 2, 1000)
    ...: y1 = np.cos(40 * x)
    ...: y2 = np.exp(-x**2)
    ...:
    ...: ax.plot(x, y1 * y2)
    ...: ax.plot(x, y2, 'g')
    ...: ax.plot(x, -y2, 'g')
    ...: ax.set_xlabel("x")
    ...: ax.set_ylabel("y")
    ...:
    ...: fig.savefig("graph.png", dpi=100, facecolor="#f1f1f1")

Figure 4-5.  Graph showing the result of setting the size of a figure with figsize, adding a new Axes instance 
with add_axes, setting the background colors of the Figure and Axes objects using facecolor and axisbg, 
and finally saving the figure to a file using savefig

Axes
The Figure object introduced in the previous section provides the backbone of a Matplotlib graph, but 
all the interesting content is organized within or around Axes instances. We have already encountered 
Axes objects on a few occasions earlier in this chapter. The Axes object is central to most plotting activities 
with the Matplotlib library. It provides the coordinate system in which we can plot data and mathematical 
functions, and in addition it contains the axis objects that determine where the axis labels and the axis ticks 
are placed. The functions for drawing different types of plots are also methods of this Axes class. In this 
section we first explore different types of plots that can be drawn using Axes methods, and how to customize 
the appearance of the x and y axis and the coordinate systems used with an Axes object.

We have seen how new Axes instances can be added to a figure explicitly using the add_axes method. 
This is a flexible and powerful method for placing Axes objects at arbitrary positions, which has several 
important applications, as we will see later in the chapter. However, for most common use-cases, it is 
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tedious to specify explicitly the coordinates of the Axes instances within the figure canvas. This is especially 
true when using multiple panels of Axes instances within a figure, for example, in a grid layout. Matplotlib 
provides several different Axes layout managers, which create and place Axes instances within a figure 
canvas following different strategies. Later in this chapter we look into more detail of how to use such layout 
managers. However, to facilitate the forthcoming examples, we here briefly look at one of these layout 
managers: the plt.subplots function. Earlier in this chapter, we already used this function to conveniently 
generate new Figure and Axes objects in one function call. However, the plt.subplots function is also 
capable of filling a figure with a grid of Axes instances, which is specified using the first and the second 
arguments, or alternatively with the nrows and ncols arguments, which, as the names implies, creates a 
grid of Axes objects, with the given number of rows and columns. For example, to generate a grid of Axes 
instances in a newly created Figure object, with three rows and two columns, we can use

fig, axes = plt.subplots(nrows=3, ncols=2)

Here, the function plt.subplots returns a tuple (fig, axes), where fig is a figure and axes is a 
NumPy array of size (ncols, nrows), in which each element is an Axes instance that has been appropriately 
placed in the corresponding figure canvas. At this point we can also specify that columns and/or rows should 
share x and y axes, using the sharex and sharey arguments, which can be set to True or False.

The plt.subplots function also takes two special keyword arguments fig_kw and subplot_kw, which 
are dictionaries with keyword arguments that are used when creating the Figure and Axes instances, 
respectively. This allows us to set and retain full control of the properties of the Figure and Axes objects with 
plt.subplots a similar way as is possible when directly using plt.figure and the make_axes method.

Plot Types
Effective scientific and technical visualization of data requires a wide variety of graphing techniques. 
Matplotlib implements many types of plotting techniques as methods of the Axes object. For example, in 
the previous examples we have already used the plot method, which draws curves in the coordinate system 
provided by the Axes object. In the following sections we explore some of Matplotlib’s plotting functions in 
more depth by using these functions in example graphs. A summary of commonly used 2D plot functions 
is shown in Figure 4-6. Other types of graphs, such as color maps and 3D graphs, are discussed later in this 
chapter. All plotting functions in Matplotlib expect data as NumPy arrays as input, typically as arrays with x 
and y coordinates as the first and second arguments. For details, see the docstrings for each method shown 
in Figure 4-6, using, for example, help(plt.Axes.bar).
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Line Properties
The most basic type of plot is the simple line plot. It may, for example, be used to depict the graph of a 
univariate function, or to plot data as a function of a control variable. In line plots, we frequently need 
to configure properties of the lines in the graph. For example the line width, line color, line style (solid, 
dashed, dotted, etc.). In Matplotlib we set these properties with keyword arguments to the plot methods, 
such as for example plot, step, bar. A few of these graph types are shown in Figure 4-6. Many of the plot 
methods has their own specific arguments, but basic properties such as colors and line width are shared 
among most plotting methods. These basic properties and the corresponding keyword arguments are 
summarized in Table 4-1.

Table 4-1.  Basic line properties and their corresponding argument names for use with the Matplotlib plotting 
methods

Argument Example values Description

color A color specification can be a string with  
a color name, such as “red,” “blue,” etc.,  
or a RGB color code on the form “#aabbcc.”

A color specification.

alpha Float number between 0.0 (completely 
transparent) to 1.0 (completely opaque).

The amount of transparency.

linewidth, lw Float number. The width of a line.

linestyle, ls ‘-‘ – solid
‘--’ – dashed
‘:’ – dotted
‘.-’ – dash-dotted

The style of the line, i.e., whether the 
line is to be draw as a solid line, or if 
it should be, for example, dotted or 
dashed.

Figure 4-6.  Overview of selected 2D graph types. The name of the Axes method for generating each type graph 
is shown together with the corresponding graph
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To illustrate the use of these properties and arguments, consider the following code, which draws 
horizontal lines with various values of the line width, line style, marker symbol, color and size. The resulting 
graph is shown in Figure 4-7.

In [11]: x = np.linspace(-5, 5, 5)
    ...: y = np.ones_like(x)
    ...:
    ...: def axes_settings(fig, ax, title, ymax):
    ...:     ax.set_xticks([])
    ...:     ax.set_yticks([])
    ...:     ax.set_ylim(0, ymax+1)
    ...:     ax.set_title(title)
    ...:
    ...: fig, axes = plt.subplots(1, 4, figsize=(16,3))
    ...:
    ...: # Line width
    ...: linewidths = [0.5, 1.0, 2.0, 4.0]
    ...: for n, linewidth in enumerate(linewidths):
    ...:     axes[0].plot(x, y + n, color="blue", linewidth=linewidth)
    ...: axes_settings(fig, axes[0], "linewidth", len(linewidths))
    ...:
    ...: # Line style
    ...: linestyles = ['-', '-.', ':']
    ...: for n, linestyle in enumerate(linestyles):
    ...:     axes[1].plot(x, y + n, color="blue", lw=2, linestyle=linestyle)
    ...: # custom dash style
    ...: line, = axes[1].plot(x, y + 3, color="blue", lw=2)
    ...: length1, gap1, length2, gap2 = 10, 7, 20, 7
    ...: line.set_dashes([length1, gap1, length2, gap2])
    ...: axes_settings(fig, axes[1], "linetypes", len(linestyles) + 1)

    ...: # marker types
    ...: markers = ['+', 'o', '*', 's', '.', '1', '2', '3', '4']

Argument Example values Description

marker +, o, * = cross, circle, star
s = square
. = small dot
1, 2, 3, 4, ... = triangle-shaped symbols  
with different angles.

Each data point, whether or not it 
is connected with adjacent data 
points, can be represented with a 
marker symbol as specified with this 
argument.

markersize Float number. The marker size.

makerfacecolor Color specification (see above). The fill color for the marker.

markeredgewidth Float number. The line width of the marker edge.

markeredgecolor Color specification (see above). The marker edge color.

Table 4-1.  (continued)
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    ...: for n, marker in enumerate(markers):
    ...:     # lw = shorthand for linewidth, ls = shorthand for linestyle
    ...:     axes[2].plot(x, y + n, color="blue", lw=2, ls='*', marker=marker)
    ...: axes_settings(fig, axes[2], "markers", len(markers))
    ...:
    ...: # marker size and color
    ...: markersizecolors = [(4, "white"), (8, "red"), (12, "yellow"), (16, "lightgreen")]
    ...: for n, (markersize, markerfacecolor) in enumerate(markersizecolors):
    ...:     axes[3].plot(x, y + n, color="blue", lw=1, ls='-',
    ...:                  marker='o', markersize=markersize,
    ...:                  markerfacecolor=markerfacecolor, markeredgewidth=2)
    ...: axes_settings(fig, axes[3], "marker size/color", len(markersizecolors))

Figure 4-7.  Graphs showing the result of setting the line properties: line width, line style, marker type and 
marker size, and color

In a practical example, using different colors, line widths, and line styles are important tools for making 
a graph easily readable. In a graph with a large number of lines, we can use a combination of colors and line 
styles to make each line uniquely identifiable, for example, via a legend. The line width property is best used 
to give emphasis to important lines. Consider the following example, where the function sin(x) is plotted 
together with its first few series expansions around x = 0, as shown in Figure 4-8.

In [12]: # a symbolic variable for x, and a numerical array with specific values of x
    ...: sym_x = sympy.Symbol("x")
    ...: x = np.linspace(-2 * np.pi, 2 * np.pi, 100)
    ...:
    ...: def sin_expansion(x, n):
    ...:     """
    ...:     Evaluate the nth order Talyor series expansion
    ...:     of sin(x) for the numerical values in the array x.
    ...:     """
    ...:     �return sympy.lambdify(sym_x, sympy.sin(sym_x).series(n=n+1).removeO(),  

'numpy')(x)
    ...:
    ...: fig, ax = plt.subplots()
    ...:
    ...: ax.plot(x, np.sin(x), linewidth=4, color="red", label='exact')
    ...:
    ...: colors = ["blue", "black"]
    ...: linestyles = [':', '-.', '--']
    ...: for idx, n in enumerate(range(1, 12, 2)):
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    ...:     ax.plot(x, sin_expansion(x, n), color=colors[idx // 3],
    ...:             linestyle=linestyles[idx % 3], linewidth=3,
    ...:             label="order %d approx." % n)
    ...:
    ...: ax.set_ylim(-1.1, 1.1)
    ...: ax.set_xlim(-1.5*np.pi, 1.5*np.pi)
    ...:
    ...: # place a legend outsize of the Axes
    ...: ax.legend(bbox_to_anchor=(1.02, 1), loc=2, borderaxespad=0.0)
    ...: # make room for the legend to the right of the Axes
    ...: fig.subplots_adjust(right=.75)

Figure 4-8.  Graph for sin(x) together with its Talyor series approximation of the few lowest orders

Legends
A graph with multiple lines may often benefit from a legend, which displays a label along each line type 
somewhere within the figure. As we have seen in previous example, a legend may be added to an Axes 
instance in a Matplotlib figure using the legend method. Only lines with assigned labels are included in the 
legend (to assign a label to a line use the label argument of, for example, Axes.plot). The legend method 
accepts a large number of optional arguments. See help(plt.legend) for details. Here we emphasize a 
few of the more useful arguments. In the example in the previous section we used the loc argument, which 
allows us to specify where in the Axes area the legend is to be added: loc=1 for upper right corner, loc=2 for 
upper left corner, loc=3 for the lower-left corner, and loc=4 for lower right corner, as shown in Figure 4-9.



Chapter 4 ■ Plotting and Visualization

102

In the example of the previous section, we also used the bbox_to_anchor, which helps the legend be 
placed at an arbitrary location within the figure canvas. The bbox_to_anchor argument takes the value of a 
tuple on the form (x, y), where x and y are the canvas coordinates within the Axes object. That is, the point 
(0, 0) corresponds to the lower-left corner, and (1, 1) corresponds to the upper right corner. Note that 
x and y can be smaller that 0 and larger than 1 in this case, which indicates that the legend is to be placed 
outside the Axes area, as was used in the previous section.

By default, all lines in the legend are shown in a vertical arrangement. Using the ncols argument, it is 
possible to split the legend labels into multiple columns, as illustrated in Figure 4-10.

Figure 4-9.  Legend at different positions within an Axes instance, specified using the loc argument ot the 
method legend

Figure 4-10.  Legend displayed outside the Axes object, and shown with 4 columns instead the a single one, 
here using ax.legend(ncol=4, loc=3, bbox_to_anchor=(0, 1))

Text Formatting and Annotations
Text labels, titles, and annotations are important components in most graphs, and having full control of, for 
example, the font types and font sizes that are used to render such texts is a basic requirement for producing 
publication-quality graphs. Matplotlib provides several ways of configuring fonts properties. The default 
values can be set in the Matplotlib resource file, and session-wide configuration can be set in the mpl.
rcParams dictionary. This dictionary is a cache of the Matplotlib resource file, and changes to parameters 
within this dictionary are valid until the Python interpreter is restarted and Matplotlib is imported again. 
Parameters that are relevant to how text is displayed includes, for example, 'font.family' and 'font.size'.
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■■ Tip  Try print(mpl.rcParams) to get a list of possible configuration parameters and their current values. 
Updating a parameter is as simple as assigning a new value to the corresponding item in the dictionary  
mpl.rcParams, for example mpl.rcParams['savefig.dpi'] = 100. See also the mpl.rc function, which can 
be used to update the mpl.rcParams dictionary, and the mpl.rcdefaults to restore to the default values.

It is also possible to set text properties on a case-to-case basis, by passing a set of standard keyword 
arguments to functions that creates text labels in a graph. Most Matplotlib functions that deal with text 
labels, in on way or another, accepts the keyword arguments summaried in Table 4-2 (this list is an 
incomplete selection of common arguments, see help(mpl.text.Text) for a complete reference). For 
example, these arguments can be used with the method Axes.text, which create a new text label at a given 
coordinate. They may also be used with for example set_title, set_xlabel, set_ylabel, etc. For more 
information on these methods see the next section.

Table 4-2.  Summary of selected font properties and the corresponding keyword arguments

Argument Description

fontsize The size of the font, in points.

family The font type.

backgroundcolor Color specification for the background of the text label.

color Color specification for the font color.

alpha Transparency of the font color.

rotation Rotation angle of the text label.

In scientific and technical visualization, it is clearly important to be able to render mathematical 
symbols and expressions in text labels. Matplotlib provides excellent support for this through LaTeX markup 
within its text labels: Any text label in Matplotlib can include LaTeX math by enclosing it within $ signs: for 
example "Regular text: $f(x)=1-x^2$". By default, Matplotlib uses an internal LaTeX rendering, which 
supports a subset of LaTeX language. However, by setting the configuration parameter mpl.rcParams["text.
usetex"]=True it is also possible to use an external full-featured LaTeX engine (if it is available on your system).

When embedding LaTeX code in strings in Python there is a common stumbling block: Python uses 
\ as escape character, while in LaTeX it is used to denote the start of commands. To prevent the Python 
interpreter from escaping characters in strings containing LaTeX expressions it is convenient to use raw 
strings, which are literal string expressions that are prepended with and an r, for example: r"$\int f(x) dx$" 
and r'$x_{\rm A}$'.

The following example demonstrates how to add text labels and annotations to a Matplotlib figure using 
ax.text and ax.annotate, as well as how to render a text label that includes an equation that is typeset in 
LaTeX. The resulting graph is shown in Figure 4-11.

In [13]: fig, ax = plt.subplots(figsize=(12, 3))
    ...:
    ...: ax.set_yticks([])
    ...: ax.set_xticks([])
    ...: ax.set_xlim(-0.5, 3.5)
    ...: ax.set_ylim(-0.05, 0.25)
    ...: ax.axhline(0)
    ...:
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    ...: # text label
    ...: ax.text(0, 0.1, "Text label", fontsize=14, family="serif")
    ...:
    ...: # annotation
    ...: ax.plot(1, 0, "o")
    ...: ax.annotate("Annotation",
    ...:             fontsize=14, family="serif",
    ...:             xy=(1, 0), xycoords="data",
    ...:             xytext=(+20, +50), textcoords="offset points",
    ...:             arrowprops=dict(arrowstyle="->", connectionstyle="arc3, rad=.5"))
    ...:
    ...: # equation
    ...: ax.text(2, 0.1, r"Equation: $i\hbar\partial_t \Psi = \hat{H}\Psi$",
    ...:         fontsize=14, family="serif")

Figure 4-11.  Example demonstrating the result of adding text labels and annotations using ax.text and  
ax.annotation, and including LaTeX formatted equations in a Matplotlib text label

Axis Properties
After having created Figure and Axes objects, plotted the data or functions using some of the many plot 
functions provided by Matplotlib, and customized the appearance of lines and markers – the last major 
aspect of a graph that remains to be configured and fine tuned is the axis instances. A two-dimensional 
graph has two axis objects: for the horizontal x axis and the vertical y axis. Each axis can be individually 
configured with respect to attributes such as the axis labels, the placement of ticks and the tick labels, and 
the location and appearance of the axis itself. In this section we look into detail of how to control these 
aspects of a graph.

Axis labels and titles
Arguably the most important property of an axis, that needs to be set in nearly all cases, is the axis label. 
We can set the axis labels using the set_xlabel and set_ylabel methods: they both take a string with 
the label as first arguments. In addition, the optional labelpad argument specifies the spacing, in units of 
points, from the axis to the label. This padding is occasionally necessary to avoid overlap between the axis 
label and the axis tick labels. The set_xlabel and set_ylabel methods also take additional arguments for 
setting text properties, such as color, fontsize and fontname, as discussed in detail in the previous section. 
The following code, which produces Figure 4-12, demonstrates how to use the set_xlabel and set_ylabel 
methods, and the keyword arguments discussed here.
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In [14]: x = np.linspace(0, 50, 500)
    ...: y = np.sin(x) * np.exp(-x/10)
    ...:
    ...: fig, ax = plt.subplots(figsize=(8, 2), subplot_kw={'axisbg': "#ebf5ff"})
    ...:
    ...: ax.plot(x, y, lw=2)
    ...:
    ...: ax.set_xlabel("x", labelpad=5, fontsize=18, fontname='serif', color="blue")
    ...: ax.set_ylabel("f(x)", labelpad=15, fontsize=18, fontname='serif', color="blue")
    ...: ax.set_title("axis labels and title example", fontsize=16,
    ...:              fontname='serif', color="blue")

Figure 4-12.  Graph demonstrating the result of using set_xlabel and set_ylabel for setting the x and  
y axis labels

In addition to labels on the x and y axis, we can also set a title of an Axes object, using the set_title 
method. This method takes mostly the same arguments as set_xlabel and set_ylabel, with the exception 
of the loc argument, which can be assigned to 'left', 'centered', to 'right', and which dictates that the 
title is to be left aligned, centered, or right aligned.

Axis range
By default, the range of the x and y axis of a Matplotlib is automatically adjusted to the data that is plotted in 
the Axes object. In many cases these default ranges are sufficient, but in some situations it may be necessary 
to explicitly set the axis ranges. In such cases, we can use the set_xlim and set_ylim methods of the Axes 
object. Both these methods take two arguments that specify the lower and upper limit that is to be displayed 
on the axis, respectively. An alternative to set_xlim and set_ylim is the axis method, which, for example, 
accepts the string argument 'tight', for a coordinate range tightly fit the lines it contains, and 'equal', for a 
coordinate range where one unit length along each axis corresponds to the same number of pixels (that is, a 
ratio preserving coordinate system).

It is also possible to use the autoscale method to selectively turn on and off autoscaling, by passing 
True and False as first argument, for the x and/or y axis by setting its axis argument to 'x', 'y', or 'both'. 
The example below shows how to use these methods to control axis ranges. The resulting graphs are shown 
in Figure 4-13.

In [15]: x = np.linspace(0, 30, 500)
    ...: y = np.sin(x) * np.exp(-x/10)
    ...:
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    ...: fig, axes = plt.subplots(1, 3, figsize=(9, 3), subplot_kw={'axisbg': "#ebf5ff"})
    ...:
    ...: axes[0].plot(x, y, lw=2)
    ...: axes[0].set_xlim(-5, 35)
    ...: axes[0].set_ylim(-1, 1)
    ...: axes[0].set_title("set_xlim / set_y_lim")
    ...:
    ...: axes[1].plot(x, y, lw=2)
    ...: axes[1].axis('tight')
    ...: axes[1].set_title("axis('tight')")
    ...:
    ...: axes[2].plot(x, y, lw=2)
    ...: axes[2].axis('equal')
    ...: axes[2].set_title("axis('equal')")

Figure 4-13.  Graphs that show the result of using the set_xlim, set_ylim, and axis methods for setting the 
axis ranges that are shown in a graph

Axis ticks, tick labels, and grids
The final basic property of the axis that remains to be configured is the placement of axis ticks, and the 
placement and the formatting of the corresponding tick labels. The axis ticks is an important part of 
the overall appearance of a graph, and when preparing publication and production-quality graphs, it is 
frequently required to have detailed control over the axis ticks. Matplotlib module mpl.ticker provides 
a general and extensible tick management system that gives full control of the tick placement. Matplotlib 
distinguishes between major ticks and minor ticks. By default, every major tick has a corresponding 
label, and the distances between major ticks may be further marked with minor ticks that do not have 
labels, although this feature must be explicitly turned on. See Figure 4-14 for an illustration of major and 
minor ticks.
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When approaching the configuration of ticks, the most common design target is to determine where the 
major tick with labels should be placed along the coordinate axis. The mpl.ticker module provides classes 
for different tick placement strategies. For example, the mpl.ticker.MaxNLocator can be used to set the 
maximum number ticks (at unspecified locations), the mpl.ticker.MultipleLocator can be used for setting 
ticks at multiples of a given base, and the mpl.ticker.FixedLocator can be used to place ticks at explicitly 
specified coordinates. To change ticker strategy, we can use the set_major_locator and the set_minor_
locator methods in Axes.xaxis and Axes.yaxis. These methods accept an instance of a ticker class defined 
in mpl.ticker, or a custom class that is derived from one of those classes.

When explicitly specifying tick locations we can also use the methods set_xticks and set_yticks, 
which accepts list of coordinates for where to place major ticks. In this case, it is also possible to set custom 
labels for each tick using the set_xticklabels and set_yticklabels, which expects lists of strings to use 
as labels for the corresponding ticks. If possible it is a good idea to use generic tick placement strategies, for 
example, mpl.ticker.MaxNLocator, because they dynamically adjust if the coordinate range is changed, 
while explicit tick placement using set_xticks and set_yticks then would require manual code changes. 
However, when the exact placement of ticks must be controlled, then set_xticks and set_yticks are 
convenient methods.

The code below demonstrates how to change the default tick placement using combinations of the 
methods discussed in the previous paragraphs, and the resulting graphs are shown in Figure 4-15. 

In [16]: x = np.linspace(-2 * np.pi, 2 * np.pi, 500)
    ...: y = np.sin(x) * np.exp(-x**2/20)
    ...:
    ...: fig, axes = plt.subplots(1, 4, figsize=(12, 3))
    ...:
    ...: axes[0].plot(x, y, lw=2)
    ...: axes[0].set_title("default ticks")

    ...: axes[1].plot(x, y, lw=2)
    ...: axes[1].set_title("set_xticks")
    ...: axes[1].set_yticks([-1, 0, 1])
    ...: axes[1].set_xticks([-5, 0, 5])
    ...:
    ...: axes[2].plot(x, y, lw=2)
    ...: axes[2].set_title("set_major_locator")
    ...: axes[2].xaxis.set_major_locator(mpl.ticker.MaxNLocator(4))
    ...: axes[2].yaxis.set_major_locator(mpl.ticker.FixedLocator([-1, 0, 1]))

Figure 4-14.  The difference between major and minor ticks
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    ...: axes[2].xaxis.set_minor_locator(mpl.ticker.MaxNLocator(8))
    ...: axes[2].yaxis.set_minor_locator(mpl.ticker.MaxNLocator(8))
    ...:
    ...: axes[3].plot(x, y, lw=2)
    ...: axes[3].set_title("set_xticklabels")
    ...: axes[3].set_yticks([-1, 0, 1])
    ...: axes[3].set_xticks([-2 * np.pi, -np.pi, 0, np.pi, 2 * np.pi])
    ...: axes[3].set_xticklabels(['$-2\pi$', '$-\pi$', 0, r'$\pi$', r'$2\pi$'])
    ...: x_minor_ticker = mpl.ticker.FixedLocator([-3 * np.pi / 2, -np.pi/2, 0,
    ...:                                           np.pi/2, 3 * np.pi/2])
    ...: axes[3].xaxis.set_minor_locator(x_minor_ticker)
    ...: axes[3].yaxis.set_minor_locator(mpl.ticker.MaxNLocator(4))

Figure 4-15.  Graphs that demonstrate different ways of controlling the placement and appearance of major 
and minor ticks along the x axis and the y axis

A frequently used design element in a graph is grid lines, which are intended to help visually reading of 
values from the graph. Grids and grid lines are closely related to axis ticks, since they are drawn at the same 
coordinate values, and are therefore essentially extensions of the ticks that span across the graph. In Matplotlib, 
we can turn on axis grids using the grid method of an axes object. The grid method takes optional keyword 
arguments that are used to control the appearance of the grid. For example, like many of the plot functions 
in Matplotlib, the grid method accepts the arguments color, linestyle and linewidth, for specifying the 
properties of the grid lines. In addition, it takes argument which and axis, that can be assigned values 'major', 
'minor', and 'both', and 'x', 'y', and 'both', respectively, and which are used to indicate which ticks along 
which axis the given style is to be applied to. If several different styles for the grid lines are required, multiple 
calls to grid can be used, with different values of which and axis. For an example of how to add grid lines and 
how to style them in different ways, see the following example, which produces the graphs shown in Figure 4-16.

In [17]: fig, axes = plt.subplots(1, 3, figsize=(12, 4))
    ...: x_major_ticker = mpl.ticker.MultipleLocator(4)
    ...: x_minor_ticker = mpl.ticker.MultipleLocator(1)
    ...: y_major_ticker = mpl.ticker.MultipleLocator(0.5)
    ...: y_minor_ticker = mpl.ticker.MultipleLocator(0.25)
    ...:
    ...: for ax in axes:
    ...:     ax.plot(x, y, lw=2)
    ...:     ax.xaxis.set_major_locator(x_major_ticker)
    ...:     ax.yaxis.set_major_locator(y_major_ticker)
    ...:     ax.xaxis.set_minor_locator(x_minor_ticker)
    ...:     ax.yaxis.set_minor_locator(y_minor_ticker)
    ...:
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    ...: axes[0].set_title("default grid")
    ...: axes[0].grid()
    ...:
    ...: axes[1].set_title("major/minor grid")
    ...: axes[1].grid(color="blue", which="both", linestyle=':', linewidth=0.5)
    ...:
    ...: axes[2].set_title("individual x/y major/minor grid")
    ...: axes[2].grid(color="grey", which="major", axis='x', linestyle='-', linewidth=0.5)
    ...: axes[2].grid(color="grey", which="minor", axis='x', linestyle=':', linewidth=0.25)
    ...: axes[2].grid(color="grey", which="major", axis='y', linestyle='-', linewidth=0.5)

Figure 4-16.  Graphs demonstrating the result of using grid lines

In addition to controlling the tick placements, the Matplotlib mpl.ticker module also provides classes 
for customizing the tick labels. For example, the ScalarFormatter from the mpl.ticker module can be used 
to set several useful properties related to displaying tick labels with scientific notation and for displaying 
axis labels for large numerical values. If scientific notation is activated using the set_scientific method, 
we can control the threshold for when scientific notation is used with the set_powerlimits method (by 
default, tick labels for small numbers are not displayed using the scientific notation), and we can use the 
useMathText=True argument when creating the ScalarFormatter instance in order to have the exponents 
shown in math style rather than using code style exponents (for example, 1e10). See the following code for 
an example of using scientific notation in tick labels. The resulting graphs are shown in Figure 4-17.

In [19]: fig, axes = plt.subplots(1, 2, figsize=(8, 3))
    ...:
    ...: x = np.linspace(0, 1e5, 100)
    ...: y = x ** 2
    ...:
    ...: axes[0].plot(x, y, 'b.')
    ...: axes[0].set_title("default labels", loc='right')
    ...:
    ...: axes[1].plot(x, y, 'b')
    ...: axes[1].set_title("scientific notation labels", loc='right')
    ...:
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    ...: formatter = mpl.ticker.ScalarFormatter(useMathText=True)
    ...: formatter.set_scientific(True)
    ...: formatter.set_powerlimits((-1,1))
    ...: axes[1].xaxis.set_major_formatter(formatter)
    ...: axes[1].yaxis.set_major_formatter(formatter)

Figure 4-17.  Graphs with tick labels in scientific notation. The left panel uses the default label formatting, 
while the right panel uses tick labels in scientific notation, rendered as math text

Log plots
In visualization of data that spans several orders of magnitude, it is useful to work with logarithmic 
coordinate systems. In Matplotlib, there are several plot functions for graphing functions in such coordinate 
systems. For example: loglog, semilogx, and semilogy, which uses logarithmic scales for both the x and 
y axes, for only the x axis, and for only the y axis, respectively. Apart from the logarithmic axis scales, these 
functions behave similar to the standard plot method. An alternative approach is to use the standard plot 
method, and to separately configure the axis scales to be logarithmic using the set_xscale and/or  
set_yscale method with 'log' as first argument. These methods of producing log-scale plots are 
exemplified below, and the resulting graphs are shown in Figure 4-18.

In [20]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))
    ...:
    ...: x = np.linspace(0, 1e3, 100)
    ...: y1, y2 = x**3, x**4
    ...:
    ...: axes[0].set_title('loglog')
    ...: axes[0].loglog(x, y1, 'b', x, y2, 'r')
    ...:
    ...: axes[1].set_title('semilogy')
    ...: axes[1].semilogy(x, y1, 'b', x, y2, 'r')
    ...:
    ...: axes[2].set_title('plot / set_xscale / set_yscale')
    ...: axes[2].plot(x, y1, 'b', x, y2, 'r')
    ...: axes[2].set_xscale('log')
    ...: axes[2].set_yscale('log')
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Twin axes
An interesting trick with axes that Matplotlib provides is the twin axis feature, which allows displaying two 
independent axes overlaid on each other. This is useful when plotting two different quantities, for example, 
with different units, within the same graph. A simple example that demonstrates this feature is shown 
below, and the resulting graph is shown in Figure 4-19. Here we use the twinx method (there is also a twiny 
method) to produce a second Axes instance with shared x axis and a new independent y axis, which is 
displayed on the right side of the graph.

In [21]: fig, ax1 = plt.subplots(figsize=(8, 4))
    ...:
    ...: r = np.linspace(0, 5, 100)
    ...: a = 4 * np.pi * r ** 2  # area
    ...: v = (4 * np.pi / 3) * r ** 3  # volume
    ...:
    ...: ax1.set_title("surface area and volume of a sphere", fontsize=16)
    ...: ax1.set_xlabel("radius [m]", fontsize=16)
    ...:
    ...: ax1.plot(r, a, lw=2, color="blue")
    ...: ax1.set_ylabel(r"surface area ($m^2$)", fontsize=16, color="blue")
    ...: for label in ax1.get_yticklabels():
    ...:     label.set_color("blue")
    ...:
    ...: ax2 = ax1.twinx()
    ...: ax2.plot(r, v, lw=2, color="red")
    ...: ax2.set_ylabel(r"volume ($m^3$)", fontsize=16, color="red")
    ...: for label in ax2.get_yticklabels():
     ...:    label.set_color("red")

Figure 4-18.  Examples of log-scale plots
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Spines
In all graphs generated so far we have always had a box surrounding the Axes region. This is indeed a 
common style for scientific and technical graphs, but in some cases, for example, when representing 
schematic graphs, moving these coordinate lines may be desired. The lines that make up the surrounding 
box are called axis spines in Matplotlib, and we can use the Axes.spines attribute to changes their 
properties. For example, we might want to remove the top and the right spines, and move the spines to 
coincide with the origin of the coordinate systems.

The spine attribute of the Axes object is a dictionary with the keys right, left, top and bottom, which 
can be used to access each spine individually. We can use the set_color method to set the color to 'None' 
to indicate that a particular spine should not be displayed, and in this case we also need to remove the ticks 
associated with that spine, using the set_ticks_position method of Axes.xaxis and Axes.yaxis (which 
takes the arguments 'both', 'top', and 'bottom' and 'both', 'left' and 'right', respectively). With these 
methods we can transform the surrounding box to x and y coordinate axes, as demonstrated in the following 
example. The resulting graph is shown in Figure 4-20.

In [22]: x = np.linspace(-10, 10, 500)
    ...: y = np.sin(x) / x
    ...:
    ...: fig, ax = plt.subplots(figsize=(8, 4))
    ...:
    ...: ax.plot(x, y, linewidth=2)
    ...:
    ...: # remove top and right spines
    ...: ax.spines['right'].set_color('none')
    ...: ax.spines['top'].set_color('none')
    ...:
    ...: # remove top and right spine ticks
    ...: ax.xaxis.set_ticks_position('bottom')
    ...: ax.yaxis.set_ticks_position('left')
    ...:
    ...: # move bottom and left spine to x = 0 and y = 0
    ...: ax.spines['bottom'].set_position(('data', 0))
    ...: ax.spines['left'].set_position(('data', 0))
    ...:
    ...: ax.set_xticks([-10, -5, 5, 10])
    ...: ax.set_yticks([0.5, 1])
    ...:

Figure 4-19.  Example of graphs with twin axes
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    ...: # give each label a solid background of white, to not overlap with the plot line
    ...: for label in ax.get_xticklabels() + ax.get_yticklabels():
    ...:     label.set_bbox({'facecolor': 'white',
    ...:                     'edgecolor': 'white'})

Figure 4-20.  Example of a graph with axis spines

Advanced Axes Layouts
So far, we have repeatedly used plt.figure, Figure.make_axes and plt.subplots to create new Figure and 
Axes instances, which we then used for producing graphs. In scientific and technical graphs, it is common 
to pack together multiple figures in different panels, for example, in a grid layout. In Matplotlib there are 
functions for automatically creating Axes objects and placing them on a figure canvas, using a variety of 
different layout strategies. We have already used the plt.subplots function, which is capable of generating a 
uniform grid of Axes objects. In this section we explore additional features of the plt.subplots function and 
introduce the subplot2grid and GridSpec layout managers, which are more flexible in how the Axes objects 
are distributed within a figure canvas.

Insets
Before diving into the details of how to use more advanced Axes layout managers, it is worth taking a step 
back and to consider an important use-case of the very first approach we used to add Axes instances to a 
figure canvas: the Figure.add_axes method. This approach is well suited for creating so-called insets, which 
is a smaller graph that is displayed within the region of another graph. Insets are, for example, frequently 
used for displaying a magnified region of special interest in the larger graph, or for displaying some related 
graphs of secondary importance.

In Matplotlib we can place additional Axes objects at arbitrary locations within a figure canvas, even if 
they overlap with existing Axes objects. To create an inset we therefore simply add a new Axes object with 
Figure.make_axes and with the (figure canvas) coordinates for where the inset should be placed. A typical 
example of a graph with an inset is produced by the following code, and the graph that this code generates 
is shown in Figure 4-21. When creating the Axes object for the inset, it may be useful to use the argument 
axisbg='none', which indicates that there should be no background color, that is, that the Axes background 
of the inset should be transparent.

In [23]: fig = plt.figure(figsize=(8, 4))
    ...:
    ...: def f(x):
    ...:     return 1/(1 + x**2) + 0.1/(1 + ((3 - x)/0.1)**2)
    ...:
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    ...: def plot_and_format_axes(ax, x, f, fontsize):
    ...:     ax.plot(x, f(x), linewidth=2)
    ...:     ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(5))
    ...:     ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(4))
    ...:     ax.set_xlabel(r"$x$", fontsize=fontsize)
    ...:     ax.set_ylabel(r"$f(x)$", fontsize=fontsize)
    ...:
    ...: # main graph
    ...: ax = fig.add_axes([0.1, 0.15, 0.8, 0.8], axisbg="#f5f5f5")
    ...: x = np.linspace(-4, 14, 1000)
    ...: plot_and_format_axes(ax, x, f, 18)
    ...:
    ...: # inset
    ...: x0, x1 = 2.5, 3.5
    ...: ax.axvline(x0, ymax=0.3, color="grey", linestyle=":")
    ...: ax.axvline(x1, ymax=0.3, color="grey", linestyle=":")
    ...:
    ...: ax = fig.add_axes([0.5, 0.5, 0.38, 0.42], axisbg='none')
    ...: x = np.linspace(x0, x1, 1000)
    ...: plot_and_format_axes(ax, x, f, 14)

Figure 4-21.  Example of a graph with an inset

Subplots
We have already used plt.subplots extensively, and we have noted that it returns a tuple with a Figure 
instance and a NumPy array with the Axes objects for each row and column that was requested in the 
function call. It is often the case when plotting grids of subplots that either the x or the y axis, or both, are 
shared among the subplots. Using the sharex and sharey arguments to plt.subplots can be useful in such 
situations, since it prevents the same axis labels to be repeated across multiple Axes.

It is also worth noting that the dimension of the NumPy array with Axes instances that is returned by 
plt.subplots is “squeezed” by default: that is, the dimensions with length one is removed from the array.  
If both the requested number of column or row is greater than one, then a two-dimensional array is 



Chapter 4 ■ Plotting and Visualization

115

returned, but if either (or both) the number of columns or rows is one, then a one-dimensional (or scalar, 
i.e., the only Axes object itself ) is returned. We can turn off the squeezing of the dimensions of the NumPy 
arrays by passing the argument squeeze=False to the plt.subplots function. In this case the axes variable 
in fig, axes = plt.subplots(nrows, ncols) is always a two-dimensional array.

A final touch of configurability can be achieved using the plt.subplots_adjust function, which allows 
us to explicitly set the left, right, bottom, and top coordinates of the overall Axes grid, as well as the width 
(wspace) and height spacing (hspace) between Axes instances in the grid. See the following code, and the 
corresponding Figure 4-22, for a step-by-step example of how to set up an Axes grid with shared x and y axes, 
and with adjusted Axes spacing.

In [24]: fig, axes = plt.subplots(�2, 2, figsize=(6, 6), sharex=True, sharey=True, 
    ...:                          squeeze=False)
    ...:
    ...: x1 = np.random.randn(100)
    ...: x2 = np.random.randn(100)
    ...:
    ...: axes[0, 0].set_title("Uncorrelated")
    ...: axes[0, 0].scatter(x1, x2)
    ...:
    ...: axes[0, 1].set_title("Weakly positively correlated")
    ...: axes[0, 1].scatter(x1, x1 + x2)
    ...:
    ...: axes[1, 0].set_title("Weakly negatively correlated")
    ...: axes[1, 0].scatter(x1, -x1 + x2)
    ...:
    ...: axes[1, 1].set_title("Strongly correlated")
    ...: axes[1, 1].scatter(x1, x1 + 0.15 * x2)
    ...:
    ...: axes[1, 1].set_xlabel("x")
    ...: axes[1, 0].set_xlabel("x")
    ...: axes[0, 0].set_ylabel("y")
    ...: axes[1, 0].set_ylabel("y")
    ...:
    ...: �plt.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95, wspace=0.1, 

hspace=0.2)
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Figure 4-22.  Example graph using plt.subplot and plt.subplot_adjust

Subplot2grid
The plt.subplot2grid function is an intermediary between plt.subplots and GridSpec (see the next 
section) that provides a more flexible Axes layout management than plt.subplots, while at the same 
time being simpler to use than GridSpec. In particular, plt.subplot2grid is able to create grids with Axes 
instances that span multiple rows and/or columns. The plt.subplot2grid takes two mandatory arguments: 
the first argument is the shape of the Axes grid, in the form of a tuple (nrows, ncols), and the second 
argument is a tuple (row, col) that specifies the starting position within the grid. The two optional keyword 
arguments colspan and rowspan can be used to indicate how many rows and columns the new Axes 
instance should span. An example of how to use the plt.subplot2grid function is given in Table 4-3.  
Note that each call to the plt.subplot2grid function results in one new Axes instance, in contrast to  
plt.subplots, with creates all Axes instances in one function call and returns them in a NumPy array.
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GridSpec
The final grid layout manager that we cover here is GridSpec from the mpl.gridspec module. This is the 
most general grid layout manager in Matplotlib, and in particular it allows creating grids where not all rows 
and columns have equal width and height, which is not easily achieved with the grid layout managers we 
have used earlier in this chapter.

A GridSpec object is only used to specify the grid layout, and by itself it does not create any Axes objects. 
When creating a new instance of the GridSpec class, we must specify the number of rows and columns 
in the grid. Like for other grid layout managers, we can also set the position of the grid using the keyword 
arguments left, bottom, right, and top, and we can set the width and height spacing between subplots 
using wspace and hspace. Additionally, GricSpec allows specifying the relative width and heights of columns 
and rows using the width_ratios and height_ratios arguments. These should both be lists with relative 
weights for the size of each column and row in the grid. For example, to generate a grid with two rows and 
two columns, where the first row and column is twice as big as the second row and column, we could use 
mpl.gridspec.GridSpec(2, 2, width_ratios=[2, 1], height_ratios=[2, 1]).

Once a GridSpec instance has been created, we can use the Figure.add_subplot method to create Axes 
objects and place them on a figure canvas. As argument to add_subplot we need to pass an mpl.gridspec.
SubplotSpec instance, which we can generate from the GridSpec object using an array-like indexing: For 
example, given a GridSpec instance gs, we obtain a SubplotSpec instance for the upper left grid element 
using gs[0, 0], and for a SubplotSpec instance that covers the first row we use gs[:, 0], and so on. See 
Table 4-4 for concrete examples of how to use GridSpec and add_subplot to create Axes instance.

Table 4-3.  Example of a grid layout created with plt.subplot2grid and the corresponding code

Axes Grid Layout Code

 

ax0 = plt.subplot2grid((3, 3), (0, 0))
ax1 = plt.subplot2grid((3, 3), (0, 1))
ax2 = �plt.subplot2grid((3, 3), (1, 0), 

colspan=2)
ax3 = �plt.subplot2grid((3, 3), (2, 0), 

colspan=3)
ax4 = �plt.subplot2grid((3, 3), (0, 2), 

rowspan=2)
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Colormap Plots
We have so far only considered graphs of univariate functions, or, equivalently, two-dimensional data in x-y 
format. The two-dimensional Axes objects that we have used for this purpose can also be used to visualize 
bivariate functions, or three-dimensional data on x-y-z format, using so-called color maps (or heat maps), 
where each pixel in the Axes area is colored according to the z value corresponding to that point in the 
coordinate system. Matplotlib provides the functions pcolor and imshow for these types of plots, and the 
contour and contourf functions graphs data on the same format by drawing contour lines rather than color 
maps. Examples of graphs generated with these functions are shown in Figure 4-23.

Table 4-4.  Examples of how to use the subplot grid manager mpl.gridspec.GridSpec

Axes Grid Layout Code

 

fig = plt.figure(figsize=(6, 4))

gs = mpl.gridspec.GridSpec(4, 4)

ax0 = fig.add_subplot(gs[0, 0])
ax1 = fig.add_subplot(gs[1, 1])
ax2 = fig.add_subplot(gs[2, 2])
ax3 = fig.add_subplot(gs[3, 3])
ax4 = fig.add_subplot(gs[0, 1:])
ax5 = fig.add_subplot(gs[1:, 0])
ax6 = fig.add_subplot(gs[1, 2:])
ax7 = fig.add_subplot(gs[2:, 1])
ax8 = fig.add_subplot(gs[2, 3])
ax9 = fig.add_subplot(gs[3, 2])

 

fig = plt.figure(figsize=(4, 4))

gs = mpl.gridspec.GridSpec(
        2, 2,
        width_ratios=[4, 1],
        height_ratios=[1, 4],
        wspace=0.05, hspace=0.05)

ax0 = fig.add_subplot(gs[1, 0])
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[1, 1])
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To produce a color map graph, for example, using pcolor, we first need to prepare the data in the 
appropriate format. While standard two-dimensional graphs expect one-dimensional coordinate arrays 
with x and y values, in the present case we need to use two-dimensional coordinate arrays, as for example 
generated using the NumPy meshgrid function. To plot a bivariate function or data with two dependent 
variables, we start by defining one-dimensional coordinate arrays, x and y, which span the desired coordinate 
range, or correspond to the values for which data is available. The x and y arrays can then be passed to the 
np.meshgrid function, which produces the required two-dimensional coordinate arrays X and Y. If necessary, 
we can use NumPy array computations with X and Y to evaluate bivariate functions to obtain a data array Z, as 
done in line 1 to 3 in In [25] (see below).

Once the two-dimensional coordinate arrays and data array are prepared, they are easily visualized 
using for example pcolor, contour or contourf, by passing the X, Y and Z arrays as first few arguments. The 
imshow method works similarly, but only expects the data array Z as argument, and the relevant coordinate 
ranges must instead be set using the extent argument, which should be set to a list on the format [xmin, 
xmax, ymin, ymax]. Additional keyword arguments that are important for controlling the appearance 
of colormap graphs are vmin, vmax, norm and cmap: The vmin and vmax can be used to set the range of 
values that are mapped to the color axis. This can equivalently be achieved by setting norm=mpl.colors.
Normalize(vmin, vmax). The cmap argument specifies a color map for mapping the data values to colors in 
the graph. This argument can either be a string with a predefined colormap name, or a colormap instance. 
The predefined color maps in Matplotlib are available in mpl.cm. Try help(mpl.cm) or try to autocomplete in 
IPython on the mpl.cm module for a full list of available color maps.5

The last piece required for a complete color map plot is the colorbar element, which gives the viewer of the 
graph a way to read off the numerical values that different colors correspond to. In Matplotlib we can use the 
plt.colorbar function to attach a colorbar to an already plotted colormap graph. It takes a handle to the plot as 
first argument, and it takes two optional arguments ax and cax, which can be used to control where in the graph 
the colorbar is to appear. If ax is given, the space will be taken from this Axes object for the new colorbar. If, on 
the other hand, cax is given, then the colorbar will draw on this Axes object. A colorbar instance cb has its own 
axis object, and the standard methods for setting axis attributes can be used on the cb.ax object, and we can use 
for example the set_label, set_ticks and set_ticklabels method in the same manner as for x and y axes.

The steps outlined in the previous in paragraphs are shown in following code, and the resulting graph is 
shown in Figure 4-24. The functions imshow, contour, and contourf can be used in a nearly similar manner, 
although these functions take additional arguments for controlling their characteristic properties. For 
example, the contour and contourf functions additionally take an argument N that specifies the number of 
contour lines to draw.

Figure 4-23.  Example graphs generated with pcolor, imshow, contour, and contourf

5A nice visualization of all the available color maps is available at http://wiki.scipy.org/Cookbook/Matplotlib/
Show_colormaps. This page also describes how to create new color maps.

http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps
http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps
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In [25]: x = y = np.linspace(-10, 10, 150)
    ...: X, Y = np.meshgrid(x, y)
    ...: Z = np.cos(X) * np.cos(Y) * np.exp(-(X/5)**2-(Y/5)**2)
    ...:
    ...: fig, ax = plt.subplots(figsize=(6, 5))
    ...:
    ...: norm = mpl.colors.Normalize(-abs(Z).max(), abs(Z).max())
    ...: p = ax.pcolor(X, Y, Z, norm=norm, cmap=mpl.cm.bwr)
    ...:
    ...: ax.axis('tight')
    ...: ax.set_xlabel(r"$x$", fontsize=18)
    ...: ax.set_ylabel(r"$y$", fontsize=18)
    ...: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(4))
    ...: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(4))
    ...:
    ...: cb = fig.colorbar(p, ax=ax)
    ...: cb.set_label(r"$z$", fontsize=18)
    ...: cb.set_ticks([-1, -.5, 0, .5, 1])

Figure 4-24.  Example of the use pcolor to produce a color map graph

3D plots
The color map graphs discussed in the previous section were used to visualize data with two dependent 
variables by color-coding data in 2D graphs. Another way of visualizing the same type of data is to use 
3D graphs, where a third axis z is introduced and the graph is displayed in a perspective on the screen. 
In Matplotlib, drawing 3D graphs requires using a different axes object, namely the Axes3D object that 
is available form the mpl_toolkits.mplot3d module. We can create a 3D-aware axes instance explicitly 
using the constructor of the Axes3D class, by passing a Figure instance as argument: ax = Axes3D(fig). 
Alternatively, we can use the add_subplot function with the projection='3d' argument:

ax = fig.add_subplot(1, 1, 1, projection='3d')
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or use plt.subplots with the subplot_kw={'projection': '3d'} argument:

fig, ax = plt.subplots(1, 1, figsize=(8, 6), subplot_kw={'projection': '3d'})

In this way, we can use all the of the axes layouts approaches we have previously used for 2D graphs, 
if only we specify the projection argument in the appropriate manner. Note that using add_subplot, it is 
possible to mix axes objects with 2D and 3D projections within the same figure, but when using plt.subplots 
the subplot_kw argument applies to all the subplots added to a figure.

Having created and added 3D-aware axes instances to a figure, for example, using one of the methods 
described in the previous paragraph, the Axes3D class methods – for example plot_surface, plot_wireframe, 
contour – can be used to plot data in as surfaces in a 3D perspective. These functions are used in a manner 
that is nearly the same as how the color maps were used in the previous section: these 3D plotting functions 
all take two-dimensional coordinate and data arrays X, Y, and Z as first arguments. Each function also takes 
additional parameters for tuning specific properties. For example, the plot_surface function takes the 
arguments rstride and cstride (row and column stride) for selecting data from the input arrays (to avoid 
data points that are too dense). The contour and contourf functions take optional arguments zdir and 
offset, which is used to select a projection direction (the allowed values are 'x', 'y' and 'z') and the plane 
to display the projection on.

In addition to the methods for 3D surface plotting, there are also straightforward generalizations 
of the line and scatter plot functions that are available for 2D axes, for example plot, scatter, bar, and 
bar3d, which in the versions that are available in the Axes3D class take an additional argument for the z 
coordinates. Like their 2D relatives, these functions expect one-dimensional data arrays rather than the  
two-dimensional coordinate arrays that are used for surface plots.

When it comes to axes titles, labels, ticks, and tick labels, all the methods used for 2D graphs, as 
described in detail earlier in this chapter, are straightforwardly generalized to 3D graphs. For example, 
there are new methods set_zlabel, set_zticks, and set_zticklabels for manipulating the attributes of 
the new z axis. The Axes3D object also provides new class methods for 3D specific actions and attributes. In 
particular, the view_init method can be used to change the angle from which the graph is viewed, and it 
takes the elevation and the azimuth, in degrees, as first and second argument.

Examples of how to use these 3D plotting functions are given in below, and the produced graphs are 
shown in Figure 4-25.

In [26]: fig, axes = plt.subplots(1, 3, figsize=(14, 4), subplot_kw={'projection': '3d'})
    ...:
    ...: def title_and_labels(ax, title):
    ...:     ax.set_title(title)
    ...:     ax.set_xlabel("$x$", fontsize=16)
    ...:     ax.set_ylabel("$y$", fontsize=16)
    ...:     ax.set_zlabel("$z$", fontsize=16)
    ...:
    ...: x = y = np.linspace(-3, 3, 74)
    ...: X, Y = np.meshgrid(x, y)
    ...:
    ...: R = np.sqrt(X**2 + Y**2)
    ...: Z = np.sin(4 * R) / R
    ...:
    ...: norm = mpl.colors.Normalize(-abs(Z).max(), abs(Z).max())
    ...:
    ...: p = axes[0].plot_surface(X, Y, Z, rstride=1, cstride=1, linewidth=0,
    ...:                          antialiased=False, norm=norm, cmap=mpl.cm.Blues)
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    ...: cb = fig.colorbar(p, ax=axes[0], shrink=0.6)
    ...: title_and_labels(axes[0], "plot_surface")
    ...:
    ...: axes[1].plot_wireframe(X, Y, Z, rstride=2, cstride=2, color="darkgrey")
    ...: title_and_labels(axes[1], "plot_wireframe")
    ...:
    ...: axes[2].contour(X, Y, Z, zdir='z', offset=0, norm=norm, cmap=mpl.cm.Blues)
    ...: axes[2].contour(X, Y, Z, zdir='y', offset=3, norm=norm, cmap=mpl.cm.Blues)
    ...: title_and_labels(axes[2], "contour")

Figure 4-25.  3D surface and contour graphs generated by using plot_surface, plot_wireframe and contour

Summary
In this chapter, we have covered the basics of how to produce 2D and 3D graphics using Matplotlib. 
Visualization is one of the most important tools for computational scientists and engineers, both as 
an analysis tool while working on computational problems, and for presenting and communicating 
computational results. Visualization is therefore an integral part of the computational workflow, and it is 
equally important to be able to quickly visualize and explore data, and to be able to produce picture-perfect 
publication-quality graphs, with detailed control over every graphical element. Matplotlib is a great general-
purpose tool for both exploratory visualization and for producing publication-quality graphics. However, 
there are limitations to what can be achieved with Matplotlib, especially with respect to interactivity and 
high-quality 3D graphics. For more specialized use-cases, I therefore recommend exploring some of the 
other graphics libraries that are available in the scientific Python ecosystem, some of which was briefly 
mentioned in the beginning of this chapter.

Further Reading
The Matplotlib is treated in books dedicated to the library, such as the ones by Tosi and Devert. Books with a 
wider scope include the ones by Milovanovi and McKinney. For interesting discussions on data visualization 
and style guides and good practices in visualization, see the books by Yau and Steele.
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Chapter 5

Equation Solving

In the previous chapters we have discussed general methodologies and techniques, namely array-based 
numerical computing, symbolic computing, and visualization. These methods are the cornerstones 
of scientific computing that make up a fundamental toolset we have at our disposal when attacking 
computational problems.

Starting from this chapter, we begin to explore how to solve problems from different domains of applied 
mathematics and computational sciences, using the basic techniques introduced in the previous chapters. 
The topic of this chapter is algebraic equation solving. This is a broad topic that requires application of 
theory and approaches from multiple fields of mathematics. In particular, when discussing equation solving 
we have to distinguish between univariate and multivariate equations (that is, equations that contain one 
unknown variable, or many unknown variables). In addition, we need to distinguish between linear and 
nonlinear equations. This classification is useful because solving equations of these different types requires 
applying different mathematical methods and approaches.

We begin with linear equation systems, which are tremendously useful and have important applications in 
every field of science. The reason for this universality is that linear algebra theory allow us to straightforwardly 
solve linear equations, while nonlinear equations are difficult to solve in general, and typically require more 
complicated and computationally demanding methods. Because linear systems are readily solvable, they 
are also an important tool for local approximations of nonlinear systems. For example, by considering small 
variations from an expansion point, a nonlinear system can often be approximated by a linear system in the 
local vincinity of the expansion point. However, a linearization can only describe local properties, and for 
global analysis of nonlinear problems other techniques are required. Such methods typically employ iterative 
approaches for gradually constructing an increasingly accurate estimate of the solution.

In this chapter, we use SymPy for solving equations symbolically, when possible, and use the linear 
algebra module from the SciPy library for numerically solving linear equation systems. For tackling 
nonlinear problems, we will use the root-finding functions in the optimize module of SciPy.

■■ SciPy  SciPy is a Python library, the collective name of the scientific computing environment for Python, and 
the umbrella organization for many of the core libraries for scientific computing with Python. The library, scipy, 
is in fact rather a collection of libraries for high-level scientific computing, which are more or less independent 
of each other. The SciPy library is built on top of NumPy, which provide the basic array data structures and 
fundamental operations on such arrays. The modules in SciPy provide domain specific high-level computation 
methods, such as routines for linear algebra, optimization, interpolation, integration, and much more. At the time 
of writing, the most recent version of SciPy is 0.15.1. See http://www.scipy.org for more information.

http://www.scipy.org/
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Importing Modules
The SciPy package scipy should be considered a collection of modules that are selectively imported when 
required. In this chapter we will use the scipy.linalg module, for solving linear systems of equations; and 
the scipy.optimize module, for solving nonlinear equations. In this chapter we assume that these modules 
are imported as:

In [1]: from scipy import linalg as la
In [2]: from scipy import optimize

In this chapter we also use the NumPy, SymPy, and Matplotlib libraries introduced in the previous 
chapters, and we assume that those libraries are imported following the previously introduced convention:

In [3]: import sympy
In [4]: sympy.init_printing()
In [5]: import numpy as np
In [6]: import matplotlib.pyplot as plt

To get the same behavior in both Python 2 and Python 3 with respect to integer division, we also include 
the following statement (with is only necessary in Python 2):

In [7]: from __future__ import division

Linear Equation Systems
An important application of linear algebra is solving systems of linear equations. We have already 
encountered linear algebra functionality in the SymPy library, in Chapter 3. There is also linear algebra 
modules in the NumPy and SciPy libraries, numpy.linalg and scipy.linalg, which together provide linear 
algebra routines for numerical problems, that is, for problems that are completely specified in terms of 
numerical factors and parameters. 

In general, a linear equation system can be written on the form

a x a x a x bn n11 1 12 2 1 1+ +¼+ = ,

a x a x a x bn n21 1 22 2 2 2+ +¼+ = ,

¼

a x a x a x bm m mn n m1 1 2 2+ +¼+ = .

This is a linear system of m equations in n unknown variables {x
1
, x

2
, ..., x

n
}, and where a

mn
 and b

m
 are 

known parameters or constant values. When working with linear equation systems it is convenient to write 
the equations in matrix form:
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or simply Ax b= , where A is a m n´  matrix, b is a m´1 matrix (or m-vector), and x is the unknown n´1  
solution matrix (or n-vector). Depending on the properties of the matrix A, the solution vector x may or may 

http://dx.doi.org/10.1007/978-1-4842-0553-2_3
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not exist, and if a solution does exist, it is not necessarily unique. However, if a solution exists, then it can be 
interpreted as an expression of the vector b as a linear combination of the columns of the matrix A, where 
the coefficients are given by the elements in the solution vector x.

A system for which n m<  is said to be underdetermined, because it has less equations than unknown, 
and therefore cannot completely determine a unique solution. If, on the other hand, m n> , then the 
equations are said to be overdetermined. This will in general lead to conflicting constraints, resulting in that 
a solution does not exist.

Square Systems
Square systems with m n=  is an important special case. It corresponds to the situation where the number of 
equations equals the number unknown variables, and it can therefore potentially have a unique solution.  
In order for a unique solution to exist, the matrix A must be nonsingular, in which case the inverse of A  
exists, and the solution can be written as x A b= -1 . If the matrix A is singular, that is, the rank of the matrix  
is less than n, rank ( )A n< , or equivalently, if its determinant is zero, det A = 0, then the equation Ax b=  can 
either have no solution or infinitely many solutions, depending on the right-hand-side vector b. For a matrix 
with rank deficiency, rank ( )A n< , there are columns or rows that can be expressed as linear combinations of 
other columns or vectors, and they therefore correspond to equations that do not contain any new 
constraints, and the system is really underdetermined. Computing the rank of the matrix A that defines a 
linear equation system is therefore a useful method that can tell us whether the matrix is singular or not, and 
therefore whether there exists a solution or not.

When A has full rank, the solution is guaranteed to exist. However, it may or may not be possible to 
accurately compute the solution. The condition number of the matrix, cond(A), gives a measure of how well 
or poorly conditioned a linear equation system is. If the conditioning number is close to 1, it the system is 
said to be well conditioned (a condition number 1 is ideal), and if the condition number is large the system is 
said to be ill conditioned. The solution to an equation system that is ill conditioned can have large errors. An 
intuitive interpretation of the condition number can be obtained from a simple error analysis. Assume that 
we have a linear equation system on the form Ax b= , where x is the solution vector. Now consider a small 
variation of b, say db, which gives a corresponding change in the solution, dx, given by A x x b b( )+ = +d d . 
Because of linearity of the equation we have A x bd d= . An important question to consider now is this: how 
large is the relative change in x compared to the relative change in b? Mathematically we can formulate this 
question in terms of the ratios of the norms of these vectors. Specifically, we are interested in comparing 
dx x/  and db b/ , where x   denotes the norm of x. Using the matrix norm relation Ax A x£ ×  ,  

we can write

d d d d dx

x

A b

x

A b

x

A b

x

b

b
A A

b

b
= £
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=

×
× £ × ×

- - -
-
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Thus, a bound for the relative error in the solution x, given a relative error in the b vector, is given by 
cond( )A A Aº - ×1 , which by definition is the condition number of the matrix A. This means that for linear 

equation systems characterized by a matrix A that is ill conditioned, even a small perturbation in the b vector 
can give large errors in the solution vector x. This is particularly relevant in numerical solution using 
floating-point numbers, which are only approximations to real numbers. When solving a system of linear 
equations, it is therefore important to look at the condition number to estimate the accuracy of the solution.
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The rank, condition number, and norm of a symbolic matrix can be computed in SymPy using the 
Matrix methods rank, condition_number and norm, and for numerical problems we can use the NumPy 
functions np.linalg.matrix_rank, np.linalg.cond and np.linalg.norm. For example, consider the 
following system of two linear equations:

2 3 4

5 4 23
1 2

1 2

x x

x x

+ =
+ =

These two equations correspond to lines in the ( , )x x1 2  plane, and their intersection is the solution to the 

equation system. As can be seen in Figure 5-1, which graphs the lines corresponding to the two equations, 
the lines intersect at ( , )-1 2 .

We can define this problem in SymPy by creating matrix objects for A and b, and compute the rank, 
condition number, and norm of the matrix A using:

In [8]: A = sympy.Matrix([[2, 3], [5, 4]])
In [9]: b = sympy.Matrix([4, 3])
In [10]: A.rank()
Out[10]: 2
In [11]: A.condition_number()

Out[11]: 27 2 170

27 2 170

+

-

In [12]: sympy.N(_)
Out[12]: 7.58240137440151
In [13]: A.norm()

Out[13]: 3 6

Figure 5-1.  Graphical representation of a system of two linear equations
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We can do the same thing in NumPy/SciPy using NumPy arrays for A and b, and functions from the  
np.linalg and scipy.linalg modules:

In [14]: A = np.array([[2, 3], [5, 4]])
In [15]: b = np.array([4, 3])
In [16]: np.linalg.matrix_rank(A)
Out[16]: 2
In [17]: np.linalg.cond(A)
Out[17]: 7.5824013744
In [18]: np.linalg.norm(A)
Out[18]: 7.34846922835

A direct approach to solving the linear problem is to compute the inverse of the matrix A, and 
multiplying it with the vector b, as used, for example, in the previous analytical discussions. However, this is 
not the most efficient computational method to find the solution vector x. A better method is LU 
factorization of the matrix A, such that A LU=  and where L is a lower triangular matrix and U is an upper 
triangular matrix. Given L and U, the solution vector x can be efficiently constructed by first solving Ly b=  
with forward substitution, and then solve Ux y=  with backwards substitution. Owning to the fact that L and 
U are triangular matrices, these two procedures are computationally efficient.

In SymPy we can perform a symbolic LU factorization by using the LUdecomposition method of the 
sympy.Matrix class. This method returns new Matrix objects for the L and U matrices, as well as a row swap 
matrix. When we are interested in solving an equation system Ax b= , we do not explicitly need to calculate 
the L and U matrices, but rather we can use the LUsolve method, which performs the LU factorization 
internally and solves the equation system using those factors. Returning to the previous example, we can 
compute the L and U factors and solving the equation system using:

In [19]: A = sympy.Matrix([[2, 3], [5, 4]])
In [20]: b = sympy.Matrix([4, 3])
In [21]: L, U, _ = A.LUdecomposition()
In [22]: L

Out[22]: 
1 0

5 2 1/
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In [23]: U

Out[23]: 
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In [24]: L * U

Out[24]: 
2 3

5 4
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ú

In [25]: x = A.solve(b); x  # equivalent to A.LUsolve(b)

Out[25]: 
-é

ë
ê

ù

û
ú

1

2

For numerical problems we can use the la.lu function form SciPy’s linear algebra module. It returns a 
permutation matrix P and the L and U matrices, such that A PLU= . Like with SymPy, we can solve the linear 
system Ax b=  without explicitly calculating the L and U matrices by using the la.solve function, which 
takes the A matrix and the b vector as arguments. This is, in general, the preferred method for solving 
numerical linear equation systems using SciPy.
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In [26]: P, L, U = la.lu(A)
In [27]: L
Out[27]: array([[ 1. ,  0. ],
               [ 0.4,  1. ]])
In [28]: U
Out[28]: array([[ 5. ,  4. ],
               [ 0. ,  1.4]])
In [29]: L*U
Out[29]: array([[ 5. ,  0. ],
               [ 0. ,  1.4]])
In [30]: la.solve(A, b)
Out[30]: array([-1.,  2.])

The advantage of using SymPy is of course that we may obtain exact results and we can also include 
symbolic variables in the matrices. However, not all problems are solvable symbolically, or it may give 
exceedingly lengthy results. The advantage of using a numerical approach with NumPy/SciPy, on the other 
hand, is that we are guaranteed to obtain a result, although it will be an approximate solution due to  
floating-point errors. See the code below (In [36]) for an example that illustrates the differences between 
the symbolic and numerical approaches, and for an example that show numerical approaches can be 
sensitive for equation systems with large condition numbers. In this example we solve the equation system
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which for p =1 is singular and for p in the vicinity of one is ill conditioned. Using SymPy, the solution is easily 

found to be:

In [31]: p = sympy.symbols("p", positive=True)
In [32]: A = sympy.Matrix([[1, sympy.sqrt(p)], [1, 1/sympy.sqrt(p)]])
In [33]: b = sympy.Matrix([1, 2])
In [34]: x = A.solve(b)
In [35]: x

Out[35]: 
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A comparison between this symbolic solution and the numerical solution is shown in Figure 5-2. Here 
the errors in the numerical solution are due to numerical floating-point errors, and the numerical errors are 
significantly larger in the vicinity of p =1, where the system has a large condition number. Also, if there are 
other sources of errors in either A or b, the corresponding errors in x can be even more severe.

In [36]: # Symbolic problem specification
    ...: p = sympy.symbols("p", positive=True)
    ...: A = sympy.Matrix([[1, sympy.sqrt(p)], [1, 1/sympy.sqrt(p)]])
    ...: b = sympy.Matrix([1, 2])
    ...:
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    ...: # Solve symbolically
    ...: x_sym_sol = A.solve(b)
    ...: Acond = A.condition_number().simplify()
    ...:
    ...: # Numerical problem specification
    ...: AA = lambda p: np.array([[1, np.sqrt(p)], [1, 1/np.sqrt(p)]])
    ...: bb = np.array([1, 2])
    ...: x_num_sol = lambda p: np.linalg.solve(AA(p), bb)
    ...:
    ...: # Graph the difference between the symbolic (exact) and numerical results.
    ...: fig, axes = plt.subplots(1, 2, figsize=(12, 4))
    ...:
    ...: p_vec = np.linspace(0.9, 1.1, 200)
    ...: for n in range(2):
    ...:     x_sym = np.array([x_sym_sol[n].subs(p, pp).evalf() for pp in p_vec])
    ...:     x_num = np.array([x_num_sol(pp)[n] for pp in p_vec])
    ...:     axes[0].plot(p_vec, (x_num - x_sym)/x_sym, 'k')
    ...: axes[0].set_title("Error in solution\n(symbolic - numerical)")
    ...: axes[0].set_xlabel(r'$x$', fontsize=18)
    ...:
    ...: axes[1].plot(p_vec, [Acond.subs(p, pp).evalf() for pp in p_vec])
    ...: axes[1].set_title("Condition number")
    ...: axes[1].set_xlabel(r'$x$', fontsize=18)

Figure 5-2.  Graph of the relative numerical errors (left) and condition number (right) as a function of the 
parameter p

Rectangular Systems
Rectangular systems, with m n¹ , can be either underdetermined or overdetermined. Underdetermined 
systems have more variables than equations, so the solution cannot be fully determined. Therefore, for such 
a system, the solution must be given in terms of the remaining free variables. This makes it difficult to treat 
this type of problem numerically, but a symbolic approach can often be used instead.

For example, consider the underdetermined linear equation system
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Here we have three unknown variables, but only two equations that impose constraints on the relations 
between these variables. By writing this equation as Ax b- = 0, we can use the SymPy sympy.solve function 
to obtain a solution for x

1
 and x

2
 parameterized by the remaining free variable x

3
:

In [37]: x_vars = sympy.symbols("x_1, x_2, x_3")
In [38]: A = sympy.Matrix([[1, 2, 3], [4, 5, 6]])
In [39]: x = sympy.Matrix(x_vars)
In [40]: b = sympy.Matrix([7, 8])
In [41]: sympy.solve(A*x - b, x_vars)

Out[41]: x x x x1 3 2 319 3 2 20 3= - = - +{ }/ , /

Here we obtained the symbolic solution x x1 3 19 3= - /  and x x2 32 20 3= +- / , which defines a line in the 

three-dimensional space spanned by {x
1
, x

2
, x

3
}. Any point on this line therefore satisfies this 

underdetermined equations system.
On the other hand, if the system overdetermined and has more equations than unknown 

variables, m n> , then we have more constraints than degrees of freedom, and in general there is no exact 
solution to such a system. However, it is often interesting to find an approximate solution to an 
overdetermined system. An example of when this situation arises is data fitting: Say we have a model where 
a variable y is a quadratic polynomial in the variable x, so that y A Bx Cx= + + 2 , and that we would like to fit 

this model to experimental data. Here y is nonlinear in x, but y is linear in the three unknown coefficients A, 
B and C, and this fact can be used to write the model as a linear equation system. If we collect data for  
m pairs x yi i i

m
,( ){ } =1

 of the variables x and y, we can write the model as an m´3 equation system:
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If m = 3, we can solve for the unknown model parameters A, B, and C, assuming the system matrix is 
nonsingular. However, it is intuitively clear that if the data is noisy and if we were to use more than three data 
points, we should be able to get a more accurate estimate of the model parameters.

However, for m > 3 , there is in general no exact solution, and we need to introduce an approximate 
solution that give a best fit for the overdetermined system. A natural definition of best fit for the 

overdetermined system Ax b» , is to minimize the sum of square error, min
x

i

m

ir
=
å( )

1

2
, where r b Ax= -  is the 

residual vector. This leads to the least square solution of the problem Ax b» , which minimizes the distances 
between the data points and the linear solution. In SymPy we can solve for the least square solution of an 
overdetermined system using the solve_least_squares method, and for numerical problems we can use 
the SciPy function la.lstsq.

The following code demonstrates how the SciPy la.lstsq method can be used to fit the example model 
considered above, and the result is shown in Figure 5-3. We first define the true parameters of the model, 
and then we simulate measured data by adding random noise to the true model relation. The least square 
problem is then solved using the la.lstsq function, which in addition to the solution vector x also returns 
the total sum of square errors (the residual r), the rank rank and the singular values sv of the matrix A. 
However, in the following example we only use the solution vector x.

In [42]: # define true model parameters
    ...: x = np.linspace(-1, 1, 100)
    ...: a, b, c = 1, 2, 3
    ...: y_exact = a + b * x + c * x**2
    ...:
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    ...: # simulate noisy data
    ...: m = 100
    ...: X = 1 - 2 * np.random.rand(m)
    ...: Y = a + b * X + c * X**2 + np.random.randn(m)
    ...:
    ...: # fit the data to the model using linear least square
    ...: A = np.vstack([X**0, X**1, X**2])  # see np.vander for alternative
    ...: sol, r, rank, s = la.lstsq(A.T, Y)
    ...:
    ...: y_fit = sol[0] + sol[1] * x + sol[2] * x**2
    ...: fig, ax = plt.subplots(figsize=(12, 4))
    ...:
    ...: ax.plot(X, Y, 'go', alpha=0.5, label='Simulated data')
    ...: ax.plot(x, y_exact, 'k', lw=2, label='True value $y = 1 + 2x + 3x^2$')
    ...: ax.plot(x, y_fit, 'b', lw=2, label='Least square fit')
    ...: ax.set_xlabel(r"$x$", fontsize=18)
    ...: ax.set_ylabel(r"$y$", fontsize=18)
    ...: ax.legend(loc=2)

Figure 5-3.  Linear least square fit

A good fit of data to a model obviously requires that the model used to describe the data correspond 
well to the underlying process that produced the data. In the following example (In [43]), and in Figure 5-4, 
we fit the same data used in the previous example to linear model, and to a higher-order polynomial model 
(up to order 15). In the former, case corresponds to underfitting, where we have used a too simple model 
for the data, and the latter case corresponds to overfitting, where we have used a too complex model for the 
data, and thus fit the model not only to the underlying trend but also to the measurement noise. Using an 
appropriate model is an important and delicate aspect of data fitting.

In [43]: # fit the data to the model using linear least square:
    ...: # 1st order polynomial
    ...: A = np.vstack([X**n for n in range(2)])
    ...: sol, r, rank, sv = la.lstsq(A.T, Y)
    ...: y_fit1 = sum([s * x**n for n, s in enumerate(sol)])
    ...:
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    ...: # 15th order polynomial
    ...: A = np.vstack([X**n for n in range(16)])
    ...: sol, r, rank, sv = la.lstsq(A.T, Y)
    ...: y_fit15 = sum([s * x**n for n, s in enumerate(sol)])
    ...:
    ...: fig, ax = plt.subplots(figsize=(12, 4))
    ...: ax.plot(X, Y, 'go', alpha=0.5, label='Simulated data')
    ...: ax.plot(x, y_exact, 'k', lw=2, label='True value $y = 1 + 2x + 3x^2$')
    ...: ax.plot(x, y_fit1, 'b', lw=2, label='Least square fit [1st order]')
    ...: ax.plot(x, y_fit15, 'm', lw=2, label='Least square fit [15th order]')
    ...: ax.set_xlabel(r"$x$", fontsize=18)
    ...: ax.set_ylabel(r"$y$", fontsize=18)
    ...: ax.legend(loc=2)

Figure 5-4.  Graph demonstrating underfitting and overfitting of data using the linear least square method

Eigenvalue Problems
A special system of equations of great theoretical and practical importance is the eigenvalue equation 
Ax x= l , where A is a N N´  square matrix, x is an unknown vector, and l is an unknown scalar. Here x is an 

eigenvector and l an eigenvalue of the matrix A. The eigenvalue equation Ax x= l  closely resembles the 
linear equation system Ax b= , but note that here both x and l are unknown, so we cannot directly apply the 
same techniques to solve this equation. A standard approach to solve this eigenvalue problem is to rewrite 
the equation as ( )A I x- =l 0, and noting that for there to exist a nontrivial solution, x ¹ 0, the matrix A I- l  

must be singular, and its determinant must be zero, det ( )A I- =l 0. This gives a polynomial equation (the 

characteristic polynomial) of Nth order whose N roots give the N eigenvalues ln n

N{ } =1
. Once the eigenvalues 

are known, the equation A I xn n-( ) =l 0 can be solved for the nth eigenvector x
n
 using standard forward 

substitution.
Both SymPy and the linear algebra package in SciPy contain solvers for eigenvalue problems. In SymPy, 

we can use the eigenvals and eigenvects method of the Matrix class, which is able to compute the 
eigenvalues and eigenvectors of some matrices with elements that are symbolic expressions. For example, to 
compute the eigenvalues and eigenvectors of symmetric 2 2´  matrix with symbolic elements, we can use:

In [44]: eps, delta = sympy.symbols("epsilon, Delta")
In [45]: H = sympy.Matrix([[eps, delta], [delta, -eps]])
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In [46]: H
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The return value of the eigenvals method is dictionary where each eigenvalue is a key, and the 
corresponding value is the multiplicity of that particular eigenvalue. Here the eigenvalues are - + De 2 2  and 

e 2 2+ D , each with multiplicity one. The return value of eigenvects is a bit more involved: A list is returned 
where each element is a tuple containing an eigenvalue, the multiplicity of the eigenvalue, and a list of 
eigenvectors. The number of eigenvectors for each eigenvalue equals the multiplicity. For the current 
example, we can unpack the value returned by eigenvects, and verify that the two eigenvectors are 
orthogonal using for example:

In [49]: (eval1, _, evec1), (eval2, _, evec2) = H.eigenvects()
In [50]: sympy.simplify(evec1[0].T * evec2[0])
Out[50]: [0]

Obtaining analytical expressions for eigenvalues and eigenvectors using these methods is often very 
desirable indeed, but unfortunately it only works for small matrices. For anything larger than a 3 3´  the 
analytical expression typically becomes extremely lengthy cumbersome to work with even using a computer 
algebra system such as SymPy. Thus, for larger systems we must resort to a fully numerical approach. For 
this we can use the la.eigvals and la.eig functions in the SciPy linear algebra package. Matrices that are 
either Hermitian or real symmetric have real-valued eigenvalues, and for such matrices it is advantageous to 
instead use the functions la.eigvalsh and la.eigh, which guarantees that the eigenvalues returned by the 
function is stored in a NumPy array with real values. For example, to solve a numerical eigenvalue problem 
with la.eig we can use:

In [51]: A = np.array([[1, 3, 5], [3, 5, 3], [5, 3, 9]])
In [52]: evals, evecs = la.eig(A)
In [53]: evals
Out[53]: array([ 13.35310908+0.j,  -1.75902942+0.j,   3.40592034+0.j])
In [54]: evecs
Out[54]: array([[ 0.42663918,  0.90353276, -0.04009445],
                [ 0.43751227, -0.24498225, -0.8651975 ],
                [ 0.79155671, -0.35158534,  0.49982569]])
In [55]: la.eigvalsh(A)
Out[55]: array([ -1.75902942,   3.40592034,  13.35310908])

Since the matrix in this example is symmetric, we could use la.eigh and la.eigvalsh, giving a real-
valued eigenvalue arrays, as shown in the last cell of the example.
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Nonlinear Equations
In this section we consider nonlinear equations. Systems of linear equations, as considered in the previous 
sections of this chapter, are of fundamental importance in scientific computing because of they are easily 
solved and can be used as important building blocks in many computational methods and techniques. 
However, in natural sciences and in engineering disciplines, many, if not most, systems are intrinsically 
nonlinear.

A linear function f (x) by definition satisfies additivity f x y f x f y( ) ( ) ( )+ = +  and homogeneity 

f x f x( ) ( )a a= , which can be written together as the superposition principle f x y f x f y( ) ( ) ( )a b a b+ = + .  

This gives a precise definition of linearity. A nonlinear function, in contrast, is a function that does not satisfy 
these conditions. Nonlinearity is therefore a much broader concept, and a function can be nonlinear in 
many different ways. However, in general, an expression that contains variable with a power greater that one 
is nonlinear. For example, x x2 1+ +  is nonlinear because of the x2 term.

A nonlinear equation can always be written on the form f x( ) = 0, where f  (x) is a nonlinear function and 

we seek the value of x (which can be a scalar or a vector) such that f  (x) is zero. This x is called the root of the 
function f x( ) = 0, and equation solving is therefore often referred to as root finding. In contrast to the 

previous section of this chapter, in this section we need to distinguish between univariate equation solving 
and multivariate equations, in addition to single equations and system of equations.

Univariate Equations
A univariate function is a function that depends only on a single variable f (x), where x is a scalar, and the 
corresponding univariate equation is on the form f x( ) = 0. Typical examples of this type of equation are 

polynomials, such as x x2 1 0- + = , and expressions containing elementary functions, such as x x3 3 0- =sin( )  

and exp( )x - =2 0. Unlike for linear systems, there are no general methods for determining if a nonlinear 

equation has a solution, or multiple solutions, or if a given solution is unique. This can be understood 
intuitively from the fact that graphs of nonlinear functions correspond to curves that can intersect x = 0 in an 
arbitrary number of ways.

Because of the vast number of possible situations, it is difficult develop a completely automatic 
approach to solving nonlinear equations. Analytically, only equations on special forms can be solved exactly. 
For example, polynomials of up to 4th order, and in some special cases also higher orders, can be solved 
analytically, and some equations containing trigonometric and other elementary functions may be solvable 
analytically. In SymPy we can solve many analytically solvable univariate and nonlinear equations using the 
sympy.solve function. For example, to solve the standard quadratic equation a bx cx+ + =2 0, we define an 
expression for the equation and pass it to the sympy.solve function:

In [56]: x, a, b, c = sympy.symbols("x, a, b, c")
In [57]: sympy.solve(a + b*x + c*x**2, x)
Out[57]: [(-b + sqrt(-4*a*c + b**2))/(2*c), -(b + sqrt(-4*a*c + b**2))/(2*c)]

The solution is indeed the well-known formula for the solution of this equation. The same method can 
be used to solve some trigonometric equations:

In [58]: sympy.solve(a * sympy.cos(x) - b * sympy.sin(x), x)
Out[58]: [-2*atan((b - sqrt(a**2 + b**2))/a), -2*atan((b + sqrt(a**2 + b**2))/a)]
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However, in general nonlinear equations are typically not solvable analytically. For example, equations 
that contains both polynomial expressions and elementary functions, such as sin x x= , are often 
transcendental, and does not have an algebraic solution. If we attempt to solve such an equation using 
SymPy, we obtain an error in the form of an exception:

In [59]: sympy.solve(sympy.sin(x)-x, x)
...
NotImplementedError: multiple generators [x, sin(x)]
No algorithms are implemented to solve equation -x + sin(x)

In this type of situation we need to resort to various numerical techniques. As a first step, it is often very 
useful to graph the function. This can give important clues about the number of solutions to the equation, 
and their approximate locations. This information is often necessary when applying numerical techniques 
to find good approximations to the roots of the equations. For example, considering the following example 
(In [60]), which plots four examples of nonlinear functions, as shown in Figure 5-5. From these graphs, 
we can immediately conclude that the plotted functions, from left to right, have two, three, one, and a large 
number of roots (at least within the interval that is being graphed).

In [60]: x = np.linspace(-2, 2, 1000)
    ...: # four examples of nonlinear functions
    ...: f1 = x**2 - x - 1
    ...: f2 = x**3 - 3 * np.sin(x)
    ...: f3 = np.exp(x) - 2
    ...: f4 = 1 - x**2 + np.sin(50 / (1 + x**2))
    ...:
    ...: # plot each function
    ...: fig, axes = plt.subplots(1, 4, figsize=(12, 3), sharey=True)
    ...:
    ...: for n, f in enumerate([f1, f2, f3, f4]):
    ...:     axes[n].plot(x, f, lw=1.5)
    ...:     axes[n].axhline(0, ls=':', color='k')
    ...:     axes[n].set_ylim(-5, 5)
    ...:     axes[n].set_xticks([-2, -1, 0, 1, 2])
    ...:     axes[n].set_xlabel(r'$x$', fontsize=18)
    ...:
    ...: axes[0].set_ylabel(r'$f(x)$', fontsize=18)
    ...:
    ...: titles = [r'$f(x)=x^2-x-1$', r'$f(x)=x^3-3\sin(x)$',
    ...:           r'$f(x)=\exp(x)-2$', r'$f(x)=\sin\left(50/(1+x^2)\right)+1-x^2$']
    ...: for n, title in enumerate(titles):
    ...:     axes[n].set_title(title)

Figure 5-5.  Graphs of four examples of nonlinear functions
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To find the approximate location of a root to an equation, we can apply one of the many techniques 
for numerical root finding, which typically applies an iterative scheme where the function is evaluated at 
successive points until the algorithm has narrowed in on the solution, to the desired accuracy. Two standard 
methods that illustrate the basic idea of how many numerical root-finding methods work are the bisection 
method and Newton method.

The bisection method requires a starting interval [a, b] such that f (a) and f (b) have different sign. This 
guarantees that there is at least one root within this interval. In each iteration the function is evaluated in the 
middle point m between a and b, and sign of the function is different at a and m, then the new interval 

a b m, =[ ] is choosen for the next iteration. Otherwise the interval a m b=[ ],  is chosen for the next iteration. 

This guarantees that in each iteration, the function has different signs at the two endpoints of the interval, 
and in each iteration the interval is halved, and therefore converges towards a root of the equation. The 
following code example demonstrates a simple implementation of the bisection method with a graphical 
visualization of each step, as shown in Figure 5-6.

In [61]: # define a function, desired tolerance and starting interval [a, b]
    ...: f = lambda x: np.exp(x) - 2
    ...: tol = 0.1
    ...: a, b = -2, 2
    ...: x = np.linspace(-2.1, 2.1, 1000)
    ...:
    ...: # graph the function f
    ...: fig, ax = plt.subplots(1, 1, figsize=(12, 4))
    ...:
    ...: ax.plot(x, f(x), lw=1.5)
    ...: ax.axhline(0, ls=':', color='k')
    ...: ax.set_xticks([-2, -1, 0, 1, 2])
    ...: ax.set_xlabel(r'$x$', fontsize=18)
    ...: ax.set_ylabel(r'$f(x)$', fontsize=18)
    ...:
    ...: # find the root using the bisection method and visualize
    ...: # the steps in the method in the graph
    ...: fa, fb = f(a), f(b)
    ...:
    ...: ax.plot(a, fa, 'ko')
    ...: ax.plot(b, fb, 'ko')
    ...: ax.text(a, fa + 0.5, r"$a$", ha='center', fontsize=18)
    ...: ax.text(b, fb + 0.5, r"$b$", ha='center', fontsize=18)
    ...:
    ...: n = 1
    ...: while b - a > tol:
    ...:     m = a + (b - a)/2
    ...:     fm = f(m)
    ...:
    ...:     ax.plot(m, fm, 'ko')
    ...:     ax.text(m, fm - 0.5, r"$m_%d$" % n, ha='center')
    ...:     n += 1
    ...:
    ...:     if np.sign(fa) == np.sign(fm):
    ...:         a, fa = m, fm
    ...:     else:
    ...:         b, fb = m, fm
    ...:
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    ...: ax.plot(m, fm, 'r*', markersize=10)
    ...: ax.annotate("Root approximately at %.3f" % m,
    ...:             fontsize=14, family="serif",
    ...:             xy=(a, fm), xycoords='data',
    ...:             xytext=(-150, +50), textcoords='offset points',
    ...:             arrowprops=dict(arrowstyle="->", connectionstyle="arc3, rad=-.5"))
    ...:
    ...: ax.set_title("Bisection method")

Figure 5-6.  Graphical visualization of how the bisection method works

Another standard method for root finding is Newton’s method, which converges faster than the 
bisection method discussed in the previous paragraph. While the bisection method only uses the sign of the 
function at each point, Newton’s method uses the actual function values to obtain a more accurate 
approximation of the nonlinear function. In particular, it approximates the function f (x) with its first order 
Taylor expansion f x dx f x dx f x( ) ( ) ( )+ = + ¢ , which is a linear function whose root is easily found to be 

x – f (x)/f ' (x). Of course, this does not need to be a root of the function f (x), but in many cases it is a good 
approximation for getting closer to a root of f (x). By iterating this scheme, x x f x xk k k k+ = -1 ( )/ ( )f ¢ , we may 

approach the root of the function. A potential problem with this method is that if f ' (x
k
) is zero at some point 

x
k
. This special case would have to be dealt in a real implementation of this method. The following example 

(In [62]) demonstrates how this method can be used to solve for the root of the equation exp( )x - =2 0, 

using SymPy to evaluate the derivative of the function f (x), and Figure 5-7 visualizes the steps in this 
root-finding process.

In [62]: # define a function, desired tolerance and starting point xk
    ...: tol = 0.01
    ...: xk = 2
    ...:
    ...: s_x = sympy.symbols("x")
    ...: s_f = sympy.exp(s_x) - 2
    ...:
    ...: f = lambda x: sympy.lambdify(s_x, s_f, 'numpy')(x)
    ...: fp = lambda x: sympy.lambdify(s_x, sympy.diff(s_f, s_x), 'numpy')(x)
    ...:
    ...: x = np.linspace(-1, 2.1, 1000)
    ...:
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    ...: # setup a graph for visualizing the root finding steps
    ...: fig, ax = plt.subplots(1, 1, figsize=(12,4))
    ...:
    ...: ax.plot(x, f(x))
    ...: ax.axhline(0, ls=':', color='k')
    ...:
    ...: # iterate Newton's method until convergence to the desired tolerance has been reached
    ...: n = 0
    ...: while f(xk) > tol:
    ...:     xk_new = xk - f(xk) / fp(xk)
    ...:
    ...:     ax.plot([xk, xk], [0, f(xk)], color='k', ls=':')
    ...:     ax.plot(xk, f(xk), 'ko')
    ...:     ax.text(xk, -.5, r'$x_%d$' % n, ha='center')
    ...:     ax.plot([xk, xk_new], [f(xk), 0], 'k-')
    ...:
    ...:     xk = xk_new
    ...:     n += 1
    ...:
    ...: ax.plot(xk, f(xk), 'r*', markersize=15)
    ...: ax.annotate("Root approximately at %.3f" % xk,
    ...:             fontsize=14, family="serif",
    ...:             xy=(xk, f(xk)), xycoords='data',
    ...:             xytext=(-150, +50), textcoords='offset points',
    ...:             arrowprops=dict(arrowstyle="->", connectionstyle="arc3, rad=-.5"))
    ...:
    ...: ax.set_title("Newtown's method")
    ...: ax.set_xticks([-1, 0, 1, 2])

Figure 5-7.  Visualization of the root-finding steps in Newton's method for the equation exp(x) 2 0- =

A potential issue with Newton’s method is that it requires both the function values and the values of 
the derivative of the function in each iteration. In the previous example we used SymPy to symbolically 
compute the derivatives. In an all-numerical implementation, this is of course not possible, and a numerical 
approximation of the derivative would be necessary, which would in turn require further function 
evaluations. A variant of Newton’s method that bypasses the requirement to evaluate function derivatives 
is the secant method, which uses two previous function evaluations to obtain a linear approximation of the 
function, which can be used to compute a new estimate of the root. The iteration formula for the secant 
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. This is only one example of the many variants and possible 

refinements on the basic idea of Newton’s method. A state-of-the-art implementations numerical root-
finding functions typically use the basic idea of either the bisection method of Newton’s method, or a 
combination of both, but additionally uses various refinement strategies, such as higher-order interpolations 
of the function to achieve faster convergence.

The SciPy optimize module provides multiple functions for numerical root finding. The optimize.bisect 
and optimize.newton functions implement variants of bisection and Newton methods. The optimize.bisect 
takes three arguments: First a Python function (for example a lambda function) that represents the 
mathematical function for the equation for which a root is to be calculated, and the second and third 
arguments is the lower and upper value of the interval for which to perform the bisection method. Note that 
the sign of the function has to be different at the points a and b for the bisection method to work, as 
discussed earlier. Using the optimize.bisect function, we can calculate the root of the equation 
exp( )x - =2 0, that we used in the previous examples, using:

In [63]: optimize.bisect(lambda x: np.exp(x) - 2, -2, 2)
Out[63]: 0.6931471805592082

As long as f (a) and f (b) indeed have different signs, this is guaranteed to give a root within the interval 
[a, b]. In contrast, the function optimize.newton for Newton’s method takes a function as first argument, 
and an initial guess for the root of the function as second argument. Optionally, it also takes an argument for 
specifying the derivative of the function, using the fprime keyword argument. If fprime is given, Newton’s 
method is used, otherwise the secant method is used instead. To find the root of the equation exp( )x - =2 0, 
with and without specifying its derivative, we can use:

In [64]: x_root_guess = 2
In [65]: f = lambda x: np.exp(x) – 2
In [66]: fprime = lambda x: np.exp(x)
In [67]: optimize.newton(f, x_root_guess)
Out[67]: 0.69314718056
In [68]: optimize.newton(f, x_root_guess, fprime=fprime)
Out[68]: 0.69314718056

Note that with this method we have less control over which root is being computed, if the function have 
multiple roots. For instance, there is no guarantee that the root the function returns is the closest one to the 
initial guess, we an we cannot known in advance if the root that is larger or smaller than the initial guess.

The SciPy optimize module provides additional functions for root finding. In particular, the  
optimize.brentq and optimize.brenth functions, which are variants of the bisection method, and also 
work on an interval where the function changes sign. The optimize.brentq function is generally considered 
the preferred all-around root-finding function in SciPy. To find a root of the same equation that we 
considered previously, using optimize.brentq and optimize.brenth functions, we can use:

In [69]: optimize.brentq(lambda x: np.exp(x) - 2, -2, 2)
Out[69]: 0.6931471805599453
In [70]: optimize.brenth(lambda x: np.exp(x) - 2, -2, 2)
Out[70]: 0.6931471805599381

Note that these two functions takes a Python function for the equation as first argument, and the lower 
and upper values of the sign-changing interval as second and third argument.
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Systems of Nonlinear Equations
In contrast to a linear system of equations, we cannot in general write a system of nonlinear equations as a 
matrix-vector multiplication. Instead we represent a system of multivariate nonlinear equations as a 
vector-valued function, for example f N N: ® , that takes a N-dimensional vector and maps it to another 

N-dimensional vector. Multivariate systems of equations are much more complicated to solve than 
univariate equations, partly because there are so many more possible behaviors. As a consequence, there is 
no method that strictly guarantees convergence to a solution, such as the bisection method for a univariate 
nonlinear equation, and the methods that do exist are much more computationally demanding than the 
univariate case, especially as the number of variables increase.

Not all methods discussed in for univariate equation solving can be generalized to the multivariate case. 
In particular, the bisection method cannot be directly generalized to a multivariate equation system. 
Newton’s method, however, can be generalized to the multivariate equation systems, in which case the 
iteration formula is x x J x f xk k f k k+

-= -1
1( ) ( ), where J

f
 (x

k
) is the Jacobian matrix of the function f (x), with 

elements J x f x xf k ij i k j( ) ( )/éë ùû = ¶ ¶ . Instead of inverting the Jacobian matrix, it is sufficient to solve the linear 

equation system J x x f xf k k k( ) ( )d = - , and update x
k
 using x x xk k k+ = +1 d . Like the secant variants for the 

Newton method for univariate equation systems, there are also variants of the multivariate method that 
avoid computing the Jacobian by estimating it from previous function evaluations. Broyden’s method is a 
popular example of this type of secant updating method for multivariate equation systems. In the SciPy 
optimize module, broyden1 and broyden2 provides two implementations of Broyden’s method using 
different approximations of the Jacobian, and the function optimize.fsolve provides an implementation of 
a Newton-like method, where optionally the Jacobian can be specified, if available. The functions all have a 
similar function signature: The first argument is a Python function that represents the equation to be solved, 
and it should take a NumPy array as first argument and return an array of the same shape. The second 
argument is an initial guess for the solution, as a NumPy array. The optimize.fsolve function also takes an 
optional keyword argument fprime, which can be used to provide a function that returns the Jacobian of the 
function f (x). In addition, all these functions take numerous optional keyword arguments for tuning their 
behavior (see the docstrings for details).

For example, consider the following system of two multivariate and nonlinear equations:

y x x

y x

- - + =
+ - =

ì
í
ï

îï

3 2

2

2 1 0

1 0
,

which can be represented by the vector-valued function f x x x x x x x1 2 2 1
3

1
2

2 1
22 1 1, ,[ ]( ) = - - + + -éë ùû. To solve 

this equation system using SciPy, we need define a Python function for f ([x
1
, x

2
]) and call, for example, the 

optimize.fsolve using the function and an initial guess for the solution vector:

In [71]: def f(x):
    ...:     return [x[1] - x[0]**3 - 2 * x[0]**2 + 1, x[1] + x[0]**2 - 1]
In [72]: optimize.fsolve(f, [1, 1])
Out[72]: array([ 0.73205081,  0.46410162])

The optimize.broyden1 and optimize.broyden2 can be used in a similar manner. To specify a Jacobian 
for optimize.fsolve to use, we need to define a function that evaluates the Jacobian for a given input vector. 
This requires that we first derive the Jacobian by hand, or for example using SymPy:

In [73]: x, y = sympy.symbols("x, y")
In [74]: f_mat = sympy.Matrix([y - x**3 -2*x**2 + 1, y + x**2 - 1])



Chapter 5 ■ Equation Solving

143

In [75]: f_mat.jacobian(sympy.Matrix([x, y]))

Out[75]: 
- -æ

è
ç

ö

ø
÷

3 4 1

2 1

2x x

x

which we can then easily be implement as a Python function that can be passed to the optimize.fsolve function:

In [76]: def f_jacobian(x):
    ...:     return [[-3*x[0]**2-4*x[0], 1], [2*x[0], 1]]
In [77]: optimize.fsolve(f, [1, 1], fprime=f_jacobian)
Out[77]: array([ 0.73205081,  0.46410162])

As with new Newton’s method for a univariate nonlinear equation system, the initial guess for the solution 
is important, and different initial guesses may result in different solutions are found for to the equations. There 
is no guarantee that any particular solution is found, although proximity of the initial guess to the true solution 
often is correlated with convergence to that particular solution. When possible, it is often a good approach 
to graph the equations that are being solved, to give a visual indication of the number of solutions and their 
locations. For example, code below demonstrates how three different solutions can be found to the equation 
systems we are considering here, by using different initial guesses with the optimize.fsolve function.  
The result is shown in Figure 5-8.

In [78]: def f(x):
    ...:     return [x[1] - x[0]**3 - 2 * x[0]**2 + 1,
    ...:             x[1] + x[0]**2 - 1]
    ...:
    ...: x = np.linspace(-3, 2, 5000)
    ...: y1 = x**3 + 2 * x**2 -1
    ...: y2 = -x**2 + 1
    ...:
    ...: fig, ax = plt.subplots(figsize=(8, 4))
    ...:
    ...: ax.plot(x, y1, 'b', lw=1.5, label=r'$y = x^3 + 2x^2 - 1$')
    ...: ax.plot(x, y2, 'g', lw=1.5, label=r'$y = -x^2 + 1$')
    ...:
    ...: x_guesses = [[-2, 2], [1, -1], [-2, -5]]
    ...: for x_guess in x_guesses:
    ...:     sol = optimize.fsolve(f, x_guess)
    ...:     ax.plot(sol[0], sol[1], 'r*', markersize=15)
    ...:
    ...:     ax.plot(x_guess[0], x_guess[1], 'ko')
    ...:     ax.annotate("", xy=(sol[0], sol[1]), xytext=(x_guess[0], x_guess[1]),
    ...:                 arrowprops=dict(arrowstyle="->", linewidth=2.5))
    ...:
    ...: ax.legend(loc=0)
    ...: ax.set_xlabel(r'$x$', fontsize=18)



Chapter 5 ■ Equation Solving

144

By systematically solving the equation systems with different initial guesses, we can build visualization 
of how different initial guesses converges to different solutions. This is done in the code example below, and 
the result is shown in Figure 5-9. This examples demonstrates that even for this relatively simple example, 
the regions of initial guesses that converges to different solutions is highly nontrivial, and there are also 
missing dots that correspond to initial guesses for which the algorithm fails to converge to any solution. 
Nonlinear equation solving is a complex task, and visualizations of different types can often be a valuable 
tool when building an understanding for the characteristics of a particular problem.

In [79]: fig, ax = plt.subplots(figsize=(8, 4))
    ...:
    ...: ax.plot(x, y1, 'k', lw=1.5, label=r'$y = x^3 + 2x^2 - 1$')
    ...: ax.plot(x, y2, 'k', lw=1.5, label=r'$y = -x^2 + 1$')
    ...:
    ...: sol1 = optimize.fsolve(f, [-2,  2])
    ...: sol2 = optimize.fsolve(f, [ 1, -1])
    ...: sol3 = optimize.fsolve(f, [-2, -5])
    ...:
    ...: colors = ['r', 'b', 'g']
    ...: for m in np.linspace(-4, 3, 80):
    ...:     for n in np.linspace(-15, 15, 40):
    ...:         x_guess = [m, n]
    ...:         sol = optimize.fsolve(f, x_guess)
    ...:
    ...:         for idx, s in enumerate([sol1, sol2, sol3]):
    ...:             if abs(s-sol).max() < 1e-8:
    ...:                 ax.plot(sol[0], sol[1], colors[idx]+'*', markersize=15)
    ...:                 ax.plot(x_guess[0], x_guess[1], colors[idx]+'.')
    ...:
    ...: ax.set_xlabel(r'$x$', fontsize=18)

Figure 5-8.  Graph of a system of two nonlinear equations. The solutions are indicated with red stars, and the 
initial guess with a black dot and an arrow to the solution each initial guess eventually converged to
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Summary
In this chapter we have explored methods for solving algebraic equations using the SymPy and SciPy libraries. 
Equation solving is one of the most elementary mathematical tools for computational sciences, and it is both an 
important component in many algorithms and methods, and has direct applications in many problem-solving 
situations. In some cases, analytical algebraic solutions exist, especially for equations that are polynomials or 
contain certain combinations of elementary functions, and such equations can often be handled symbolically 
with SymPy. For equations with no algebraic solution, and for larger systems of equations, numerical methods 
are usually the only feasible approach. Linear equation systems can always be systematically solved, and for 
this reason there is an abundance of important applications for linear equation systems, be it for originally 
linear systems or as approximations to originally nonlinear systems. Nonlinear equation solving requires a 
different set of methods, and it in general much more complex and computationally demanding compared to 
linear equation systems. In fact, solving linear equation systems is an important step in the iterative methods 
employed in many of the methods that exist to solve nonlinear equation systems. For numerical equation 
solving, we can use the linear algebra and optimization modules in SciPy, which provide efficient and  
well-tested methods for numerical root finding and equation solving of both linear and nonlinear systems.

Further Reading
Equation solving is a basic numerical technique whose methods are convered in most introductory 
numerical analysis texts. A good example of books that cover these topics is (Heath, 2001) and  
(W.H. Press, 2007), which give a practical introduction with implementation details.
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Figure 5-9.  Visualization of the convergence of different initial guesses to different solutions. Each dot 
represent an initial guess, and its color encodes which solution it eventually converges to. The solutions are 
marked with correspondingly color-coded stars
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Chapter 6

Optimization

In this chapter, we will build on Chapter 5 about equation solving, and explore the related topic of solving 
optimization problems. In general, optimization is the process of finding and selecting the optimal element 
from a set of feasible candidates. In mathematical optimization, this problem is usually formulated as 
determining the extreme value of a function of a given domain. An extreme value, or an optimal value, can 
refer to either the minimum or maximum of the function, depending on the application and the specific 
problem. In this chapter we are concerned with optimization of real-valued functions of one or several 
variables, which optionally can be subject to a set of constraints that restricts the domain of the function.

The applications of mathematical optimization are many and varied, and so are the methods and 
algorithms that must be employed to solve optimization problems. Since optimization is a universally 
important mathematical tool, it has been developed and adopted for use in many fields of science and 
engineering, and the terminology used to describe optimization problems varies between different fields. 
For example, the mathematical function that is optimized may be called a cost function, loss function, 
energy function, or objective function, to mention a few. Here we use the generic term “objective function.”

Optimization is closely related to equation solving because at an optimal value of a function, its 
derivative, or gradient in the multivariate case, is zero. The converse, however, is not necessarily true, but 
a method to solve optimization problems is to solve for the zeros of the derivative or the gradient and test 
the resulting candidates for optimality. This approach is not always feasible though, and often it is required 
to take other numerical approaches, many of which are closely related to the numerical methods for root 
finding that was covered in Chapter 5.

In this chapter we discuss using SciPy’s optimization module optimize for nonlinear optimization 
problems, and we will briefly explore using the convex optimization library cvxopt for linear optimization 
problems with linear constraints. This library also has powerful solvers for quadratic programming problems.

■■ cvxopt  The convex optimization library cvxopt provides solvers for linear and quadratic optimization 
problems. At the time of writing, the latest version is 1.1.7. For more information, see the project’s web site 
http://cvxopt.org. Here we use this library for constrained linear optimization.

Importing Modules
Like in the previous chapter, here we use the optimize module from the SciPy library. Here we assume that 
this module is imported in the following manner:

In [1]: from scipy import optimize

http://dx.doi.org/10.1007/978-1-4842-0553-2_5
http://dx.doi.org/10.1007/978-1-4842-0553-2_5
http://cvxopt.org/
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In the later part of this chapter we also look at linear programming using the cvxopt library, which we 
assume to be imported in its entirety without any alias:

In [2]: import cvxopt

For basic numerics, symbolics, and plotting, here we also use the NumPy, SymPy, and Matplotlib 
libraries, which are imported and initialized using the conventions introduced in earlier chapters:

In [3]: import matplotlib.pyplot as plt
In [4]: import numpy as np
In [5]: import sympy
In [6]: sympy.init_printing()

Classification of Optimization Problems
Here we restrict our attention to mathematical optimization of real-valued functions, with one or more 
dependent variables. Many mathematical optimization problems can be formulated in this way, but a notable 
exception is optimization of functions over discrete variables, for example, integers, which are beyond the 
scope of this book.

A general optimization problem of the type considered here can be formulated as a minimization problem, 
min ( )

x
f x , subject to sets of m equality constraints g x( ) = 0 and p inequality constraints h x( )£ 0. Here f (x) is a 

real-valued function of x, which can be a scalar or a vector x x x xn
T= ¼( , , , )0 1 , while g (x) and h(x) can be vector 

valued functions: f n: ® , g n m: ®  and h n p: ® . Note that maximizing f (x) is equivalent to minimizing 

–f (x), so without loss of generality it is sufficient to consider only minimization problems.
Depending on the properties of the objective function f (x) and the equality and inequality constraints 

g(x) and h(x), this formulation includes a rich variety of problems. A general mathematical optimization on 
this form is difficult to solve, and there are no efficient methods for solving completely generic optimization 
problems. However, there are efficient methods for many important special cases, and in optimization it is 
therefore important to know as much as possible about the objective functions and the constraints in order to 
be able to solve a problem.

Optimization problems are classified depending on the properties of the functions f (x), g(x), and h(x). 
First and foremost, the problem is univariate or one dimensional if x is a scalar, xÎ, and multivariate or 
multidimensional if x is a vector, x nÎ . For high-dimensional objective functions, with larger n, the 
optimization problem is harder and more computationally demanding to solve. If the objective function and 
the constraints all are linear, the problem is a linear optimization problem, or linear programming problem.1 
If either the objective function or the constraints are nonlinear, it is a nonlinear optimization problem, or 
nonlinear programming problem. With respect to constraints, important subclasses of optimization are 
unconstrained problems, and those with linear and nonlinear constraints. Finally, handling equality and 
inequality constraints require different approaches.

As usual, nonlinear problems are much harder to solve than linear problems, because they have a 
wider variety of possible behaviors. A general nonlinear problem can have both local and global minima, 
which turns out to make it very difficult to find the global minima: iterative solvers may often converge to 
local minima rather that the global minima, or may even fail to converge altogether if there are both local 
and global minima. However, an important subclass of nonlinear problems that can be solved efficiently 

1For historical reasons, optimization problems are often referred to as programming problems, which are not related to 
computer programming.
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is convex problems, which are directly related to the absence of strictly local minima and the existence of a 
unique global minimum. By definition, a function is convex on an interval [a, b] if the values of the function 
on this interval lies below the line through the end points (a, f (a)) and (b, f (b)). This condition, which can be 
readily generalized to the multivariate case, implies a number of important properties, such as the existence 
of a unique minimum on the interval. Because of strong properties like this one, convex problems can be 
solved efficiently even though they are nonlinear. The concepts of local and global minima, and convex and 
non-convex functions, are illustrated in Figure 6-1.

Figure 6-1.  Illustration of a convex function (left), and a non-convex function (right) with a global minima 
and two local minima

Whether the objective function f (x) and the constraints g(x) and h(x) are continuous and smooth is 
another property that has very important implications for the methods and techniques that can be used to 
solve an optimization problem. Discontinuities in these functions, or their derivatives or gradients, cause 
difficulties for many of the available methods of solving optimization problems, and in the following we 
assume that these functions are indeed continuous and smooth. On a related note, if the function itself is 
not known exactly, but contains noise due to measurements or for other reasons, many of the methods 
discussed in the following may not be suitable.

Optimization of continuous and smooth functions are closely related to nonlinear equation solving, 
because extremal values of a function f (x) correspond to points where its derivative, or gradient, is zero. 
Finding candidates for the optimal value of f (x) is therefore equivalent to solving the (in general nonlinear) 
equation system Ñ =f x( ) 0. However, a solution to Ñ =f x( ) 0, which is known as a stationary point, does not 
necessarily correspond to a minimum of f (x); it can also be maximum or a saddle point, see Figure 6-2. 
Candidates obtained by solving Ñ =f x( ) 0 should therefore be tested for optimality. For unconstrained 
objective functions the higher-order derivatives, or Hessian matrix

H x
f x

x xf ij
i j

( ){ } =
¶ ( )
¶ ¶

2

,

for the multivariate case, can be used to determine if a stationary point is a local minimum or not. In 
particular if the second-order derivative is positive, or the Hessian positive definite, when evaluated at 
stationary point x*, then x* is a local minimum. Negative second-order derivative, or negative definite 
Hessian, correspond to a local maximum and a zero second-order derivative, or an indefinite Hessian, 
correspond to saddle point.
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Algebraically solving the equation system Ñ =f x( ) 0 and test the candidate solutions for optimality is 
therefore one possible strategy for solving an optimization problem. However, it is not always a feasible 
method. In particular, we may not have an analytical expression for f (x) from which we can compute the 
derivatives, and the resulting nonlinear equation system may not be easy to solve, especially not to find all of 
its roots. For such cases, there are alternative numerical optimization approaches, some of which are have 
analogs among to the root-finding methods discussed in Chapter 5. In the remaining part of this chapter, we 
explore the various classes of optimization problems, and how such problems can be solved in practice 
using available optimization libraries for Python.

�Univariate Optimization
Optimization of a function that only depends on a single variable is relatively easy. In addition to the 
analytical approach of seeking the roots of the derivative of the function, we can employ techniques that are 
similar to the root-finding methods for univariate functions, namely bracketing methods and Newton’s 
method. Like the bisection method for univariate root finding, it is possible to use bracketing and iteratively 
refine an interval using function evaluations alone. Refining an interval [a, b] that contains a minimum can be 
achieved by evaluating the function at two interior points x

1
 and x

2
, x x1 2< , and select [x

1
, b] as new interval if 

f x f x1 2( ) > ( ), and [a, x
2
] otherwise. This idea is used in the golden section search method, which additionally 

uses the trick of choosing x
1
 and x

2
 such that their relative positions in the [a, b] interval satisfies the golden 

ratio. This has the advantage of allowing us to reuse one function evaluation from the previous iteration and 
thus only requires one new function evaluation in each iteration, but still reduces the interval with a constant 
factor in each iteration. For functions with a unique minimum on the given interval, this approach is 
guaranteed to converge to an optimal point, but this is unfortunately not guaranteed for more complicated 
functions. It is therefore important to carefully select the initial interval, ideally relatively close to an optimal 
point. In the SciPy optimize module, the function golden implements the golden search method.

As the bisection method for root finding, the golden search method is a (relatively) safe but a slowly 
converging method. Methods with better convergence can be constructed if the values of the function 
evaluations are used, rather than only comparing the values to each other (which is similar to using only the 
sign of the functions, as in the bisection method). The function values can be used to fit a polynomial, for 
example, a quadratic polynomial, which can be interpolated to find a new approximation for the minimum, 
giving a candidate for a new function evaluation, after which the process can be iterated. This approach can 
converge faster, but is riskier than bracketing and may not converge at all, or may converge to local minima 
outside the given bracket interval.

Newton’s method for root finding is an example of a quadratic approximation method that can be 
applied to find a function minimum, by applying the method to the derivative rather than the function itself. 
This yields the iteration formula x x f x f xk k k k+ = - ¢ ¢¢1 ( )/ ( ), which can converge quickly if started close to an 

Figure 6-2.  Illustration of different stationary points of a one-dimensional function

http://dx.doi.org/10.1007/978-1-4842-0553-2_5
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optimal point, but may not converge at all if started too far from the optimal value. This formula also requires 
evaluating both the derivative and the second-order derivative in each iteration. If analytical expressions for 
these derivatives are available, this can be a good method. If only function evaluations are available, the 
derivatives may be approximated using an analog of the secant method for root finding.

A combination of the two previous methods is typically used in practical implementations of univariate 
optimization routines, giving both stability and fast convergence. In SciPy’s optimize module, the brent 
function is such a hybrid method, and it is generally the preferred method for optimization of univariate 
functions with SciPy. This method is a variant of the golden section search method that uses inverse 
parabolic interpolation to obtain faster convergence.

Instead of calling the optimize.golden and optimize.brent functions directly, it is practical to use 
the unified interface function optimize.minimize_scalar, which dispatches to the optimize.golden and 
optimize.brent functions depending on the value of the method keyword argument, where the currently 
allowed options are 'Golden', 'Brent', or 'Bounded'. The last option dispatches to optimize.fminbound, 
which performs optimization on a bounded interval, which corresponds to an optimization problem with 
inequality constraints that limit the domain of objective function f (x). Note that the optimize.golden 
and optimize.brent functions may converge to a local minimum outside the initial bracket interval, but 
optimize.fminbound would in such circumstances return the value at the end of the allowed range.

As an example for illustrating these techniques, consider the following classic optimization problem: 
Minimize the area of a cylinder with unit volume. Here, suitable variables are the radius r and height h of the 
cylinder, and the objective function is f r h r rh,[ ]( ) = +2 22p p , subject to the equality constraing 
g r h r h,[ ]( ) = - =p 2 1 0. As this problem is formulated here, it is a two-dimensional optimization problem with 
an equality constraint. However, we can algebraically solve the constraint equation for one of the dependent 
variables, for example h r=1 2/p , and substitute this into the objective function to obtain an unconstrained 
one-dimensional optimization probem: f r r r( ) /= +2 22p . To begin with, we can solve this problem 
symbolically using SymPy, using the method of equating the derivative of f (r) to zero:

In [7]: r, h = sympy.symbols("r, h")
In [8]: Area = 2 * sympy.pi * r**2 + 2 * sympy.pi * r * h
In [9]: Volume = sympy.pi * r**2 * h
In [10]: h_r = sympy.solve(Volume - 1)[0]
In [11]: Area_r = Area.subs(h_r)
In [12]: rsol = sympy.solve(Area_r.diff(r))[0]
In [13]: rsol

Out[13]: 2

2

2 3

3

/

p

In [14]: _.evalf()
Out[14]: 0.541926070139289

Now verify that the second derivative is positive, and that rsol corresponds to a minimum:

In [15]: Area_r.diff(r, 2).subs(r, rsol)
Out[15]: 12p
In [16]: Area_r.subs(r, rsol)

Out[16]: 3 23 p

In [17]: _.evalf()
Out[17]: 5.53581044593209
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For simple problems this approach is often feasible, but for more realistic problems we typically need 
to resort to numerical techniques. To solve this problem using SciPy’s numerical optimization functions, we 
first define a Python function f that implements the objective function. To solve the optimization problem 
we then pass this function to, for example, optimize.brent. Optionally we can use the brack keyword 
argument to specify a starting interval for this algorithm:

In [18]: def f(r):
    ...:     return 2 * np.pi * r**2 + 2 / r
In [19]: r_min = optimize.brent(f, brack=(0.1, 4))
In [20]: r_min
Out[20]: 0.541926077256
In [21]: f(r_min)
Out[21]: 5.53581044593

Instead of calling optimize.brent directly, we could use the generic interface for scalar minimization 
problems, optimize.minimize_scalar. Note that to specify a starting interval in this case, we must use the 
bracket keyword argument:

In [22]: optimize.minimize_scalar(f, bracket=(0.1, 5))
Out[22]:  nit: 13
          fun: 5.5358104459320856
            x: 0.54192606489766715
         nfev: 14

All these methods gives us that the radius that minimize the area of the cylinder is approximately 0.54 
(the exact result from the symbolic calculation is 2 22 3 3/ / p) and a minimum area of approximately 5.54 (the 
exact result is 3 23 p ). The objective function that we minimized in this example is plotted in Figure 6-3, 
where the minimum is marked with a red star. When possible, it is a good idea to visualize the objective 
function before attempting a numerical optimization, because it can help identifying a suitable initial 
interval or a starting point for the numerical optimization routine.

Figure 6-3.  The surface area of a cylinder with unit volume as a function of the radius r
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�Unconstrained Multivariate Optimization
Multivariate optimization is significantly harder than the univariate optimization discussed in the previous 
section. In particular, the analytical approach of solving the nonlinear equations for roots of the gradient is 
rarely feasible in the multivariate case, and the bracketing scheme used in the golden search method is also 
not directly applicable. Instead we must resort to techniques that start at some point in the coordinate space 
and use different strategies to move toward a better approximation of the minimum point. The most basic 
approach of this type is to consider the gradient Ñf x( ) of the objective function f (x) at a given point x. In 
general, the negative of the gradient, -Ñf x( ), always points in the direction in which the function f (x) 
decreases the most. As minimization strategy, it is therefore sensible to move along this direction for some 
distance a

k
, and then iterate this scheme at the new point. This method is known as the steepest descent 

method, and it gives the iteration formula x x xk k k k+ = − ∇1 a f ( ), where a
k
 is a free parameter known as the line 

search parameter that describes how far along the given direction to move in each iteration. An appropriate 
a

k
 can, for example, be selected by solving the one-dimensional optimization problem 

mina a
k

f x f xk k k− ∇ ( )( ). This method is guaranteed to make progress and eventually converge to a minimum 
of the function, but the convergence can be quite slow because this method tends to overshoot along the 
direction of the gradient, giving a zigzag approach to the minimum. Nonetheless, the steepest descent 
method is the conceptual basis for many multivariate optimization algorithms, and with suitable 
modifications the convergence can be speed up.

Newton’s method for multivariate optimization is a modification of the steepest descent method that 
can improve convergence. As in the univariate case, Newton’s method can be viewed as a local quadratic 
approximation of the function, which when minimized gives an iteration scheme. In the multivariate case, 
the iteration formula is x x H x xk k f k k+

−= − ∇1
1( ) ( )f , where compared to the steepest descent method the 

gradient has been replaced with the gradient multiplied from the left with the inverse of Hessian matrix for 
the function.2 In general this alters both the direction and the length of the step, so this is method is not 
strictly a steepest descent method, and may not converge if started too far from a minimum. However, close 
to a minimum it converges quickly. As usual there is a trade-off between convergence rate and stability. As it 
is formulated here, Newton’s method requires both the gradient and the Hessian of the function.

In SciPy, Newton’s method is implemented in the function optimize.fmin_ncg. This function takes the 
following arguments: a Python function for the objective function, a starting point, a Python function for 
evaluating the gradient, and (optionally) a Python function for evaluating the Hessian. To see how this 
method can be used to solve an optimization problem we consider the following problem: min ( )

x
f x  where 

the objective function is f x x x x x( ) ( ) ( )= - + - -1
4

2
2

1 21 5 1 2 . To apply Newton’s method, we need to calculate 
the gradient and the Hessian. For this particular case, this can easily be done by hand. However, for the sake 
of generality, in the following we use SymPy to compute symbolic expressions for the gradient and the 
Hessian. To this end, we begin by defining symbols and a symbolic expression for the objective function, and 
then use the sympy.diff function for each variable to obtain the gradient and Hessian in symbolic form:

In [23]: x1, x2 = sympy.symbols("x_1, x_2")
In [24]: f_sym = (x1-1)**4 + 5 * (x2-1)**2 - 2*x1*x2
In [25]: fprime_sym = [f_sym.diff(x_) for x_ in (x1, x2)]

2In practice, the inverse of the Hessian does not need to be computed, and instead we can solve the linear equation 
system, H x y xf k k k( ) ( )= −∇f , and use the interation formula x x yk k k+ = +1 .
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In [26]: # Gradient
    ...: sympy.Matrix(fprime_sym)

Out[26]: 
- + -
- + -
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In [27]: fhess_sym = [[f_sym.diff(x1_, x2_) for x1_ in (x1, x2)] for x2_ in (x1, x2)]
In [28]: # Hessian
    ...: sympy.Matrix(fhess_sym)

Out[28]: 
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2( )x - -
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Now that we have symbolic expression for the gradient and the Hessian, we can create vectorized 
functions for these expressions using sympy.lambdify.

In [29]: f_lmbda = sympy.lambdify((x1, x2), f_sym, 'numpy')
In [30]: fprime_lmbda = sympy.lambdify((x1, x2), fprime_sym, 'numpy')
In [31]: fhess_lmbda = sympy.lambdify((x1, x2), fhess_sym, 'numpy')

However, the functions produced by sympy.lambdify take one argument for each variable in the 
corresponding expression, and the SciPy optimization functions expect a vectorized function where all 
coordinates are packed into one array. To obtain functions are compatible with the SciPy optimization 
routines, we wrap each of the functions generated by sympy.lambdify with a Python function that reshuffles 
the arguments:

In [32]: def func_XY_to_X_Y(f):
    ...:     """
    ...:     Wrapper for f(X) -> f(X[0], X[1])
    ...:     """
    ...:     return lambda X: np.array(f(X[0], X[1]))
In [33]: f = func_XY_to_X_Y(f_lmbda)
In [34]: fprime = func_XY_to_X_Y(fprime_lmbda)
In [35]: fhess = func_XY_to_X_Y(fhess_lmbda)

Now the functions f, fprime, and fhess are vectorized Python functions on the form that, for example, 
optimize.fmin_ncg expects, and we can procede with a numerical optimization of the problem at hand by 
calling this function. In addition to the functions that we have prepared from SymPy expressions, we also 
need to give a starting point for the Newton method. Here we use (0, 0) as starting point.

In [36]: x_opt = optimize.fmin_ncg(f, (0, 0), fprime=fprime, fhess=fhess)
         Optimization terminated successfully.
              Current function value: -3.867223
              Iterations: 8
              Function evaluations: 10
              Gradient evaluations: 17
              Hessian evaluations: 8
In [37]: x_opt
Out[37]: array([ 1.88292613,  1.37658523])
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The routine found a minimum point at ( , ) ( . , . )x x1 2 1 88292613 1 37658523= , and diagnostic information 
about the solution was also printed to standard output, including the number of iterations and the number 
of functions, gradients, and Hessian evaluations that were required to arrive at the solution. As usual it is 
illustrative to visualize the objective function and the solution (see Figure 6-4):

In [38]: fig, ax = plt.subplots(figsize=(6, 4))
    ...: x_ = y_ = np.linspace(-1, 4, 100)
    ...: X, Y = np.meshgrid(x_, y_)
    ...: c = ax.contour(X, Y, f_lmbda(X, Y), 50)
    ...: ax.plot(x_opt[0], x_opt[1], 'r*', markersize=15)
    ...: ax.set_xlabel(r"$x_1$", fontsize=18)
    ...: ax.set_ylabel(r"$x_2$", fontsize=18)
    ...: plt.colorbar(c, ax=ax)

Figure 6-4.  Contour plot of the objective function f x x x x x( ) ( ) ( )= - + - -1
4

2
2

1 21 5 1 2 . The minimum point is 
marked by a star

In practice, it may not always be possible to provide functions for evaluating both the gradient and 
the Hessian of the objective function, and often it is convenient with a solver that only requires function 
evaluations. For such cases, several methods exists to numerically estimate the gradient or the Hessian, 
or both. Methods that approximate the Hessian are known as quasi-Newton methods, and there are also 
alternative iterative methods that completely avoid using the Hessian. Two popular methods are the BFGS 
and the conjugate-gradient methods, which are implemented in SciPy as the functions optimize.fmin_bfgs 
and optimize.fmin_cg. The BFGS method is a quasi-Newton method that can gradually build up numerical 
estimates of the Hessian, and also the gradient, if necessary. The conjugate-gradient method is a variant 
of the steepest decent method and does not use the Hessian, and it can be used with numerical estimates 
of the gradient obtained from only function evaluations. With these methods, the number of function 
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evaluations that are required to solve a problem is much larger than for the Newton’s method, which on the 
other hand also evaluates the gradient and the Hessian. Both optimize.fmin_bfgs and optimize.fmin_cg 
can optionally accept a function for evaluating the gradient, but if not provided the gradient is estimated 
from function evaluations.

The problem given above, which was solved with the Newton method, can also be solved using the 
optimize.fmin_bfgs and optimize.fmin_cg, without providing a function for the Hessian:

In [39]: x_opt = optimize.fmin_bfgs(f, (0, 0), fprime=fprime)
         Optimization terminated successfully.
             Current function value: -3.867223
             Iterations: 10
             Function evaluations: 14
             Gradient evaluations: 14
In [40]: x_opt
Out[40]: array([ 1.88292605,  1.37658523])

In [41]: x_opt = optimize.fmin_cg(f, (0, 0), fprime=fprime)
         Optimization terminated successfully.
             Current function value: -3.867223
             Iterations: 7
             Function evaluations: 17
             Gradient evaluations: 17
In [42]: x_top
Out[42]: array([ 1.88292613,  1.37658522])

Note that here, as shown in the diagnostic output from the optimization solvers above, the number of 
function and gradient evaluations are larger than for Newton’s method. As already mentioned, both of these 
methods can also be used without providing a function for the gradient as well, as shown in the following 
example using the optimize.fmin_bfgs solver:

In [43]: x_opt = optimize.fmin_bfgs(f, (0, 0))
         Optimization terminated successfully.
             Current function value: -3.867223
             Iterations: 10
             Function evaluations: 56
             Gradient evaluations: 14
In [44]: x_opt
Out[44]: array([ 1.88292604,  1.37658522])

In this case the number of function evaluations is even larger, but it is clearly convenient to not have to 
implement functions for the gradient and the Hessian.

In general, the BFGS method is often a good first approach to try, in particular if neither the gradient 
nor the Hessian is known. If only the gradient is known, then the BFGS method is still the generally 
recommended method to use, although the conjugate-gradient method is in general a competitive 
alternative to the BFGS method. If both the gradient and the Hessian are known, then Newton’s method 
is the method with fastest convergence in general. However, it should be noted that although the BFGS 
and the conjugate-gradient methods theoretically have slower convergence than Newton’s method, 
they can sometimes offer improved stability and can therefore be preferable. Each iteration can also be 
more computationally demanding with Newton’s method compared to quasi-Newton methods and the 
conjugate-gradient method, and especially for large problems these methods can be faster in spite of 
requiring more iterations.
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The methods for multivariate optimization that we have discussed so far all converge to a local 
minimum in general. For problems with many local minima, this can easily lead to a situation when the 
solver easily gets stuck in a local minimum, even if a global minimum exists. Although there is no complete 
and general solution to this problem, a practical approach that can partially alleviate this problem is to use a 
brute force search over a coordinate grid to find a suitable starting point for an iterative solver. At least this 
gives a systematic approach to find a global minimum within given coordinate ranges. In SciPy, the function 
optimize.brute can carry out such a systematic search. To illustrate this method, consider the problem of 
minimizing the function 4 6 1 12 2sin sin ( ) ( )x y x yp p+ + - + - , which has a large number of local minima. This 
can make it tricky to pick a suitable initial point for an interative solver. To solve this optimization problem 
with SciPy, we first define a Python function for the objective function:

In [45]: def f(X):
   ...:      x, y = X
   ...:      return (4 * np.sin(np.pi * x) + 6 * np.sin(np.pi * y)) + (x - 1)**2 + (y - 1)**2

To systematically search for the minimum over a coordinate grid we call optimize.brute with the 
objective function f as first parameter, and a tuple of slice objects as second argument, one for each 
coordinate. The slice objects specify the coordinate grid over which to search for a minimum value. Here 
we also set the keyword argument finish=None, which prevents the optimize.brute from automatically 
refining the best candidate.

In [46]: x_start = optimize.brute(f, (slice(-3, 5, 0.5), slice(-3, 5, 0.5)), finish=None)
In [47]: x_start
Out[47]: array([ 1.5,  1.5])
In [48]: f(x_start)
Out[48]: −9.5

On the coordinate grid specified by the given tuple of slice objects, the optimal point is 
x x1 2 1 5 1 5, . , .( ) = ( ), with corresponding objective function minimum -9 5. . This is now a good starting point 

for a more sophisiticated iterative solver, such as optimize.fmin_bfgs:

In [49]: x_opt = optimize.fmin_bfgs(f, x_start)
         Optimization terminated successfully.
              Current function value: -9.520229
              Iterations: 4
              Function evaluations: 28
              Gradient evaluations: 7
In [50]: x_opt
Out[50]: array([ 1.47586906,  1.48365788])
In [51]: f(x_opt)
Out[51]: −9.52022927306

Here the BFGS method gave the final minimum point ( , ) ( . , . )x x1 2 1 47586906 1 48365788= , with the 
minimum value of the objective function -9 52022927306. . For this type of problem, guessing the initial 
starting point easily results in that the iterative solver converges to a local minimum, and the systematic 
approach that optimize.brute provides is frequently useful.

As always, it is important to visualize the objective function and the solution when possible. The 
following two code cells plot a contour graph of the current objective function and marks the obtained 



Chapter 6 ■ Optimization

158

solution with a star (see Figure 6-5). As in the previous example, we need a wrapper function for reshuffling 
the parameters of the objective function because the different convention of how the coordinated vectors are 
passed to the function (separate arrays, or packed in to one array, respectively).

In [52]: def func_X_Y_to_XY(f, X, Y):
    ...:     """
    ...:     Wrapper for f(X, Y) -> f([X, Y])
    ...:     """
    ...:     s = np.shape(X)
    ...:     return f(np.vstack([X.ravel(), Y.ravel()])).reshape(*s)
In [53]: fig, ax = plt.subplots(figsize=(6, 4))
    ...: x_ = y_ = np.linspace(-3, 5, 100)
    ...: X, Y = np.meshgrid(x_, y_)
    ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 25)
    ...: ax.plot(x_opt[0], x_opt[1], 'r*', markersize=15)
    ...: ax.set_xlabel(r"$x_1$", fontsize=18)
    ...: ax.set_ylabel(r"$x_2$", fontsize=18)
    ...: plt.colorbar(c, ax=ax)

Figure 6-5.  Contour plot of the objective function f x x y x y( ) sin sin ( ) ( )= + + − + −4 6 1 12 2p p . The minimum 
is marked with a star

In this section, we have explicitly called functions for specific solvers, for example optimize.fmin_bfgs. 
However, like for scalar optimization, SciPy also provides a unified interface for all multivariate optimization 
solvers with the function optimize.minimize, which dispatches out to the solver-specific functions 
depending on the value of the method keyword argument (remember, the univariate minimization function 
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that provides a unified interface is optimize.scalar_minimize). For clarity, here we have favored explicitly 
calling functions for specific solvers, but in general it is a good idea to use optimize.minimize, as this makes 
it easier to switch between different solvers. For example, in the previous example where we used optimize.
fmin_bfgs in the following way:

In [54]: x_opt = optimize.fmin_bfgs(f, x_start)

we could just as well have used:

In [55]: result = optimize.minimize(f, x_start, method='BFGS')
In [56]: x_opt = result.x

The optimize.minimize function returns an instance of optimize.OptimizeResult that represents the 
result of the optimization. In particular, the solution is available via the x attribute of this class.

�Nonlinear Least Square Problems
In the Chapter 5 we encounter linear least square problems, and explored how they can be solved with linear 
algebra methods. In general, a least square problem can be viewed as an optimization problem with the 

objective function g r r
i

m

i( ) ( )( )b b b= =
=
å

0

2 2
, where r(b) is a vector with the residuals r y f xi i i( ) ( , )b b= -  for a 

set of m obervations (x
i
, y

i
). Here b is a vector with unknown parameters that specifies the function f (x, b). If 

this problem is nonlinear in the parameters b, it is known as a nonlinear least square problem and since it is 
nonlinear it cannot be solved with the linear algebra techniques discussed in Chapter 5. Instead, we can use 
the multivariate optimization techniques described in the previous section, such as Newton’s method or a 
quasi-Newton method. However, this nonlinear least square optimization problem has a specific structure, 
and several methods that are tailored to solve this particular optimization problem has been developed. One 
example is the Levenberg-Marquardt method, which is based on the idea of successive linearizations of the 
problem in each iteration.

In SciPy, the function optimize.leastsq provides a nonlinear least square solver that uses the 
Levenberg-Marquardt method. To illustrate how this function can be used, consider a nonlinear model on 
the form f x x( ) exp,b b b b= + -( )0 1 2

2  and a set of observations (x
i
, y

i
). In the following example, we simulate 

the observations with random noise added to the true values, and we solve the minimization problem that 
gives the best least square estimates of the parameters b. To begin with, we define a tuple with the true 
values of the parameter vector b, and Python function for the model function. This function, which should 
return the y value corresponding to a given x value, takes as first argument the variable x, and the following 
arguments are the unknown function parameters.

In [57]: beta = (0.25, 0.75, 0.5)
In [58]: def f(x, b0, b1, b2):
    ...:    return b0 + b1 * np.exp(-b2 * x**2)

Once the model function is defined, we generate randomized data points that simulate the 
observations.

In [59]: xdata = np.linspace(0, 5, 50)
In [60]: y = f(xdata, *beta)
In [61]: ydata = y + 0.05 * np.random.randn(len(xdata))

http://dx.doi.org/10.1007/978-1-4842-0553-2_5
http://dx.doi.org/10.1007/978-1-4842-0553-2_5
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With the model function and observation data prepared, we are ready to start solving the nonlinear 
least square problem. The first step is to define a function for the residuals given the data and the model 
function, which is specified in terms of the yet-to-be determined model parameters b.

In [62]: def g(beta):
    ...:     return ydata - f(xdata, *beta)

Next we define an initial guess for the parameter vector and let the optimize.leastsq function solve for 
the best least square fit for the parameter vector:

In [63]: beta_start = (1, 1, 1)
In [64]: beta_opt, beta_cov = optimize.leastsq(g, beta_start)
In [65]: beta_opt
Out[65]: array([ 0.25733353,  0.76867338,  0.54478761])

Here the best fit is quite close to the true parameter values (0.25, 0.75, 0.5), as defined earlier. By plotting 
the observation data and the model function for the true and fitted function parameters, we can visually 
confirm that the fitted model seems to describe the data well (see Figure 6-6).

In [66]: fig, ax = plt.subplots()
    ...: ax.scatter(xdata, ydata)
    ...: ax.plot(xdata, y, 'r', lw=2)
    ...: ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2)
    ...: ax.set_xlim(0, 5)
    ...: ax.set_xlabel(r"$x$", fontsize=18)
    ...: ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)

Figure 6-6.  Nonlinear least square fit to the function f x x( ) exp( ),b b b b= + -0 1 2
2  with b = ( . , . , . )0 25 0 75 0 5
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The SciPy optimize module also provides an alternative interface to nonlinear least square fitting, 
through the function optimize.curve_fit. This is a convenience wrapper around optimize.leastsq, which 
eliminates the need to explicitly defining the residual function for the least square problem. The previous 
problem could therefore be solved more concisely using the following:

In [67]: beta_opt, beta_cov = optimize.curve_fit(f, xdata, ydata)
In [68]: beta_opt
Out[68]: array([ 0.25733353,  0.76867338, 0.54478761])

�Constrained Optimization
Constraints add another level of complexity to optimization problems, and they require a classification of 
their own. A simple form of constrained optimization is the optimization where the coordinate variables 
are subject to some bounds. For example: min ( )

x
f x  subject to 0 1£ £x . The constraint 0 1£ £x  is simple 

because it only only restricts the range of the coordinate without dependencies on the other variables. This 
type of problem can be solved using the L-BFGS-B method in SciPy, which is a variant of the BFGS method 
we used earlier. This solver is available through the function optimize.fmin_l_bgfs_b or via optimize.
minimize with the method argument set to 'L-BFGS-B'. To define the coordinate boundaries, the bound 
keyword argument must be used, and its value should be a list of tuples that contain the minimum and 
maximum value of each constrained variable. If the minimum or maximum value is set to None, it is 
interpreted as an unbounded.

As an example of solving a bounded optimization problem with the L-BFGS-B solver, consider 
minimizing the objective function f x x x( ) ( ) ( )= - - -1

2
2

21 1  subject to the constraints 2 31£ £x  and 0 22£ £x . 
To solve this problem, we first define a Python function for the objective functions and tuples with the 
boundaries for each of the two variables in this problem, according to the given constraints. For comparison, 
in the following code we also solve the unconstrained optimization problem with the same objective 
function, and we plot a contour graph of the objective function where the unconstrained and constrained 
minimum values are marked with blue and red stars, respectively (see Figure 6-7).

In [69]: def f(X):
    ...:     x, y = X
    ...:     return (x - 1)**2 + (y - 1)**2
In [70]: x_opt = optimize.minimize(f, (1, 1), method='BFGS').x
In [71]: bnd_x1, bnd_x2 = (2, 3), (0, 2)
In [72]: x_cons_opt = optimize.minimize(f, np.array([1, 1]), method='L-BFGS-B',
    ...:                                bounds=[bnd_x1, bnd_x2]).x
In [73]: fig, ax = plt.subplots(figsize=(6, 4))
    ...: x_ = y_ = np.linspace(-1, 3, 100)
    ...: X, Y = np.meshgrid(x_, y_)
    ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 50)
    ...: ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15)
    ...: ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15)
    ...: bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]),
    ...:                            bnd_x1[1] - bnd_x1[0], bnd_x2[1] - bnd_x2[0],
    ...:                            facecolor="grey")
    ...: ax.add_patch(bound_rect)
    ...: ax.set_xlabel(r"$x_1$", fontsize=18)
    ...: ax.set_ylabel(r"$x_2$", fontsize=18)
    ...: plt.colorbar(c, ax=ax)



Chapter 6 ■ Optimization

162

Constraints that are defined by equalities or inequalities that include more than one variable are more 
complicated to deal with. However, there are general techniques also for this type of problems. For example, 
using the Lagrange multipliers, it is possible to convert a constrained optimization problem to an 
unconstrained problem by introducing additional variables. For example, consider the optimization 
problem min ( )x f x  subject to the equality constraint g x( ) = 0. In an unconstrained optimization problem the 
gradient of f (x) vanish at the optimal points, Ñ =f x( ) 0. It can be shown that the corresponding condition for 
constrained problems is that the negative gradient lies in the space supported by the constraint normal, 
-Ñ =f x xg

T( ) ( )lJ . Here J
g
(x) is the Jacobian matrix of the constraint function g(x) and l is the vector of 

Lagrange multipliers (new variables). This condition is the gradient of the function Λ λ( )x , = +f x g xT( ) ( )l , 
which is known as the Lagrangian function. Therefore, if both f (x) and g(x) have continuous and smooth, a 
stationary point (x

0
, l

0
) of the L(x, l) corresponds to a x

0
 is an optimum of the original constrained 

optimization problem. Note that if g(x) is a scalar function (that is, there is only one constraint), then the 
Jacobian J

g
(x) reduces to the gradient Ñg x( ).

To illustrate this technique, consider the problem of maximizing the volume of a rectangle with  
sides of length x

1
, x

2
 and x

3
, subject to the constraint that the total surface area should be unity: 

g x x x x x x x( ) = + + - =2 2 2 1 01 2 0 2 1 0 . To solve this optimization problem using Lagrange multipliers, we form 
the Lagrangian Λ( )x = +f x g x( ) ( )l , and seek the stationary points for ∇ =Λ( )x 0. With SymPy, we can carry 
out this task by first defining the symbols for the variables in the problem, then constructing expressions for 
f (x), g(x) and L(x),

In [74]: x = x0, x1, x2, l = sympy.symbols("x_0, x_1, x_2, lambda")
In [75]: f = x0 * x1 * x2
In [76]: g = 2 * (x0 * x1 + x1 * x2 + x2 * x0) - 1
In [77]: L = f + l * g

Figure 6-7.  Contours of the objective function f(x), with the unconstrained (blue star) and constrained 
minima (red star). The feasible region of the constrained problem is shaded in gray
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and finally computing ∇Λ( )x  using sympy.diff and solving the equation ∇ =Λ( )x 0 using sympy.solve:

In [78]: grad_L = [sympy.diff(L, x_) for x_ in x]
In [79]: sols = sympy.solve(grad_L)
In [80]: sols
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This procedure gives two stationary points. We could determine which one corresponds to the optimal 
solution by evaluating the objective function for each case. However, here only one of the stationary points 
corresponds to a physically acceptable solution: since x

i
 is the length of a rectangle side in this problem, it 

must be positive. We can therefore immediately identify the interesting solution, which corresponds to the 

intuitive result x x x0 1 2

6

6
= = =  (a cube). As a final verification, we evaluate the constraint function and the 

objective function using the obtained solution:

In [81]: g.subs(sols[0])
Out[81]: 0
In [82]: f.subs(sols[0])

Out[82]: 
6

36

This method can be extended to handle inequality constraints as well, and there exists various 
numerical methods of applying this approach. One example is the method known as sequential least 
squares programming, abbreviated as SLSQP, which is available in the SciPy as the optimize.slsqp function 
and via optimize.minimize with method='SLSQP'. The optimize.minimize function takes the keyword 
argument constraints, which should be a list of dictionaries that each specifies a constraint. The allowed 
keys (values) in this dictionary are type ('eq' or 'ineq'), fun (constraint function), jac (Jacobian of the 
constraint function), and args (additional arguments to constraint function and the function for evaluating 
its Jacobian). For example, the constraint dictionary describing the constraint in the previous problem 
would be dict(type='eq', fun=g).

To solve the full problem numerically using SciPy’s SLSQP solver, we need to define Python functions 
for the objective function and the constraint function:

In [83]: def f(X):
    ...:     return -X[0] * X[1] * X[2]
In [84]: def g(X):
    ...:     return 2 * (X[0]*X[1] + X[1] * X[2] + X[2] * X[0]) - 1

Note that since the SciPy optimization functions solve minimization problems, and here we are 
interested in maximization, the function f is here the negative of the original objective function. Next we 
define the constraint dictionary for g x( ) = 0, and finally call the optimize.minimize function

In [85]: constraint = dict(type='eq', fun=g)
In [86]: result = optimize.minimize(�f, [0.5, 1, 1.5], method='SLSQP', 
    ...:                            constraints=[constraint])
In [87]: result
Out[87]:  status: 0
         success: True
            njev: 18
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            nfev: 95
             fun: -0.068041368623352985
               x: array([ 0.40824187,  0.40825127,  0.40825165])
         message: 'Optimization terminated successfully.'
             jac: array([-0.16666925, -0.16666542, -0.16666527,  0.        ])
             nit: 18
In [88]: result.x
Out[88]: array([ 0.40824187,  0.40825127,  0.40825165])

As expected, the solution agrees well with the analytical result obtained from the symbolic calculation 
using Lagrange multipliers.

To solve problems with inequality constraints, all we need to do is to set type='ineq' in the constraint 
dictionary and provide the corresponding inequality function. To demonstrate minimization of a nonlinear 
objective function with a nonlinear inequality constrained, we return to the quadratic problem considered 
previously, but in this case with inequality constraint g x x x( ) . ( . )= - - - ³1 0

41 75 0 75 0. As usual, we begin by 
defining the objective function and the constraint function, as well as the constraint dictionary:

In [89]: def f(X):
    ...:     return (X[0] - 1)**2 + (X[1] - 1)**2
In [90]: def g(X):
    ...:     return X[1] - 1.75 - (X[0] - 0.75)**4
In [91]: constraints = [dict(type='ineq', fun=g)]

Next, we are ready to solve the optimization problem by calling the optimize.minimize function. For 
comparison, here we also solve the corresponding unconstrained problem.

In [92]: x_opt = optimize.minimize(f, (0, 0), method='BFGS').x
In [93]: x_cons_opt = optimize.minimize(�f, (0, 0), method='SLSQP', 
    ...:                                constraints=constraints).x

To verify the soundness of the obtained solution, we plot the contours of the objective function together 
with a shaded area representing the feasible region (where the inequality constraint is satisfied). The 
constrained and unconstrained solutions are marked with a red and a blue star, respectively (see Figure 6-8).

In [94]: fig, ax = plt.subplots(figsize=(6, 4))
In [95]: x_ = y_ = np.linspace(-1, 3, 100)
    ...: X, Y = np.meshgrid(x_, y_)
    ...: c = ax.contour(X, Y, func_X_Y_to_XY(f, X, Y), 50)
    ...: ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15)
    ...: ax.plot(x_, 1.75 + (x_-0.75)**4, 'k-', markersize=15)
    ...: ax.fill_between(x_, 1.75 + (x_-0.75)**4, 3, color='grey')
    ...: ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15)
    ...:
    ...: ax.set_ylim(-1, 3)
    ...: ax.set_xlabel(r"$x_0$", fontsize=18)
    ...: ax.set_ylabel(r"$x_1$", fontsize=18)
    ...: plt.colorbar(c, ax=ax)
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For optimization problems with only inequality constraints, SciPy provides an alternative solver using 
the constrained optimization by linear approximation (COBYLA) method. This solver is accessible either 
through optimize.fmin_cobyla or optimize.minimize with method='COBYLA'. The previous example could 
just as well have been solved with this solver, by replacing method='SLSQP' with method='COBYLA'.

�Linear Programming
In the previous section we considered methods for very general optimization problems, where the objective 
function and constraint functions all can be nonlinear. However, at this point it is worth taking a step back 
to consider a much more restricted type of optimization problem: namely, linear programming, where 
the objective function is linear and all constraints are linear equality or inequality constraints. The class 
of problems is clearly much less general, but it turns out that linear programming has many important 
applications, and they can be solved vastly more efficiently that general nonlinear problems. The reason 
for this is that linear problems have properties that enable completely different methods to be used. In 
particular, the solution to linear optimization problem must necessarily lie on a constraint boundary, 
so it is sufficient to search the vertices of the intersections of the linear constraints functions. This can 
be done efficiently in practice. A popular algorithm for this type of problems is known as simplex, which 
systematically moves from one vertix to another until the optimal vertix has been reached. There are also 
more recent interior point methods that efficiently solve linear programming problems. With these methods, 
linear programming problems with thousands of variables and constraints are readily solvable.

Figure 6-8.  Contour plot of the objective function with the feasible region of the constrained problem 
shaded gray. The red and blue stars are the optimal points in the constained and unconstrained 
problems, respectively
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Linear programming problems are typically written in the so-called standard form: min
x

Tc x  where 

Ax b£  and x ³ 0. Here c and x are vectors of length n, and A is a m n´  matrix and b a m-vector. For example, 
consider the problem of minimizing the function f x x x x( ) = - + -0 1 22 3 , subject to the three inequality 
constraints x x0 1 1+ £ , - + £x x0 13 2, - + £x x1 2 3. On the standard form we have c = - -( , , )1 2 3 , b = ( )1 2 3, ,  
and

A = -
-
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To solve this problem, here we use the cvxopt library, which provides the linear programming solver 
with the cvxopt.solvers.lp function. This solver expects as arguments the c, A and b vectors and matrix 
used in the standard form introduced above, in the given order. The cvxopt library uses its own classes 
for representing matrices and vectors, but fortunately they are interopterable with NumPy arrays via the 
array interface3 and can therefore be cast from one form to another using the cvxopt.matrix and np.array 
functions. Since NumPy array is the de facto standard array format in the scientific Python environment, it is 
sensible to use NumPy array as far as possible and only convert to cvxopt matrices when necessary, that is, 
before calling one of the solvers in cvxopt.solvers.

To solve the stated example problem using the cvxopt library, we therefore first create NumPy arrays for 
the c, A and b array, and convert them to cvxopt matrices using the cvxopt.matrix function:

In [96]: c = np.array([-1.0, 2.0, -3.0])
In [97]: A = np.array([[ 1.0, 1.0, 0.0],
    ...:               [-1.0, 3.0, 0.0],
    ...:               [ 0.0, -1.0, 1.0]])
In [98]: b = np.array([1.0, 2.0, 3.0])
In [99]: A_ = cvxopt.matrix(A)
In [100]: b_ = cvxopt.matrix(b)
In [101]: c_ = cvxopt.matrix(c)

The cvxopt compatible matrices and vectors c_, A_, and b_, can now be passed to the linear 
programming solver cvxopt.solvers.lp:

In [102]: sol = cvxopt.solvers.lp(c_, A_, b_)
         Optimal solution found.
In [103]: sol
Out[103]: {'dual infeasibility': 1.4835979218054372e-16,
           'dual objective': -10.0,
           'dual slack': 0.0,
           'gap': 0.0,
           'iterations': 0,
           'primal infeasibility': 0.0,
           'primal objective': -10.0,
           'primal slack': -0.0,
           'relative gap': 0.0,
           'residual as dual infeasibility certificate': None,
           'residual as primal infeasibility certificate': None,

3For details, see http://docs.scipy.org/doc/numpy/reference/arrays.interface.html.

http://docs.scipy.org/doc/numpy/reference/arrays.interface.html
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           's': <3x1 matrix, tc='d'>,
           'status': 'optimal',
           'x': <3x1 matrix, tc='d'>,
           'y': <0x1 matrix, tc='d'>,
           'z': <3x1 matrix, tc='d'>}
In [104]: x = np.array(sol['x'])
In [105]: x
Out[105]: array([[ 0.25],
     ...:        [ 0.75],
     ...:        [ 3.75]])
In [106]: sol['primal objective']
Out[106]: -10.0

The solution to the optimization problem is given in terms of the vector x, which in this particular 
example is x = ( . , . , . )0 25 0 75 3 75 , which corresponds to the f (x) value -10 . With this method and the  
cvxopt.solvers.lp solver, linear programming problems with hundreds or thousands of variables can 
readily be solved. All that is needed is to write the optimization problem on standard form and create the c, 
A, and b arrays.

�Summary
Optimization – to select the best option from a set of alternatives – is fundamental in many applications 
in science and engineering. Mathematical optimization provides a rigorous framework for systematically 
treating optimization problems, if they can be formulated as a mathematical problem. Computational 
methods for optimization are the tools with which such optimization problems are solved in practice. 
In a scientific computing environment, optimization therefore plays a very important role. For scientific 
computing with Python, the SciPy library provides efficient routines for solving many standard optimization 
problems, which can be used to solve a vast variety of computational optimization problems. However, 
optimization is a large field in mathematics, requiring arrays of different methods for solving different types 
of problems, and there are several optimization libraries for Python that provide specialized solvers for 
specific type of optimization problems. In general, the SciPy optimize module provides good and flexible 
general-purpose solvers for a wide variety of optimization problems, but for specific types of optimization 
problems there are also many specialized libraries that provide better performance or more features. An 
example of such a library is cvxopt, which complements the general-purpose optimization routines in SciPy 
with efficient solvers for linear and quadratic problems.

Further Reading
For an accessible introduction to optimization, with more detailed discussions of the numerical properties 
of several of the methods introduced in this chapter, see the book by Heath. For a more rigorous and in-depth 
introduction to optimization, see the book by Chong. A thorough treatment of convex optimization is given 
in the excellent book by Boyd, which is also available online at http://stanford.edu/~boyd/cvxbook.

http://stanford.edu/~boyd/cvxbook
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Chapter 7

Interpolation

Interpolation is a mathematical method for constructing a function from a discrete set of data points. The 
interpolation function, or interpolant, should exactly coincide with the given data points, and it can also 
be evaluated for other intermediate input values within the sampled range. There are many applications of 
interpolation: A typical use-case that provides an intuitive picture is the plotting of a smooth curve through 
a given set of data points. Another use-case is to approximate complicated functions, which, for example, 
could be computationally demanding to evaluate. In that case, it can be beneficial to evaluate the original 
function only at a limited number of points, and use interpolation to approximate the function when 
evaluating it for intermediary points.

Interpolation may at a first glance look a lot like least square fitting, which we saw already in both 
Chapter 5 (linear least square) and Chapter 6 (nonlinear least square). Indeed, there are many similarities 
between interpolation and curve fitting with least square methods, but there are also important conceptual 
differences that distinguish these two methods: In least square fitting, we are interested in approximately 
fitting a function to data points in manner that minimize the sum of square errors, using many data points 
and an overdetermined system of equations. In interpolation, on the other hand, we require a function that 
exactly coincides with the given data points, and only use the number of data points that equals the number 
of free parameters in the interpolation function. Least square fitting is therefore more suitable for fitting 
a large number of data points to a model function, and interpolation is a mathematical tool for creating a 
functional representation for a given minimal number of data points. In fact, interpolation is an important 
component in many mathematical methods, including some of the methods for equation solving and 
optimization that we used in Chapters 5 and 6.

Extrapolation is a concept that is related to interpolation. It refers to evaluating the estimated function 
outside of the sampled range, while interpolation only refers to evaluating the function within the range 
that is spanned by the given data points. Extrapolation can often be riskier than interpolation, because it 
involves estimating a function in a region where it has not been sampled. Here we are only concerned with 
interpolation. To perform interpolation in Python we use the polynomial module from NumPy and the 
interpolate module from SciPy.

�Importing Modules
Here we will continue with the convention of importing submodules from the SciPy library explicitly. In this 
chapter we need the interpolate module from SciPy, and also the polynomial module from NumPy, which 
provides functions and classes for polynomials. We import these modules as follows:

In [1]: from scipy import interpolate
In [2]: from numpy import polynomial as P

http://dx.doi.org/10.1007/978-1-4842-0553-2_5
http://dx.doi.org/10.1007/978-1-4842-0553-2_6
http://dx.doi.org/10.1007/978-1-4842-0553-2_5
http://dx.doi.org/10.1007/978-1-4842-0553-2_6
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In addition, we also need the rest of the NumPy library, the linear algebra module linalg from SciPy, 
and the Matplotlib library for plotting:

In [3]: import numpy as np
In [4]: from scipy import linalg
In [5]: import matplotlib.pyplot as plt

�Interpolation
Before we dive into the details of how to perform interpolation with NumPy and SciPy, we first state the 
interpolation problem in mathematical form. For notational brevity, here we only consider one-dimensional 
interpolation, which can be formulated as follows: For a given set of n data point x yi i i

n
,( ){ } =1

, find a function 

f (x) such that f x yi i( ) = , for i nÎ[ ]1, . The function f (x) is known as the interpolant, and it is not unique. In 
fact, there are an infinite number of functions that satisfy the interpolation criteria. Typically we can write 

the interpolant as a linear combination of some basis functions f
j
(x), such that f x c x

j

n

j j( ) ( )=
=
å

1

f , where c
j
 are 

unknown coefficients. Substituting the given data points into this linear combination results in a linear 

equation system for the unknown coefficients: 
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or in a more compact implicit matrix form as F( )x c y= , where the elements of the matrix F(x) are 

F x x
ij j i( ){ } = ( )f . Note that here the number of basis functions is the same as the number of data points, and 

F(x) is therefore a square matrix. Assuming that this matrix has full rank, we can solve for the unique 
c-vector using the standard methods discussed in Chapter 5. If the number of data points is larger than the 
number of basis functions, then the system is overdetermined, and in general there is no solution that 
satisfies the interpolation criteria. Instead, in this situation it is more suitable to consider a least square fit 
than an exact interpolation; see Chapter 5.

The choice of basis functions affects the properties of the resulting equation system and a suitable 
choice of basis depends on the properties of the data that is fitted. Common choices of basis functions for 
interpolation are various types of polynomials, for example, the power basis fi

ix x( ) = -1, or orthogonal 

polynomials such as Legendre polynomials fi ix P x( ) ( )= -1 , Chebyshev polynomials fi ix T x( ) ( )= -1 , or 

piecewise polynomials. Note that in general f (x) is not unique, but for n data points there is a unique 
interpolating polynomial of order n-1, regardless of which polynomial basis we use. For power basis 

fi
ix x( ) = -1, the matrix F(x) is the Vandermonde matrix, which we already have seen applications of in least 

square fitting in Chapter 5. For other polynomial bases, F(x) are generalized Vandermonde matrices, which 
for each basis defines the matrix of the linear equation system that has to be solved in the interpolation 
problem. The structure of the F(x) matrix is different for different polynomial bases, and its condition 
number and the computational cost of solving the interpolation problem varies correspondingly. 
Polynomials thus play an important role in interpolation, and before we can start to solve interpolation 

http://dx.doi.org/10.1007/978-1-4842-0553-2_5
http://dx.doi.org/10.1007/978-1-4842-0553-2_5
http://dx.doi.org/10.1007/978-1-4842-0553-2_5
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problems we need a convenient way of working with polynomials in Python. This is the topic of the 
following section.

�Polynomials
The NumPy library contains the submodule polynomial (here imported as P), which provides functions 
and classes for working with polynomials. In particular, it provides implementations of many standard 
orthogonal polynomials. These functions and classes are useful when working with interpolation, and we 
therefore review how to use this module before looking at polynomial interpolation.

■■ Note T here are two modules for polynomials in NumPy: numpy.poly1d and numpy.polynomial. There is 
a large overlap in functionality in these two modules, but they are not compatible with each other (specifically, 
the coordinate arrays have reversed order in the two representations). The numpy.poly1d module is older and 
has been superseded by numpy.polynomial, which is now recommended for new code. Here we only focus on 
numpy.polynomial, but it is worth being aware of numpy.poly1d as well.

The np.polynomial module contains a number of classes for representing polynomials in different 
polynomial bases. Standard polynomials, written in the usual power basis {xi} are represented with the 
Polynomial class. To create an instance of this class we can pass a coefficient array to its constructor. In the 
coefficient array, the ith element is the coefficient of xi. For example, we can create a representation of the 
polynomial 1 2 3 2+ +x x  by passing the list [1, 2, 3] to the Polynomial class:

In [6]: p1 = P.Polynomial([1, 2, 3])
In [7]: p1
Out[7]: Polynomial([ 1.,  2.,  3.], [-1,  1], [-1,  1])

Alternatively, we can also initialize a polynomial by specifying its roots using the class method 
P.Polynomial.fromroots. The polynomial with roots at x = -1 and x =1, for example, can be created using:

In [8]: p2 = P.Polynomial.fromroots([-1, 1])
In [9]: p2
Out[9]: Polynomial([-1.,  0.,  1.], [-1.,  1.], [-1.,  1.])

Here, the result is the polynomial with the coefficient array [-1, 0, 1], which corresponds to - +1 2x . 

The roots of a polynomial can be computed using the roots method. For example, the roots of the two 
previously created polynomials are:

In [10]: p1.roots()
Out[10]: array([-0.33333333-0.47140452j, -0.33333333+0.47140452j])
In [11]: p2.roots()
Out[11]: array([-1.,  1.])

As expected, the roots of the polynomial p2 are x = -1 and x =1, as was requested when it was created 
using the fromroots class method.
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In the examples above, the representation of a polynomial is in the form Polynomial([-1.,  0.,  1.], 
[-1.,  1.], [-1.,  1.]). The first of the lists in this representation is the coefficient array. The second 
and third lists are the domain and window attributes, which can be used to map the input domain to of a 
polynomial to another interval. Specifically, the input domain interval [domain[0], domain[1]] is mapped 
to the interval [window[0], window[1]] through a linear transformation (scaling and translation). The 
default values are domain=[-1,1] and window=[-1,1], which corresponds to an identity transformation  
(no change). The domain and window arguments are particularly useful when working with polynomials that 
are orthogonal with respect to a scalar product that is defined on a specific interval. It is then desirable to 
map the domain of the input data onto this interval. This is important when interpolating with orthogonal 
polynomials, such as the Chebyshev or Hermite polynomials, because performing this transformation can 
vastly improve the condition number of the Vandermonde matrix for the interpolation problem.

The properties of a Polynomial instance can be directly accessed using the coeff, domain, and window 
attributes. For example, for the p1 polynomial defined above we have:

In [12]: p1.coef
Out[12]: array([ 1.,  2.,  3.])
In [13]: p1.domain
Out[13]: array([-1,  1])
In [14]: p1.window
Out[14]: array([-1,  1])

A polynomial that is represented as a Polynomial instance can easily be evaluated with arbitrary values 
of x by calling the class instance as a function. The x variable can be specified as a scalar, a list, or an arbitrary 
NumPy array. For example, to evaluate the polynomial p1 at the points x ={ }1 5 2 5 3 5. , . , . , we simply call the p1 
class instance with a list of x values as this argument:

In [15]: p1([1.5, 2.5, 3.5])
Out[15]: array([ 10.75,  24.75,  44.75])

Instances of Polynomial can be operated on using the standard arithmetic operators +, -, *, /, and so 
on. The // operator is used for polynomial division. To see how this works, consider the division of the 
polynomial p x x x x1 3 2 1( ) ( )( )( )= - - -  with the polynomial p x x2 2( ) ( )= - . The answer, which is obvious 
when written in factorized form, is ( )( )x x- -3 1 . We can be compute and verify this using NumPy in the 
following manner: First create Polynomial instances for the p1 and p2, and then use the // operator compute 
the polynomial division.

In [16]: p1 = P.Polynomial.fromroots([1, 2, 3])
In [17]: p1
Out[17]: Polynomial([ -6.,  11.,  -6.,   1.], [-1.,  1.], [-1.,  1.])
In [18]: p2 = P.Polynomial.fromroots([2])
In [19]: p2
Out[19]: Polynomial([-2.,  1.], [-1.,  1.], [-1.,  1.])
In [20]: p3 = p1 // p2
In [21]: p3
Out[21]: Polynomial([ 3., -4.,  1.], [-1.,  1.], [-1.,  1.])
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The result is a new polynomial with coefficient array [3, -4, 1], and if we compute its roots we find 
that they are 1 and 3, so this polynomial is indeed ( )( )x x- -3 1 :

In [22]: p3.roots()
Out[22]: array([ 1.,  3.])

In addition to the Polynomial class for polynomials in the standard power basis, the polynomial 
module also has classes for representing polynomials in Chebyshev, Legendre, Laguerre and Hermite bases, 
with the names Chebyshev, Legendre, Laguerre, Hermite (Physicists’) and HermiteE (Probabilists’), 
respectively. For example, the Chebyshev polynomial with coefficient list [1, 2, 3], that is, the polynomial 
1 2 30 1 2T x T x T x( ) ( ) ( )+ + , where T

i
(x) is the Chebyshev polynomial of order i, can be created using:

In [23]: c1 = P.Chebyshev([1, 2, 3])
In [24]: c1
Out[24]: Chebyshev([ 1.,  2.,  3.], [-1,  1], [-1,  1])

and its roots can be computed using the roots attribute:

In [25]: c1.roots()
Out[25]: array([-0.76759188,  0.43425855])

All the polynomial classes have the same methods, attributes, and operators as the Polynomial class 
discussed above, and they can all be used in the same manner. For example, to create the Chebyshev and 
Legendre representations of the polynomial with roots x = -1 and x =1, we can use the fromroots attribute, 
in a same way as we did previously with the Polynomial class:

In [26]: c1 = P.Chebyshev.fromroots([-1, 1])
In [27]: c1
Out[27]: Chebyshev([-0.5,  0. ,  0.5], [-1.,  1.], [-1.,  1.])
In [28]: l1 = P.Legendre.fromroots([-1, 1])
In [29]: l1
Out[29]: Legendre([-0.66666667,  0.        ,  0.66666667], [-1.,  1.], [-1.,  1.])

Note that the same polynomial, here with the roots at x = -1 and x =1 (which is a unique polynomial), 
have different coefficient arrays when represented in different bases, but when evaluated at specific values of 
x, the two gives the same results (as expected):

In [30]: c1([0.5, 1.5, 2.5])
Out[30]: array([-0.75,  1.25,  5.25])
In [31]: l1([0.5, 1.5, 2.5])
Out[31]: array([-0.75,  1.25,  5.25])

�Polynomial Interpolation
The polynomial classes discussed in the previous section all provide useful functions for polynomial 
interpolation. For instance, recall the linear equation for the polynomial interpolation problem: F( )x c y= , 
where x and y are vectors containing the x

i
 and y

i
 data points, and c is the unknown coefficient vector. To 

solve the interpolation problem we need to first evaluate the matrix F(x) for a given basis, and then solve the 
resulting linear equation system. Each of the polynomial classes in polynomial conveniently provides a 
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function for computing the (generalized) Vandermonde matrix for the corresponding basis. For example, for 
polynomials in the power basis, we can use np.polynomial.polynomial.polyvander, and for polynomials 
in the Chebyshev basis we can use the corresponding np.polynomial.chebyshev.chebvander function, and 
so on. See the docstrings for np.polynomial and its submodules for the complete list of generalized 
Vandermonde matrix functions for the various polynomial bases.

Using the above-mentioned functions for generating the Vandermonde matrices, we can easily perform 
a polynomial interpolation in different bases. For example, consider the data points (1, 1), (2, 3), (3, 5), and 
(4, 4). We begin with creating NumPy array for the x and y coordinates for the data points.

In [32]: x = np.array([1, 2, 3, 4])
In [33]: y = np.array([1, 3, 5, 4])

To interpolate a polynomial through these points, we need to use a polynomial of third degree (number 
of data points minus one). For interpolation in the power basis, we seek the coefficients c

i
 such that 

f x c x c x c x c x c x
i

i
i( ) = = + + +

=

-å
1

4
1

1
0

2
1

3
2

4
3, and to find these coefficients we evaluate the Vandermonde matrix 

and solve the interpolation equation system:

In [34]: deg = len(x) - 1
In [35]: A = P.polynomial.polyvander(x, deg)
In [36]: c = linalg.solve(A, y)
In [37]: c
Out[37]: array([ 2. , -3.5,  3. , -0.5])

The sought coefficient vector is [2, -3.5, 3, -0.5], and the interpolation polynomial is thus 
f x x x x( ) . .= - + -2 3 5 3 0 52 3. Given the coefficient array c, we can now create a polynomial representation 

that can be used for interpolation:

In [38]: f1 = P.Polynomial(c)
In [39]: f1(2.5)
Out[39]: 4.1875

To perform this polynomial interpolation in another polynomial basis, all that we need to change is 
the name of the function that was used to generate the Vandermonde matrix A in the previous example. For 
example, to interpolate using the Chebyshev basis polynomials, we can do this:

In [40]: A = P.chebyshev.chebvander(x, deg)
In [41]: c = linalg.solve(A, y)
In [42]: c
Out[42]: array([ 3.5  , -3.875,  1.5  , -0.125])

As expected, the coefficient array has different values in this basis, and the interpolation polynomial in 
the Chebyshev basis is f x T x T x T x T x( ) . ( ) . ( ) . ( ) . ( )= - + -3 5 3 875 1 5 0 1250 1 2 3 . However, regardless of the 

polynomial basis, the interpolation polynomial is unique, and evaluating the interpolant will always result in 
the same values:

In [43]: f2 = P.Chebyshev(c)
In [44]: f2(2.5)
Out[44]: 4.1875
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We can demonstrate that the interpolation with the two bases indeed results in the same interpolation 
function by plotting the f1 and f2 together with the data points (see Figure 7-1):

In [45]: xx = np.linspace(x.min(), x.max(), 100)  # supersampled [x[0], x[-1]] interval
In [45]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))
    ...: ax.plot(xx, f1(xx), 'b', lw=2, label='Power basis interp.')
    ...: ax.plot(xx, f2(xx), 'r--', lw=2, label='Chebyshev basis interp.')
    ...: ax.scatter(x, y, label='data points')
    ...: ax.legend(loc=4)
    ...: ax.set_xticks(x)
    ...: ax.set_ylabel(r"$y$", fontsize=18)
    ...: ax.set_xlabel(r"$x$", fontsize=18)

Figure 7-1.  Polynomial interpolation of four data points, using power basis and the Chebyshev basis

While interpolation with different polynomial bases is convenient due to the functions for the 
generalized Vandermonde matrices, there is an even simpler and better method available. Each polynomial 
class provides a class method fit that can be used to compute an interpolation polynomial.1 The two 
interpolation functions that were computed manually in the previous example could therefore instead be 
computed in the following manner: Using the power basis, and its Polynomial class we obtain:

In [46]: f1b = P.Polynomial.fit(x, y, deg)
In [47]: f1b
Out[47]: Polynomial([ 4.1875,  3.1875, -1.6875, -1.6875], [ 1.,  4.], [-1.,  1.])

and by using the class method fit from the Chebyshev class instead, we obtain:

In [48]: f2b = P.Chebyshev.fit(x, y, deg)
In [49]: f2b
Out[49]: Chebyshev([ 3.34375 ,  1.921875, -0.84375 , -0.421875], [ 1.,  4.], [-1.,  1.])

1If the requested polynomial degree of the interpolant is smaller than the number of data points minus one, then a least 
square fit is computed rather than an exact interpolation.
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Note that with this method, the domain attribute of the resulting instances are automatically set to the 
appropriate x values of the data points (in this example, the input range is [1, 4]), and the coefficients are 
adjusted accordingly. As mentioned previously, mapping the interpolation data into the range that is most 
suitable for a specific basis can significantly improve the numerical stability of the interpolation. For 
example, using the Chebyshev basis with x values that are scaled such that xÎ -[ ]1 1, , rather than the original 
x values in the previous example, reduces the condition number from almost 4660 to about 1.85:

In [50]: np.linalg.cond(P.chebyshev.chebvander(x, deg))
Out[50]: 4659.7384241399586
In [51]: np.linalg.cond(P.chebyshev.chebvander((2*x-5)/3.0, deg))
Out[51]: 1.8542033440472896

Polynomial interpolation of a few data points is a powerful and useful mathematical tool, which is an 
important part of many mathematical methods. When the number of data points increase, we need to use 
increasingly high-order polynomials for exact interpolation, and this is problematic in several ways. To begin 
with, it becomes increasing demanding to both determine and evaluate the interpolant for increasing 
polynomial order. However, a more serious issue is that high-order polynomial interpolation can have 
undesirable behavior between the interpolation points. Although the interpolation is exact at the given data 
points, a high-order polynomial can vary wildly between the specified points. This is famously illustrated by 
polynomial interpolation of Runge’s function f x x( ) /= +( )1 1 25 2  using evenly spaced sample points in the 

interval -[ ]1 1, . The result is an interpolant that nearly diverges between the data points near the end of the 
interval.

To illustrate this behavior, we create a Python function runge that implements Runge’s function, and a 
function runge_interpolate that interpolates an nth order polynomial, in the power basis, to the Runge’s 
function at evenly spaced sample points:

In [52]: def runge(x):
    ...:     return 1/(1 + 25 * x**2)
In [53]: def runge_interpolate(n):
    ...:     x = np.linspace(-1, 1, n)
    ...:     p = P.Polynomial.fit(x, runge(x), deg=n)
    ...:     return x, p

Next we plot Runge’s function together with the 13th and 14th order polynomial interpolations, at 
supersampled x values in the -[ ]1 1,  interval. The resulting plot is shown in Figure 7-2.

In [54]: xx = np.linspace(-1, 1, 250)
In [55]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ...: ax.plot(xx, runge(xx), 'k', lw=2, label="Runge's function")
    ...: # 13th order interpolation of the Runge function
    ...: n = 13
    ...: x, p = runge_interpolate(n)
    ...: ax.plot(x, runge(x), 'ro')
    ...: ax.plot(xx, p(xx), 'r', label='interp. order %d' % n)
    ...: # 14th order interpolation of the Runge function
    ...: n = 14
    ...: x, p = runge_interpolate(n)
    ...: ax.plot(x, runge(x), 'go')
    ...: ax.plot(xx, p(xx), 'g', label='interp. order %d' % n)
    ...:



Chapter 7 ■ Interpolation

177

    ...: ax.legend(loc=8)
    ...: ax.set_xlim(-1.1, 1.1)
    ...: ax.set_ylim(-1, 2)
    ...: ax.set_xticks([-1, -0.5, 0, 0.5, 1])
    ...: ax.set_ylabel(r"$y$", fontsize=18)
    ...: ax.set_xlabel(r"$x$", fontsize=18)

Figure 7-2.  The Runge function together with two high-order polynomial interpolations

We note that in Figure 7-2, the interpolants exactly agree with Runge’s function at the sample points, 
but between these points they oscillate wildly near the ends of the interval. This is an undesirable property 
of an interpolant, and it defeats the purpose of the interpolation. A solution to this problem is to use 
piecewise low-order polynomials when interpolating with large number of data points. In other words, 
instead of fitting all the data points to a single high-order polynomial, a different low-order polynomial 
is used to describe each subinterval bracketed by two consecutive data points. This is the topic of the 
following section.

�Spline Interpolation
For a set of n data points {x

i
, y

i
}, there are n-1 subintervals x xi i, +[ ]1  in the full range of the data x xn0 1, -[ ].  

An interior data point that connects two such subintervals is known as a knot in the terminology of 
piecewise polynomial interpolation. To interpolate the n data points using piecewise polynomials of degree 
k on each of the subintervals, we must determine ( )( )k n+ -1 1  unknown parameters. The values at the knots 
give 2 1( )n -  equations. These equations, by themselves, are only sufficient to determine a piecewise 
polynomial of order one, that is, a piecewise linear function. However, additional equations can be obtained 
by requiring also that derivatives and higher-order derivatives are continuous at the knots. This condition 
ensures that the resulting piecewise polynomial has a smooth appearance.

A spline is a special type of piecewise polynomial interpolant: a piecewise polynomial of degree k is a 
spline if it is continuously differentiable k -1 times. The most popular choice is the third-order spline, k = 3,  
which requires 4 1( )n -  parameters. For this case, the continuity of two derivatives at the n-2 knots gives 
2 2( )n -  additional equations, bringing the total number of equations to 2 1 2 2 4 1 2( ) ( ) ( )n n n- + - = - - .  
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There are therefore two remaining undetermined parameters, which must be determined by other means.  
A common approach is to additionally require that the second order derivatives at the end points are zero 
(resulting in the natural spline). This gives two more equations, which closes the equation system.

The SciPy interpolate module provides several functions and classes for performing spline 
interpolation. For example, we can use the interpolate.interp1d function, which takes x and y arrays for 
the data points as first and second arguments. The optional keyword argument kind can be used to specify 
the type and order of the interpolation. In particular, we can set kind=3 (or, equivalently, kind='cubic') to 
compute the cubic spline. This function returns a class instance that can be called like a function, and which 
can be evaluated for different values of x using function calls. An alternative spline function is interpolate.
InterpolatedUnivariateSpline, which also takes x and y arrays as first and second argument, but which 
uses the keyword argument k (instead of kind) to specify the order of the spline interpolation.

To see how to the interpolate.interp1d function can be used, consider again Runge’s function, and 
we now want to interpolate this function with a third-order spline polynomial. To this end, we first create 
NumPy arrays for the x and y coordinates of the sample points. Next we call the interpolate.interp1d 
function with kind=3 to obtain the third-order spline for the given data:

In [56]: x = np.linspace(-1, 1, 11)
In [57]: y = runge(x)
In [58]: f_i = interpolate.interp1d(x, y, kind=3)

To evaluate how good this spline interpolation is (here represented by the class instance f_i), we plot the 
interpolant together with the original Runge’s function and the sample points. The result is shown in Figure 7-3.

In [59]: xx = np.linspace(-1, 1, 100)
In [60]: fig, ax = plt.subplots(figsize=(8, 4))
    ...: ax.plot(xx, runge(xx), 'k', lw=1, label="Runge's function")
    ...: ax.plot(x, y, 'ro', label='sample points')
    ...: ax.plot(xx, f_i(xx), 'r--', lw=2, label='spline order 3')
    ...: ax.legend()
    ...: ax.set_xticks([-1, -0.5, 0, 0.5, 1])
    ...: ax.set_ylabel(r"$y$", fontsize=18)
    ...: ax.set_xlabel(r"$x$", fontsize=18)

Figure 7-3.  Runge’s function with a third-order Spline interpolation using 11 data points
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Here we used 11 data points and a spline of third order. We note that the interpolant agrees very well 
with the original function in Figure 7-3. Typically spline interpolation of order three or less does not suffer 
from the same type of oscillations that we observed with high-order polynomial interpolation, and normally 
it is sufficient to use splines of order three if we have a sufficient number of data points.

To illustrate the effect of the order of a spline interpolation, consider the problem of interpolating the 
data (0,3), (1, 4), (2, 3.5), (4, 2), (5, 1.5), (6, 1.25), and (7, 0.7) with splines of increasing order. We first define 
the x and y arrays, and then loop over the required spline orders, computing the interpolation and plotting it 
for each order:

In [61]: x= np.array([0, 1, 2, 3, 4, 5, 6, 7])
In [62]: y= np.array([3, 4, 3.5, 2, 1, 1.5, 1.25, 0.9])
In [63]: xx = np.linspace(x.min(), x.max(), 100)
In [64]: fig, ax = plt.subplots(figsize=(8, 4))
    ...: ax.scatter(x, y)
    ...:
    ...: for n in [1, 2, 3, 6]:
    ...:     f = interpolate.interp1d(x, y, kind=n)
    ...:     ax.plot(xx, f(xx), label='order %d' % n)
    ...:
    ...: ax.legend()
    ...: ax.set_ylabel(r"$y$", fontsize=18)
    ...: ax.set_xlabel(r"$x$", fontsize=18)

From the spline interpolation shown in Figure 7-4, it is clear that spline order two or three already 
provides a rather good interpolation, with relatively small errors between the original function and the 
interpolant function. For higher-order splines, the same problem as we saw for high-order polynomial 
interpolation resurfaces. In practice, it is therefore often suitable to use third-order spline interpolation.

Figure 7-4.  Spline interpolations of different orders
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�Multivariate Interpolation
Polynomial and spline interpolation can be straightforwardly generalized to multivariate situations. In 
analogy with the univariate case, we seek a function whose values are given at a set of specified points, and 
that can be evaluated for intermediary points within the sampled range. SciPy provides several functions 
and classes for multivariate interpolation, and in the following two examples we explore two of the most 
useful functions for bivariate interpolation: the interpolate.interp2d and interpolate.griddata 
functions, respectively. See the docstring for the interpolate module and its reference manual for further 
information on other interpolation options.

We begin by looking at interpolate.interp2d, which is a straightforward generalization of the 
interp1d function that we previously used. This function takes the x and y coordinates of the available 
data points as separate one-dimensional arrays, followed by a two-dimensional array of values for each 
combination of x and y coordinates. This presumes that the data points are given on a regular and uniform 
grid of x and y coordinates.

To illustrate how the interp2d function can be used, we simulate noisy measurements by adding 
random noise to a known function, which in the following example is taken to be 

f x y x y x y,( ) = - +( ) - +( )( )- - -( ) - -( )( )exp / / exp / /1 2 2 1 2 1 2 2 1 2
2 2 2 2

. To form an interpolation problem, we 

sample this function at 10 points in the interval -[ ]2 2, , along the x and y coordinates, and then add a small 
normal-distributed noise to the exact values. We first create NumPy arrays for the x and y coordinates of the 
sample points, and define a Python function for f(x, y):

In [65]: x = y = np.linspace(-2, 2, 10)
In [66]: def f(x, y):
    ...:     return np.exp(-(x + .5)**2 - 2*(y + .5)**2) - np.exp(-(x - .5)**2 - 2*(y - .5)**2)

Next we evaluate the function at the sample points and add the random noise to simulate uncertain 
measurements:

In [67]: X, Y = np.meshgrid(x, y)
In [68]: # simulate noisy data at fixed grid points X, Y
    ...: Z = f(X, Y) + 0.05 * np.random.randn(*X.shape)

At this point, we have a matrix of data points Z with noisy data, which is associated with exactly known 
and regularly spaced coordinates x and y. To obtain an interpolation function that can be evaluated for 
intermediary x and y values, within the sampled range, we can now use the interp2d function:

In [69]: f_i = interpolate.interp2d(x, y, Z, kind='cubic')

Note that here x and y are one-dimensional arrays (of length 10), and Z is a two-dimensional array of 
shape (10, 10). The interp2d function returns a class instance, here f_i, that behaves as a function that we 
can evaluate at arbitrary x and y coordinates (within the sampled range). A supersampling of the original 
data, using the interpolation function, can therefore be obtained in the following way:

In [70]: xx = yy = np.linspace(x.min(), x.max(), 100)
In [71]: ZZi = f_i(xx, yy)
In [72]: XX, YY = np.meshgrid(xx, yy)
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Here, XX and YY are coordinate matrices for the supersampled points, and the corresponding 
interpolated values are ZZi. These can, for example, be used to plot a smoothed function describing the 
sparse and noisy data. The following code plots contours of both the original function and the interpolated 
data. See Figure 7-5 for the resulting contour plot.

In [73]: fig, axes = plt.subplots(1, 2, figsize=(12, 5))
    ...: # for reference, first plot the contours of the exact function
    ...: c = axes[0].contourf(XX, YY, f(XX, YY), 15, cmap=plt.cm.RdBu)
    ...: axes[0].set_xlabel(r"$x$", fontsize=20)
    ...: axes[0].set_ylabel(r"$y$", fontsize=20)
    ...: axes[0].set_title("exact / high sampling")
    ...: cb = fig.colorbar(c, ax=axes[0])
    ...: cb.set_label(r"$z$", fontsize=20)
    ...: # next, plot the contours of the supersampled interpolation of the noisy data
    ...: c = axes[1].contourf(XX, YY, ZZi, 15, cmap=plt.cm.RdBu)
    ...: axes[1].set_ylim(-2.1, 2.1)
    ...: axes[1].set_xlim(-2.1, 2.1)
    ...: axes[1].set_xlabel(r"$x$", fontsize=20)
    ...: axes[1].set_ylabel(r"$y$", fontsize=20)
    ...: axes[1].scatter(X, Y, marker='x', color='k')
    ...: axes[1].set_title("interpolation of noisy data / low sampling")
    ...: cb = fig.colorbar(c, ax=axes[1])
    ...: cb.set_label(r"$z$", fontsize=20)

Figure 7-5.  Contours of the exact function (left) and a bivariate cubic spline interpolation (right) of noisy 
samples form the function on a regular grid (marked with crosses)

With relatively sparsely spaced data points, we can thus construct an approximation of the 
underlying function by using the interpolate.interp2d to compute the bivariate cubic spline 
interpolation. This gives a smoothed approximation for the underplaying function, which is frequently 
useful when dealing with data obtained from measurements or computations that are costly, in time or 
other resources. For higher-dimensional problems, there is a function interpolate.interpnd, which is a 
generalization to n-dimensional problems.
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Another typical situation that requires multivariate interpolation occurs when sampled data is given 
on an irregular coordinate grid. This situation frequently arises (for example in experiments or other data 
collection processes) when the exact values at which the observations are collected cannot be directly 
controlled. To be able to easily plot and analyze such data with existing tools, it may be desirable to 
interpolate it onto a regular coordinate grid. In SciPy we can use the interpolate.griddata for exactly this 
task. This function takes as first argument a tuple of one-dimensional coordinate vectors (xdata, ydata) 
for the data values zdata, which are passed to the function in matrix form as the third argument. The 
fourth argument is a tuple (X, Y) of coordinate vectors or coordinate matrices for the new points at which 
the interpolant is to be evaluated. Optionally, we can also set the interpolation method using the method 
keyword argument ('nearest', 'linear', or 'cubic'):

Zi = interpolate.griddata((xdata, ydata), zdata, (X, Y), method='cubic')

To demonstrate how to use the interpolate.griddata function for interpolating data at unstructured 
coordinate points, we take the function f x y x y x y( ) exp cos sin, = - -( )2 2 4 6  and randomly select sampling 
points in the interval -[ ]1 1,  along the x and y coordinates. The resulting {x

i
, y

i
, z

i
} data is then interpolated 

and evaluated on a supersampled regular grid spanning the x y, ,Î -[ ]1 1  region. To this end, we first define a 

Python function for f(x, y) and then generate the randomly sampled data:

In [75]: def f(x, y):
    ...:     return np.exp(-x**2 - y**2) * np.cos(4*x) * np.sin(6*y)
In [76]: N = 500
In [77]: xdata = np.random.uniform(-1, 1, N)
In [78]: ydata = np.random.uniform(-1, 1, N)
In [79]: zdata = f(xdata, ydata)

To visualize the function and the density of the sampling points, we plot a scatter plot for the sampling 
locations overlaid on a contour graph of f (x, y). The result is shown in Figure 7-6.

In [80]: x = y = np.linspace(-1, 1, 100)
In [81]: X, Y = np.meshgrid(x, y)
In [82]: Z = f(X, Y)
In [83]: fig, ax = plt.subplots(figsize=(8, 6))
    ...: c = ax.contourf(X, Y, Z, 15, cmap=plt.cm.RdBu);
    ...: ax.scatter(xdata, ydata, marker='.')
    ...: ax.set_ylim(-1,1)
    ...: ax.set_xlim(-1,1)
    ...: ax.set_xlabel(r"$x$", fontsize=20)
    ...: ax.set_ylabel(r"$y$", fontsize=20)
    ...: cb = fig.colorbar(c, ax=ax)
    ...: cb.set_label(r"$z$", fontsize=20)
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From the contour graph and scatter plots in Figure 7-6, it appears that the randomly chosen sample 
points cover the coordinate region of interest fairly well, and it is plausible that we should be able to 
reconstruct the function f(x, y) relatively accurately by interpolating the data. Here we would like to 
interpolate the data on the finely spaced (supersampled) regular grid described by the X and Y coordinates 
arrays. To compare different interpolation methods, and the effect of increasing number of sample points, 
we define the function z_interpolate that interpolates the given data points with the nearest data point, a 
linear interpolation, and a cubic spline interpolation:

In [84]: def z_interpolate(xdata, ydata, zdata):
    ...:     Zi_0 = interpolate.griddata((xdata, ydata), zdata, (X, Y), method='nearest')
    ...:     Zi_1 = interpolate.griddata((xdata, ydata), zdata, (X, Y), method='linear')
    ...:     Zi_3 = interpolate.griddata((xdata, ydata), zdata, (X, Y), method='cubic')
    ...:     return Zi_0, Zi_1, Zi_3

Figure 7-6.  Exact contour plot of a randomly sampled function. The 500 sample points are marked with  
black dots
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Finally we plot contour graph of the interpolated data for the three different interpolation methods 
applied to three subsets of the total number of sample points that use 50, 150, and all 500 points, 
respectively. The result is shown in Figure 7-7.

In [85]: fig, axes = plt.subplots(3, 3, figsize=(12, 12), sharex=True, sharey=True)
    ...:
    ...: n_vec = [50, 150, 500]
    ...: for idx, n in enumerate(n_vec):
    ...:     Zi_0, Zi_1, Zi_3 = z_interpolate(xdata[:n], ydata[:n], zdata[:n])
    ...:     axes[idx, 0].contourf(X, Y, Zi_0, 15, cmap=plt.cm.RdBu)
    ...:     axes[idx, 0].set_ylabel("%d data points\ny" % n, fontsize=16)
    ...:     axes[idx, 0].set_title("nearest", fontsize=16)
    ...:     axes[idx, 1].contourf(X, Y, Zi_1, 15, cmap=plt.cm.RdBu)
    ...:     axes[idx, 1].set_title("linaer", fontsize=16)
    ...:     axes[idx, 2].contourf(X, Y, Zi_3, 15, cmap=plt.cm.RdBu)
    ...:     axes[idx, 2].set_title("cubic", fontsize=16)
    ...: for m in range(len(n_vec)):
    ...:     axes[idx, m].set_xlabel("x", fontsize=16)
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Figure 7-7 shows that it is possible reconstruct a function fairly well from interpolation of unstructured 
samples, as long as the region of interest is well covered. In this example, and quite generally for other 
situations as well, it is clear that the cubic spline interpolation is vastly superior to the nearest point 
and linear interpolation, and although it is more computationally demanding to compute the spline 
interpolation it is typically worthwhile.

Figure 7-7.  Bivariate interpolation of randomly sampled values, for increasing interpolation order (left to 
right) and increasing number of sample points (top to bottom)



Chapter 7 ■ Interpolation

186

�Summary
Interpolation is a fundamental mathematical tool that has significant applications throughout scientific 
and technical computing. In particular, interpolation is a crucial part in many mathematical methods 
and algorithms. It is also a practical tool in itself, which is useful when plotting or analyzing data that is 
obtained from experiments, observations, or resource-demanding computations. The combination of the 
NumPy and SciPy libraries provides good coverage of numerical interpolation methods, in one or more 
independent variables. For most practical interpolation problems that involve a large number of data points, 
cubic spline interpolation is the most useful technique, although polynomial interpolation of low degree is 
most commonly used as a tool in other numerical methods (such as root finding, optimization, numerical 
integration). In this chapter we have explored how to use NumPy’s polynomial and SciPy’s interpolate 
modules to perform interpolation on given datasets with one and two independent variables. Mastering 
these techniques is an important skill of a computational scientist, and I strongly encourage further 
exploring the content in scipy.interpolate that was not covered here by studying the docstrings for this 
module and its many functions and classes.

�Further Reading
Interpolation is covered in most texts on numerical methods. For a more thorough theoretical introduction 
to the subject, see, for example, the books by Hamming and Stoer.
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Hamming, R. (1987). Numerical Methods for Scientists and Engineers. New York: Dover Publications.

Stoer, J., & Burlirsch, R. (1992). Introduction to Numerical Analysis. New York: Springer.
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Chapter 8

Integration

In this chapter we cover different aspects of integration, with the main focus on numerical integration.  
For historical reasons, numerical integration is also known as quadrature. Integration is significantly more 
difficult than its inverse operation – differentiation – and while there are many examples of integrals that can 
be calculated symbolically, in general we have to resort to numerical methods. Depending on the properties 
of the integrand (the function being integrated) and the integration limits, it can be easy or difficult to 
numerically compute an integral. Integrals of continuous functions and with finite integration limits can in 
most cases be computed efficiently in one dimension, but integrable functions with singularities or integrals 
with infinite integration limits are examples of cases that can be difficult to handle numerically, even in a 
single dimension. Double integrals and higher-order integrals can be numerically computed with repeated 
single-dimension integration, or using methods that are multidimensional generalizations of the techniques 
used to solve single-dimensional integrals. However, the computational complexity grows quickly with the 
number of dimensions to integrate over, and in practice such methods are only feasible for low-dimensional 
integrals, such as double integrals or triple integrals. Integrals of higher dimension than that often require 
completely different techniques, such as Monte Carlo sampling algorithms.

In addition to numerical evaluation of integrals with definite integration limits, which gives a single 
number as the result, integration also has other important applications. For example, equations where 
the integrand of an integral is the unknown quantity are called integral equations, and such equations 
frequently appear in science and engineering applications. Integral equations are usually difficult to solve, 
but they can often be recast into linear equation systems by discretizing the integral. However, we do not 
cover this topic here, but we will see examples of this type of problem in Chapter 11. Another important 
application of integration is integral transforms, which are techniques for transforming functions and 
equations between different domains. At the end of this chapter we briefly discuss how SymPy can be used 
to compute some integral transforms, such as Laplace transforms and Fourier transforms.

To carry out symbolic integration we can use SymPy, as briefly discussed in Chapter 3, and to compute 
numerical integration we mainly use the integrate module in SciPy. However, SymPy (through the 
multiple-precision library mpmath) also have routines for numerical integration, which complement those 
in SciPy, for example, by offering arbitrary-precision integration. In this chapter we look into both these 
options and discuss their pros and cons. We also briefly look at Monte Carlo integrations using the  
scikit-monaco library.

■■ Scikit-monaco  Scikit-monaco is a small and recent library that makes Monte Carlo integration 
convenient and easily accessible. At the time of writing, the most recent version of scikit-monaco is 0.2.1.  
See http://scikit-monaco.readthedocs.org for more information.

http://dx.doi.org/10.1007/978-1-4842-0553-2_11
http://dx.doi.org/10.1007/978-1-4842-0553-2_3
http://scikit-monaco.readthedocs.org/
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Importing Modules
In this chapter we require, as usual, the NumPy and the Matplotlib libraries for basic numerical and plotting 
support, and on top of that we use the integrate module from SciPy and the SymPy library. Here we assume 
that these modules are imported as follows:

In [1]: import numpy as np
In [2]: import matplotlib.pyplot as plt
In [3]: from scipy import integrate
In [4]: import sympy

In addition, for nicely formatted output from SymPy, we also need to set up its printing system:

In [5]: sympy.init_printing()

Numerical Integration Methods
Here we are concerned with evaluating definite integrals on the form I f f x x

a

b

( ) = ( )ò d , with given integration 

limits a and b. The interval [a, b] can be finite, semi-infinite (where either a = -¥  or b =¥), or infinite (where 
a = -¥  and b =¥). The integral I(f ) can be interpreted as the area between the curve of the integrand f (x) and 
the x axis, as illustrated in Figure 8-1.

Figure 8-1.  Interpretation of an integral as the area between the curve of the integrand and the x axis, where 
the area is counted as positive where f x( )> 0 (green) and negative otherwise (red)

A general strategy for numerically evaluating an integral I(f ), on the form given above, is to write the 
integral as a discrete sum that approximates the value of the integral:

I f w f x r
i

n

i i n( ) » ( ) +
=
å

1

.

Here w
i
 are the weights of n evaluations of f (x) at the points x a bi Î[ ], , and r

n
 is the residual due to the 

approximation. In practice we assume that r
n
 is small and can be neglected, but it is important to have an 

estimate of r
n
 to known how accurately the integral is approximated. This summation formula for I(f ) is 

known as a n-point quadrature rule, and the choice of the number of points n, their locations in [a, b], and 
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the weight factors w
i
 influence the accuracy and the computational complexity of its evaluation. Quadrature 

rules can be derived from interpolations of f (x) on the interval [a, b]. If the points x
i
 are evenly spaced in the 

interval [a, b], and a polynomial interpolation is used, then the resulting quadrature rule is known as a 
Newton-Cotes quadrature rule. For instance, approximating f (x) with a zeroth order polynomial  
(constant value) using the midpoint value x a b0 2= +( )/ , we obtain

a

b

a

b

f x dx f
a b

dx b a f
a b

ò ò( ) »
+æ

è
ç

ö
ø
÷ = -( ) +æ

è
ç

ö
ø
÷2 2

.

This is known as the midpoint rule, and it integrates polynomials of up to order one (linear functions) 
exactly, and it is therefore said to be of polynomial degree one. Approximating f (x) by a polynomial of degree 
one, evaluated at the endpoints of the interval, results in

a

b

f x dx
b a

f a f bò ( ) »
- ( ) + ( )( )
2

.

This is known as the trapezoid rule, and it is also of polynomial degree one. Using an interpolation 
polynomial of second order results in Simpson’s rule,

a

b

f x dx
b a

f a f
a b

f bò ( ) »
- ( ) + +æ

è
ç

ö
ø
÷ + ( )æ

è
ç

ö

ø
÷6

4
2

,

which uses function evaluations at the endpoints and the midpoint. This method is of polynomial degree 
three, meaning that it integrates exactly polynomials up to order three. The method of arriving at this 
formula can easily be demonstrated using SymPy: first we define symbols for the variables a, b, and x, as well 
as the function f.

In [6]: a, b, X = sympy.symbols("a, b, x")
In [7]: f = sympy.Function("f")

Next we define a tuple x that contains the sample points (the endpoints and the middle point of the 
interval [a, b]), and a list w of weight factors to be used in the quadrature rule, corresponding to each  
sample point:

In [8]: x = a, (a+b)/2, b  # for Simpson's rule
In [9]: w = [sympy.symbols("w_%d" % i) for i in range(len(x))]

Given x and w we can now construct a symbolic expression for the quadrature rule:

In [10]: q_rule = sum([w[i] * f(x[i]) for i in range(len(x))])
In [11]: q_rule

Out[11]: w f a w f
a b

w f b0 1 22
( )+ +æ

è
ç

ö
ø
÷+ ( )
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To compute the appropriate values of the weight factors w
i
 we choose the polynomial basis functions 

fn
n

n
x x( ) ={ }

=0

2
 for the interpolation of f (x), and here we use the sympy.Lambda function to create symbolic 

representations for each of these basis functions:

In [12]: phi = [sympy.Lambda(X, X**n) for n in range(len(x))]
In [13]: phi

Out[13]: x x x x x  1 2( ) ( ) ( )éë ùû, ,

The key to finding the quadrature weight factors is that the integral 
a

b

n x xò ( )f d  can be computed 

analytically for each of basis functions f
n
(x). By substituting the function f (x) with each of the basis functions 

f
n
(x) in the quadrature rule, we obtain an equation system for the unknown weight factors:

i
i n i

a

b

nw x x dx
=
å ò( ) = ( )

0

2

f f ,

These equations are equivalent to requiring that the quadrature rule exactly integrates all the basis 
functions, and therefore also (at least) all functions that are spanned by the basis. The equation system can 
be constructed with SymPy using:

In [14]: eqs = [q_rule.subs(f, phi[n]) - sympy.integrate(phi[n](X), (X, a, b))
    ...:        for n in range(len(phi))]
In [15]: eqs

Out[15]: a b w w w
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Solving this linear equation system gives analytical expressions for the weight factors:

In [16]: w_sol = sympy.solve(eqs, w)
In [17]: w_sol

Out[17]: w
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and by substituting the solution into the symbolic expression for the quadrature rule we obtain:

In [18]: q_rule.subs(w_sol).simplify()
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We recognize this result as Simpson’s quadrature rule given above. Choosing different sample points 
(the x tuple in this code), results in different quadrature rules.

Higher-order quadrature rules can similarly be derived using higher-order polynomial interpolation 
(more sample points in the [a, b] interval). However, high-order polynomial interpolation can have 
undesirable behavior between the sample points, as discussed in Chapter 7. Rather than using higher-order 
quadrature rules it is therefore often better to divide the integration interval [a, b] into subintervals 
a x x x x x x bN N=[ ] [ ] ¼ =[ ]-0 1 1 2 1, , , , , , , and use a low-order quadrature rule in each of these subintervals.  

http://dx.doi.org/10.1007/978-1-4842-0553-2_7
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Such methods are known as composite quadrature rules. Figure 8-2 shows the three lowest order  
Newton-Cotes quadrature rules for the function f x x x x x( ) = + + + +3 2 3 4 on the interval -[ ]1 1, , and the 
corresponding composite quadrature rules with four subdivisions of the original interval.

Figure 8-2.  Vizualization of quadature rules (top panel) and composite quadrature rules (bottom panel) of 
order zero (the midpoint rule), one (the Trapezoid rule) and two (Simpon’s rule)

An important parameter that characterize composite quadrature rules is the subinterval length 
h b a N= -( )/ . Estimates for the errors in an approximate quadrature rule, and the scaling of the error with 
respect to h, can be obtained from Taylor series expansions of the integrand and the analytical integration of 
the term in the resulting series. An alternative technique is to simultaneously consider quadrature rules of 
different order, or of different subinterval length h. The difference between two such results can often be shown 
to give estimates of the error, and this is the basis for how many quadrature routines produce an estimate of the 
error in addition to the estimate of the integral, as we will see examples of in the following section.

We have seen that the Newton-Cotes quadrature rules uses evenly spaced sample points of the 
integrand f (x). This is often convenient, especially if the integrand is obtained from measurements or 
observations at prescribed points, and cannot be evaluated at arbitrary points in the interval [a, b]. However, 
this is not necessarily the most efficient choice of quadrature nodes, and if the integrand is given as a 
function that easily can be evaluated at arbitrary values of x a bÎ[ ], , then it can be advantageous to use 

quadrature rules that do not use evenly spaced sample points. An example of such a method is a Gaussian 
quadrature, which also uses polynomial interpolation to determine the values of the weight factors in the 
quadrature rule, but where the quadrature nodes x

i
 are chosen to maximize the order of polynomials that 

can be integrated exactly (the polynomial degree) given a fixed number of quadrature points. It turns out 
that choices x

i
 that satisfy this critera are the roots of different orthogonal polynomials, and the sample 

points x
i
 are typically located at irrational locations in the integration interval [a, b]. This is typically not a 

problem for numerical implementations, but practically it requires that the function f (x) is available to be 
evaluated at arbitrary points that are decided by the integration routine, rather than given as tabulated or 
precomputed data at regularly spaced x values. Guassian quadrature rules are typically superior if f (x) can 
be evaluated at arbitrary values, but for the reason just mentioned, the Newton-Cotes quadrature rules also 
have important use-cases when the integrand is given as tabulated data.
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Numerical Integration with SciPy
The numerical quadrature routines in the SciPy integrate module can be categorized into two types: 
routines that take the integrand as a Python function, and routines that take arrays with samples of the 
integrand at given points. The functions of the first type use Gaussian quadrature (quad, quadrature,  
fixed_quad), while functions of the second type use Newton-Cotes methods (trapz, simps, and romb).

The quadrature function is an adaptive Gaussian quadrature routine that is implemented in Python. 
The quadrature repeatedly calls the fixed_quad function, for Gaussian quadrature of fixed order, with 
increasing order until the required accuracy is reached. The quad function is a wrapper for routines from 
the FORTRAN library QUADPACK, which has superior performance and more features (such as support 
for infinite integration limits). It is therefore usually preferable to use quad, and in the following we use this 
quadrature function. However, all these functions take similar arguments and can often be replaced with 
each other. They take as a first argument the function that implements the integrand, and the second and 
third arguments are the lower and upper integration limits. As a concrete example, consider the numerical 

evaluation of the integral 
-

-ò
1

1
2

e xx d . To evaluate this integral using SciPy’s quad function, we first define a 

function for the integrand and then call the quad function:

In [19]: def f(x):
    ...:     return np.exp(-x**2)
In [20]: val, err = integrate.quad(f, -1, 1)
In [21]: val
Out[21]: 1.493648265624854
In [22]: err
Out[22]: 1.6582826951881447e−14

The quad function returns a tuple that contains the numerical estimate of the integral, val; and an 
estimate of the absolute error, err, in the integral value. The tolerances for the absolute and the relative 
errors can be set using the optional epsabs and epsrel keyword arguments, respectively. If the function 
f takes more than one variable, the quad routine integrates the function over its first argument. We can 
optionally specify the values of additional arguments by passing those values to the integrand function via 

the keyword argument args to the quad function. For example, if we wish to evaluate 
-

- -( )ò
1

1
2 2

ae xx b c/ d  for the 

specific values of the parameters a =1, b = 2, and c = 3, we can define a function for the integrand that takes 
all these additional arguments, and then specify the values of a, b, and c by passing args=(1, 2, 3) to the 
quad function:

In [23]: def f(x, a, b, c):
    ...:     return a * np.exp(-((x - b)/c)**2)
In [24]: val, err = integrate.quad(f, -1, 1, args=(1, 2, 3))
In [25]: val
Out[25]: 1.2763068351022229
In [26]: err
Out[26]: 1.4169852348169507e−14

When working with functions where the variable we want to integrate over is not the first argument, we 
can reshuffle the arguments by using a lambda function. For example, if we wish to compute the integral 

0

5

0ò ( )J x xd , where the integrand J
0
(x) is the zeroth order Bessel function of the first kind, it would be 

convenient to use the function jv from the scipy.special module as integrand. The function jv takes the 
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arguments v and x, and is the Bessel function of the first kind for the real-valued order v and evaluated at x. 
To be able to use the jv function as integrand for quad, we there need to reshuffle the arguments of jv. With a 
lambda function, we can do this in the following manner:

In [27]: from scipy.special import jv
In [28]: f = lambda x: jv(0, x)
In [29]: val, err = integrate.quad(f, 0, 5)
In [30]: val
Out[30]: 0.7153119177847678
In [31]: err
Out[31]: 2.47260738289741e−14

With this technique we can arbitrarily reshuffle arguments of any function, and always obtain a function 
where the integration variable is the first argument, so that the function can be used as integrand for quad.

The quad routine supports infinite integration limits. To represent integration limits that are infinite, we 
use the floating-point representation of infinity, float('inf'), which is conveniently available in NumPy as 

np.inf. For example, consider the integral 
-¥

¥
-òe xx2

d . To evaluate it using quad we can do:

In [32]: f = lambda x: np.exp(-x**2)
In [33]: val, err = integrate.quad(f, -np.inf, np.inf)
In [34]: val
Out[34]: 1.7724538509055159
In [35]: err
Out[35]: 1.4202636780944923e−08

However, note that the quadrature and fixed_quad functions only support finite integration limits.
With a bit of extra guidance, the quad function is also able to handle many integrals with integrable 

singularities. For example, consider the integral 
-
ò

1

1 1

x
xd . The integrand diverges at x = 0, but the value of 

the integral does not diverge, and its value is 4. Naively trying to compute this integral using quad may fail 
because of the diverging integrand:

In [36]: f = lambda x: 1/np.sqrt(abs(x))
In [37]: a, b = -1, 1
In [38]: integrate.quad(f, a, b)
Out[38]: (inf, inf)

In situations like these, it can be useful to graph the integrand to get insights into how it behaves, as 
shown in Figure 8-3.

In [39]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: x = np.linspace(a, b, 10000)
    ...: ax.plot(x, f(x), lw=2)
    ...: ax.fill_between(x, f(x), color='green', alpha=0.5)
    ...: ax.set_xlabel("$x$", fontsize=18)
    ...: ax.set_ylabel("$f(x)$", fontsize=18)
    ...: ax.set_ylim(0, 25)
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In this case the evaluation of the integral fails because the integrand diverges exactly at one of the 
sample points in the Gaussian quadrature rule (the midpoint). We can guide the quad routine by specifying 
a list of points that should be avoided using the points keyword arguments, and using points=[0] in the 
current example allows quad to correctly evaluate the integral:

In [40]: integrate.quad(f, a, b, points=[0])
Out[40]: (4.0,5.684341886080802e−14)

Tabulated Integrand
We have seen that the quad routine is suitable for evaluating integrals when the integrand is specified 
using a Python function that the routine can evaluate at arbitrary points (which is determined by the 
specific quadrature rule). However, in many situations we may have an integrand that is only specified at 
predetermined points, such as evenly spaced points in the integration interval [a, b]. This type of situation can 
occur, for example, when the integrand is obtained from experiments or observations that cannot realistically 
be controlled by the particular integration routine. In this case we can use the Newton-Cotes quadrature, such 
as the midpoint rule, trapezoid rule, or Simpson’s rule that were described earlier in this chapter.

In the SciPy integrate module the composite trapezoid rule and Simpson’s rule are implemented in 
the trapz and simps functions. These functions take as first argument an array y with values of the integrand 
at a set of points in the integration interval, and they optionally take as second argument an array x that 
specifies the x values of the sample points, or alternatively the spacing dx between each sample (if uniform). 
Note that the sample points do not necessarily need to be evenly spaced, but they must be determined and 
evaluated in advance.

To see how to evaluate an integral of a function that is given by sampled values, let’s evaluate the 

integral 
0

2

ò x xd  by taking 25 samples of the integrand in the integration interval [0, 2], as shown in Figure 8-4:

In [41]: f = lambda x: np.sqrt(x)
In [42]: a, b = 0, 2
In [43]: x = np.linspace(a, b, 25)
In [44]: y = f(x)
In [45]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: ax.plot(x, y, 'bo')
    ...: xx = np.linspace(a, b, 500)
    ...: ax.plot(xx, f(xx), 'b-')

Figure 8-3.  Example of a diverging integrand with finite integral (green/shaded area) that can be computed 
using the quad function
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    ...: ax.fill_between(xx, f(xx), color='green', alpha=0.5)
    ...: ax.set_xlabel(r"$x$", fontsize=18)
    ...: ax.set_ylabel(r"$f(x)$", fontsize=18)

Figure 8-4.  Integrad given as tabulated values marked with dots. The integral corresponds to the shaded area

To evaluate the integral we can pass the x and y arrays to the trapz or simps methods. Note that the y 
array must be passed as the first argument:

In [46]: val_trapz = integrate.trapz(y, x)
In [47]: val_trapz
Out[47]: 1.88082171605
In [48]: val_simps = integrate.simps(y, x)
In [49]: val_simps
Out[49]: 1.88366510245

The trapz and simps functions do not provide any error estimates, but for this particular example we can 
compute the integral analytically and compare to the numerically values computed width the two methods:

In [50]: val_exact = 2.0/3.0 * (b-a)**(3.0/2.0)
In [51]: val_exact
Out[51]: 1.8856180831641267
In [52]: val_exact - val_trapz
Out[52]: 0.00479636711328
In [53]: val_exact - val_simps
Out[53]: 0.00195298071541

Since all information we have about the integrand is the given sample points, we also cannot ask either 
of trapz and simps to compute more accurate solutions. The only option for increasing the accuracy is to 
increase the number of sample points, or use a higher-order method.

The integrate module also provides an implementation of the Romberg method with the romb 
function. The Romberg method is a Newton-Cotes method, but one that uses Richardson extrapolation to 
accelerate the convergence of the trapezoid method, however this method do require that the sample points 
are evenly spaced, and also that there are 2 1n +  sample points, where n is an integer. Like the trapz and 
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simps methods, romb takes an array with integrand samples as first argument, but the second argument must 
(if given) be the sample-point spacing dx:

In [54]: x = np.linspace(a, b, 1 + 2**6)
In [55]: len(x)
Out[55]: 65
In [56]: y = f(x)
In [57]: dx = x[1] - x[0]
In [58]: val_exact - integrate.romb(y, dx=dx)
Out[58]: 0.000378798422913

Among these functions, simps is perhaps overall the most useful one, since it provides a good balance 
between ease of use (no constraint on the sample points) and relatively good accuracy.

Multiple Integration
Multiple integrals, such as double integrals 

a

b

c

d

f x y x yòò ( ), d d  and triple integrals 
a

b

c

d

e

f

f x y z x y zòòò ( ), , d d d , can be 

evaluated using the dblquad and tplquad functions from the SciPy integrate module. Also, integration over 

n variables ò ò¼ ( )
D

f x xd , over some domain D, can be evaluated using the nquad function. These functions 

are wrappers around the single-variable quadrature function quad, which is called repeatedly along each 
dimension of the integral.

Specifically, the double integral routine dblquad can evaluate integrals on the form

a

b

g x

h x

f x y dxdyò ò
( )

( )

( ), ,

and it has the function signature dblquad(f, a, b, g, h), where f is a Python function for the integrand, 
a and b are constant integration limits along the x dimension, and g and f are Python functions (taking x as 
argument) that specify the integration limits along the y dimension. For example, consider the integral 

0

1

0

1
2 2

òò - -e x yx y d d . To evaluate this we first define the function f for the integrand and graph the function and the 

integration region, as shown in Figure 8-5:

In [59]: def f(x, y):
    ...:     return np.exp(-x**2 - y**2)
In [60]: fig, ax = plt.subplots(figsize=(6, 5))
    ...: x = y = np.linspace(-1.25, 1.25, 75)
    ...: X, Y = np.meshgrid(x, y)
    ...: c = ax.contour(X, Y, f(X, Y), 15, cmap=mpl.cm.RdBu, vmin=-1, vmax=1)
    ...: bound_rect = plt.Rectangle((0, 0), 1, 1, facecolor="grey")
    ...: ax.add_patch(bound_rect)
    ...: ax.axis('tight')
    ...: ax.set_xlabel('$x$', fontsize=18)
    ...: ax.set_ylabel('$y$', fontsize=18)
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In this example the integration limits for both the x and y variables are constants, but since dblquad 
expects functions for the integration limits for the y variable, we must also define the functions h and g, even 
though in this case they only evaluate to constants regardless of the value of x.

In [61]: a, b = 0, 1
In [62]: g = lambda x: 0
In [63]: h = lambda x: 1

Now, with all the arguments prepared, we can call dblquad to evaluate the integral:

In [64]: integrate.dblquad(f, a, b, g, h)
Out[64]: (0.5577462853510337, 6.1922276789587025e−15)

Note that we could also have done the same thing a bit more concisely, although slightly less readably, 
by using inline lambda function definitions:

In [65]: integrate.dblquad(lambda x, y: np.exp(-x**2-y**2), 0, 1, lambda x: 0, lambda x: 1)
Out[65]: (0.5577462853510337, 6.1922276789587025e−15)

Due to that g and h are functions, we can compute integrals with x-dependent integration limits along 
the y dimension. For example, with g x x( ) = -1  and h x x( ) = -1 , we obtain:

In [66]: integrate.dblquad(f, 0, 1, lambda x: -1 + x, lambda x: 1 - x)
Out[66]: (0.7320931000008094, 8.127866157901059e−15)

Figure 8-5.  Two-dimensional integrand as contour plot with integration region shown as a shaded area
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The tplquad function can compute integrals on the form

a

b

g x

h x

q x y

r x y

f x y z dxdydzò ò ò
( )

( )

( )

( )

( )
,

,

, , ,

which is a generalization of the double integral expression computed with dblquad. It additionally takes 
two Python functions as arguments, which specifies the integration limits along the z dimension. These 
functions takes two arguments, x and y, but note that g and h still only takes one argument (x). To see how 
tplquad can be used, consider the generalization of the previous integral to three variables: 

0

1

0

1

0

1
2 2 2

òòò - - -e x y zx y z d d d . We compute this integral using a similar method compared to the dblquad example. That 

is, we first define functions for the integrand and the integration limits, and the call the tplquad function:

In [67]: def f(x, y, z):
    ...:    return np.exp(-x**2-y**2-z**2)
In [68]: a, b = 0, 1
In [69]: g, h = lambda x: 0, lambda x: 1
In [70]: q, r = lambda x, y: 0, lambda x, y: 1
In [71]: integrate.tplquad(f, 0, 1, g, h, q, r)
Out[71]: (0.4165383858866382,4.624505066515441e−15)

For arbitrary number of integrations, we can use the nquad function. It also takes the integrand  
as a Python function as first argument. The integrand function should have the function signature 
f(x1, x2, ..., xn). In contrast to dplquad and tplquad, the nquad function expects list of integration 
limit specifications, as second argument. The list should contain a tuple with integration limits for each 
integration variable, or a callable function that returns such a limit. For example, to compute the integral 
that we previously computed with tplquad, we could use:

In [72]: integrate.nquad(f, [(0, 1), (0, 1), (0, 1)])
Out[72]: (0.4165383858866382, 8.291335287314424e−15)

For an increasing number of integration variables, the computational complexity of a multiple integral 
grows quickly, for example, when using nquad. To see this scaling trend, consider the following generalized 
version of the integrand studied with dplquad and tplquad.

In [73]: def f(*args):
    ...:    """
    ...:    f(x1, x2, ... , xn) = exp(-x1^2 - x2^2 - ... – xn^2)
    ...:    """
    ...:    return np.exp(-np.sum(np.array(args)**2))

Next, we evaluate the integral for varying number of dimensions (ranging from one up to five). In the 
following examples, the length of the list of integration limits determines the number of the integrals. To see 
a rough estimate of the computation time we use the IPython command %time:

In [74]: %time integrate.nquad(f, [(0,1)] * 1)
CPU times: user 398 ms, sys: 63 ms, total: 461 ms
Wall time: 466 ms
Out[74]: (0.7468241328124271,8.291413475940725e−15)
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In [75]: %time integrate.nquad(f, [(0,1)] * 2)
CPU times: user 6.31 ms, sys: 298 ms, total: 6.61 ms
Wall time: 6.57 ms
Out[75]: (0.5577462853510337,8.291374381535408e−15)

In [76]: %time integrate.nquad(f, [(0,1)] * 3)
CPU times: user 123 ms, sys: 2.46 ms, total: 126 ms
Wall time: 125 ms
Out[76]: (0.4165383858866382,8.291335287314424e−15)

In [77]: %time integrate.nquad(f, [(0,1)] * 4)
CPU times: user 2.41 s, sys: 11.1 ms, total: 2.42 s
Wall time: 2.42 s
Out[77]: (0.31108091882287664,8.291296193277774e−15)

In [78]: %time integrate.nquad(f, [(0,1)] * 5)
CPU times: user 49.5 s, sys: 169 ms, total: 49.7 s
Wall time: 49.7 s
Out[78]: (0.23232273743438786,8.29125709942545e−15)

Here we see that increasing the number of integrations form one to five, increases the computation 
time from hundreds of microseconds to nearly a minute. For even larger number of integrals it may become 
impractical to use direct quadrature routines, and other methods, such as Monte Carlo sampling techniques 
can often be superior, especially if the required precision is not that high.

To compute an integral using Monte Carle sampling, we can use the mcquad function from the skmonaco 
library (known as scikit-monaco). As first argument it takes a Python function for the integrand, and as 
second argument it takes a list of lower integration limits, and as third argument it takes a list of upper 
integration limits. Note that the way the integration limits are specified is not exactly the same as for the quad 
function in SciPy’s integrate module. We begin by importing the skmonaco (Scikit-Monaco) module:

In [79]: import skmonaco

Once the module is imported, we can use the skmonaco.mcquad function for performing a Monte Carlo 
integration. In the following example we compute the same integral as in the previous example using nquad:

In [80]: %time val, err = skmonaco.mcquad(f, xl=np.zeros(5), xu=np.ones(5), npoints=100000)
CPU times: user 1.43 s, sys: 100 ms, total: 1.53 s
Wall time: 1.5 s
In [81]: val, err
Out[81]: (0.231322502809, 0.000475071311272)

While the error is not comparable to the result given by nquad, the computation time is much shorter. 
By increasing the number of sample points, which we can specify using the npoints argument, we can 
increase the accuracy of the result. However, the convergence of Monte Carlo integration is very slow, and it 
is most suitable when high accuracy is not required. However, the beauty of Monte Carlo integration is that 
its computational complexity is independent of the number of integrals. This is illustrated in the following 
example, which computes a 10-variable integration in the same time and with comparable error level as the 
previous example with a 5-variable integration:

In [82]: %time val, err = skmonaco.mcquad(f, xl=np.zeros(10), xu=np.ones(10), 
npoints=100000)
CPU times: user 1.41 s, sys: 64.9 ms, total: 1.47 s
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Wall time: 1.46 s
In [83]: val, err
Out[83]: (0.0540635928549, 0.000171155166006)

Symbolic and Arbitrary-Precision Integration
In Chapter 3, we already saw examples of how SymPy can be used to compute definite and indefinite 
integrals of symbolic functions, using the sympy.integrate function. For example, to compute the integral 

-
ò -
1

1
22 1 x xd , we first create a symbol for x, and define expressions for the integrand and the integration 

limits a = -1 and b =1:

In [84]: x = sympy.symbols("x")
In [85]: f = 2 * sympy.sqrt(1-x**2)
In [86]: a, b = -1, 1

after which we can compute the closed-form expression for the integral using:

In [87]: val_sym = sympy.integrate(f, (x, a, b))
In [88]: val_sym
Out[88]: p

For this example, SymPy is able to find the analytic expression for the integral: p. As pointed out 
earlier, this situation is the exception, and in general we will not be able to find an analytical closed-form 
expression. We then need to resort to numerical quadrature, for example, using SciPy’s integrate.quad, as 
discussed earlier in this chapter. However, the mpmath library,1 which comes bundled with SymPy, or which 
can be installed and imported on its own, provides an alternative implementation of numerical quadrature, 
using multiple-precision computations. With this library, we can evaluate an integral to arbitrary precision, 
without being restricted to the limitations of floating-point numbers. However, the downside is, of course, 
that arbitrary-precision computations are significantly slower than float-point computations. But when 
we require precision beyond what the SciPy quadrature functions can provide, this multiple-precision 
quadrature provides a solution.

For example, to evaluate the integral 
-
ò -
1

1
22 1 x xd  to a given precision,2 we can use the sympy.mpmath.quad  

function, which takes a Python function for the integrand as first argument, and the integration limits as a 
tuple (a, b) as second argument. To specify the precision, we set the variable sympy.mpmath.mp.dps to the 
required number of accurate decimal places. For example, if we require 75 accurate decimal places, we set:

In [89]: sympy.mpmath.mp.dps = 75

The integrand must be given as a Python function that uses math functions from the mpmath library to 
compute the integrand. From a SymPy expression, we can create such a function using sympy.lambdify with 
'mpmath' as third argument, which indicates that we want an mpmath compatible function. Alternatively, 
we can directly implement a Python function using the math functions from the mpmath module in SymPy, 

1For more information about the multi-precision (arbitrary precision) math library mpmath, see the project’s web page at 
http://mpmath.org.
2Here we deliberately choose to work with an integral that has a known analytical value, so that we can compare the 
multi-precision quadrature result with the known exact value.

http://dx.doi.org/10.1007/978-1-4842-0553-2_3
http://mpmath.org/
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which in this case would be f_mpmath = lambda x: 2 * sympy.mpmath.sqrt(1 - x**2). However, here we 
use sympy.lambdify to automate this step:

In [90]: f_mpmath = sympy.lambdify(x, f, 'mpmath')

Next we can compute the integral using sympy.mpmath.quad, and display the resulting value:

In [91]: val = sympy.mpmath.quad(f_mpmath, (a, b))
In [92]: sympy.sympify(val)
Out[92]: 3.14159265358979323846264338327950288419716939937510582097494459230781640629

To verify that the numerically computed value is accurate to the required number of decimal places (75), 
we compare the result with the known analytical value (p). The error is indeed very small:

In [93]: sympy.N(val_sym, sympy.mpmath.mp.dps+1) - val
Out[93]: 6.90893484407555570030908149024031965689280029154902510801896277613487344253e−77

This level of precision cannot be achieved with the quad function in SciPy’s integrate module, since it 
is limited by the precision of floating-point numbers.

The mpmath library’s quad function can also be used to evaluate double and triple integrals. To do so, we 
only need to pass to it an integrand function that takes multiple variables as arguments, and pass tuples with 
integration limits for each integration variable. For example, to compute the double integral

0

1

0

1
2 2

òò ( ) ( ) - -cos cosx y e dxdyx y

and the triple integral

0

1

0

1

0

1
2 2 2

òòò ( ) ( ) ( ) - - -cos cos cosx y y e dxdydzx y z

to 30 significant decimals (this example cannot be solved symbolically with SymPy), we could first create 
SymPy expressions for the integrands, and then use sympy.lambdify to create the corresponding mpmath 
expressions:

In [94]: x, y, z = sympy.symbols("x, y, z")
In [95]: f2 = sympy.cos(x) * sympy.cos(y) * sympy.exp(-x**2 - y**2)
In [96]: f3 = sympy.cos(x) * sympy.cos(y) * sympy.cos(z) * sympy.exp(-x**2 - y**2 - z**2)
In [97]: f2_mpmath = sympy.lambdify((x, y), f2, 'mpmath')
In [98]: f3_mpmath = sympy.lambdify((x, y, z), f3, 'mpmath')

The integrals can then be evaluated to the desired accuracy by setting sympy.mpmath.mp.dps and calling 
sympy.mpmath.quad:

In [99]: sympy.mpmath.mp.dps = 30
In [100]: sympy.mpmath.quad(f2_mpmath, (0, 1), (0, 1))
Out[100]: mpf('0.430564794306099099242308990195783')
In [101]: res = sympy.mpmath.quad(f3_mpmath, (0, 1), (0, 1), (0, 1))
In [102]: sympy.sympify(res)
Out[102]: 0.416538385886638169609660243601007
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Again, this gives access to levels of accuracy that is beyond what scipy.integrate.quad can achieve, 
but this additional accuracy comes with a hefty increase in computational cost. Note that the type of the 
object returned by sympy.mpmath.quad is a multi-precision float (mpf). It can be cast into a SymPy type using 
sympy.sympify.

SymPy can also be used to compute line integrals on the form 
C

f x y sò ( ), d , where C is a curve in the  

x–y plane, using the line_integral function. This function takes the integrand, as a SymPy expression, as 
first argument, a sympy.Curve instance as second argument, and a list of integration variables as third 
argument. The path of the line integral is specified by the Curve instance, which describes a parameterized 
curve for which the x and y coordinates are given as a function of an independent parameter, say t. To create 
a Curve instance that describes a path along the unit circle, we can use:

In [103]: t, x, y = sympy.symbols("t, x, y")
In [103]: C = sympy.Curve([sympy.cos(t), sympy.sin(t)], (t, 0, 2 * sympy.pi))

Once the integration path is specified, we can easily compute the corresponding line integral for a given 
integrand using line_integral. For example, with the integrand f x y( ), =1, the result is the circumference 
of the unit circle:

In [104]: sympy.line_integrate(1, C, [x, y])
Out[104]: 2p

The result is less obvious for a nontrivial integrand, such as in the following example where we compute 
the line integral with the integrand f x y x y( ), = 2 2:

In [105]: sympy.line_integrate(x**2 * y**2, C, [x, y])
Out[105]: p/4

Integral Transforms
The last application of integrals that we discuss in this chapter is integral transforms. An integral transform 
is a procedure that takes a function as input and outputs another function. Integral transforms are the most 
useful when they can be computed symbolically, and here we explore two examples of integral transforms 
that can be performed using SymPy: the Laplace transform and the Fourier transform. There are numerous 
applications of these two transformations, but the fundamental motivation is to transform problems into a 
form that is more easily handled. It can, for example, be a transformation of a differential equation into an 
algebraic equation, using Laplace transforms, or a transformation of a problem from the time domain to the 
frequency domain, using Fourier transforms.

In general, an integral transform of a function f (t) can be written as

T u K t u f t dtf

t

t

( ) = ( ) ( )ò
1

2

, ,

where T
f
 (u) is the transformed function. The choice of the kernel K(t, u) and the integration limits 

determines the type of integral transform. The inverse of the integral transform is given by

f u K u t T u du
u

u

f( ) = ( ) ( )ò -

1

2

1 , ,
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where K u t-1 ( ),  is the kernel of the inverse transform. SymPy provides functions for several types of integral 
transform, but here we focus on the Laplace transform

L s e f t dtf
st( ) = ( )

¥
-ò

0

,

with the inverse transform

f t
i

e L s ds
c i

c i
st

f( ) = ( )
- ¥

+ ¥

ò
1

2p
,

and the Fourier transform

F e f t dtf
i tw

p
w( ) = ( )

-¥

¥
-ò

1

2
,

with the inverse transform

f t e F di t
f( ) = ( )

-¥

¥

ò
1

2p
w ww .

With SymPy, we can perform these transforms with the sympy.laplace_transform and  
sympy.fourier_transform, respectively, and the corresponding inverse transforms can be computed with 
the sympy.inverse_laplace_transform and sympy.inverse_fourier_transform. These functions take a 
SymPy expression for the function to transform as first argument, and the symbol for independent variable 
of the expression to transform as second argument (for example t), and as third argument they take the 
symbol for the transformation variable (for example s). For example, to compute the Laplace transformation 
of the function f t at( ) sin( )= , we begin by defining SymPy symbols for the variables a, t, and s, and a SymPy 

expression for the function f (t):

In [106]: s = sympy.symbols("s")
In [107]: a, t = sympy.symbols("a, t", positive=True)
In [108]: f = sympy.sin(a*t)

Once we have SymPy objects for the variables and the function, we can call the laplace_transform 
function to compute the Laplace transform:

In [109]: sympy.laplace_transform(f, t, s)

Out[109]: (
a

a s2 2+
, -¥ , 0 <Â s )

By default, the laplace_transform function returns a tuple containing the resulting transform, the 
value A from convergence condition of the transform, which takes the form A s<Â , and lastly additional 
conditions that are required for the transform to be well defined. These conditions typically depend on the 
constraints that are specified when symbols are created. For example, here we used positive=True when 
creating of the symbols a and t, to indicate that they represent real and positive numbers. Often we are only 
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interested in the transform itself, and we can then use the noconds=True keyword argument to suppress the 
conditions in the return result:

In [110]: F = sympy.laplace_transform(f, t, s, noconds=True)
In [111]: F

Out[111]: 
a

a s2 2+

The inverse transformation can be used in a similar manner, except that we need to reverse the roles of 
the symbols s and t. The Laplace transform is a unique one-to-one mapping, so if we compute the inverse 
Laplace transform of the previously computed Laplace transform we expect to recover the original function:

In [112]: sympy.inverse_laplace_transform(F, s, t, noconds=True)
Out[112]: sin(at)

SymPy can compute the transforms for many elementary mathematical functions, and for wide variety 
of combinations of such functions. When solving problems using Laplace transformations by hand, one 
typically searches for matching functions in reference tables with known Laplace transformations. Using 
SymPy, this process can conveniently be automated in many, but not all, cases. The following examples 
show a few additional examples of well-known functions that one find in Laplace transformation tables. 
Polynomials have simple Laplace transformation:

In [113]: [sympy.laplace_transform(f, t, s, noconds=True) for f in [t, t**2, t**3, t**4]]

Out[113]: [
1

2s
,

2
3s
,

6
4s
,

24
5s
]

and we can also compute the general result with an arbitrary integer exponent:

In [114]: n = sympy.symbols("n", integer=True, positive=True)
In [115]: sympy.laplace_transform(t**n, t, s, noconds=True)

Out[115]: 
G n

sn

+( )
+

1
1

The Laplace transform of composite expressions can also be computed, as in the following example that 
computes the transform of the function f t at e at( ) ( )= - -1 :

In [116]: sympy.laplace_transform((1 - a*t) * sympy.exp(-a*t), t, s, noconds=True)

Out[116]: 
s

a s+( )2

The main application of Laplace transforms is to solve differential equations, where the transformation 
can be used to bring the differential equation into a purely algebraic form, which can then be solved and 
transformed back to the original domain by applying the inverse Laplace transform. In Chapter 9 we will see 
concrete examples of this method. Fourier transforms can also be used for the same purpose.

http://dx.doi.org/10.1007/978-1-4842-0553-2_9
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The Fourier transform function, fourier_tranform, and its inverse, inverse_fourier_transform, are 
used in much the same way as the Laplace transformation functions. For example, to compute the Fourier 
transform of f t e at( ) = - 2

, we would first define SymPy symbols for the variables a, t, and w, and the function 
f (t), and then compute the Fourier transform by calling the sympy.fourier_transform function:

In [117]: a, t, w = sympy.symbols("a, t, omega")
In [118]: f = sympy.exp(-a*t**2)
In [119]: F = sympy.fourier_transform(f, t, w)
In [120]: F
Out[120]: p p w/ /ae a- 2 2

As expected, computing the inverse transformation for F recovers the original function:

In [121]: sympy.inverse_fourier_transform(F, w, t)

Out[121]: e at- 2

SymPy can be used to compute a wide range of Fourier transforms symbolically, but unfortunately it 
does not handle well transformations that involve Dirac delta functions, in either the original function or the 
resulting transformation. This currently limits its usability, but nonetheless, for problems that do not involve 
Dirac delta functions it is a valuable tool.

Summary
Integration is one of the fundamental operations in mathematical analysis. Numerical quadrature, or 
numerical evaluation of integrals, have important applications in many fields of science, because integrals 
that occur in practice often cannot be computed analytically, and expressed as a closed-form expression. 
Their computation then requires numerical techniques. In this chapter we have reviewed basic techniques 
and methods for numerical quadrature, and introduced the corresponding functions in the SciPy integrate 
module that can be used for evaluation of integrals in practice. When the integrand is given as a function 
that can be evaluated at arbitrary points, we typically prefer Gaussian quadrature rules. On the other hand, 
when the integrand is defined as a tabulated data, the simpler Newton-Cotes quadrature rules can be used. 
We also studied symbolic integration and arbitrary-precision quadrature, which can complement floating-
point quadrature for specific integrals that can be computed symbolically, or when additional precision is 
required. As usual, a good starting point is to begin to analyze a problem symbolically, and if a particular 
integral can be solved symbolically by finding its antiderivative, that is generally the most desirable situation. 
When symbolic integration fails, we need to resort to numerical quadrature, which should first be explored 
with floating-point based implementations, like the ones provided by the SciPy integrate module. If 
additional accuracy is required we can fall back on arbitrary-precision quadrature. Another application of 
symbolic integration is integral transform, which can be used to transform problems, such as differential 
equations, between different domains. Here we briefly looked at how to preform Laplace and Fourier 
transforms symbolically using SymPy, and in the following chapter we continue to explore this for solving 
certain types of differential equations.

Further Reading
Numerical quadrature is discussed in many introductory textbooks on numerical computing, such as 
those by Heath and Stoer. Detailed discussions on many quadrature methods, together with example 
implementations are available in a book by Press, Teukolsky, Vetterling, and Flannery. The theory of integral 
transforms, such as the Fourier transform and the Laplace transform is introduced in a book by Folland.
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Chapter 9

Ordinary Differential Equations

Equations wherein the unknown quantity is a function, rather than a variable, and that involve derivatives of 
the unknown function, are known as differential equations. An ordinary differential equation is the special case 
where the unknown function has only one independent variable with respect to which derivatives occur in the 
equation. If, on the other hand, derivatives of more than one variable occur in the equation, then it is known 
as a partial differential equation, and that is the topic of Chapter 11. Here we focus on ordinary differential 
equations (in the following abbreviated as ODEs), and we explore both symbolic and numerical methods for 
solving this type of equations in this chapter. Analytical closed-form solutions to ODEs often do not exist, but 
for many special types of ODEs there are analytical solutions, and in those cases there is a chance that we can 
find solutions using symbolic methods. If that fails, we must, as usual, resort to numerical techniques.

Ordinary differential equations are ubiquitous in science and engineering, as well as in many other 
fields, and they arise, for example, in studies of dynamical systems. A typical example of an ODE is an 
equation that describes the time evolution of a process where the rate of change (the derivative) can be 
related to other properties of the process. To learn how the process evolves in time, given some initial state, 
we must solve, or integrate, the ODE that describes the process. Specific examples of applications of ODEs 
are the laws of mechanical motion in physics, molecular reactions in chemistry and biology, and population 
modeling in ecology, just to mention a few.

In this chapter we will explore both symbolic and numerical approaches to solving ODE problems.  
For symbolic methods we use the SymPy module, and for numerical integration of ODEs we use functions 
from the integrate module in SciPy.

Importing Modules
Here we require the NumPy and Matplotlib libraries for basic numerical and plotting purposes, and for 
solving ODEs we need the SymPy library and SciPy’s integrate module. As usual, we assume that these 
modules are imported in the following manner:

In [1]: import numpy as np
In [2]: import matplotlib.pyplot as plt
In [3]: from scipy import integrate
In [4]: import sympy

For nicely displayed output from SymPy we need to initialize its printing system:

In [5]: sympy.init_printing()

http://dx.doi.org/10.1007/978-1-4842-0553-2_11
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Ordinary Differential Equations
The simplest form of an ordinary differential equation is 

dy x

dx
f x y x

( )
= ( )( ), , where y(x) is the unknown 

function and f x y x( , ( )) is known. It is a differential equation because the derivative of the y(x) occurs in the 

equation. Only the first derivative occurs in the equation, and it is therefore an example of a first-order ODE. 

More generally, we can write an ODE of nth order in explicit form as 
d y

dx
f x y

dy

dx

d y

dx

n

n

n

n
= ¼

æ

è
ç

ö

ø
÷

-

-, , , ,
1

1
, or in 

implicit form as F x y
dy

dx

d y

dx

n

n
, , , ,¼

æ

è
ç

ö

ø
÷ = 0, where f and F are known functions.

An example of a first-order ODE is Newton’s law of cooling 
dT t

dt
k T t Ta

( )
= - ( ) -( ) , which describes  

the temperature T(t) of a body in a surrounding with temperature T
a
. The solution to this ODE is 

T t T T T ea a
kt( ) = + -( ) -

0 ,  where T
0
 is the initial temperature of the body. An example of a second-order ODE is 

Newton’s second law of motion F ma= , or more explicitly F x t m
d x t

dt
( )( ) = ( )2

2
.  This equation describes the 

position x(t) of an object with mass m, when subjected to a position-dependent force F(x(t)). To completely 
specify a solution to this ODE we would, in addition to finding its general solution, also have to give the initial 
position and velocity of the object. Similarly, the general solution of an nth order ODE have n free parameters 
that we need to specify, for example, as initial conditions for the unknown function and n -1  of its derivatives.

An ODE can always be rewritten as a system of first-order ODEs. Specifically, the nth order ODE on the 

explicit form 
d y

dx
g x y

dy

dx

d y

dx
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n
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1

1
, can be written in the standard form by introducing n new functions 

y y1 = , y
dy

dx2 = , ..., y
d y

dxn

n

n
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-
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1
. This gives the following system of first-order ODEs:
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which also can be written in a more compact vector form: 
d

dx
x f x xy y( ) = ( )( ), .  This canonical form is 

particularly useful for numerical solutions of ODEs, and it is common that numerical methods for solving 

ODEs takes the function f f f fn= ¼( )1 2, , , ,  which in the current case is f y y g= ¼( , , , ),2 3  as the input that 

specifies the ODE. For example, the second-order ODE for Newton’s second law of motion, F x m
d x

dt
( ) ,=

2

2
 

can be written on the standard form using y = = =é
ëê

ù
ûú

y x y
dx
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If the functions f
1
, f

2
, ..., f

n
 are all linear, then the corresponding system of ODEs can be written on the 

simple form 
d

dt
A x x x

y
y r= ( ) ( )+ ( )  where A(x) is an n n´  matrix, and r(x) is an n-vector, that only depend  

on x. In this form, the r(x) is known as the source term, and the linear system is known as homogeneous if 
r ( )x = 0, and nonhomogeneous otherwise. Linear ODEs are an important special case that can be solved,  
for example, using eigenvalue decomposition of A(x). Likewise, for certain properties and forms of the function 
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f  (x, y (x)), there may be known solutions and special methods for solving the corresponding ODE problem, but 
there is no general method for an arbitrary f  (x, y (x)), other than approximate numerical methods.

In addition to the properties of the function f  (x, y (x)), the boundary conditions for an ODE also 
influence the solvability of the ODE problem, as well as which numerical approaches are available. 
Boundary conditions are needed to determine the values of the integration constants that appear in a 
solution. There are two main types of boundary conditions for ODE problems: initial value conditions 
and boundary value conditions. For initial value problems, the value of the function and its derivatives are 
given at a starting point, and the problem is to evolve the function forward in the independent variable (for 
example, representing time or position) from this starting point. For boundary value problems, the value 
of the unknown function, or its derivatives, are given at fixed points. These fixed points are frequently the 
endpoints of the domain of interest. In this chapter we mostly focus on initial value problem, and methods 
that are applicable to boundary value problems are discussed in Chapter 11 on partial differential equations.

Symbolic Solution to ODEs
SymPy provides a generic ODE solver sympy.dsolve, which is able to find analytical solutions to many 
elementary ODEs. The sympy.dsolve function attempts to automatically classify a given ODE, and it may 
attempt a variety of techniques to find its solution. It is also possible to give hints to the dsolve function, 
which can guide it to the most appropriate solution method. While dsolve can be used to solve many simple 
ODEs symbolically, as we will see in the following, it is worth keeping in mind that most ODEs cannot be 
solved analytically. Typical examples of ODEs where one can hope to find a symbolic solution are ODEs 
of first or second-order, or linear systems of first-order ODEs with only a few unknown functions. It also 
helps greatly if the ODE has special symmetries or properties, such as being separable, having constant 
coefficients, or is on a special form for which there exist known analytical solutions. While these types of 
ODEs are exceptions and special cases, there are many important applications of such ODEs, and for these 
cases SymPy’s dsolve can be a very useful complement to traditional analytical methods. In this section we 
will explore how to use SymPy and its dsolve function to solve simple but commonly occurring ODEs.

To illustrate the method for solving ODEs with SymPy, we begin with the simplest possible problem and 
gradually look at more complicated situations. The first example is the simple first-order ODE for Newton’s 

cooling law, 
dT t

dt
k T t Ta

( )
= - ( ) -( ) , with the initial value T T( ) .0 0=  To approach this problem using SymPy, 

we first need to define symbols for the variables t, k, T
0
 and T

a
, and to represent the unknown function T(t) 

we can use a sympy.Function object:

In [6]: t, k, T0, Ta = sympy.symbols("t, k, T_0, T_a")
In [7]: T = sympy.Function("T")

Next, we can define the ODE very naturally by simply creating a SymPy expression for the left-hand side 

of the ODE when written on the form 
dT t

dt
k T t Ta

( )
+ ( )-( ) = 0. Here, to represent the function T(t) we can 

now use the Sympy Function object T. Applying the symbol t to it, using the function-call syntax T(t), 
results in an applied function object that we can take derivatives of using either sympy.diff or the diff 
method on the T(t) expression:

In [8]: ode = T(t).diff(t) + k*(T(t) - Ta)
In [9]: sympy.Eq(ode)

Out[9]: k T T t
dT t

dta- + ( )( )+ ( )
= 0

http://dx.doi.org/10.1007/978-1-4842-0553-2_11
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Here we used sympy.Eq to display the equation including the equality sign and a right-hand side that 
is zero. Given this representation of the ODE, we can directly pass it to sympy.dsolve, which will attempt to 
automatically find the general solution of the ODE.

In [10]: ode_sol = sympy.dsolve(ode)
In [11]: ode_sol
Out[11]: T t C e Tkt

a( ) = +-
1

For this ODE problem, the sympy.dsolve function indeed finds the general solution, which here 
includes an unknown integration constant C

1
 that we have to determine from the initial conditions for 

the problem. The return value from the sympy.dsolve is an instance of sympy.Eq, which is a symbolic 
representation of an equality. It has the attributes lhs and rhs for accessing the left-hand side and the right-
hand side of the equality object:

In [12]: ode_sol.lhs
Out[12]: T (t)
In [13]: ode_sol.rhs

Out[13]: C e Tkt
a1

- +

Once the general solution has been found, we need to use the initial conditions to find the values of the 
yet-to-be-determined integration constants. Here the initial condition is T T( ) .0 0=  To this end, we first 
create a dictionary that describes the initial condition, ics = {T(0): T0}, which we can use with SymPy’s 
subs method to apply the initial condition to the solution of the ODE. This results in an equation for the 
unknown integration constant C

1
:

In [14]: ics = {T(0): T0}
In [15]: ics
Out[15]: {T (0):T

0
}

In [16]: C_eq = sympy.Eq(ode_sol.lhs.subs(t, 0).subs(ics), ode_sol.rhs.subs(t, 0))
In [17]: C_eq

Out[17]: T C Ta0 1= +

In the present example, the equation for C
1
 is trivial to solve, but for the sake of generality, here we 

solve it using sympy.solve. The result is a list of solutions (in this case a list of only one solution). We can 
substitute the solution for C

1
 into the general solution of the ODE problem to obtain the particular solution 

that corresponds to the given initial conditions:

In [18]: C_sol = sympy.solve(C_eq)
In [19]: C_sol

Out[19]: C T Ta1 0: -{ }éë ùû
In [20]: ode_sol.subs(C_sol[0])

Out[20]: T t T T T ea a
kt( ) = + -( ) -

0

By carrying out these steps we have completely solved the ODE problem symbolically, and we obtained 
the solution T t T T T ea a

kt( ) = + -( ) -
0 . The steps involved in this process are straightforward, but applying the 

initial conditions and solving for the undetermined integration constants can be slightly tedious, and it 
worthwhile to collect these steps in a reusable function. The following function apply_ics is a basic 
implementation that generalizes these steps to a differential equation of arbitrary order.
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In [21]: def apply_ics(sol, ics, x, known_params):
   ....:      """
   ....:      Apply the initial conditions (ics), given as a dictionary on
   ....:      the form ics = {y(0): y0, y(x).diff(x).subs(x, 0): yp0, ...},
   ....:      to the solution of the ODE with independent variable x.
   ....:      The undetermined integration constants C1, C2, ... are extracted
   ....:      from the free symbols of the ODE solution, excluding symbols in
   ....:      the known_params list.
   ....:      """
   ....:      free_params = sol.free_symbols - set(known_params)
   ....:      eqs = [(sol.lhs.diff(x, n) - sol.rhs.diff(x, n)).subs(x, 0).subs(ics)
   ....:             for n in range(len(ics))]
   ....:      sol_params = sympy.solve(eqs, free_params)
   ....:      return sol.subs(sol_params)

With this function, we can more conveniently single out a particular solution to an ODE that satisfies a 
set of initial conditions, given the general solution to the same ODE. For our previous example we get:

In [22]: ode_sol

Out[22]: T t C e Tkt
a( ) = +-

1

In [23]: apply_ics(ode_sol, ics, t, [k, Ta])

Out[23]: T t T T T ea a
kt( ) = + -( ) -

0

The example we looked at so far is almost trivial, but the same method can be used to approach any ODE 
problem, although here is of course no guarantee that a solution will be found. As an example of a slightly 
more complicated problem, consider the ODE for a damped harmonic oscillator, which is a second-order 

ODE on the form 
d x t

dx

dx t

dt
x t

2

2 0 0
22 0

( )
+

( )
+ ( ) =gw w , where x(t) is the position of the oscillator at time t, w

0
 is 

the frequency for the undamped case, and g  is the damping ratio. We first define the required symbols and 
construct the ODE, and then ask SymPy to find the general solution by calling sympy.dsolve:

In [24]: t, omega0, gamma= sympy.symbols("t, omega_0, gamma", positive=True)
In [25]: x = sympy.Function("x")
In [26]: ode = x(t).diff(t, 2) + 2 * gamma * omega0 * x(t).diff(t) + omega0**2 * x(t)
In [27]: sympy.Eq(ode)

Out[27]: 
d x t

dx

dx t

dt
x t

2

2 0 0
22 0

( )
+

( )
+ ( ) =gw w

In [28]: ode_sol = sympy.dsolve(ode)
In [29]: ode_sol

Out[29]: x t C e C e
t t

( ) = +
- - -( ) - + -( )

1

1

2

10
2

0
2w g g w g g
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Since this is a second-order ODE, there are two undetermined integration constants in the general 

solution. We need to specify initial conditions for both the position x(0) and the velocity 
dx t

dt
t

( )
=0

 to single 

out a particular solution to the ODE. To do this we create a dictionary with these initial conditions and apply 
it to the general ODE solution using apply_ics:

In [30]: ics = {x(0): 1, x(t).diff(t).subs(t, 0): 0}
In [31]: ics

Out[31]: x
dx t

dt
t

0 1 0
0

( ) ( )ì
í
ï

îï

ü
ý
ï

þï=

: , :

In [32]: x_t_sol = apply_ics(ode_sol, ics, t, [omega0, gamma])
In [33]: x_t_sol

Out[33]: x t e e
t t

( ) = -
-

+
æ

è
ç
ç

ö

ø
÷
÷

+
-

+
æ

è
ç
ç

ö

ø
÷
÷

- - -( )g
g

g
g

w g g w

2 1

1

2 2 1

1

22

1

2

0
2

0 -- + -( )g g 2 1

This is the solution for the dynamics of the oscillator for arbitrary values of t, w
0
 and g, where we used 

the initial condition x ( )0 1=  and 
dx t

dt
t

( )
=

=0

0. However, substituting g =1, which corresponds to critical 

damping, directly into this expression results in a division by zero error, and for this particular choice of g  we 
need to careful and compute the limit where g ®1.

In [34]: x_t_critical = sympy.limit(x_t_sol.rhs, gamma, 1)
In [35]: x_t_critical

Out[35]: 
w

w
0 1

0

t

e t

+

Finally, we plot the solutions for w p0 2=  and a sequence of different values of the damping ratio g :

In [36]: fig, ax = plt.subplots(figsize=(8, 4))
    ...: tt = np.linspace(0, 3, 250)
    ...: w0 = 2 * sympy.pi
    ...: for g in [0.1, 0.5, 1, 2.0, 5.0]:
    ...:     if g == 1:
    ...:         x_t = sympy.lambdify(t, x_t_critical.subs({omega0: w0}), 'numpy')
    ...:     else:
    ...:         x_t = sympy.lambdify(t, x_t_sol.rhs.subs({omega0: w0, gamma: g}), 'numpy')
    ...:     ax.plot(tt, x_t(tt).real, label=r"$\gamma = %.1f$" % g)
    ...: ax.set_xlabel(r"$t$", fontsize=18)
    ...: ax.set_ylabel(r"$x(t)$", fontsize=18)
    ...: ax.legend()

The solution to the ODE for the damped harmonic oscillator is graphed in Figure 9-1. For g <1, the 
oscillator is underdamped, and we see oscillatory solutions. For g >1 the oscillator is overdamped, and 
decays monotonically. The crossover between these two behaviors occurs at the critical damping ratio g =1.
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The two examples of ODEs we have looked at so far could both be solved exactly by analytical means, 
but this is far from always the case. Even many first-order ODEs cannot be solved exactly in terms of 

elementary functions. For example, consider 
dy x

dx
x y x

( )
= + ( )2

,  which is an example of an ODE that does 

not have any closed-form solution. If we try to solve this equation using sympy.dsolve we obtain an 
approximate solution, in the form of a power series:

In [37]: x = sympy.symbols("x")
In [38]: y = sympy.Function("y")
In [39]: f = y(x)**2 + x
In [40]: sympy.Eq(y(x).diff(x), f)

Out[40]: 
dy x

dx
x y x

( )
= + ( )2

In [41]: sympy.dsolve(y(x).diff(x) - f)

Out[41]: y x C C x C x
C

x
C

C x C C( ) = + + +( ) + + +( ) + +( )+1 1 1
2 1 3 1

1
4

1
2

1

1

2
2 1

7

6 12
5

1

60
45 220 31

5 6C x x+( ) + ( )

For many other types of equations, SymPy outright fails to produce any solution at all. For example, 

if we attempt to solve the second-order ODE 
d y x

dx
x y x

2

2

2( )
= + ( )  we obtain the following error message:

In [42]: sympy.Eq(y(x).diff(x, x), f)

Out[42]: 
d y x

dx
x y x

2

2

2( )
= + ( )

In [43]: sympy.dsolve(y(x).diff(x, x) - f)
---------------------------------------------------------------------------
...
NotImplementedError: solve: Cannot solve -x - y(x)**2 + Derivative(y(x), x, x)

Figure 9-1.  Solutions to the ODE for a damped harmonic oscillator, for a sequnce of damping ratios
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This type of result can mean that there actually is no analytic solution to the ODE, or, just as likely, 
simply that SymPy is unable to handle it.

The dsolve function accepts many optional arguments, and it can frequently make a difference if the 
solver is guided by giving hints about which methods should be used to solve the ODE problem at hand. See 
the docstring for sympy.dsolve for more information about the available options.

Direction Fields
A direction field graph is a simple but useful technique to visualize possible solutions to arbitrary first-order 
ODEs. It is made up of short lines that show the slope of the unknown function on a grid in the x–y plane. 
This graph can be easily produced because the slope of y(x) at arbitrary points of the x–y plane is given by 

the definition of the ODE:
dy x

dx
f x y x

( )
= ( )( ), .  That is, we only need to iterate over the x and y values on the 

coordinate grid of interest and evaluate f  (x, y (x)) to know the slope of y (x) at that point. The reason why the 
direction field graph is useful is that smooth and continuous curves that tangent the slope lines (at every 
point) in the direction field graph are possible solutions to the ODE.

The following function plot_direction_field produces a direction field graph for a first-order ODE, 
given the independent variable x, the unknown function y (x) and the right-hand side function f  (x, y (x)). It 
also takes optional ranges for the x and y axes (x_lim and y_lim, respectively) and an optional Matplotlib 
axis instance to draw the graph on.

 In [44]: def plot_direction_field(x, y_x, f_xy, x_lim=(-5, 5), y_lim=(-5, 5), ax=None):
    ...:     f_np = sympy.lambdify((x, y_x), f_xy, 'numpy')
    ...:     x_vec = np.linspace(x_lim[0], x_lim[1], 20)
    ...:     y_vec = np.linspace(y_lim[0], y_lim[1], 20)
    ...:
    ...:     if ax is None:
    ...:         _, ax = plt.subplots(figsize=(4, 4))
    ...:
    ...:     dx = x_vec[1] - x_vec[0]
    ...:     dy = y_vec[1] - y_vec[0]
    ...:
    ...:     for m, xx in enumerate(x_vec):
    ...:         for n, yy in enumerate(y_vec):
    ...:             Dy = f_np(xx, yy) * dx
    ...:             Dx = 0.8 * dx**2 / np.sqrt(dx**2 + Dy**2)
    ...:             Dy = 0.8 * Dy*dy / np.sqrt(dx**2 + Dy**2)
    ...:             ax.plot([xx - Dx/2, xx + Dx/2],
    ...:                     [yy - Dy/2, yy + Dy/2], 'b', lw=0.5)
    ...:     ax.axis('tight')
    ...:     ax.set_title(r"$%s$" %
    ...:                  (sympy.latex(sympy.Eq(y(x).diff(x), f_xy))),
    ...:                  fontsize=18)
    ...:     return ax

With this function we can produce the direction field graphs for the ODEs on the form 
dy x

dx
f x y x

( )
= ( )( ), .   

For example, the following code generates the direction field graphs for f x y x y x x, ,( )( ) = ( ) +2
 

f x y x x y x, / ,( )( ) = - ( )  and f x y x y x x, / .( )( ) = ( )2
 The result is shown in Figure 9-2.
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In [45]: x = sympy.symbols("x")
In [46]: y = sympy.Function("y")
In [47]: fig, axes = plt.subplots(1, 3, figsize=(12, 4))
    ...: plot_direction_field(x, y(x), y(x)**2 + x, ax=axes[0])
    ...: plot_direction_field(x, y(x), -x / y(x), ax=axes[1])
    ...: plot_direction_field(x, y(x), y(x)**2 / x, ax=axes[2])

The direction lines in the graphs in Figure 9-2 suggest how the curves that are solutions to the 
corresponding ODE behave, and direction field graphs are therefore a useful and tool for visualizing 
solutions to ODEs that cannot be solved analytically. To illustrate this point, consider again the ODE 

dy x

dx
x y x

( )
= + ( )2

with the initial condition y ( ) ,0 0=  which we previously saw can be solved inexactly as an 

approximate power series. Like before, we solve this problem again by defining the symbol x and the 
function y (x), which we in turn use to construct and display the ODE:

In [48]: x = sympy.symbols("x")
In [49]: y = sympy.Function("y")
In [50]: f = y(x)**2 + x
In [51]: sympy.Eq(y(x).diff(x), f)

Out[51]: 
dy x

dx
x y x

( )
= + ( )2

Now we want to find the specific power-series solution that satisfy the initial condition, and for this  
problem we can specify the initial condition directly using the ics keyword argument to the dsolve function1:

In [52]: ics = {y(0): 0}
In [53]: ode_sol = sympy.dsolve(y(x).diff(x) - f, ics=ics)
In [54]: ode_sol

Out[54]: y x
x x

x( ) = + + ( )
2 5

6

2 20


Figure 9-2.  Direction fields for three first-order differential equations

1In the current version of SymPy, the ics keyword argument is only recognized by the power-series solver in dsolve. 
Solvers for other types of ODEs ignore the ics argument, and hence the need for the apply_ics function we defined and 
used earlier in this chapter.
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Plotting the solution together with the direction field for the ODE is a quick and simple way to get an 
idea of the validity range of the power-series approximation. The following code plots the approximate 
solution and the direction field (Figure 9-3, left panel). A solution with extended validity range is also 
obtained by repeatedly solving the ODE with initial conditions at increasing values of x, taken from a 
previous power-series solution (Figure 9-3, right panel).

In [55]: fig, axes = plt.subplots(1, 2, figsize=(8, 4))
    ...: # left panel
    ...: plot_direction_field(x, y(x), f, ax=axes[0])
    ...: x_vec = np.linspace(-3, 3, 100)
    ...: axes[0].plot(x_vec, sympy.lambdify(x, ode_sol.rhs.removeO())(x_vec), 'b', lw=2)
    ...: axes[0].set_ylim(-5, 5)
    ...:
    ...: # right panel
    ...: plot_direction_field(x, y(x), f, ax=axes[1])
    ...: x_vec = np.linspace(-1, 1, 100)
    ...: axes[1].plot(x_vec, sympy.lambdify(x, ode_sol.rhs.removeO())(x_vec), 'b', lw=2)
    ...: # iteratively resolve the ODE with updated initial conditions
    ...: ode_sol_m = ode_sol_p = ode_sol
    ...: dx = 0.125
    ...: # positive x
    ...: for x0 in np.arange(1, 2., dx):
    ...:     x_vec = np.linspace(x0, x0 + dx, 100)
    ...:     ics = {y(x0): ode_sol_p.rhs.removeO().subs(x, x0)}
    ...:     ode_sol_p = sympy.dsolve(y(x).diff(x) - f, ics=ics, n=6)
    ...:     axes[1].plot(x_vec, sympy.lambdify(x, ode_sol_p.rhs.removeO())(x_vec), 'r', lw=2)
    ...: # negative x
    ...: for x0 in np.arange(1, 5, dx):
    ...:     x_vec = np.linspace(-x0-dx, -x0, 100)
    ...:     ics = {y(-x0): ode_sol_m.rhs.removeO().subs(x, -x0)}
    ...:     ode_sol_m = sympy.dsolve(y(x).diff(x) - f, ics=ics, n=6)
    ...:     axes[1].plot(x_vec, sympy.lambdify(x, ode_sol_m.rhs.removeO())(x_vec), 'r', lw=2)
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In the left panel of Figure 9-3, we see that the approximate solution curve aligns well with the direction 
field lines near x = 0, but starts to deviate for x 1, suggesting that the approximate solution is no longer 
valid. The solution curve shown in the right panel aligns better with the direction field throughout the plotted 
range. The blue curve segment is the original approximate solution, and the red curves are continuations 
obtained from resolving the ODE with an initial condition sequence that starts where the blue curves end.

Solving ODEs using Laplace Transformations
An alternative to solving ODEs symbolically with SymPy’s “black-box” solver2 dsolve, is to use the symbolic 
capabilities of SymPy to assist in a more manual approach to solving ODEs. A technique that can be used to 
solve certain ODE problems is to Laplace transform the ODE, which for many problems results in an 
algebraic equation that is easier to solve. The solution to the algebraic equation can then be transformed 
back to the original domain with an inverse Laplace transform, to obtain the solution to the original 
problem. The key to this method is that the Laplace transform of the derivative of a function is an algebraic 
expression in the Laplace transform of the function itself:  y t s y t y’ – .( )éë ùû = ( )éë ùû ( )0  However, while SymPy 

is good at Laplace transforming many types of elementary functions, it does not recognize how to transform 
derivatives of an unknown function. But defining a function that performs this task easily amends this 
shortcoming.

For example, consider the following differential equation for a driven harmonic oscillator:

d

dt
y t

d

dt
y t y t t

2

2
2 10 2 3( ) + ( ) + ( ) = sin .

Figure 9-3.  Direction field graph of the ODE 
dy x

dx
y x x

( )
= ( ) +2

,  with the 5th-order power-series solutions 

around x = 0  (left), and consecutive power-series expansions around x between -5  and 2, with a  

0.125 spacing (right)

2Or “white-box” solver, since SymPy is open source and the inner workings of dsolve is readily available for inspection.
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To work with this ODE we first create SymPy symbols for the independent variable t and the function y(t),  
and then use them to construct the symbolic expression for the ODE:

In [56]: t = sympy.symbols("t", positive=True)
In [57]: y = sympy.Function("y")
In [58]: ode = y(t).diff(t, 2) + 2 * y(t).diff(t) + 10 * y(t) - 2 * sympy.sin(3*t)
In [59]: sympy.Eq(ode)

Out[59]: 10 2 3 2 0
2

2
y t t

d

dt
y t

d

dt
y t( )- ( )+ ( )+ ( ) =sin

Laplace transforming this ODE should yield an algebraic equation. To pursue this approach using 
SymPy and its function sympy.laplace_transform, we first need to create a symbol s, to be used in the 
Laplace transformation. At this point we also create a symbol Y for later use.

In [60]: s, Y = sympy.symbols("s, Y", real=True)

Next we proceed to Laplace transforming the unknown function y(t), as well as the entire ODE equation:

In [61]: L_y = sympy.laplace_transform(y(t), t, s)
In [62]: L_y
Out[62]: ℒ

t
 [ y (t)](s)

In [63]: L_ode = sympy.laplace_transform(ode, t, s, noconds=True)
In [64]: sympy.Eq(L_ode)

Out[64]: 10 2
62

2
  t t ty t s

d

dt
y t s

d

dt
y t s( )éë ùû( )+ ( )é

ëê
ù
ûú
( )+ ( )é

ë
ê

ù

û
ú( )- ss2 9

0
+

=

When Laplace transforming the unknown function y(t) we get the undetermined result 
t
[y(t)](s), which 

is to be expected. However, applying sympy.laplace_transform on a derivative of y(t), such as 
d

dt
y t( ) ,  

results in the unevaluated expression, t

d

dt
y t s( )é

ëê
ù
ûú
( ).  This is not the desired result, and we need to work 

around this issue to obtain the sought-after algebraic equation. The Laplace transformation if the derivative 
of an unknown function has a well-known form that involves the Laplace transform of the function itself, 
rather than its derivatives. For the nth derivative of a function y(t), the formula is

 t

n

n
n

t
m

n
n m

m

m

d

dt
y t s s y t s s

d

dt
y t( )é

ë
ê

ù

û
ú( ) = ( )éë ùû( )- (

=

-
- -å

0

1
1 ))

=t 0

.

By iterating through the SymPy expression tree for L_ode, and replacing the occurrences of 

t

n

n

d

dt
y t s( )é

ë
ê

ù

û
ú( )  with expressions of the form given by this formula, we can obtain the algebraic form of the 

ODE that we seek. The following functions takes a Laplace-transformed ODE and performs the substitution 
of the unevaluated Laplace transforms of the derivatives of y(t):

In [65]: def laplace_transform_derivatives(e):
    ...:     """
    ...:     Evaluate the unevaluted laplace transforms of derivatives
    ...:     of functions
    ...:     """
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    ...:     if isinstance(e, sympy.LaplaceTransform):
    ...:         if isinstance(e.args[0], sympy.Derivative):
    ...:             d, t, s = e.args
    ...:             n = len(d.args) - 1
    ...:             return ((s**n) * sympy.LaplaceTransform(d.args[0], t, s) -
    ...:                     sum([s**(n-i) * sympy.diff(d.args[0], t, i-1).subs(t, 0)
    ...:                          for i in range(1, n+1)]))
    ...:
    ...:     if isinstance(e, (sympy.Add, sympy.Mul)):
    ...:         t = type(e)
    ...:         return t(*[laplace_transform_derivatives(arg) for arg in e.args])
    ...:
    ...:     return e

Applying this function on the Laplace-transformed ODE equation, L_ode, yields:

In [66]: L_ode_2 = laplace_transform_derivatives(L_ode)
In [67]: sympy.Eq(L_ode_2)

Out[67]: s y t s s y t s sy y t s yt t t
2 2 0 10 2 0  ( )éë ùû( )+ ( )éë ùû( )- ( )+ ( )éë ùû( )- ( ))- ( ) -

+
=

=

d

dt
y t

st 0
2

6

9
0

To simplify the notation, we now substitute the expression 
t
[y(t)](s) for the symbol Y:

In [68]: L_ode_3 = L_ode_2.subs(L_y, Y)
In [69]: sympy.Eq(L_ode_3)

Out[69]: s Y sY sy Y y
d

dt
y t

st

2

0
2

2 0 10 2 0
6

9
0+ - ( )+ - ( )- ( ) -

+
=

=

At this point we need to specify the boundary conditions for the ODE problem. Here we use y ( )0 1=  
and y t’( ) ,= 0  and after creating dictionary that contains these boundary conditions, we use it to substitute 
the values into the Laplace-transformed ODE equation:

In [70]: ics = {y(0): 1, y(t).diff(t).subs(t, 0): 0}
In [71]: ics

Out[71]: y
d

dt
y t

t

0 1 0
0

( ) ( )ì
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ý
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: , :

In [72]: L_ode_4 = L_ode_3.subs(ics)
In [73]: sympy.Eq(L_ode_4)

Out[74]: Ys Ys Y s
s

2
2

2 10 2
6

9
0+ + - - -

+
=

This is an algebraic equation that can be solved for Y:

In [75]: Y_sol = sympy.solve(L_ode_4, Y)
In [76]: Y_sol

Out[76]: 
s s s

s s s s

3 2

4 3 2

2 9 24

2 19 18 90

+ + +
+ + + +
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û
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The result is a list of solutions, which in this case contains only one element. Performing the inverse 
Laplace transformation on this expression gives the solution to the original problem in the time domain:

In [77]: y_sol = sympy.inverse_laplace_transform(Y_sol[0], s, t)
In [78]: sympy.simplify(y_sol)

Out[78]: 
1

111
6 3 6 3 43 3 147 3

e
t t e t t

t
tsin cos sin cos-( ) + +( )

This technique of Laplace transforming an ODE, solving the corresponding algebraic equation, and 
inverse Laplace transforming the result to obtain the solution to the original problem, can be applied to 
solve many practically important ODE problems that arise in, for example, electrical engineering and 
process control applications. Although these problems can be solved by hand with the help of Laplace 
transformation tables, using SymPy has the potential of significantly simplifying the process.

Numerical Methods for Solving ODEs
While some ODE problems can be solved with analytical methods, as we have seen examples of in the 
previous sections, it is much more common with ODE problems that cannot be solved analytically. In 
practice, ODE problems are therefore mainly solved with numerical methods. There are many approaches to 
solving ODEs numerically, and most of them are designed for problems that are formulated as a system of 

first-order ODEs on the standard form3 
d x

dx
f x x

y
y

( )
= ( )( ), ,  where y(x) is a vector of unknown functions of x.  

SciPy provides functions for solving this kind of problems, but before we explore how to use those functions 
we briefly review the fundamental concepts and introduce the terminology used for numerical integration of 
ODE problems.

The basic idea of many numerical methods for ODEs is captured in Euler’s method. This method can, 
for example, be derived from a Taylor-series expansion of y(x) around the point x:

y x h y x
dy x

dx
h

d y x

dx
h+( ) = ( )+ ( )

+
( )

+¼
1

2

2

2
2 ,

where for notational simplicity we consider the case when y(x) is a scalar function. By dropping terms of 
second order or higher we get the approximate equation y x h y x f x y x h+( ) » ( ) + ( )( ), ,  which is accurate  
to first order in the stepsize h. This equation can be turned into an iteration formula by discretizing the  
x variable, x

0
, x

1
, ..., x

k
, choosing the stepsize h x xk k k= -+1 , and denoting y y xk k= ( ).  The resulting iteration 

formula y y f x y hk k k k k+ » + ( )1 ,  is known as the forward Euler method, and it is said to be an explicit form 
because given the value of the y

k
 we can directly compute yk+1 using the formula. The goal of the numerical 

solution of an initial value problem is to compute y x( ) at some points x
n
, given the initial condition 

y x y0 0( ) = .  An iteration formula like the forward Euler method can therefore be used to compute successive 
values of y

k
, starting from y

0
. There are two types of errors involved in this approach: First, the truncation of 

the Taylor series gives error that limits the accuracy of the method. Second, using the approximation of y
k
 

given by the previous iteration when computing yk+1  gives an additional error that may accumulate over 
successive iterations, and that can affect the stability of the method.

3Recall that any ODE problem can be written as a system of first-order ODEs on this standard form.
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An alternative form, which can be derived in a similar manner, is the backward Euler method, given by 
the iteration formula y y f x y hk k k k k+ + +» + ( )1 1 1, . This is an example of a backward differentiation formula 
(BDF), which is implicit, because yk+1  occurs on both sides of the equation. To compute yk+1  we therefore 
need to solve an algebraic equation (for example using Newton’s method, see Chapter 5). Implicit methods 
are more complicated to implement than explicit methods, and each iteration requires more computational 
work. However, the advantage is that implicit methods generally have larger stability region and better 
accuracy, which means that larger stepsize h

k
 can be used while still obtaining an accurate and stable 

solution. Whether explicit or implicit methods are more efficient depends on the particular problem that is 
being solved. Implicit methods are often particularly useful for stiff problems, which loosely speaking are 
ODE problems that describe dynamics with multiple disparate time scales (for example, dynamics that 
includes both fast and slow oscillations).

There are several methods to improve upon the first-order Euler forward and backward methods.  
One strategy is to keep higher-order terms in the Taylor-series expansion of y x h( )+ , which gives  
higher-order iteration formulas that can have better accuracy, such as the second-order method 

y y x f x y h y x hk k k k k k k+ + +» ( ) + ( ) + ¢¢ ( )1 1 1
21

2
, . However, such methods require evaluating higher-order derivatives 

of y(x), which may be a problem if f (x, y(x)) is not known in advance (and not given in symbolic form).  
Ways around this problem include to approximate the higher-order derivatives using finite-difference 
approximations of the derivatives, or by sampling the function f (x, y(x)) at intermediary points in the interval 

x xk k, +[ ]1 . An example of this type of method is the well-known Runge-Kutta method, which is a single-step 

method that uses additional evaluations of f (x, y(x)). The most well-known Runge-Kutta method is the 
4th-order scheme:

y y k k k kk k+ = + + + +( )1 1 2 3 4

1

6
2 2 ,

where
k f t y hk k k1 = ( , ) ,
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Here, k
1
 to k

4
 are four different evaluations of the ODE function f (x, y(x)) that are used in the explicit 

formula for yk+1  given above. The resulting estimate of yk+1 is accurate to 4th order, with an error of 5th order. 

Higher-order schemes that use more function evaluations can also be constructed. By combining two 
methods of different order, it can be possible to also estimate the error in the approximation. A popular 
combination is the Runge-Kutta 4th and 5th order schemes, which results in a 4th-order accurate method 
with error estimates. It is known as RK45 or the Runge-Kutta-Fehlberg method. The Dormand-Prince 
method is another example of a higher-order method, which additionally uses adaptive stepsize control. For 
example, the 8-5-3 method combines 3rd- and 5th-order schemes to produce an 8th-order method. An 
implementation of this method is available in SciPy, which we will see in the next section.

http://dx.doi.org/10.1007/978-1-4842-0553-2_5
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An alternative method is to use more than one previous value of y
k
 to compute yk+1 . Such methods are 

known as multistep methods, and can in general be written on the form

y a y h b f x yk s
n

s

n k n
n

s

n k n k n+
=

-

+
=

+ += + ( )å å
0

1

0
, .

This formula means that to compute yk s+ , the previous s values of y
k
 and f  (x

k
, y

k
) are used (known as an 

s-step method). The choices of the coefficients a
n
 and b

n
 give rise to different multistep methods. Note that if 

bs = 0 , then the method is explicit, and if bs ¹ 0  it is implicit.
For example, b b bs0 1 1 0= =¼= =-  gives the general formula for an s-step BDF formula. where a

n
 and b

n
 

are chosen to maximize the order of the accuracy the method by requiring that the method is exact for 
polynomials up to as high order as possible. This gives an equation system that can be solved for the 
unknown coefficients a

n
 and b

n
. For example, the one-step BDF method with b a1 0 1= =  reduces to the 

backward Euler method, y y hf x yk k k k+ + += + ( )1 1 1, , and the two-step BDF method, 

y a y a y hb f x yk k k k k+ + + += + + ( )2 0 1 1 2 2 2, , when solved for the coefficients (a
0
, a

1
, and b

2
) becomes: 

y y y hf x yk k k k k+ + + += - + + ( )2 1 2 2

1

3

4

3

2

3 , . Higher-order BDF methods can also be constructed. SciPy provides a 

BDF solver that is recommended for stiff problems, because of its good stability properties.
Another family of multistep methods are the Adams methods, which result from the choice 

a a as0 1 2 0= =¼= =-  and as- =1 1, where again the remaining unknown coefficients are chosen to maximize 

the order of the method. Specifically, the explicit method with bs = 0  are known as Adams-Bashforth 
methods, and the implicit methods with bs ¹ 0  are known as Adams-Moulton methods. For example, the 
one-step Adams-Bashforth and Adams-Moulton methods reduce to the forward and backward Euler 

methods, respectively, and the two-step methods are y y h f x y f x yk k k k k k+ + + += + - ( )+ ( )æ
è
ç

ö
ø
÷2 1 1 1

1

2

3

2, , , and  

y y h f x y f x yk k k k k k+ + += + ( )+ ( )( )1 1 1

1

2 , , , respectively. Higher-order explicit and implicit methods can also be 

constructed in this way. Solvers using these Adams methods are also available in SciPy.
In general explicit methods are more convenient to implement and less computationally demanding to 

iterate than implicit methods, which in principle requires solving (a potentially nonlinear) equation in each 
iteration with an initial guess for the unknown yk+1 . However, as mentioned earlier, implicit methods often 
are more accurate and have superior stability properties. A compromise that retain some of the advantages 
of both methods is to combine explicit and implicit methods in the following way: First compute yk+1  using 
an explicit method, then use this yk+1  as an initial guess for solving the equation for yk+1  given by an implicit 
method. This equation does not need to be solved exactly, and since the initial guess from the explicit 
method should be quite good, a fixed number of iterations, using for example Newton’s method, could be 
sufficient. Methods like these, where the result form an explicit method is used to predict yk+1  and an 
implicit method is used to correct the prediction, are called predictor-corrector methods.

Finally, an important technique that is employed by many advanced ODE solvers is adaptive stepsize, or 
stepsize control: The accuracy and stability of an ODE is strongly related to the stepsize h

k
 used in the 

iteration formula for an ODE method, and so is the computational cost of the solution. If the error in yk+1  can 
be estimated together with the computation of yk+1  itself, then it possible to automatically adjust the stepsize 
h

k
 so that the solver uses large economical stepsizes when possible, and smaller stepsizes when required. A 

related technique, which is possible with some methods, is to automatically adjust the order of the method, 
so that a lower order method is when possible, and a higher-order method is used when necessary. The 
Adams methods are examples of methods where the order can be changed easily.
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There exist a vast variety of high-quality implementations of ODE solvers, and rarely should it be 
necessary to reimplement any of the methods discuss here. In fact, doing so would probably be a mistake, 
unless it is for educational purposes, or if ones primary interest is research on methods for numerical ODE 
solving. For practical purposes, it is advisable to use one of the many highly tuned and thoroughly tested ODE 
suites that already exists, most of which are available for free and as open source, and packaged into libraries 
such as SciPy. However, there are a large number of solvers to choose between, and to be able to make an 
informed decision on which one to use for a particular problem, and to understand many of their options, it is 
important to be familiar with the basic ideas and methods, and the terminology that is used to discuss them.

Numerical Integration of ODEs using SciPy
After the review of numerical methods for solving ODEs given in the previous section, we are now ready to 
explore the ODE solvers that are available in SciPy, and how to use them. The integrate module of SciPy 
provides two ODE solver interfaces: integrate.odeint and integrate.ode. The odeint function is an 
interface to the LSODA solver from ODEPACK,4 which automatically switches between an Adams predictor-
corrector method for non-stiff problems and a BDF method for stiff problems. In contrast, the integrate.ode  
class provides an object-oriented interface to number of different solvers: the VODE and ZVODE solvers5 
(ZVODE is a variant of VODE for complex-valued functions), the LSODA solver, and dopri5 and dop853, 
which are fourth and eighth order Dormand-Prince methods (that is, types of Runge-Kutta methods) with 
adaptive stepsize. While the object-oriented interface provided by integrate.ode is more flexible, the 
odeint function is in many cases simpler and more convenient to use. In the following we look at both these 
interfaces, starting with the odeint function.

The odeint function takes three mandatory arguments: a function for evaluating the right-hand side of 
the ODE on standard form, an array (or scalar) that specifies the initial condition for the unknown functions, 
and an array with values of independent variable where unknown function is to be computed. The function 
for the right-hand side of the ODE takes two mandatory arguments, and an arbitrary number of optional 
arguments. The required arguments are the array (or scalar) for the vector y(x) as first argument, and the 
value of x as second argument. For example, consider again the scalar ODE ¢ = ( ) = +y f x y x y( ) , ( ) ( )x x x 2.  
To be able to plot the direction field for this ODE again, this time together with a specific solution obtained 
by numerical integration using odeint, we first define the SymPy symbols required to construct a symbolic 
expression for f (x, y(x)):

In [79]: x = sympy.symbols("x")
In [80]: y = sympy.Function("y")
In [81]: f = y(x)**2 + x

To be able to solve this ODE with SciPy’s odeint, we first and foremost need to define a Python function 
for f (x, y(x)) that takes Python scalars or NumPy arrays as input. From the SymPy expression f, we can 
generate such a function using sympy.lambdify with the 'numpy' argument6:

In [82]: f_np = sympy.lambdify((y(x), x), f)

4More information about ODEPACK is available at http://computation.llnl.gov/casc/odepack.
5The VODE and ZVODE solvers are available at netlib: http://www.netlib.org/ode.
6In this particular case, with a scalar ODE, we could also use the 'math' argument, which produces a scalar function 
using functions from the standard math library, but more frequently we will need array-aware functions, which we obtain 
by using the 'numpy' argument to sympy.lambdify.

http://computation.llnl.gov/casc/odepack
http://www.netlib.org/ode
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Next we need to define the initial value y0, and a NumPy array with the values of discrete values of x for 
which to compute the function y(x). Here we the ODE starting at x = 0  in both the positive and negative 
directions, using the NumPy arrays xp and xm, respectively. Note that to solve the ODE in the negative 
direction, we only need to create a NumPy array with negative increments. Now that we have set up the ODE 
function f_np, initial value y0, and array of x coordination, for example xp, we can integrate the ODE 
problem by calling integrate.odeint(f_np, y0, xp):

In [83]: y0 = 0
In [84]: xp = np.linspace(0, 1.9, 100)
In [85]: yp = integrate.odeint(f_np, y0, xp)
In [86]: xm = np.linspace(0, -5, 100)
In [87]: ym = integrate.odeint(f_np, y0, xm)

The results are two one-dimensional NumPy arrays ym and yp, of the same length as the corresponding 
coordinate arrays xm and xp (that is, 100), which contain the solution to the ODE problem at the specified 
points. To visualize the solution, we next plot the ym and yp arrays together with the direction field for the 
ODE. The result is shown in Figure 9-4, and it is apparent that the solution aligns (tangents) the lines in the 
direction field at every point in the graph, as expected.

In [88]: fig, ax = plt.subplots(1, 1, figsize=(4, 4))
    ...: plot_direction_field(x, y(x), f, ax=ax)
    ...: ax.plot(xm, ym, 'b', lw=2)
    ...: ax.plot(xp, yp, 'r', lw=2)

Figure 9-4.  The direction field of the ODE y x x’( ) ( )= +x y 2 , and the specific solution that satisfies y ( )0 0=

In the previous example we solved a scalar ODE problem. More often we are interested in vector-valued 
ODE problems (systems of ODEs). To see how we can solve that kind of problems using odeint, consider the 
Lokta-Volterra equations for the dynamics of a population of predator and prey animals (a classic example of 
coupled ODEs). The equations are x t ax bxy’( ) = -  and y t cxy dy’( ) = - , where x(t) is the number of prey 
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animals and y(t) is the number of predator animals, and the coefficients a, b, c, and d describe the rates of 
the processes in the model. For example, a is the rate at which prey animals are born, and d is the rate at 
which predators die. The b and c coefficients are the rates at which predators consume prey, and the rate at 
which the predator population grow at the expense of the prey population, respectively. Note that this is a 
nonlinear system of ODEs, because of the xy terms.

To solve this problem with odeint, we first need to write a function for the right-hand side of the ODE in 

vector form. For this case we have f t x y ax bxy cxy dy
T T

, ,[ ]( ) = - -[ ], , which we can implement as a Python 

function in the following way:

In [89]: a, b, c, d = 0.4, 0.002, 0.001, 0.7
In [90]: def f(xy, t):
    ...:     x, y = xy
    ...:     return [a * x - b * x * y, c * x * y - d * y]

Here we have also defined variables and values for the coefficients a, b, c, and d. Note that here the first 
argument of the ODE function f is an array containing the current values of x(t) and y(t). For convenience, 
we first unpack these variables into separate variables x and y, which makes the rest of the function easier to 
read. The return value of the function should be an array, or list, that contains the values of the derivatives of 
x(t) and y(t). The function f must also take the argument t, with the current value of the independent 
coordinate. However, t is not used in this example. Once the f function is defined, we also need to define an 
array xy0 with the initial values x(0) and y(0), and an array t for the points at which we wish to compute the 
solution to the ODE. Here we use the initial conditions x ( )0 600=  and y ( )0 400= , which corresponds to  
600 prey animals and 400 predators at the beginning of the simulation.

In [91]: xy0 = [600, 400]
In [92]: t = np.linspace(0, 50, 250)
In [93]: xy_t = integrate.odeint(f, xy0, t)
In [94]: xy_t.shape
Out[94]: (250,2)

Calling integrate.odeint(f, xy0, t) integrates the ODE problem and returns an array or shape  
(250, 2), which contains x t( ) and y(t) for each of the 250 values in t. The following code plots the solution as 
a function of time and in phase space. The result is shown in Figure 9-5.

In [95]: fig, axes = plt.subplots(1, 2, figsize=(8, 4))
    ...: axes[0].plot(t, xy_t[:,0], 'r', label="Prey")
    ...: axes[0].plot(t, xy_t[:,1], 'b', label="Predator")
    ...: axes[0].set_xlabel("Time")
    ...: axes[0].set_ylabel("Number of animals")
    ...: axes[0].legend()
    ...: axes[1].plot(xy_t[:,0], xy_t[:,1], 'k')
    ...: axes[1].set_xlabel("Number of prey")
    ...: axes[1].set_ylabel("Number of predators")
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In the previous two examples, the function for the right-hand side of the ODE was implemented without 
additional arguments. In the example with the Lokta-Volterra equation, the function f used globally defined 
coefficient variables. Rather than using global variables, it is often convenient and elegant to implement the 
f function in such a way that it takes arguments for all its coefficient or parameters. To illustrate this point, 
let’s consider another famous ODE problem: the Lorenz equations, which is the following system of three 
coupled nonlinear ODEs, x t y x’( ) ( )= -s , y t x z y’( ) ( )= - -r  and z t xy z’( ) = - b . These equations are known 

for their chaotic solutions, which sensitively depend on the values of the parameters s, r, and b. If we wish 
to solve these equations for different values of these parameters, it is useful to write the ODE function so that 
it additionally takes the values of these variables as arguments. In the following implementation of f, the 
three arguments sigma, rho, and beta, for the correspondingly named parameters, have been added after 
the mandatory y(t) and t arguments:

In [96]: def f(xyz, t, sigma, rho, beta):
    ...:     x, y, z = xyz
    ...:     return [sigma * (y - x),
    ...:             x * (rho - z) - y,
    ...:             x * y - beta * z]

Next, we define variables with specific values of the parameters, the array with t values to compute the 
solution for, and the initial conditions for the functions x(t), y(t), and z(t).

In [97]: sigma, rho, beta = 8, 28, 8/3.0
In [98]: t = np.linspace(0, 25, 10000)
In [99]: xyz0 = [1.0, 1.0, 1.0]

Figure 9-5.  A solution to the Lokta-Volterra ODE for predator-prey populations, as a function of time (left) 
and in phase space (right)
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This time when we call integrate.odeint, we need to also specify the args argument, which needs to 
be a list, tuple, or array with the same number of elements as the number of additional arguments in the f 
function we defined above. In this case there are three parameters, and we pass a tuple with the values of 
these parameters via the args argument when calling integrate.odeint. In the following we solve the ODE 
for three different set of parameters (but same initial conditions).

In [100]: xyz1 = integrate.odeint(f, xyz0, t, args=(sigma, rho, beta))
In [101]: xyz2 = integrate.odeint(f, xyz0, t, args=(sigma, rho, 0.6*beta))
In [102]: xyz3 = integrate.odeint(f, xyz0, t, args=(2*sigma, rho, 0.6*beta))

The solutions are stored in the NumPy arrays xyz1, xyz2, and xyz3. In this case these arrays have the 
shape (10000, 3), because the t array have 10000 elements and there are three unknown functions in the 
ODE problem. The three solutions are plotted in 3D graphs in the following code, and the result is shown in 
Figure 9-6. With small changes in the system parameters, the resulting solutions can vary greatly.

In [103]: from mpl_toolkits.mplot3d.axes3d import Axes3D
In [104]: fig, (ax1,ax2,ax3) = plt.subplots(1, 3, figsize=(12, 4), 
     ...:                                   subplot_kw={'projection':'3d'})
     ...: for ax, xyz, c in [(ax1, xyz1, 'r'), (ax2, xyz2, 'b'), (ax3, xyz3, 'g')]:
     ...:     ax.plot(xyz[:,0], xyz[:,1], xyz[:,2], c, alpha=0.5)
     ...:     ax.set_xlabel('$x$', fontsize=16)
     ...:     ax.set_ylabel('$y$', fontsize=16)
     ...:     ax.set_zlabel('$z$', fontsize=16)
     ...:     ax.set_xticks([-15, 0, 15])
     ...:     ax.set_yticks([-20, 0, 20])
     ...:     ax.set_zticks([0, 20, 40])

Figure 9-6.  The dynamics for the Lorenz ODE, for three different sets of parameters

The three examples we have looked at so far all use the odeint solver. This function takes a large 
number of optional arguments that can be used to fine tune the solver, including options for maximum 
number of allowed steps (hmax), the maximum order for the Adams (mxordn), and BDF (mxords) methods, 
just to mention a few. See the docstring for odeint for further information.

The alternative to odeint in SciPy is the object-oriented interface provided by the integrate.ode 
class. Like with the odeint function, to use the integrate.ode class we first need to define the right-hand 
side function for the ODE, define the initial state array and an array for the values of the independent 
variable at which we want to compute the solution. However, one small but important difference is that 
while the function for f  (x, y(x)) to be used with odeint had to have the function signature f(y, x, ...), 
the corresponding function to be used with integrate.ode must have the function signature f(x, y, ...) 
(that is, the order of x and y is reversed).
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The integrate.ode class can work with a collection of different solvers, and it has specific options for 
each solver. The docstring of integrate.ode describes the available solvers and their options. To illustrate 
how to use the integrate.ode interface, we first look at the following sets of coupled second-order ODEs:

m t t k x k x xx x1 1 1 1 2 2 11 1 0¢¢ ¢( ) + ( ) + - -( ) =g ,

m t t k x xx x2 2 2 2 12 2 0¢¢ ¢( ) + ( ) + -( ) =g .

These equations describe the dynamics of two coupled springs, where x
1
(t) and x

2
(t) are the 

displacement of two objects, with masses m
1
 and m

2
, from their equilibrium positions. The object at x

1
 is 

connect to a fixed wall via a spring with spring constant k
1
, and connected to the object at x

2
 via a spring with 

spring constant k
2
. Both objects are subject to damping forces characterized by g

1
 and g

2
, respectively. To 

solve this kind of problem with SciPy, we first have to write it in standard form, which we can do by 
introducing y t x t0 1( ) ( )= , y t x t1 1( ) ( )= ¢ , y t x t2 2( ) ( )= , and y t x t3 2( ) ( )= ¢ , which results in four coupled first-order 
equations:

d

dt

y t

y t

y t

y t

f t t

y t

y
0

1

2

3

1

1 1

( )
( )
( )
( )

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

= ( )( ) =

( )
-

, y
g tt k y t k y t k y t m

y t

y t k y t k y

( ) - ( ) - ( ) + ( )( )
( )

- ( ) - ( ) +

1 0 2 0 2 2 1

3

2 3 2 2 2

/

g 00 2t m( )( )

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú/

The first task is to write a Python function that implements the function f  (t, y(t)), which also takes  
the problem parameters as additional arguments. In the following implementation we bunch all the 
parameters into a tuple that is passed to the function as a single argument, and unpack it on the first line of 
the function body:

In [105]: def f(t, y, args):
     ...:     m1, k1, g1, m2, k2, g2 = args
     ...:     return [y[1], - k1/m1 * y[0] + k2/m1 * (y[2] - y[0]) - g1/m1 * y[1],
     ...:             y[3], - k2/m2 * (y[2] - y[0]) - g2/m2 * y[3]]

The return value of the function f is a list of length four, whose elements are the derivatives of the ODE 
functions y

0
(t) to y

3
(t). Next we create variables with specific values for the parameters, and pack them into 

a tuple args that can be passed to the function f. Like before, we also need to create arrays for the initial 
condition y0, and for the t values that we want to compute the solution to the ODE, t.

In [106]: m1, k1, g1 = 1.0, 10.0, 0.5
In [107]: m2, k2, g2 = 2.0, 40.0, 0.25
In [108]: args = (m1, k1, g1, m2, k2, g2)
In [109]: y0 = [1.0, 0, 0.5, 0]
In [110]: t = np.linspace(0, 20, 1000)

The main difference between using and integrate.odeint and integrate.ode start at this point. 
Instead of calling the odeint function, we now need to create an instance of the class integrate.ode, 
passing the ODE function f as an argument:

In [111]: r = integrate.ode(f)
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Here we store the resulting solver instance in the variable r. Before we can start using it, we need to 
configure some of its properties. At a minimum, we need to set the initial state using the set_initial_value 
method, and if the function f takes additional arguments we need to configure those using the set_f_params  
method. We can also select solver using set_integrator method, which accept the following solver names 
as first argument: vode, zvode, lsoda, dopri5 and dop853. Each solver takes additional optional arguments. 
See the docstring for integrate.ode for details. Here we use the LSODA solver, and set the initial state and 
the parameters to the function f:

In [112]: r.set_integrator('lsoda');
In [113]: r.set_initial_value(y0, t[0]);
In [114]: r.set_f_params(args);

Once the solver is created and configured we can start solving the ODE step by step by calling 
r.integrate method, and the status of the integration can be queried using the method r.successful 
(which returns True as long as the integration is proceeding fine). We need to keep track of which point to 
integrate to, and we need to store results by ourselves:

In [115]: dt = t[1] - t[0]
     ...: y = np.zeros((len(t), len(y0)))
     ...: idx = 0
     ...: while r.successful() and r.t < t[-1]:
     ...:     y[idx, :] = r.y
     ...:     r.integrate(r.t + dt)
     ...:     idx += 1

This is arguably not as convenient as simply calling the odeint, but it offers extra flexibility that 
sometimes is exactly what is needed. In this example we stored the solution in the array y for each 
corresponding element in t, which is similar to what odeint would have returned. The following code plots 
the solution, and the result is shown in Figure 9-7.

In [116]: fig = plt.figure(figsize=(10, 4))
     ...: ax1 = plt.subplot2grid((2, 5), (0, 0), colspan=3)
     ...: ax2 = plt.subplot2grid((2, 5), (1, 0), colspan=3)
     ...: ax3 = plt.subplot2grid((2, 5), (0, 3), colspan=2, rowspan=2)
     ...: # x_1 vs time plot
     ...: ax1.plot(t, y[:, 0], 'r')
     ...: ax1.set_ylabel('$x_1$', fontsize=18)
     ...: ax1.set_yticks([-1, -.5, 0, .5, 1])
     ...: # x2 vs time plot
     ...: ax2.plot(t, y[:, 2], 'b')
     ...: ax2.set_xlabel('$t$', fontsize=18)
     ...: ax2.set_ylabel('$x_2$', fontsize=18)
     ...: ax2.set_yticks([-1, -.5, 0, .5, 1])
     ...: # x1 and x2 phase space plot
     ...: ax3.plot(y[:, 0], y[:, 2], 'k')
     ...: ax3.set_xlabel('$x_1$', fontsize=18)
     ...: ax3.set_ylabel('$x_2$', fontsize=18)
     ...: ax3.set_xticks([-1, -.5, 0, .5, 1])
     ...: ax3.set_yticks([-1, -.5, 0, .5, 1])
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In addition to providing a Python function for the ODE function f  (t, y(t)), we can also provide a Python 
function that computes the Jacobian matrix for a given t and y(t). The solver can, for example, use the 
Jacobian to solve more efficiently the system of equations that arise in implicit methods. To use a Jacobian 
function jac, like the one defined below for the current problem, we need to pass it to the integrate.ode 
class when it is created, together with the f function. If the Jacobian function jac takes additional arguments, 
those also have to be configured using the set_jac_params method in the resulting integrate.ode instance:

In [117]: def jac(t, y, args):
     ...:     m1, k1, g1, m2, k2, g2 = args
     ...:     return [[0, 1, 0, 0],
     ...:             [- k1/m2 - k2/m1, - g1/m1 * y[1], k2/m1, 0],
     ...:             [0, 0, 1, 0],
     ...:             [k2/m2, 0, - k2/m2, - g2/m2]]
In [118]: r = integrate.ode(f, jac)
In [119]: r.set_jac_params(args);

Python functions for both f  (t, y(t)) and its Jacobian can conveniently be generated using SymPy’s 
lambdify, provided that the ODE problem first can be defined as a SymPy expression. This symbolic-
numeric hybrid approach is a powerful method to solving ODE problems. To illustrate this approach, 
consider the rather complicated system of two coupled second-order and nonlinear ODEs for a double 
pendulum. The equations of motion for the angular deflection, q

1
(t) and q

2
(t), for the first and the second 

pendulum, respectively, are7:

m m l t m l t m l t1 2 1 2 2 1 2 2 2

2

11 2 2+( ) ( ) + ( ) −( ) + ( )( ) −′′ ′′ ′q q qq q qcos sin qq q2 1 2 1 0( ) + +( ) =g m m sin ,

m l t m l m l t m g2 2 2 2 1 1 1 2 2 1 1

2

1 2 2′′( ) + ′′ −( ) − ′ ( )( ) −( ) +q q q q q q qcos sin ssinq2 0= .

7See http://scienceworld.wolfram.com/physics/DoublePendulum.html for details.

Figure 9-7.  The solution of the ODE for two coupled damped oscillators

http://scienceworld.wolfram.com/physics/DoublePendulum.html
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The first pendulum is attached to a fixed support, and the second pendulum is attached the first 
pendulum. Here m

1
 and m

2
 are the masses, and l

1
 and l

2
 the lengths, of the first and second pendulum, 

respectively. We begin by defining SymPy symbols for the variables and the functions in the problem, and 
then construct the ode expressions:

In [120]: t, g, m1, l1, m2, l2 = sympy.symbols("t, g, m_1, l_1, m_2, l_2")
In [121]: theta1, theta2 = sympy.symbols("theta_1, theta_2", cls=sympy.Function)
In [122]: ode1 = sympy.Eq((m1+m2)*l1 * theta1(t).diff(t,t) +
     ...:                 m2*l2 * theta2(t).diff(t,t) +
     ...:                 m2*l2 * theta2(t).diff(t)**2 * sympy.sin(theta1(t)-theta2(t)) +
     ...:                 g*(m1+m2) * sympy.sin(theta1(t)))
     ...: ode1

Out[122]: g m m t l m m
d

dt
t l m t t1 2 1 1 1 2

2

2 1 2 2 1 2+( ) ( ) + +( ) ( ) + ( ) - ( )( )sin sin q q q q dd

dt
t l m

d

dt
tq q2

2

2 2

2

2 2 0( )æ
è
ç

ö
ø
÷ + ( ) =

In [123]: ode2 = sympy.Eq(m2*l2 * theta2(t).diff(t,t) +
     ...:                 m2*l1 * theta1(t).diff(t,t) * sympy.cos(theta1(t)-theta2(t)) -
     ...:                 m2*l1 * theta1(t).diff(t)**2 * sympy.sin(theta1(t) - theta2(t)) +
     ...:                 m2*g * sympy.sin(theta2(t)))
     ...: ode2

Out[123]: gm t l m t t
d

dt
t l m t2 2 1 2 1 2 1

2

1 2 1sin sin cosq q q q q( ) - ( ) - ( )( ) ( )æ
è
ç

ö
ø
÷ + (( ) - ( )( ) ( ) + ( ) =q q q2

2

2 1 2 2

2

2 2 0t
d

dt
t l m

d

dt
t

Now ode1 and ode2 are SymPy expressions for the two second-order ODE equations. Trying to solve 
these equations with sympy.dsolve is fruitless, and to proceed we need to use a numerical method. 
However, the equations as they stand here are not in a form that is suitable for numerical solution with the 
ODE solvers that are available in SciPy. We first have to write the system of two second-order ODEs as a 
system of four first-order ODEs on standard form. Rewriting the equations on standard form is not difficult, 
but can be tedious to do by hand. Fortunately we can leverage the symbolic capabilities of SymPy to 
automate this task. To this end we need to introduce new functions y t1 11( ) ( )=q  and y t t2 1( ) ( )= ¢q , and 

y t t3 2( ) ( )=q  and y t t4 2( ) ( )= ¢q  and rewrite the ODEs in terms of these functions. By creating a dictionary for 

the variable change, and use the SymPy function subs to perform the substitution using this dictionary, we 
can easily obtain the equations for y

2
¢(t) and y

4
¢(t):

In [124]: y1, y2, y3, y4 = sympy.symbols("y_1, y_2, y_3, y_4", cls=sympy.Function)
In [125]: varchange = {theta1(t).diff(t, t): y2(t).diff(t),
     ...:              theta1(t): y1(t),
     ...:              theta2(t).diff(t, t): y4(t).diff(t),
     ...:              theta2(t): y3(t)}
In [126]: ode1_vc = ode1.subs(varchange)
In [127]: ode2_vc = ode2.subs(varchange)

We also need to introduce two more ODEs for y
1
¢(t) and y

3
¢(t):

In [128]: ode3 = y1(t).diff(t) - y2(t)
In [129]: ode4 = y3(t).diff(t) - y4(t)
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At this point we have four coupled first-order ODEs for the functions y
1
 to y

4
. It only remains to solve for 

the derivatives of these functions to obtain the ODEs in standard form. We can do this using sympy.solve:

In [130]: y = sympy.Matrix([y1(t), y2(t), y3(t), y4(t)])
In [131]: vcsol = sympy.solve((ode1_vc, ode2_vc, ode3, ode4), y.diff(t), dict=True)
In [132]: f = y.diff(t).subs(vcsol[0])

Now f is SymPy expression for the ODE function f (t, y(t)). We can display the ODEs using  
sympy.Eq(y.diff(t), f), but the result is rather lengthy and in the interest of space we do not show the 
output here. The main purpose of constructing f here is to convert it to a NumPy-aware function that can 
be used with integrate.odeint or integrate.ode. The ODEs are now on a form that we can create such 
a function using sympy.lambdify. Also, since we have an symbolic representation of the problem so far, it is 
easy to also compute the Jacobian and create a NumPy-aware function for it too. When using sympy.lambdify 
to create functions for odeint and ode, we have to be careful to put t and y in the correct order in the tuple 
that is passed to sympy.lambdify. Here we will use integrate.ode, so we need a function with the signature 
f(t, y, ...), and thus we pass the tuple (t, y) as first argument to sympy.lambdify.

In [133]: params = {m1: 5.0, l1: 2.0, m2: 1.0, l2: 1.0, g: 10.0}
In [134]: f_np = sympy.lambdify((t, y), f.subs(params), 'numpy')
In [135]: jac = sympy.Matrix([[fj.diff(yi) for yi in y] for fj in f])
In [136]: jac_np = sympy.lambdify((t, y), jac.subs(params), 'numpy')

Here we have also substituted specific values of the system parameters calling sympy.lambdify. The 
first pendulum is made twice as long and five times as heavy as the second pendulum. With the functions 
f_np and jac_np, we are now ready to solve the ODE using integrate.ode in the same manner as in the 
previous examples. Here we take the initial state to be q1 0 2( ) =  and q2 0 0( ) = , and with the derivatives zero 
to zero, and we solve for the time interval [0, 20] with 1000 steps:

In [137]: y0 = [2.0, 0, 0, 0]
In [138]: t = np.linspace(0, 20, 1000)
In [139]: r = integrate.ode(f_np, jac_np).set_initial_value(y0, t[0])
In [140]: dt = t[1] - t[0]
     ...: y = np.zeros((len(t), len(y0)))
     ...: idx = 0
     ...: while r.successful() and r.t < t[-1]:
     ...:     y[idx, :] = r.y
     ...:     r.integrate(r.t + dt)
     ...:     idx += 1

The solution to the ODEs is now stored in the array y, which have the shape (1000, 4). When 
visualizing this solution, it is more intuitive to plot the positions of the pendulums in the x–y plane rather 
than their angular deflections. The transformation between the angular variables q

1
and q

2
 and x and y 

coordinates are: x l1 1 1= sinq , y l1 1 1= cosq , x x l2 1 2 2= + sinq , and y y l2 1 2 2= + cosq :

In [141]: theta1_np, theta2_np = y[:, 0], y[:, 2]
In [142]: x1 = params[l1] * np.sin(theta1_np)
     ...: y1 = -params[l1] * np.cos(theta1_np)
     ...: x2 = x1 + params[l2] * np.sin(theta2_np)
     ...: y2 = y1 - params[l2] * np.cos(theta2_np)
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Figure 9-8.  The dynamics of the double pendulum

Finally we plot the dynamics of the double pendulum as a function of time and in the x y-  plane. The 
result is shown in Figure 9-8. As expected, pendulum 1 is confined to move in on a circle (because of its fixed 
anchor point), while pendulum 2 has a much more complicated trajectory.

In [143]: fig = plt.figure(figsize=(10, 4))
     ...: ax1 = plt.subplot2grid((2, 5), (0, 0), colspan=3)
     ...: ax2 = plt.subplot2grid((2, 5), (1, 0), colspan=3)
     ...: ax3 = plt.subplot2grid((2, 5), (0, 3), colspan=2, rowspan=2)
     ...:
     ...: ax1.plot(t, x1, 'r')
     ...: ax1.plot(t, y1, 'b')
     ...: ax1.set_ylabel('$x_1, y_1$', fontsize=18)
     ...: ax1.set_yticks([-3, 0, 3])
     ...:
     ...: ax2.plot(t, x2, 'r')
     ...: ax2.plot(t, y2, 'b')
     ...: ax2.set_xlabel('$t$', fontsize=18)
     ...: ax2.set_ylabel('$x_2, y_2$', fontsize=18)
     ...: ax2.set_yticks([-3, 0, 3])
     ...:
     ...: ax3.plot(x1, y1, 'r')
     ...: ax3.plot(x2, y2, 'b', lw=0.5)
     ...: ax3.set_xlabel('$x$', fontsize=18)
     ...: ax3.set_ylabel('$y$', fontsize=18)
     ...: ax3.set_xticks([-3, 0, 3])
     ...: ax3.set_yticks([-3, 0, 3])
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Summary
In this chapter we have explored various methods and tools for solving ordinary differential equations 
(ODEs) using the scientific computing packages for Python. ODEs show up in many areas of science and 
engineering – in particular in modeling and the description of dynamical systems – and mastering the 
techniques to solve ODE problems is therefore crucial part of the skillset of a computational scientist. In this 
chapter, we first looked at solving ODEs symbolically using SymPy, either with the sympy.dsolve function 
or using a Laplace transformation method. The symbolic approach is often a good starting point, and with 
the symbolic capabilities of SymPy many fundamental ODE problems can be solved analytically. However, 
for most practical problems there is no analytic solution, and the symbolic methods are then doomed to 
fail. Our remaining option is then to fall back on numerical techniques. Numerical integration of ODEs is a 
vast field in mathematics, and there exists numerous reputable methods for solving ODE problems. In this 
chapter we briefly reviewed methods for integrating ODEs, with the intent to introduce the concepts and 
ideas behind the Adams and BDF multistep methods that are used in the solvers provided by SciPy. Finally, 
we looked at how the odeint and ode solvers, available through the SciPy integrate module, can be used 
by solving a few example problems. Although most ODE problems eventually require numerical integration, 
there can be great advantages in using a hybrid symbolic-numerical approach, which use features from both 
SymPy and SciPy. The last example of this chapter is devoted to demonstrating this approach.

Further Reading
An accessible introduction to many methods for numerically solving ODE problems is given in a book by 
Heath. For a review of ordinary differential equations with code examples, see Chapter 11 in Numerical 
Recipes (see below). For a more detailed survey of numerical methods for ODEs, see, for example, the 
Atkinson book. The main implementations of ODE solvers that are used in SciPy are the VODE and LSODA 
solvers. The original source code for these methods is available from netlib at http://www.netlib.org/ode/
vode.f and http://www.netlib.org/odepack, respectively. In addition to these solvers, there is also a  
well-known suite of solvers called sundials, which is provided by the Lawrence Livermore National 
Laboratory and available at http://computation.llnl.gov/casc/sundials/main.html. This suite also 
includes solvers of differential-algebraic equations (DAE). A Python interface for the sundials solvers is 
provided by the sckit.odes library, which can be obtained from http://github.com/bmcage/odes.  
The odespy library also provides a unified interface to many different ODE solvers. For more information 
about odespy, see the projects web site at http://hplgit.github.io/odespy/doc/web/index.html.
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Chapter 10

Sparse Matrices and Graphs

We have already seen numerous examples of arrays and matrices being the essential entities in many 
aspects of numerical computing. So far we have represented arrays with the NumPy ndarray data structure, 
which is a heterogeneous representation that stores all the elements of the array that it represents. In many 
cases, this is the most efficient way to represent an object such as a vector, matrix, or a higher-dimensional 
array. However, notable exceptions are matrices where most of the elements are zeros. Such matrices are 
known as sparse matrices, and they occur in many applications, for example, in connection networks (such 
as circuits) and in large algebraic equation systems that arise, for example, when solving partial differential 
equations (see Chapter 11 for examples).

For matrices that are dominated by elements that are zero, it is inefficient to store all the zeros in the 
computer’s memory, and it is more suitable to store only the nonzero values with additional information 
about their locations. For non-sparse matrices, known as dense matrices, such a representation is less efficient 
than storing all values consecutively in the memory, but for large sparse matrices it can be vastly superior.

There are several options for working with sparse matrices in Python. Here we mainly focus on the sparse 
matrix module in SciPy, scipy.sparse, which provides a feature rich and easy-to-use interface for representing 
sparse matrices and carrying out linear algebra operations on such objects. Another option is PySparse,1 
which provides similar functionality. For very large-scale problems, the PyTrilinos2 and PETSc3 packages have 
powerful parallel implementations of many sparse matrix operations. However, using these packages require 
more programming, and they have a steeper learning curve and are more difficult to install and set up. For 
most basic use-cases SciPy’s sparse module is the most suitable option, or at least a suitable starting point.

Toward the end of the chapter, we also briefly explore representing and processing graphs, using the SciPy 
sparse.csgraph module and the NetworkX library. Graphs can be represented as adjacency matrices, which in 
many applications are very sparse. Graphs and sparse matrices are therefore closely connected topics.

�Importing Modules
The main module that we work with in this chapter is the sparse module in SciPy library. We assume that 
this module is included under the name sp, and in addition we need to explicitly import its submodule 
linalg, to make this module accessible through sp.linalg.

In [1]: import scipy.sparse as sp
In [2]: import scipy.sparse.linalg

1http://pysparse.sourceforge.net
2http://trilinos.org/packages/pytrilinos
3See http://www.mcs.anl.gov/petsc and http://code.google.com/p/petsc4py for its Python bindings.

http://dx.doi.org/10.1007/978-1-4842-0553-2_11
http://pysparse.sourceforge.net/
http://trilinos.org/packages/pytrilinos
http://www.mcs.anl.gov/petsc
https://code.google.com/p/petsc4py


Chapter 10 ■ Sparse Matrices and Graphs

236

We also need the NumPy library, which we, as usual, import under the name np, and the Matplotlib 
library for plotting:

In [3]: import numpy as np
In [4]: import matplotlib.pyplot as plt

And in the last part of this chapter we use the networkx library, which we import under the name nx:

In [5]: import networkx as nx

�Sparse Matrices in SciPy
The basic idea of sparse matrix representation is to avoid storing the excessive amount of zeros in a 
sparse matrix. In dense matrix representation, where all elements of an array are stored consecutively, it 
is sufficient to store the values themselves, since the row and column indices for each element are known 
implicitly form the position in the array. However, if we store only the nonzero elements, we clearly also 
need to store the row and column indices for each element. There are numerous approaches to organizing 
the storage of the nonzero elements and their corresponding row and column indices. These approaches 
have different advantages and disadvantages, for example, in terms how easy it is to create the matrices and, 
perhaps more importantly, how efficiently they can be used in implementations of mathematical operations 
on the sparse matrices. A summary and comparison of sparse matrix formats that are available in the SciPy 
sparse module is given in Table 10-1.

Table 10-1.  Summary and comparison of methods to represent sparse matrices

Type Description Pros Cons

Coordinate list
(COO, sp.coo_matrix)

Nonzero values are stored in 
a list together with their row 
and column.

Simple to construct, 
and efficient to add 
new elements.

Inefficient element 
access. Not suitable 
for mathematical 
operations, such as 
matrix multiplication.

List of lists
(LIL, sp.lil_matrix)

Stores a list of column indices 
for nonzero elements for 
each row, and a list of the 
corresponding values.

Supports slicing 
operations.

Not ideal for 
mathematical 
operations.

Dictionary of keys
(DOK, sp.dok_matrix)

Nonzero values are stored in 
a dictionary with a tuple of 
(row, column) as key.

Simple to construct 
and fast to add, 
remove, and access 
elements.

Not ideal for 
mathematical 
operations.

Diagonal matrix
(DIA, sp.dia_matrix)

Stores lists of diagonals of the 
matrix.

Efficient for diagonal 
matrices.

Not suitable for non-
diagonal matrices.

Compressed sparse 
column (CSC, sp.
csc_matrix) and 
compressed sparse row 
(CSR, sp.csr_matrix)

Stores the values together 
with arrays with column or 
row indices.

Relatively 
complicated to 
construct.

Efficient matrix-vector 
multiplication.

Block-sparse matrix
(BSR, cp.bsr_matrix)

Similar to CSR, but for sparse 
matrices with dense sub 
matrices.

Efficient for their 
specific intended 
purpose.

Not suitable for  
general-purpose use.
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A simple and intuitive approach for storing sparse matrices is to simply store lists with column indices 
and row indices together with the list of nonzero values. This format is called coordinate list format, and it is 
abbreviated as COO in SciPy. The class sp.coo_matrix is used to represent sparse matrices in this format. 
This format is particularly easy to initialize. For instance, with the matrix

A =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

0 1 0 0

0 0 0 2

0 0 3 0

4 0 0 0

,

we can easily identify the nonzero values A A A A01 13 22 301 2 3 4= = = =[ ], , ,  and their corresponding rows 
[0, 1, 2, 3] and columns [1, 3, 2, 0] (note that here we have used Python’s zero-based indexing). To create a 
sp.coo_matrix object, we can create lists (or arrays) for the values, row indices, and column indices, and 
pass them to sp.coo_matrix. Optionally, we can also specify the shape of the array using the shape 
argument, which is useful when the nonzero elements do not span the entire matrix (that is, if there are 
columns or rows containing only zeros, so that the shape cannot be correctly inferred from the row and 
column arrays):

In [6]: values = [1, 2, 3, 4]
In [7]: rows = [0, 1, 2, 3]
In [8]: cols = [1, 3, 2, 0]
In [9]: A = sp.coo_matrix((values, (rows, cols)), shape=[4, 4])
In [10]: A
Out[10]: <4x4 sparse matrix of type '<type 'numpy.int64'>'
                 with 4 stored elements in COOrdinate format>

The result is a data structure that represents the sparse matrix. All sparse matrix representations in 
SciPy’s sparse module share several common attributes, many of which are derived from NumPy’s ndarray 
object. Examples of such attributes are size, shape, dtype, and ndim, and common to all sparse matrix 
representations are the nnz (number of nonzero elements) and data (the nonzero values) attributes:

In [11]: A.shape, A.size, A.dtype, A.ndim
Out[11]: ((4, 4), 4, dtype('int64'), 2)
In [12]: A.nnz, A.data
Out[12]: (4, array([1, 2, 3, 4]))

In addition to the shared attributes, each type of sparse matrix representation also has attributes that 
are specific to its way of storing the positions for each nonzero value. For the case of sp.coo_matrix objects, 
there are row and col attributes for accessing the underlying row and column arrays:

In [13]: A.row
Out[13]: array([0, 1, 2, 3], dtype=int32)
In [14]: A.col
Out[14]: array([1, 3, 2, 0], dtype=int32)

There are also a large number of methods available for operating on sparse matrix objects. Many of 
these methods are for applying mathematical functions on the matrix. For example, element-wise math 
methods like sin, cos, arcsin, etc., aggregation methods like min, max, sum, etc., mathematical array 
operators such as conjugate (conj) and transpose (transpose), etc., and dot for computing the dot product 
between sparse matrices or a sparse matrix and a dense vector (the * arithmetic operator also denote 
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matrix multiplication for sparse matrices). For further details, see the docstring for the sparse matrix classes 
(summarized in Table 10-1). Another important family of methods is used to convert sparse matrices 
between different formats: For example tocoo, tocsr, tolil, etc. There are also the methods for converting a 
sparse matrix to NumPy ndarray and NumPy matrix objects (that is, dense matrix representations): toarray 
and todense, respectively.

For example, to convert the sparse matrix A from COO format to CSR format, and to a NumPy array, 
respectively, we can use the following:

In [15]: A.tocsr()
Out[15]: <4x4 sparse matrix of type '<type 'numpy.int64'>'
                 with 4 stored elements in Compressed Sparse Row format>
In [16]: A.toarray()
Out[16]: array([[0, 1, 0, 0],
                [0, 0, 0, 2],
                [0, 0, 3, 0],
                [4, 0, 0, 0]])

The obvious way to access elements in a matrix, which we have used in numerous different contexts so 
far, is using the indexing syntax, for example A[1,2], as well as the slicing syntax, for example A[1:3, 2],  
and so on. We can often use this syntax with sparse matrices too, but not all representations support 
indexing and slicing, and if it is supported it may not be an efficient operation. In particular, assigning 
values to zero-valued elements can be a costly operation, as it may require to rearrange the underlying data 
structures, depending on which format is used. To incrementally add new elements to a sparse matrix, 
the LIL (sp.lil_matrix) format is a suitable choice, but this format is on the other hand not suitable for 
arithmetic operations.

When working with sparse matrices, it is common to face the situation that different tasks – such 
as construction, updating, and arithmetic operations – are most efficiently handled in different formats. 
Converting between different sparse formats is a relatively efficient, so it is useful to switch between 
different formats in different parts of an application. Efficient use of sparse matrices therefore requires an 
understanding of how different formats are implemented and what they are suitable for. Table 10-1 briefly 
summarize the pros and cons of the sparse matrix formats available in SciPy’s sparse module, and using 
the conversion methods it is easy to switch between different formats. For a more in-depth discussion of the 
merits of the various formats, see the Sparse Matrices4 section in the SciPy reference manual.

For computations, the most important sparse matrix representations in SciPy’s sparse module are 
the CSR (Compressed Sparse Row) and CSC (Compressed Sparse Column) formats, because they are well 
suited for efficient matrix arithmetic and linear algebra applications. Other formats, like COO, LIL and DOK 
are mainly used for constructing and updated sparse matrices, and once a sparse matrix is ready to be used 
in computations, it is best to convert it to either CSR or CSC format, using the tocsr or tocsc methods, 
respectively.

In the CSR format, the nonzero values (data) are stored along with an array that contains the column 
indices of each value (indices), and another array that stores the offsets of the column index array of each 
row (indptr). For instance, consider the matrix

A =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 2 0 0

0 3 4 0

0 0 5 6

7 0 8 9

,

4http://docs.scipy.org/doc/scipy/reference/sparse.html

http://docs.scipy.org/doc/scipy/reference/sparse.html
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Here the nonzero values are [1, 2, 3, 4, 5, 6, 7, 8, 9] (data), and the column indices corresponding to the 
nonzero values in the first row are [0, 1], the second row [1, 2], the third row [2, 3], and the fourth row [0, 2, 3]. 
Concatenating all of these column index lists gives the indices array [0, 1, 1, 2, 2, 3, 0, 2, 3]. To keep track of 
which row entries in this column index array correspond to, we can store the starting position in for each 
row in a second array. The column indices of the first row are elements 0 to 1, the second row elements 2 
to 3, the third row elements 4 to 5, and finally the fourth row elements 6 to 9. Collecting the starting indices 
in an array gives [0, 2, 4, 6]. For convenience in the implementation, we also add at the end of this array the 
total number of nonzero elements, which results in the indptr array [0, 2, 4, 6, 9]. In the following code we 
create a dense NumPy array corresponding to the matrix A, and then convert it to a CSR matrix using  
sp.csr_matrix, and then display the data, indices, and indptr attributes:

In [17]: A = np.array([[1, 2, 0, 0], [0, 3, 4, 0], [0, 0, 5, 6], [7, 0, 8, 9]]); A
Out[17]: array([[1, 2, 0, 0],
                [0, 3, 4, 0],
                [0, 0, 5, 6],
                [7, 0, 8, 9]])
In [18]: A = sp.csr_matrix(A)
In [19]: A.data
Out[19]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])
In [20]: A.indices
Out[20]: array([0, 1, 1, 2, 2, 3, 0, 2, 3], dtype=int32)
In [21]: A.indptr
Out[21]: array([0, 2, 4, 6, 9], dtype=int32)

With this storage scheme, the nonzero elements in the row with index i are stored in the data array 
between index indptr[i] and indptr[i+1]-1, and the column indices for these elements are stored at the 
same indices in the indices array. For example, the elements in the third row, with index i=2, starts at 
indptr[2]=4 and ends at indptr[3]-1=5, which gives the element values data[4]=5 and data[5]=6 and 
column indices indices[4]=2 and indices[5]=3. Thus, A 2 2 5,[ ]=  and A 2 3 6,[ ] =  (in zero-index based 
notation):

In [22]: i = 2
In [23]: A.indptr[i], A.indptr[i+1]-1
Out[23]: (4, 5)
In [24]: A.indices[A.indptr[i]:A.indptr[i+1]]
Out[24]: array([2, 3], dtype=int32)
In [25]: A.data[A.indptr[i]:A.indptr[i+1]]
Out[25]: array([5, 6])
In [26]: A[2, 2], A[2, 3]  # check
Out[26]: (5, 6)

While the CSR storage method is not as intuitive as COO, LIL or DOK, it turns out that it is well suited for 
use in implementation of matrix arithmetic and for linear algebra operations. Together with the CSC format, 
it is therefore the main format for use in sparse matrix computations. The CSC format is essentially identical 
to CSR, except that instead of column indices and row pointers, row indices and column pointers are used 
(i.e., the role of columns and rows are reversed).
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�Functions for Creating Sparse Matrices
As we have seen examples of earlier in this chapter, one way of constructing sparse matrices is to prepare the 
data structures for a specific sparse matrix format, and pass these to the constructor of the corresponding 
sparse matrix class. While this method is sometimes suitable, it is often more convenient to compose 
sparse matrices from predefined template matrices. The sp.sparse module provides a variety of functions 
for generating such matrices. For example, sp.eye for creating diagonal sparse matrices with ones on the 
diagonal (optionally offset from the main diagonal), sp.diags for creating diagonal matrices with a specified 
pattern along the diagonal, sp.kron for calculating the Kronecker (tensor) product of two sparse matrices, 
and bmat, vstack, and hstack, for building sparse matrices from sparse block matrices, and by stacking 
sparse matrices vertically and horizontally, respectively.

For example, in many applications sparse matrices have a diagonal form. To create a sparse matrix of 
size 10 10´  with a main diagonal and an upper and lower diagonal, we can use three calls to sp.eye, using 
the k argument to specify the offset from the main diagonal:

In [27]: N = 10
In [28]: A = sp.eye(N, k=1) - 2 * sp.eye(N) + sp.eye(N, k=-1)
In [29]: A
Out[29]: <10x10 sparse matrix of type '<class 'numpy.float64'>'
                   with 28 stored elements in Compressed Sparse Row format>

By default the resulting object is sparse matrix in the CSR format, but using the format argument, we 
can specify any other sparse matrix format. The value of the format argument should be a string such as 
'csr', 'csc', 'lil', etc. All functions for creating sparse matrices in sp.sparse accept this argument. For 
example, in the previous example we could have produced the same matrix using sp.diags, by specifying 
the pattern [1, -2, 1] (the coefficients to the sp.eye functions in the previous expression), and the 
corresponding offsets from the main diagonal [1, 0, -1]. If we additionally want the resulting sparse 
matrix in CSC format, we can set format='csc':

In [30]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')
In [31]: A
Out[31]: <10x10 sparse matrix of type '<class 'numpy.float64'>'
                   with 28 stored elements in Compressed Sparse Column format>

The advantages of using sparse matrix formats rather than dense matrices only manifest themselves 
when working with large matrices. Sparse matrices are by their nature therefore large, and hence it can be 
difficult to visualize a matrix by for example printing its elements in the terminal. Matplotlib provides the 
function spy, which is a useful tool for visualizing the structure of a sparse matrix. It is available as a function 
in pyplot module, or as a method for Axes instances. When using it on the previously defined A matrix, we 
obtain the results shown in Figure 10-1.

In [32]: fig, ax = plt.subplots()
    ...: ax.spy(A) 
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Sparse matrices are also often associated with tensor product spaces. For such cases we can use the  
sp.kron function to compose a sparse matrices from its smaller components. For example, to create a sparse 
matrix for the tensor product between A and the matrix 

B =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

0 1 0

1 0 1

0 1 0

, we can use sp.kron(A, B):

In [33]: B = sp.diags([1, 1], [-1, 1], shape=[3,3])
In [34]: C = sp.kron(A, B)
In [35]: fig, (ax_A, ax_B, ax_C) = plt.subplots(1, 3, figsize=(12, 4))
    ...: ax_A.spy(A)
    ...: ax_B.spy(B)
    ...: ax_C.spy(C)  

Figure 10-1.  Structure of the sparse matrix with nonzero elements only on the two diagonals closest to the 
main diagonal, and the main diagonal itself

Figure 10-2.  The sparse matrix structures of two matrices A (left) and B (middle) and their tensor  
product (right)
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For comparison, we also plotted the sparse matrix structure of A, B and C, and the result is shown in 
Figure 10-2. For more detailed information on ways to build sparse matrices with the sp.sparse module, see 
its docstring and the Sparse Matrices section in the SciPy reference manual.

�Sparse Linear Algebra Functions
The main application of sparse matrices is to perform linear algebra operations on large matrices that are 
intractable or inefficient to treat using dense matrix representations. The SciPy sparse module contains a 
module linalg that implements many linear algebra routines. Not all linear algebra operations are suitable 
for sparse matrices, and in some cases the behavior of the sparse matrix version of operations needs to be 
modified compared to the dense counterparts. Consequently, there are a number of differences between the 
sparse linear algebra module scipy.sparse.linalg and the dense linear algebra module scipy.linalg. For 
example, the eigenvalue solvers for dense problems typically compute and return all eigenvalues and 
eigenvectors. For sparse matrices this is not manageable, because storing all eigenvectors of a sparse matrix 
A of size N N´  usually amounts to storing a dense matrix of size N N´ . Instead, sparse eigenvalue solvers 
typically give a few eigenvalues and eigenvectors, for example those with the smallest or largest eigenvalues. 
In general, for sparse matrix methods to be efficient, they must retain the sparsity of matrices involved in the 
computation. An examples of operations where the sparsity usually is not retained is the matrix inverse, and 
it should therefore be avoided when possible.

�Linear Equation Systems
The most important application of sparse matrices is arguably to solve linear equation system on the form 
Ax b= , where A is a sparse matrix and x and b are dense vectors. The SciPy sparse.linalg module has both 

direct and iterative solver for this type of problem (sp.linalg.spsolve), and methods to factor a matrix A, 
using for example LU factorization (sp.linalg.splu) and incomplete LU factorization (sp.linalg.spilu). 
For example, consider the problem Ax b=  where A is the tridiagonal matrix considered above, and b is a 
dense vector filled with negative ones (see Chapter 11 for a physical interpretation of this equation). To solve 
this problem for the system size 10 10´ , we first create the sparse matrix A and the dense vector b:

In [36]: N = 10
In [37]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')
In [38]: b = -np.ones(N)

Now, to solve the equation system using the direct solver provided by SciPy, we can use:

In [39]: x = sp.linalg.spsolve(A, b)
In [40]: x
Out[40]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

The solution vector is a dense NumPy array. For comparison, we can also solve this problem using 
dense direct solver in NumPy np.linalg.solve (or, similarly, using scipy.linalg.solve). To be able to use 
the dense solver we need to convert the sparse matrix A to a dense array using A.todense():

In [41]: np.linalg.solve(A.todense(), b)
Out[41]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

http://dx.doi.org/10.1007/978-1-4842-0553-2_11
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As expected, the result agrees with what we obtained from the sparse solver. For small problems like this 
one there is not much to gain using sparse matrices, but for increasing system size the merits of using sparse 
matrices and sparse solvers become apparent. For this particular problem, the threshold system size beyond 
which using sparse methods outperforms dense methods is approximately N =100, as shown in Figure 10-3. 
While the exact threshold varies from problem to problem, as well as hardware and software versions, this 
behavior is typical for problems where the matrix A is sufficiently sparse.5 

Figure 10-3.  Performance comparison between sparse and dense methods to solve the one-dimensional 
Poisson problem as a function of problem size

An alternative to the spsolve interface is to explicitly compute the LU factorization using sp.sparse.splu  
or sp.sparse.spilu (incomplete LU factorization). These functions return an object that contains the L and 
U factors, and that has a method solve that solves LUx b=  for a given vector b. This is of course particularly 
useful when the Ax b=  has to be solved for multiple vectors b. For example, the LU factorization of the 
matrix A used previously is computed using:

In [42]: lu = sp.linalg.splu(A)
In [43]: lu.L
Out[43]: <10x10 sparse matrix of type '<class 'numpy.float64'>'
                    with 20 stored elements in Compressed Sparse Column format>
In [44]: lu.U
Out[44]: <10x10 sparse matrix of type '<class 'numpy.float64'>'
                    with 20 stored elements in Compressed Sparse Column format>

Once the LU factorization is available, we can efficiently solve the equation LUx b=  using the solve 
method for the lu object:

In [45]: x = lu.solve(b)
In [46]: x
Out[46]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

5For a discussion of techniques and methods to optimize Python code, see Chapter 19.

http://dx.doi.org/10.1007/978-1-4842-0553-2_19
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An important consideration that arises with sparse matrices is that the LU factorization of A may 
introduce new nonzero elements in L and U compared to the matrix A, and therefore make L and U less 
sparse. Elements that exist in L or U, but not in A, are called fill-ins. If the amount of fill-ins is large the 
advantage of using sparse matrices may be lost. While there is no complete solution to eliminate fill-ins, it is 
often possible to reduce fill-in by permuting the rows and columns in A, so that the LU factorization takes 
the form P AP LUr c = , where Pr and Pc are row and column permutation matrices, respectively. Several such 
methods for permutations methods are available. The spsolve, splu and spilu functions all take the 
argument permc_spec, which can take the values NATURAL, MMD_ATA, MMD_AT_PLUT_A, or COLAMD, which 
indicates different permutation methods that are built in in these methods. The object returned by splu and 
spilu accounts for such permutations, and the permutation vectors are available via the perm_c and perm_r 
attributes. Because of these permutations, product of lu.L and lu.U is not directly equal to A, and to 
reconstruct A form lu.L and lu.U we also need to undo the row and column permutations:

In [47]: def sp_permute(A, perm_r, perm_c):
    ...:     """ permute rows and columns of A """
    ...:     M, N = A.shape
    ...:     # row permumation matrix
    ...:     Pr = sp.coo_matrix((np.ones(M), (perm_r, np.arange(N)))).tocsr()
    ...:     # column permutation matrix
    ...:     Pc = sp.coo_matrix((np.ones(M), (np.arange(M), perm_c))).tocsr()
    ...:     return Pr.T * A * Pc.T
In [48]: lu.L * lu.U – A  # != 0
Out[48]: <10x10 sparse matrix of type '<class 'numpy.float64'>'
                   with 8 stored elements in Compressed Sparse Column format>
In [49]: sp_permute(lu.L * lu.U, lu.perm_r, lu.perm_c) – A  # == 0
Out[49]: <10x10 sparse matrix of type '<class 'numpy.float64'>'
                   with 0 stored elements in Compressed Sparse Column format>

By default, the direct sparse linear solver in SciPy uses the SuperLU6 package. An alternative sparse 
matrix solver that also can be used in SciPy is the UMFPACK7 package, although this package is not bundled 
with SciPy and requires that the scikit-umfpack Python library is installed. If scikit-umfpack is available, 
and if the use_umfpack argument to the sp.linalg.spsolve function is True, then the UMFPACK is used 
instead of SuperLU. Whether SuperLU or UMFPACK gives better performance varies from problem to 
problem, so it is worth having both installed and testing both for any given problem.

The sp.spsolve function is an interface to direct solvers, which internally performs matrix 
factorization. An alternative approach is to use iterative methods that originate in optimization. The SciPy 
sparse.linalg module contains several functions for iterative solution of sparse linear problems: For 
example, bicg (biconjugate gradient method), bicgstab (biconjugate gradient stabilized method), cg 
(conjugate gradient), gmres (generalized minimum residual), and lgmres (loose generalized minimum 
residual method). All of these functions (and a few others) can be used to solve the problem Ax b=  by calling 
the function with A and b as arguments, and they all return a tuple (x, info) where x is the solution and 
info contains additional information about the solution process (info=0 indicates success, and it is positive 
for convergence error, and negative for input error). For example:

In [50]: x, info = sp.linalg.bicgstab(A, b)
In [51]: x
Out[51]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

6http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
7http://faculty.cse.tamu.edu/davis/suitesparse.html

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://faculty.cse.tamu.edu/davis/suitesparse.html
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In [52]: x, info = sp.linalg.lgmres(A, b)
In [53]: x
Out[53]: array([  5.,   9.,  12.,  14.,  15.,  15.,  14.,  12.,   9.,   5.])

In addition, each iterative solver takes its own solver-dependent arguments. See the docstring for each 
function for details. Iterative solver may have an advantage over direct solvers for very large problems, 
where direct solvers may require excessive memory usage due to undesirable fill-ins. In contrast, iterative 
solvers only require to evaluate sparse matrix-vector multiplications, and therefore do not suffer from fill-in 
problems, but on the other hand they might have slow convergence for many problems, especially if not 
properly preconditioned.

�Eigenvalue Problems
Sparse eigenvalue and singular-value problems can be solved using the sp.linalg.eigs and sp.linalg.svds  
functions, respectively. For real symmetric or complex hermitian matrices, the eigenvalues (which in this  
case are real) and eigenvectors can also be computed using sp.linalg.eigsh. These functions do not 
compute all eigenvalues or singular values, but rather compute a given number of eigenvalues and 
vectors (the default is six). Using the keyword argument k with these functions, we can define how many 
eigenvalues and vectors should be computed. Using the which keyword argument, we can specify which 
k values are to be computed. The options for eigs are largest amplitude LM, smallest amplitude SM, largest 
real part LR, smallest real part SR, largest imaginary part LI, and smallest imaginary part SI. For svds only 
LM and SM are available.

For example, to compute the lowest four eigenvalues for the sparse matrix of the one-dimensional 
Poisson problem (of system size 10´10), we can use sp.linalg.eigs(A, k=4, which='LM'):

In [54]: N = 10
In [55]: A = sp.diags([1, -2, 1], [1, 0, -1], shape=[N, N], format='csc')
In [56]: evals, evecs = sp.linalg.eigs(A, k=4, which='LM')
In [57]: evals
Out[57]: array([-3.91898595+0.j, -3.68250707+0.j, -3.30972147+0.j, -2.83083003+0.j])

The return value of sp.linalg.eigs (and sp.linalg.eigsh) is a tuple (evals, evecs) whose first 
element is an array of eigenvalues (evals), and the second element is an array (evecs) of shape N k´ , whose 
columns are the eigenvectors corresponding to the eigenvalues in evals. Thus, we expect that the dot 
product between A and a column in evecs is equal to the same column in evecs scaled by the corresponding 
eigenvalue in evals. We can directly confirm that this is indeed the case:

In [58]: np.allclose(A.dot(evecs[:,0]), evals[0] * evecs[:,0])
Out[58]: True

For this particular example, the sparse matrix A is symmetric, so instead of sp.linalg.eigs we could 
use sp.linalg.eigsh instead, and in doing so we obtain an eigenvalue array with real-valued elements:

In [59]: evals, evecs = sp.linalg.eigsh(A, k=4, which='LM')
In [60]: evals
Out[60]: array([-3.91898595, -3.68250707, -3.30972147, -2.83083003])

By changing the argument which='LM' (for largest magnitude) to which='SM' (smallest magnitude), we 
obtain a different set of eigenvalues and vector (those with smallest magnitude).
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In [61]: evals, evecs = sp.linalg.eigs(A, k=4, which='SM')
In [62]: evals
Out[62]: array([-0.08101405+0.j, -0.31749293+0.j, -0.69027853+0.j, -1.16916997+0.j])
In [63]: np.real(evals).argsort()
Out[63]: array([3, 2, 1, 0])

Note that although we requested and obtained the four eigenvalues with smallest magnitude in the 
previous example, those eigenvalues and vectors are not necessarily sorted within each other (although they 
are in this particular case). Obtaining sorted eigenvalues is often desirable, and this is easily achieved with 
a small but convenient wrapper function that sorts the eigenvalues using NumPy’s argsort method. Here 
we give such a function, sp_eigs_sorted, which returns the eigenvalues and eigenvectors sorted by the real 
part of the eigenvalue.

In [64]: def sp_eigs_sorted(A, k=6, which='SR'):
    ...:     """ compute and return eigenvalues sorted by the real part """
    ...:     evals, evecs = sp.linalg.eigs(A, k=k, which=which)
    ...:     idx = np.real(evals).argsort()
    ...:     return evals[idx], evecs[idx]
In [65]: evals, evecs = sp_eigs_sorted(A, k=4, which='SM')
In [66]: evals
Out[66]: array([-1.16916997+0.j, -0.69027853+0.j, -0.31749293+0.j, -0.08101405+0.j])

As a less trivial example using sp.linalg.eigs and the wrapper function sp_eigs_sorted, consider the 
spectrum of lowest eigenvalues of the linear combination ( )1 1 2- +x M xM  of random sparse matrices M

1
 and 

M
2
. We can use the sp.rand function to generate two random sparse matrices, and by repeatedly using 

sp_eigs_sorted to find the smallest 25 eigenvalues of the ( )1 1 2- +x M xM  matrix for different values of x, we 
can build a matrix (evals_mat) that contains the eigenvalues as a function of x. Below we use 50 values of x 
in the interval [0, 1]:

In [67]: N = 100
In [68]: x_vec = np.linspace(0, 1, 50)
In [69]: M1 = sp.rand(N, N, density=0.2)
    ...: M2 = sp.rand(N, N, density=0.2)
In [70]: evals_mat = np.array([sp_eigs_sorted((1-x)*M1 + x*M2, k=25)[0] for x in x_vec])

Once the matrix evals_mat of eigenvalues as a function of x is computed, we can plot the eigenvalue 
spectrum. The result is shown in Figure 10-4, which is a complicated eigenvalue spectrum due to the 
randomness of the matrices M

1
 and M

2
.

In [71]: fig, ax = plt.subplots(figsize=(8, 4))
    ...: for idx in range(evals_mat.shape[1]):
    ...:     ax.plot(x_vec, np.real(evals_mat[:,idx]), lw=0.5)
    ...: ax.set_xlabel(r"$x$", fontsize=16)
    ...: ax.set_ylabel(r"eig.vals. of $(1-x)M_1+xM_2$", fontsize=16)
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Graphs and Networks
Representing graphs as adjacency matrices is another important application of sparse matrices. In an 
adjacency matrix an element describes which nodes in a graph are connected to each other. Consequently, 
if each node is only connected to a small set of other nodes the adjacency matrix is sparse. The csgraph 
module in the SciPy sparse module provides functions for processing such graphs, including methods for 
traversing a graph using different methods (breadth-first and depth-first traversals, for example) and for 
computing shortest paths between nodes in a graph, and so on. For more information about this module, 
refer to its docstring: help(sp.csgraph).

For a more comprehensive framework for working with graphs, there is the NetworkX Python library. 
It provides utilities for creating and manipulating undirected and directed graphs, and also implements 
many graph algorithms, such as finding minimum paths between nodes in a graph. Here we assume that 
the networkx library is imported under the name nx. Using this library, we can, for example, create an 
undirected graph by initiating an object of the class nx.Graph. Any hashable Python object can be stored as 
nodes in a Graph object, which makes it very flexible data structure. However, in the following examples we 
only use graph objects with integers and strings as node labels. See Table 10-2 for a summary of functions for 
creating graphs, and for adding nodes and edges to graph objects.

Figure 10-4.  The spectrum of the lowest 25 eigenvalues of the sparse matrix (1 x) 1 2- +M xM , as a function of 
x, where M

1
 and M

2
 are two random matrices
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For example, we can create a simple graph with node data that are integers using nx.Graph(), and 
the add_node method, or add_nodes_from to add multiple nodes in one go. The nodes method returns a 
list of nodes:

In [72]: g = nx.Graph()
In [73]: g.add_node(1)
In [74]: g.nodes()
Out[74]: [1]
In [75]: g.add_nodes_from([3, 4, 5])
In [76]: g.nodes()
Out[76]: [1, 3, 4, 5]

To connect nodes we can add edges, using add_edge. We pass the labels of the two nodes we want to 
connect as arguments. To add multiple edges we can use add_edges_from, and pass to it a list of tuples of 
nodes to connect. The edges method returns a list of edges:

In [77]: g.add_edge(1, 2)
In [78]: g.edges()
Out[78]: [(1, 2)]
In [79]: g.add_edges_from([(3, 4), (5, 6)])
In [80]: g.edges()
Out[80]: [(1, 2), (3, 4), (5, 6)]

To represent edges between nodes that have weights associated with them (for example, a distance), we 
can use add_weighted_edges_from, to which we pass a list of tuples that also contains the weight factor for 
each edge, in addition to the two nodes. When calling the edges method, we can additionally give argument 
data=True to indicate that also the edge data should be included in the resulting list.

In [81]: g.add_weighted_edges_from([(1, 3, 1.5), (3, 5, 2.5)])
In [82]: g.edges(data=True)
Out[82]: [(1, 2, {}),
          (1, 3, {'weight': 1.5}),

Table 10-2.  Summary of objects and methods for basic graph construction using NetworkX

Object / Method Description

nx.Graph Class for representing undirected graphs.

nx.DiGraph Class for representing directed graphs.

nx.MultiGraph Class for representing undirected graphs with support for multiple edges.

nx.MultiDiGraph Class for representing directed graphs with support for multiple edges.

add_node Add a node to the graph. Expects a node label as argument.

add_nodes_from Adds multiple nodes. Expects a list (or iterable) of node labels as argument.

add_edge Add an edge. Expects two node arguments as arguments, and creates an 
edge between those nodes.

add_edges_from Adds multiple edges. Expects a list (or iterable) of tuples of node labels.

add_weighted_edges_from Adds multiple edges with weight factors. Expects a list (or iterable) of tuples 
each containing two node labels and the weight factor.
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          (3, 4, {}),
          (3, 5, {'weight': 2.5}),
          (5, 6, {})]

Note that if we add edges between nodes that do not yet exist in the graph, they are seamlessly added. 
For example, in the following code we add a weighted edge between node 6 and 7. Node 7 does not previously 
exist in the graph, but when adding an edge to it, it is automatically created and added to the graph:

In [83]: g.add_weighted_edges_from([(6, 7, 1.5)])
In [84]: g.nodes()
Out[84]: [1, 2, 3, 4, 5, 6, 7]
In [85]: g.edges()
Out[85]: [(1, 2), (1, 3), (3, 4), (3, 5), (5, 6), (6, 7)]

With these basic fundamentals in place, we are already prepared to look at a more complicated example 
of a graph. In the following we will build a graph from a dataset stored in a in a JSON file called  
tokyo-metro.json, which we load using the Python standard library module json8:

In [86]: import json
In [87]: with open("tokyo-metro.json") as f:
    ...:      data = json.load(f)

The result of loading the JSON file is a dictionary data that contains metro line descriptions. For each 
line, there is a list of travel times between stations (travel_times), a list of possible transfer points to other 
lines (transfer), as well as the line color:

In [88]: data.keys()
Out[88]: dict_keys(['C', 'T', 'N', 'F', 'Z', 'M', 'G', 'Y', 'H'])
In [89]: data["C"]
Out[89]: {'color': '#149848',
          'transfers': [['C3', 'F15'], ['C4', 'Z2'], ...],
          'travel_times': [['C1', 'C2', 2], ['C2', 'C3', 2], ...]}

Here the format of the travel_times list is [['C1', 'C2', 2], ['C2', 'C3', 2], ...], indicating 
a that it takes two minutes to travel between the stations C1 and C2, and two minutes to travel between 
C2 and C3, etc. The format of the transfers list is [('C3', 'F15'), ...], indicating that it is possible 
to transfer from the C line to the F line at station C3 to station F15. The travel_times and transfers are 
directly suitable for feeding to add_weighed_edges_from and add_edges_from, and we can therefore easily 
create a graph for representing the metro network by iterating over each metro line dictionary and call 
these methods:

In [90]: g = nx.Graph()
    ...: for line in data.values():
    ...:     g.add_weighted_edges_from(line["travel_times"])
    ...:     g.add_edges_from(line["transfers"])

8For more information about the JSON format and the json module, see Chapter 18.

http://dx.doi.org/10.1007/978-1-4842-0553-2_18
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The line transfer edges do not have edge weights, so let’s first mark all transfer edges by adding a new 
Boolean attribute transfer to each edge:

In [91]: for n1, n2 in g.edges_iter():
    ...:     g[n1][n2]["transfer"] = "weight" not in g[n1][n2]

Next, for plotting purposes, we create two lists of edges containing transfer edges and on-train edges, 
and we also create a list with colors corresponding to each node in the network:

In [92]: on_foot = [e for e in g.edges_iter() if g.get_edge_data(*e)["transfer"]]
In [93]: on_train = [e for e in g.edges_iter() if not g.get_edge_data(*e)["transfer"]]
In [94]: colors = [data[n[0].upper()]["color"] for n in g.nodes()]

To visualize the graph we can use the Matplotlib-based drawing routines in the networkx library: 
We use nx.draw to draw each node, nx.draw_networkx_labels to draw the labels to the nodes, nx.draw_
network_edges to draw the edges. We call nx.draw_network_edges twice, with the edge lists for transfers 
(on_foot) and on-train (on_train) connections, and color the links as blue and black, respectively, using the 
edge_color argument. The layout of the graph is determined by the pos argument to the drawing functions. 
Here we used the nx.graphviz_layout to layout the nodes. All drawing functions also accept a Matplotlib 
axes instance via the ax argument. The resulting graph is shown in Figure 10-5.

In [95]: fig, ax = plt.subplots(1, 1, figsize=(14, 10))
    ...: pos = nx.graphviz_layout(g, prog="neato")
    ...: nx.draw(g, pos, ax=ax, node_size=200, node_color=colors)
    ...: nx.draw_networkx_labels(g, pos=pos, ax=ax, font_size=6)
    ...: nx.draw_networkx_edges(g, pos=pos, ax=ax, edgelist=on_train, width=2)
    ...: nx.draw_networkx_edges(g, pos=pos, ax=ax, edgelist=on_foot, edge_color="blue") 
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Once the network has been constructed, we can use the many graph algorithms provided by the 
NetworkX library to analyze the network. For example, to compute the degree (that is, the number of 
connections to a node) of each node, we can use the degree method (here the output is truncated at ... to 
save space):

In [96]: g.degree()
Out[96]: {'Y8': 3,  'N18': 2,  'M24': 2,  'G15': 3,  'C18': 3,  'N13': 2,  'N4': 2, ... }

For this graph, the degree of a node can be interpreted as the number of connections to a station: 
The more metro lines that connect at a station, the higher the degree of the corresponding node. We can 
easily search for the most highly connected station in the network by using the degree method, the values 
method of the resulting Python dictionary, and the max function to find the highest degree in the network. 
Next we iterate over the result of the degree method and select out the nodes with maximal degree  
(which is 6 in this network):

In [97]: d_max = max(g.degree().values())
In [98]: [(n, d) for (n, d) in g.degree().items() if d == d_max]
Out[98]: [('N7', 6), ('G5', 6), ('Y16', 6), ('M13', 6), ('Z4', 6)]

Figure 10-5.  Network graph for the Tokyo Metro stations
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The result tells us that the most highly connected stations are station number 7 on the N line, 5 or the G 
line, and so on. All these lines intercept at the same station (the Nagatachou station). We can also compute 
the closest path between two points in the network using nx.shortest_path. For example, the optimal 
traveling route (assuming no waiting time and instantaneous transfer) for traveling between Y24 and C19 is:

In [99]: p = nx.shortest_path(g, "Y24", "C19")
In [100]: p
Out[100]: ['Y24', 'Y23', 'Y22', 'Y21', 'Y20', 'Y19', 'Y18', 'C9', 'C10', 'C11',
           'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19']

Given a path on this form, we can also directly evaluate the travel time by summing up the weight 
attributes of neighboring nodes in the path:

In [101]: np.sum([g[p[n]][p[n+1]]["weight"]
     ...:         for n in range(len(p)-1) if "weight" in g[p[n]][p[n+1]]])
Out[101]: 35

The result suggests that it takes 35 minutes to travel from Y24 to C19. Since the transfer nodes do not 
have a weight associated with them, the train transfers are effectively assumed to be instantaneous. It may be 
reasonable to assume that a train transfer takes about 5 minutes, and to take this into account in the shortest 
path and travel time computation we can update the transfer nodes and add a weight of 5 to each of them. 
To do this we create a copy of the graph using the copy method, and iterate through the edges and update 
those with transfer attribute set to True:

In [102]: h = g.copy()
In [103]: for n1, n2 in h.edges_iter():
     ...:     if h[n1][n2]["transfer"]:
     ...:         h[n1][n2]["weight"] = 5

Recomputing the path and the traveling time with the new graph gives a more realistic estimate of the 
traveling time:

In [104]: p = nx.shortest_path(h, "Y24", "C19")
In [105]: p
Out[105]: ['Y24', 'Y23', 'Y22', 'Y21', 'Y20', 'Y19', 'Y18', 'C9', 'C10', 'C11',
           'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19']
In [106]: np.sum([h[p[n]][p[n+1]]["weight"] for n in range(len(p)-1)])
Out[106]: 40

With this method, we can of course compute the optimal path and travel time between arbitrary nodes 
in the network. As another example, we also compute the shortest path and traveling time between Z1 and 
H16 (32 minutes):

In [107]: p = nx.shortest_path(h, "Z1", "H16")
In [108]: np.sum([h[p[n]][p[n+1]]["weight"] for n in range(len(p)-1)])
Out[108]: 32

The NetworkX representation of a graph can be converted to an adjacency matrix in the form of a SciPy 
sparse matrix using the nx.to_scipy_sparse_matrix, after which we can also analyze the graph with the 
routines in the sp.csgraph module. As an example of this, we convert the Tokyo Metro graph to an adjacency 
matrix and compute its reverse Cuthill-McKee ordering (using sp.csgraph.reverse_cuthill_mckee,  
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which is a reordering that reduces the maximum distance of the matrix elements from the diagonal), and 
permute the matrix with this ordering. We plot the result of both matrices using Matplotlib’s spy function, 
and the result is shown in Figure 10-6.

In [109]: A = nx.to_scipy_sparse_matrix(g)
In [110]: A
Out[110]: <184x184 sparse matrix of type '<class 'numpy.int64'>'
                      with 486 stored elements in Compressed Sparse Row format>
In [111]: perm = sp.csgraph.reverse_cuthill_mckee(A)
In [112]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
     ...: ax1.spy(A, markersize=2)
     ...: ax2.spy(sp_permute(A, perm, perm), markersize=2) 

Figure 10-6.  The adjacency matrix of the Tokyo metro graph (left), and the same after RCM ordering (right)

�Summary
In this chapter we have briefly introduced common methods of storing sparse matrices, and reviewed how 
these can be represented using the sparse matrix classes in the SciPy sparse module. We also reviewed the 
sparse matrix construction functions available in the SciPy sparse module, and the sparse linear algebra 
routines available in sparse.linalg. To complement the linear algebra routines built in in SciPy, we also 
discussed briefly the scikit.umfpack extension package, which makes the UMFPACK solver available 
to SciPy. The sparse matrix library in SciPy is versatile and very convenient to work with, and because it 
uses efficient low-level libraries for linear algebra routines (SuperLU or UMFPACK), it also offers good 
performance. For large-scale problems that requires parallelization to distribute the workload to multiple 
cores or even multiple computers, the PETSc and Trilinos frameworks, which both have Python interfaces, 
provide routes for using sparse matrices and sparse linear algebra with Python in high-performance 
applications. We also briefly introduced graph representations and processing using the SciPy  
sparse.csgraph and NetworkX libraries.
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�Further Reading
A good and accessible introduction to sparse matrices and direct solvers for sparse linear equation systems 
is given in the Davis book. A fairly detailed discussion of sparse matrices and methods is also given in the 
Press book. For a thorough introduction to network and graph theory, see Newman.
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Chapter 11

Partial Differential Equations

Partial differential equations (PDEs) are multivariate different equations where derivatives of more than 
one dependent variable occur. That is, the derivatives in the equation are partial derivatives. As such they 
are generalizations of ordinary differentials equations, which were covered in Chapter 9. Conceptually, 
the difference between ordinary and partial differential equations is not that big, but the computational 
techniques required to deal with ODEs and PDEs are very different, and solving PDEs is typically much 
more computationally demanding. Most techniques for solving PDEs numerically are based on the idea 
of discretizing the problem in each independent variable that occurs in the PDE, and thereby recasting 
the problem into an algebraic form. This usually results in very large-scale linear algebra problems. Two 
common techniques for recasting PDEs into algebraic form is the finite-difference methods (FDMs), where 
the derivatives in the problem are approximated with their finite-difference formula; and the finite-element 
methods (FEMs), where the unknown function is written as linear combination of simple basis functions 
that can be differentiated and integrated easily. The unknown function is described by a set of coefficients 
for the basis functions in this representation, and by a suitable rewriting of the PDEs we can obtain algebraic 
equations for these coefficients.

With both FDMs and FEMs, the resulting algebraic equation system is usually very large, and in matrix 
form such equation systems are usually very sparse. Both FDM and FEM therefore heavily rely on sparse 
matrix representation for the algebraic linear equations, as discussed in Chapter 10. Most general-purpose 
frameworks for PDEs are based on FEM, or some variant thereof, as this method allows for solving very 
general problems on complicated problem domains.

Solving PDE problems can be far more resource demanding compared to other types of computational 
problems that we have covered so far (for example, compared to ODEs). It can be resource demanding partly 
because the number of points required to discretize a region of space scale exponentially with the number of 
dimensions. If a one-dimensional problem requires 100 points to describe, a two-dimensional problem with 
similar resolution requires 100 102 4=  points, and a three-dimensional problem requires 100 103 6=  points. 
Since each point in the discretized space corresponds to an unknown variable, it is easy to imagine that 
PDE problems can result in very large equation systems. Defining PDE problems programmatically can also 
be complicated. One reason for this is that the possible forms of a PDE vastly outnumber the more limited 
possible forms of ODEs. Another reason is geometry: while an interval in one-dimensional space is uniquely 
defined by two points, an area in two-dimensional problems and a volume in three-dimensional problems 
can have arbitrarily complicated geometries enclosed by curves and surfaces. To define the problem domain 
of a PDE and its discretization in a mesh of coordinate points can therefore require advanced tools, and 
there is a large amount of freedom in how boundary conditions can be defined as well. In contrast to ODE 
problems, there is no standard form on which any PDE problem can be defined.

For these reasons, the PDE solvers for Python are only available through libraries and frameworks 
that are specifically dedicated to PDE problems. For Python, there are at least three significant libraries for 

http://dx.doi.org/10.1007/978-1-4842-0553-2_9
http://dx.doi.org/10.1007/978-1-4842-0553-2_10
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solving PDE problems using the FEM method: the FiPy library, the SfePy library, and the FEniCS library. All 
of these libraries are extensive and feature rich, and going into the details of using either of these libraries 
is beyond the scope of this book. Here we can only give a brief introduction to PDE problems and survey 
prominent examples of PDE libraries that can be used from Python, and go through a few examples that 
illustrate some of the features of one of these libraries (FEniCS). The hope is that this can give the reader who 
is interested in solving PDE problems with Python a birds-eye overview of the available options, and some 
useful pointers to where to look for further information.

Importing Modules
For basic numerical and plotting usage, in this chapter too we require the NumPy and Matplotlib libraries. 
For 3D plotting we need to explicitly import the mplot3d module from the Matplotlib toolkit library  
mpl_toolkits. As usual we assume that these libraries are imported in the following manner:

In [1]: import numpy as np
In [2]: import matplotlib.pyplot as plt
In [3]: import matplotlib as mpl
In [4]: import mpl_toolkits.mplot3d

We also use the linalg and the sparse modules from SciPy, and to use the linalg sub module of the 
sparse module, we also need to import it explicitly:

In [5]: import scipy.sparse as sp
In [6]: import scipy.sparse.linalg
In [7]: import scipy.linalg as la

With these imports, we can access the dense linear algebra module as la, while the sparse linear 
algebra module is accessed as sp.linalg. Furthermore, later in this chapter we will also use the FEniCS FEM 
framework, and we require that its dolfin and mshr libraries be imported in the following manner:

In [8]: import dolfin
In [9]: import mshr

�Partial Differential Equations
The unknown quantity in a PDE is a multivariate function, here denoted as u. In an n-dimensional problem, 
the function u depends on n independent variables: u(x
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 denotes all second-order derivatives, and so on. Here F is a known function that describes 

the form of the PDE, and W is the domain of the PDE problem. Many PDEs that occur in practice only 
contain up to second-order derivatives, and we typically deal with problems in two or three spatial 
dimensions, and possibly time. When working with PDEs, it is common to simplify the notation by denoting 
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the partial derivatives with respect to an independent variable x using the subscript notation: u
u

xx =
¶
¶

. 

Higher-order derivatives are denoted with multiple indices: u
u

xxx =
¶
¶

2

2 , u
u

x yxy =
¶
¶ ¶

2

, and so on. An example of 

a typical PDE is the heat equation, which in a two-dimensional Cartesian coordinate system takes the form 
u u ut xx yy= +( )a . Here the function u u t x y= ( , , ) describes the temperature at the spatial point (x, y) at time t, 

and a is the thermal diffusivity coefficient.
To fully specify a particular solution to a PDE, we need to define its boundary conditions, which are known 

values of the function or a combination of its derivatives along the boundary of the problem domain W,  
as well as the initial values if the problem is time dependent. The boundary is often denoted as G or ¶W,   
and in general different boundary conditions can be given for different parts of the boundary. Two 
important types of boundary conditions are Dirichlet boundary conditions, which specifies the value of the 
function at the boundary, u g( ) ( )x x=  for xÎGD; and Neumann boundary conditions, which specifies  

the normal derivative on the boundary, 
¶ ( )
¶

= ( )u
h

x

n
x  for xÎGN ,  where the n is the outward normal from 

the boundary. Here g(x) and h(x) are arbitrary functions.

Finite-Difference Methods
The basic idea of the finite-difference method is to approximate the derivatives that occur in a PDE with 
their finite-difference formulas on a discretized space. For example, the finite-difference formula for the 

ordinary derivative du x

dx

( )  on a discretization of the continuous variable x into discrete points {x
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we can also construct finite-difference formulas for higher-order derivatives, such as the second-order 

derivative 
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.  Assuming that the discretization of the continuous variable x 

into discrete points is fine enough, these finite-difference formulas can give good approximations of 
the derivatives. Replacing derivatives in an ODE or PDE with their finite-difference formulas recasts the 
equations from differential equations to algebraic equations. If the original ODE or PDE is linear, the 
algebraic equations are also linear, and can be solved with standard linear algebra methods.

To make this method more concrete, consider the ODE problem uxx = -5 in the interval xÎ[ ]0 1,  and 
with boundary conditions u x =( ) =0 1 and u x( )= =1 2, which, for example, arises from the steady-state heat 
equation in one dimension. In contrast the ODE initial-value problem considered in Chapter 9, this is a 
boundary-value problem because the value of u is specified at both x = 0  and x =1.  The methods for 
initial-value problems are therefore not applicable here. Instead we can treat this problem by dividing the 
interval [0, 1] into discrete points x

n
, and the problem is then to find the function u x un n( ) =  at these points. 

Writing the ODE problem in finite-difference form gives an equation u u u xn n n- +- +( ) = -1 1
22 5/D  for  

every interior point n, with the boundary conditions u0 1=  and uN+ =1 2. Here the interval [0, 1] is discretized 
into N +2  evenly spaced points, including the boundary points, with separation D x N= +1 1/( ).  Since the 

http://dx.doi.org/10.1007/978-1-4842-0553-2_9
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function is known at the two boundary points, there are N unknown variables u
n
 corresponding to the 

function values at the interior points. The set of equations for the interior points can be written 

in a matrix form as Au b= ,  where u u uN
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Here the matrix A is describes the coupling of the equations for u
n
 to values at neighboring points due to the  

finite-difference formula that was used to approximate the second-order derivative in the ODE. The boundary 
values are included in the b vector, which also contains the constant right-hand side of the original ODE 
(the source term). At this point we can straightforwardly solve the linear equation system Au b=  for the 
unknown vector of u and thereby obtain the approximate values of the function u(x) at the discete points {x

n
}.

In Python code, we can set up and solve this problem in the following way: First, we define variables for 
the number of interior points N, the values of the function at the boundaries u0 and u1, as well as the spacing 
between neighboring points dx.

In [10]: N = 5
In [11]: u0, u1 = 1, 2
In [12]: dx = 1.0 / (N + 1)

Next we construct the matrix A as described above. For this we can use the eye function in NumPy, 
which creates two-dimensional arrays with ones on the diagonal, or on the upper or lower diagonal that are 
shifted from the main diagonal by the number given by the argument k.

In [13]: A = (np.eye(N, k=-1) - 2 * np.eye(N) + np.eye(N, k=1)) / dx**2
In [14]: A
Out[14]: array([[-72.,  36.,   0.,   0.,   0.],
                [ 36., -72.,  36.,   0.,   0.],
                [  0.,  36., -72.,  36.,   0.],
                [  0.,   0.,  36., -72.,  36.],
                [  0.,   0.,   0.,  36., -72.]])

Next we need to define an array for the vector b, which corresponds to the source term -5 in the 
differential equation, as well as the boundary condition. The boundary conditions enters into the equations 
via the finite-difference expressions for the derivatives of the first and the last equation (for u

1
 and u

N
), but 

these terms are missing from the expression represented by the matrix A, and must therefore be added to the 
vector b.

In [15]: b = -5 * np.ones(N)
    ...: b[0] -= u0 / dx**2
    ...: b[N-1] -= u1 / dx**2

Once the matrix A and the vector b are defined, we can proceed to solve the equation system using the 
linear equation solver from SciPy (we could also use the one provided by NumPy, np.linalg.solve).

In [16]: u = la.solve(A, b)
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This completes the solution of this ODE problem. To visualize the solution, here we first create an array 
x that contains the discrete coordinate points for which we have solved the problem, including the boundary 
points, and we also create an array U that combines the boundary values and the interior points in one array. 
The result is then plotted and shown in Figure 11-1.

In [17]: x = np.linspace(0, 1, N+2)
In [18]: U = np.hstack([[u0], u, [u1]])
In [19]: fig, ax = plt.subplots(figsize=(8, 4))
    ...: ax.plot(x, U)
    ...: ax.plot(x[1:-1], u, 'ks')
    ...: ax.set_xlim(0, 1)
    ...: ax.set_xlabel(r"$x$", fontsize=18)
    ...: ax.set_ylabel(r"$u(x)$", fontsize=18)

The finite-difference method can easily be extended to higher dimensions by using the finite-difference 
formula along each discretized coordinate. For a two-dimensional problem, we have a two-dimensional 
array u for the unknown interior function values, and when using the finite differential formula we obtain a 
system of coupled equations for the elements in u. To write these equations on the standard matrix-vector 
form, we can rearrange the u array into a vector, and assemble the corresponding matrix A from the finite-
difference equations.

As an example, consider the following two-dimensional generalization of the previous problem: 
u uxx yy+ = 0, with the boundary conditions u x( )= =0 3, u x( )= = -1 1, u y( )= = -0 5, and u y( )= =1 5. Here 
there is no source term, but the boundary conditions in a two-dimensional problem are more complicated 
than in the one-dimensional problem we solved earlier. In finite-difference form, we can write the PDE as 

u u u x u u u ym n m n m n m n m n m n- + - +- +( ) + - +( ) =1 1
2

1 1
22 2 0, , , , , ,/ /D D . If we divide the x and y intervals into N interior 

points ( N +2  points including the boundary points), then D Dx y
N

= =
+

1

1
, and u is a NxN matrix. To write 

the equation on the standard form Av b= , we can rearrange the matrix u by stacking its rows or columns 
into a vector of size N 2 1´ . The matrix A is then of size N N2 2´ ,  which can be very big if we need to use a 
fine discretization of the x and y coordinates. For example, using 100 points along both x and y gives an 
equation system that has 104 unknown values u

mn
, and the matrix A has 100 104 8=  elements. Fortunately, 

Figure 11-1.  Solution to the second-order ODE boundary-value problem introduced in the text
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since the finite-difference formula only couples neighboring points, the matrix A turns out to be very sparse, 
and here we can benefit greatly from working with sparse matrices, as we will see in the following.

To solve this PDE problem with Python and the finite-element method, we start by defining variables 
for the number of interior points and the values along the four boundaries of the unit square:

In [20]: N = 100
In [21]: u0_t, u0_b = 5, -5
In [22]: u0_l, u0_r = 3, -1
In [23]: dx = 1. / (N+1)

We also computed the separation dx between the uniformly spaced coordinate points in the 
discretization of x and y (assumed equal). Because the finite-difference formula couples both neighboring 
rows and columns, it is slightly more involved to construct the matrix A for this example. However, a 
relatively direct approach is to first define the matrix A_1d that corresponds to the one-dimensional formula 
along one of the coordinates (say x, or the index m in u

m,n
). To distribute this formula along each row, we 

can take the tensor product of the identity matrix of size N N´  with the A_1d matrix. The result describes 
all derivatives along the m-index for all values indices n. To cover the terms that couple the equation for u

m,n
 

to um n, +1  and um n, ,-1  that is the derivatives along the index n, we need to add diagonals that are separated 
from the main diagonal by N positions. In the following we perform these steps to construct A using the eye 
and kron functions from the scipy.sparse module. The result is a sparse matrix A that describes the finite-
difference equation system for the two-dimensional PDE we are considering here:

In [24]: A_1d = (sp.eye(N, k=-1) + sp.eye(N, k=1) - 4 * sp.eye(N))/dx**2
In [25]: A = sp.kron(sp.eye(N), A_1d) + (sp.eye(N**2, k=-N) + sp.eye(N**2, k=N))/dx**2
In [26]: A
Out[26]: <10000x10000 sparse matrix of type '<type 'numpy.float64'>'
                 with 49600 stored elements in Compressed Sparse Row format>

The printout of A shows that it is a sparse matrix with 108 elements with 49600 nonzero elements, so 
that only one out of about 2000 elements is nonzero, and A is indeed very sparse. To construct the vector b 
from the boundary conditions, it is convenient to create a N N´  array of zeros, and assign the boundary 
condition to edge elements of this array (which are the corresponding elements in u that are coupled to the 
boundaries, that is, the interior points that are neighbors to the boundary). Once this N N´  array is created 
and assigned, we can use the reshape method to rearrange it into a N 2 1´  vector that can be used in the 
Av b=  equation:

In [27]: b = np.zeros((N, N))
    ...: b[0, :] += u0_b   # bottom
    ...: b[-1, :] += u0_t  # top
    ...: b[:, 0] += u0_l   # left
    ...: b[:, -1] += u0_r  # right
    ...: b = - b.reshape(N**2) / dx**2

When the A and b arrays are created, we can proceed to solve the equation system for the vector v, and 
use the reshape method to arrange it back into the N N´  matrix u:

In [28]: v = sp.linalg.spsolve(A, b)
In [29]: u = v.reshape(N, N)



Chapter 11 ■ Partial Differential Equations

261

For plotting purposes, we also create a matrix U that combines the u matrix with the boundary 
conditions. Together with the coordinate matrices X and Y, we then plot a color map graph and a 3D surface 
view of the solution. The result is shown in Figure 11-2.

In [30]: U = np.vstack([np.ones((1, N+2)) * u0_b,
    ...:                np.hstack([np.ones((N, 1)) * u0_l, u, np.ones((N, 1)) * u0_r]),
    ...:                np.ones((1, N+2)) * u0_t])
In [31]: x = np.linspace(0, 1, N+2)
In [32]: X, Y = np.meshgrid(x, x)
In [33]: fig = plt.figure(figsize=(12, 5.5))
    ...: cmap = mpl.cm.get_cmap('RdBu_r')
    ...:
    ...: ax = fig.add_subplot(1, 2, 1)
    ...: c = ax.pcolor(X, Y, U, vmin=-5, vmax=5, cmap=cmap)
    ...: ax.set_xlabel(r"$x_1$", fontsize=18)
    ...: ax.set_ylabel(r"$x_2$", fontsize=18)
    ...:
    ...: ax = fig.add_subplot(1, 2, 2, projection='3d')
    ...: p = ax.plot_surface(X, Y, U, vmin=-5, vmax=5, rstride=3, cstride=3,
    ...:                     linewidth=0, cmap=cmap)
    ...: ax.set_xlabel(r"$x_1$", fontsize=18)
    ...: ax.set_ylabel(r"$x_2$", fontsize=18)
    ...: cb = plt.colorbar(p, ax=ax, shrink=0.75)
    ...: cb.set_label(r"$u(x_1, x_2)$", fontsize=18)

Figure 11-2.  The solution to the two-dimensional heat equation with Dirichlet boundary conditions defined 
in the text
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As mentioned above, FDM methods result in matrices A that are very sparse, and using sparse matrix 
data structures, such as those provided by scipy.sparse, can give significant performance improvements 
compared to using dense NumPy arrays. To illustrate in concrete terms the importance of using sparse 
matrices for this type of problems, we can compare the time required for solving of the Av b=  equation 
using the IPython command %timeit, for the two cases where A is a sparse and a dense matrix:

In [34]: A_dense = A.todense()
In [35]: %timeit la.solve(A_dense, b)
1 loops, best of 3: 10.8 s per loop
In [36]: %timeit sp.linalg.spsolve(A, b)
10 loops, best of 3: 31.9 ms per loop

From these results, we see that using sparse matrices for the present problem results in a speedup of 
several orders of magnitude (in this particular case we have a speedup of a factor 10 8 0 0319 340. / . » ).

The finite-difference method that we used in the last two examples is powerful and relatively simple 
method for solving ODE boundary-value problems and PDE problems with simple geometries. However, it 
is not so easily adapted to problems on more complicate domains, or problems on nonuniform coordinate 
grids. For such problems finite-element methods are typically more flexible and convenient to work with, 
and although FEMs are conceptually more complicated than FDMs, they can be computationally efficient 
and adapts well to complicated problem domains and more involved boundary conditions.

�Finite-Element Methods
The Finite-Element Method (FEM) is powerful and universal method for converting PDEs into algebraic 
equations. The basic idea of this method is to represent the domain on which the PDE is defined with a finite 
set of discrete regions, or elements, and to approximate the unknown function as a linear combination of 
basis functions with local support on each of these elements (or on a small group of neighboring elements). 
Mathematically, this approximation solution, u

h
, represents a projection of the exact solution u in the 

function space V (for example, continuous real-valued functions) onto a finite subspace V Vh Ì  that is 
related to the discretization of the problem domain. If V

h
 is a suitable subspace of V, then it can be expected 

that u
h
 can be a good approximation to u.

To be able to solve the approximate problem on the simplified function space V
h
, we can first rewrite the 

PDE from its original formulation, which is known as the strong form, to its corresponding variational form, 
also known as the weak form. To obtain the weak form we multiply the PDE with an arbitrary function v and 
integrate over the entire problem domain. The function v is called a test function, and it can in general be 
defined on function space V̂  that differs from that of u

h
, which in this context is called a trial function.

For example, consider the steady-state heat equation (also known as the Poisson equation) that we 
solved using the FDM earlier in this chapter: The strong form of this equation is - ( ) = ( )Du fx x , where we 
have used the vector operator notation. By multiplying this equation with a test function v and integrating 
over the domain xÎW  we obtain the weak form:

- =ò ò
W W

Du v x f v xd d .

Since the exact solution u satisfies the strong form, it also satisfies the weak form of the PDE for any 
reasonable choice of v. The reverse does not necessarily hold true, but if a function u

h
 satisfies the weak form 

for a large class of suitably chosen test functions v, then it is plausible that it is a good approximation to the 
exact solution u (hence the name test function).
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To treat this problem numerically, we first need to make the transition from the infinite-dimensional 
function spaces V and V̂  to approximate finite-dimensional function spaces V

h
 and V̂h :

- =ò ò
W W

Du v x fv xh h hd d ,

where u Vh hÎ  and v Vh hÎ ˆ .  The key point here is that V
h
 and V̂h  are finite dimensional, so we can use 

a finite set of basis functions {f
i
} and f̂i{ } that spans the function spaces V

h
 and ˆ ,Vh  respectively, to describe 

the functions u
h
 and v

h
. In particular, we can express u

k
 as a linear combination of the basis functions that 

spans its function space, u Uk i i=å f . Inserting this linear combination in the weak form of the PDE and 

carrying out the integrals and differential operators on the basis functions, instead of directly over terms in 
the PDE, yields a set of algebraic equations.

To obtain an equation system on the simple form AU b= , we also must write the weak form of the  
PDE on bilinear form with respect to the u

h
 and v

h
 functions: a u v L vh h h,( ) = ( ) , for some functions a and L. 

This is not always possible, but for the current example of the Poission equation we can obtain this form by 
integrating by parts:

− = ∇ ⋅∇ − ∇⋅ ∇( ) = ∇ ⋅∇ − ∇ ⋅( )∫ ∫ ∫ ∫ ∂
∆

Ω Ω Ω Ω Ω
u v x u v x u v x u v x uh h h h h h h h hd d d d n∫∫ vh d ,Γ

where in the second equality we have also applied Gauss theorem to convert the second term to an integral 
over the boundary ∂Ω  of the domain W. Here n is the outward normal vector of the boundary ∂Ω . There 
is no general method for rewriting a PDE on strong form to weak form, and each problem will have to be 
approached on a case-by-case basis. However, the technique used here, to integrate by part and rewrite the 
resulting integrals using integral identities, can be used for many frequently occurring PDEs.

To reach the bilinear form that can be approached with standard linear algebra methods, we also have 
to deal with the boundary term in the weak form equation above. To this end, assume that the problem 
satisfies the Dirichlet boundary condition on a part of ∂Ω  denoted G

D
, and Neumann boundary conditions 

on the remaining part of ∂Ω , denoted G
N

: u g x D= Î{ }, G  and Ñ × = Î{ }u h xn , .GN  Not all boundary 
conditions are of Dirichlet or Neumann type, but together these cover many physically motivated situation.

Since we are free to choose the test functions v
h
, we can let v

h
 vanish on the part of the boundary that 

satisfies Dirichlet boundary conditions. In this case we obtain the following weak form of the PDE problem: 

∇ ⋅∇ = +∫ ∫ ∫Ω Ω Γ
Γu v x fv x g vh h h h

N

d d d .

If we substitute the function u
k
 for its expression as a linear combination of basis functions, and 

substitute the test function with one of its basis functions, we obtain an algebraic equation:

∑ ∫ ∫ ∫∇ ⋅∇ = +U x f x gj j i i i
NΩ Ω Γ

Γf f f fˆ ˆ ˆd d d .

If there are N basis functions in V̂h
, then there are N unknown coefficients U

i
, and we need N independent 

test functions f̂i  to obtain a closed equation system. This equation system is on the form AU b=  with 

A xij j i= ∇ ⋅∇∫Ω
f f̂ d  and b f x gi i i

N

= +ò òW G
Gˆ ˆf fd d . Following this procedure we have therefore converted the 

PDE problem into a system of linear equations that can be readily solved.
In practice, a very large number of basis functions can be required to obtain a good approximation 

to the exact solution, and the linear equation systems generated by FEMs are therefore often very large. 
However, the fact that each basis functions have support only at one or a few nearby elements in the 
discretization of the problem domain ensures that the matrix A is sparse, which makes it tractable to solve 
rather large-scale FEM problems. We also note that an important property of the basis functions f

i
 and f̂i  

is that it should be easy to compute the derivatives and integrals of the expression that occur in the final 
weak form of the problem, so that the matrix A and vector b can be assembled efficiently. Typical examples 
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of basis functions are low-order polynomial functions that are nonzero only within a single element. See 
Figure 11-3 for a one-dimensional illustration of this type of basis function, where the interval [0, 6] is 
discretized using five interior points, and a continuous function (black solid curve) is approximated as a 
piecewise linear function (dashed red line) by suitably weighted triangular basic functions (blue solid lines).

When using FEM software for solving PDE problems, it is typically required to convert the PDE to weak 
form by hand, and if possible rewrite it on the bilinear form a u v L v( , ) ( )= . It is also necessary to provide a 
suitable discretization of the problem domain. This discretization is called a mesh, and it is usually made up 
of triangular partitioning (or their higher-order generalizations) of the total domain. Meshing an intricate 
problem domain can in itself be a complicated process, and it may require using sophisticated software 
especially dedicated for mesh generation. For simple geometries there are tools for programmatically 
generating meshes, and we will see examples of this in the following section.

Once a mesh is generated and the PDE problem is written on a suitable weak form, we can feed the 
problem into a FEM framework, which then automatically assembles the algebraic equation system and 
applies suitable sparse equation solvers to find the solution. In this processes, we often have a choice of what 
type of basis functions to use, as well as which type of solver to use. Once the algebraic equation is solved, 
we can construct the approximation solution to the PDE with the help of the basis functions, and we can for 
example visualize the solution or post process it in some other fashion.

In summary, solving a PDE using FEM typically involves the following steps:

	 1.	 Generate a Mesh for the problem domain.

	 2.	 Write the PDE on weak form.

	 3.	 Program the problem in the FEM framework.

	 4.	 Solve the resulting algebraic equations.

	 5.	 Post process and/or visualize the solution.

In the following section we will review available FEM frameworks that can be used with Python,  
and then look at a number of examples that illustrates some of the key steps in the PDE solution process 
using FEM.

�Survey of FEM Libraries
For Python there are at least three significant FEM packages: FiPy, SfePy, and FEniCS. These are all rather 
full-featured frameworks, which are capable of solving a wide range of PDE problems. Technically, the FiPy 
library is not a FEM software, but rather a finite-volume method (FVM) software, but the gist of this method 
is quite similar to FEM. The FiPy framework can be obtained from http://www.ctcms.nist.gov/fipy. The 
SfePy library is a FEM software that takes a slightly different approach to defining PDE problems, in that it 
uses Python files as configuration files for its FEM solver, rather programmatically setting up a FEM problem 
(although this mode of operation is technically also supported in SfePy). The SfePy library is available from 

Figure 11-3.  An example of possible basis functions (blue lines), with local support, for the one-dimensional 
domain [0, 6]

http://www.ctcms.nist.gov/fipy
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http://sfepy.org. The third major framework for FEM with Python is FEniCS, which is written for C++ 
and Python. The FEniCS framework is my personal favorite when it comes to FEM software for Python, as it 
provides an elegant Python interface to a powerful FEM engine. Like FDM problem, FEM problems typically 
result in very large-scale equation systems that require using sparse matrix techniques to solve efficiently. 
A crucial part of a FEM framework is therefore to efficiently solve large-scale linear and nonlinear systems, 
using sparse matrices representation and direct or iterative solvers that work on sparse systems, possibly using 
parallelization. Each of the frameworks mentioned above supports multiple back ends for such low-level 
computations. For example, many FEM frameworks can use the PETSc and Trilinos frameworks.

Unfortunately we are not able to explore in depth how to use either of these FEM frameworks here, but 
in the following section we will look at solving example problems with FEniCS, and thereby introduce some 
of its basic features and usage. The hope is that the examples can give a flavor of how it is to work with FEM 
problems in Python, and provide a starting point for the readers interested in learning more about FEM  
with Python.

�Solving PDEs using FEniCS
In this section we solve a series of increasingly complicated PDEs using the FEniCS framework, and in the 
process we introduce the workflow and a few of the main features of this FEM software. For a thorough 
introduction to the FEniCS framework, see the documentation at the project web sites and the official 
FEniCS book (Anders Logg, 2012).

■■ FEniCS FE niCS is a highly capable FEM framework that is made up of a collection of libraries and tools for 
solving PDE problem. Much of FEniCS is programmed in C++, but it also provides an official Python interface. 
Because of the complexity of the many dependencies of the FEniCS libraries to external low-level numerical 
libraries, FEniCS is usually packaged and installed as an independent environment. For more information about 
the FEniCS, see the project’s web site at http://fenicsproject.org. At the time of writing, the most recent 
version is 1.5.0.

The Python interface to FEniCS is provided by a library named dolfin. For mesh generation we will 
also use the mshr library. In the following code, we assume that these libraries are imported in their entirety, 
as shown in the beginning of this chapter. For a summary of the most important functions and classes from 
these libraries, see Table 11-1 and Table 11-2.

http://sfepy.org/
http://fenicsproject.org/
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Table 11-1.  Summary of selected functions and classes in the dolfin library

Function/Class Description Example

parameters Dictionary holding configuration parameters for 
the FEniCS framework.

dolfin.parameters["reorder_
dofs_serial"]

RectangleMesh Object for generating a rectangular 2D mesh. mesh = dolfin.Rectangular 
Mesh(0, 0, 1, 1, 10, 10)

MeshFunction Function defined over a given mesh. dolfin.MeshFunction("size_t", 
mesh, mesh.topology().dim()-1)

FunctionSpace Object for representing a function space. V = dolfin.
FunctionSpace(mesh, 
'Lagrange', 1)

TrialFunction Object for representing a trial function defined  
in a given function space.

u  = dolfin.TrialFunction(V)

TestFunction Object for representing a test function defined  
in a given function space.

v = dolfin.TestFunction(V)

Function Object for representing unknown functions 
appearing in the weak form of a PDE.

u_sol = dolfin.Function(V)

Constant Object for representing a fixed constant. c = dolfin.Constant(1.0)

Expression Representation of a mathematical expression in 
terms of the spatial coordinates.

dolfin.Expression("x[0]*x[0] 
+ x[1]*x[1]")

DirichletBC Object for representing Dirichlet type boundary 
conditions.

dolfin.DirichletBC(V, u0, 
u0_boundary)

Equation Object for representing an equation, for example 
generated by using the == operator with other 
FEniCS objects.

a == L

inner Symbolic representation of the inner product. dolfin.inner(u, v)

nabla_grad Symbolic representation of the gradient operator. dolfin.nabla_grad(u)

dx Symbolic representation of the volume measure 
for integration.

f*v*dx

ds Symbolic representation of a line measure for 
integration.

g_v * v * dolfin.ds(0, 
domain=mesh, subdomain_
data=boundary_parts)

assemble Assemble the algebraic equations by carrying  
out the integrations over the basis functions.

A = dolfin.assemble(a)

solve Solve an algebraic equation. dolfin.solve(A, u_sol. 
vector(), b)

plot Plot a function or expression. dolfin.plot(u_sol)

File Write a function to a file that can be opened with 
visualization software such as Paraview.

dolfin.File('u_sol.pvd') << 
u_sol

(continued)
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Before we proceed to use FEniCS and the dolfin Python library, we need to set two configuration 
parameters via the dolfin.parameters dictionary to obtain the behavior that we need in the following 
examples:

In [37]: dolfin.parameters["reorder_dofs_serial"] = False
In [38]: dolfin.parameters["allow_extrapolation"] = True

To get started with FEniCS, we begin by reconsidering the steady-state heat equation in two dimensions 
that we already solved earlier in this chapter using the FDM. Here we consider the problem u u fxx yy+ = , 
where f is a source function. To begin with we will assume that the boundary conditions are 
u x y u x y( , ) ( , )= = = =0 1 0 and u x y u x y( , ) ( , )= = = =0 1 0. In later examples we will see how to define 
Dirichlet and Neumann boundary conditions.

The first step in the solution of a PDE with FEM is to define a mesh that describes the discretization 
of the problem domain. In the current example the problem domain is the unit square x y, Î[ ]0 1, . For 
simple geometries like this, there are functions in the dolfin library for generating the mesh. Here we use 
the RectangleMesh function, which takes the x

0
, y

0
, x

1
 and y

1
 as first four arguments, where (x

0
, y

0
) is the 

coordinates of the lower left corner of the rectangle, and (x
1
, y

1
) is the upper-right corner. The fifth and 

sixth arguments are the numbers of elements along the x and y directions, respectively. The resulting mesh 

Table 11-2.  Summary of selected functions and classes in the mshr and dolfin library

Function/Class Description

dolfin.Point Representation of a coordinate Point.

mshr.Circle Representation of a geometrical object with the shape of a circle, which can be 
used to compose a domain 2D domain.

mshr.Ellipse Representation of a geometrical object with the shape of an ellipse.

mshr.Rectangle Representation of a domain defined by a rectangle in 2D.

mshr.Box Representation of a domain defined by a box in 3D.

mshr.Sphere Representation of a domain defined by a sphere in 3D.

mshr.generate_mesh Generate a mesh from a domain composed from geometrical objects, such as 
those listed above.

Function/Class Description Example

refine Refine a mesh by splitting a selection of the 
existing mesh elements into smaller pieces.

mesh = dolfin.refine 
(mesh, cell_markers)

AutoSubDomain Representation of a subset of a domain, selected 
from all elements by the indicator function 
passed to it as argument.

dolfin.AutoSubDomain 
(v_boundary_func)

CellFunction A representation of a function that is defined  
on a per cell basis. Here used to assign a flag to 
each cell.

cell_markers = dolfin.
CellFunction 
("bool", refined_mesh)

Table 11-1.  (continued)
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object is viewed in an IPython notebook via its rich display system (here we generate a less-fine mesh for the 
purpose or displaying the mesh structure), as shown in Figure 11-4:

In [39]: N1 = N2 = 75
In [40]: mesh = dolfin.RectangleMesh(0, 0, 1, 1, N1, N2)
In [41]: dolfin.RectangleMesh(0, 0, 1, 1, 10, 10)  # for display only

This mesh for the problem domain is the key to the discretization of the problem into a form that can 
be treated using numerical methods. The next step is to define a representation of the function space for the 
trial and the test functions, using the dolfin.FunctionSpace class. The constructor of this class takes at least 
three arguments: a mesh object, the name of the type of basis function, and the degree of basis function. For 
our purposes we will use the Lagrange type of basis functions of degree 1 (linear basis functions):

In [42]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)

Once the mesh and the function space objects are created, we need to create objects for the trial 
function u

h
 and test function v

h
, which we can use to define the weak form of the PDE of interest. In FEniCS, 

we use the dolfin.TrialFunction and dolfin.TestFunction classes for this purpose. They both require a 
function space object as first argument to their constructors:

In [43]: u = dolfin.TrialFunction(V)
In [44]: v = dolfin.TestFunction(V)

Figure 11-4.  A rectangular mesh generated using dolfin.RectangleMesh
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The purpose of defining representations of the function space V and the trial and test functions u 
and v is to be able to construct a representation of a generic PDE on weak form. For the steady-state heat 
equation that we are studying here, the weak form was shown in the previous section to be (in the absence of 
Neumann boundary conditions):

W W
ò òÑ ×Ñ =u v x fv xd d .

To arrive at this form usually requires rewriting and transforming by hand the direct integrals over the 
PDE, typically by performing integration by parts. In FEniCS, the PDE itself is defined using the integrands 
that appear in the weak form, including the integral measure (i.e., the dx). To this end, the dolfin library 
provides a number of functions acting on the trial and test function objects v and u, which are used to 
represent operations on these functions that commonly occur in the weak form of a PDE. For example, in the 
present case, the integrand of the left-hand side integral is Ñ ×Ñu v xd . To represent this expression, we need 
symbolic representation of the inner product, the gradients of u and v, and the integration measure dx. The 
names for these functions in the dolfin library are inner, nabla_grad, and dx, respectively, and using these 
functions we can create a representation of a u v u v x( , ) = Ñ ×Ñ d  that the FEniCS framework understands and 
can work with:

In [45]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * dolfin.dx

Likewise, for the right-hand side, we need a representation of b v fv x( ) = d . At this point, we need to 
specify an explicit form of f to be able to procede with the solution of the problem. Here we look at two types 
of f functions: f =1  (a constant) and f x y= +2 2  (function of x and y). To represent f =1,  we can use the 
dolfin.Constant object. It takes as its only argument the value of the constant that it represents:

In [46]: f1 = dolfin.Constant(1.0)
In [47]: L1 = f1 * v * dolfin.dx

If f is a function of x and y, we instead need to use the dolfin.Expression object to represent f. The 
constructor of this object takes a string as first argument that contains an expression that corresponds to the 
function. This expression must be defined in C++ syntax, since the FEniCS framework automatically generates 
and compiles a C++ function for efficient evaluation of the expression. In the expression we have access to a 
variable x, which is an array of coordinates at a specific point, where x is accessed as x[0], y as x[1], and so 
on. For example, to write the expression for f x y x y( ), = +2 2 , we can use "x[0]*x[0] + x[1]*x[1]".  
Note that because we need to use C++ syntax in this expression, we cannot use the Python syntax x[0]**2.

In [48]: f2 = dolfin.Expression("x[0]*x[0] + x[1]*x[1]")
In [49]: L2 = f2 * v * dolfin.dx

At this point we have defined symbolic representations of the terms that occur in the weak form of the 
PDE. The next step is to define the boundary conditions. We begin with a simple uniform Dirichlet type 
boundary condition. The dolfin library contains a class DirichletBC for representing this type of boundary 
conditions. We can use this class to represent arbitrary functions along boundaries of the problem domain, 
but in this first example consider the simple boundary condition u = 0  on the entire boundary. To represent 
the constant value on the boundary (zero in this case), we can again use the dolfin.Constant class.

In [50]: u0 = dolfin.Constant(0)
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In addition to the boundary condition value, we also need to define a function (here called u0_boundary) 
that is used to select different parts of the boundary when creating an instance of the DirichletBC class. 
This function takes two arguments: a coordinate array x, and a flag on_boundary that indicates if a point is 
on the physical boundary of the mesh, and it should return True if the point x belongs to the boundary, and 
False otherwise. This function is evaluated for every vertex in the mesh, so by customizing this function we 
can, for example, pin down the function value at arbitrary parts of the problem domain to specific values or 
expression. However, here we only need to select all the points that are on the physical boundary, so we can 
simply let the u0_boundary function return the on_boundary argument.

In [51]: def u0_boundary(x, on_boundary):
    ...:      return on_boundary

Once we have an expression for the value on the boundary, u0, and a function for selecting the 
boundary from the mesh vertices, u0_boundary, we can, with the function space object V, finally create the 
DirichletBC object:

In [52]: bc = dolfin.DirichletBC(V, u0, u0_boundary)

This completes the specification of the PDE problem, and our next step is to convert the problem into 
an algebraic form, by assembling the matrix and vector from the weak-form representations of the PDE. We 
can do this explicitly using the dolfin.assemble function:

In [53]: A = dolfin.assemble(a)
In [54]: b = dolfin.assemble(L1)
In [55]: bc.apply(A, b)

which results in a matrix A and vector b that defines the algebraic equation system for the unknown 
function. Here we have also used the apply method of the DirichletBC class instance bc, which modifies 
the A and b objects in such a way that the boundary condition is accounted for in the equations.

To finally solve the problem, we need to create a function object for storing the unknown solution and 
call the dolfin.solve function, providing the A matrix and the b vector, as well as the underlying data array 
of a Function object. We can obtain the data array for a Function instance by calling the vector method on 
the object.

In [56]: u_sol1 = dolfin.Function(V)
In [57]: dolfin.solve(A, u_sol1.vector(), b)

Here we named the Function object for the solution u_sol1, and the call to dolfin.solve function 
solves the equation system and fills in the values in the data array of the u_sol1 object. Here we solved the 
PDE problem by explicitly assembling the A and b matrices and passing the results to the dolfin.solve 
function. These steps can also be carried out automatically by the dolfin.solve function, by passing a 
dolfin.Equation object as first argument to the function, the Function object for the solution as second 
argument, and a boundary condition (or list of boundary conditions) as third argument. We can create the 
Equation object using for example a == L2:

In [58]: u_sol2 = dolfin.Function(V)
In [59]: dolfin.solve(a == L2, u_sol2, bc)

This is slightly more concise than the that the method we used to find u_sol1 using the equivalence of 
a == L1, but in some cases when a problem needs to be solved for multiple situations it can be useful to use 
explicit assembling of the matrix A and, or, the vector b, so it is worthwhile to be familiar with both methods.
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With the solution available as a FEniCS Function object, there are a number ways we can proceed 
with post processing and visualizing the solution. A straightforward way to plot the solution is the use the 
built-in dolfin.plot function, which can be used to plot mesh objects, function objects, as well as several 
other types of objects (see the docstring for dolfin.plot for more information). For example, to plot the 
solution u_sol2 we simply call dolfin.plot(u_sol2), followed by a call to dolfin.interactive to display 
an interactive graph window where we can zoom, pan and rotate the view of the graph. The resulting graph 
window is shown in Figure 11-5.

In [60]: dolfin.plot(u_sol2)
    ...: dolfin.interactive()

Using dolfin.plot is a good way of quickly visualizing a solution or a grid, but for better control of the 
visualization it is often necessary to export the data and plot it in dedicated visualization software, such as 
Paraview.1 To save a the solutions u_sol1 and u_sol2 in a format that can be opened with Paraview, we can 
use the dolfin.File object to generate PVD files (collections of VTK files), and append objects to the file 
using the << operator, in a C++ stream-like fashion:

In [61]: dolfin.File('u_sol1.pvd') << u_sol1

We can also add multiple objects to a PVD file using this method:

In [62]: f = dolfin.File('u_sol_and_mesh.pvd')
    ...: f << mesh
    ...: f << u_sol1
    ...: f << u_sol2

Figure 11-5.  A screenshot of the window produced by the plot function in the dolfin library

1http://www.paraview.org

http://www.paraview.org/
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Exporting data for FEniCS objects to files that can be loaded and visualized with external visualization 
software is a method that benefits from the many advantage of powerful visualization software, such as 
interactivity, parallel processing, and high level of control of the visualizations, just to mention a few. 
However, in many cases it might be preferable to work within, for example, the IPython notebook also for 
visualization of the solutions and the mesh. For relatively simple problems in one, two, and to some extent, 
three dimensions, we can use Matplotlib to visualize meshes and solution functions directly. To be able to 
use Matplotlib, we need to obtain a NumPy array with data corresponding to the FEniCS function object. 
There are several ways to can construct such arrays. To begin with, the FEniCS function object can be called 
like a function, with an array (list) of coordinate values:

In [63]: u_sol1([0.21, 0.67])
Out[63]: 0.0466076997781351

This allows us to evaluate the solution at arbitrary points within the problem domain. We can also 
obtain the values of a function object like u_sol1 at the mesh vertices as a FEniCS vector using the vector 
method, which in turn can be converted to a NumPy array using its array method. The resulting NumPy 
arrays are flat (one-dimensional), and for the case of a two-dimensional rectangular mesh (like in the 
current example), it is sufficient to reshape the flat array to obtain a two-dimensional array that can be 
plotted with, for example, the pcolor, contour, or plot_surface functions from Matplotlib. Below we follow 
these steps to convert the underlying data of the u_sol1 and u_sol2 function objects to NumPy arrays, which 
then is plotted using Matplotlib. The result is shown in Figure 11-6.

In [64]: u_mat1 = u_sol1.vector().array().reshape(N1+1, N2+1)
In [65]: u_mat2 = u_sol2.vector().array().reshape(N1+1, N2+1)
In [66]: X, Y = np.meshgrid(np.linspace(0, 1, N1+2), np.linspace(0, 1, N2+2))
In [67]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
    ...:
    ...: c = ax1.pcolor(X, Y, u_mat1, cmap=mpl.cm.get_cmap('Reds'))
    ...: cb = plt.colorbar(c, ax=ax1)
    ...: ax1.set_xlabel(r"$x$", fontsize=18)
    ...: ax1.set_ylabel(r"$y$", fontsize=18)
    ...: cb.set_label(r"$u(x, y)$", fontsize=18)
    ...: cb.set_ticks([0.0, 0.02, 0.04, 0.06])
    ...:
    ...: c = ax2.pcolor(X, Y, u_mat2, cmap=mpl.cm.get_cmap('Reds'))
    ...: cb = plt.colorbar(c, ax=ax2)
    ...: ax1.set_xlabel(r"$x$", fontsize=18)
    ...: ax1.set_ylabel(r"$y$", fontsize=18)
    ...: cb.set_label(r"$u(x, x)$", fontsize=18)
    ...: cb.set_ticks([0.0, 0.02, 0.04])
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The method used to produce Figure 11-6 is simple and convenient, but it only works for rectangular 
meshes. For more complicated meshes, the vertex coordinates are not organized in a structural manner, and 
a simple reshape of the flat array data is not sufficient. However, the Mesh object that represents the mesh for 
the problem domain contains a list the coordinates for each vertex. Together with values from a Function 
object, these can be combined into a form that can be plotted with Matplotlib triplot and tripcolor 
functions. To use these plot functions, we first need to create a Triangulation object form the vertex 
coordinates for the mesh:

In [68]: coordinates = mesh.coordinates()
    ...: triangles = mesh.cells()
    ...: �triangulation = mpl.tri.Triangulation(coordinates[:, 0], coordinates[:, 1], 
    ...:                                       triangles)

With the triangulation object defined, we can directly plot the array data for FEniCS functions using 
triplot and tripcolor, as shown demonstrated in the following code. The resulting graph is shown in 
Figure 11-7.

In [69]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
    ...: ax1.triplot(triangulation)
    ...: ax1.set_xlabel(r"$x$", fontsize=18)
    ...: ax1.set_ylabel(r"$y$", fontsize=18)
    ...: cmap = mpl.cm.get_cmap('Reds')
    ...: c = ax2.tripcolor(triangulation, u_sol2.vector().array(), cmap=cmap)
    ...: cb = plt.colorbar(c, ax=ax2)
    ...: ax2.set_xlabel(r"$x$", fontsize=18)
    ...: ax2.set_ylabel(r"$y$", fontsize=18)
    ...: cb.set_label(r"$u(x, y)$", fontsize=18)
    ...: cb.set_ticks([0.0, 0.02, 0.04])

Figure 11-6.  The solution of the steady-state heat equation on the unit square, with source terms f =1  (left) 
and f x y= +2 2  (right), subject to the condition that the function u(x, y) is zero on the boundary
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To see how we can work with more complicated boundary conditions, consider again the heat equation, 
this time without a source term u uxx yy+ = 0, but with the following boundary conditions: u x( )= =0 3, 
u x( )= = -1 1, u y( )= = -0 5 , and u y( )= =1 5. This is the same problem as we solved with the FDM method 
earlier in this chapter. Here we resolve the same problem using FEM instead. We begin, as in the previous 
example, by defining a mesh for the problem domain, the function space and trial and test function objects:

In [70]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)
In [71]: u = dolfin.TrialFunction(V)
In [72]: v = dolfin.TestFunction(V)

Next we define the weak form of the PDE. Here we set f = 0  using a dolfin.Constant object to represent f:

In [73]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * dolfin.dx
In [74]: f = dolfin.Constant(0.0)
In [75]: L = f * v * dolfin.dx

Now it remains to define the boundary conditions according to the given specification. In this example 
we do not want a uniform boundary condition that applies to the entire boundary, so we need to use the first 
argument to the boundary selection function that is passed to the DirichletBC class, to single out different parts 
of the boundary. To this end, we define four functions that select the top, bottom, left and right boundaries:

In [76]: def u0_top_boundary(x, on_boundary):
    ...:     # on boundary and y == 1 -> top boundary
    ...:     return on_boundary and abs(x[1]-1) < 1e-5
In [77]: def u0_bottom_boundary(x, on_boundary):
    ...:     # on boundary and y == 0 -> bottom boundary
    ...:     return on_boundary and abs(x[1]) < 1e-5
In [78]: def u0_left_boundary(x, on_boundary):
    ...:     # on boundary and x == 0 -> left boundary
    ...:     return on_boundary and abs(x[0]) < 1e-5
In [79]: def u0_right_boundary(x, on_boundary):
    ...:     # on boundary and x == 0 -> left boundary
    ...:     return on_boundary and abs(x[0]-1) < 1e-5

Figure 11-7.  The same as Figure 11-6, expect that this graph was produced with Matplotlib's triangulation 
functions. The mesh is plotted to the left, and the solution of the PDE to the right
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The values of the unknown function at each of the boundaries are simple constants that we can 
represent with instances of dolfin.Constant. Thus, we can create instances of DirichletBC for each 
boundary, and the resulting objects are collected in a list bcs:

In [80]: bc_t = dolfin.DirichletBC(V, dolfin.Constant(5), u0_top_boundary)
    ...: bc_b = dolfin.DirichletBC(V, dolfin.Constant(-5), u0_bottom_boundary)
    ...: bc_l = dolfin.DirichletBC(V, dolfin.Constant(3), u0_left_boundary)
    ...: bc_r = dolfin.DirichletBC(V, dolfin.Constant(-1), u0_right_boundary)
In [81]: bcs = [bc_t, bc_b, bc_r, bc_l]

With this specification of the boundary conditions, we can continue to solve the PDE problem by 
calling dolfin.solve. The resulting vector converted to a NumPy array is used for plotting the solution 
using Matplotlib’s pcolor function. The result is shown in Figure 11-8. By comparing to the result from the 
corresponding FDM computation, shown in Figure 11-2, we can conclude that the two methods indeed give 
the same results.

In [82]: u_sol = dolfin.Function(V)
In [83]: dolfin.solve(a == L, u_sol, bcs)
In [84]: u_mat = u_sol.vector().array().reshape(N1+1, N2+1)
In [85]: x = np.linspace(0, 1, N1+2)
    ...: y = np.linspace(0, 1, N1+2)
    ...: X, Y = np.meshgrid(x, y)
In [86]: fig, ax = plt.subplots(1, 1, figsize=(8, 6))
    ...: c = ax.pcolor(X, Y, u_mat, vmin=-5, vmax=5, cmap=mpl.cm.get_cmap('RdBu_r'))
    ...: cb = plt.colorbar(c, ax=ax)
    ...: ax.set_xlabel(r"$x_1$", fontsize=18)
    ...: ax.set_ylabel(r"$x_2$", fontsize=18)
    ...: cb.set_label(r"$u(x_1, x_2)$", fontsize=18)

Figure 11-8.  The steady-state solution to the heat equation with different Dirichlet boundary conditions on 
each of the sides of the unit square
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So far we have used FEM to solve the same kind of problems that we also solved with FDM, but the true 
strength of FEM becomes apparent first when PDE problem with more complicated problem geometries are 
considered. As an illustration of this, consider the heat equation on a unit circle perforated by five smaller 
circles, one centered at the origin and the other four smaller circles, as shown in the mesh figure below. To 
generate meshes for geometries like this one, we can use the mshr library that is distributed with FEniCS. It 
provides geometric primitives (Point, Circle, Rectangle, etc.) that can be in algebraic (set) operations to 
compose mesh for the problem domain of interest. Here we first create a unit circle, centered at (0, 0), using 
mshr.Circle, and subtract from it other Circle objects corresponding to the part of the mesh that should be 
removed. The resulting mesh is shown in Figure 11-9.

In [87]: r_outer = 1
    ...: r_inner = 0.25
    ...: r_middle = 0.1
    ...: x0, y0 = 0.4, 0.4
In [88]: domain = mshr.Circle(dolfin.Point(.0, .0), r_outer) \
    ...:     - mshr.Circle(dolfin.Point(.0, .0), r_inner)    \
    ...:     - mshr.Circle(dolfin.Point( x0,  y0), r_middle) \
    ...:     - mshr.Circle(dolfin.Point( x0, -y0), r_middle) \
    ...:     - mshr.Circle(dolfin.Point(-x0,  y0), r_middle) \
    ...:     - mshr.Circle(dolfin.Point(-x0, -y0), r_middle)
In [89]: mesh = mshr.generate_mesh(domain, 10)

A physical interpretation of this mesh is that the geometry is a cross section of five pipes through a  
block of material, where, for example, the inner pipe carries a hot fluid and the outer pipes a cold fluid for 
cooling the material block (e.g., an engine cylinder surrounded by cooling pipes). With this interpretation  
in mind, we set the boundary condition of the inner pipe to a high value, u x y
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Figure 11-9.  A mesh object generated by the mshr library
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the boundary. Since we have different boundary condition on different boundaries, here too we need to  
use the coordinate argument x to determine which vertices belong to which boundary.

In [90]: def u0_inner_boundary(x, on_boundary):
    ...:     x, y = x[0], x[1]
    ...:     return on_boundary and abs(np.sqrt(x**2 + y**2) - r_inner) < 5e-2
In [91]: def u0_middle_boundary(x, on_boundary):
    ...:     x, y = x[0], x[1]
    ...:     if on_boundary:
    ...:         for _x0 in [-x0, x0]:
    ...:             for _y0 in [-y0, y0]:
    ...:                 if abs(np.sqrt((x+_x0)**2 + (y+_y0)**2) - r_middle) < 5e-2:
    ...:                     return True
    ...:     return False
In [92]: bc_inner = dolfin.DirichletBC(V, dolfin.Constant(10), u0_inner_boundary)
    ...: bc_middle = dolfin.DirichletBC(V, dolfin.Constant(0), u0_middle_boundary)
In [93]: bcs = [bc_inner, bc_middle]

Once the mesh and boundary conditions are specified, we can proceed as usual with defining the 
function space, the trial and test functions, and to construct the weak form representation of the PDE 
problem:

In [94]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)
In [95]: u = dolfin.TrialFunction(V)
In [96]: v = dolfin.TestFunction(V)
In [97]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * dolfin.dx
In [98]: f = dolfin.Constant(1.0)
In [99]: L = f * v * dolfin.dx
In [100]: u_sol = dolfin.Function(V)

Solving and visualizing the problem also follows the same pattern as before. The result of the plotting 
the solution is shown in Figure 11-10.

In [101]: dolfin.solve(a == L, u_sol, bcs)
In [102]: coordinates = mesh.coordinates()
     ...: triangles = mesh.cells()
     ...: �triangulation = mpl.tri.Triangulation(coordinates[:, 0], coordinates[:, 1], 

triangles)
In [103]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
     ...: ax1.triplot(triangulation)
     ...: ax1.set_xlabel(r"$x$", fontsize=18)
     ...: ax1.set_ylabel(r"$y$", fontsize=18)
     ...: �c = ax2.tripcolor(triangulation, u_sol.vector().array(), cmap=mpl.cm.get_

cmap("Reds"))
     ...: cb = plt.colorbar(c, ax=ax2)
     ...: ax2.set_xlabel(r"$x$", fontsize=18)
     ...: ax2.set_ylabel(r"$y$", fontsize=18)
     ...: cb.set_label(r"$u(x, y)$", fontsize=18)
     ...: cb.set_ticks([0.0, 5, 10, 15])
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Problems with this kind of geometry are difficult to treat with FDM methods, but can be handled 
with relative ease using FEM. Once we obtain a solution for a FEM problem, even for intricate problem 
boundaries, we can also with relative ease post process the solution function in other ways that plotting it. 
For example, we might be interested in the value of the function along one of the boundaries. For instance, 
in the current problem it is natural to look at the temperature along the outer radius of the problem domain, 
for example, to see how much the exterior temperature of the body decreases due to the four cooling pipes. 
In order to do this kind of analysis, we need a way of single out the boundary values from the u_sol object. 
We can do this by defining an object that describes the boundary (here using dolfin.AutoSubDomain) and 
apply it to a new Function object that is used as a mask for selecting the desired elements from the u_sol 
and from mesh.coordinates(). Below we call this mask function mask_outer.

In [104]: outer_boundary = dolfin.AutoSubDomain(
     ...:     lambda x, on_bnd: on_bnd and abs(np.sqrt(x[0]**2 + x[1]**2) - r_outer) < 5e-2)
In [105]: bc_outer = dolfin.DirichletBC(V, 1, outer_boundary)
In [106]: mask_outer = dolfin.Function(V)
In [107]: bc_outer.apply(mask_outer.vector())
In [108]: u_outer = u_sol.vector()[mask_outer.vector() == 1]
In [109]: x_outer = mesh.coordinates()[mask_outer.vector() == 1]

With these steps we have created the mask for the outer boundary condition and applied it to  
u_sol.vector() and mesh.coordinates() and thereby obtained the function values and the coordinates  
for the outer boundary points. Next we plot the boundary data as a function of the angle between the (x, y) 
point and the x axis. The result is shown in Figure 11-11.

In [110]: phi = np.angle(x_outer[:, 0] + 1j * x_outer[:, 1])
In [111]: order = np.argsort(phi)
In [112]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))
     ...: ax.plot(phi[order], u_outer[order], 's-', lw=2)
     ...: ax.set_ylabel(r"$u(x,y)$ at $x^2+y^2=1$", fontsize=18)
     ...: ax.set_xlabel(r"$\phi$", fontsize=18)
     ...: ax.set_xlim(-np.pi, np.pi)

Figure 11-10.  The solution to the head equation on a unit circle with perforated holes
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The accuracy of the solution to a PDE computed with FEM is intimately connected to the element sizes 
in the mesh that represent the problem domain: A finer mesh gives a more accurate the solution. However, 
increasing the number of elements in the mesh also makes the problem more computationally demanding 
to solve. Thus, there is a trade-off between the accuracy of the mesh and the available computational 
resources that must be considered. An important tool for dealing with this trade-off is a mesh with 
nonuniformly distributed elements. With such a mesh, we can use smaller elements where the unknown 
function is expected to change in value quickly, and fewer elements in less interesting regions. The dolfin 
library provides a simple way to refine a mesh, using the dolfin.refine function. It takes a mesh as first 
argument, and if no other arguments are given it uniformly refines the mesh and returns a new mesh. 
However, the refine function also accepts an optional a second argument that describes which parts of the 
mesh should be refined. This argument should be an instance of a Boolean-valued dolfin.CellFunction, 
which acts as a mask that flags which elements (cells) should be divided. For example, consider a mesh 
for the unit circle less the part in the quadrant where x > 0  and y < 0 . We can construct a mesh for this 
geometry using mshr.Circle and mshr.Rectangle:

In [113]: domain = mshr.Circle(dolfin.Point(.0, .0), 1.0) \
     ...:     - mshr.Rectangle(dolfin.Point(0.0, -1.0), dolfin.Point(1.0, 0.0))
In [114]: mesh = mshr.generate_mesh(domain, 10)

The resulting mesh is shown in the left part of Figure 11-12. It is often desirable to use meshes with 
finer structure near sharp corners in the geometry. For this example, it is reasonable to attempt to refine the 
mesh around the edge near the origin. To do this we need to create an instance of dolfin.CellFunction, 
initialize all its elements to False, using the set_all method, iterate through the elements and mark those 
one in the vicinity of the origin as True, and finally call the dolfin.refine function with the mesh and the 
CellFunction instance as arguments. We can do this repeatedly until a sufficiently fine mesh is obtained. In 
the following we iteratively call dolfin.refine, with decreasing number of cells marked for splitting:

In [115]: refined_mesh = mesh
     ...: for r in [0.5, 0.25]:
     ...:      cell_markers = dolfin.CellFunction("bool", refined_mesh)
     ...:      cell_markers.set_all(False)

Figure 11-11.  Temperature distribution along the outer boundary of the perforated unit circle
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     ...:      for cell in dolfin.cells(refined_mesh):
     ...:          if cell.distance(dolfin.Point(.0, .0)) < r:
     ...:              # mark cells within a radius r from the origin to be split
     ...:              cell_markers[cell] = True
     ...:      refined_mesh = dolfin.refine(refined_mesh, cell_markers)

The resulting mesh refined_mesh is a version of the original mesh that has finer element partitioning 
near the origin. The following code plots the two meshes for comparison, and the result is shown in 
Figure 11-12.

In [116]: def mesh_triangulation(mesh):
     ...:     coordinates = mesh.coordinates()
     ...:     triangles = mesh.cells()
     ...:     triangulation = mpl.tri.Triangulation(coordinates[:, 0], coordinates[:, 1],
     ...:                                           triangles)
     ...:     return triangulation
In [117]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
     ...:
     ...: ax1.triplot(mesh_triangulation(mesh))
     ...: ax2.triplot(mesh_triangulation(refined_mesh))
     ...:
     ...: # hide axes and ticks
     ...: for ax in [ax1, ax2]:
     ...:     for side in ['bottom','right','top','left']:
     ...:         ax.spines[side].set_visible(False)
     ...:         ax.set_xticks([])
     ...:         ax.set_yticks([])
     ...:         ax.xaxis.set_ticks_position('none')
     ...:         ax.yaxis.set_ticks_position('none')
     ...:
     ...: ax.set_xlabel(r"$x$", fontsize=18)
     ...: ax.set_ylabel(r"$y$", fontsize=18)

Figure 11-12.  The original and the refined meshes for three-quarters of the unit circle
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Refining a mesh using dolfin.refine is a practical technique for improving simple meshes that are 
constructed using expressions of geometrical primitives, like the one we have used in this chapter. As a final 
example of using FEniCS, we consider another example of the steady-state heat equation, using this refined 
mesh for the three-quarters of the unit circle, were we impose Neumann boundary conditions on the vertical 
and horizontal boundaries along the missing quarter of the unit circle: For the vertical edge we assume an 
out flux of heat described by Ñ × = - = <u x yn 2 0 0, , , and through the horizontal edge we assume an influx 
of heat described by Ñ × = > =u x yn 1 0 0, , , while the outer radial boundary is assued to be described by the 
Dirichlet boundary condtion u x y x y( ) ,, = + =0 12 2 .

We begin, as usual, by creating objects for the function space, the test function, and the trial function:

In [118]: mesh = refined_mesh
In [119]: V = dolfin.FunctionSpace(mesh, 'Lagrange', 1)
In [120]: u = dolfin.TrialFunction(V)
In [121]: v = dolfin.TestFunction(V)

For problems with Neumann boundary conditions, we need to include the boundary condition in the weak 
form of the PDE. Recall that the weak form for the Poisson equation is ∇ ⋅∇ = +∫ ∫ ∫Ω Ω Γ

Γu v x fv x g v
N

d d d , 

so compared to the earlier examples we need to account for the additional term g v
NG

Gò d , which is an integral 

over the boundary with Neumann boundary condition. To represent the integral measure for this integral 
in the weak form specification we can use dolfin.ds, but to be able to distinguish different parts of the 
boundary we first need to mark the boundary parts. One way to do this in FEniCS is to use a dolfin.
MeshFunction object, and assign to it a unique integer value for each distinct part of the boundary. To do this 
we first create a dolfin.MeshFunction instance:

In [122]: boundary_parts = dolfin.MeshFunction("size_t", mesh, mesh.topology().dim()-1)

Next we define a function for selecting boundary points and a dolfin.AutoSubDomain instance that is 
initialized form the boundary selection function. The AutoSubDomain instance can then be used to mark the 
corresponding cells in the MeshFunction (here called boundary_parts) with an identifying integer value.  
The following lines of code perform these steps for the vertical edge of the mesh, where x = 0  and y < 0 :

In [121]: def v_boundary_func(x, on_boundary):
     ...:     """ the vertical edge of the mesh, where x = 0 and y < 0"""
     ...:     x, y = x[0], x[1]
     ...:     return on_boundary and abs(x) < 1e-4 and y < 0.0
In [122]: v_boundary = dolfin.AutoSubDomain(v_boundary_func)
In [123]: v_boundary.mark(boundary_parts, 0)

We repeat the same procedure for the horizontal edge of the mesh, where y = 0  and x > 0 :

In [124]: def h_boundary_func(x, on_boundary):
     ...:     """ the horizontal edge of the mesh, where y = 0 and x > 0"""
     ...:     x, y = x[0], x[1]
     ...:     return on_boundary and abs(y) < 1e-4 and x > 0.0
In [125]: h_boundary = dolfin.AutoSubDomain(h_boundary_func)
In [126]: h_boundary.mark(boundary_parts, 1)



Chapter 11 ■ Partial Differential Equations

282

We can also use the same method to define Dirichlet boundary conditions. Here we mark the part of 
the boundary that is described by the Dirichlet boundary condition and then use it to in the creation of the 
dolfin.DirichletBC object:

In [127]: def outer_boundary_func(x, on_boundary):
     ...:     x, y = x[0], x[1]
     ...:     return on_boundary and abs(x**2 + y**2-1) < 1e-2
In [128]: outer_boundary = dolfin.AutoSubDomain(outer_boundary_func)
In [129]: outer_boundary.mark(boundary_parts, 2)
In [130]: bc = dolfin.DirichletBC(V, dolfin.Constant(0.0), boundary_parts, 2)

Once the boundaries are marked, we can proceed to create the weak form of the PDE. Since we 
use partitioned boundary here, we need to specify the domain and subdomain arguments to the integral 
measures dolfin.dx and dolfin.ds, using the mesh and boundary_parts objects.

In [131]: dx = dolfin.dx(domain=mesh, subdomain_data=boundary_parts)
In [132]: a = dolfin.inner(dolfin.nabla_grad(u), dolfin.nabla_grad(v)) * dx
In [133]: f = dolfin.Constant(0.0)
In [134]: g_v = dolfin.Constant(-2.0)
In [135]: g_h = dolfin.Constant(1.0)
In [136]: L = f * v * dolfin.dx(domain=mesh, subdomain_data=boundary_parts)
In [137]: L += g_v * v * dolfin.ds(0, domain=mesh, subdomain_data=boundary_parts)
In [138]: L += g_h * v * dolfin.ds(1, domain=mesh, subdomain_data=boundary_parts)

In the last two code cells, we have added new terms for the Neumann boundary conditions for the 
vertical and the horizontal edges in the mesh. These parts of the boundary are denoted by integers 0 and 1,  
respectively, as defined above, and these integers are passed as argument to the dolfin.ds to select 
integration over different parts of the boundaries.

In [139]: u_sol = dolfin.Function(V)
In [140]: dolfin.solve(a == L, u_sol, bc)

Once the representation of the weak form of the PDE is defined, we can go ahead and solve the problem 
using dolfin.solve, as we have done in earlier examples. Finally we plot the solution using Matplotlib’s 
triangulation plot functions. The results are shown in Figure 11-13. From the graph we can see that, as 
expected, the solution has more structure near the edge at the origin. Using a mesh with smaller elements in 
this region is therefore a good way to obtain sufficient resolution in this region without inflicting excessive 
computational cost by using a uniformly fine-structured mesh.

In [141]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
     ...: triangulation = mesh_triangulation(mesh)
     ...: ax1.triplot(triangulation)
     ...: ax1.set_xlabel(r"$x$", fontsize=18)
     ...: ax1.set_ylabel(r"$y$", fontsize=18)
     ...:
     ...: data = u_sol.vector().array()
     ...: norm = mpl.colors.Normalize(-abs(data).max(), abs(data).max())
     ...: c = ax2.tripcolor(triangulation, data, norm=norm, cmap=mpl.cm.get_cmap("RdBu_r"))
     ...: cb = plt.colorbar(c, ax=ax2)
     ...: ax2.set_xlabel(r"$x$", fontsize=18)
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     ...: ax2.set_ylabel(r"$y$", fontsize=18)
     ...: cb.set_label(r"$u(x, y)$", fontsize=18)
     ...: cb.set_ticks([-.5, 0, .5])

The examples we have explored in this section are merely a few simple demonstrations of the types 
of problems that the FEniCS framework can be used for. There is a vast number of features in FEniCS that 
we have not even been able to mention here. For the reader who is particularly interested in solving PDE 
problems, I recommend studying the FEniCS book (Anders Logg, 2012) and the many example applications 
that it contains. In particular, important aspects of solving PDEs with FEM that we have not been able to 
discuss here are nontrivial Neumann boundary conditions (which needs to be included in the formulation 
of weak form of the PDE), PDEs for vector-valued functions, higher-dimensional PDE problems (for 
example, the heat equation in three dimensions), and time-dependent PDE problems. All of these topics, 
and many others, are well supported in the FEniCS framework.

�Summary
In this chapter we briefly surveyed methods for solving partial differential equations (PDEs), and how 
these methods can be employed within the scientific Python environment. Specifically, we introduced the 
finite-difference method (FDM) and the finite-element method (FEM) for solving PDE problems, and used 
these methods to solve several example problems. The advantage of FDM is its simplicity, and for problems 
where it is easily applicable (simple problem domains, uniform discretization, etc.) it is a very practical 
method. For more complicated PDE problems, for example, where the problem domain is more complex, 
FEM is generally more suitable. However, the mathematical theory of the FEM is more involved, and the 
implementation is far more technical. While there are a number of advanced FEM frameworks that can be 
used from Python, in this chapter we focused on one prominent example: the FEniCS framework. FEniCS 
is a full-featured FEM software that can be used for a wide range of PDE problems. With the examples 
considered here we have only scraped the surface of what can be achieved with the software. However, the 
hope is that the examples studied in this chapter give a general sense of the workflow when solving PDE 
problems with FEM, and when using the FEniCS software in particular.

Figure 11-13.  Solution to the heat equation on a quarter of the unit circle with Neumann and Dirichlet 
boundary conditions
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�Further Reading
While we have discussed FDM and FEM in this chapter, there are also other successful and useful methods 
for numerically solving PDEs. For instance, the finite-volume method (FVM) is a variant of the FEM method 
that is often used for fluid dynamics calculations, as well as in other fields. The Python library FiPy provides 
a framework for solving PDE problems using this method, and a theoretical introduction to the method 
is given in, for example, Wesseling’s book. The theoretical background information about the FDM and 
FEM that is given in this chapter is very brief indeed, and it merely serves to introduce the terminology and 
notation used here. For serious work with the FDM, and in particular the FEM method, it is important to 
thoroughly understand the fundamentals of these methods. Good introductions to FDM and FEM are given 
in, for example, books by Gockenbach, Johnson, and LeVeque. The FEniCS book (Logg, 2012), which is 
available for free online from the FEniCS project’s web site (http://fenicsproject.org), also contains a 
nice introduction to the FEM method, in addition to a detailed documentation of the FEniCS software itself.
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Chapter 12

Data Processing and Analysis

In the last several chapters we have covered the main topics of traditional scientific computing. These topics 
provide a foundation for most computational work. Starting with this chapter, we move on to explore data 
processing and analysis, statistics, and statistical modeling. As a first step in this direction, we look at the 
data analysis library pandas. This library provides convenient data structures for representing series and 
tables of data, and makes it easy to transform, split, merge, and convert data. These are important steps in 
the process1 of cleansing raw data into a tidy form that is suitable for analysis. The pandas library builds on 
top of NumPy, and complements it with features that are particularly useful when handling data, such as 
labeled indexing, hierarchical indices, alignment of data for comparison and merging of datasets, handling 
of missing data, and much more. As such, the pandas library has become a de facto library for high-level data 
processing in Python, especially for statistics applications. The pandas library itself contains only limited 
support for statistical modeling (namely, linear regression). For more involved statistical analysis and 
modeling there are other packages available, such as statmodels, patsy, and scikit-learn, which we cover 
in later chapters. However, also for statistical modeling with these packages, pandas can still be used for data 
representation and preparation. The pandas library is therefore a key component in the software stack for 
data analysis with Python.

■■ pandas  The pandas library is a framework for data processing and analysis in Python. At the time of 
writing, the most recent version of pandas is 0.16.2. For more information about the pandas library, and its 
official documentation, see the project’s web site at http://pandas.pydata.org.

The main focus of this chapter is to introduce basic features and usage of the pandas library. Toward the 
end of the chapter we also briefly explore the statistical visualization library seaborn, which is built on top of 
Matplotlib. This library provides quick and convenient graphing of data represented as pandas data structure 
(or NumPy arrays). Visualization is a very important part of exploratory data analysis, and the pandas 
library itself also provides functions for basic data visualization (which also builds on top of Matplotlib). 
The seaborn library takes this further, by providing additional statistical graphing capabilities and improved 
styling: The seaborn library is notable for generating good-looking graphics using defaults settings.

1Also known as data munging or data wrangling.

http://pandas.pydata.org/
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■■ seaborn  The seaborn library is a visualization library for statistical graphics. It builds on Matplotlib and 
provides easy-to-use functions for common statistical graphs. At the time of writing, the most recent version of 
seaborn is 0.6.0. For more information about seaborn, and its official documentation, see the project’s web site 
at: http://stanford.edu/~mwaskom/software/seaborn.

Importing Modules
In this chapter we mainly work with the pandas library, which we assume is imported under the name pd:

In [1]: import pandas as pd

We also require NumPy and Matplotlib, which we import as usual in the following way:

In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt

For more aesthetically pleasing default appearances of Matplotlib figures produced by the pandas 
library, we select an improved default style using the pandas function set_option:

In [4]: pd.set_option('display.mpl_style', 'default')

Later in this chapter we will also require to import the seaborn module, which we will import under 
the name sns, but for now we do not import this library since it alters the default appearance of graphics 
generated with Matplotlib.

Introduction to Pandas
The main focus of this chapter is the pandas library for data analysis, and we begin here with an introduction 
to this library. The pandas library mainly provides data structures and methods for representing and 
manipulating data. The two main data structures in pandas are the Series and DataFrame objects, which are 
used to represent data series and tabular data, respectively. Both of these objects have an index for accessing 
elements or rows in the data represented by the object. By default, the indices are integers starting from zero, 
like NumPy arrays, but it is also possible to use as index any sequence of identifiers.

Series
The merit of being able to index a data series with labels rather than integers is apparent even in the simplest 
of examples: Consider the following construction of a Series object. We give the constructor a list of 
integers, to create a Series object that represents the given data. Displaying the object in IPython reveals the 
data of the Series object together with the corresponding indices:

In [5]: s = pd.Series([909976, 8615246, 2872086, 2273305])
In [6]: s
Out[6]: 0     909976
        1     8615246

http://stanford.edu/~mwaskom/software/seaborn
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        2     2872086
        3     2273305
        dtype: int64

The resulting object is a Series instance with data type (dtype) int64, and the elements are indexed by 
the integers 0, 1, 2, and 3. Using the index and values attributes, we can extract the underlying data for the 
index and the values stored in the series:

In [7]: s.index
Out[7]: Int64Index([0, 1, 2, 3], dtype='int64')
In [8]: s.values
Out[8]: array([ 909976, 8615246, 2872086, 2273305])

While using integer-indexed arrays or data series is a fully functional representation of the data, it is not 
descriptive. For example, if the data represents the population of four European capitals, it is convenient and 
descriptive to use the city names as indices rather than integers. With a Series object this is possible, and we 
can assign the index attribute of a Series object to a list with new indices to accomplish this. We can also set 
the name attribute of the Series object, to give it a descriptive name:

In [9]: s.index = ["Stockholm", "London", "Rome", "Paris"]
In [10]: s.name = "Population"
In [11]: s
Out[11]: Stockholm     909976
         London       8615246
         Rome         2872086
         Paris        2273305
         Name: Population, dtype: int64

It is now immediately obvious what the data represents. Alternatively, we can also set the index and 
name attributes through keyword arguments to the Series object when it is created:

In [12]: s = pd.Series([909976, 8615246, 2872086, 2273305], name="Population",
    ...:               index=["Stockholm", "London", "Rome", "Paris"])

While it is perfectly possible to store the data for the populations of these cities directly in a NumPy 
array, even in this simple example it is much clearer what the data represent when the data points are 
indexed with meaningful labels. The benefits of bringing the description of the data closer to the data are 
even greater when the complexity of the dataset increases.

We can access elements in a Series by indexing with the corresponding index (label), or directly 
through an attribute with the same name as the index (if the index label is a valid Python symbol name):

In [13]: s["London"]
Out[13]: 8615246
In [14]: s.Stockholm
Out[14]: 909976
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Indexing a Series object with a list of indices gives a new Series object with a subset of the original 
data (corresponding to the provided list of indices):

In [15]: s[["Paris", "Rome"]]
Out[15]: Paris    2273305
         Rome     2872086
         Name: Population, dtype: int64

With a data series represented as a Series object, we can easily compute its descriptive statistics using 
the Series methods count (the number of data points), median (calculate the median), mean (calculate the 
mean value), std (calculate the standard deviation), min and max (minimum and maximum value), and the 
quantile (for calculating quantiles):

In [16]: s.median(), s.mean(), s.std()
Out[16]: (2572695.5, 3667653.25, 3399048.5005155364)
In [17]: s.min(), s.max()
Out[17]: (909976, 8615246)
In [18]: s.quantile(q=0.25), s.quantile(q=0.5), s.quantile(q=0.75)
Out[18]: (1932472.75, 2572695.5, 4307876.0)

All of the above are combined in the output of the describe method, which provides a summary of the 
data represented by a Series object:

In [19]: s.describe()
Out[19]: count          4.000000
         mean     3667653.250000
         std      3399048.500516
         min       909976.000000
         25%      1932472.750000
         50%      2572695.500000
         75%      4307876.000000
         max      8615246.000000
         Name: Population, dtype: float64

Using the plot method, we can quickly and easily produce graphs that visualize the data in a Series 
object. The pandas library uses Matplotlib to produce graphs, and we can optionally pass a Matplotlib Axes 
instance to the plot method via the ax argument. The type of the graph is specified using the kind argument 
(valid options are line, hist, bar, barh, box, kde, density, area and pie). See Figure 12-1. 

In [20]: fig, axes = plt.subplots(1, 4, figsize=(12, 3))
    ...: s.plot(ax=axes[0], kind='line', title='line')
    ...: s.plot(ax=axes[1], kind='bar', title='bar')
    ...: s.plot(ax=axes[2], kind='box', title='box')
    ...: s.plot(ax=axes[3], kind='pie', title='pie')
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DataFrame
As we have seen in the previous examples, a pandas Series object provides a convenient container for 
one-dimensional arrays, which can use descriptive labels for the elements, and which provides quick access 
to descriptive statistics and visualization. For higher-dimensional arrays (mainly two-dimensional arrays or 
tables), the corresponding data structure is the pandas DataFrame object. It can be viewed as a collection of 
Series objects with a common index.

There are numerous ways to initialize a DataFrame. For simple examples, the easiest way is to pass 
a nested Python list or dictionary to the constructor of the DataFrame object. For example, consider an 
extension of the dataset we used in the previous section, where in addition to the population of each city 
we also include a column that specifies which state each city belongs to. We can create the corresponding 
DataFrame object in the following way:

In [21]: df = pd.DataFrame([[909976, "Sweden"],
    ...:                    [8615246, "United Kingdom"],
    ...:                    [2872086, "Italy"],
    ...:                    [2273305, "France"]])
In [22]: df
Out[22]:

0 1

0 909976 Sweden

1 8615246 United Kingdom

2 2872086 Italy

3 2273305 France

The result is tabular data structure with rows and columns. Like with a Series object, we can use 
labeled indexing for rows by assigning a sequence of labels to the index attribute, and, in addition, we can 
set the columns attribute to a sequence of labels for the columns:

In [23]: df.index = ["Stockholm", "London", "Rome", "Paris"]
In [24]: df.columns = ["Population", "State"]

Figure 12-1.  Examples of plot styles that can be produced with pandas using the Series.plot method
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In [25]: df
Out[25]:

Population State

Stockholm 909976 Sweden

London 8615246 United Kingdom

Rome 2872086 Italy

Paris 2273305 France

The index and columns attributes can also be set using the corresponding keyword arguments to the 
DataFrame object when the it is created:

In [26]: df = pd.DataFrame([[909976, "Sweden"],
    ...:                    [8615246, "United Kingdom"],
    ...:                    [2872086, "Italy"],
    ...:                    [2273305, "France"]],
    ...:                   index=["Stockholm", "London", "Rome", "Paris"],
    ...:                   columns=["Population", "State"])

An alternative way to create the same data frame, which sometimes can be more convenient, is to pass a 
dictionary with column titles as keys and column data as values:

In [27]: df = pd.DataFrame({"Population": [909976, 8615246, 2872086, 2273305],
    ...:                    "State": ["Sweden", "United Kingdom", "Italy", "France"]},
    ...:                   index=["Stockholm", "London", "Rome", "Paris"])

As before, the underlying data in a DataFrame can be obtained as a NumPy array using the values 
attribute, and the index and column arrays through the index and columns attributes, respectively. Each 
column in a data frame can be accessed using the column name as attribute (or, alternatively, by indexing 
with the column label, for example df["Population"]):

In [28]: df.Population
Out[28]: Stockholm     909976
         London       8615246
         Rome         2872086
         Paris        2273305
         Name: Population, dtype: int64

The result of extracting a column from a DataFrame is a new Series object, which we can process 
and manipulate with the methods discussed in the previous section. Rows of a DataFrame instance can 
be accessed using the ix indexer attribute. Indexing this attribute also results in a Series object, which 
corresponds to a row of the original data frame:

In [29]: df.ix["Stockholm"]
Out[29]: Population    909976
         State         Sweden
         Name: Stockholm, dtype: object
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Passing a list of row labels to the ix indexer results in a new DataFrame that is a subset of the original 
DataFrame, containing only the selected rows:

In [30]: df.ix[["Paris", "Rome"]]
Out[30]:

Population State

Paris 2273305 France

Rome 2872086 Italy

The ix indexer can also be used to select both rows and columns simultaneously, by passing first a row 
label (or list thereof), and second a column label (or list thereof). The result is a DataFrame, a Series, or an 
element value, depending on the number of columns and rows that are selected:

In [31]: df.ix[["Paris", "Rome"], "Population"]
Out[31]: Paris    2273305
         Rome     2872086
         Name: Population, dtype: int64

We can compute descriptive statistics using the same methods as we already used for Series objects. 
When invoking those methods (mean, std, median, min, max, etc.) for a DataFrame, the calculation is 
performed for each column with numerical data types:

In [32]: df.mean()
Out[32]: Population    3667653.25
         dtype: float64

In this case, only one of the two columns has a numerical data type (the one named Population). 
Using the DataFrame method info and the attribute dtype, we can obtain a summary of the content in a 
DataFrame, and the data types of each column:

In [33]: df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 4 entries, Stockholm to Paris
Data columns (total 2 columns):
Population    4 non-null int64
State         4 non-null object
dtypes: int64(1), object(1)
memory usage: 96.0+ bytes
In [34]: df.dtypes
Out[34]: Population     int64
         State         object
         dtype: object

The real advantages of using pandas emerge when dealing with larger and more complex datasets than 
the examples we have used so far. Such data can rarely be defined as explicit lists or dictionaries, which 
can be passed to the DataFrame initializer. A more common situation is that the data must be read from a 
file, or some other external source. The pandas library supports numerous methods for reading data from 
files of different formats. Here we use the read_csv function to read in data and create a DataFrame object 
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from a CSV file.2 This function accepts a large number of optional arguments for tuning its behavior. See the 
docstring help(pd.read_csv) for details. Some of the most useful arguments are header (specifies which 
row, if any, contains a header with column names), skiprows (number of rows to skip before starting to read 
data, or a list of line numbers of lines to skip), delimiter (the character that is used as a delimiter between 
column values), encoding (the name of the encoding used in the file, for example utf-8), and nrows 
(number of rows to read). The first and only mandatory argument to the pd.read_csv function is a filename 
or an URL to the data source. For example, to read in a dataset stored in a file called european_cities.csv3, 
of which the first five lines are show below, we can simply call pd.read_csv("european_cities.csv"), since 
the default delimiter is "," and the header is by default taken from the first line. However, we could also 
write out all these options explicitly:

In [35]: !head –n 5 european_cities.csv
Rank,City,State,Population,Date of census
1,London, United Kingdom,"8,615,246",1 June 2014
2,Berlin, Germany,"3,437,916",31 May 2014
3,Madrid, Spain,"3,165,235",1 January 2014
4,Rome, Italy,"2,872,086",30 September 2014
In [36]: df_pop = pd.read_csv("european_cities.csv",
    ...:                      delimiter=",", encoding="utf-8", header=0)

This dataset is similar to the example data we used earlier in this chapter, but here there are additional 
columns and many more rows for other cities. Once a dataset is read into a DataFrame object, it is useful to 
start by inspecting the summary given by the info method, to begin forming an idea of the properties of  
the dataset.

In [37]: df_pop.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 105 entries, 0 to 104
Data columns (total 5 columns):
Rank              105 non-null int64
City              105 non-null object
State             105 non-null object
Population        105 non-null object
Date of census    105 non-null object
dtypes: int64(1), object(4) memory usage: 4.9+ KB

Here we see that there are 105 rows in this dataset, and that it has five columns. Only the Rank column 
is of numerical data type. In particular, the Population column is not yet of numeric data type because its 
values are of the format "8,615,246," and is therefore interpreted as string values by the read_csv function. 
It is also informative to display a tabular view of the data. However, this dataset is too large to display in full, 
and in situations like this the head and tail methods are handy for creating a truncated dataset containing 
the first few and last few rows, respectively. Both of these functions take an optional argument that specifies 
how many rows to include in the truncated DataFrame. Note also that df.head(n) is equivalent to df[:n], 
where n is an integer.

2CSV, or comma-separated values, is a common text format where rows are stored in lines and columns are separated by 
a comma (or some other text delimiter). See Chapter 18 for more details about this and other file formats.
3This dataset was obtained from the Wiki page: http://en.wikipedia.org/wiki/Largest_cities_of_the_European_ 
Union_by_population_within_city_limits.

http://dx.doi.org/10.1007/978-1-4842-0553-2_18
http://en.wikipedia.org/wiki/Largest_cities_of_the_European_Union_by_population_within_city_limits
http://en.wikipedia.org/wiki/Largest_cities_of_the_European_Union_by_population_within_city_limits
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In [38]: df_pop.head()
Out[38]:

Rank City State Population Date of census

0 1 London United Kingdom 8,615,246 1 June 2014

1 2 Berlin Germany 3,437,916 31 May 2014

2 3 Madrid Spain 3,165,235 1 January 2014

3 4 Rome Italy 2,872,086 30 September 2014

4 5 Paris France 2,273,305 1 January 2013

Displaying a truncated DataFrame gives a good idea of how the data looks, and what remains to be 
done before the data is ready for analysis. It is common to have to transform columns in one way or another, 
and to reorder the table by sorting by a specific column, or by ordering the index. In the following we explore 
some methods for modifying DataFrame objects. First of all, we can create new columns and update columns 
in a DataFrame simply by assigning a Series object to the DataFrame indexed by the column name, and we 
can delete columns using the Python del keyword.

The apply method is a powerful tool to transform the content in a column. It creates and returns a 
new Series object for which a function passed to apply has been applied to each element in the original 
column. For example, we can use the apply method to transform the elements in the Population column 
form strings to integers, by passing a lambda function that removes the "," characters form the strings 
and casts the results to an integer. Here we assign the transformed column to a new column with name 
NumericPopulation. Using the same method, we also tidy up the State values by removing extra white 
spaces in its elements using the string method strip.

In [39]: df_pop["NumericPopulation"] = df_pop.Population.apply(
    ...:     lambda x: int(x.replace(",", "")))
In [40]: df_pop["State"].values[:3]  # contains extra white spaces
Out[40]: array([' United Kingdom', ' Germany', ' Spain'], dtype=object)
In [41]: df_pop["State"] = df_pop["State"].apply(lambda x: x.strip())
In [42]: df_pop.head()
Out[42]:

Rank City State Population Date of census NumericPopulation

0 1 London United Kingdom 8,615,246 1 June 2014 8615246

1 2 Berlin Germany 3,437,916 31 May 2014 3437916

2 3 Madrid Spain 3,165,235 1 January 2014 3165235

3 4 Rome Italy 2,872,086 30 September 2014 2872086

4 5 Paris France 2,273,305 1 January 2013 2273305

Inspecting the data types of the columns in the updated DataFrame confirms that the new column 
NumericPopulation is indeed of integer type (while the Population column is unchanged):

In [43]: df_pop.dtypes
Out[43]: Rank                int64
         City               object
         State              object
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         Population         object
         Date of census     object
         NumericPopulation   int64
         dtype: object

We may also need to change the index to one of the columns of the DataFrame. In the current example, 
we may want to use the City column as index. We can accomplish this using the set_index method, which 
takes as argument the name of the column to use as index. The result is a new DataFrame object, and the 
original DataFrame is unchanged. Furthermore, using the sort_index method we can sort the data frame 
with respect to the index:

In [44]: df_pop2 = df_pop.set_index("City")
In [45]: df_pop2 = df_pop2.sort_index()
In [46]: df_pop2.head()
Out[46]:

Rank State Population Date of census NumericPopulation

City

Aarhus 92 Denmark 326,676 1 October 2014 326676

Alicante 86 Spain 334,678 1 January 2012 334678

Amsterdam 23 Netherlands 813,562 31 May 2014 813562

Antwerp 59 Belgium 510,610 1 January 2014 510610

Athens 34 Greece 664,046 24 May 2011 664046

The sort_index method also accepts a list of column names, in which case a hierarchical index is 
created. A hierarchical index uses tuples of index labels to address rows in the data frame. We can use the 
sortlevel method, which takes an integer n as argument, to sort the rows in a DataFrame according to the 
nth level of the hierarchical index. In the following example we create a hierarchical index with State and 
City as indices, and we use the sortlevel method to sort by the first index (State):

In [47]: df_pop3 = df_pop.set_index(["State", "City"]).sortlevel(0)
In [48]: df_pop3.head(7)
Out[48]:

Rank Population Date of census

State City

Austria Vienna 7 1794770 1 January 2015

Belgium Antwerp 59 510610 1 January 2014

Brussels 16 1175831 1 January 2014

Bulgaria Plovdiv 84 341041 31 December 2013

Sofia 14 1291895 14 December 2014

Varna 85 335819 31 December 2013

Croatia Zagreb 24 790017 31 March 2011
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A DataFrame with a hierarchical index can be partially indexed using only its zeroth-level index 
(df3.ix["Sweden"]), or completely indexed using a tuple of all hierarchical indices (df3.ix[("Sweden", 
"Gothenburg")]):

In [49]: df_pop3.ix["Sweden"]
Out[49]:

Rank Population Date of census NumericPopulation

City

Gothenburg 53 528,014 31 March 2013 528014

Malmö 102 309,105 31 March 2013 309105

Stockholm 20 909,976 31 January 2014 909976

In [50]: df_pop3.ix[("Sweden", "Gothenburg")]
Out[50]: Rank                            53
         Population                 528,014
         Date of census       31 March 2013
         NumericPopulation           528014
         Name: (Sweden, Gothenburg), dtype: object

If we want to sort by a column rather than the index, we can use the sort method. It takes a column 
name, or a list of column names, with respect to which the DataFrame is to be sorted. It also accepts the 
keyword argument ascending, which is a Boolean or a list of Boolean values that specifies whether the 
corresponding column is to be sorted in ascending or descending order:

In [51]: df_pop.set_index("City").sort(["State", "NumericPopulation"],
    ...:                               ascending=[False, True]).head()
Out[51]:

Rank State Population Date of census NumericPopulation

City

Nottingham 103 United Kingdom 308,735 30 June 2012 308735

Wirral 97 United Kingdom 320,229 30 June 2012 320229

Coventry 94 United Kingdom 323,132 30 June 2012 323132

Wakefield 91 United Kingdom 327,627 30 June 2012 327627

Leicester 87 United Kingdom 331,606 30 June 2012 331606

With categorical data such as the State column, it is frequently of interest to summarize how many 
values of each category a column contains. Such counts can be computed using the value_counts method 
(of the Series object). For example, to count the number of cities each country has in the list of the 105 largest 
cities in Europe, we can use:

In [52]: city_counts = df_pop.State.value_counts()
In [53]: city_counts.head()
Out[53]: Germany           19
         United Kingdom    16



Chapter 12 ■ Data Processing and Analysis

296

         Spain             13
         Poland            10
         Italy             10
         dtype: int64

In this example, we see from the results that the state with the largest number of cities in the list is 
Germany, with 19 cities, followed by the United Kingdom with 16 cities, and so on. A related question is how 
large the total population of all cities within a state. To answer this type of question we can precede in two 
ways: first, we can create a hierarchical index using State and City, and use the sum method to reduce the 
DataFrame along the one of the indices. In this case, we want to sum over all entries within the index level 
State, so we can use sum(level="State"), which eliminates the City index. For presentation we also sort 
the resulting DataFrame in descending order of the column NumericPopulation:

In [54]: df_pop3 = df_pop[["State", "City", "NumericPopulation"]].set_index(["State", "City"])
In [55]: df_pop4 = df_pop3.sum(level="State").sort("NumericPopulation", ascending=False)
In [56]: df_pop4.head()
Out[56]:

NumericPopulation

State

United Kingdom 16011877

Germany 15119548

Spain 10041639

Italy 8764067

Poland 6267409

Second, we can obtain the same results using the groupby method, which allows us to group rows  
of a DataFrame by the values of a given column, and apply a reduction function on the resulting object  
(for example, sum, mean, min, max, etc.). The result is a new DataFrame with the grouped-by column as index. 
Using this method we can compute the total population in the 105 cities, grouped by state, in the  
following way.

In [57]: df_pop5 = (df_pop.drop("Rank", axis=1)
    ...:                  .groupby("State").sum()
    ...:                  .sort("NumericPopulation", ascending=False))

Note that here we also used the drop method to remove the Rank column (hence the axis=1, use axis=0 
to drop rows) from the DataFrame (since it is not meaningful to aggregate the rank by summation). Finally, 
we use the plot method of the Series object to plot bar graphs for the city count and the total population. 
The results are shown in Figure 12-2.

In [58]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
    ...: city_counts.plot(kind='barh', ax=ax1)
    ...: ax1.set_xlabel("# cities in top 105")
    ...: df_pop5.NumericPopulation.plot(kind='barh', ax=ax2)
    ...: ax2.set_xlabel("Total pop. in top 105 cities")
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Time Series
Time series are a common form of data in which a quantity is given, for example, at regularly or irregularly 
spaced timestamps, or for fixed or variable time spans (periods). In pandas, there are dedicated data 
structures for representing these types of data. Series and DataFrame can have both columns and indices 
with data types describing timestamps and time spans. When dealing with temporal data it is particularly 
useful to be able to index the data with time data types. Using pandas time-series indexers, DatetimeIndex 
and PeriodIndex, we can carry out many common date, time, period, and calendar operations, such as 
selecting time ranges, shifting and resampling of the data points in a time series.

To generate a sequence of dates that can be used as an index in a pandas Series or DataFrame objects, 
we can, for example, use the date_range function. It takes the starting point as a date and time string  
(or, alternatively, a datetime object from the Python standard library) as a first argument, and the number  
of elements in the range can be set using the periods keyword argument:

In [59]: pd.date_range("2015-1-1", periods=31)
Out[59]: <class 'pandas.tseries.index.DatetimeIndex'>
         [2015-01-01, ..., 2015-01-31]
         Length: 31, Freq: D, Timezone: None

To specify the frequency of the timestamps (which defaults to one day), we can use the freq keyword 
argument, and instead of using periods to specify the number of points, we can give both starting and 
ending points as date and time strings (or datetime objects) as first and second argument. For example, to 
generate hourly timestamps between 00:00 and 12:00 on 2015-01-01, we can use:

In [60]: pd.date_range("2015-1-1 00:00", "2015-1-1 12:00", freq="H")
Out[60]: <class 'pandas.tseries.index.DatetimeIndex'>
         [2015-01-01 00:00:00, ..., 2015-01-01 12:00:00]
         Length: 13, Freq: H, Timezone: None

Figure 12-2.  The number of cities in the list of the top 105 most populated cities in Europe (left) and the total 
population in those cities (right), grouped by state
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The date_range function returns an instance of DatetimeIndex, which can be used, for example, as an 
index for a Series or DataFrame object:

In [61]: ts1 = pd.Series(np.arange(31), index=pd.date_range("2015-1-1", periods=31))
In [62]: ts1.head()
Out[62]: 2015-01-01    0
         2015-01-02    1
         2015-01-03    2
         2015-01-04    3
         2015-01-05    4
         Freq: D, dtype: int64

The elements of a DatetimeIndex object can, for example, be accessed using indexing with date and 
time strings. An element in a DatetimeIndex is of the type Timestamp, which is a pandas object that extends 
the standard Python datetime object (see the datetime module in the Python standard library).

In [63]: ts1["2015-1-3"]
Out[63]: 2
In [64]: ts1.index[2]
Out[64]: Timestamp('2015-01-03 00:00:00', offset='D')

In many aspects, a Timestamp and datetime object are interchangeable, and the Timestamp class have, 
like the datetime class, attributes for accessing time fields such as year, month, day, hour, minute, and so on. 
However, a notable difference between Timestamp and datetime is that Timestamp store a timestamp with 
nanoseconds resolution, while a datetime object only uses microsecond resolution.

In [65]: ts1.index[2].year, ts1.index[2].month, ts1.index[2].day
Out[65]: (2015, 1, 3)
In [66]: ts1.index[2].nanosecond
Out[66]: 0

We can convert a Timestamp object to a standard Python datetime object using the to_pydatetime 
method:

In [67]: ts1.index[2].to_pydatetime()
Out[67]: datetime.datetime(2015, 1, 3, 0, 0)

and we can use a list of datetime objects to create a pandas time series:

In [68]: import datetime
In [69]: ts2 = pd.Series(np.random.rand(2),
    ...:                 index=[datetime.datetime(2015, 1, 1), datetime.datetime(2015, 2, 1)])
In [70]: ts2
Out[70]: 2015-01-01    0.683801
         2015-02-01    0.916209
         dtype: float64
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Data that is defined for sequences of time spans can be represented using Series and DataFrame 
objects that are indexed using the PeriodIndex class. We can construct an instance of the PeriodIndex 
class explicitly by passing a list of Period objects, and then specify it as an index when creating a Series or 
DataFrame object:

In [71]: periods = pd.PeriodIndex([pd.Period('2015-01'),
    ...:                           pd.Period('2015-02'),
    ...:                           pd.Period('2015-03')])
In [72]: ts3 = pd.Series(np.random.rand(3), index=periods)
In [73]: ts3
Out[73]: 2015-01    0.969817
         2015-02    0.086097
         2015-03    0.016567
         Freq: M, dtype: float64
In [74]: ts3.index
Out[74]: <class 'pandas.tseries.period.PeriodIndex'>
         [2015-01, ..., 2015-03]
         Length: 3, Freq: M

We can also converting a Series or DataFrame object indexed by a DatetimeIndex object to a 
PeriodIndex using the to_period method (which takes an argument that specifies the period frequency, 
here 'M' for month):

In [75]: ts2.to_period('M')
Out[75]: 2015-01    0.683801
         2015-02    0.916209
         Freq: M, dtype: float64

In the remaining part of this section we explore select features of pandas time series through examples. 
We look at the manipulation of two time series that contain sequences of temperature measurements at 
given timestamps. We have one dataset for an indoor temperature sensor, and one dataset for an outdoors 
temperature sensor, both with observations approximately every 10 minutes during most of 2014. The two 
data files, temperature_indoor_2014.tsv and temperature_outdoor_2014.tsv, are TSV (tab-separated 
values, a variant of the CSV format) files with two columns: the first column contains UNIX timestamps 
(seconds since Jan 1, 1970), and the second column is the measured temperature in degree Celsius. For 
example, the first five lines in the outdoor dataset are:

In [76]: !head -n 5 temperature_outdoor_2014.tsv
1388530986      4.380000
1388531586      4.250000
1388532187      4.190000
1388532787      4.060000
1388533388      4.060000

We can read the data files using read_csv by specifying that the delimiter between columns is the  
TAB character: delimiter="\t". When reading the two files we also explicitly specify the column names 
using the names keyword argument, since the files in this example do not have header lines with the  
column names.
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In [77]: df1 = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",
    ...:                   names=["time", "outdoor"])
In [78]: df2 = pd.read_csv('temperature_indoor_2014.tsv', delimiter="\t",
    ...:                   names=["time", "indoor"])

Once we have created DataFrame objects for the time series data, it is informative to inspect the data by 
displaying the first few lines:

In [79]: df1.head()
Out[79]:

time outdoor

0 1388530986 4.38

1 1388531586 4.25

2 1388532187 4.19

3 1388532787 4.06

4 1388533388 4.06

The next step toward a meaningful representation of the time series data is to convert the UNIX 
timestamps to date and time objects using to_datetime with the unit="s" argument. Furthermore, we 
localize the timestamps (assigning a time zone) using tz_localize and convert the time zone attribute to 
the Europe/Stockholm time zone using tz_convert. We also set the time column as index using set_index:

In [80]: df1.time = (pd.to_datetime(df1.time.values, unit="s")
    ...:               .tz_localize('UTC').tz_convert('Europe/Stockholm'))
In [81]: df1 = df1.set_index("time")
In [82]: df2.time = (pd.to_datetime(df2.time.values, unit="s")
    ...:               .tz_localize('UTC').tz_convert('Europe/Stockholm'))
In [83]: df2 = df2.set_index("time")
In [84]: df1.head()
Out[84]:

outdoor

time

2014-01-01 00:03:06+01:00 4.38

2014-01-01 00:13:06+01:00 4.25

2014-01-01 00:23:07+01:00 4.19

2014-01-01 00:33:07+01:00 4.06

2014-01-01 00:43:08+01:00 4.06

Displaying the first few rows of the data frame for the outdoor temperature dataset shows that the index 
now indeed is a date and time object. As we will see examples of in the following, having the index of a time 
series represented as proper date and time objects (in contrast to using for example integers representing 
the UNIX timestamps) allows us to easily perform many time-oriented operations. Before we proceed to 
explore the data in more detail, we first plot the two time series to obtain an idea of how the data looks like. 
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For this we can use the DataFrame.plot method, and the results are shown in Figure 12-3. Note that there 
is data missing for a part of August. Imperfect data is a common problem, and handling missing data in a 
suitable manner is an important part of the mission statement of the pandas library.

In [85]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))
    ...: df1.plot(ax=ax)
    ...: df2.plot(ax=ax)

It is also illuminating to display the result of the info method of the DataFrame object. Doing so tells us 
that there are nearly 50000 data points in this data set, and that it contains data points starting at 2014-01-01 
00:03:06 and ending at 2014-12-30 23:56:35:

In [86]: df1.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 49548 entries, 2014-01-01 00:03:06+01:00 to 2014-12-30 23:56:35+01:00
Data columns (total 1 columns):
outdoor    49548 non-null float64
dtypes: float64(1) memory usage: 774.2 KB

A common operation on time series is to select and extract parts of the data. For example, from the 
full dataset that contains data for all of 2014, we may be interested in selecting out and analyze only the 
data for the month of January. In pandas, we can accomplish this in a number of ways. For example, we can 
use Boolean indexing of a DataFrame to create a DataFrame for a subset of the data. To create the Boolean 
indexing mask that selects the data for January, we can take advantage of the pandas time series features that 
allows us to compare the time series index with string representations of a date and time. In the following 
code, the expressions like df1.index >= "2014-1-1," where df1.index is a time DateTimeIndex instance, 
results in a Boolean NumPy array that can be used as a mask to select the desired elements.

In [87]: mask_jan = (df1.index >= "2014-1-1") & (df1.index < "2014-2-1")
In [88]: df1_jan = df1[mask_jan]
In [89]: df1_jan.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 4452 entries, 2014-01-01 00:03:06+01:00 to 2014-01-31 23:56:58+01:00
Data columns (total 1 columns):
outdoor    4452 non-null float64
dtypes: float64(1) memory usage: 69.6 KB

Figure 12-3.  Plot of the time series for indoors and outdoors temperatures
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Alternatively, we can use slice syntax directly with date and time strings:

In [90]: df2_jan = df2["2014-1-1":"2014-1-31"]

The results are two DataFrame objects, df1_jan and df2_jan, that contains data only for the month of 
January. Plotting this subset of the original data using the plot method results in the graph shown in Figure 12-4.

In [91]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))
    ...: df1_jan.plot(ax=ax)
    ...: df2_jan.plot(ax=ax)

Like the datetime class in Python’s standard library, the Timestamp class that is used in pandas to 
represent time values has attributes for accessing fields such as year, month, day, hour, minute, and so on. 
These fields are particularly useful when processing time series. For example, if we wish to calculate the 
average temperature for each month of the year, we can begin by creating a new column month, which we 
assign to the month field of the Timestamp values of the DatetimeIndex indexer. To extract the month field 
from each Timestamp value, we first call reset_index to convert the index to a column in the data frame  
(in which case the new DataFrame object falls back to using an integer index), after which we can use the 
apply function on the newly created time column.4

In [92]: df1_month = df1.reset_index()
In [93]: df1_month["month"] = df1_month.time.apply(lambda x: x.month)
In [94]: df1_month.head()
Out[94]:

time outdoor month

0 2014-01-01 00:03:06+01:00 4.38 1

1 2014-01-01 00:13:06+01:00 4.25 1

2 2014-01-01 00:23:07+01:00 4.19 1

3 2014-01-01 00:33:07+01:00 4.06 1

4 2014-01-01 00:43:08+01:00 4.06 1

Figure 12-4.  Plot of the time series for indoors and outdoors temperatures for a selected month (January)

4We can also directly use the month method of the DatetimeIndex index object, but for the sake of demonstration we 
use a more explicit approach here.
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Next, we can group the DataFrame by the new month field, and aggregate the grouped values using the 
mean function for computing the average within each group.

In [95]: df1_month = df1_month.groupby("month").aggregate(np.mean)
In [96]: df2_month = df2.reset_index()
In [97]: df2_month["month"] = df2_month.time.apply(lambda x: x.month)
In [98]: df2_month = df2_month.groupby("month").aggregate(np.mean)

After having repeated the same process for the second DataFrame (indoor temperatures), we can 
combine df1_month and df2_month into a single DataFrame using the join method:

In [99]: df_month = df1_month.join(df2_month)
In [100]: df_month.head(3)
Out[100]:

outdoor indoor

time

1 -1.776646 19.862590

2 2.231613 20.231507

3 4.615437 19.597748

In only a few lines of code, we have here leveraged some of the many data processing capabilities of 
pandas to transform and compute with the data. It is often the case that there are many different ways to 
combine the tools provided by pandas to do the same, or a similar, analysis. For the current example, we can 
do the whole process in a single line of code, using the to_period and groupby methods, and the concat 
function (which like join combines DataFrame into a single DataFrame):

In [101]: df_month = pd.concat([df.to_period("M").groupby(level=0).mean() for df in [df1, df2]],
     ...:                      axis=1)
In [102]: df_month.head(3)
Out[102]:

outdoor indoor

time

2014-01 -1.776646 19.862590

2014-02 2.231613 20.231507

2014-03 4.615437 19.597748

To visualize the results, we plot the average monthly temperatures as a bar plot and a box plot using the 
DataFrame method plot. The result is shown in Figure 12-5.

In [103]: fig, axes = plt.subplots(1, 2, figsize=(12, 4))
     ...: df_month.plot(kind='bar', ax=axes[0])
     ...: df_month.plot(kind='box', ax=axes[1])
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Finally, a very useful feature of the pandas time series objects is the ability to up- and down-sample the 
time series using the resample method. Resampling means that the number of data points in a time series is 
changed. It can be either increased (upsampling) or decreased (downsampling). For upsampling, we need 
to choose a method for filling in the missing values, and for downsampling we need to choose a method for 
aggregating multiple sample points between each new sample point. The resample method expects as first 
argument a string that specifies the new period of data points in the resampled time series. For example, 
the string H represents a period of one hour, the string D one day, the string M one month, and so on.5 We can 
also combine these in simple expressions, such as 7D, which denotes a time period of seven days. Optionally, 
we can also use the how argument to specify how to aggregate values in the case of downsampling, and 
the fill_method argument to specify a method for filling in the value of new data points in the case of 
upsampling.

To illustrate the use for the resample method, consider the previous two time series with temperature 
data. The original sampling frequency is roughly 10 minutes, which amounts to a lot of data points over 
the period of a year. For plotting purposes, or if we want to compare the 2 time series, which are sampled 
at slightly different timestamps, it is often necessary to down-sample the original data. This can give less 
busy graphs, and regularly spaced time series that readily can be compared to each other. In the following 
code we resample the outdoors temperature time series to four different sampling frequencies, and plot the 
resulting time series. We also resample both the outdoor and indoor time series to daily averages that we 
subtract to obtain the daily average temperature difference between indoors and outdoors throughout the 
year. These types of manipulations are very handy when dealing time series, and it is one of the many areas 
in which the pandas library really shines. See Figure 12-6.

In [104]: df1_hour = df1.resample("H")
In [105]: df1_hour.columns = ["outdoor (hourly avg.)"]
In [106]: df1_day = df1.resample("D")
In [107]: df1_day.columns = ["outdoor (daily avg.)"]
In [108]: df1_week = df1.resample("7D")
In [109]: df1_week.columns = ["outdoor (weekly avg.)"]
In [110]: df1_month = df1.resample("M")
In [111]: df1_month.columns = ["outdoor (monthly avg.)"]
In [112]: df_diff = (df1.resample("D").outdoor - df2.resample("D").indoor)

Figure 12-5.  Average indoor and outdoor temperatures per month (left), and a boxplot for monthly indoor 
and outdoors temperature (right)

5There are a large number of available time-unit codes. See the sections on “Offset aliases” and “Anchored offsets” in the 
pandas reference manual for details.
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In [113]: fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 6))
     ...: df1_hour.plot(ax=ax1, alpha=0.25)
     ...: df1_day.plot(ax=ax1)
     ...: df1_week.plot(ax=ax1)
     ...: df1_month.plot(ax=ax1)
     ...: df_diff.plot(ax=ax2)
     ...: ax2.set_title("temperature difference between outdoor and indoor")
     ...: fig.tight_layout()

As an illustration of upsampling, consider the following example where we resample the data frame 
df1 to a sample frequency of 5 minutes, using three different fill methods (None, ffill for forward-fill, and 
bfill for back-fill). The original sample frequency is approximately 10 minutes, so this resampling is indeed 
upsampling. The result is three new data frames that we combine into a single DataFrame object using the 
concat function. The first five rows in the data frame are also shown below. Note that the every second data 
point is a new sample point, and depending on the value of the fill_method argument those values are 
filled (or not) according to the specified strategies. When no fill strategy is selected, the corresponding values 
are marked as missing using the NaN value.

In [114]: fill_methods = [None, 'ffill', 'bfill']
In [115]: pd.concat([df1.resample("5min", fill_method=fm).rename(columns={"outdoor": fm})
     ...:            for fm in fill_methods], axis=1).head()

Figure 12-6.  Outdoors temperature, resampled to hourly, daily, weekly, and monthly averages
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Out[115]:

None ffill bfill

time

2014-01-01 00:00:00+01:00 4.38 4.38 4.38

2014-01-01 00:05:00+01:00 NaN 4.38 4.25

2014-01-01 00:10:00+01:00 4.25 4.25 4.25

2014-01-01 00:15:00+01:00 NaN 4.25 4.19

2014-01-01 00:20:00+01:00 4.19 4.19 4.19

The Seaborn Graphics Library
The seaborn graphics library is built on top of Matplotlib, and it provides functions for generating graphs 
that are useful when working with statistics and data analysis, including distribution plots, kernel-density 
plots, joint distribution plots, factor plot, heat maps, facet plots, and several ways of visualizing regressions. 
It also provides methods for coloring data in graphs, and numerous well-crafted color palettes. The seaborn 
library is created with close attention to the aesthetics of the graphs it produces, and the graphs generated 
with the library tend to be both good looking and informative. The seaborn library distinguishes itself from 
the underlying Matplotlib library in that it provides polished higher-level graph functions for a specific 
application domain, namely, statistical analysis and data visualization. The ease with which standard 
statistical graphs can be generated with the library makes it a valuable tool in exploratory data analysis.

To get started using the seaborn library, we first import the seaborn module. Here we follow the 
common convention of importing this library under the name sns. After importing the library we can set 
a style for the graphs it produces using the sns.set function. Here we choose to work with the style called 
darkgrid, which produces graphs with a gray background (also try the whitegrid style).

In [116]: import seaborn as sns
In [117]: sns.set(style="darkgrid")

Importing seaborn and setting a style for the library alters the default settings for how Matplotlib graphs 
appear, including graphs produced by the pandas library. For example, consider the following plot of the 
previously used indoor and outdoor temperature time series. The resulting graph is shown in Figure 12-7, 
and although the graph was produced using the pandas DataFrame method plot, importing the seaborn 
library has changed the appearance of the graph (compare with Figure 12-3).

In [118]: df1 = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",
     ...:                   names=["time", "outdoor"])
     ...: df1.time = (pd.to_datetime(df1.time.values, unit="s")
     ...:               .tz_localize('UTC').tz_convert('Europe/Stockholm'))
     ...: df1 = df1.set_index("time").resample("10min")
In [119]: df2 = pd.read_csv('temperature_indoor_2014.tsv', delimiter="\t",
     ...:                   names=["time", "indoor"])
     ...: df2.time = (pd.to_datetime(df2.time.values, unit="s")
     ...:               .tz_localize('UTC').tz_convert('Europe/Stockholm'))
     ...: df2 = df2.set_index("time").resample("10min")
In [120]: df_temp = pd.concat([df1, df2], axis=1)
In [121]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))
     ...: df_temp.resample("D").plot(y=["outdoor", "indoor"], ax=ax)
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The main strength of the seaborn library, apart from generating good-looking graphics, is its collection 
of easy-to-use statistical plots. Examples of these are the kdeplot and distplot, which plot a kernel-density 
estimate plot and a histogram plot with a kernel-density estimate overlaid on top of the histogram, 
respectively. For example, the following two lines of code produce the graph shown in Figure 12-8. The solid 
blue and green lines in this figure are the kernel-density estimate that can also be graphed separately using 
the function kdeplot (not shown here).

In [122]: sns.distplot(df_temp.to_period("M")["outdoor"]["2014-04"].dropna().values, bins=50);
     ...: sns.distplot(df_temp.to_period("M")["indoor"]["2014-04"].dropna().values, bins=50);

Figure 12-7.  Time series plot produced by Matplotlib using the pandas library, with a plot style that is set up 
by the seaborn library

Figure 12-8.  The histogram (bars) and kernel-density plots (solid lines) for the subset of the indoors and 
outdoors datasets that correspond to the month of april
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The kdeplot function can also operate on two-dimensional data, showing a contour graph of the joint 
kernel-density estimate. Relatedly, we can use the jointplot function to plot the joint distribution for two 
separate datasets. Below we use the kdeplot and jointplot to show the correlation between the indoor and 
outdoor data series, which are resampled to hourly averages before visualized (we also drop missing values 
using dropna method, since the functions form the seaborn library do not accept arrays with missing data). 
The results are shown in Figure 12-9.

In [123]: sns.kdeplot(df_temp.resample("H")["outdoor"].dropna().values,
     ...:             df_temp.resample("H")["indoor"].dropna().values, shade=False)
In [124]: with sns.axes_style("white"):
     ...:     sns.jointplot(df_temp.resample("H")["outdoor"].values,
     ...:                   df_temp.resample("H")["indoor"].values, kind="hex")

The seaborn library also provides functions for working with categorical data. A simple example of a 
graph type that is often useful for datasets with categorical variables is the standard boxplot for visualizing 
the descriptive statistics (min, max, median, and quartiles) of a dataset. An interesting twist on the standard 
boxplot is violin plot, in which the kernel-density estimated is shown in the width of boxplot. The boxplot 
and violinplot functions can be used to produce such graphs, as shown in the following example, and the 
resulting graph is shown in Figure 12-10.

In [125]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
     ...: sns.boxplot(df_temp.dropna(), ax=ax1, palette="pastel")
     ...: sns.violinplot(df_temp.dropna(), ax=ax2, palette="pastel")

Figure 12-9.  Two-dimensional kernel-density estimate contours (left) and the joint distribution for the indoor 
and outdoor temperature datasets (right). The outdoor temperatures are shown on the x-axis, and the indoor 
temperature on the y-axis
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As a further example of violin plots, consider the outdoor temperature dataset partitioned by the month, 
which can be produced by passing the month field of the index of the data frame as second argument  
(used to group the data into categories). The resulting graph, which is shown in Figure 12-11, provides a 
compact and informative visualization of the distribution of temperatures for each month of the year.

In [126]: sns.violinplot(x=df_temp.dropna().index.month,
     ...:                y=df_temp.dropna().outdoor, color="skyblue");

Figure 12-10.  A box plot (left) and violin plot (right) for the indoor and outdoor temperature datasets

Figure 12-11.  Violin plot for the outdoor temperature grouped by month
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Heat maps are another type of graph that is handy when dealing with categorical variables, especially 
for variables with a large number of categories. The seaborn library provides the function heatmap for 
generating this type of graph. For example, working with the outdoors temperature data set, we can create 
two categorical columns month and hour by extracting those fields from the index and assign them to new 
columns in the data field. Next we can use the pivot_table function in pandas to pivot the columns into 
a table (matrix) where two selected categorical variables constitute the new index and columns. Here we 
pivot the temperature dataset so that the hours of the day are the columns, and the months of the year are 
the rows (index). To aggregate the multiple data points that falls within each hour-month category, we use 
aggfunc=np.mean argument to compute the mean of all the values:

In [127]: df_temp["month"] = df_temp.index.month
     ...: df_temp["hour"] = df_temp.index.hour
In [128]: table = pd.pivot_table(df_temp, values='outdoor', index=['month'], 
     ...:                        columns=['hour'], aggfunc=np.mean)

Once we have created pivot table, we can visualize it as a heatmap using the heatmap function in 
seaborn. The result is shown in Figure 12-12.

In [129]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))
     ...: sns.heatmap(table, ax=ax)

The seaborn library contains much more statistical visualization tools than what we have been able to 
survey here. However, I hope that looking at a few examples of what this library can do illustrates the essence 
of the seaborn library – that it is a convenient tool for statistical analysis and exploration of data, which is 
able to produce many standard statistical graphs with a minimal of effort. In the following chapters we will 
see further examples of applications of the seaborn library.

Figure 12-12.  A heatmap of the outdoor temperature data grouped by hour of the day and month of the year
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Summary
In this chapter we have explored data representation and data processing using the pandas library, 
and we briefly surveyed the statistical graphics tools provided by the seaborn visualization library. The 
pandas library provides the back end for much of data wrangling done with Python. It achieves this by 
adding a higher-level abstraction layer in the data representation on top of NumPy arrays, with additional 
methods for operating on the underlying data. The ease with which data can be loaded, transformed, and 
manipulated makes it an invaluable part of the data processing workflow in Python. The pandas library 
also contains basic functions for visualizing the data that is represented by its data structures. Being able 
to quickly visualize data represented as pandas series and data frames is an important tool in exploratory 
data analytics as well as for presentation. The seaborn library takes this a step further, and provides a rich 
collection of statistical graphs that can be produced often with a single line of code. Many functions in the 
seaborn library can operate directly on pandas data structures.

Further Reading
A great introduction to the pandas library is given by the original creator of the library in (McKinney, 2013), 
and it is also a rather detailed introduction to NumPy. The pandas official documentation, available at 
http://pandas.pydata.org/pandas-docs/stable, also provides an accessible and very detailed description 
of the features of the library. Another good online resource for learning pandas is http://github.com/jvns/
pandas-cookbook. For data visualization, we have looked at the seaborn library in this chapter, and it is well 
described in the documentation available on its web site. With respect to higher-level visualization tools, it is 
also worth exploring the ggplot library for Python: http://ggplot.yhathq.com, which is an implementation 
based on renowned Grammar of graphics (L. Wilkinson, 2005). This library is also closely integrated with the 
pandas library, and it provides statistical visualization tools that are convenient when analyzing data. For 
more information about visualization in Python, see for example, the book by Vaingast.
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Chapter 13

Statistics

Statistics has long been a field of mathematics that is relevant to practically all applied disciplines of 
science and engineering, as well as business, medicine, and other fields where data is used for obtaining 
knowledge and making decisions. With the recent proliferation of data analytics there has been a surge of 
renewed interest in statistical methods. Still, computer-aided statistics has a long history, and it is a field that 
traditionally has been dominated by domain-specific software packages and programming environments, 
such as the S language, and more recently its open source counterpart: the R language. The use of Python 
for statistical analysis has grown rapidly over the last several years, and by now there is a mature collection 
of statistical libraries for Python. With these libraries Python can match the performance and features 
of domain-specific languages in many areas of statistics, albeit not all, while also providing the unique 
advantages of the Python programming language and its environment. The pandas library that we discussed 
in Chapter 12 is an example of a development within the Python community that was strongly influenced by 
statistical software, with the introduction of the data frame data structure to the Python environment. The 
NumPy and SciPy libraries provides computational tools for many fundamental statistical concepts, and 
higher-level statistical modeling and machine learning are covered by the statsmodels and scikit-learn 
libraries, which we will see more of in the following chapters.

In this chapter we focus on fundamental statistical applications using Python, and in particular the 
stats module in SciPy. Here we discuss computing descriptive statistics, random numbers, random 
variables, distributions, and hypothesis testing. We defer more involved statistical modeling and machine-
learning applications to the following chapters. Some fundamental statistical functions are also available 
through the NumPy library, such as its functions and methods to compute descriptive statistics and its 
module for generating random numbers. The SciPy stats module built on top of NumPy, for example, 
provides random number generators with more specialized distributions.

Importing Modules
In this chapter we mainly work with the stats module in SciPy, and following the convention to selectively 
import modules from SciPy, we here assume that this module, as well as the optimize module, are imported 
in the following way:

In [1]: from scipy import stats
   ...: from scipy import optimize

In addition, as usual we also require the NumPy and Matplotlib libraries:

In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt

http://dx.doi.org/10.1007/978-1-4842-0553-2_12
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and for statistical graphs and styling we use the Seaborn library:

In [4]: import seaborn as sns
In [5]: sns.set(style="whitegrid")

Review of Statistics and Probability
We begin with a brief review of statistics, in order to introduce of some of the key concepts and the notation that 
we use in this and the following chapters. Statistics deals with the collection and analysis of data for the purpose 
of gaining insights, drawing conclusions, and supporting decision making. Statistical methods are necessary 
when we have incomplete information about a phenomenon. Typically we have incomplete information 
because we are unable to collect data from all members of a population, or if there is uncertainty in observations 
that we make (for example due to measurement noise). When we are unable to survey an entire population, a 
randomly chosen sample can be studied instead, and we can use statistical methods and compute descriptive 
statistics (parameters such as the mean and the variances) to make inferences about the properties of the entire 
population (also called sample space) in a systematic manner and with controlled risks of error.

Statistical methods are built on the foundation provided by probability theory, with which we can 
model uncertainty and incomplete information using probabilistic, random variables. For example, with 
randomly selected samples of a population, we can hope to obtain representative samples whose properties 
can be used to infer properties of the entire population. In probability theory, each possible outcome for an 
observation is given a probability, and the probability for all possible outcomes constitutes the probability 
distribution. Given the probability distribution, we can compute properties of the population, such as its 
mean and variance, but for randomly selected samples we only know the expected, or average, results.

In statistical analysis it is important to distinguish between population and sample statistics. Here 
we denote parameters of the population with Greek symbols and parameters of a sample with the 
corresponding population symbol with the added subscript x (or the symbol that is used to represent the 
sample). For example, the mean and the variance of a population is denoted with m and s 2, and the mean 
and the variance of a sample x is denoted as m
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In the latter expression we have replaced the population mean m with the sample mean m
x
 and divided with 

n -1 rather than n. The reason for this is that one degree of freedom has been eliminated from the sample set 
when calculating the sample mean m

x
, so when computing the sample variance only n -1 degrees of freedom 

remains. Consequently, the way to compute the variance for a population and a sample is slightly different. 
This is reflected in functions we can use to compute these statistics in Python.

In Chapter 2 we have already seen that we can compute descriptive statistics for data using NumPy 
functions or the corresponding ndarray methods. For example, to compute the mean and the median of a 
dataset, we can use the NumPy functions mean and median:

In [6]: x = np.array([3.5, 1.1, 3.2, 2.8, 6.7, 4.4, 0.9, 2.2])
In [7]: np.mean(x)
Out[7]: 3.10
In [8]: np.median(x)
Out[8]: 3.0

http://dx.doi.org/10.1007/978-1-4842-0553-2_2
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Similarly, we can use min and max functions or ndarray methods to compute the minimum and 
maximum value in the array:

In [9]: x.min(), x.max()
Out[9]: (0.90, 6.70)

To compute the variance and the standard deviation for a dataset we use the var and std methods.  
By default, the formula for the population variance and standard deviation is used (that is, it is assumed that 
the dataset is the entire population).

In [10]: x.var()
Out[10]: 3.07
In [11]: x.std()
Out[11]: 1.7521415467935233

However, to change this behavior we can use the argument ddof (delta degrees of freedom). The 
denominator in expression for the variance is the number of elements in the array minus ddof, so to calculate 
the unbiased estimate of the variance and standard deviation from a sample we need to set ddof=1:

In [12]: x.var(ddof=1)
Out[12]: 3.5085714285714293
In [13]: x.std(ddof=1)
Out[13]: 1.8731181032095732

In the following sections we look into more detail on how to use NumPy and SciPy’s stats module to 
generate random numbers, represent random variables and distributions, and testing hypotheses.

Random Numbers
The Python standard library contains the module random, which provides functions for generating single 
random numbers with a few basic distributions. The random module in the NumPy module provides similar 
functionality, but offers functions that generate NumPy arrays with random numbers, and it has support 
for a wider selection of probability distributions. Arrays with random numbers are often practical for 
computational purposes, so here we focus on the random module in NumPy, and later also the higher-level 
functions and classes in scipy.stats, which build on top of and extend NumPy.

Earlier in this book we have already used np.random.rand, which generates uniformly distributed 
floating-point numbers in the half-open interval [0, 1) (that is, 0.0 is a possible outcome, but 1.0 is not). 
In addition to this function, the np.random module also contains a large collection of other functions for 
generating random numbers that covers different intervals, have different distribution, and takes values 
of different types (for example, floating-point numbers and integers). For example, the randn function 
produces random numbers that are distributed according to the standard normal distribution (the normal 
distribution with mean 0, and standard deviation 1), and the randint function generates uniformly 
distributed integers between a given low (inclusive) and high (exclusive) value. When the rand and randn 
functions are called without any arguments, they produce a single random number:

In [14]: np.random.rand()
Out[14]: 0.532833024789759
In [15]: np.random.randn()
Out[15]: 0.8768342101492541
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However, passing the shape of the array as arguments to these functions produces arrays of random 
numbers. For example, here we generate a vector of length 5 of using rand by passing a single argument 5, 
and a 2 4´  array using randn by passing 2 and 4 as arguments (higher-dimensional arrays are generated by 
passing the length of each dimension as arguments):

In [16]: np.random.rand(5)
Out[16]: array([ 0.71356403,  0.25699895,  0.75269361,  0.88387918,  0.15489908])
In [17]: np.random.randn(2, 4)
Out[17]: array([[ 3.13325952,  1.15727052,  1.37591514,  0.94302846],
                [ 0.8478706 ,  0.52969142, -0.56940469,  0.83180456]])

To generate random integers using randint (see also random_integers), we need to either provide the 
upper limit for the random numbers (in which case the lower limit is implicitly zero), or provide both the 
lower and upper limits. The size of the generated array is specified using the size keyword arguments, and it 
can be an integer or a tuple that specifies the shape of a multidimensional array:

In [18]: np.random.randint(10, size=10)
Out[18]: array([0, 3, 8, 3, 9, 0, 6, 9, 2, 7])
In [19]: np.random.randint(low=10, high=20, size=(2, 10))
Out[19]: array([[12, 18, 18, 17, 14, 12, 14, 10, 16, 19],
                [15, 13, 15, 18, 11, 17, 17, 10, 13, 17]])

Note that the randint function generates random integers in the half-open interval low high,[ ). To 
demonstrate that the random numbers produced by rand, randn and randint, indeed are distributed 
differently, we can plot the histograms of say 10,000 random numbers produced by each function. The result 
is shown in Figure 13-1. We note that the distributions for rand and randint appear uniform, but have 
different ranges and types, while the distribution of the numbers produced by randn resembles a Gaussian 
curve centered at zero, as expected.

In [20]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))
    ...: axes[0].hist(np.random.rand(10000))
    ...: axes[0].set_title("rand")
    ...: axes[1].hist(np.random.randn(10000))
    ...: axes[1].set_title("randn")
    ...: axes[2].hist(np.random.randint(low=1, high=10, size=10000), bins=9, align='left')
    ...: axes[2].set_title("randint(low=1, high=10)")

Figure 13-1.  Distributions for 10,000 random numbers generated by the rand, randn, and randint functions 
in NumPy’s random module
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In statistical analysis, it is often necessary to generate a unique list of integers. This corresponds to 
sampling (randomly selecting) items from a set (population) without replacement (so that we do not get 
the same item twice). From the NumPy random module, we can use the choice function to generate these 
types of random numbers. As our first argument we can either provide a list (or array) with the values in 
the population, or an integer that corresponds to the number of elements in the population. As our second 
argument we give the number of values that are to be sampled. Whether the values are to be sampled with or 
without replacement can be specified using the replace keyword argument, which takes the Boolean values 
True or False. For example, to sample five unique (without replacement) items from the set of integers 
between 0 (inclusive) and 10 (exclusive), we can use:

In [21]: np.random.choice(10, 5, replace=False)
Out[21]: array([9, 0, 5, 8, 1])

When working with random number generation, it can be useful to seed the random number generator. 
The seed is a number that initializes the random number generator to a specific state, so that once it has 
been seeded with a specific number it always generates the same sequence of random numbers. This can 
be useful when testing and for reproducing previous results, and occasionally in applications that require 
reseeding the random number generator (for example, after having forked a process). To seed the random 
number generator in NumPy, we can use the seed function, which takes an integer as an argument:

In [22]: np.random.seed(123456789)
In [23]: np.random.rand()
Out[23]: 0.532833024789759

Note that after having seeded the random number generator with a specific number, here 123456789, 
the following calls to the random number generators always produce the same results:

In [24]: np.random.seed(123456789); np.random.rand()
Out[24]: 0.532833024789759

The seed of the random number generator is a global state of the np.random module. A finer level of 
control of the state of the random number generator can be achieved by using the RandomState class, which 
optionally takes a seed integer as argument to its initializer. The RandomState object keeps tracks of the state 
of the random number generator, and allows maintaining several independent random number generators 
in the same program (which can be useful, for example, when working with threaded applications). Once a 
RandomState object has been created, we can use methods of this object to generate random numbers. The 
RandomState class has methods that correspond to the functions that are available in np.random module. For 
example, we can use the method randn of the RandomState class to generate standard normal distributed 
random numbers:

In [25]: prng = np.random.RandomState(123456789)
In [26]: prng.rand(2, 4)
Out[26]: array([[ 0.81854739,  0.09790852,  0.00355391,  0.23080962],
                [ 0.01225513,  0.35354171,  0.18528148,  0.7927684 ]])

Similarly, there are method rand, randint, rand_integers, choice, which also correspond to the 
functions in the np.random module with the same name. It is considered good programming practice to use 
a RandomState instance rather than directly using the functions in the np.random module, because it avoids 
relying on a global state variable and improves the isolation of the code. This is an important consideration 
when developing library functions that use random numbers, but is perhaps less important in smaller 
applications and calculations.
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In addition to the fundamental random number distributions we have looked at so far (discrete and 
continuous uniform distributions, randint and rand, and the standard normal distribution, randn), there 
are also functions, and RandomState methods, for a large number of probability distributions that occur in 
statistics. To mention just a few, there are the continuous c 2-distribution (chisquare), the Student’s  
t-distribution (standard_t), and the F-distribution (f):

In [27]: prng.chisquare(1, size=(2, 2))
Out[27]: array([[ 0.78631596,  0.19891367],
                [ 0.11741336,  2.8713997 ]])
In [28]: prng.standard_t(1, size=(2, 3))
Out[28]: array([[ 0.39697518, -0.19469463,  1.15544019],
                [-0.65730814, -0.55125015,  0.13578694]])
In [29]: prng.f(5, 2, size=(2, 4))
Out[29]: array([[  0.45471421,  17.64891848,   1.48620557,   2.55433261],
                [  1.21823269,   3.47619315,   0.50835525,   0.70599655]])

and the discrete binomial distribution (binomial) and the Poisson distribution (poisson):

In [30]: prng.binomial(10, 0.5, size=10)
Out[30]: array([4, 5, 6, 7, 3, 5, 7, 5, 4, 5])
In [31]: prng.poisson(5, size=10)
Out[31]: array([3, 5, 5, 5, 0, 6, 5, 4, 6, 3])

For a complete list of available distribution functions, see the docstrings for the np.random module, 
help(np.random), and the RandomState class. While it is possible to use the functions in np.random and 
methods in RandomState to draw random numbers from many different statistical distribution functions, 
when working with distributions there is a higher-level interface in the scipy.stats module that combines 
random number sampling with many other convenient functions for probability distributions. In the 
following section we explore this in more detail.

Random Variables and Distributions
In probability theory, the set of possible outcomes of a random process is called the sample space. Each 
element in the sample space (that is, an outcome of an experiment or an observation) can be assigned a 
probability, and the probabilities of all possible outcomes define the probability distribution. A random 
variable is a mapping from the sample space to the real numbers or to integers. For example, the possible 
outcomes of a coin toss are head and tail, so the sample space is {head, tail}, and a possible random variable 
takes the value 0 for head and 1 for tail. In general there are many ways to define random variables for the 
possible outcomes of a given random process. Random variables are a problem-independent representation 
of a random process. It is easier to work with random variables because they are described by numbers 
instead of outcomes from problem-specific sample spaces. A common step in statistical problem solving is 
therefore to map outcomes to numerical values and figure out the probability distribution of those values.

Consequently, a random variable is characterized by its possible values and its probability distribution, 
which assigns a probability for each possible value. Each observation of the random variable results in a 
random number, and the distribution of the observed values are described by the probability distribution. 
There are two main types of distributions: discrete and continuous distributions, which are integer valued 
and real valued, respectively. When working with statistics, dealing with random variables is of central 
importance, and in practice this often means working with probability distributions. The SciPy stats 
module provides classes for representing random variables with a large number of probability distributions. 
There are two base classes for discrete and continuous random variables: rv_discrete and rv_continuous. 
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These classes are not used directly, but rather used as base classes for random variables with specific 
distributions, but they do define a common interface for all random variable classes in SciPy stats.  
A summary of selected methods for discrete and continuous random variables is given in Table 13-1.

There are a large number of classes for the discrete and continuous random variables in the SciPy 
stats module. At the time of writing there are classes for 13 discrete and 83 continuous distributions, and 
these include the most commonly (and many less commonly) encountered distributions. For a complete 
reference, see the docstring for the stats module: help(stats). In the following we explore some of the 
more common distributions, but the usage of all the other distributions follows the same pattern.

The random variable classes in the SciPy stats module have several use-cases. They are both 
representations of the distribution, which can be used to compute descriptive statistics and for graphing, 
and they can be used to generate random numbers following the given distribution using the rvs (random 
variable sample) method. The latter use-case is similar to what we used the np.random module for earlier in 
this chapter.

As a demonstration of how to use the random variable classes in SciPy stats, consider the following 
example where we create a normal distributed random variable with mean 1.0 and standard deviation 0.5:

In [32]: X = stats.norm(1, 0.5)

Table 13-1.  Selected methods for discrete and continous random variables in the SciPy stats module

Methods Description

pdf / pmf Probability distribution function (continuous) or probability mass function 
(discrete).

cdf Cumulative distribution function.

sf Survival function (1 – cdf).

ppf Percent-point function (inverse of cdf).

moment Non-central moments of nth order.

stats Statistics of the distribution (typically the mean and variance, sometimes 
additional statistics).

fit Fit distribution to data using a numerical maximum likelihood optimization  
(for continuous distributions).

expect Expectation value of a function with respect to the distribution.

interval The endpoints of the interval that contains a given percentage of the distribution 
(confidence interval).

rvs Random variable samples. Takes as argument the size of the resulting array of 
samples.

mean, median, std, var Descriptive statistics: mean, median, standard deviation, and the variance of the 
distribution.
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Now X is an object that represents a random variable, and we can compute descriptive statistics of this 
random variable using, for example, the mean, median, std and var methods:

In [33]: X.mean()
Out[33]: 1.0
In [34]: X.median()
Out[34]: 1.0
In [35]: X.std()
Out[35]: 0.5
In [36]: X.var()
Out[36]: 0.25

Non-central moments of an arbitrary order can be computed with the moment method:

In [37]: [X.moment(n) for n in range(5)]
Out[37]: [1.0, 1.0, 1.25, 1.75, 2.6875]

And we can obtain a distribution-dependent list of statistics using the stats method (here, for a normal 
distributed random variable, we get the mean and the variance):

In [38]: X.stats()
Out[38]: (array(1.0), array(0.25))

We can evaluate the probability distribution function, the cumulative distribution function, the survival 
function, etc., using the pdf, cdf, and sf methods, etc. These all takes a value, or an array of values, at which 
to evaluate the function:

In [39]: X.pdf([0, 1, 2])
Out[39]: array([ 0.10798193,  0.79788456,  0.10798193])
In [40]: X.cdf([0, 1, 2])
Out[40]: array([ 0.02275013,  0.5       ,  0.97724987])

The interval method can be used to compute the lower and upper values of x such that a given 
percentage of the probability distribution falls within the interval (lower, upper). This method is useful for 
computing confidence intervals, and for selecting a range of x values for plotting:

In [41]: X.interval(0.95)
Out[41]: (0.020018007729972975, 1.979981992270027)
In [42]: X.interval(0.99)
Out[42]: (-0.28791465177445019, 2.2879146517744502)

To build intuition for the properties of a probability distribution it is useful to graph it, together with the 
corresponding cumulative probability function and the percent-point function. To make it easier to repeat 
this for several distributions, we first create a function plot_rv_distribution that plots the result of pdf 
or pmf, the cdf and sf, and ppf methods of the SciPy stats random variable objects, over an interval that 
contains 99.9% of the probability distribution function. We also highlight the area that contains 95% of the 
probability distribution using the fill_between drawing method:

In [43]: def plot_rv_distribution(X, axes=None):
    ...:     """Plot the PDF or PMF, CDF, SF and PPF of a given random variable"""
    ...:     if axes is None:
    ...:         fig, axes = plt.subplots(1, 3, figsize=(12, 3))



Chapter 13 ■ Statistics

321

    ...:
    ...:     x_min_999, x_max_999 = X.interval(0.999)
    ...:     x999 = np.linspace(x_min_999, x_max_999, 1000)
    ...:     x_min_95, x_max_95 = X.interval(0.95)
    ...:     x95 = np.linspace(x_min_95, x_max_95, 1000)
    ...:
    ...:     if hasattr(X.dist, "pdf"):
    ...:         axes[0].plot(x999, X.pdf(x999), label="PDF")
    ...:         axes[0].fill_between(x95, X.pdf(x95), alpha=0.25)
    ...:     else:
    ...:         # discrete random variables do not have a pdf method, instead we use pmf:
    ...:         x999_int = np.unique(x999.astype(int))
    ...:         axes[0].bar(x999_int, X.pmf(x999_int), label="PMF")
    ...:     axes[1].plot(x999, X.cdf(x999), label="CDF")
    ...:     axes[1].plot(x999, X.sf(x999), label="SF")
    ...:     axes[2].plot(x999, X.ppf(x999), label="PPF")
    ...:
    ...:     for ax in axes:
    ...:         ax.legend()

Next we use this function to graph a few examples of distributions: the normal distribution, the F 
distribution, and the discrete Poisson distribution. The result is shown in Figure 13-2.

In [44]: fig, axes = plt.subplots(3, 3, figsize=(12, 9))
    ...: X = stats.norm()
    ...: plot_rv_distribution(X, axes=axes[0, :])
    ...: axes[0, 0].set_ylabel("Normal dist.")
    ...: X = stats.f(2, 50)
    ...: plot_rv_distribution(X, axes=axes[1, :])
    ...: axes[1, 0].set_ylabel("F dist.")
    ...: X = stats.poisson(5)
    ...: plot_rv_distribution(X, axes=axes[2, :])
    ...: axes[2, 0].set_ylabel("Poisson dist.")
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In the examples so far we have initiated an instance of the random variable class, and computed 
statistics and other properties using method calls. An alternative way to use the random variable classes 
in SciPy’s stats module is to use class methods, for example, stats.norm.mean, and pass the distribution 
parameters as arguments (often loc and scale, as in this example for normal distributed values):

In [45]: stats.norm.stats(loc=2, scale=0.5)
Out[45]: (array(2.0), array(0.25))

which gives the same result as first creating an instance and then calling the corresponding method:

In [46]: stats.norm(loc=1, scale=0.5).stats()
Out[46]: (array(1.0), array(0.25))

Most methods in the rv_discrete and rv_continuous classes can be used as class methods in this way.
So far we have only looked at properties of the distribution function of random variables. Note that 

although a distribution function describes a random variable, the distribution itself is fully deterministic. 
To draw random numbers that are distributed according to the given probability of distribution, we can use 

Figure 13-2.  Examples of probability distribution functions (PDF) or probability mass functions (PMF), 
comulative distribution functions (CDF), survival functions (SF), and percent-point functions (PPF) for a 
normal distribution (top), an F distribution (middle), and a Poisson distribution (bottom)
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the rvs (random variable sample) method. It takes as argument the shape of the required array (can be an 
integer for a vector, or a tuple of dimension lengths for a higher-dimensional array). Here we use rvs(10) to 
generate a 1-dimensional array with 10 values:

In [47]: X = stats.norm(1, 0.5)
In [48]: X.rvs(10)
Out[48]: array([ 2.106451  ,  2.0641989 ,  1.9208557 ,  1.04119124,  1.42948184,
                 0.58699179,  1.57863526,  1.68795757,  1.47151423,  1.4239353 ])

To see that the resulting random numbers indeed are distributed according to the corresponding 
probability distribution function, we can graph a histogram of a large number of samples of a random 
variable and compare it to the probability distribution function. Again, to be able to do this easily for 
samples of several random variables we create a function plot_dist_samples for this purpose. This function 
uses the interval method to obtain a suitable plot range for a given random variable object.

In [49]: def plot_dist_samples(X, X_samples, title=None, ax=None):
    ...:     """ Plot the PDF and histogram of samples of a continuous random variable"""
    ...:     if ax is None:
    ...:          fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    ...:
    ...:     x_lim = X.interval(.99)
    ...:     x = np.linspace(*x_lim, num=100)
    ...:
    ...:     ax.plot(x, X.pdf(x), label="PDF", lw=3)
    ...:     ax.hist(X_samples, label="samples", normed=1, bins=75)
    ...:     ax.set_xlim(*x_lim)
    ...:     ax.legend()
    ...:
    ...:     if title:
    ...:         ax.set_title(title)
    ...:     return ax

Note that in this function we have used the tuple unpacking syntax *x_lim, which distributes the 
elements in the tuple x_lim to different arguments for the function. In this case it is equivalent to  
np.linspace(x_lim[0], x_lim[1], num=100).

Next we use this function to visualize 2000 samples of three random variables with different 
distributions: Here we use the Student’s t distribution, the c 2 distribution, and the exponential distribution, 
and the results are shown in Figure 13-3. Since 2000 is a fairly large sample, the histogram graphs of the 
samples coincide well with the probability distribution function. With an even larger number of samples the 
agreement can be expected to be even better.

In [50]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))
    ...: N = 2000
    ...: # Student's t distribution
    ...: X = stats.t(7.0)
    ...: plot_dist_samples(X, X.rvs(N), "Student's t dist.", ax=axes[0])
    ...: # The chisquared distribution
    ...: X = stats.chi2(5.0)
    ...: plot_dist_samples(X, X.rvs(N), r"$\chi^2$ dist.", ax=axes[1])
    ...: # The exponential distribution
    ...: X = stats.expon(0.5)
    ...: plot_dist_samples(X, X.rvs(N), "exponential dist.", ax=axes[2])
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The opposite of drawing random samples from a known distribution function is to fit given probability 
distribution with unknown parameters to a set of data points. In such a fit we typically wish to optimize 
the unknown parameters such that the likelihood of observing the given data is maximized. This is called 
a maximum likelihood fit. Many of the random variable classes in the SciPy stats module implements 
the method fit that perform such a fitting to given data. As a first example, consider drawing 500 random 
samples from the c2 distribution with five degrees of freedom (df=5), and then refitting the random variables 
to the c2 distribution using the fit method.

In [51]: X = stats.chi2(df=5)
In [52]: X_samples = X.rvs(500)
In [53]: df, loc, scale = stats.chi2.fit(X_samples)
In [54]: df, loc, scale
Out[54]: (5.2886783664198465, 0.0077028130326141243, 0.93310362175739658)
In [55]: Y = stats.chi2(df=df, loc=loc, scale=scale)

The fit method returns the maximum likelihood parameters of the distribution, for the given data. We 
can pass on those parameters to the initializer of the stats.chi2 to create a new random variable instance Y. 
The probability distribution of Y should resemble the probability distribution of the original random variable 
X. To verify this we can plot the probability distribution functions for both random variables. The resulting 
graph is shown in Figure 13-4.

In [56]: fig, axes = plt.subplots(1, 2, figsize=(12, 4))
    ...: x_lim = X.interval(.99)
    ...: x = np.linspace(*x_lim, num=100)
    ...:
    ...: axes[0].plot(x, X.pdf(x), label="original")
    ...: axes[0].plot(x, Y.pdf(x), label="recreated")
    ...: axes[0].legend()
    ...:
    ...: axes[1].plot(x, X.pdf(x) - Y.pdf(x), label="error")
    ...: axes[1].legend()

Figure 13-3.  Probability distribution function (PDF) together with histograms of 2000 random samples from 
the Student’s t distribution (left), the c2 distribution (middle), and the exponential distribution (right)
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In this section we have explored how to use random variable objects from the SciPy stats model to 
describe random variables with various distributions, and how they can be used to compute properties of 
the given distributions, as well as generating random variable samples and performing maximum likelihood 
fitting. In the following section we see how to further use these random variable objects for hypothesis testing.

Hypothesis Testing
Hypothesis testing is a cornerstone in the scientific method, which requires that claims are investigated 
objectively, and that a claim is rejected or accepted on the basis of factual observations. Statistical 
hypothesis testing has a more specific meaning. It is a systematic methodology for evaluating if a claim, or 
a hypothesis, is reasonable or not, on the basis of data. As such it is an important application of statistics. 
In this methodology, we formulate the hypothesis in terms of a null hypothesis, H

0
, which represents the 

currently accepted state of knowledge, and an alternative hypothesis, H
A
, which represent a new claim 

that challenges the current state of knowledge. The null hypothesis and the alternative hypothesis must be 
mutually exclusive and complementary, so that one and only one of the hypotheses are true.

Once H
0
 and H

A
 are defined, data that support the test must be collected, for example, through 

measurements, observations, or a survey. The next step is to find test statistics that can be computed from 
the data, and whose probability distribution function can be found under the null hypothesis. Next we can 
evaluate the data by computing the probability (the p-value) of obtaining the observed value of the test 
statistics (or a more extreme one) using the distribution function that is implied by the null hypothesis. If the 
p-value is smaller than a predetermined threshold, known as the significance level, and denoted by a (typically 
5% or 1%), we can conclude that the observed data is unlikely to have been described by the distribution 
corresponding to the null hypothesis. In that case, we can therefore reject the null hypothesis in favor of the 
alternative hypothesis. The steps for carrying out a hypothesis test are summarized in the following list:

	 1.	 Formulate the null hypothesis and the alternative hypothesis.

	 2.	 Select a test statistics such that its sampling distribution under the null 
hypothesis is known (exactly or approximately).

	 3.	 Collect data.

	 4.	 Compute the test statistics from the data and calculate its p-value under the null 
hypothesis.

	 5.	 If the p-value is smaller than the predetermined significance level a, we reject the 
null hypothesis. If the p-value is larger, we fail to reject the null hypothesis.

Figure 13-4.  Original and re-created probability distritubution function (left) and the error (right), from a 
maximum likelihood fit of 500 random samples of the original distribution
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Statistical hypothesis testing is a probabilistic method, which means that we cannot be certain in the 
decision to reject or not to reject the null hypothesis. There can be two types of error: We can mistakenly 
reject the null hypothesis when in reality it should not be rejected, and we can fail to reject the null 
hypothesis when it should be rejected. These are called type I and type II errors, respectively. By choosing 
the required significance level we can balance the trade-off between these two types of error.

In general, the most challenging step in the method outlined above is to know the sampling distribution 
of the test statistics. Fortunately many hypothesis tests fall in a few standard categories for which the 
probability distributions are known. A brief summary and overview of common hypothesis test cases and 
the corresponding distribution of their test statistics is given in Table 13-2. For motivations for why each of 
these tests are suitable for stated situations, and the full set of conditions for the tests validity, see a statistics 
text books such as (Wasserman, 2004) or (Rice, 1995). The docstring for each listed functions in the SciPy 
stats module also contains further information about each test.

Table 13-2.  Summary of common hypothesis test cases with the corresponding distributions and SciPy 
functions

Null Hypothesis Distributions SciPy Functions for Test

Test if the mean of a population is a 
given value.

Normal distribution (stats.norm), 
or Student’s t distribution (stats.t)

stats.ttest_1samp

Test if the means of two random 
variables are equal (independent or 
paired samples).

Student’s t distribution
(stats.t)

stats.ttest_ind,  
stats.ttest_rel

Test goodness of fit of a continuous 
distribution to data.

Kolmogorov-Smirnov distribution. stats.kstest

Test if categorical data occur with given 
frequency (sum of squared normal 
distributed variables).

c 2 distribution (stats.chi2) stats.chisquare

Test for independence of categorical 
variables in a contingency table.

c 2 distribution (stats.chi2) stats.chi2_contingency

Test for equal variance in samples of 
two or more variables.

F distribution (stats.f) stats.barlett,
stats.levene

Test for non-correlation between two 
variables.

Beta distribution (stats.beta, 
stasts.mstats.betai)

stats.pearsonr,  
stats.spearmanr

Test if two or more variables have the 
same population mean (ANOVA – 
analysis of variance).

F distribution stats.f_oneway,  
stats.kruskal

Below we also look at examples of how the corresponding functions in SciPy stats module can be used 
to carry out steps 4 and 5 in the procedure given above: computing a test statistic and the corresponding 
p-value.

For example, a common null hypothesis is a claim that the mean m of a population is a certain value m
0
. 

We can then sample the population and use the sample mean x  to form a test statistic: z
x

n
= − m0

σ /
, where n 

is the sample size. If the population is large and the variance s is known, then it is reasonable to use assume 
that the test statistic is normally distributed. If the variance is unknown, we can substitute s 2 with the sample  
variance s

x
2 . The test statistics then follows the Student’s t distribution, which in the limit of large number 

of samples approaches the normal distribution. Regardless of which distribution we end up using, we can 
compute a p-value for the test statistics using the given distribution.
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As an example of how this type of hypothesis test can be carried out using the functions provided by the 
SciPy stats module, consider a null hypothesis that claims that a random variable X has mean m0 1= . Given 
samples of X, we then wish to test if the sampled data is compatible with the null hypothesis. Here we 
simulate the samples by drawing 100 random samples from a distribution slightly different than that claimed 
by the null hypothesis (using m = 0 8. ):

In [57]: mu0, mu, sigma = 1.0, 0.8, 0.5
In [58]: X = stats.norm(mu, sigma)
In [59]: n = 100
In [60]: X_samples = X.rvs(n)

Given the sample data, X_samples, next we need to compute test statistics. If the population standard 

deviation s is known, as in this example, we can use z
x

n
=

- m
s

0

/
, which is normally distributed.

In [61]: z = (X_samples.mean() - mu0)/(sigma/np.sqrt(n))
In [62]: z
Out[62]: -2.8338979550098298

If the population variance is not known, we can use the sample standard deviation instead: t
x

nx

=
- m

s /
. 

However, in this case the test statistics t follows the Student’s t distribution instead rather than the normal 
distribution. To compute t in this case we can use the NumPy method std with the ddof=1 argument to 
compute the sample standard deviation:

In [63]: t = (X_samples.mean() - mu0)/(X_samples.std(ddof=1)/np.sqrt(n))
In [64]: t
Out[64]: -2.9680338545657845

In either case we get test statistics that we can compare with the corresponding distribution to obtain 
a p-value. For example, for a normal distribution we can use a stats.norm instance to represent a normal 
distributed random variable, and with its ppf method we can look up the statistics value that corresponds 
to a certain significant level. For a two-sided hypothesis test of significance level 5% (2.5% on each side), the 
statistics threshold is:

In [65]: stats.norm().ppf(0.025)
Out[65]: -1.9599639845400545

Since the observed statistics is about -2.83, which is smaller than the threshold value -1.96 for a two-sided 
test with significance 5%, we have sufficient grounds to reject the null hypothesis in this case. We can 
explicitly compute the p-value for the observed test statistics using the cdf method (multiplied by two for 
a two-sided test). The resulting p-value is indeed rather small, which supports the rejection of the null 
hypothesis:

In [66]: 2 * stats.norm().cdf(-abs(z))
Out[66]: 0.0045984013290753566
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If we would like to use the t distribution, we can use the stats.t class instead of stats.norm. After 
computing the sample mean, x, only n -1 degrees of freedom (df) remains in the sample data. The number 
of degrees of freedom is an important parameter for the t distribution, which we need to specify when we 
create the random variable instance:

In [67]: 2 * stats.t(df=(n-1)).cdf(-abs(t))
Out[67]: 0.0037586479674227209

The p-value is again very small, suggesting that we should reject the null hypothesis. Instead of explicitly 
carrying out these steps (computing the test statistics, then compute the p-value), there are built-in functions 
in SciPy’s stats module for carrying out many common tests, as summarized in Table 13-2. For the test we 
have used here, we can directly compute the test statistics and the p-value using the stats.ttest_1samp 
function:

In [68]: t, p = stats.ttest_1samp(X_samples, mu)
In [69]: t
Out[69]: -2.9680338545657841
In [70]: p
Out[70]: 0.0037586479674227209

Again we see that the p-value is very small (the same value as above), and that we should reject the null 
hypothesis. It is also illustrative to plot the distribution corresponding to the null hypothesis, together with 
the sampled data (see Figure 13-5):

In [71]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: sns.distplot(X_samples, ax=ax)
    ...: x = np.linspace(*X.interval(0.999), num=100)
    ...: ax.plot(x, stats.norm(loc=mu, scale=sigma).pdf(x))

Figure 13-5.  Distribution function according to the null hypothesis (light/green) and the sample estimated 
distribution function (dark/blue)

For another example, consider a two-variable problem, where the null hypothesis states that the 
population means of two random variables are equal (for example corresponding to independent subjects 
with and without treatment). We can simulate this type of test by creating two random variables with normal 
distribution, with randomly chosen population means. Here we select 50 samples for each random variable.
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In [72]: n, sigma = 50, 1.0
In [73]: mu1, mu2 = np.random.rand(2)
In [74]: X1 = stats.norm(mu1, sigma)
In [75]: X1_sample = X1.rvs(n)
In [76]: X2 = stats.norm(mu2, sigma)
In [77]: X2_sample = X2.rvs(n)

We are interested in evaluating if the observed samples provide sufficient evidence for that the two 
population means are not equal (rejecting the null hypothesis). For this situation, we can use the t test for 
two independent samples, which is available in SciPy stats.ttext_ind, which returns the test statistics and 
the corresponding p-value:

In [78]: t, p = stats.ttest_ind(X1_sample, X2_sample)
In [79]: t
Out[79]: -1.4283175246005888
In [80]: p
Out[80]: 0.15637981059673237

Here the p-value is about 0.156, which is not small enough to support rejecting the null hypothesis that 
the two means are different. In this example the two population means are indeed different:

In [81]: mu1, mu2
Out[81]: (0.24764580637159606, 0.42145435527527897)

However, the particular samples drawn from these distributions did not statistically prove that these 
means are different (an error of type II). To increase the power of the statistical test we would need to 
increase the number of samples from each random variable.

The SciPy stats module contains functions for common types hypothesis testing (see the summary in 
Table 13-2), and their use closely followed what we have seen in the examples in this section. However, some 
tests require additional arguments for distribution parameters. See the docstrings for each individual test 
function for details.

Nonparametric Methods
So far we have described random variables with distributions that are completely determined by a few 
parameters, such as the mean and the variance for the normal distributions. Given sampled data, we can 
fit a distribution function using maximum likelihood optimization with respect to the parameters that 
specify the distribution function. Such distribution functions are called parametric, and statistical methods 
based on such distribution functions (for example, a hypothesis test) are called parametric methods. When 
using those methods we make a strong assumption that the sampled data is indeed described by the given 
distribution. An alternative approach to construct a representation of an unknown distribution function 
is kernel-density estimation (KDE), which can be viewed as a smoothened version of the histogram of the 
sampled data (see for example Figure 13-6). In this method, the probability distribution is estimated by a sum 

of the kernel function centered at each data point: f̂ x
n

K
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, where bw is a free parameter 

known as the bandwidth, and K is the kernel function (normalized so that it integrates to unity). The bandwidth 
is an important parameter that defines a scale for the influence of each term in the sum. A too-broad 
bandwidth gives a featureless estimate of the probability distribution, and a too-small bandwidth gives a 
noisy overly structured estimate (see the middle panel in Figure 13-6). Different choices of kernel functions 
are also possible. A Gaussian kernel is a popular choice, because of its smooth shape with local support, and 
it is relatively easy to perform computations with.
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In SciPy’s the KDE method using a Gaussian kernel is implemented in the function stats.kde.
gaussian_kde. This function returns a callable object that behaves as, and can be used as, a probability 
distribution function. For example, consider a set of samples, X_samples, draw from a random variable X 
with unknown distribution (here simulated using the c 2 distribution with five degrees of freedom):

In [82]: X = stats.chi2(df=5)
In [83]: X_samples = X.rvs(100)

To compute the kernel-density estimate for the given data we call the function stats.kde.guassian_kde 
with the array of sample points as argument:

In [84]: kde = stats.kde.gaussian_kde(X_samples)

By default, a standard method for computing a suitable bandwidth is used, which often gives acceptable 
results. However, if we wish we could also specify a function for computing the bandwidth, or directly setting 
the bandwidth, using the bw_method argument. To set a smaller bandwidth, we can for example use:

In [85]: kde_low_bw = stats.kde.gaussian_kde(X_samples, bw_method=0.25)

The gaussian_kde function returns an estimate of the distribution function, which we, for example, 
can graph or use for other applications. Here we plot a histogram of the data and the two kernel-density 
estimates (with default and explicitly set bandwidth). For reference we also plot the true probability 
distribution function for the samples. The result is shown in Figure 13-6.

In [86]: x = np.linspace(0, 20, 100)
In [87]: fig, axes = plt.subplots(1, 3, figsize=(12, 3))
    ...: axes[0].hist(X_samples, normed=True, alpha=0.5, bins=25)
    ...: axes[1].plot(x, kde(x), label="KDE")
    ...: axes[1].plot(x, kde_low_bw(x), label="KDE (low bw)")
    ...: axes[1].plot(x, X.pdf(x), label="True PDF")
    ...: axes[1].legend()
    ...: sns.distplot(X_samples, bins=25, ax=axes[2])

Figure 13-6.  Histogram (left), kernel-density estimation of the the distribution function (middle), and both a 
histogram and the kernel-density estimate in the same graph (right)

The seaborn statistical graphics library provides a convenient function for plotting both a histogram 
and the kernel-density estimation for a set of data: distplot. A graph produced by this function is shown in 
the right panel of Figure 13-6.
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Given a kernel-density estimate we can also use it generate new random numbers using the resample 
method, which takes the number of data points as arguments:

In [88]: kde.resample(10)
Out[88]: array([[ 1.75376869,  0.5812183 ,  8.19080268,  1.38539326,  7.56980335,
                  1.16144715,  3.07747215,  5.69498716,  1.25685068,  9.55169736]])

The kernel-density estimate object does not directly contain methods for computing the cumulative 
distribution functions (CDF) and its inverse, the percent-point function (PPF). But there are several  
methods for integrating the kernel-density estimate of the probability distribution function. For example, for 
a one-dimensional KDE we can use the integrate_box_1d to obtain the corresponding CDF:

In [89]: def _kde_cdf(x):
    ...:     return kde.integrate_box_1d(-np.inf, x)
In [90]: kde_cdf = np.vectorize(_kde_cdf)

and can use the SciPy optimize.fsolve function to find the inverse (the PPF):

In [91]: def _kde_ppf(q):
    ...:     return optimize.fsolve(lambda x, q: kde_cdf(x) - q, kde.dataset.mean(),
    ...:                            args=(q,))[0]
In [92]: kde_ppf = np.vectorize(_kde_ppf)

With the CDF and PPF for the kernel-density estimate we can, for example, perform statistical 
hypothesis testing, and compute confidence intervals. For example, using the kde_ppf function defined 
above we can compute an approximate 90% confidence interval for the mean of the population from which 
the sample was collected:

In [93]: kde_ppf([0.05, 0.95])
Out[93]: array([  0.39074674,  11.94993578])

As illustrated with this example, once we have a KDE that represents the probability distribution for a 
statistical problem, we can proceed with many of the same methods as we use in parametric statistics.  
The advantage of nonparametric methods are that we do not necessarily need to make assumptions about 
the shape of the distribution function. However, because nonparametric methods use less information 
(weaker assumptions) than parametric methods, their statistical power is lower. Therefore, if we can justify 
using a parametric method, then that is usually the best approach. Nonparametric methods is a versatile and 
generic approach that we can fall back on when parametric methods are not feasible.

Summary
In this chapter we have explored how NumPy and the SciPy stats module can be used in basic statistical 
applications, including random number generation, for representing random variables and probability 
distribution functions, maximum likelihood fitting of distributions to data, and using probability distributions 
and test statistics for hypothesis testing. We also briefly looked at kernel-density estimation of an unknown 
probability distribution, as an example of a nonparametric method. The concepts and methods discussed 
in this chapter are fundamental building blocks for working with statistics, and the computational tools 
introduced here also provide a foundation for many statistical applications. In the following chapters we build 
on what has been discussed here, and explore statistical modeling and machine learning in more depth.
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Further Reading
Good introductions to the fundamentals of statistics and data analysis are given in the Rice and Wasserman 
books. A computationally oriented introduction to statistics is given in Dalgaard, which although it uses the 
R language is relevant for statistics in Python, too. There are also free online resources about statistics: for 
example, OpenIntro Statistics, which is available from https://www.openintro.org/stat/textbook.php.
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Chapter 14

Statistical Modeling

In the previous chapter we covered basic statistical concepts and methods. In this chapter we build on the 
foundation laid out in the previous chapter and explore statistical modeling, which deals with creating 
models that attempt to explain data. A model can have one or several parameters, and we can use a fitting 
procedure to find the values of the parameter that best explains the observed data. Once a model has been 
fitted to data, it can be used to predict the values of new observations, given the values of the independent 
variables of the model. We can also perform statistical analysis on the data and the fitted model, and try 
to answer questions such as if the model accurately explains the data, which factors in the model is more 
relevant (predictive) than others, and if there are parameters that do not contribute significantly to the 
predictive power of the model.

In this chapter we mainly use the statsmodels library. It provides classes and functions for defining 
statistical models and fitting them to observed data, for calculating descriptive statistics and carrying out 
statistical tests. The statsmodels library has some overlap with the SciPy stats module that we covered 
in the previous chapter, but it is mostly an extension of what is available in SciPy.1 In particular, the main 
focus of the statsmodels library is on fitting models to data rather than probability distributions and random 
variables, for which in many cases it relies on the SciPy stats.

■■ Statsmodels  The statsmodels library provides a rich set of functionality related to statistical tests 
and statistical modeling, including linear regression, logistic regression, and time-series analysis. For more 
information about the project and its documentation, see the projects web page at http://statsmodels.
sourceforge.net. At the time of writing the latest version of statsmodels is 0.6.1.

The statsmodels library is closely integrated with the Patsy library, which allows us to write statistical 
models as simple formulas. The patsy library is one of the dependencies of the statsmodels library, but can 
also be used with other statistical libraries as well, such as for example scikit-learn that will be discussed 
in Chapter 15. However, here we will introduce the Patsy library in the context of using it together with the 
statsmodels library.

1The statsmodels library originally started as a part of the SciPy stats module, but was later moved to a project on its 
own. The SciPy stats library remains an important dependency for statsmodels.
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■■ Patsy  The patsy library provides features for defining statistical models with a simple formula language 
inspired by statistical software such as R. The patsy library is designed to be a companion library for statistical 
modeling packages, such as statsmodels. For more information about the project and its documentation, see 
the web page http://patsy.readthedocs.org. At the time of writing the most recent version of patsy is 0.4.0.

Importing Modules
In this chapter we work extensively with the statsmodels library. This library encourages an import 
convention that is slightly different than other libraries we have used so far: it provides api modules that 
collect the publicly accessible symbols that the library provides. Here we assume that the statsmodels.api is 
imported under the name sm, and statsmodels.formula.api is imported as the name smf. We also require 
the statsmodels.graphics.api module to be imported as the name smg:

In [1]: import statsmodels.api as sm
In [2]: import statsmodels.formula.api as smf
In [3]: import statsmodels.graphics.api as smg

Since the statsmodels library internally uses the Patsy library, it is typically not necessary to access 
this library’s functions directly. However, here we directly use Patsy for demonstration purposes, and we 
therefore need to import the library explicitly:

In [4]: import patsy

As usual, we also require the Matplotlib, NumPy and pandas libraries to be imported as:

In [5]: import matplotlib.pyplot as plt
In [6]: import numpy as np
In [7]: import pandas as pd

and the SciPy stats module as:

In [8]: from scipy import stats

Introduction to Statistical Modeling
In this chapter we consider the following type of problem: for a set of response (dependent) variables Y, and 
explanatory (independent) variables X, we wish to find a mathematical relationship (model) between Y and X. 
In general we can write a mathematical model as a function Y  = f (X ). Knowing the function f (X ) would allow 
us to compute the value of Y for any of values X. If we do not know the function f (X ), but we have access to 
data for observations {y

i
, x

i
}, we can parameterize the function f (X ) and fit the values of the parameters to the 

data. An example of a parameterization of f (X ) is the linear model f X X( ) = +b b0 1 , where the coefficients  
b

0
 and b

1
 are the parameters of the model. Typically we have many more data points than the number of free 

parameters in the model. In such cases we can for example use a least-square fit that minimizes the norm of 

http://patsy.readthedocs.org/
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the residual r Y f X= − ( ), although other minimization objective functions can also be used,2 for example, 
depending on the statistical properties of the residual r. So far we have described a mathematical model. The 
essential component that makes a model statistical is that the data {y

i
, x

i
} has an element of uncertainty, for 

example due to measurement noise or other uncontrolled circumstances. The uncertainty in the data can be 
described in the model as random variables: for example, Y f X= +( ) e , where e is a random variable. This is a 
statistical model because it includes random variables. Depending on how the random variables appear in 
the model and what distributions the random variables follow, we obtain different types of statistical models, 
which each may require different approaches to analyze and solve.

A typical situation where a statistical model can be useful is to describe the observations y
i
 in an 

experiment, where x
i
 is a vector with control knobs that are recorded together with each observation. An 

element in x
i
 may or may not be relevant for predicting the observed outcome y

i
, and an important aspect 

of statistical modeling is to determine which explanatory variables are relevant. It is of course also possible 
that there are relevant factors that are not included in the set of explanatory variables x

i
, but which influence 

the outcome of the observation y
i
. In this case it might not be possible to accurately explain the data with 

the model. Determining if a model accurately explains the data is another essential aspect of statistical 
modeling.

A widely used statistical model is Y X= + +b b e0 1
, where b

0
 and b

1
 are model parameters and e is 

normally distributed with zero mean and variance s 2: e s~ N 0 2, .( )  This model is known as simple linear 
regression if X is a scalar, multiple linear regression if X is a vector, and if Y is a vector it is known as 
multivariate linear regression. Because the residual e is normally distributed, for all these cases the model 
can be fitted to data using ordinary least squares (OLS). Relaxing the condition that the elements in Y, in the 
case of multivariate linear regression, must be independent and normally distributed with equal variance 
give rise to variations of the model that can be solved with methods known as generalized least squares (GLS) 
and weighted least squares (WLS). All methods for solving statistical models typically have a set of 
assumptions that one has to be mindful of when applying the models. For standard linear regression, the 
most important assumption is that the residuals are independent and normally distributed.

The generalized linear model is an extension of the linear regression model that allows the errors in 
the response variable to have distributions other than the normal distribution. In particular, the response 
variable is assumed to be a function of a linear predictor, and where the variance of the response variable 
can be a function of the variable’s value. This provides a broad generalization of the linear model that is 
applicable in many situations. For example, this enables modeling important types of problems where the 
response variable takes discrete values, such as binary outcomes of count values. The errors in the response 
variables of such models may follow different statistical distributions (for example, the Binomial and or the 
Poisson distribution). Examples of these types of models include logistic regression for binary outcomes and 
Poisson regression for positive integer outcomes.

In the following sections we will explore how statistical models of these types can be defined and solved 
using the Patsy and statsmodels libraries.

Defining Statistical Models with Patsy
Common to all statistical modeling is that we need to make assumptions about the mathematical relation 
between the response variables Y and explanatory variables X. In the vast majority of cases we are interested 
in linear models, such that Y can be written as a linear combination of the response variables X, or functions 
of the response variables, or models that have a linear component. For example, Y X Xn n= +¼+a a1 1

, and 
Y X X Xn

n= + ¼+a a a1 2
2 , and Y X X= +a a1 1 2 2sin cos , are all examples of such linear models. Note that for 

the model to be linear, we only need the relation to be linear with respect to the unknown coefficients a, and 
not necessarily in the known explanatory variables X. In contrast, an example of a nonlinear model is 

2We will see examples of this later in Chapter 15, when we consider regularized regression.

http://dx.doi.org/10.1007/978-1-4842-0553-2_15
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Y X= +( )exp b b0 1
, since in this case Y is not a linear function with respect to b

0
 and b

1
. However, this model 

is log-linear in the sense that taking the logarithm of the relation yields a linear model: Y X= +b b0 1  for 
Y Y= log . Problems that can be transformed into linear model in this manner are the type of problems that 

can be handled with the generalized linear model.
Once the mathematical form of the model has been established, the next step is typically to construct 

the so-called design matrices y and X such that the regression problem can be written on matrix form as 
y X= +b e , where y is the vector (or matrix) of observations, b is a vector of coefficients, and e is the residual 

(error). The elements X
ij
 of the design matrix X are the values of the (functions of) explanatory variables 

corresponding to each coefficient b
j
 and observation y

i
. Many solvers for statistical models in statsmodels 

and other statistical modeling libraries can take the design matrices X and y as input.
For example, if the observed values are y = [ ]1 2 3 4 5, , , ,  with two independent variables with 

corresponding values x1 6 7 8 9 10= [ ], , , ,  and x2 11 12 13 14 15= [ ], , , , , and if the linear model under 

consideration is Y X X X X= + + +b b b b0 1 1 2 2 3 1 2 , then the design matrix for the right-hand side is 
X x x x x= [ ]1 1 2 1 2, , , . We can construct this design matrix using the NumPy vstack function:

In [9]: y = np.array([1, 2, 3, 4, 5])
In [10]: x1 = np.array([6, 7, 8, 9, 10])
In [11]: x2 = np.array([11, 12, 13, 14, 15])
In [12]: X = np.vstack([np.ones(5), x1, x2, x1*x2]).T
In [13]: X
Out[13]: array([[   1.,    6.,   11.,   66.],
                [   1.,    7.,   12.,   84.],
                [   1.,    8.,   13.,  104.],
                [   1.,    9.,   14.,  126.],
                [   1.,   10.,   15.,  150.]])

Given the design matrix X and observation vector y, we can solve for the unknown coefficient vector b, 
for example, using least-square fit (see Chapters 5 and 6):

In [14]: beta, res, rank, sval = np.linalg.lstsq(X, y)
In [15]: beta
Out[15]: array([ -5.55555556e-01, 1.88888889e+00, -8.88888889e-01, -1.33226763e-15])

These steps are the essence of statistical modeling in its simplest form. However, variations and 
extensions to this basic method make statistical modeling a field in its own right, and necessitates 
computational frameworks such as statsmodels for systematic analysis. For example, although constructing 
the design matrix X was straightforward in this simple example, it can be tedious for more involved models, 
and if we wish to be able to easily change how the model is defined. This is where the Patsy library enters 
the picture. It offers a convenient (although not necessarily intuitive) formula language for defining a model 
and automatically constructing the relevant design matrices. To construct the design matrix for a Patsy 
formula we can use the patsy.dmatrices function. It takes the formula as a string as a first argument, and a 
dictionary-like object with data arrays for the response and explanatory variables as second arguments. The 
basic syntax for the Patsy formula is "y ~ x1 + x2 + ...", which means that y is a linear combination of 
the explanatory variables x1 and x2 (explicitly including an intercept coefficient). For a summary of the Patsy 
formula syntax, see Table 14-1.

http://dx.doi.org/10.1007/978-1-4842-0553-2_5
http://dx.doi.org/10.1007/978-1-4842-0553-2_6
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As an introductory example, consider again the linear model Y X X X X= + + +b b b b0 1 1 2 2 3 1 2  that we used 
earlier. To define this model with Patsy, we can use the formula "y ~ 1 + x1 + x2 + x1*x2". Note that we 
leave out coefficients in the model formula, as it is implicitly assumed that each term in the formula has a 
model parameter as coefficient. In addition to specifying the formula, we also need to create a dictionary 
data that maps the variable names to the corresponding data arrays:

In [16]: data = {"y": y, "x1": x1, "x2": x2}
In [17]: y, X = patsy.dmatrices("y ~ 1 + x1 + x2 + x1*x2", data)

The result is two arrays y and X, which are the design matrices for the given data arrays and the specified 
model formula:

In [18]: y
Out[18]: DesignMatrix with shape (5, 1)
           y
           1
           2
           3

Table 14-1.  Simplified summary of the Patsy fomula syntax. For a complete specification of the formula 
syntax, see the Patsy documentation at http://patsy.readthedocs.org/en/latest

Syntax Example Description

lhs ~ rhs y ~ x
(Equivalent to y ~ 1 + x)

The ~ character is used to separate the 
left-hand side (containing the dependent 
variables) and the right-hand side 
(containing the independent variables) of a 
model equation.

var * var x1*x2
(Equivalent to x1+x2+x1*x2)

An interaction term that implicitly contains 
all its lower-order interaction terms.

var + var + ... x1 + x2 + ...
(Equivalent to y ~ 1 + x1 + x2)

The addition sign is used to denote the union 
of terms.

var:var x1:x2 The colon character denotes a pure 
interaction term (for example, x x1 2× ).

f(expr) np.log(x), np.cos(x+y) Arbitrary Python functions (often NumPy 
functions) can be used to transform terms 
in the expression. The expression for the 
argument of a function is interpreted as an 
arithmetic expression rather than the set-like 
formula operations that are otherwise used 
in Patsy.

I(expr) I(x+y) I is a Patsy-supplied identity function that 
can be used to escape arithmetic expression 
so that they are interpreted as arithmetic 
operations.

C(var) C(x), C(x, Poly) Treat the variable x as a categorical variable, 
and expand its values into orthogonal 
dummy variables.

http://patsy.readthedocs.org/en/latest
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           4
           5
         Terms:
           'y' (column 0)
In [19]: X
Out[19]: DesignMatrix with shape (5, 4)
           Intercept  x1  x2  x1:x2
                   1   6  11     66
                   1   7  12     84
                   1   8  13    106
                   1   9  14    126
                   1  10  15    150
           Terms:
             'Intercept' (column 0)
             'x1' (column 1)
             'x2' (column 2)
             'x1:x2' (column 3)

These arrays are of type DesignMatrix, which is a Patsy-supplied subclass of the standard NumPy array, 
which contains additional metadata and an altered printing representation.

In [20]: type(X)
Out[20]: patsy.design_info.DesignMatrix

Note also that the numerical values of the DesignMatrix arrays coincide with the explicitly constructed 
array that we produced earlier using vstack.

As a subclass of the NumPy ndarray, the arrays of type DesignMatrix are fully compatible with code 
that expects NumPy arrays as input. However, we can also explicitly cast a DesignMatrix instance into an 
ndarray object using the np.array function, although this normally should not be necessary.

In [21]: np.array(X)
Out[21]: array([[   1.,    6.,   11.,   66.],
                [   1.,    7.,   12.,   84.],
                [   1.,    8.,   13.,  104.],
                [   1.,    9.,   14.,  126.],
                [   1.,   10.,   15.,  150.]])

Alternatively, we can set the return_type argument to "dataframe", in which case the patsy.dmatrices 
function returns design matrices in the form of Pandas DataFrame objects. Also note that since DataFrame 
objects behave as dictionary-like objects, so we can use data frames to specify the model data as second 
argument to the patsy.dmatrices function.

In [22]: df_data = pd.DataFrame(data)
In [23]: y, X = patsy.dmatrices("y ~ 1 + x1 + x2 + x1:x2", df_data, return_type="dataframe")
In [24]: X
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Out[24]:

Intercept x1 x2 x1:x2

0 1 6 11 66

1 1 7 12 84

2 1 8 13 104

3 1 9 14 126

4 1 10 15 150

With the help of Patsy we have now automatically created the design matrices required for solving a 
statistical model, using for example the np.linalg.lstsq function (as we saw an example of earlier), or 
using one of the many statistical-model solvers provided by the statsmodels library. For example, to perform 
an ordinary linear regression (OLS) we can use the class OLS from the statsmodels library instead of using the 
lower-level method np.linalg.lstsq. Nearly all classes for statistical models in statsmodels take the design 
matrices y and X and first and second argument, and returns a class instance that represents the model. To 
actually fit the model to the data encoded in the design matrices we need to invoke the fit method, which 
returns a result object that contains fitted parameters (among other attributes):

In [25]: model = sm.OLS(y, X)
In [26]: result = model.fit()
In [27]: result.params
Out[27]: Intercept   -5.555556e-01
         x1           1.888889e+00
         x2          -8.888889e-01
         x1:x2       -8.881784e-16
         dtype: float64

Note that the result is equivalent to the least-square fitting that we computed earlier in this chapter. 
Using the statsmodels formula API (the module that we imported as smf), we can directly pass the Patsy 
formula for the model when we create a model instance, which completely eliminates the need for first 
creating the design matrices. Instead of passing y and X as arguments, we then pass the Patsy formula and 
the dictionary-like object (for example, a Pandas data frame) that contains the model data.

In [28]: model = smf.ols("y ~ 1 + x1 + x2 + x1:x2", df_data)
In [29]: result = model.fit()
In [30]: result.params
Out[30]: Intercept   -5.555556e-01
         x1           1.888889e+00
         x2          -8.888889e-01
         x1:x2       -8.881784e-16
         dtype: float64

The advantage of using statsmodels instead of explicitly constructing NumPy arrays and calling the 
NumPy least-square model is of course that much of the processes is automated in statsmodels, which 
makes it possible to add and remove terms in the statistical model without any extra work. Also, when using 
statsmodels we have access to a large variety of linear model solvers and statistical tests for analyzing how 
well the model fits the data. For a summary of the Patsy formula language, see Table 14-1.

Now that we have seen how a Patsy formula can be used to construct design matrices, or be used 
directly with one of the many statistical model classes from statsmodels, we briefly return to the syntax and 
notational conventions for Patsy formulas before we continue and look in more detail on different statistical 
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models that are available in the statsmodels library. As already mentioned above, and summarized in 
Table 14-1, the basic syntax for a model formula has the form “LHS ~ RHS.” The ~ character is used to 
separate the left-hand side (LHS) the right-hand side (RHS) of the model equation. The LHS specifies the 
terms that constitute the response variables, and the RHS specifies the terms that constitute the explanatory 
variables. The terms in the LHS and RHS expressions are separated by + or – signs, but these should not be 
interpreted as arithmetic operators, but rather as set union and difference operators. For example, a+b 
means that both a and b are included in the model, and -a means that the term a is not included in the 
model. An expression of the type a*b is automatically expanded to a + b + a:b, where a:b is the pure 
interaction term a b× .

As concrete examples, consider the following formula and the resulting right-hand side terms (which 
we can extract from the design_info attribute using the term_names attribute):

In [31]: from collections import defaultdict
In [32]: data = defaultdict(lambda: np.array([]))
In [33]: patsy.dmatrices("y ~ a", data=data)[1].design_info.term_names
Out[33]: ['Intercept', 'a']

Here the two terms are Intercept and a, which corresponds to constant and a linear dependence on a.  
By default Patsy always includes the intercept constant, which in the Patsy formula also can be written 
explicitly using y ~ 1 + a. Including the 1 in the Patsy formula is optional.

In [34]: patsy.dmatrices("y ~ 1 + a + b", data=data)[1].design_info.term_names
Out[34]: ['Intercept', 'a', 'b']

In this case we have one more explanatory variable (a and b), and here the intercept is explicitly 
included in the formula. If we do not want to include the intercept in the model, we can use the notation -1 
to remove this term:

In [35]: patsy.dmatrices("y ~ -1 + a + b", data=data)[1].design_info.term_names
Out[35]: ['a', 'b']

Expressions of the type a * b are automatically expanded to include all lower-order interaction terms:

In [36]: patsy.dmatrices("y ~ a * b", data=data)[1].design_info.term_names
Out[36]: ['Intercept', 'a', 'b', 'a:b']

Higher-order expansions work too:

In [37]: patsy.dmatrices("y ~ a * b * c", data=data)[1].design_info.term_names
Out[37]: ['Intercept', 'a', 'b', 'a:b', 'c', 'a:c', 'b:c', 'a:b:c']

To remove a specific term from a formula we can write the term preceded by the minus operator. For 
example, to remove the pure third-order interaction term a:b:c from the automatic expansion of a*b*c, we 
can use:

In [38]: patsy.dmatrices("y ~ a * b * c - a:b:c", data=data)[1].design_info.term_names
Out[38]: ['Intercept', 'a', 'b', 'a:b', 'c', 'a:c', 'b:c']
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In Patsy, the + and - operators are used for set-like operations on sets of terms, if we need to represent 
the arithmetic operations we need to wrap the expression in a function call. For convenience, Patsy provides 
an identity function with the name I that can be used for this purpose. To illustrate this point, consider the 
following two examples, which show the resulting terms for y ~ a + b and y ~ I(a + b):

In [39]: data = {k: np.array([]) for k in ["y", "a", "b", "c"]}
In [40]: patsy.dmatrices("y ~ a + b", data=data)[1].design_info.term_names
Out[40]: ['Intercept', 'a', 'b']
In [41]: patsy.dmatrices("y ~ I(a + b)", data=data)[1].design_info.term_names
Out[41]: ['Intercept', 'I(a + b)']

Here the column in the design matrix that corresponds to the term with the name I(a+b) is the 
arithmetic sum of the arrays for the variables a and b. The same trick must be used if we want to include 
terms that are expressed as a power of a variable:

In [42]: patsy.dmatrices("y ~ a**2", data=data)[1].design_info.term_names
Out[42]: ['Intercept', 'a']
In [43]: patsy.dmatrices("y ~ I(a**2)", data=data)[1].design_info.term_names
Out[43]: ['Intercept', 'I(a ** 2)']

The notation I(...) that we used here is an example of a function call notation. We can apply 
transformations of the input data in a Patsy formula by including arbitrary Python function calls in the 
formula. In particular, we can transform the input data array using functions from NumPy:

In [44]: patsy.dmatrices("y ~ np.log(a) + b", data=data)[1].design_info.term_names
Out[44]: ['Intercept', 'np.log(a)', 'b']

Or we can even transform variables with arbitrary Python functions:

In [45]: z = lambda x1, x2: x1+x2
In [46]: patsy.dmatrices("y ~ z(a, b)", data=data)[1].design_info.term_names
Out[46]: ['Intercept', 'z(a, b)']

So far we have considered models with numerical response and explanatory variables. Statistical 
modeling also frequently includes categorical variables, which can take a discrete set of values that do not 
have meaningful numerical order (for example, “Female” or “Male” type “A,” “B,” or “C,” etc.). When using 
such variables in a linear model we typically need to recode them by introducing binary dummy variables. 
In a patsy formula any variable that does not have a numerical data type (float or int) will be interpreted as 
a categorical variable, and automatically encoded accordingly. For numerical variable we can use the  
C(x) notation to explicitly request that a variable x should be treated as a categorical variable.

For example, compare the following two examples that show the design matrix for the formula  
"y ~ - 1 + a" and "y ~ - 1 + C(a)", which corresponds to models where a is a numerical and categorical 
explanatory variable, respectively:

In [48]: data = {"y": [1, 2, 3], "a": [1, 2, 3]}
In [48]: patsy.dmatrices("y ~ - 1 + a", data=data, return_type="dataframe")[1]
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Out[48]:

a

0 1

1 2

2 3

For a numerical variable the corresponding column in the design matrix simply corresponds to the 
data vector, while for a categorical variable C(a) new binary-valued columns with a mask-like encoding of 
individual values of the original variable:

In [49]: patsy.dmatrices("y ~ - 1 + C(a)", data=data, return_type="dataframe")[1]
Out[49]:

C(a)[1] C(a)[2] C(a)[3]

0 1 0 0

1 0 1 0

2 0 0 1

Variables with non-numerical values are automatically interpreted and treated as categorical values:

In [50]: data = {"y": [1, 2, 3], "a": ["type A", "type B", "type C"]}
In [51]: patsy.dmatrices("y ~ - 1 + a", data=data, return_type="dataframe")[1]
Out[51]:

a[type A] a[type B] a[type C]

0 1 0 0

1 0 1 0

2 0 0 1

The default type of encoding of categorical variables into binary-valued treatment fields can be changed 
and extended by the user. For example, to encode the categorical variables with orthogonal polynomials 
instead of treatment indicators, we can use C(a, Poly):

In [52]: patsy.dmatrices("y ~ - 1 + C(a, Poly)", data=data, return_type="dataframe")[1]
Out[52]:

C(a, Poly).Constant C(a, Poly).Linear C(a, Poly).Quadratic

0 1 -7.071068e-01 0.408248

1 1 -5.551115e-17 -0.816497

2 1 7.071068e-01 0.408248



Chapter 14 ■ Statistical Modeling

343

The automatic encoding of categorical variables by Patsy is a very convenient aspect of Patsy formula, 
which allows the user to easily add a remove both numerical and categorical variables in a model. This is 
arguably one of the main advantages of the using the Patsy library to define model equations.

Linear Regression
The statsmodels library support several types of statistical models that are applicable in varying situations, 
but nearly all of them follow the same usage pattern, which makes it easy to switch between different 
models. Statistical models in statsmodels are represented by model classes. These can be initiated given the 
design matrices for the response and explanatory variables of a linear model, or given a Patsy formula and a 
data frame (or other dictionary-like object). The basic workflow when setting up and analyzing a statistical 
model with statsmodels includes the following steps:

	 1.	 Create an instance of model class, for example, using model = sm.MODEL(y, X) 
or model = smf.model(formula, data), where MODEL and model are the names 
of a particular model, such as OLS, GLS, Logit, etc. Here the convention is that 
uppercase names are used for classes that takes design matrices as arguments, 
and lowercase names for classes that takes Patsy formulas and data frames as 
arguments.

	 2.	 Creating a model instance does not perform any computations. To fit the model 
to the data we must invoke the fit method, result = model.fit(), which 
performs the fit and returns a result object that have methods and attributes for 
further analysis.

	 3.	 Print summary statistics for the result object returned by the fit method. The 
result object varies in content slightly for each statistical model, but most models 
implement the method summary, which produces a summary text that describes 
the result of the fit, including several types of statistics that can be useful for 
judging if the statistical model successfully explains the data. Viewing the output 
from the summary method is usually a good starting pointing when analyzing the 
result of a fitting process.

	 4.	 Post-process the model fit results: in addition to the summary method, the result 
object also contains methods and attributes for obtaining the fitted parameters 
(params), the residual for the model and the data (resid), the fitted values 
(fittedvalues), and a method for predicting the value of the response variables 
for new independent variables (predict).

	 5.	 Finally it may be useful to visualize the result of the fitting, for example, with 
the Matplotlib and Seaborn graphics libraries, or using some of the many 
graphing routines that are directly included in the statsmodels library (see the 
statsmodels.graphics module).

To demonstrate this workflow with a simple example, in the following we consider fitting a model to 
generated data whose true value is y x x x x= + + +1 2 3 41 2 1 2. We begin with storing the data in a Pandas data 
frame object:

In [53]: N = 100
In [54]: x1 = np.random.randn(N)
In [55]: x2 = np.random.randn(N)
In [56]: data = pd.DataFrame({"x1": x1, "x2": x2})
In [57]: data["y_true"] = 1  + 2 * x1 + 3 * x2 + 4 * x1 * x2
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Here we have stored the true value of y in the y_true column in the DataFrame object data. We simulate 
a noisy observation of y by adding a normal-distributed noise to the true values, and store the result in the  
y column:

In [58]: e = 0.5 * np.random.randn(N)
In [59]: data["y"] = data["y_true"] + e

Now, from the data we know that we have two explanatory variables, x1 and x2, in addition to the 
response variable y. The simplest possible model we can start with is the linear model Y x x= + +b b b0 1 1 2 2 , 
which we can define with the Patsy formula "y ~ x1 + x2". Since the response variable is continuous,  
it is a good starting point to fit the model to the data using ordinary linear square, for which we can use the 
smf.ols class.

In [60]: model = smf.ols("y ~ x1 + x2", data)
In [61]: result = model.fit()

Remember that ordinary least-square regression assumes that the residuals of the fitted model and 
the data is normally distributed. However, before analyzing the data we might not know if this condition is 
satisfied or not. Nonetheless, we can start with fitting the data to the model and investigate the distribution 
of the residual using graphical methods and statistical tests (with null hypothesis that the residuals are 
indeed normally distributed). A lot of useful information, including several types of test statistics, can be 
display using the summary method:

In [62]: print(result.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.380
Model:                            OLS   Adj. R-squared:                  0.367
Method:                 Least Squares   F-statistic:                     29.76
Date:                Wed, 22 Apr 2015   Prob (F-statistic):           8.36e-11
Time:                        22:40:33   Log-Likelihood:                -271.52
No. Observations:                 100   AIC:                             549.0
Df Residuals:                      97   BIC:                             556.9
Df Model:                           2
Covariance Type:            nonrobust                                          
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      0.9868      0.382      2.581      0.011         0.228     1.746
x1             1.0810      0.391      2.766      0.007         0.305     1.857
x2             3.0793      0.432      7.134      0.000         2.223     3.936
==============================================================================
Omnibus:                       19.951   Durbin-Watson:                   1.682
Prob(Omnibus):                  0.000   Jarque-Bera (JB):               49.964
Skew:                          -0.660   Prob(JB):                     1.41e-11
Kurtosis:                       6.201   Cond. No.                         1.32
==============================================================================
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified.
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The output produced by the summary method is rather verbose, and a detailed description of all the 
information provided by this method is beyond the scope of this treatment. Instead, here we only focus on a 
few key indicators. To begin with, the R-squared value is a statistic that indicates of how well the model fits 
the data. It can take values between 0 and 1, where an R-squared statistic of 1 corresponds to a perfect fit. 
The R-squared value of 0.380 reported above is rather poor, and it indicates that we need to refine our model 
(which is expected, since we left out the interaction term x x1 2× ). We can also explicitly access the R-squared 
statistic from the result object using the rsquared attribute.

In [63]: result.rsquared
Out[63]: 0.38025383255132539

Furthermore, the coef column in the middle of the table provides the fitted model parameters. 
Assuming that the residuals indeed are normally distributed, the std err column provides an estimate 
of the standard errors for the model coefficients, and the t and P>|t| columns are the t-statistics and the 
corresponding p-value for the statistical test with the null hypothesis that the corresponding coefficient is 
zero. Therefore, while keeping in mind that this analysis assumes that the residuals are normally distributed, 
we can look for the columns with small p-values and judge which explanatory variables have coefficients 
that are very likely to be different from zero (meaning that they have a significant predictive power).

To investigate whether the assumption of normal-distributed errors is justified we need to look at the 
residuals of the model fit to the data. The residuals are accessible via the resid attribute of the result object:

In [64]: result.resid.head()
Out[64]: 0    -3.370455
         1    -11.153477
         2    -11.721319
         3    -0.948410
         4    0.306215
         dtype: float64

Using these residuals, we can check for normality using the normaltest function from the SciPy  
stats module:

In [65]: z, p = stats.normaltest(result.fittedvalues.values)
In [66]: p
Out[66]: 4.6524990253009316e-05

For this example the resulting p-value is indeed very small, suggesting that we can reject the null 
hypothesis that the residuals are normally distributed (that is, we can conclude that the assumption of 
normal-distributed residuals is violated). A graphical method to check for normality of a sample is to use 
the qqplot from the statsmodels.graphics module. The QQ-plot, which compares the sample quantiles 
with the theoretical quantiles, should be close to a straight line if the sampled values are indeed normally 
distributed. The following function call to smg.qqplot produces the QQ-plot shown in Figure 14-1:

In [67]: fig, ax = plt.subplots(figsize=(8, 4))
    ...: smg.qqplot(result.resid, ax=ax)
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As can be seen in Figure 14-1, the points in the QQ-plot significantly deviate for a linear relation, 
suggesting that the observed residuals are unlikely to be a sample of a normal-distributed random variable. 
In summary, these indicators provide evidence that the model that we use is not sufficient, and that we 
might need to refine the model. We can include the missing interaction term by adding it to the Patsy 
formula and repeat the steps from the previous analysis:

In [68]: model = smf.ols("y ~ x1 + x2 + x1*x2", data)
In [69]: result = model.fit()
In [70]: print(result.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.963
Model:                            OLS   Adj. R-squared:                  0.961
Method:                 Least Squares   F-statistic:                     821.8
Date:                Tue, 21 Apr 2015   Prob (F-statistic):           2.69e-68
Time:                        23:52:12   Log-Likelihood:                -138.39
No. Observations:                 100   AIC:                             284.8
Df Residuals:                      96   BIC:                             295.2
Df Model:                           3
Covariance Type:            nonrobust                                          
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      1.1023      0.100     10.996      0.000         0.903     1.301
x1             2.0102      0.110     18.262      0.000         1.792     2.229
x2             2.9085      0.095     30.565      0.000         2.720     3.097
x1:x2          4.1715      0.134     31.066      0.000         3.905     4.438
==============================================================================
Omnibus:                        1.472   Durbin-Watson:                   1.912
Prob(Omnibus):                  0.479   Jarque-Bera (JB):                0.937
Skew:                           0.166   Prob(JB):                        0.626
Kurtosis:                       3.338   Cond. No.                         1.54

Figure 14-1.  QQ-plot of a linear model with two explanatory variables without interaction term
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==============================================================================
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly 
specified.

In this case we can see that the R-squared statistic is significantly higher, 0.963, indicating a nearly 
perfect correspondence between the model and the data.

In [71]: result.rsquared
Out[71]: 0.96252198253140375

Note that we can always increase the R-squared statistic by introducing more variables, but we want to 
make sure that we do not add variables with low predictive power (small coefficient and high corresponding 
p-value), since it would make the model susceptible to overfitting, and as usual we require that the residuals 
be normally distributed. Repeating the normality test and the QQ-plot form previous analysis with the 
updated model results in a relatively high p-value (0.081) and a relatively linear QQ-plot (see Figure 14-2). 
This suggests that in this case the residuals could very well be normally distributed (as we know they are, by 
design, in this example).

In [72]: z, p = stats.normaltest(result.fittedvalues.values)
In [73]: p
Out[73]: 0.081352587523644201
In [74]: fig, ax = plt.subplots(figsize=(8, 4))
    ...: smg.qqplot(result.resid, ax=ax)

Figure 14-2.  QQ-plot of a linear model with two explanatory variables with interaction term
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Once we are satisfied with the fit of the model, we can extract the model coefficients from the result 
object using the params attribute.

In [75]: result.params
Out[75]: Intercept    1.102297
         x1           2.010154
         x2           2.908453
         x1:x2        4.171501
         dtype: float64

Also, we can predict the values of new observations using the predict method, which takes as 
argument a NumPy array or DataFrame object with values of the independent variables (x

1
 and x

2
 in this 

case). For example, since the current problem has only two independent variables we can visualize the 
predictions of the model as a contour plot. To this end we first construct a DataFrame object with the x

1
 and x

2
 

values for which we want to predict the y value for using the fitted model.

In [76]: x = np.linspace(-1, 1, 50)
In [77]: X1, X2 = np.meshgrid(x, x)
In [78]: new_data = pd.DataFrame({"x1": X1.ravel(), "x2": X2.ravel()})

Using the predict method of the result object obtained from the fitting of the model we can compute 
the predicted y values for the new set of values of the response variables.

In [79]: y_pred = result.predict(new_data)

The result is a NumPy array (vector) with the same length as the data vectors X1.ravel() and X2.ravel(). 
To be able to plot the data using the Matplotlib contour function we first resize the y_pred vector to a  
square matrix.

In [80]: y_pred.shape
Out[80]: (2500,)
In [81]: y_pred = y_pred.reshape(50, 50)

The contour graphs of the true model and the fitted model are shown in Figure 14-3, which demonstrate 
that the agreement of the model fitted to the 100 noisy observations of y is sufficient to reproduce the 
function rather accurately in this example.

In [82]: fig, axes = plt.subplots(1, 2, figsize=(12, 5), sharey=True)
    ...: def plot_y_contour(ax, Y, title):
    ...:     c = ax.contourf(X1, X2, Y, 15, cmap=plt.cm.RdBu)
    ...:     ax.set_xlabel(r"$x_1$", fontsize=20)
    ...:     ax.set_ylabel(r"$x_2$", fontsize=20)
    ...:     ax.set_title(title)
    ...:     cb = fig.colorbar(c, ax=ax)
    ...:     cb.set_label(r"$y$", fontsize=20)
    ...:
    ...: plot_y_contour(axes[0], y_true(X1, X2), "true relation")
    ...: plot_y_contour(axes[1], y_pred, "fitted model")
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In the example we have looked at here we used the ordinary least-square (ols) method to fit the model 
to the data. Several other options are also available, such as the robust linear model (rlm) that is suitable 
if there are significant outliers in the observations, and variants of the generalized linear model that is 
suitable, for example, if the response variable can take only discrete values. This is the topic of the following 
section. In the following chapter we will also see examples of regularized regression, where the minimization 
criteria is modified to not only minimize the square of the residuals, but also, for example, to penalize large 
coefficients in the model.

Example Datasets
When working with statistical methods it is helpful to have example datasets to explore. The statsmodels package 
provides an interface for loading examples datasets from an extensive dataset repository3 from the R statistical 
software. The module sm.datasets contains a function get_rdataset that can be used to load datasets listed on 
the page http://vincentarelbundock.github.io/Rdatasets/datasets.html. The get_rdataset function takes 
the name of the dataset and optionally also the name of a package (grouping of datasets).

For example, to load a dataset named Icecream from the package Ecdat, we can use:

In [83]: dataset = sm.datasets.get_rdataset("Icecream", "Ecdat")

The result is a data structure with the dataset and metadata describing the dataset. The name of the 
dataset is given by the title attribute, and the __doc__ attribute contains an explanatory text describing the 
dataset (too long to display here):

In [84]: dataset.title
Out[84]: 'Ice Cream Consumption'

Figure 14-3.  The true relation and fit of the correct model to 100 sample from the true relation with  
normal-distributed noise

3See http://vincentarelbundock.github.io/Rdatasets.

http://vincentarelbundock.github.io/Rdatasets/datasets.html
http://vincentarelbundock.github.io/Rdatasets
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The data in the form of a Pandas DataFrame object is accessible via the data attribute:

In [85]: dataset.data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 30 entries, 0 to 29
Data columns (total 4 columns):
cons      30 non-null float64
income    30 non-null int64
price     30 non-null float64
temp      30 non-null int64
dtypes: float64(2), int64(2)
memory usage: 1.2 KB

From the information given by the DataFrame info method we can see that the Icecream dataset 
contains four variables: cons (consumption), income, price, and temp (temperature). Once a dataset is 
loaded we can explore it and fit it to statistical models following the usual procedures. For example, to model 
the consumption with as a linear model with price and temperature as independent variables, we can use:

In [86]: model = smf.ols("cons ~ -1 + price + temp", data=dataset.data)
In [87]: result = model.fit()

The result object can be analyzed using descriptive statistics and statistical tests, for example, starting 
with printing the output from the summary method, as we have seen before. We can also take a graphical 
approach and plot regression graphs, for example, using the plot_fit function in the smg module (see also 
the regplot function in the seaborn library):

In [88]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
    ...: smg.plot_fit(result, 0, ax=ax1)
    ...: smg.plot_fit(result, 1, ax=ax2)

From the regression plots shown in Figure 14-4, we can conclude that in this Icecream dataset the 
consumption seems linearly correlated to the temperature but has no clear dependence on the price 
(probably because the range of prices is rather small). Graphical tools such as plot_fit can be useful tools 
when developing statistical models.

Figure 14-4.  Regression plots for the fit of the consumption versus price and temperature in the Icecream dataset
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Discrete Regression
Regression with discrete dependent variables (for example, binary outcomes) requires different techniques 
than the linear regression model that we have seen so far. The reason is that linear regression requires that 
the response variable is a normal-distributed continuous variable, which cannot be used directly for a 
response variable that has only a few discrete possible outcomes, such as binary variables or variables taking 
positive integer values. However, using a suitable transformation it is possible to map a linear predictor to an 
interval that can be interpreted as a probability of different discrete outcomes. For example, in the case of 
binary outcomes, one popular transformation is the logistic function log /p p x1 0-( )( ) = + ×b b , or 
p x= + - - ×( )( )-1 0 1

1
exp b b , which maps xÎ -¥ ¥[ ],  to pÎ[ ]0 1, . In other words, the continuous or discrete 

feature vector x is mapped via the model parameters b
0
 and b

1
 and the logistic transformation onto a 

probability p. If p < 0 5. , it can be taken to predict that y = 0, and p ³ 0 5.  can be taken to predict y =1. This 
procedure, which is known as logistic regression, is an example of a binary classifier. We will see more about 
classifiers in Chapter 15 (about machine learning).

The statsmodels library provides several methods for discrete regression, including the Logit class,4 the 
related Probit class (which uses a cumulative distribution function of the normal distribution rather than the 
logistic function to transform the linear predictor to the [0, 1] interval), the multinomial logistic regression class 
MNLogit (for more than two categories), and the Poisson regression class Poisson for Poisson-distributed count 
variables (positive integers).

Logistic Regression
As an example of how to perform a logistic regression with statsmodels, we first load a classic dataset using 
the sm.datasets.get_rdataset function, which contains sepal and petal lengths and width for a sample 
of Iris flowers, together with a classification of the species of the flower. Here we will select a subset of the 
dataset corresponding to two different species, and create a logistic model for predicting the type of species 
from the values of the petal length and width. The info method gives a summary of which variables are 
contained in the dataset:

In [89]: df = sm.datasets.get_rdataset("iris").data
In [90]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 150 entries, 0 to 149
Data columns (total 5 columns):
Sepal.Length    150 non-null float64
Sepal.Width     150 non-null float64
Petal.Length    150 non-null float64
Petal.Width     150 non-null float64
Species         150 non-null object
dtypes: float64(4), object(1)
memory usage: 7.0+ KB

To see how many unique types of species are present in the Species column we can use the unique 
method for the Pandas series that is returned when extracting the column from the data frame object:

In [91]: df.Species.unique()
Out[91]: array(['setosa', 'versicolor', 'virginica'], dtype=object)

4Logistic regression belongs to the class of model that can be viewed as a generalized linear model, with the logistic 
transformation as a link function, so we could alternatively use sm.GLM or smf.glm.

http://dx.doi.org/10.1007/978-1-4842-0553-2_15
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This dataset contains three different types of species. To obtain a binary variable that we can use as 
response variable in a logistic regression, here we focus only on the data for the two species versicolor 
and virginica. For convenience we create a new data frame, df_subset, for the subset of the dataset 
corresponding to those species:

In [92]: df_subset = df[(df.Species == "versicolor") | (df.Species == "virginica")].copy()

To be able to use logistic regression to predict the species using the other variables as independent 
variables, we first need to create a binary variable that corresponds to the two difference species. Using the 
map method of the Pandas series object we can map the two species names into binary values 0 and 1.

In [93]: df_subset.Species = df_subset.Species.map({"versicolor": 1, "virginica": 0})

We also need to rename the columns with names that contain period characters to names that are valid 
symbol names in Python (for example by replacing the “.” characters with “_”), or else Patsy formulas that 
including these column names will be interpreted incorrectly. To rename the columns in a DataFrame object 
we can use the rename method and by passing a dictionary with name translations as the columns argument:

In [94]: df_subset.rename(columns={"Sepal.Length": "Sepal_Length",
    ...:                           "Sepal.Width": "Sepal_Width",
    ...:                           "Petal.Length": "Petal_Length",
    ...:                           "Petal.Width": "Petal_Width"}, inplace=True)

After these transformations we have a DataFrame instance that is suitable for use in a logistic  
regression analysis:

In [95]: df_subset.head(3)
Out[95]:

Sepal_Length Sepal_Width Petal_Length Petal_Width Species

50 7.0 3.2 4.7 1.4 1

51 6.4 3.2 4.5 1.5 1

52 6.9 3.1 4.9 1.5 1

To create a logistic model that attempts to explain the value of the Species variable with Petal_length 
and Petal_Width as independent variables, we can create an instance of the smf.logit class and using the 
Patsy formula "Species ~ Petal_Length + Petal_Width":

In [96]: model = smf.logit("Species ~ Petal_Length + Petal_Width", data=df_subset)

As usual, we need to call the fit method of the resulting model instance to actually fit the model to the 
supplied data. The fit is performed with maximum likelihood optimization.

In [97]: result = model.fit()
Optimization terminated successfully.
          Current function value: 0.102818
          Iterations 10
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As for regular linear regression, we can obtain a summary of the fit of the model to the data by printing 
the output produced by the summary method in the result object. In particular, we can see the fitted model 
parameters with an estimate for its z-score and the corresponding p-value, which can help us judge whether 
an explanatory variable is significant or not in the model.

In [98]: print(result.summary())
                           Logit Regression Results                                         
==============================================================================
Dep. Variable:                Species   No. Observations:                  100
Model:                          Logit   Df Residuals:                       97
Method:                           MLE   Df Model:                            2
Date:                Sun, 26 Apr 2015   Pseudo R-squ.:                  0.8517
Time:                        01:41:04   Log-Likelihood:                -10.282
converged:                       True   LL-Null:                       -69.315
LLR p-value:                 2.303e-26                                                     
================================================================================
                   coef    std err          z      P>|z|      [95.0% Conf. Int.]
--------------------------------------------------------------------------------
Intercept       45.2723     13.612      3.326      0.001        18.594    71.951
Petal_Length    -5.7545      2.306     -2.496      0.013       -10.274    -1.235
Petal_Width    -10.4467      3.756     -2.782      0.005       -17.808    -3.086           
================================================================================

The result object for logistic regression also provides the method get_margeff, which returns an object 
that also implements a summary method that outputs information about the marginal effects of each 
explanatory variable in the model.

In [99]: print(result.get_margeff().summary())
        Logit Marginal Effects
=====================================
Dep. Variable:                Species
Method:                          dydx
At:                           overall                                                      
================================================================================
                  dy/dx    std err          z      P>|z|      [95.0% Conf. Int.]
--------------------------------------------------------------------------------
Petal_Length    -0.1736      0.052     -3.347      0.001        -0.275    -0.072
Petal_Width     -0.3151      0.068     -4.608      0.000        -0.449    -0.181           
================================================================================

When we are satisfied with the fit of the model to the data, we can use it to predict the value of the 
response variable for new values of the explanatory variables. For this we can use the predict method in the 
result object produced by the model fitting, and to it we need to pass a data frame object with the new values 
of the independent variables.

In [100]: df_new = pd.DataFrame({"Petal_Length": np.random.randn(20)*0.5 + 5,
     ...:                        "Petal_Width": np.random.randn(20)*0.5 + 1.7})
In [101]: df_new["P-Species"] = result.predict(df_new)
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The result is an array with probabilities for each observation to correspond to the response y =1, and by 
comparing this probability to the threshold value 0.5 we can generate predictions for the binary value of the 
response variable:

In [102]: df_new["P-Species"].head(3)
Out[102]: 0    0.995472
          1    0.799899
          2    0.000033
                Name: P-Species, dtype: float64
In [103]: df_new["Species"] = (df_new["P-Species"] > 0.5).astype(int)

The intercept and the slope of the line in the plane spanned by the coordinates Petal_Width and 
Petal_Length that defines the boundary between a point that is classified as y = 0 and y =1, respectively, can 
be computed from the fitted model parameters. The model parameters can be obtained using the params 
attribute of the result object:

In [104]: params = result.params
     ...: alpha0 = -params['Intercept']/params['Petal_Width']
     ...: alpha1 = -params['Petal_Length']/params['Petal_Width']

Finally, to access the model and its predictions for new data points, we plot a scatter plot of the fitted 
(squares) and predicted (circles) data where data corresponding to the species virginica is coded with blue 
color, and the species versicolor is coded with green color. The result is shown in Figure 14-5.

In [105]: fig, ax = plt.subplots(1, 1, figsize=(8, 4))
     ...: # species virginica
     ...: ax.plot(df_subset[df_subset.Species == 0].Petal_Length.values,
     ...:         �df_subset[df_subset.Species == 0].Petal_Width.values, 's', 
     ...:         label='virginica')
     ...: ax.plot(df_new[df_new.Species == 0].Petal_Length.values,
     ...:         df_new[df_new.Species == 0].Petal_Width.values,
     ...:         'o', markersize=10, color="steelblue", label='virginica (pred.)')
     ...:
     ...: # species versicolor
     ...: ax.plot(df_subset[df_subset.Species == 1].Petal_Length.values,
     ...:         �df_subset[df_subset.Species == 1].Petal_Width.values, 's', 
     ...:         label='versicolor')
     ...: ax.plot(df_new[df_new.Species == 1].Petal_Length.values,
     ...:         df_new[df_new.Species == 1].Petal_Width.values,
     ...:         'o', markersize=10, color="green", label='versicolor (pred.)')
     ...:
     ...: # boundary line
     ...: _x = np.array([4.0, 6.1])
     ...: ax.plot(_x, alpha0 + alpha1 * _x, 'k')
     ...: ax.set_xlabel('Petal length')
     ...: ax.set_ylabel('Petal width')
     ...: ax.legend()
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Poisson Model
Another example of discrete regression is the Poisson model, which describes a process where the response 
variable is a success count for many attempts that each has a low probability of success. The Poisson model 
is also an example of a model that can be treated with the generalized linear model, using the natural 
logarithm as link function. To see how we can fit data to a Poisson model using the statsmodels library, we 
will analyze another interesting dataset from the R dataset repository: The discoveries dataset contains 
counts of the number of great discoveries between 1860 and 1959. Because of the nature of the data it 
reasonable to assume that the counts might be Poisson distributed. To explore this hypothesis we begin with 
loading the dataset using the sm.datasets.get_rdataset function and display the first few values to obtain 
an understanding of the format of the data.

In [106]: dataset = sm.datasets.get_rdataset("discoveries")
In [107]: df = dataset.data.set_index("time")
In [108]: df.head(10).T
Out[108]:

time 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

discoveries 5 3 0 2 0 3 2 3 6 1

Here we can see that the dataset contains integer counts in the discoveries series, and that the first few 
years in the series have, on average, a few great discoveries. To see if this is typical data for the entire series 
we can plot a bar graph of the number of discoveries per year, as shown in Figure 14-6.

In [109]: fig, ax = plt.subplots(1, 1, figsize=(16, 4))
     ...: df.plot(kind='bar', ax=ax)

Figure 14-5.  The result of a classification of Iris species using Logit regression with petal length and width and 
independent variables
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Judging from Figure 14-6, the number of great discoveries seems to be relatively constant over time, 
although a slight declining trend might be noticeable. Nonetheless, the initial hypothesis that the number 
of discoveries might be Poisson distributed does not look immediately unreasonable. To explore this 
hypothesis more systematically we can fit the data to a Poisson process, for example, using the smf.poisson 
class and the Patsy formula "discoveries ~ 1", which means that we model the discoveries variable with 
only an intercept coefficient (the Poisson distribution parameter).

In [110]: model = smf.poisson("discoveries ~ 1", data=df)

As usual we have to call the fit method to actually perform the fit of the model to the supplied data:

In [111]: result = model.fit()
Optimization terminated successfully.
          Current function value: 2.168457
          Iterations 7

The summary method of the result objects displays a summary of model fit and several fit statistics.

In [112]: print(result.summary())
                          Poisson Regression Results                                       
==============================================================================
Dep. Variable:            discoveries   No. Observations:                  100
Model:                        Poisson   Df Residuals:                       99
Method:                           MLE   Df Model:                            0
Date:                Sun, 26 Apr 2015   Pseudo R-squ.:                   0.000
Time:                        14:51:41   Log-Likelihood:                -216.85
converged:                       True   LL-Null:                       -216.85
LLR p-value:                       nan                                                     
==============================================================================
                 coef    std err          z      P>|z|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept      1.1314      0.057     19.920      0.000         1.020     1.243             
==============================================================================

The model parameters, available via the params attribute of the result object, is related to the  
l parameter of the Poisson distribution via the exponential function (the inverse of the link function):

In [113]: lmbda = np.exp(result.params)

Figure 14-6.  The number of great discoveries per year
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Once we have the estimated l parameter of the Poisson distribution we can compare the histogram 
of the observed counts values with the theoretical counts, which we can obtain from a Poisson-distributed 
random variable from the SciPy stats library.

In [114]: X = stats.poisson(lmbda)

In addition to the fit parameters we can also obtain estimated confidence intervals of the parameters 
using the conf_int method:

In [115]: result.conf_int()
Out[115]:

0 1

Intercept 1.020084 1.242721

To assess the fit of the data to the Poisson distribution we also create random variables for the lower and 
upper bounds of the confidence interval for the model parameter:

In [116]: X_ci_l = stats.poisson(np.exp(result.conf_int().values)[0, 0])
In [117]: X_ci_u = stats.poisson(np.exp(result.conf_int().values)[0, 1])

Finally we graph the histogram of the observed counts with the theoretical probability mass functions 
for the Poisson distributions corresponding to the fitted model parameter and its confidence intervals.  
The result is shown in Figure 14-7.

In [118]: v, k = np.histogram(df.values, bins=12, range=(0, 12), normed=True)
In [119]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))
     ...: ax.bar(k[:-1], v, color="steelblue",  align='center', label='Dicoveries per year')
     ...: ax.bar(k-0.125, X_ci_l.pmf(k), color="red", alpha=0.5, align='center', width=0.25,
     ...:        label='Poisson fit (CI, lower)')
     ...: ax.bar(k, X.pmf(k), color="green",  align='center', width=0.5, label='Poisson fit')
     ...: ax.bar(k+0.125, X_ci_u.pmf(k), color="red",  alpha=0.5, align='center', width=0.25,
     ...:        label='Poisson fit (CI, upper)')
     ...: ax.legend()

Figure 14-7.  Comparison of histogram of the number of great discoveries per year and the probability mass 
function for the fitted Poisson model
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The result shown in Figure 14-7 indicates that the dataset of great discoveries are not well described by 
a Poisson process, since the agreement between Poisson probability mass function and the observed counts 
deviates significantly. The hypothesis that the great discoveries per year are a Poisson process must therefore 
be rejected. A failure to fit a model to a given dataset is of course a natural part of statistical modeling process, 
and although the dataset turned out not to be Poisson distributed (perhaps because years with a large  
and small number of great discovers tend to be clustered together), we still have gained insight by the  
failed attempt to model it as such. Because of the correlations between the number of discoveries at any 
given year and its recent past, a time-series analysis such as discussed in the following section could be a 
better approach.

Time Series
Time-series analysis is an important field in statistical modeling that deals with analyzing and forecasting 
future values of data that is observed as a function of time. Time-series modeling differs in several aspects 
from the regular regression models that we have looked at so far. Perhaps most importantly, a time-series of 
observations typically cannot be considered as a series of independent random samples from a population. 
Instead there is often a rather strong component of correlation between observations that are close to each 
other in time. Also, the independent variables in a time-series model are the past observations of the same 
series, rather than a set of distinct factors. For example, while a regular regression can describe the demand 
for a product as a function of its price, in a time-series model it is typical to attempt to predict the future 
values from the past observations. This is a reasonable approach when there are autocorrelations such 
as trends in the time series under consideration (for example, daily or weekly cycles, or steady increasing 
trends, or inertia in the change of its value). Examples of time series include stock prices, weather and 
climate observations, and many other temporal processes in nature and in economics.

An example of a type of statistical model for time series is the autoregressive (AR) model, in which a 
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linear dependence on the p previous values. A time series that depends linearly on only one previous value 
(in a suitable unit of time) can be fully modeled with an AR process with p =1, denoted as AR(1), and a time 
series that depends linearly on two previous values can be modeled by a AR(2) process, and so on. The AR 
model is a special case of the ARMA model, a more general model that also include a moving average (MA) 
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weight factors for the moving averaging. This model is known as the ARMA model, and is denoted 
ARMA(p, q), where p is the number of autoregressive terms and q is the number of moving-average terms. 
Many other models for time-series model exists, but the AR and ARMA capture the basic ideas that are 
fundamental to many time-series applications.

The statsmodels library has a submodule dedicated to time-series analysis: sm.tsa, which implements 
several standard models for time-series analysis, as well as graphical and statistical analysis tools for 
exploring properties of time-series data. For example, let’s revisit the time series with outdoors temperature 
measurements used in Chapter 12, and say that we want to predict the hourly temperature of for few days 
into the future based on previous observations using an AR model. For concreteness, we will take the 

http://dx.doi.org/10.1007/978-1-4842-0553-2_12
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temperatures measured during the month of March and predict the hourly temperature of the first three 
days of April. We first load the dataset into a Pandas DataFrame object:

In [120]: df = pd.read_csv("temperature_outdoor_2014.tsv", header=None, delimiter="\t",
     ...:                  names=["time", "temp"])
     ...: df.time = pd.to_datetime(df.time, unit="s")
     ...: df = df.set_index("time").resample("H")

For convenience we extract the observations for March and April and store them in new DataFrame 
objects, df_march and df_april, respectively:

In [121]: df_march = df[df.index.month == 3]
In [122]: df_april = df[df.index.month == 4]

Here we will attempt to model the time series of the temperature observations using the AR model, and 
an important condition for its applicability is that it is applied to a stationary process, which does not have 
autocorrelation or trends other than those explained by the terms in the model. The function plot_acf in 
the smg.tsa model is a useful graphical tool for visualizing autocorrelation in a time series. It takes an array 
of time-series observations and graphics the autocorrelation with increasing time delay on the x-axis. The 
optional lags argument can be used to determine how many time steps that are to be included in the plot, 
which is useful for long time series and when we only wish to see the autocorrelation for a limited number 
of time steps. The autocorrelation functions for the temperature observations, and its first-, second-, and 
third-order differences are generated and graphed using the plot_acf function in the following code, and 
the resulting graph is shown in Figure 14-8.

In [123]: fig, axes = plt.subplots(1, 4, figsize=(12, 3))
     ...: smg.tsa.plot_acf(df_march.temp, lags=72, ax=axes[0])
     ...: smg.tsa.plot_acf(df_march.temp.diff().dropna(), lags=72, ax=axes[1])
     ...: smg.tsa.plot_acf(df_march.temp.diff().diff().dropna(), lags=72, ax=axes[2])
     ...: smg.tsa.plot_acf(df_march.temp.diff().diff().diff().dropna(), lags=72, ax=axes[3])

Figure 14-8.  Autocorrelation function for temperature data at increasing order of differentiation, from left to right

We can see a clear correlation between successive values in the time series in the leftmost graph in 
Figure 14-8, but for increasing order, differencing of the time series reduces the autocorrelation significantly. 
Suggesting that while each successive temperature observation is strongly correlated with its preceding 
value, such correlations are not as strong for the higher-order changes between the successive observations. 
Taking the difference of a time series is often a useful way of de-trending it and eliminating correlation. The 
fact that taking differences diminishes the structural autocorrelation suggests that a sufficiently high-order 
AR model might be able to model the time series.
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To create an AR model for the time series under consideration, we can use the sm.tsa.AR class. It can 
be initiated with Pandas series that is index by DatetimeIndex or PeriodIndex (see the docstring of AR for 
alternative way of pass time-series data to this class):

In [124]: model = sm.tsa.AR(df_march.temp)

When we fit the model to the time-series data we need to provide the order of the AR model. Here, 
since we can see a strong autocorrelation with a lag of 24 periods (24 hours) in Figure 14-8, we must at least 
include terms for 24 previous terms in the model. To be on the safe side, and since we aim to predict the 
temperature for 3 days, or 72 hours, here we choose to make the order of the AR model correspond to  
72 hours as well:

In [125]: result = model.fit(72)

An important condition for the AR process to be applicable is that the residual of are stationary (no 
remaining autocorrelation and no trends). The Durbin-Watson statistical test can be used to for stationary 
in a time series. It returns a value between 0 and 4, and values close to 2 corresponds to time series that do 
not have remaining autocorrelation. We can also use the plot_acf function to graph the autocorrelation 
function for the residual, and verify that the there is no significant autocorrelation.

In [126]: sm.stats.durbin_watson(result.resid)
Out[126]: 1.9985623006352975

We can also use the plot_acf function to graph the autocorrelation function for the residual, and verify 
that the there is no significant autocorrelation.

In [127]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))
     ...: smg.tsa.plot_acf(result.resid, lags=72, ax=ax)

The Durbin-Watson statistic close to 2 and the absence of autocorrelation in Figure 14-9 suggest that 
the current model successfully explains the fitted data. We can now proceed to forecast the temperature for 
future dates using the predict method in the result object returned by the model fit method:

In [128]: temp_3d_forecast = result.predict("2014-04-01", "2014-04-4")

Figure 14-9.  Autocorrelation plot for the residual from the AR(72) model for the temperature observations
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Next we graph the forecast (red) together with the previous three days of temperature observations 
(blue) and the actual outcome (green), for which the result is shown in Figure 14-10:

In [129]: fig, ax = plt.subplots(1, 1, figsize=(12, 4))
     ...: ax.plot(df_march.index.values[-72:], df_march.temp.values[-72:], label="train data")
     ...: ax.plot(df_april.index.values[:72], df_april.temp.values[:72], label="actual outcome")
     ...: ax.plot(pd.date_range("2014-04-01", "2014-04-4", freq="H").values,
     ...:         temp_3d_forecast, label="predicted outcome")
     ...:
     ...: ax.legend()

Figure 14-10.  Observed and predicted temperatures as a function of time

The agreement of the predicted temperature and the actual outcome shown in Figure 14-10 is rather 
good. However, this will of course not always be the case, as temperature cannot be forecasted based solely 
on previous observations. Nonetheless, within a period of stable a weather system the hourly temperature of 
a day or so may be systematically forecasted with an AR model, accounting for the daily variations and other 
steady trends.

In addition to the basic AR model, statsmodels also provides the ARMA (autoregressive moving-
average) and ARIMA (autoregressive integrated moving-average) models. The usage patterns for these 
models are similar to that of the AR model we have used here, but there are some differences in the 
details. Refer to the docstrings for sm.tsa.ARMA and sm.tsa.ARIMA classes, and the official statsmodels 
documentation for further information.

Summary
In this chapter we have briefly surveyed statistical modeling and introduced basics statistical modeling 
features of the statsmodels library and model specification using Patsy formulas. Statistical model is a broad 
field and we only scratched the surface of what the statsmodels library can be used for in this chapter. We 
began with an introduction of how to specify statistical models using the Patsy formula language, which we 
used in the following section on linear regression for response variables that are continuous (regular linear 
regression) and discrete (logistic and nominal regression). After having covered linear regression we briefly 
looked at time-series analysis, which requires slightly different methods compared to linear regression 
because of the correlations between successive observations that naturally arise in time series. There are 
many aspects of statistical modeling that we did not touch upon in this introduction, but the basics of 
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linear regression and time-series modeling that we did cover here should provide a background for further 
explorations. In Chapter 15 we continue with machine learning, which is a topic that is closely related to 
statistical modeling in both motivation and methods.

Further Reading
Excellent and thorough introductions to statistical modeling are given in James’s book, which is also 
available for free at http://www-bcf.usc.edu/~gareth/ISL/index.html, and in Kuhn’s book. An accessible 
introduction to time-series analysis is given in the Hyndman book, which is also available for free online at 
https://www.otexts.org/fpp.
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Chapter 15

Machine Learning

In this chapter we explore machine learning. This topic is closely related to statistical modeling, which we 
considered in Chapter 14, in the sense that both deal with using data to describe and predict outcomes 
of uncertain or unknown processes. However, while statistical modeling emphasizes the model used in 
the analysis, machine learning side steps the model part and focuses on algorithms that can be trained 
to predict the outcome of new observations. In other words, the approach taken in statistical modeling 
emphasizes understanding how the data is generated, by devising models and tuning their parameters by 
fitting to the data. If the model is found to fit the data well and if it satisfies the relevant model assumptions, 
then the model gives an overall description of the process, and it can be used to compute statistics with 
known distributions and for evaluating statistical tests. However, if the actual data is too complex to be 
explained using available statistical models, this approach has reached its limits. In machine learning, on 
the other hand, the actual process that generates the data, and potential models thereof, is not central. 
Instead, the observed data and the explanatory variables are the fundamental starting points of a machine-
learning application. Given data, machine-learning methods can be used to find patterns and structure in 
the data, which can be used to predict the outcome for new observations. Machine learning therefore does 
not provide understanding of how data was generated, and because fewer assumptions are made regarding 
the distribution and statistical properties of the data, we typically cannot compute statistics and perform 
statistical tests regarding the significance of certain observations. Instead, machine learning puts strong 
emphasis on the accuracy with which new observations are predicted.

Although there are significant differences in the fundamental approach taken in statistical modeling 
and machine learning, many of the mathematical methods that are used are closely related or sometimes 
even the same. In the course of this chapter, we are going to recognize several methods that we used in 
Chapter 14 on statistical modeling, but they will be employed with a different mindset and with slightly 
different goals.

In this chapter we give a brief introduction to basic machine-learning methods and we survey how such 
methods can be used in Python. The focus is on machine-learning methods that have broad application 
in many fields of scientific and technical computing. The most prominent and comprehensive machine 
learning library for Python is scikit-learn, although there are several alternative and complementary libraries 
as well: For example mlpy,1 PyBrain,2 and pylearn2,3 to mention a few. Here we exclusively use the scikit-
learn library, which provides implementations of the most common machine learning algorithm. However, 
readers that are particularly interested in machine learning are encouraged to also explore the other libraries 
mentioned above as well.

1http://mlpy.sourceforge.net.
2http://pybrain.org.
3http://deeplearning.net/software/pylearn2.

http://dx.doi.org/10.1007/978-1-4842-0553-2_14
http://dx.doi.org/10.1007/978-1-4842-0553-2_14
http://mlpy.sourceforge.net/
http://pybrain.org/
http://deeplearning.net/software/pylearn2
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■■ scikit-learn T he scikit-learn library contains a comprehensive collection of machine-learning related 
algorithms, including regression, classification, dimensionality reduction, and clustering. For more information 
about the project and its documentation, see the projects web page at http://scikit-learn.org. At the time 
of writing the latest version of scikit-learn is 0.16.1.

Importing Modules
In this chapter we work with the scikit-learn library, which provides the sklearn Python module. With the 
sklearn module, here we use the same import strategy as we use with the SciPy library: that is, we explicitly 
import modules from the library that we need for our work. In this chapter we use the following modules 
from the sklearn library:

In [1]: from sklearn import datasets
In [2]: from sklearn import cross_validation
In [3]: from sklearn import linear_model
In [4]: from sklearn import metrics
In [5]: from sklearn import tree
In [6]: from sklearn import neighbors
In [7]: from sklearn import svm
In [8]: from sklearn import ensemble
In [9]: from sklearn import cluster

For plotting and basic numerics we also require the Matplotlib and NumPy libraries, which we import 
in the usual manner:

In [10]: import matplotlib.pyplot as plt
In [11]: import numpy as np

We also use the Seaborn library for graphics and figure styling:

In [12]: import seaborn as sns

Brief Review of Machine Learning
Machine learning is a topic in the artificial-intelligence field of computer science. Machine learning can 
be viewed as including all applications where feeding training data into a computer program makes it able 
perform a given task. This is a very broad definition, but in practice machine learning is often associated 
with a much more specific set of techniques and methods. Here we take a practical approach and explore, 
by example, several basic methods and key concepts in machine learning. Before we get started with specific 
examples, we begin with a brief introduction of the terminology and core concepts.

In machine learning, the process of fitting a model or an algorithm to observed data is known as 
training. Machine-learning applications can often be classified into either of two types: supervised and 
unsupervised learning, which differ in the type of data the application is trained with. In supervised learning, 
the data includes feature variables and known response variables. Both feature and response variables can 
be continuous or discrete. Preparing such data typically requires manual effort, and sometimes even expert 
domain knowledge. The application is thus trained with handcrafted data, and the training can therefore 

http://scikit-learn.org/
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be viewed as supervised machine learning. Examples of applications include regression (prediction of a 
continuous response variable) and classification (prediction of a discrete response variable), where the 
value of the response variable is known for the training dataset, but not for new samples.

In contrast, unsupervised learning corresponds to situations where machine-learning applications 
are trained with raw data that is not labeled or otherwise manually prepared. An example of unsupervised 
learning is clustering of data into groups, or in other words, grouping of data into suitable categories. In 
contrast to supervised classification, it is typical for unsupervised learning that the final categories are not 
known in advance, and the training data therefore cannot be labeled accordingly. It may also be the case that 
the manual labeling of the data is difficult or costly, for example, because the number of samples is too large. 
It goes without saying that unsupervised machine learning is more difficult and limited in what it can be 
used for than supervised machine learning, and supervised machine learning therefore should be preferred 
whenever possible. However, unsupervised machine learning can be a powerful tool when creating labeled 
training datasets is not possible.

There is naturally much more complexity to machine learning than suggested by the basic types of 
problems outlined above, but these concepts are recurring themes in many machine-learning applications. 
In this chapter we look at a few examples of basic machine-learning techniques that demonstrates several 
central concepts of machine learning. Before we do so we briefly introduce common machine-learning 
terminology that we will refer to in the following sections:

•	 Cross-validation is the practice of dividing the available data into training data 
and testing data (also known as validation data), where only the training data is 
used to train the machine learning application, and where the test data allows the 
trained application to be tested on previously unseen data. The purpose of this is 
to measure how well the model predicts new observations, and to limit problems 
with overfitting. There are several approaches to dividing the data into training and 
testing datasets. For example, one extreme approach is to test all possible ways to 
divide the data (exhaustive cross-validation) and use an aggregate of the result (for 
example, average, or the minimum value, depending on the situation). However, for 
large datasets the number of possible combinations of train and test data becomes 
extremely large, making exhaustive cross-validation impractical. Another extreme 
is to use all but one sample in the training set, and the remaining sample in the 
training set (leave-one-out cross-validation), and to repeat the training-test cycle for 
all combinations in which one sample is chosen from the available data. A variant of 
this method is to divide the available data into k groups and perform a leave-one-out 
cross-validation with the k groups of datasets. This method is known as k-fold cross-
validation, and is a popular technique that often is used in practice. In the scikit-
learn library, the module sklearn.cross_validation contains functions for working 
with cross-validation.

•	 Feature extraction is an important step in the preprocessing stage of a machine-
learning problem. It involves creating suitable feature variables and the 
corresponding feature matrices that can be passed to one of many machine-
learning algorithms implemented in the scikit-learn library. The scikit-learn module 
sklearn.feature_extraction plays a similar role in many machine-learning 
applications as the Patsy formula library does in statistical models, especially 
for text- and image-based machine learning problems. Using methods from the 
sklearn.feature_extraction module, we can automatically assemble feature 
matrices (design matrices) from various data sources.
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•	 Dimensionality reduction and feature selection are techniques that are frequently 
used in machine-learning applications where it is common to have a large number 
of explanatory variables (features), many of which may not significantly contribute 
to the predictive power of the application. To reduce the complexity of the model 
it is then often desirable to eliminate less useful features and thereby reduce the 
dimensionality of the problem. This is particularly important when the number 
of features is comparable to or larger than the number of observations. The 
scikit-learn modules sklearn.decomposition and sklearn.feature_selection 
contains function for reducing the dimensionality of a machine-learning problem: 
For example, principle component analysis (PCA) is a popular technique for 
dimensionality reduction that works by performing a singular-value decomposition 
of the feature matrix and keeping only most significant singular vectors.

In the following sections we look how scikit-learn can be used to solve examples of machine-learning 
problems using the techniques discussed above. Here we work with generated data and built-in datasets. 
Like the statsmodels library, scikit-learn comes with a number of built-in datasets that can be used for 
exploring machine-learning methods. The datasets module in sklearn provides three groups of functions 
for loading built-in datasets (with prefix load_, for example load_boston), for fetching external datasets 
(with prefix fetch_, for example fetch_californa_housing), and finally for generating datasets from 
random numbers (with prefix make_, for example make_regression).

Regression
Regression is a central part of machine learning and statistical modeling, as we already saw in Chapter 14. 
In machine learning we are not so concerned with how well the regression model fits to the data, but rather 
care about how well it predicts new observations. For example, if we have a large number of features and less 
number of observations, we can typically fit the regression perfectly to the data without it being very useful 
for predicting new values. This is an example of overfitting: a small residual between the data and regression 
model is not a guarantee that the model is able to accurately predict future observations. In machine 
learning, a common method to deal with this problem is to partition the available data into a training dataset 
and a testing dataset that is used for validating the regression results against previously unseen data.

To see how fitting a training data set and validating the result against a testing data set can work out, 
let’s consider a regression problem with 50 samples and 50 features out of which only 10 features are 
informative (linearly correlated with the response variable). This simulates a scenario when we have a 
50 known features, but it turns out that only 10 of those features contribute to the predictive power of the 
regression model. The make_regression function in the sklearn.datasets module generates data of kind:

In [13]: X_all, y_all = datasets.make_regression(n_samples=50, n_features=50, n_informative=10)

The result is two arrays, X_all and y_all, of shapes (50, 50) and (50,), corresponding to the design 
matrices for a regression problem with 50 samples and 50 features. Instead of performing a regression on 
the entire dataset (and obtaining a perfect fit because of the small number of observations), here we split the 
dataset into two equal size datasets, using the train_test_split function from sklearn.cross_validation 
module. The result is a training dataset X_train, y_train, and a testing dataset X_test, y_test:

In [14]: X_train, X_test, y_train, y_test = \
    ...:     cross_validation.train_test_split(X_all, y_all, train_size=0.5)

http://dx.doi.org/10.1007/978-1-4842-0553-2_14
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In scikit-learn, ordinary linear regression can be carried out using the LinearRegression class from the 
sklearn.linear_model module, which is comparable with the statsmodels.api.OLS from the statsmodels 
library. To perform a regression we first create a LinearRegression instance:

In [15]: model = linear_model.LinearRegression()

To actually fit the model to the data, we need to invoke the fit method, which takes the feature matrix 
and the response variable vector as first and second argument:

In [16]: model.fit(X_train, y_train)
Out[16]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Note that compared to the OLS class in statsmodels, the order of the feature matrix and response 
variable vector is reversed, and in statsmodels the data is specified when the class instance is created instead 
of when calling the fit method. Also, in scikit-learn calling the fit method does not return new result 
objects, but the result is instead stored directly in the model instance. These minor differences are small 
inconveniences when working interchangeably with the statsmodels and scikit-learn modules but worth 
taking note of.4

Since the regression problem has 50 features and we only trained the model with 25 samples, we can 
expect complete overfitting that perfectly fits the data. This can be quantified by computing the sum of 
squared errors (SSE) between the model and the data. To evaluate the model for a given set of features we 
can use the predict method, from which we can compute the residuals and the SSE:

In [17]: def sse(resid):
    ...:     return np.sum(resid**2)
In [18]: sse_train = sse(y_train - model.predict(X_train))
    ...: sse_train
Out[18]: 8.1172209425431673e-25

As expected, for the training dataset the residuals are all essentially zero, due to the overfitting allowed 
by having twice as many features as data points. This overfitted model is, however, not at all suitable for 
predicting unseen data. This can be verified by computing the SSE for our test dataset:

In [19]: sse_test = sse(y_test - model.predict(X_test))
    ...: sse_test
Out[19]: 213555.61203039082

The result is a very large SSE value, which indicates that the model does not do a good job at predicting 
new observations. An alternative measure of the fit of a model to a dataset is the r-squared score (see Chapter 14),  
which we can compute using the score method. It takes a feature matrix and response variable vector as 
arguments and computes the score. For the training dataset we obtain, as expected, an r-square score of 1.0, 
but for the testing dataset we obtain a low score:

In [20]: model.score(X_train, y_train)
Out[20]: 1.0
In [21]: model.score(X_test, y_test)
Out[21]: 0.31407400675201746

4In practice it is common to work with both statsmodels and scikit-learn, as they, in many respects, complement each 
other. However, in this chapter we focus solely on scikit-learn.

http://dx.doi.org/10.1007/978-1-4842-0553-2_14
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The big difference between the scores for the training and testing datasets once again indicates that the 
model is overfitted.

Finally, we can also take a graphical approach and plot the residuals of the training and testing datasets, 
and visually inspect the values of the coefficients computed by the residual. From a LinearRegression 
object, we can extract the fitted parameters using the coef_ attribute. To simplify repeated plotting of the 
training and testing residuals and the model parameters, here we first create a function plot_residuals_
and_coeff for plotting these quantities. We then call the function with the result from the ordinary linear 
regression model trained and tested on the training and testing datasets, respectively. The result is shown in 
Figure 15-1, and it is clear that there is a large difference in the magnitude of the residuals for the test and the 
training datasets, for every sample.

In [22]: def plot_residuals_and_coeff(resid_train, resid_test, coeff):
    ...:    fig, axes = plt.subplots(1, 3, figsize=(12, 3))
    ...:    axes[0].bar(np.arange(len(resid_train)), resid_train)
    ...:    axes[0].set_xlabel("sample number")
    ...:    axes[0].set_ylabel("residual")
    ...:    axes[0].set_title("training data")
    ...:    axes[1].bar(np.arange(len(resid_test)), resid_test)
    ...:    axes[1].set_xlabel("sample number")
    ...:    axes[1].set_ylabel("residual")
    ...:    axes[1].set_title("testing data")
    ...:    axes[2].bar(np.arange(len(coeff)), coeff)
    ...:    axes[2].set_xlabel("coefficient number")
    ...:    axes[2].set_ylabel("coefficient")
    ...:    fig.tight_layout()
    ...:    return fig, axes
In [23]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)

The overfitting in this example happens because we have too few samples, and one solution could be 
to collect more samples until overfitting is no longer a problem. However, this may not always be practical, 
as collecting observations may be expensive, and because in some applications we might have a very large 
number of features. For such situations it is desirable to be able to fit a regression problem in a way that 
avoids overfitting as much as possible (at the expanse of not fitting the training data perfectly), so that the 
model can give meaningful predictions for new observations.

Regularized regression is one possible solution to this problem. In the following we look at a few 
different variations of regularized regression. In ordinary linear regression the model parameters are chosen 
such that the sum of squared residuals are minimized. Viewed as an optimization problem, the objective 
function is therefore minb bX y-

2

2
, where X is the feature matrix, y is the response variables, and b is  

Figure 15-1.  The residual between the ordinary linear regression model and the training data (left), the model 
and the test data (middle), and the values of the coefficients for the 50 features (right)
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the vector of model parameters, and where × 2 denotes the L2 norm. In regularized regression, we add a 
penalty term in the objective function of the minimization problem. Different types of penalty terms impose 
different types of regularization of the original regression problem. Two popular types of regularization  
known as LASSO and Ridge regression are obtained by adding the L1 or L2 norms of the parameter vector 

to the minimization objective function, minb b a bX y- +{ }2

2

1
 and minb b a bX y- +{ }2

2

2

2 , respectively. 

Here a is a free parameter that determines the strength of the regularization. Adding the L2 norm b
2

2
 favors 

model parameter vectors with smaller coefficients, and adding the L1 norm b
1
 favors a model parameter 

vectors with as few nonzero elements as possible. Which type of regularization is more suitable depends on 
the problem at hand: When we wish to elminate as many features as possible we can use L1 regularization 
with LASSO regression, and when we wish to limit the magnitude of the model coefficients we can use L2 
regularization with Ridge regression.

With scikit-learn, we can perform Ridge regression using the Ridge class from the sklearn.linear_model 
module. The usage of this class is almost the same as the LinearRegression class that we used above, but we 
can also give the value of the a parameter that determines the strength of the regularization as argument 
when we initialize the class. Here we chose the value a = 2 5. . A more systematic approach to choosing a is 
introduced later in this chapter.

In [24]: model = linear_model.Ridge(alpha=2.5)

To fit the regression model to the data we again use the fit method, passing the training feature matrix 
and response variable as arguments:

In [25]: model.fit(X_train, y_train)
Out[25]: Ridge(alpha=2.5, copy_X=True, fit_intercept=True, max_iter=None,
               normalize=False, solver='auto', tol=0.001)

Once the model has been fitted to the training data, we can compute the model predictions for the 
training and testing datasets, and compute the corresponding SSE values:

In [26]: sse_train = sse(y_train - model.predict(X_train))
    ...: sse_train
Out[26]: 178.50695164950841
In [27]: sse_test = sse(y_test - model.predict(X_test))
    ...: sse_test
Out[27]: 212737.00160105844

We note that the SSE of the training data is no longer close to zero, since the minimization object 
function no longer coincides with the SSE, but there is a slight decrease in the SSE for the testing data. 
For comparison with ordinary regression, we also plot the training and testing residuals and the model 
parameters using the function plot_residuals_and_coeff that we defined above. The result is shown in 
Figure 15-2.

In [28]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)
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Similarly, we can perform the L1 regularized LASSO regression using the Lasso class from the sklearn.
linear_model module. It also accepts the value of the a parameter as argument when the class instance is 
initialized. Here we choose a =1 0.  and perform the fitting to the training data and the computation of the 
SSE for the training and testing data in the same way as described previously:

In [29]: model = linear_model.Lasso(alpha=1.0)
In [30]: model.fit(X_train, y_train)
Out[30]: Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
In [31]: sse_train = sse(y_train - model.predict(X_train))
    ...: sse_train
Out[31]: 309.74971389531891
In [32]: sse_test = sse(y_test - model.predict(X_test))
    ...: sse_test
Out[32]: 1489.1176065002333

Here we note that the while the SSE of the training data increased compared to that of the ordinary 
regression, the SSE for the testing data decreased significantly. Thus, by paying a price for how well the 
regression model fit the training data, we have obtained a model with significantly improved ability to 
predict the testing dataset. For comparison with the earlier methods we graph the residuals and the model 
parameters once again with the plot_residuals_and_coeff function. The result is shown in Figure 15-3. In 
the rightmost panel of this figure we see that the coefficient profile is significantly different from those shown 
in Figure 15-1 and Figure 15-2, and the coefficient vector produced with the Lasso regression contains 
mostly zeros. This is a suitable method to the current data because in the beginning, when we generated the 
dataset, we choose 50 features out of which only 10 are informative. If we suspect that we might have a large 
number of features that might not contribute much in the regression model, using the L1 regularization of 
the LASSO regression can thus be a good approach to try.

In [33]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)

Figure 15-2.  The residual between the Ridge regulalized regression model and the training data (left), the 
model and the test data (middle), and the values of the coefficients for the 50 features (right)
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The values of a that we used in the two previous examples using Ridge and LASSO regression were 
chosen arbitrarily. The most suitable value of a is problem dependent, and for every new problem we 
need to find a suitable value using trial and error. The scikit-learn library provides methods for assisting 
this process, as we will see below, but before we explore those methods it is instructive to explore how the 
regression model parameters and the SSE for the training and testing datasets depend on the value of a for a 
specific problem. Here we focus on LASSO regression, since it was seen to work well for the current problem, 
and we repeatedly solve the same problem using different values for the regularization strength parameter a, 
while storing the values of the coefficients and SSE values in NumPy arrays.

We begin with creating the required NumPy arrays. We use np.logspace to create a range of a values 
that spans several orders of magniture:

In [34]: alphas = np.logspace(-4, 2, 100)
In [35]: coeffs = np.zeros((len(alphas), X_train.shape[1]))
In [36]: sse_train = np.zeros_like(alphas)
In [37]: sse_test = np.zeros_like(alphas)

Next we loop through the a values and perform the LASSO regression for each value:

In [38]: for n, alpha in enumerate(alphas):
    ...:     model = linear_model.Lasso(alpha=alpha)
    ...:     model.fit(X_train, y_train)
    ...:     coeffs[n, :] = model.coef_
    ...:     sse_train[n] = sse(y_train - model.predict(X_train))
    ...:     sse_test[n] = sse(y_test - model.predict(X_test))

Finally we plot the coefficients and the SSE for the training and testing datasets using Matplotlib. The 
result is shown in Figure 15-4. We can see in the left panel of this figure that a large number coefficients 
are nonzero for very small values of a which corresponds to the overfitting regime, and also that when a is 
increased above a certain threshold, many of the coefficients collapse to zero and only a few coefficients 
remain nonzero. This is the sought-after effect in LASSO regression, and in the right panel of the figure we 
see that while the SSE for the training set is steadily increasing with increasing a, there is also a sharp drop 
in the SSE for the testing dataset. For too large values of a all coefficients converges to zero and the SSE for 
both the training and testing datasets becomes large. There is therefore an optimal region of a that prevents 
overfitting and improves the models ability to predict unseen data. While these observations are not 
universally true, a similar pattern can be seen for many problems.

Figure 15-3.  The residual between the LASSO regulalized regression model and the training data (left), the 
model and the test data (middle), and the values of the coefficients for the 50 features (right)
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In [39]: fig, axes = plt.subplots(1, 2, figsize=(12, 4), sharex=True)
    ...: for n in range(coeffs.shape[1]):
    ...:     axes[0].plot(np.log10(alphas), coeffs[:, n], color='k', lw=0.5)
    ...:
    ...: axes[1].semilogy(np.log10(alphas), sse_train, label="train")
    ...: axes[1].semilogy(np.log10(alphas), sse_test, label="test")
    ...: axes[1].legend(loc=0)
    ...:
    ...: axes[0].set_xlabel(r"${\log_{10}}\alpha$", fontsize=18)
    ...: axes[0].set_ylabel(r"coefficients", fontsize=18)
    ...: axes[1].set_xlabel(r"${\log_{10}}\alpha$", fontsize=18)
    ...: axes[1].set_ylabel(r"sse", fontsize=18)

The process of testing a regularized regression with several values of a can be carried out automatically 
using, for example, the RidgeCV and LassoCV classes. These variants of the Ridge and LASSO regression 
internally perform a search for the optimal a using a cross-validation approach. By default a k-fold cross-
validation with k = 3 is used, although this can be changed using the cv argument to the classes. Because of 
the built-in cross-validation we do not need to explicitly divide the dataset into training and testing datasets, 
as we have done previously.

To use the LASSO method with an automatically chosen a, we simply create and instance of LassoCV 
and invoke its fit method:

In [40]: model = linear_model.LassoCV()
In [41]: model.fit(X_all, y_all)
Out[41]: LassoCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True,
                 max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, positive=False,
                 precompute='auto', random_state=None, selection='cyclic', tol=0.0001,
                 verbose=False)

The value of regularization strength parameter a selected through the cross-validation search is 
accessible through the alpha_ attribute:

In [42]: model.alpha_
Out[42]: 0.13118477495069433

Figure 15-4.  The coefficients (left) and sum of squared errors (SSE) for the training and testing datasets 
(right), for LASSO regression as a function of the logartihm of the regularization strength parameter a
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We note that the suggested value of a agrees reasonable well with what we might have guessed from 
Figure 15-4. For comparison with the previous method we also compute the SSE for the training and testing 
datasets (although both were used for training in the call to LassoCV.fit), and graph the SSE values together 
with the model parameters, as shown in Figure 15-5. By using the cross-validated LASSO method we obtain 
a model that predicts both the training and testing datasets with relatively high accuracy, and we are no 
longer as likely to suffer from the problem of overfitting, in spite of having few samples compared to the 
number of features.5

In [43]: sse_train = sse(y_train - model.predict(X_train))
    ...: sse_train
Out[43]: 66.900068715063625
In [44]: sse_test = sse(y_test - model.predict(X_test))
    ...: sse_test
Out[44]: 966.39293785448456
In [45]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)

Finally, yet another type of popular regularized regression, which combines the L1 and L2 regularization 
of the LASSO and Ridge methods, is known as elastic net. The minimization objective function for this method 

is minb b ar b a r bX y- + + -( ){ }2

2

1 2

2
1 , where the parameter r (l1_ratio in scikit-learn) determines the 

relative weight of the L1 and L2 penalties, and thus how much the method behaves like the LASSO and Ridge 
methods. In scikit-learn, we can perform an elastic net regression using the ElasticNet class, to which we can 
give explicit values of the a (alpha) and r (l1_ratio) parameters, or the cross-validated version ElasticNetCV, 
which automatically finds suitable values of the a and r parameters:

In [46]: model = linear_model.ElasticNetCV()
In [47]: model.fit(X_train, y_train)
Out[47]: ElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True,
                      l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1,
                      normalize=False, positive=False, precompute='auto',
                      random_state=None, selection='cyclic', tol=0.0001, verbose=0)

Figure 15-5.  The residuals of the LASSO regularized regression model with cross-validation for the training 
data (left) and the testing data (middle). The values of the coefficients for the 50 features are also shown (right)

5However, note that we can never be sure that a machine learning application does not suffer from overfitting before we 
see how the application performs on new observations, and a repeated reevaluation of the application on a regular basis is 
a good practice.
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The value of regularization parameters a and r suggested by the cross-validation search are available 
throught the alpha_ and l1_ratio attributes:

In [48]: model.alpha_
Out[48]: 0.13118477495069433
In [49]: model.l1_ratio
Out[49]: 0.5

For comparison with the previous method we once again compute the SSE and plot the model 
coefficients, as shown in Figure 15-6. As expected with r = 0 5. , the result has characteristics of both LASSO 
regression (favoring a sparse solution vector with only a few dominating elements) and Ridge regression 
(suppressing the magnitude of the coefficients).

In [50]: sse_train = sse(y_train - model.predict(X_train))
    ...: sse_train
Out[50]: 2183.8391729391255
In [51]: sse_test = sse(y_test - model.predict(X_test))
    ...: sse_test
Out[51]: 2650.0504463382508
In [52]: fig, ax = plot_residuals_and_coeff(resid_train, resid_test, model.coef_)

Classification
Like regression, classification is a central topic in machine learning. In Chapter 14, about statistical 
modeling, we already saw examples of classification, where we used a logistic regression model to classify 
observations into discrete categories. Logistic regression is also used in machine learning for the same task, 
but there are also a wide variety of alternative algorithms for classification, such as decision trees, nearest 
neighbor methods, support-vector machines (SVM), and Random Forest methods. The scikit-learn library 
provides a convenient unified API that allows all these different methods to be used interchangeably for any 
given classification problems.

To see how we can train a classification model with a training dataset and tests its performance on a 
testing dataset, let’s once again look at the Iris datasets, which provides features for Iris flower samples  
(sepal and petal width and height), together with the species of each sample (Setosa, Versicolor, and Virginica). 
The Iris dataset that is included in the scikit-learn library (as it is in the statsmodels library) is a classic 
dataset that is commonly used for testing and demonstrating machine-learning algorithms and statistical 
models. We therefore here once again revisit the classification problem in which we wish to correctly classify 

Figure 15-6.  The residuals of the elastic-net regularized regression model with cross-validation for the training 
data (left) and the testing data (middle). The values of the coefficients for the 50 features are also shown (right)

http://dx.doi.org/10.1007/978-1-4842-0553-2_14
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the species of a flower sample given its sepal and petal width and height (see also Chapter 14). First, to load 
the dataset we call the load_iris function in the datasets module. The result is a container object (called a 
Bunch object in scikit-learn jargon) that contains the data as well as metadata.

In [53]: iris = datasets.load_iris()
In [54]: type(iris)
Out[54]: sklearn.datasets.base.Bunch

For example, descriptive names of the features and target classes are available through the  
feature_names and target_names attributes:

In [55]: iris.target_names
Out[55]: array(['setosa', 'versicolor', 'virginica'], dtype='|S10')
In [56]: iris.feature_names
Out[56]: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

and the actual dataset is available through the data and target attributes:

In [57]: iris.data.shape
Out[57]: (150, 4)
In [58]: iris.target.shape
Out[58]: (150,)

We begin by splitting the dataset into a training and testing part, using the train_test_split function. 
There we chose to include 70% of the samples in the training set, leaving the remaining 30% for testing and 
validation:

In [59]: X_train, X_test, y_train, y_test = \
    ...:      cross_validation.train_test_split(iris.data, iris.target, train_size=0.7)

The first step in training a classifier and performing classification tasks using scikit-learn is to create a 
classifier instance. There are, as mentioned above and demonstrated in the following, numerous available 
classifiers. We begin with a logistic regression classifier, which is provided by the LogisticRegression class 
in the linear_model module:

In [60]: classifier = linear_model.LogisticRegression()

The training of the classifier is accomplished by calling the fit method of the classifier instance.  
The arguments are the design matrices for the feature and target variables. Here we use the training part of 
the Iris dataset arrays that was created for us when loading the dataset using the load_iris function. If the 
design matrices are not already available we can use the same techniques that we used in Chapter 14: that is, 
constructing the matrices by hand using NumPy functions or use the Patsy library to automatically construct 
the appropriate arrays. We can also use the feature extraction utilities in feature_extraction module in the 
scikit-learn library.

In [61]: classifier.fit(X_train, y_train)
Out[61]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, max_iter=100, multi_class='ovr',
                   penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0)

http://dx.doi.org/10.1007/978-1-4842-0553-2_14
http://dx.doi.org/10.1007/978-1-4842-0553-2_14
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Once the classifier has been trained with data, we can immediately start using it for predicting the 
class for new observations using the predict method. Here we apply this method to predict the class for the 
samples assigned to the testing datasets, so that we can compare the predictions with the actual values.

In [62]: y_test_pred = classifier.predict(X_test)

The sklearn.metrics module contains helper functions for assisting in the analysis of the performance 
and accuracy of classifiers. For example, the classification_report function, which takes arrays of actual 
values and the predicted values, returns a tabular summary of the informative classification metrics related 
to the rate of false negatives and false positives:

In [63]: print(metrics.classification_report(y_test, y_test_pred))
             precision    recall  f1-score   support
          0       1.00      1.00      1.00        13
          1       1.00      0.92      0.96        13
          2       0.95      1.00      0.97        19
avg / total       0.98      0.98      0.98        45

The so-called confusion matrix, which can be computed using the confusion_matrix function, also 
presents useful classification metrics in a compact form: the diagonals correspond to the number of samples 
that are correctly classified for each level of the category variable, and the off-diagonal elements are the 
number of incorrectly classified samples. More specifically, the element C

ij
 of the confusion matrix C is the 

number of samples of category i that were categorized as j. For the current data we obtain the confusion 
matrix:

In [64]: metrics.confusion_matrix(y_test, y_test_pred)
Out[64]: array([[13  0  0]
                [ 0 12  1]
                [ 0  0 19]])

This confusion matrix shows that all elements in the first and third class were classified correctly, but 
one element of the second class was mistakenly classified as class 3. Note that the elements in each row  
of the confusion matrix sum up to the total number of samples for the corresponding category. In this testing 
sample we therefore have 13 elements each in the first and second class, and 19 elements of the third class, 
as also can be seen by counting unique value in the y_test array:

In [65]: np.bincount(y_test)
Out[65]: array([13, 13, 19])

To perform a classification using a different classifier algorithm, all we need to do is to create an 
instance of the corresponding classifier class. For example, to use a decision tree instead of logistic 
regression, we can use the DesicisionTreeClassifier class from the sklearn.tree module. Training the 
classifier and predicting new observations is done in exactly the same way for all classifiers:

In [66]: classifier = tree.DecisionTreeClassifier()
    ...: classifier.fit(X_train, y_train)
    ...: y_test_pred = classifier.predict(X_test)
    ...: metrics.confusion_matrix(y_test, y_test_pred)
Out[66]: array([[13,  0,  0],
                [ 0, 12,  1],
                [ 0,  1, 18]])
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With the decision tree classifier the resulting confusion matrix is somewhat different, corresponding to 
one additional misclassification in the testing dataset.

Other popular classifiers that are available in scikit-learn include, for example, the nearest neighbor 
classifier KNeighborsClassifier form the sklearn.neighbors module, support-vector classifier SVC  
from the sklearn.svm module, and the Random Forest classifier RandomForestClassifier from the 
sklearn.ensemble module. Since they all have the same usage pattern, we can programmatically apply a 
series of classifiers on the same problem and compare their performance (on this particular problem), for 
example, as a function of the training and testing sample sizes. To this end, we create a NumPy array with 
training size ratios, ranging from 10% to 90%:

In [67]: train_size_vec = np.linspace(0.1, 0.9, 30)

Next we create a list of classifier classes that we wish to apply:

In [68]: classifiers = [tree.DecisionTreeClassifier,
    ...:                neighbors.KNeighborsClassifier,
    ...:                svm.SVC,
    ...:                ensemble.RandomForestClassifier]

and an array in which we can store the diagonals of the confusion matrix as a function of training size ratio 
and classifier:

In [69]: cm_diags = np.zeros((3, len(train_size_vec), len(classifiers)), dtype=float)

Finally, we loop over each training size ratio and classifier, and for each combination we train the 
classifier, predict the values of the testing data, compute the confusion matrix and store its diagonal divided 
by the ideal values in the cm_diags array:

In [70]: for n, train_size in enumerate(train_size_vec):
    ...:     X_train, X_test, y_train, y_test = \
    ...:         cross_validation.train_test_split(iris.data, iris.target,
    ...:                                           train_size=train_size)
    ...:     for m, Classifier in enumerate(classifiers):
    ...:         classifier = Classifier()
    ...:         classifier.fit(X_train, y_train)
    ...:         y_test_p = classifier.predict(X_test)
    ...:         cm_diags[:, n, m] = metrics.confusion_matrix(y_test, y_test_p).diagonal()
    ...:         cm_diags[:, n, m] /= np.bincount(y_test)

The resulting classification accuracy for each classifier, as a function of training size ratio, is plotted 
below and shown in Figure 15-7.

In [71]: fig, axes = plt.subplots(1, len(classifiers), figsize=(12, 3))
    ...: for m, Classifier in enumerate(classifiers):
    ...:     axes[m].plot(train_size_vec, cm_diags[2, :, m], label=iris.target_names[2])
    ...:     axes[m].plot(train_size_vec, cm_diags[1, :, m], label=iris.target_names[1])
    ...:     axes[m].plot(train_size_vec, cm_diags[0, :, m], label=iris.target_names[0])
    ...:     axes[m].set_title(type(Classifier()).__name__)
    ...:     axes[m].set_ylim(0, 1.1)
    ...:     axes[m].set_ylabel("classification accuracy")
    ...:     axes[m].set_xlabel("training size ratio")
    ...:     axes[m].legend(loc=4)
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In Figure 15-7, we see that classification error is different for each model, but for this particular 
example they have comparable performance. Which classifier is best depends on the problem at hand, and 
it is difficult to give any definite answer to which one is more suitable in general. Fortunately, it is easy to 
switch between different classifiers in scikit-learn, and therefore effortless to try a few different classifier for 
a given classification problem. In addition to the classification accuracy, another important aspect is the 
computational performance and scaling to larger problems. For large classification problems, with many 
features, decision tree methods such as Random Forest is often a good starting point.

Clustering
In the two previous sections we explored regression and classification, which are both examples of 
supervised learning, since the response variables are given in the dataset. Clustering is a different type 
of problem that is also an important topic of machine learning. It can be thought of as a classification 
problem where the classes are unknown, which makes clustering an example of unsupervised learning. 
The training dataset for a clustering algorithm therefore contains only the feature variables, and the output 
of the algorithm is an array of integers that assigns each sample to a cluster (or class). This output array 
corresponds to the response variable in a supervised classification problem.

The scikit-learn library implements a large number of clustering algorithms that are suitable for 
different types of clustering problems and for different types of datasets. Popular general-purpose clustering 
methods include the K-means algorithm, which groups the samples into clusters such that the within-group 
sum of square deviation from the group center is minimized, and the mean-shift algorithm, which clusters 
the samples by fitting the data to density functions (for example Gaussian functions).

In scikit-learn, the sklearn.cluster module contains several clustering algorithms, including the 
K-means algorithm KMeans, and the Mean-shift algorithm MeanShift, just to mention a few. To perform a 
clustering task with one of these methods we first initialize an instance of the corresponding class, train it 
with a feature-only dataset using the fit method, and we finally obtain the result of the clustering by calling 
the predict method. Many clustering algorithm require the number of clusters as an input parameters, 
which we can specify using the n_clusters parameter when the class instance is created.

As an example of clustering, consider again the Iris dataset that we used in the previous section, but 
now we will not use the response variable, which was used in supervised classification, but instead we 
attempt to automatically discovering a suitable clustering of the samples using the K-means method. 
We begin by loading the Iris data as before, and store the feature and target data in the variables X and y, 
respectively:

In [72]: X, y = iris.data, iris.target

Figure 15-7.  Comparison of classification accuracy of four different classifiers



Chapter 15 ■ Machine Learning

379

With the K-means clustering method we need to specify how many clusters we want in the output. The 
most suitable number of clusters is not always obvious in advance, and trying clustering with a few different 
numbers of clusters is often necessary. However, here we know that the data corresponds to three different 
species of Iris flowers, so we use three clusters. To perform the clustering we create an instance of KMeans 
class, using the n_clusters argument to set the number of clusters.

In [73]: n_clusters = 3
In [74]: clustering = cluster.KMeans(n_clusters=n_clusters)

To actually perform the computation we call the fit method with the Iris feature matrix as argument:

In [75]: clustering.fit(X)
Out[75]: KMeans(copy_x=True, init='k-means++', max_iter=300, n_clusters=3, n_init=10,
                n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001,
                verbose=0)

The clustering result is available through the predict method, to which we also pass a feature dataset 
that optionally can contain features of new samples. However, not all the clustering methods implemented 
in scikit-learn support predicting clusters for new sample. In this case the predict method is not available, 
and we need to use the fit_predict method instead. Here, we use the predict method with the training 
feature dataset to obtain the clustering result:

In [76]: y_pred = clustering.predict(X)

The result is an integer array of the same length and the number of samples in the training dataset.  
The elements in the array indicate which group (from 0 up to n_samples-1) each sample is assigned to.  
Since the resulting array y_pred is long, we only display every 8th element in the array using the NumPy 
stride indexing ::8.

In [77]: y_pred[::8]
Out[77]: array([1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0], dtype=int32)

We can compare the obtained clustering with the supervised classification of the Iris samples:

In [78]: y[::8]
Out[78]: array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2])

There seems to be a good correlation between the two, but the output of the clustering has assigned 
different integer values to the groups than what was used in the target vector in the supervised classification. 
To be able to compare the two arrays with metrics such as the confusion_matrix function, we first need to 
rename the elements so that the same integer values are used for the same group. We can do this operation 
with NumPy array manipulations:

In [79]: idx_0, idx_1, idx_2 = (np.where(y_pred == n) for n in range(3))
In [80]: y_pred[idx_0], y_pred[idx_1], y_pred[idx_2] = 2, 0, 1
In [81]: y_pred[::8]
Out[81]: array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)
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Now that the corresponding groups are represented with the same integers, we can summarize the overlaps 
between the supervised and unsupervised classification of the Iris samples using the confusion_matrix function:

In [82]: metrics.confusion_matrix(y, y_pred)
Out[82]: array([[50,  0,  0],
                [ 0, 48,  2],
                [ 0, 14, 36]])

This confusion matrix indicates that the clustering algorithm was able to correctly identity all samples 
corresponding to the first species as a group of its own, but due to the overlapping samples in the second 
and third group those could not be completely resolved as different groups, as 2 elements from group 1 was 
assigned to group 2, and 14 elements from group 2 was assigned to group 1.

The result of the clustering can also be visualized by plotting scatter plots for each pair of features, as 
we do in the following. We loop over each pair of features and each cluster and plot a scatter graph for each 
cluster using different colors (orange, blue, and green, displayed as different shades of gray in Figure 15-8),  
and we also draw a red square around each sample for which the clustering does not agree with the 
supervised classification. The result is shown in Figure 15-8.

In [83]: N = X.shape[1]
    ...: fig, axes = plt.subplots(N, N, figsize=(12, 12), sharex=True, sharey=True)
    ...: colors = ["coral", "blue", "green"]
    ...: markers = ["^", "v", "o"]
    ...: for m in range(N):
    ...:     for n in range(N):
    ...:         for p in range(n_clusters):
    ...:             mask = y_pred == p
    ...:             axes[m, n].scatter(X[:, m][mask], X[:, n][mask], s=30,
    ...:                                marker=markers[p], color=colors[p], alpha=0.25)
    ...:         for idx in np.where(y != y_pred):
    ...:             axes[m, n].scatter(X[idx, m], X[idx, n], s=30,
    ...:                                marker="s", edgecolor="red", facecolor=(1,1,1,0))
    ...:     axes[N-1, m].set_xlabel(iris.feature_names[m], fontsize=16)
    ...:     axes[m, 0].set_ylabel(iris.feature_names[m], fontsize=16)
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The result of the clustering of the Iris samples in Figure 15-8 shows that the clustering does a 
remarkably good job at recognizing which samples belongs to distinct groups. Of course, because of the 
overlap in the features for classes shown in blue (dark gray) and green (medium gray) in the graph, we 
cannot expect that any unsupervised clustering algorithm can fully resolve the various groups in the dataset, 
and some deviation from the supervised response variable is therefore expected.

Figure 15-8.  The result of clustering, using the K-means algorithm, of the Iris dataset features
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Summary
In this chapter we have given an introduction to machine learning using Python. We began with a brief 
review and summary of the subject and its terminology, and continued with introducing the Python library 
scikit-learn, which we applied in three different types of problems that are fundamental topics in machine 
learning: First we revisited regression, from the point of view of machine learning, followed by classification, 
and finally we considered examples of clustering. The first two of these topics are examples of supervised 
machine learning, while the clustering method is an example of unsupervised machine learning. Beyond 
of what we have been able to cover here, there are many more methods and problem domains covered by 
the broad subject of machine learning. For example, an important part of machine learning that we have 
not touched upon in this brief introduction is text-based problems. The scikit-learn contains an extensive 
module (sklearn.text) with tools and method for processing text-based problems, and the Natural 
Language Toolkit (http://www.nltk.org) is a powerful platform for working with and processing data in 
the form of human language text. Image processing and computer vision is another prominent problem 
domain in machine learning, which for example can be treated with OpenCV (http://opencv.org) and its 
Python bindings. Other examples of big topics in machine learning are neural networks and deep learning, 
which are have received much attention in recent years. The readers who are interested in such methods are 
recommended to explore the Python libraries Theano (http://www.deeplearning.net/software/theano), 
Lasange (http://lasagne.readthedocs.org/en/latest), pylearn2 (http://deeplearning.net/software/
pylearn2), and PyBrain (http://pybrain.org).

Further Reading
Machine learning is a part of the computer science field artificial intelligence, which is a broad field with 
numerous techniques, methods, and applications. In this chapter we have only been able to show examples 
of a few basic machine-learning methods, which nonetheless can be useful in many practical applications. 
For a more thorough introduction to machine learning see Hastie’s book and for introductions to machine 
learning specific to the Python environment, see, for example, books by Garreta, Hackeling, or Coelho.
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Chapter 16

Bayesian Statistics

In this chapter we explore an alternative interpretation of statistics – Bayesian statistics – and the methods 
associated with this interpretation. Bayesian statistics, in contrast to the frequentist’s statistics that we used 
in Chapter 13 and Chapter 14, treat probability as a degree of belief rather than as a measure of proportions 
of observed outcomes. This different point of view gives rise to distinct statistical methods that can be used 
in problem solving. While it is generally true that statistical problems can in principle be solved using either 
frequentist or Bayesian statistics, there are practical differences that make these two approaches to statistics 
suitable for different types of problems.

Bayesian statistics is based on Bayes theorem, which relates conditional and unconditional 
probabilities. Bayes theorem is a fundamental result in probability theory, and it applies to both the 
frequentist’s and the Bayesian interpretation of statistics. In the context of Bayesian inference, unconditional 
probabilities are used to describe the prior knowledge of a system, and Bayes theorem provides a rule 
for updating this knowledge after making new observations. The updated knowledge is described by a 
conditional probability, which is conditioned on the observed data. The initial knowledge of a system is 
described by the prior probability distribution, and the updated knowledge, conditioned on the observed 
data, is the posterior probability distribution. In problem solving with Bayesian statistics, the posterior 
probability distribution is the unknown quantity that we seek, and from it we can compute expectation 
values and other statistical quantities for random variables of interest. Although Bayes theorem describes 
how to compute the posterior distribution from the prior distribution, for most realistic problems the 
calculations involve evaluating high-dimensional integrals that can be prohibitively difficult to compute, 
both analytically and numerically. This has until recently hindered Bayesian statistics from being widely 
used in practice. However, with the advent of computational statistics, and the development of efficient 
simulation methods that allows us to sample directly from the posterior distributions (rather than directly 
compute it), Bayesian methods are becoming increasingly popular. The methods that enable us to sample from 
the posterior distribution are, first and foremost, the so-called Markov Chain Monte Carlo (MCMC) methods. 
Several alternative implementations of MCMC methods are available. For instance, traditional MCMC 
methods include Gibbs sampling and the Metropolis-Hastings algorithm, and more recent methods include 
Hamiltonian and No-U-Turn algorithms. In this chapter we explore how to use several of these methods.

Statistical problem solving with Bayesian inference methods is sometimes known as probabilistic 
programming. The key steps in probabilistic programming are the following: (1) Create a statistical model. 
(2) Sample from the posterior distribution for the quantity of interest using an MCMC method. (3) Use 
the obtained posterior distribution to compute properties of interest for the problem at hand, and make 
inference decisions based on the obtained results. In this chapter we explore how to carry out these steps 
from within the Python environment, with the help of the PyMC library.

http://dx.doi.org/10.1007/978-1-4842-0553-2_13
http://dx.doi.org/10.1007/978-1-4842-0553-2_14
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■■ pymc T he PyMC library provides a framework for doing probabilistic programming – that is, solving 
statistical problems using simulation with Bayesian methods. At the time of writing, the latest official release 
is version 2.3. However, the development version for PyMC 3.0 has been in pre-release status quite some time 
now, and is hopefully released in the near future. Regardless of its release status, the current alpha version of 
PyMC 3.0 is already very useful and readily available, and it has several advantages over version 2.3 in both the 
available solvers and the programming style and API. Therefore, in spite of it not being officially released yet, in 
this chapter we focus on the upcoming version 3.0 of PyMC. However, this also means that some of the code 
examples shown here might need minor adjustments to work with version 3 of PyMC when it is finally released. 
For more information about the project, see the web pages at https://pymc-devs.github.io/pymc and 
https://pymc-devs.github.io/pymc3.

Importing Modules
In this chapter we mainly work with the pymc3 library, which we import in the following manner:

In [1]: import pymc3 as mc

We also require NumPy, Pandas, and Matplotlib for basic numerics, data analytics, and plotting, 
respectively. These libraries are imported following the usual convention:

In [2]: import numpy as np
In [3]: import pandas as pd
In [4]: import matplotlib.pyplot as plt

For comparison to non-Bayesian statistics we also use the stats module from SciPy, the statsmodels 
library, and the Seaborn library for visualization:

In [5]: from scipy import stats
In [6]: import statsmodels.api as sm
In [7]: import statsmodels.formula.api as smf
In [8]: import seaborn as sns

Introduction to Bayesian Statistics
The foundation of Bayesian statistics is the Bayes theorem, which gives a relation between unconditioned 
and conditional probabilities of two events A and B:

P A B P B P B A P A| |( ) ( ) = ( ) ( ) ,

where P(A) and P(B) are the unconditional probabilities of event A and B, and where P A B( | ) is the 
conditional probability of event A given that event B is true, and P B A( | ) is the conditional probability of B 
given that A is true. Both sides of the equation above are equal to the probability that both A and B are true: 
P( )A BÇ . In other words, Bayes rule states that the probability that both A and B is equal to the probability 

of A times the probability of B given that A is true: P A P B A( ) ( | ), or, equivalently, the probability of B times 
the probability of A given B: P B P A B( ) ( | ).

https://pymc-devs.github.io/pymc
https://pymc-devs.github.io/pymc3
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In the context of Bayesian inference, Bayes rule is typically employed for the situation when we have 
prior belief about the probability of an event A, represented by the unconditional probability P(A), and wish 
to update this belief after having observed an event B. In this language the updated belief is represented by 
the conditional probability of A given the observation B: P A B( | ), which we can compute using Bayes rule:

P A B
P B A P A

P B
( | )

( | ) ( )

( )
= .

Each factor in this expression has a distinct interpretation and a name: P(A) is the prior probability of 
event A, and P A B( | ) is the posterior probability of A given the observation B. P B A( | ) is the likelihood of 
observing B given that A is true, and the probability of observing B regardless of A, P(B), is known as model 
evidence, and can be considered as a normalization constant (with respect to A).

In statistical modeling we are typically interested in a set of random variables X that are characterized 
by probability distributions with certain parameters q. After collecting data for the process that we 
are interested in modeling, we wish to infer the values of the model parameters from the data. In the 
frequentist’s statistical approach, we can maximize the likelihood function given the observed data, and 
obtain estimators for the model parameters. The Bayesian approach is to consider the unknown model 
parameters q as random variables in their own right, and use Bayes rule to derive probability distributions 
for the model parameters q. If we denote the observed data as x, we can express the probability distribution 
for q given the observed data x using Bayes rule as

p x
p x p

p x

p x p

p x p d
( | )

( | ) ( )

( )

( | ) ( )

( | ) ( )
q q q q q

q q q
= =

ò
.

The second equality in this equation follows from the law of total probability, p x p x p d( ) ( | ) ( )= ò q q q . 
Once we have computed the posterior probability distribution p x( | )q  for the model parameters, we can for 
compute expectation values of the model parameters and obtain a result that is similar to the estimators that 
we can compute in a frequentist’s approach. In addition, when we have an estimate of the full probability 
distribution for p x( | )q  we can also compute other quantities, such as credibility intervals, and marginal 
distributions for certain model parameters in the case when q is multivariate. For example, if we have two 
model parameters, q q q= ( )1 2, , but are interested only in q

1
, we can obtain the marginal posterior probability 

distribution p x( | )q1  by integrating the joint probability distribution p x( , | )q q1 2  using the expression obtained 
from Bayes theorem:

p( )=
,

q q q q
q q q q q

q q q1 1 2 2

1 2 1 2 2

1 2

| ( , | )
( | , ) ( )

( | , ) (
x p x d

p x p d

p x pò ò=
11 2 1 2,q q q)

.
d dòò

Here note that the final expression contains integrals over the known likelihood function p x( | , )q q1 2  
and the prior distribution p(q

1
, q

2
), so we do not need to know the joint probabilty distribution p x( , | )q q1 2  to 

compute the marginal probability distribution p x( | )q1 . This approach provides a powerful and generic 
methodology for computing probability distributions for model parameters and successively updating the 
distributions once new data becomes available. However, directly computing p x( | )q , or the marginal 
distributions thereof, requires that we can write down the likelihood function p x( | )q  and the prior 
distribution p(q), and that we can evaluate the resulting integrals. For many simple but important problems, 
it is possible to analytically compute these integrals, and find exact closed-form expressions for the posterior 
distribution. Textbooks such as Gelman’s (Gelman, 2013) provides numerous examples of problems that are 
exactly solvable in this way. However, for more complicated models, with prior distributions and likelihood 
functions for which the resulting integrals are not easily evaluated, or for multivariate statistical models, for 
which the resulting integrals can be high dimensional, both exact and numerical evaluation may be 
unfeasible.



Chapter 16 ■ Bayesian Statistics

386

It is primarily for models that cannot be solved with exact methods that we can benefit from using 
simulation methods, such as Markov Chain Monte Carlo, which allows us to sample the posterior probability 
distribution for the model parameters, and thereby construct an approximation of the joint or marginal 
posterior distributions, or directly evaluating integrals, such as expectation values. Another important 
advantage of simulation-based methods is that the modeling process can be automated. Here we exclusively 
focus on Bayesian statistical modeling using Monte Carlo simulation methods. For a thorough review of 
the theory, and many examples of analytically solvable problems, see the references given at the end of this 
chapter. In the remaining part of this chapter, we explore the definition of statistical models and sampling of 
their posterior distribution with the PyMC library as a probabilistic programming framework.

Before we proceed with computational Bayesian statistics, it is worth taking a moment to summarize 
the key differences between the Bayesian approach and the classical frequentist’s approach that we used 
in earlier chapters. In both approaches to statistical model, we formulate the models in terms of random 
variables. A key step in the definition of a statistical model is to make assumptions about the probability 
distributions for the random variables that are defined in the model. In parametric methods, each 
probability distribution is characterized by a small number of parameters. In the frequentist’s approach, 
those model parameters have some specific true values, and observed data is interpreted as random samples 
from the true distributions. In other words, the model parameters are assumed to be fixed, and the data is 
assumed to be stochastic. The Bayesian approach takes the opposite point of view: The data is interpreted as 
fix, and the model parameters are described as random variables. Starting from a prior distribution for the 
model parameters, we can then update the distribution to account for observed data, and in the end obtain a 
probability distribution for the relevant model parameters, conditioned on the observed data.

Model Definition
A statistical model is defined in terms of a set of random variables. The random variables in a given model 
can be independent or, more interestingly, dependent on each other. The PyMC library provides classes for 
representing random variables for a large number of probability distributions: For example, an instance of  
mc.Normal can be used to represent a normal-distributed random variable. Other examples are mc.Bernoulli 
for representing discrete Bernoulli distributed random variables, mc.Uniform for uniformly distributed 
random variables, mc.Gamma for Gamma-distributed random variables, and so on. For a complete list of 
available distributions, see dir(mc.distributions) and the docstrings for each available distribution for 
information on how to use them. It is also possible to define custom distributions using the mc.DensityDist 
class, which takes a function that specifies the logarithm of the random variable’s probability density function.

In Chapter 13 we saw that the SciPy stats module also contains classes for representing random 
variables. Like the random variable classes in SciPy stats, we can use the PyMC distributions to represent 
random variables with fixed parameters. However, the essential feature of the PyMC random variables is that 
the distribution parameters, such as the mean m and variance s 2 for a random variable following the normal 
distribution  ( , )m s 2 , can themselves be random variables. This allows us to chain random variables in a 
model, and to formulate models with hierarchical structure in the dependencies between random variables 
that occur in the model.

Let’s start with the simplest possible example. In PyMC, models are represented by an instance of the 
class mc.Model, and random variables are added to a model using the Python context syntax: Random 
variable instances that are created within the body of a model context are automatically added to the model. 
Say that we are interested in a model consisting of a single random variable that follows the normal 
distribution with the fixed parameters m = 4 and s = 2. We first define the fixed model parameters, and then 
create an instance of mc.Model to represent our model.

In [9]: mu = 4.0
In [10]: sigma = 2.0
In [11]: model = mc.Model()

http://dx.doi.org/10.1007/978-1-4842-0553-2_13
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Next we can attach random variables to the model by creating them within the model context. Here, we 
create a random variable X within the model context, which is activated using a with model statement:

In [12]: with model:
    ...:     mc.Normal('X', mu, 1/sigma**2)

All random variable classes in PyMC takes as first argument the name of the variable. In the case of  
mc.Normal, the second argument is the mean of the normal distribution, and the third argument is the 
precision t s=1 2/ , where s 2 is the variance. Alternatively, we can use the sd keyword argument to specify 
the standard deviation rather than precision: mc.Normal('X', mu, sd=sigma).

We can inspect which random variables exist in a model using the vars attribute. Here we have only 
one random variable in the model:

In [13]: model.vars
Out[13]: [X]

To sample from the random variables in the model, we use the mc.sample function, which implements 
the MCMC algorithm. The mc.sample function accepts many arguments, but at a minimum we need to 
provide the number of samples as first argument, and as second argument a step-class instance, which 
implements an MCMC step. Optionally we can also provide a starting point as a dictionary with parameter 
values from which the sampling is started, using the start keyword argument. For the step method, here 
we use an instance of the Metropolis class, which implements the Metropolis-Hasting step method for the 
MCMC sampler.1 Note that we execute all model-related code within the model context:

In [14]: start = dict(X=2)
In [15]: with model:
    ...:     step = mc.Metropolis()
    ...:     trace = mc.sample(10000, start=start, step=step)
[-----------------100%-----------------] 10000 of 10000 complete in 1.6 sec

With these steps we have sampled 10,000 values from the random variable defined within the model, 
which in this simple case is only a normal-distributed random variable. To access the samples we can use 
the get_values method of the trace object returned by the mc.sample function:

In [16]: X = trace.get_values("X")

The probability density function (PDF) for a normal distributed is, of course, known analytically. Using 
SciPy stats module, we can access the PDF using the pdf method of the norm class instance for comparing 
to the sampled random variable. The sampled values and the true PDF for the present model are shown in 
Figure 16-1.

In [17]: x = np.linspace(-4, 12, 1000)
In [18]: y = stats.norm(mu, sigma).pdf(x)
In [19]: fig, ax = plt.subplots(figsize=(8, 3)
    ...: ax.plot(x, y, 'r', lw=2)
    ...: sns.distplot(X, ax=ax)
    ...: ax.set_xlim(-4, 12)
    ...: ax.set_xlabel("x")
    ...: ax.set_ylabel("Probability distribution")

1See also the Slice, HamiltonianMC, and NUTS samplers, which can be used more or less interchangeably.
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Figure 16-1.  The probability density function for the normal-distributed random variable (red/thick line), 
and a histogram from 10,000 MCMC samples of the normal distribution random variable

Figure 16-2.  Left panel: The kernel-density estimate (blue/thick line) of the sampling trace, and the normal 
probability distribution (red/thin line). Right panel: the MCMC sampling trace

With the mc.traceplot function we can also visualize the MCMC random walk that generated the 
samples, as shown in Figure 16-2. The mc.traceplot function automatically plots both the kernel-density 
estimate and the sampling trace for every random variable in the model.

In [20]: fig, axes = plt.subplots(1, 2, figsize=(8, 2.5), squeeze=False)
    ...: mc.traceplot(trace, ax=axes)
    ...: axes[0,0].plot(x, y, 'r', lw=0.5)

As a next step in building more complex statistical models, consider a model with a normal-distributed 
random variable X ~ ( , ) m s 2 , but where parameters m and s themselves are random variables. In PyMC, 
we can easily create dependent variables by passing them as argument when creating other random 
variables. For example, with m ~ ( , ) 3 1  and s ~ ( , ) 0 1 , we can create the dependent random variable X 
using the following model specification:

In [21]: model = mc.Model()
In [22]: with model:
    ...:     mean = mc.Normal('mean', 3.0)
    ...:     sigma = mc.HalfNormal('sigma', sd=1.0)
    ...:     X = mc.Normal('X', mean, sd=sigma)
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Here we have used the mc.HalfNormal to represent the random variable s ~ , 0 1( ) , and the mean 

and standard deviation arguments to the mc.Normal class for X are random variable instances rather than 
fixed model parameters. As before we can inspect which random variables a model contains using the vars 
attribute.

In [23]: model.vars
Out[23]: [mean, sigma_log, X]

When the complexity of the model increases, it may no longer be straightforward to select a suitable 
starting point for the sampling process explicitly. The mc.find_MAP function can be used to find the point in 
the parameter space that corresponds to the maximum of the posterior distribution, which can serve as a 
good starting point for the sampling process.

In [24]: with model:
    ...:     start = mc.find_MAP()
In [25]: start
Out[25]: {'X': array(3.0), 'mean': array(3.0), 'sigma_log': array(-5.990881458955034)}

As before, once the model is specified, and a starting point is computed, we can sample from the 
random variables in the model using the mc.sample function, for example, using mc.Metropolis as a MCMC 
sampling step method:

In [26]: with model:
    ...:     step = mc.Metropolis()
    ...:     trace = mc.sample(100000, start=start, step=step)
[-----------------100%-----------------] 100000 of 100000 complete in 53.4 sec

For example, to obtain the sample trace for the sigma variable we can use get_values('sigma').  
The result is a NumPy array that contains the sample values, and from it we can compute further statistics, 
such as its sample mean and standard deviation:

In [27]: trace.get_values('sigma').mean()
Out[27]: 0.80054476153369014

The same approach can be used to obtain the samples of X and compute statistics from them:

In [28]: X = trace.get_values('X')
In [29]: X.mean()
Out[29]: 2.9993248663922092
In [30]: trace.get_values('X').std()
Out[30]: 1.4065656512676457

The trace plot for the current model, created using the mc.traceplot, is shown in Figure 16-3, where we 
have used the vars argument to mc.traceplot to explicitly select which random variables to plot.

In [31]: fig, axes = plt.subplots(3, 2, figsize=(8, 6), squeeze=False)
    ...: mc.traceplot(trace, vars=['mean', 'sigma', 'X'], ax=axes)
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Figure 16-3.  Kernel-density estimates (left) and MCMC random sampling trace (right), for the three random 
variables: mean, sigma, and X

Sampling Posterior Distributions
So far we have defined models and sampled from models that only contain random variables without any 
references to observed data. In the context of Bayesian models, these types of random variables represent 
the prior distributions of the unknown model parameters. In the previous examples we have therefore used 
the MCMC method to sample from the prior distributions of the model. However, the real application of the 
MCMC algorithm is to sample from the posterior distribution, which represents the probability distribution 
for the model variables after having updated the prior distribution to account for the effect of observations.

To condition the model on observed data, all we need to do is to add the data using the observed 
keyword argument when the corresponding random variable is created within the model. For example,  
mc.Normal('X', mean, 1/sigma**2, observed=data) indicates that the random variable X has been observed 
to take the values in the array data. Adding observed random variables to a model automatically results in 
that subsequent sampling using mc.sample samples the posterior distribution of the model, appropriately 
conditioned on the observed data according to Bayes rule and the likelihood function implied by the 
distribution selected for the observed data. For example, consider the model we used above, with a normal-
distributed random variable X whose mean and standard deviation are random variables. Here we simulate 



Chapter 16 ■ Bayesian Statistics

391

the observations for X by drawing samples from a normal-distributed random variable with m = 2 5.  and 
s =1 5.  using the norm class from the SciPy stats module:

In [32]: mu = 2.5
In [33]: s = 1.5
In [34]: data = stats.norm(mu, s).rvs(100)

The data is feed into the model by setting the keyword argument observed=data when the observed 
variable is created and added to the model:

In [35]: with mc.Model() as model:
    ...:     mean = mc.Normal('mean', 4.0, 1.0) # true 2.5
    ...:     sigma = mc.HalfNormal('sigma', 3.0 * np.sqrt(np.pi/2)) # true 1.5
    ...:     X = mc.Normal('X', mean, 1/sigma**2, observed=data)

A consequence of providing observed data for X is that it is no longer considered as a random variable 
in the model. This can be seen from inspecting the model using the vars attribute, where X is now absent:

In [36]: model.vars
Out[36]: [mean, sigma_log]

Instead, in this case X is a deterministic variable that is used to construct the likelihood function that 
relates the priors, which are represented by mean and sigma in this case, to the posterior distribution for 
these random variables. Like before, we can find a suitable starting point for the sampling process using the 
mc.find_MAP function. After creating an MCMC step instance, we can sample the posterior distribution for 
the model using mc.sample:

In [37]: with model:
    ...:     start = mc.find_MAP()
    ...:     step = mc.Metropolis()
    ...:     trace = mc.sample(100000, start=start, step=step)
[-----------------100%-----------------] 100000 of 100000 complete in 36.1 sec

The starting point that was calculated using mc.find_MAP maximizes the likelihood of the posterior 
given the observed data, and it provides an estimate of the unknown parameters of the prior distribution:

In [38]: start
Out[38]: {'mean': array(2.5064940359768246), 'sigma_log': array(0.394681633456101)}

However, to obtain estimates of the distribution of these parameters (which here are random variables 
in their own right), we need to carry out the MCMC sampling using the mc.sample function, as done above. 
The result of the posterior distribution sampling is shown in Figure 16-4. Note that the distributions for the 
mean and sigma variables are closer to the true parameter values, m = 2 5.  and s =1 5. , than to the prior 
guesses of 4.0 and 3.0, respectively, due to the influence of the data and the corresponding likelihood 
function.

In [38]: fig, axes = plt.subplots(2, 2, figsize=(8, 4), squeeze=False)
    ...: mc.traceplot(trace, vars=['mean', 'sigma'], ax=axes)
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To calculate statistics and estimate quantities using the samples from the posterior distributions, we can 
access arrays containing the samples using the get_values method, which takes the name of the random 
variable as argument. For example, below we compute estimates of the mean of the two random variables in 
the model, and compare to the corresponding true value from for the distribution that the data points were 
draw from:

In [39]: mu, trace.get_values('mean').mean()
Out[39]: (2.5, 2.5290001218008435)
In [40]: s, trace.get_values('sigma').mean()
Out[40]: (1.5, 1.5029047840092264)

The PyMC library also provides utilities for analyzing and summarizing the statistics of the marginal 
posterior distributions obtained from the mc.sample function. For example, the mc.forestplot function 
visualizes the mean and credibility intervals (that is, and interval within which the true parameter value 
is likely to be) for each random variable in a model. The result of visualizing the samples for the current 
example using the mc.forestplot function is shown in Figure 16-5:

In [41]: mc.forestplot(trace, vars=['mean', 'sigma'])

Figure 16-4.  The MCMC sampling trace of the posterior distribution for mean and sigma



Chapter 16 ■ Bayesian Statistics

393

Similar information can also be presented in text form using the mc.summary function, which for 
includes information such as the mean, standard deviation, and posterior quantiles.

In [42]: mc.summary(trace, vars=['mean', 'sigma'])
mean:

   Mean             SD               MC Error         95% HPD interval
   -------------------------------------------------------------------
   2.472            0.143            0.001            [2.195, 2.757]
   Posterior quantiles:
   2.5            25             50             75             97.5
   |--------------|==============|==============|--------------|
   2.191          2.375          2.470          2.567          2.754

sigma:

   Mean             SD               MC Error         95% HPD interval
   -------------------------------------------------------------------
   1.440            0.097            0.001            [1.256, 1.630]
   Posterior quantiles:
   2.5            25             50             75             97.5
   |--------------|==============|==============|--------------|
   1.265          1.372          1.434          1.501          1.643

Linear Regression
Regression is one of the most basic tools in statistical modeling, and we have already seen examples of linear 
regression within the classical statistical formalism in Chapters 14 and 15. Linear regression can also be 
approached with Bayesian methods, and treated as a modeling problem where we assign prior probability 
distributions to the unknown model parameters (slopes and intercept), and compute the posterior distribution 

Figure 16-5.  A forest plot for the two parameters mean and sigma, which show their credibility intervals

http://dx.doi.org/10.1007/978-1-4842-0553-2_14
http://dx.doi.org/10.1007/978-1-4842-0553-2_15


Chapter 16 ■ Bayesian Statistics

394

given the available observations. To be able to compare the similarities and differences between Bayesian 
linear regression and the frequentist’s approach to the same problem, using, for example, the methods from 
Chapter 14, here we begin with a short analysis of a linear regression problem using the statsmodels library. 
Next we proceed to analyze the same problem with PyMC.

As example data for performing a linear regression analysis, here we use a dataset that contains the 
height and weight for 200 men and women, which we can load using the get_rdataset function from the 
datasets module in the statsmodels library:

In [42]: dataset = sm.datasets.get_rdataset("Davis", "car")

For simplicity, to begin with we work only with the subset of the dataset that corresponds to male subjects, 
and to avoid having to deal with outliers, we filter out all subjects with weight that exceed 110 kilograms. These 
operations are readily performed using pandas methods for filtering data frames using Boolean masks:

In [43]: data = dataset.data[dataset.data.sex == 'M']
In [44]: data = data[data.weight < 110]

The resulting pandas data frame object data contains several columns:

In [45]: data.head(3)
Out[45]:

sex weight height repwt repht

0 M 77 182 77 180

3 M 68 177 70 175

5 M 76 170 76 165

Here we focus on a linear regression model for the relationship between the weight and height columns 
in this dataset. Using the statsmodels library and its model for ordinary least square regression and the Patsy 
formula language, we create a statistical model for this relationship in a single line of code:

In [46]: model = smf.ols("height ~ weight", data=data)

To actually perform the fitting of the specified model to the observed data, we use the fit method of the 
model instance:

In [47]: result = model.fit()

Once the model has been fitted and the model result object has been created, we can use the predict 
method to compute the predictions for new observations, and for plotting the linear relation between the 
height and weight, as shown in Figure 16-6.

In [48]: x = np.linspace(50, 110, 25)
In [49]: y = result.predict({"weight": x})
In [50]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))
    ...: ax.plot(data.weight, data.height, 'o')
    ...: ax.plot(x, y, color="blue")
    ...: ax.set_xlabel("weight")
    ...: ax.set_ylabel("height")

http://dx.doi.org/10.1007/978-1-4842-0553-2_14
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The linear relation shown in Figure 16-6 summarizes the main result of performing a linear regression 
on this dataset. It gives the best fitting line, described by specific values of the model parameters (intercept 
and slope). Within the frequentist’s approach to statistics, we can also compute numerous statistics, for 
example, p-values for various hypotheses, such as the hypotheses that a model parameter is zero (no effect).

The end result of a Bayesian regression analysis is the posterior distribution for the marginal 
distributions for each model parameter. From such marginal distributions we can compute the mean 
estimates for the model parameters, which roughly correspond to the model parameters obtained from a 
frequentist’s analysis. We can also compute other quantities, such as the credibility interval, which 
characterizes the uncertainty in the estimate. To model the height versus weight using a Bayesian model, we 
can use a relation such as height intercept weight~ ( , ) + b s 2 , where intercept, b, and s are random 
variables with unknown distributions and parameters. We also need to give prior distributions to all 
stochastic variables in the model. Depending on the application, the exact choice of prior can be a sensitive 
issue, but when there is a lot of data to fit, it is normally sufficient to use reasonable initial guesses. Here we 
simply start with priors that represent broad distributions for all the model parameters.

To program the model in PyMC we use the same methodology as earlier in this chapter. First we create 
random variables for the stochastic components of the model, and assign them to distributions with specific 
parameters that represent the prior distributions. Next we create a deterministic variable that are functions 
of the stochastic variables, but with observed data attached to it using the observed keyword argument, as 
well as in the expression for the expected value of the distribution of the heights (height_mu).

In [51]: with mc.Model() as model:
    ...:     sigma = mc.Uniform('sigma', 0, 10)
    ...:     intercept = mc.Normal('intercept', 125, sd=30)
    ...:     beta = mc.Normal('beta', 0, sd=5)
    ...:     height_mu = intercept + beta * data.weight
    ...:     mc.Normal('height', mu=height_mu, sd=sigma, observed=data.height)
    ...:     predict_height = mc.Normal('predict_height', mu=intercept + beta * x, sd=sigma,
    ...:                                shape=len(x))

If we want to use the model for predicting the heights at specific values of weights, we can also add 
an additional stochastic variable to the model. In the model specification above, the predict_height 
variable is an example of this. Here x is the NumPy array with values between 50 and 110 that was created 
earlier. Because it is an array, we need to set the shape attribute of the mc.Normal class to the corresponding 
length of the array. If we inspect the vars attribute of the model we now see that it contains the two model 

Figure 16-6.  Height versus weight, with a linear model fitted using ordinary least square
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parameters (intercept and beta), the distribution of the model errors (sigma), and the predict_height 
variable for prediction the heights at the specific values weight from the x array:

In [52]: model.vars
Out[52]: [sigma_interval, intercept, beta, predict_height]

Once the model is fully specified, we can turn to the MCMC algorithm to sample the marginal posterior 
distributions for the model, given the observed data. Like before, we can use mc.find_MAP to find a suitable 
starting point. Here we use an alternative sampler, mc.NUTS (No U-Turn Sampler), which is a new and 
powerful sampler that has been added to version 3 of PyMC.

In [53]: with model:
    ...:     start = mc.find_MAP()
    ...:     step = mc.NUTS(state=start)
    ...:     trace = mc.sample(10000, step, start=start)
[-----------------100%-----------------] 10000 of 10000 complete in 43.1 sec

The result of the sampling is stored in a trace object returned by mc.sample. We can visualize the 
kernel-density estimate of the probability distribution and the MCMC random walk traces that generated 
the samples using the mc.traceplot function. Here we again use the vars argument to explicitly select which 
stochastic variables in the model to show in the trace plot. The result is shown in Figure 16-7.

In [54]: fig, axes = plt.subplots(2, 2, figsize=(8, 4), squeeze=False)
    ...: mc.traceplot(trace, vars=['intercept', 'beta'], ax=axes)

Figure 16-7.  Distrubution and sampling trace of the linear model intercept and beta coefficient
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The values of the intercept and coefficient in the linear model that most closely correspond to the 
results from the statsmodels analysis above are obtained by computing the mean of the traces for the 
stochastic variables in the Bayesian model:

In [55]: intercept = trace.get_values("intercept").mean()
In [56]: intercept
Out[56]: 149.97546241676989
In [57]: beta = trace.get_values("beta").mean()
In [58]: beta
Out[58]: 0.37077795098761318

The corresponding result from the statsmodels analysis is obtained by accessing the params attribute in 
the result class returned by the fit method (see above):

In [59]: result.params
Out[59]: Intercept    152.617348
         weight         0.336477
         dtype: float64

By comparing these values for the intercepts and the coefficients we see that the two approaches gives 
similar results for the maximum likelihood estimates of the unknown model parameters. In the statsmodels 
approach, to predict the expected height for a given weight, say 90 kg, we can use the predict method to get a 
specific height:

In [60]: result.predict({"weight": 90})
Out[60]: array([ 182.90030002])

The corresponding result in the Bayesian model is obtained by computing the mean for the distribution 
of the stochastic variable predict_height, for the given weight:

In [61]: weight_index = np.where(x == 90)[0][0]
In [62]: trace.get_values("predict_height")[:, weight_index].mean()
Out[62]: 183.33943635274935

Again, the results from the two approaches are comparable. In the Bayesian model, however, we have 
access to an estimate of the full probability distribution of the height at every modeled weight. For example, 
we can plot an histogram and the kernel-density estimate of the probability distribution at the weight 90 kg 
using the distplot function from the Seaborn library, which results in the graph shown in Figure 16-8:

In [63]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: sns.distplot(trace.get_values("predict_height")[:, weight_index], ax=ax)
    ...: ax.set_xlim(150, 210)
    ...: ax.set_xlabel("height")
    ...: ax.set_ylabel("Probability distribution")
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Every sample in the MCMC trace represents a possible value of the intercept and coefficients in the 
linear model that we wish to fit to the observed data. To visualize the uncertainty in the mean intercept and 
coefficient that we can take as estimates of the final linear model parameters, it is illustrative to plot the lines 
corresponding to each sample point, along with the data as a scatter plot and the lines that corresponds to 
the mean intercept and slope. This results in a graph like the one shown in Figure 16-9. The spread of the 
lines represents the uncertainty in the estimate of the height for a given weight. The spread tends to be larger 
towards the edges where fewer data points are available, and tighter in the middle cloud of data points.

In [64]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))
    ...: for n in range(500, 2000, 1):
    ...:     intercept = trace.get_values("intercept")[n]
    ...:     beta = trace.get_values("beta")[n]
    ...:     ax.plot(x, intercept + beta * x, color='red', lw=0.25, alpha=0.05)
    ...: intercept = trace.get_values("intercept").mean()
    ...: beta = trace.get_values("beta").mean()
    ...: ax.plot(x, intercept + beta * x, color='k', label="Mean Bayesian prediction")
    ...: ax.plot(data.weight, data.height, 'o')
    ...: ax.plot(x, y, '--', color="blue", label="OLS prediction")
    ...: ax.set_xlabel("weight")
    ...: ax.set_ylabel("height")
    ...: ax.legend(loc=0)

Figure 16-8.  Probability distribution for prediction of height for weight being 90 kg
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In the linear regression problem we have looked at here, we explicitly defined the statistical model 
and the stochastic variables included in the model. This illustrates the general steps that are required for 
analyzing statistical models using the Bayesian approach and the PyMC library. For generalized linear 
model, however, the PyMC library provides a simplified API that creates the model and the required 
stochastic variables for us. With the mc.glm.glm function we can define a generalized linear model using 
Patsy formula (see Chapter 14), and provide the data using a pandas data frame. This automatically takes 
care of setting up the model. With the model setup using mc.glm.glm, we can proceed to sample from the 
posterior distribution of the model using the same methods as before.

In [65]: with mc.Model() as model:
    ...:     mc.glm.glm('height ~ weight', data)
    ...:     step = mc.NUTS()
    ...:     trace = mc.sample(2000, step)
[-----------------100%-----------------] 2000 of 2000 complete in 99.1 sec

The result from the sampling of the GLM model, as visualized by the mc.traceplot function, is shown 
in Figure 16-10. In these trace plots, sd corresponds to the sigma variable in the explicit model definition 
used above, and it represents the standard error of the residual of the model and the observed data. In the 
traces, note how the sampling requires a few hundred samples before it reaches a steady level. The initial 
transient period is does not contribute samples with the correct distribution, so when using the samples to 
compute estimates we should exclude the samples from the initial period.

In [66]: fig, axes = plt.subplots(3, 2, figsize=(8, 6), squeeze=False)
    ...: mc.traceplot(trace, vars=['Intercept', 'weight', 'sd'], ax=axes)

Figure 16-9.  Height versus weight, with linear fits using OLS and a Bayesian model

http://dx.doi.org/10.1007/978-1-4842-0553-2_14
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With the mc.glm.glm we can create and analyze linear models using Bayesian statistics in almost the 
same way as we define and analyze a model using the frequentist’s approach with statsmodels. For the 
simple example studied here, the regression analysis with both statistical approaches give similar results 
and neither methods is much more suitable than the other. However, there are practical differences that 
depending on the situation can favor one or the other. For example, with the Bayesian approach we have 
access to estimates of the full marginal posterior distributions, which can be useful for computing statistical 
quantities other than the mean. However, performing MCMC on simple models like the one considered  
here is significantly more computationally demanding than carrying out ordinary least square fitting.  
The real advantages of the Bayesian methods arise when analyzing complicated models in high dimensions  
(many unknown model parameters). In such cases, defining appropriate frequentist’s models can be 
difficult, and solving the resulting models challenging. The MCMC algorithm has the very attractive property 
that is scales well to high-dimensional problems, and can therefore be highly competitive for complex 
statistical models. While the model we have considered here all are simple, and can easily be solved using a 
frequentist’s approach, the general methodology used here remains unchanged, and creating more involved 
models is only a matter of adding more stochastic variables to the model.

As a final example illustrating that the same general procedure can be used also when the complexity of 
the Bayesian model is increased. We return to the height and weight dataset, but instead of selecting only the 
male subjects, here we consider an additional level in the model that accounts for the gender of the subject, 
so that both males and females can be modeled with potentially different slopes and intercepts. In PyMC 

Figure 16-10.  Sample trace plot for a Bayesian GLM model defined using mc.glm module
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we can create a multilevel model by using the shape argument to specify the dimension for each stochastic 
variable that is added to the model, as shown in the following example.

We begin with preparing the dataset. Here we again restricting our analysis to subjects with weight less 
than 110 kg, to eliminate outliers, and we convert the sex column to a binary variable where 0 represent 
male and 1 represent female.

In [67]: data = dataset.data.copy()
In [68]: data = data[data.weight < 110]
In [69]: data["sex"] = data["sex"].apply(lambda x: 1 if x == "F" else 0)

Next we define the statistical model, which we here take to be height intercept weight~ ( , )N i i+ b s 2 , 
where i is an index that takes the value 0 for male subjects and 1 for female subjects. When creating the 
stochastic variable for the intercept and b

i
, we indicate this multilevel structure by specifying shape=2 (since 

in this case we have two levels: male and female). The only other difference compared to the previous model 
definition is that we also need to use an index mask when defining the expression for height_mu, so that 
each value in data.weight is associated with the correct level.

In [70]: with mc.Model() as model:
    ...:     intercept_mu, intercept_sigma = 125, 30
    ...:     beta_mu, beta_sigma = 0, 5
    ...:
    ...:     intercept = mc.Normal('intercept', intercept_mu, sd=intercept_sigma, shape=2)
    ...:     beta = mc.Normal('beta', beta_mu, sd=beta_sigma, shape=2)
    ...:     error = mc.Uniform('error', 0, 10)
    ...:
    ...:     sex_idx = data.sex.values
    ...:     height_mu = intercept[sex_idx] + beta[sex_idx] * data.weight
    ...:
    ...:     mc.Normal('height', mu=height_mu, sd=error, observed=data.height)

Inspecting the model variables using the vars attribute object shows that we again have three stochastic 
variables in the model: intercept, beta, and error. However, in contrast to the earlier model, here 
intercept and beta both have two levels.

In [71]: model.vars
Out[71]: [intercept, beta, error_interval]

The way we invoke the MCMC sampling algorithm is identical to the earlier examples in this chapter. 
Here we use the NUTS sampler, and collect 5000 samples:

In [72]: with model:
    ...:     start = mc.find_MAP()
    ...:     step = mc.NUTS(state=start)
    ...:     trace = mc.sample(5000, step, start=start)
[-----------------100%-----------------] 5000 of 5000 complete in 64.2 sec

We can also, like before, use the mc.traceplot function to visualize the result of the sampling. This 
allows us to quickly form an idea of the distribution of the model parameters, and to verify that the MCMC 
sampling has produce sensible results. The trace plot for the current model is shown in Figure 16-11, and 
unlike earlier examples here we have multiple curves in the panels for the intercept and beta variables, 
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reflecting their multilevel nature: The blue (dark) lines show the results for the male subjects, and the  
green (light) lines show the result for female subjects.

In [73]: mc.traceplot(trace, figsize=(8, 6))

Using the get_values method of the trace object, we can extract the sampling data for the model 
variables. Here the sampling data for intercept and beta are two-dimensional arrays with shape (5000, 2): 
The first dimension represents each sample, and the second dimension represents the level of the variable. 
Here we are interested in the intercept and the slope for each gender, so we take the mean along the first axis 
(all samples):

In [74]: intercept_m, intercept_f = trace.get_values('intercept').mean(axis=0)
In [75]: beta_m, beta_f = trace.get_values('beta').mean(axis=0)

By averaging over both dimensions we can also get the intercept and the slope that represent the entire 
dataset, where male and female subjects are grouped together:

In [76]: intercept = trace.get_values('intercept').mean()
In [77]: beta = trace.get_values('beta').mean()

Figure 16-11.  Kernel-density estimate of the probability distribution of the model parameters, and the MCMC 
sampling traces for each variable in the multilevel model for height versus weight
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Finally, we visualize the results by plotting the data as scatter plots, and drawing the lines corresponding 
to the intercepts and slopes that we obtained for male and female subjects, as well as the result from 
grouping all subjects together. The result is shown in Figure 16-12.

In [78]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))
    ...: mask_m = data.sex == 0
    ...: mask_f = data.sex == 1
    ...: ax.plot(data.weight[mask_m], data.height[mask_m], 'o', color="steelblue",
    ...:         label="male", alpha=0.5)
    ...: ax.plot(data.weight[mask_f], data.height[mask_f], 'o', color="green",
    ...:         label="female", alpha=0.5)
    ...: x = np.linspace(35, 110, 50)
    ...: ax.plot(x, intercept_m + x * beta_m, color="steelblue", label="model male group")
    ...: ax.plot(x, intercept_f + x * beta_f, color="green", label="model female group")
    ...: ax.plot(x, intercept + x * beta, color="black", label="model both groups")
    ...:
    ...: ax.set_xlabel("weight")
    ...: ax.set_ylabel("height")
    ...: ax.legend(loc=0)

Figure 16-12.  The height versus weight for male (dark/blue) and female (light/green) subjects

The regression lines shown in Figure 16-12, and the distribution plots shown in Figure 16-11, indicate 
that the model is improved by taking account for different intercepts and slopes for male and female 
subjects. In a Bayesian model with PyMC, changing the underlying model used in the analysis is only a 
matter of adding stochastic variables to the model, defining how they are related to each other, and assigning 
a prior distribution for each stochastic variable. The MCMC sampling required to actually solve the model is 
independent of the model details. This is one of the most attractive aspects of Bayesian statistical modeling. 
For instance, in the multilevel model considered above, instead of specifying the priors for the intercept 
and slope variables as independent probability distributions, we could relate the distribution parameters 
of the priors to another stochastic variable, and thereby obtain a hierarchical Bayesian model, where the 
model parameters describing the distribution of the intercept and the slope for each level are drawn from 
a common distribution. Hierarchical models have many uses, and are one of the many applications where 
Bayesian statistics excels.
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Summary
In this chapter we have explored Bayesian statistics using computational methods provided by the PyMC 
library. The Bayesian approach to statistics is distinct from classical frequentist’s statistics in several 
fundamental viewpoints. From a practical, computational point of view, Bayesian methods are often very 
demanding to solve exactly. In fact, computing the posterior distribution for a Bayesian model exactly is 
often prohibitively expensive. However, what we often can do is to apply powerful and efficient sampling 
methods that allow us to find an approximate posterior distribution using simulations. The key role of a 
Bayesian statistics framework is to allow us to define statistical models and then apply sampling methods to 
find an approximate posterior distribution for the model. In this chapter we have employed the upcoming 
(but already available) version 3 of the PyMC library as a Bayesian modeling framework in Python. We 
briefly explored defining statistical models in terms of stochastic variables with given distributions, and 
the simulation and sampling of the posterior distribution for those models using the MCMC methods 
implemented in the PyMC library.

Further Reading
For accessible introductions to the theory of Bayesian statistics, see books by Krusche and Downey. A more 
technical discussion is given in the book by Gelman. A computationally oriented introduction to Bayesian 
methods with Python is given in “Probabilistic Programming & Bayesian Methods for Hackers,” which is 
available for free online at http://camdavidsonpilon.github.io/Probabilistic-Programming-and-
Bayesian-Methods-for-Hackers. An interesting discussion about the differences between the Bayesian and 
frequentist’s approaches to statistics, with examples written in Python, is given in the VanderPlas article, 
which is also available at http://arxiv.org/pdf/1411.5018.pdf.
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Chapter 17

Signal Processing

In this chapter we explore signal processing, which is a subject with applications in diverse branches of 
science and engineering. A signal in this context can be a quantity that varies in time (temporal signal), or 
as a function of space coordinates (spatial signal). For example, an audio signal is a typical example of a 
temporal signal, while an image is a typical example of a spatial signal in two dimensions. In reality, signals 
are often continuous functions, but in computational applications it is common to work with discretized 
signals, where the original continuous signal is sampled at discrete points with uniform distances. The 
sampling theorem gives rigorous and quantitative conditions for when a continuous signal can be accurately 
represented by a discrete sequence of samples.

Computational methods for signal processing play a central role in scientific computing not only 
because of their widespread applications, but also because there exist very efficient computational methods 
for important signal-processing problems. In particular, the Fast Fourier Transform (FFT) is an important 
algorithm for many signal-processing problems, and moreover it is perhaps one of the most important 
numerical algorithms in all of computing. In this chapter we explore how FFTs can be used in spectral 
analysis, but beyond this basic application there are also broad uses of FFT both directly and indirectly as 
a component in other algorithms. Other signal-processing methods, such as convolution and correlation 
analysis, and linear filters also have widespread applications, in particular in engineering fields such as 
control theory.

In this chapter we discuss spectral analysis and basic applications of linear filters, using the fftpack 
and signal modules in the SciPy library.

Importing Modules
In this chapter we mainly work with the fftpack and signal modules from the SciPy library. As usual with 
modules from the SciPy library, we import the modules using the following pattern:

In [1]: from scipy import fftpack
In [2]: from scipy import signal

We also use the io.wavefile module from SciPy to read and write WAV audio files in one of the 
examples. We import this module in the following way:

In [3]: import scipy.io.wavfile
In [4]: from scipy import io



Chapter 17 ■ Signal Processing

406

For basic numerics and graphics we also require the NumPy, Pandas, and Matplotlib libraries:

In [5]: import numpy as np
In [6]: import pandas as pd
In [7]: import matplotlib.pyplot as plt
In [8]: import matplotlib as mpl

Spectral Analysis
We begin this exploration of signal processing by considering spectral analysis. Spectral analysis is a 
fundamental application of Fourier transforms, which is a mathematical integral transform that allows us to take 
a signal from the time domain – where it is described as a function of time – to the frequency domain – where 
it is described as a function of frequency. The frequency domain representation of a signal is useful for many 
purposes. Examples include the following: extracting features such as dominant frequency components of a 
signal, applying filters to signals, and for solving differential equations (see Chapter 9), just to mention a few.

Fourier Transforms
The mathematical expression for the Fourier transform F(n) of a continuous signal f (t) is1

F v f t e dti t( ) = ( )
-¥

¥
-ò 2p n ,

and the inverse Fourier transform is given by
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Here F (n) is the complex-valued amplitude spectrum of the signal f (t), and n is the frequency. From 
F(n) we can compute other types of spectrum, such as the power spectrum |F (n)|2. In this formulation f (t) is 
a continuous signal with infinite duration. In practical applications we are often more interested in 
approximating f (t) using a finite number of samples from a finite duration of time. For example, we might 
sample the function f (t) at N uniformly spaced points in the time interval t TÎ[ ]0, , resulting in a sequence of 
samples that we denote (x
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k
 is the discrete Fourier transform of the samples x

n
, and k is a frequency bin number that can be 

related to a real frequency. The DFT for a sequence of samples can be computed very efficiently using the 

1There are several alternative definitions of the Fourier transform, which vary in the coefficient in the exponent and  
the normalization of the transform integral.

http://dx.doi.org/10.1007/978-1-4842-0553-2_9
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algorithm known as Fast Fourier Transform (FFT). The SciPy fftpack module2 provides implementations of 
the FFT algorithm. The fftpack module contains FFT functions for a variety of cases: See Table 17-1  
for a summary. Here we focus on demonstrating the usage of the fft and ifft functions, and several of the 
helper functions in the fftpack module. However, the general usage is similar for all FFT functions  
in Table 17-1.

Table 17-1.  Summary of selected functions from the fftpack module in SciPy. For detailed usage of 
each function, including their arguments and return values, see their docstrings that are available using 
help(fftpack.fft)

Function Description

fft, ifft General FFT and inverse FFT of a real- or complex-valued signal. The 
resulting frequency spectrum is complex valued.

rfft, irfft FFT and inverse FFT of a real-valued signal.

dct, idct The discrete cosine transform (DCT) and its inverse.

dst, idst The discrete sine transform (DST) and its inverse.

fft2, ifft2, fftn, ifftn The 2-dimensional and the n-dimensional FFT for complex-valued signals, 
and their inverses.

fftshift, ifftshift, 
rfftshift, irfftshift

Shift the frequency bins in the result vector produced by fft and rfft, 
respectively, so that the spectrum is arranged such that the zero-frequency 
component is in the middle of the array.

fftfreq Calculate the frequencies corresponding to the FFT bins in the result 
returned by fft.

Note that the DFT takes discrete samples as input, and outputs a discrete frequency spectrum. To be 
able to use DFT for processes that are originally continuous we first must reduce the signals to discrete 
values using sampling. According to the sampling theorem, a continuous signal with bandwidth B (that is, 
the signal does not contain frequencies higher than B), can be completely reconstructed from discrete 
samples with sampling frequency f Bs ³ 2 . This is a very important result in signal processing, because it tells 
us under what circumstances we can work with discrete instead of continuous signals. It allows us to 
determine a suitable sampling rate when measuring a continuous process, since it is often possible to know 
or approximately guess the bandwidth of a process, for example, from physical arguments. While the 
sampling rate determines the maximum frequency we can describe with a discrete Fourier transform, the 
spacing of samples in frequency space is determined by the total sampling time T, or equivalently from the 
number of samples points once the sampling frequency is determined, T N fs= / .

As an introductory example, consider a simulated signal with pure sinusoidal components at 1 Hz and 
at 22 Hz, on top of a normal-distributed noise floor. We begin by defining a function signal_samples that 
generates noisy samples of this signal:

In [9]: def signal_samples(t):
   ...:     return (2 * np.sin(2 * np.pi * t) + 3 * np.sin(22 * 2 * np.pi * t) +
   ...:             2 * np.random.randn(*np.shape(t)))

2There is also an implementation of FFT in the fft module in NumPy. It provides mostly the same functions as  
scipy.fftpack, which we use here. As a general rule, when SciPy and NumPy provide the same functionality, it is 
generally preferable to use SciPy if available, and fall back to the NumPy implementation when SciPy is not available.



Chapter 17 ■ Signal Processing

408

We can get a vector of samples from by calling this function with an array with sample times as 
argument. Say that we are interested in computing the frequency spectrum of this signal up to frequencies of 
at 30 Hz. We then need to choose the sampling frequency fs = 60 Hz, and if we want to obtain a frequency 
spectrum with resolution of D =f 0.01 Hz, we need to collect at least N f fs= D =/ 6000 samples, 
corresponding to a sampling period of T N fs= =/  100 seconds:

In [10]: B = 30.0
In [11]: f_s = 2 * B
In [12]: delta_f = 0.01
In [13]: N = int(f_s / delta_f); N
Out[13]: 6000
In [14]: T = N / f_s; T
Out[14]: 100.0

Next we sample the signal function at N uniformly spaced points in time by first creating an array t that 
contains the sample times, and then use it to evaluate the signal_samples function:

In [15]: t = np.linspace(0, T, N)
In [16]: f_t = signal_samples(t)

The resulting signal is plotted in Figure 17-1. The signal is rather noisy, both when viewed over the 
entire sampling time, and when viewed for a shorter period of time, and the added random noise mostly 
masks the pure sinusoidal signals when viewed in time domain.

In [17]: fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)
    ...: axes[0].plot(t, f_t)
    ...: axes[0].set_xlabel("time (s)")
    ...: axes[0].set_ylabel("signal")
    ...: axes[1].plot(t, f_t)
    ...: axes[1].set_xlim(0, 5)
    ...: axes[1].set_xlabel("time (s)")

Figure 17-1.  Simulated signal with random noise. Full signal to the left, and zoom in to early times on the right
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To reveal the sinusoidal components in the signal we can use the FFT to compute the spectrum of the 
signal (or in order words, its frequency domain representation). We obtain the discrete Fourier transform of 
the signal by applying the fft function to the array of discrete samples, f_t:

In [18]: F = fftpack.fft(f_t)

The result is an array F, which contains the frequency components of the spectrum at frequencies that 
are given by the sampling rate and number of samples. When computing these frequencies, it is convenient 
to use the helper function fftfreq, which takes the number of samples and the time duration between 
successive samples as parameters, and return an array of the same size as F that contains the frequencies 
corresponding to each frequency bin.

In [19]: f = fftpack.fftfreq(N, 1.0/f_s)

The frequency bins for the amplitude values returned by the fft function contains both positive and 
negative frequencies, up to the frequency that corresponds to half the sampling rate, f

s
/2. For real-valued 

singals, the spectrum is symmetric at positive and negative frequencies, and we are for this reason often 
only interested in the positive-frequency components. Using the frequency array f, we can conveniently 
create a mask that can be used to extract the part of the spectrum that corresponds to the frequencies we are 
interested in. Here we create a mask for selecting the positive-frequency components:

In [20]: mask = np.where(f >= 0)

The spectrum for the positive-frequency components is shown in Figure 17-2. The top panel contains 
the entire positive-frequency spectrum, and is plotted on a log scale to increase the contrast between the 
signal and the noise. We can see that there are sharp peaks near 1 Hz and 22 Hz, corresponding to the 
sinusoidal components in the signal. These peaks clearly stand out from the noise floor in the spectrum. 
In spite of the noise concealing the sinusoidal components in the time-domain signal, we can clearly 
detect their presence in the frequency domain representation. The lower two panels in Figure 17-2 show 
magnifications of the two peaks at 1 Hz and 22 Hz, respectively.

In [21]: fig, axes = plt.subplots(3, 1, figsize=(8, 6))
    ...: axes[0].plot(f[mask], np.log(abs(F[mask])), label="real")
    ...: axes[0].plot(B, 0, 'r*', markersize=10)
    ...: axes[0].set_ylabel("$\log(|F|)$", fontsize=14)
    ...: axes[1].plot(f[mask], abs(F[mask])/N, label="real")
    ...: axes[1].set_xlim(0, 2)
    ...: axes[1].set_ylabel("$|F|$", fontsize=14)
    ...: axes[2].plot(f[mask], abs(F[mask])/N, label="real")
    ...: axes[2].set_xlim(21, 23)
    ...: axes[2].set_xlabel("frequency (Hz)", fontsize=14)
    ...: axes[2].set_ylabel("$|F|$", fontsize=14)
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Frequency-domain Filter
Just like we can compute the frequency-domain representation from the time-domain signal using the FFT 
function fft, we can compute the time domain signal from the frequency-domain representation using the 
inverse FFT function ifft. For example, applying the ifft function to the F array will reconstruct the f_t 
array. By modifying the spectrum before we apply the inverse transform we can realize frequency-domain 
filters. For example, selecting only frequencies below 2 Hz in the spectrum amounts to applying a 2 Hz  
low-pass filter, which suppresses high-frequency components in the signal (higher than 2 Hz in this case):

In [22]: F_filtered = F * (abs(f) < 2)
In [23]: f_t_filtered = fftpack.ifft(F_filtered)

Computing the inverse FFT for the filtered signal results in a time-domain signal where the high-
frequency oscillations are absent, as shown in Figure 17-3. This simple example summarizes the essence of 
many frequency-domain filters. Later in this chapter we explore in more detail some of the many types of 
filters that are commonly used in signal-processing analysis.

In [24]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: ax.plot(t, f_t, label='original')
    ...: ax.plot(t, f_t_filtered.real, color="red", lw=3, label='filtered')
    ...: ax.set_xlim(0, 10)
    ...: ax.set_xlabel("time (s)")
    ...: ax.set_ylabel("signal")
    ...: ax.legend()

Figure 17-2.  Spectrum of the simulated signal with frequency components at 1 Hz and 22 Hz
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Windowing
In the previous section we directly applied the FFT to the signal. This can give acceptable results, but it 
is often possible to further improve the quality and the contrast of the frequency spectrum by applying a 
so-called window function to the signal before applying the FFT. A window function is a function that when 
multiplied with the signal modulates its magnitude so that it approaches zero at the beginning and the end 
of the sampling duration. There are many possible functions that can be used as window function, and 
the SciPy signal module provides implementations of many common window functions, including the 
Blackman function, the Hann function, the Hamming function, Gaussian window functions (with variable 
standard deviation), and the Kaiser window function.3 These functions are all plotted in Figure 17-4. This 
graph shows that while all of these window functions are slightly different, the overall shape is very similar.

In [25]: fig, ax = plt.subplots(1, 1, figsize=(8, 3))
    ...: N = 100
    ...: ax.plot(signal.blackman(N), label="Blackman")
    ...: ax.plot(signal.hann(N), label="Hann")
    ...: ax.plot(signal.hamming(N), label="Hamming")
    ...: ax.plot(signal.gaussian(N, N/5), label="Gaussian (std=N/5)")
    ...: ax.plot(signal.kaiser(N, 7), label="Kaiser (beta=7)")
    ...: ax.set_xlabel("n")
    ...: ax.legend(loc=0)

Figure 17-3.  The original time-domain signal and the reconstructed signal after applying a low-pass filter to 
the frequency domain representation of the signal

3Several other window functions are also available. See the docstring for the scipy.signal module for a complete list.
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The alternative window functions all have slightly different properties and objectives, but for the 
most part they can be used interchangeably. The main purpose of window functions is to reduce spectral 
leakage between nearby frequency bins, which occur in discrete Fourier transform computation when the 
signal contains components with periods that are not exactly divisible with the sampling period. Signal 
components with such frequencies can therefore not fit a full number of cycles in the sampling period, 
and since discrete Fourier transform assumes that signal is period the resulting discontinuity at the period 
boundary can give rise to spectral leakage. Multiplying the signal with a window function reduces this 
problem. Alternatively, we could also increase the number of sample points (increase the sampling period) 
to obtain a higher frequency resolution, but this might not be always be practical.

To see how we can use a window function before applying the FFT to a time-series signal, let’s consider 
the outdoors temperature measurements that we looked at in Chapter 12. First we use the Pandas library 
to load the dataset, resampling it to evenly spaced hourly samples. We also apply the fillna method to 
eliminate any NaN values in the dataset.

In [26]: df = pd.read_csv('temperature_outdoor_2014.tsv', delimiter="\t",
    ...:                  names=["time", "temperature"])
In [27]: df.time = (pd.to_datetime(df.time.values, unit="s").
    ...:               tz_localize('UTC').tz_convert('Europe/Stockholm'))
In [28]: df = df.set_index("time")
In [29]: df = df.resample("H")
In [30]: df = df[df.index < "2014-08-01"]
In [31]: df = df.fillna(method='ffill')

Once the Pandas data frame has been created and processed, we exact the underlying NumPy arrays to 
be able to process the time-series data using the fftpack module.

In [32]: time = df.index.astype('int64')/1.0e9
In [33]: temperature = df.temperature.values

Now we wish to apply a window function to the data in the array temperature before we compute the 
FFT. Here we use the Blackman window function, which is a window function that is suitable for reducing 
spectral leakage. It is available as the blackman function in the signal module in SciPy. As argument to the 
window function we need to pass the length of the sample array, and it returns an array of that same length:

In [34]: window = signal.blackman(len(temperature))

Figure 17-4.  Example of commonly used window functions

http://dx.doi.org/10.1007/978-1-4842-0553-2_12
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To apply the window function we simply multiply it with the array containing the time-domain signal, 
and use the result in the subsequent FFT computation. However, before we proceed with the FFT for the 
windowed temperature signal, we first plot the original temperature time series and the windowed version. 
The result is shown in Figure 17-5. The result of multiplying the time series with the window function is a 
signal that approach zero near the sampling period boundaries, and it therefore can be viewed as a periodic 
functions with smooth transitions between period boundaries, and as such the FFT of the windowed signal 
has more well-behaved properties.

In [35]: temperature_windowed = temperature * window
In [36]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: ax.plot(df.index, temperature, label="original")
    ...: ax.plot(df.index, temperature_windowed, label="windowed")
    ...: ax.set_ylabel("temperature", fontsize=14)
    ...: ax.legend(loc=0)

After having prepared the windowed signal, the rest of the spectral analysis proceeds as before: We 
can use the fft function to compute the spectrum, and the fftfreq function to calculate the frequencies 
corresponding to each frequency bin.

In [37]: data_fft = fftpack.fft(temperature_windowed)
In [38]: f = fftpack.fftfreq(len(temperature), time[1]-time[0])

Here we also select the positive frequencies by creating a mask array from the array f, and plot the 
resulting positive-frequency spectrum as shown in Figure 17-6. The spectrum in Figure 17-6 clearly shows 
peaks at the frequency that corresponds to one day (1/86400 Hz) and its higher harmonics (2/86400 Hz, 
3/86400 Hz, etc.).

In [39]: mask = f > 0
In [40]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: ax.set_xlim(0.000001, 0.00004)
    ...: ax.axvline(1./86400, color='r', lw=0.5)
    ...: ax.axvline(2./86400, color='r', lw=0.5)
    ...: ax.axvline(3./86400, color='r', lw=0.5)
    ...: ax.plot(f[mask], np.log(abs(data_fft_window[mask])), lw=2)
    ...: ax.set_ylabel("$\log|F|$", fontsize=14)
    ...: ax.set_xlabel("frequency (Hz)", fontsize=14)

Figure 17-5.  Windowed and orignal temperature time-series signal
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To get the most accurate spectrum from a given set of samples it is generally advisable to apply a 
window function to the time-series signal before applying an FFT. Most of the window functions available 
in SciPy can be used interchangeably, and the choice of window function is usually not critical. A popular 
choice is the Blackman window function, which is designed to minimize spectral leakage. For more details 
about the properties of different window functions, see Chapter 9 in the book by Smith (see References).

Spectogram
As a final example in this section on spectral analysis, here we analyze the spectrum of an audio signal that 
was sampled from a guitar.4 First we load sampled data from the guitar.wav file using the io.wavefile.read 
function from the SciPy library:

In [41]: sample_rate, data = io.wavfile.read("guitar.wav")

The io.wavefile.read function returns a tuple containing the sampling rate, sample_rate, and a 
NumPy array containing the audio intensity. For this particular file we get the sampling rate 44.1 kHz, 
and the audio signal was recorded in stereo, which is represented by a data array with two channels. Each 
channel contains 1181625 samples:

In [42]: sample_rate
Out[42]: 44100
In [43]: data.shape
Out[43]: (1181625, 2)

Here we will only be concerned with analyzing a single audio channel, so we form the average of the 
two channels to obtain a mono-channel signal:

In [44]: data = data.mean(axis=1)

4The data used in this example was obtained from https://www.freesound.org/people/guitarguy1985/
sounds/52047.

Figure 17-6.  Spectrum of the windowed temperature time series. The dominant peak occurs at the frequency 
corresponding to a one-day period

http://dx.doi.org/10.1007/978-1-4842-0553-2_9
https://www.freesound.org/people/guitarguy1985/sounds/52047
https://www.freesound.org/people/guitarguy1985/sounds/52047
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We can calculate the total duration of the audio recording by divide the number of samples with the 
sampling rate. The result suggests that the recording is about 26.8 seconds.

In [45]: data.shape[0] / sample_rate
Out[45]: 26.79421768707483

It is often the case that we like to compute the spectrum of a signal in segments instead of the entire 
signal at once, for example if the nature of the signal varies in time on a long time scale, but contains nearly 
periodic components on a short time scale. This is particularly true for music, which can be considered 
nearly period on short time scales from the point of view of human perception (subsecond time scales), but 
which varies on longer time scales. In the case of the guitar sample, we would therefore like to apply the FFT 
on a sliding window in the time domain signal. The result is a time-dependent spectrum, which is frequently 
visualized as an equalizer graph on music equipment and applications. Another approach is to visualize the 
time-dependent spectrum using a two-dimensional heat-map graph, which in this context is known as a 
spectrogram. In the following we compute the spectrogram of the guitar sample.

Before we proceed with the spectrogram visualization, we first calculate the spectrum for a small part of 
the sample. We begin by determining the number of samples to use from the full sample array. If we want to 
analyze 0.5 seconds at the time, we can use the sampling rate to compute the number of samples to use:

In [46]: N = int(sample_rate/2.0) # half a second -> 22050 samples

Next, given the number of samples and the sampling rate, we can compute the frequencies f for the 
frequency bins for the result of the forthcoming FFT calculation, as well as the sampling times t for each 
sample in the time domain signal. We also create a frequency mask for selecting positive frequencies smaller 
than 1000 Hz, which we will use later on to select a subset of the computed spectrum.

In [47]: f = fftpack.fftfreq(N, 1.0/sample_rate)
In [48]: t = np.linspace(0, 0.5, N)
In [49]: mask = (f > 0) * (f < 1000)

Next we exact the first N samples from the full sample array data and apply the fft function on it:

In [50]: subdata = data[:N]
In [51]: F = fftpack.fft(subdata)

The time and frequency-domain signals are shown in Figure 17-7. The time-domain signal in the left 
panel is zero in the beginning, before the first guitar string is plucked. The frequency-domain spectrum 
shows several dominant frequencies that correspond to the different tones produced by the guitar.

In [52]: fig, axes = plt.subplots(1, 2, figsize=(12, 3))
    ...: axes[0].plot(t, subdata)
    ...: axes[0].set_ylabel("signal", fontsize=14)
    ...: axes[0].set_xlabel("time (s)", fontsize=14)
    ...: axes[1].plot(f[mask], abs(F[mask]))
    ...: axes[1].set_xlim(0, 1000)
    ...: axes[1].set_ylabel("$|F|$", fontsize=14)
    ...: axes[1].set_xlabel("Frequency (Hz)", fontsize=14)
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The next step is to repeat the analysis for successive segments from the full sample array. The time 
evolution of the spectrum can be visualized as a spectrogram, which has frequency on the x-axis and time 
on the y-axis. To be able to plot the spectrogram with the imshow function from Matplotlib, we create a  
two-dimensional NumPy array spectogram_data for storing the spectra for the successive sample segments. 
The shape of the spectrogram_data array is (n_max, f_values), where n_max is the number of segments of 
length N in the sample array data, and f_values are the number of frequency bins with frequencies that 
match the condition used to compute mask (positive frequencies less than 1000 Hz):

In [53]: n_max = int(data.shape[0] / N)
In [54]: f_values = np.sum(1 * mask)
In [55]: spectogram_data = np.zeros((n_max, f_values))

To improve the contrast of the resulting spectrogram we also apply a Blackman window function to 
each subset of the sample data before we compute the FFT. Here we choose the Blackman window function 
for its spectral leakage reducing properties, but many other window functions give similar results. The length 
of the window array must be the same as the length of the subdata array, so we pass its length argument to 
the Blackman function:

In [56]: window = signal.blackman(len(subdata))

Finally we can compute the spectrum for each segment in the sample by looping over the array slices of 
size N, apply the window function, compute the FFT, and store the subset of the result for the frequencies we 
are interested in in the spectrogram_data array:

In [57]: for n in range(0, n_max):
    ...:     subdata = data[(N * n):(N * (n + 1))]
    ...:     F = fftpack.fft(subdata * window)
    ...:     spectogram_data[n, :] = np.log(abs(F[mask]))

When the spectrogram_data is computed, we can visualize the spectrogram using the imshow function 
from Matplotlib. The result is shown in Figure 17-8.

In [58]: fig, ax = plt.subplots(1, 1, figsize=(8, 6))
    ...: p = ax.imshow(spectogram_data, origin='lower',
    ...:               extent=(0, 1000, 0, data.shape[0] / sample_rate),
    ...:               aspect='auto',
    ...:               cmap=mpl.cm.RdBu_r)
    ...: cb = fig.colorbar(p, ax=ax)

Figure 17-7.  Signal and spectrum for samples – half a second duration of a guitar sound
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    ...: cb.set_label("$\log|F|$", fontsize=14)
    ...: ax.set_ylabel("time (s)", fontsize=14)
    ...: ax.set_xlabel("Frequency (Hz)", fontsize=14)

Figure 17-8.  Spectrogram of an audio sampling of a guitar sound

The spectrogram in Figure 17-8 contains a lot of information about the sampled signal, and how it 
evolves in time. The narrow vertical stripes correspond to tones produced by the guitar, and those signals 
slowly decay with increasing time. The broad horizontal bands correspond roughly to periods of time when 
strings are being plucked on the guitar, which for a short time gives a very broad frequency response. Note, 
however, that the color axis represents a logarithmic scale, so small variations in the color represent large 
variation in the actual intensity.

Signal Filters
One of the main objectives in signal processing is to manipulate and transform temporal or spatial signals 
to change their characteristics. Typical applications are noise reduction; sound effects in audio signals; 
and effects such as blurring, sharpening, contrast enhancement, and color balance adjustments in image 
data. Many common transformations can be implemented as filters that act on the frequency domain 
representation of the signal by suppressing certain frequency components. In the previous section we 
saw an example of a low-pass filter, which we implemented by taking the Fourier transform of the signal, 
removing the high-frequency components, and finally taking the inverse Fourier transform to obtain a 
new time-domain signal. With this approach we can implement arbitrary frequency filters, but we cannot 
necessarily apply them in real time on a streaming signal, since they require buffering sufficient samples to 
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be able to perform the discrete Fourier transform. In many applications it is desirable to apply filters and 
transform a signal in a continuous fashion, for example, when processing signals in transmission or live 
audio signals. 

Convolution Filters
Certain types of frequency filters can be implemented directly in the time domain using a convolution of the 
signal with a function that characterizes the filter. An important property of Fourier transformations is that 
the (inverse) Fourier transform of the product of two functions (for example the spectrum of a signal and the 
filter shape function) is a convolution of the two functions (inverse) Fourier transforms. Therefore, if we want 
to apply a filter H

k
 to the spectrum X

k
 of a signal x

n
, we can instead compute the convolution of x

n
 with h

m
, the 

inverse Fourier transform of the filter function H
k
. In general we can write a filter on convolution form as

y x hn
k

k n k=
=-¥

¥

-å ,

where x
k
 is the input y

n
 the output, and hn k-  is the convolution kernel that characterizes the filter. Note that in 

this general form, the signal y
n
 at time step n depends on both earlier and later values of the input x

k
. To 

illustrate this point, let’s return to the first example in this chapter, where we applied a low-pass filter to a 
simulated signal with components at 1 Hz and at 22 Hz. In that example we Fourier transformed the signal 
and multiplied its spectrum with a step function that suppressed all high-frequency components, and finally 
we inverse Fourier transformed the signal back into the time domain. The result was a smoothened version 
of the original noisy signal (Figure 17-3). An alternative approach using convolution is to inverse Fourier 
transform the frequency response function for the filter H, and use the result h as a kernel with which we 
convolve the original time-domain signal f_t:

In [59]: H = abs(f) < 2
In [60]: h = fftpack.fftshift(fftpack.ifft(H))
In [61]: f_t_filtered_conv = signal.convolve(f_t, h, mode='same')

To carry out the convolution, here we used the convolve function from the signal module in SciPy. 
It takes as its argument two NumPy arrays containing the signals to compute the convolution of. Using 
the optional keyword argument mode we can set size of the output array to be the same as the first input 
(mode='same'), the full convolution output after having zero-padded the arrays to account for transients 
(mode='full'), or to contain only elements that do not rely on zero-padding (mode='valid'). Here 
we use mode='same', so we easily can compare and plot the result with the original signal, f_t. The 
result of applying this convolution filter, f_t_filtered_conv, is shown in Figure 17-9, together with the 
corresponding result that was computed using fft and ifft with a modified spectrum (f_t_filtered). As 
expected the two methods give identical results.

In [62]: fig = plt.figure(figsize=(8, 6))
    ...: ax = plt.subplot2grid((2,2), (0,0))
    ...: ax.plot(f, H)
    ...: ax.set_xlabel("frequency (Hz)")
    ...: ax.set_ylabel("Frequency filter")
    ...: ax.set_ylim(0, 1.5)
    ...: ax = plt.subplot2grid((2,2), (0,1))
    ...: ax.plot(t – t[-1]/2.0, h.real)
    ...: ax.set_xlabel("time (s)")
    ...: ax.set_ylabel("convolution kernel")
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    ...: ax = plt.subplot2grid((2,2), (1,0), colspan=2)
    ...: ax.plot(t, f_t, label='original', alpha=0.25)
    ...: ax.plot(t, f_t_filtered.real, 'r', lw=2, label='filtered in frequency domain')
    ...: ax.plot(t, f_t_filtered_conv.real, 'b--', lw=2, label='filtered with convolution')
    ...: ax.set_xlim(0, 10)
    ...: ax.set_xlabel("time (s)")
    ...: ax.set_ylabel("signal")
    ...: ax.legend(loc=2)

Figure 17-9.  Top left: frequency filter. Top right: convolution kernel corresponding to the frequency filter  
(its inverse discrete Fourier transform). Bottom: simple low-pass filter applied via convolution

FIR and IIR Filters
In the example of a convolution filter in the previous section, there is no computational advantage of 
using a convolution to implement the filter rather that a sequence of a call to fft, spectrum modifications, 
followed by a call to ifft. In fact, the convolution here is in general more demanding than the extra 
FFT transformation, and the SciPy signal module actually provides a function call fftconvolve, which 
implements the convolution using FFT and its inverse. Furthermore, the convolution kernel of the filter 
has many undesirable properties, such as being noncasual, where the output signal depends on future 
values of the input (see the upper right panel in Figure 17-9). However, there are important special cases of 
convolution-like filters that can be efficiently implemented with both dedicated digital signal processors 
(DSPs) and general-purpose processors. An important family of such filters is the finite impulse response 

(FIR) filters, which takes the form y b xn
k

M

k n k=
=

-å
0

. This time-domain filter is casual because the output y
n
 only 
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depends on input values at earlier time steps.Another similar type of filter is the infinite impulse response 

(IIR) filters, which can be written on the form a y b x a yn
k

M

k n k
k

N

k n k0
0 1

= -
=

-
=

-å å . This is not strictly a convolution, 

since it additionally includes past values of the output when computing a new output value (a feedback 
term), but it is nonetheless on a similar form. Both FIR and IIR filters can be used to evaluate a new output 
values given the recent history of the signal and the output, and can therefore be evaluated sequentially in 
time domain, if we know the finite sequences of values of b

k
 and a

k
.

Computing the values of b
k
 and a

k
 given a set of requirements on filter properties is known as filter 

design. The SciPy signal module provides many functions for this purpose. For example, using the firwin 
function we can compute the b

k
 coefficients for a FIR filter given frequencies of the band boundaries, where 

the filter transitions from a pass to a stop filter (for a low-pass filter). The firwin function takes the number 
of values in the a

k
 sequence as its first argument (also known as taps in this context). The second argument, 

cutoff, defines the low-pass transition frequency in units of the Nyquist frequency (half the sampling rate). 
The scale of the Nyquist frequency can optionally be set using the nyq argument, which defaults to 1. Finally 
we can specify the type of window function to use with the window argument.

In [63]: n = 101
In [64]: f_s = 1 / 3600
In [65]: nyq = f_s/2
In [66]: b = signal.firwin(n, cutoff=nyq/12, nyq=nyq, window="hamming")

The result is the sequence of coefficients b
k
 that defines a FIR filter and which can be used to implement 

the filter with a time-domain convolution. Given the coefficients b
k
, we can evaluate the amplitude and 

phase response of the filter using the freqz function from the signal module. It returns arrays containing 
frequencies and the corresponding complex-valued frequency response, which are suitable for plotting 
purposes, as shown in Figure 17-10.

In [67]: f, h = signal.freqz(b)
In [68]: fig, ax = plt.subplots(1, 1, figsize=(12, 3))
    ...: h_ampl = 20 * np.log10(abs(h))
    ...: h_phase = np.unwrap(np.angle(h))
    ...: ax.plot(f/max(f), h_ampl, 'b')
    ...: ax.set_ylim(-150, 5)
    ...: ax.set_ylabel('frequency response (dB)', color="b")
    ...: ax.set_xlabel(r'normalized frequency')
    ...: ax = ax.twinx()
    ...: ax.plot(f/max(f), h_phase, 'r')
    ...: ax.set_ylabel('phase response', color="r")
    ...: ax.axvline(1.0/12, color="black")
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The low-pass filter shown in Figure 17-10 is designed to pass through signals with frequency less than 
f

s
/24 (indicated with a vertical line), and suppress higher frequency signal components. The finite transition 

region between pass and stop bands, and the nonperfect suppression above the cut-off frequency is a price 
we have to pay to be able to represent the filter in FIR form. The accuracy of the FIR filter can be improved by 
increasing the number of coefficients b

k
, at the expense of higher computational complexity.

The effect of an FIR filter, given the coefficients b
k
, and an IIR filter, given the coefficients b

k
 and a

k
, can 

be evaluated using the lfilter function from the signal module. As first argument this function expects the 
array with coefficients b

k
, and as second argument the array with the coefficients a

k
 in the case of an IIR filter, 

or the scalar 1 in case of the of an FIR filter. The third argument to the function is the input signal array, and 
the return value is the filter output. For example, to apply the FIR filter we created above to the array with 
hourly temperature measurements temperature, we can use:

In [69]: temperature_filt = signal.lfilter(b, 1, temperature)

The effect of applying the low-pass FIR filter to the signal is to smoothen the function by an eliminating 
the high-frequency oscillations, as shown in Figure 17-11. Another approach to achieve a similar result is  
to apply a moving average filter, in which the output is a weighted average or median of the a few nearby 
input values. The function medfilt from the signal module applies a median filter a given input signal, 
using the number of past nearby values specified with the second argument to the function:

In [70]: temperature_median_filt = signal.medfilt(temperature, 25)

Figure 17-10.  The amplitude and phase response of a low-pass FIR filter

Figure 17-11.  Output of an FIR filter and a median filter
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The result of applying the FIR low-pass filter and the median filter to the hourly temperature 
measurement dataset is shown in Figure 17-11. Note that the output of the FIR filter is shifted from the 
original signal by a time delay that corresponds to the number of taps in the FIR filter. The median filter 
implemented using medfilt does not suffer from this issue because the median is computed with respect 
to both past and future values, which makes it a noncasual filter that cannot be evaluated on the fly on 
streaming input data.

In [71]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: ax.plot(df.index, temperature, label="original", alpha=0.5)
    ...: ax.plot(df.index, temperature_filt, color="red", lw=2, label="FIR")
    ...: ax.plot(df.index, temperature_median_filt, color="green", lw=2, label="median filer")
    ...: ax.set_ylabel("temperature", fontsize=14)
    ...: ax.legend(loc=0)

To design an IIR filter we can use the iirdesign function from the signal module, or use one of the 
many predefined IIR filter types, including the Butterworth filter (signal.butter), Chebyshev filters of type 
I and II (signal.cheby1 and signal.cheby2), and elliptic filter (signal.ellip). For example, to create a 
Butterworth high-pass filter that allows frequencies above the critical frequency 7/365 to pass, while lower 
frequencies are suppressed, we can use:

In [72]: b, a = signal.butter(2, 7/365.0, btype='high')

The first argument to this function is the order of the Butterworth filter, and the second argument is the 
critical frequency of the filter (where it goes from band stop to band pass function). The optional argument 
btype can for example be used to specify if the filter is a low-pass filter (low) or high-pass filter (high). More 
options are described in the function’s docstring: See, for example, help(signal.butter). The output a and 
b are the a

k
 and b

k
 coefficients that define the IIR filter, respectively. Here we have compute a Butterworth 

filter of second order, so a and b each have three elements:

In [73]: b
Out[73]: array([ 0.95829139, -1.91658277,  0.95829139])
In [74]: a
Out[74]: array([ 1.        , -1.91484241,  0.91832314])

Like before we can apply the filter to an input signal (here we again use the hourly temperature dataset 
as an example):

In [75]: temperature_iir = signal.lfilter(b, a, temperature)

Alternatively we can apply the filter using the filtfilt function, which applies the filter both forward 
and backwards, resulting in a noncasual filter.

In [76]: temperature_filtfilt = signal.filtfilt(b, a, temperature)

The results of both types of filters are shown in Figure 17-12. Eliminating the low-frequency 
components detrends the time series and only retains the high-frequency oscillations and fluctuations. 
The filtered signal can therefore be viewed as measuring the volatility of the original signal. In this example 
we can see that the daily variations are greater during the spring months of March, April, and May, when 
compared to the winter months of January and February.



Chapter 17 ■ Signal Processing

423

In [77]: fig, ax = plt.subplots(figsize=(8, 3))
    ...: ax.plot(df.index, temperature, label="original", alpha=0.5)
    ...: ax.plot(df.index, temperature_iir, color="red", label="IIR filter")
    ...: ax.plot(df.index, temperature_filtfilt, color="green", label="filtfilt filtered")
    ...: ax.set_ylabel("temperature", fontsize=14)
    ...: ax.legend(loc=0)

Figure 17-12.  Output from an IIR high-pass filter and the corresponding filtfilt filter (applied both 
forward and backwards)

5See the project’s web page at http://scikit-image.org for more information.

The same techniques as used above can be directly applied to the audio and image data. For example, 
to apply a filter to the audio signal of the guitar samples, we can use the use the lfilter functions. The 
coefficients b

k
 for the FIR filter can sometimes be constructed manual. For example, to apply a naive echo 

sound effect, we can create a FIR filter that repeats past signals with some time delay: y x xn n n N= + - , where N 
is a time delay in units of time steps. The corresponding coefficients b

k
 are easily constructed and can be 

applied to the audio signal data.

In [78]: b = np.zeros(10000)
    ...: b[0] = b[-1] = 1
    ...: b /= b.sum()
In [79]: data_filt = signal.lfilter(b, 1, data)

To be able to listen to the modified audio signal we can write it to a WAV file using the write function 
from the io.wavefile module in SciPy:

In [80]: io.wavfile.write("guitar-echo.wav", sample_rate,
    ...:                  np.vstack([data_filt, data_filt]).T.astype(np.int16))

Similarly, we can implement many types of image processing filters using the tools form the signal 
module. SciPy also provides a module ndimage, which contains many common image manipulation functions 
and filters that are especially adopted for applying on two-dimensional image data. The Scikit-Image library5 
provides a more advanced framework for working with image processing in Python.

http://scikit-image.org/
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Summary
Signal processing is an extremely broad field with applications in most fields of science and engineering.  
As such, here we have only been able to cover a few basic applications of signal processing in this chapter, 
and we have focused on introducing methods for approaching this type of problem with computational 
methods using Python and the libraries and tools that are available within the Python ecosystem for scientific 
computing. In particular, we explored spectral analysis of time-dependent signals using Fast Fourier transforms, 
and the design and application of linear filters to signals using the signal module in the SciPy library.

Further Reading
For a comprehensive review of the theory of signal processing, see the book by Smith,, which can also  
be viewed online at http://www.dspguide.com/pdfbook.htm. For a Python-oriented discussion of  
signal processing, see the Unpingco book, from which content is available as IPython notebooks at  
http://nbviewer.ipython.org/github/unpingco/Python-for-Signal-Processing.
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Chapter 18

Data Input and Output

In nearly all scientific computing and data analysis applications there is a need for data input and output, for 
example, to load datasets or to persistently store results. Getting data in and out of programs is consequently 
a key step in the computational workflow. There are many standardized formats for storing structured 
and unstructured data. The benefits of using standardized formats are obvious: you can use existing 
libraries for reading and writing data, saving yourself both time and effort. In the course of working with 
scientific and technical computing, it is likely that you will face a variety of data formats through interaction 
with colleagues and peers, or when acquiring data from sources such as equipment and databases. As a 
computational practitioner, it is important to be able to handle data efficiently and seamlessly, regardless of 
which format it comes in. This motivates why this entire chapter is devoted to this topic.

Python has good support for many file formats. In fact, multiple options exist for dealing with most 
common formats. In this chapter we survey data storage formats with applications in computing, and 
discuss typical situations where each format is suitable. We also introduce Python libraries and tools for 
handling a selection of data formats that are common in computing.

Data can be classified into several categories and types. Important categories are structured and 
unstructured data, and values can be categorical (finite set of values), ordinal (values with meaningful 
ordering), or numerical (continuous or discrete). Values also have types, such as string, integer, floating-point 
number, etc. A data format for storing or transmitting data should ideally account for these concepts in order to 
avoid loss of data or metadata, and we frequently need to have fine-grained control of how data is represented.

In computing applications, most of the time we deal with structured data, for example, arrays 
and tabular data. Examples of unstructured datasets include free-form texts, or nested list with 
nonhomogeneous types. In this chapter we focus on the CSV family of formats and the HDF5 format for 
structured data, and toward the end of the chapter we discuss the JSON format as a lightweight and flexible 
format that can be used to store both simple and complex data sets, with a bias toward storing lists and 
dictionaries. This format is well suited for storing unstructured data. We also briefly discuss methods of 
serializing objects into storable data using the msgpack format and Python’s built-in pickle format.

Because of the importance of data input and output in many data-centric computational applications, 
several Python libraries have emerged with the objective to simplify and assist in handling data in different 
formats, and for moving and converting data. For example, the Blaze library (http://blaze.pydata.org/
en/latest) provides a high-level interface for accessing data of different formats and from different types of 
sources. Here we focus mainly on lower-level libraries for reading specific types of file formats that are useful 
for storing numerical data and unstructured datasets. However, the interested reader is encouraged to also 
explore higher-level libraries such as Blaze.

http://blaze.pydata.org/en/latest
http://blaze.pydata.org/en/latest
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Importing Modules
In this chapter we use a number of different libraries for handling different types of data. In particular, we 
require NumPy and pandas, which as usual we import as np and pd, respectively:

In [1]: import numpy as np
In [2]: import pandas as pd

We also use the csv and json modules from the Python standard library:

In [3]: import csv
In [4]: import json

For working with the HDF5 format for numerical data, we use the h5py and the pytables libraries:

In [5]: import h5py
In [6]: import tables

Finally, in the context of serializing objects to storable data, we explore the pickle and msgpack libraries:

In [7]: import pickle  # or alternatively: import cPickle as pickle
In [8]: import msgpack

Comma-Separated Values
Comma-separated values (CSV) is an intuitive and loosely defined1 plain-text file format that is simple yet 
effective, and very prevalent for storing tabular data. In this format each record is stored as a line, and each 
field of the record is separated with a delimiter character (for example, a comma). Optionally, each field can 
be enclosed in quotation marks, to allow for string-valued fields that contain the delimiter character. Also, 
the first line is sometimes used to store column names, and comment lines are also common. An example of 
a CSV file is shown in Listing 18-1.

Listing 18-1.  Example of a CSV file with a comment line, a header line, and mixed numerical and  
string-valued data fields. Data source: http://www.nhl.com

# 2013-2014 / Regular Season / All Skaters / Summary / Points
Rank,Player,Team,Pos,GP,G,A,P,+/-,PIM,PPG,PPP,SHG,SHP,GW,OT,S,S%,TOI/GP,Shift/GP,FO%
1,Sidney Crosby,PIT,C,80,36,68,104,+18,46,11,38,0,0,5,1,259,13.9,21:58,24.0,52.5
2,Ryan Getzlaf,ANA,C,77,31,56,87,+28,31,5,23,0,0,7,1,204,15.2,21:17,25.2,49.0
3,Claude Giroux,PHI,C,82,28,58,86,+7,46,7,37,0,0,7,1,223,12.6,20:26,25.1,52.9
4,Tyler Seguin,DAL,C,80,37,47,84,+16,18,11,25,0,0,8,0,294,12.6,19:20,23.4,41.5
5,Corey Perry,ANA,R,81,43,39,82,+32,65,8,18,0,0,9,1,280,15.4,19:28,23.2,36.0

CSV is occasionally also taken to be an acronym for character-separated value, reflecting the fact that the 
CSV format commonly refers to a family of formats using different delimiters between the fields. For example, 
instead of comma the TAB character is often used, in which case the format is sometimes call TSV instead of 
CSV. The term delimiter-separated values (DSV) is also occasionally used to refer to these types of formats.

1Although RFC 4180, http://tools.ietf.org/html/rfc4180, is sometimes taken as an unofficial specification, in 
practice there exist many varieties and dialects of CSV.

http://www.nhl.com/
http://tools.ietf.org/html/rfc4180
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In Python there are several ways to read and write data in the CSV format, each with different use-cases 
and advantages. To begin with, the standard Python library contains a module called csv for reading CSV 
data. To use this module we can call the csv.reader function with a file handle given as argument. It returns 
a class instance that can be used as an iterator that parses lines from the given CSV file into Python lists of 
strings. For example, to read the file playerstats-2013-2014.csv (shown in Listing 18-1) into a nested list of 
strings, we can use:

In [9]: rows = []
In [10]: with open("playerstats-2013-2014.csv") as f:
    ...:     csvreader = csv.reader(f)
    ...:     for fields in csvreader:
    ...:         rows.append(fields)
In [11]: rows[1][1:6]
Out[11]: ['Player', 'Team', 'Pos', 'GP', 'G']
In [12]: rows[2][1:6]
Out[12]: ['Sidney Crosby', 'PIT', 'C', '80', '36']

Note that by default each field in the parsed rows is string-valued, even if the field represents a 
numerical value, such as 80 (games played) or 36 (goals) in the example above. While the csv module 
provides a flexible way of defining custom CSV reader classes, this module is most convenient for reading 
CSV files with string-valued fields.

In computational work it is common to store and load arrays with numerical values, such as vectors and 
matrices. The NumPy library provides the np.loadtxt and np.savetxt for this purpose. These functions 
take several arguments to fine tune the type of CSV format to read or write: For example, with the delimiter 
argument we can select which character to use to separate fields, and the header and comments arguments 
can be used to specify a header row and comment rows that are prepended to the header, respectively.

As an example, consider saving an array with random numbers and of shape (100, 3) to a file data.csv 
using np.savetxt. To give the data some context we add a header and a comment line to the file as well, and 
we explicitly request using the comma character as field delimiter with the argument delimiter=","  
(the default delimiter is the space character):

In [13]: data = np.random.randn(100, 3)
In [14]: np.savetxt("data.csv", data, delimiter=",", header="x,y,z",
    ...:            comments="# Random x, y, z coordinates\n")
In [15]: !head -n 5 data.csv
# Random x, y, z coordinates
x,y,z
1.652276634254504772e-01,9.522165919962696234e-01,4.659850998659530452e-01
8.699729536125471174e-01,1.187589118344758443e+00,1.788104702180680405e+00
-8.106725710122602013e-01,2.765616277935758482e-01,4.456864674903074919e-01

To read data on this format back into a NumPy array we can use the np.loadtxt function. It takes 
arguments that are similar to those of np.savetxt: In particular, we again set the delimiter argument to ",", 
to indicate the fields are separated by a comma character. We also need to use the skiprows argument to skip 
over the first two lines in the file (the comment and header line), since they do not contain numerical data:

In [16]: data_load = np.loadtxt("data.csv", skiprows=2, delimiter=",")
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The result is a new NumPy array that is equivalent to the original one written to the data.csv file using 
np.savetxt:

In [17]: (data == data_load).all()
Out[17]: True

Note that in contrast to the CSV reader in the csv module in the Python standard library, by default 
the loadtxt function in NumPy converts all fields into numerical values, and the result is a NumPy with 
numerical dtype (float64):

In [18]: data_load[1,:]
Out[18]: array([ 0.86997295,  1.18758912,  1.7881047 ])
In [19]: data_load.dtype
Out[19]: dtype('float64')

To read CSV files that contain non-numerical data using np.loadtxt – such as the 
playerstats-2013-2014.csv file that we read using the Python standard library above – we must explicitly 
set the data type of the resulting array using the dtype argument. If we attempt to read a CSV file with  
non-numerical values without setting dtype we get an error:

In [20]: np.loadtxt("playerstats-2013-2014.csv", skiprows=2, delimiter=",")
---------------------------------------------------------------------------
ValueError: could not convert string to float: b'Sidney Crosby'

Using dtype=bytes (or str or object), we get a NumPy array with unparsed values:

In [21]: data = np.loadtxt(�"playerstats-2013-2014.csv", skiprows=2, delimiter=",", 
dtype=bytes)

In [22]: data[0][1:6]
Out[22]: array([b'Sidney Crosby', b'PIT', b'C', b'80', b'36'], dtype='|S13')

Alternatively, if we want to read only columns with numerical types, we can select to read a subset of 
columns using the usecols argument:

In [23]: np.loadtxt("playerstats-2013-2014.csv", skiprows=2, delimiter=",", usecols=[6,7,8])
Out[23]: array([[  68.,  104.,   18.],
                [  56.,   87.,   28.],
                [  58.,   86.,    7.],
                [  47.,   84.,   16.],
                [  39.,   82.,   32.]])

While the NumPy savetxt and loadtxt functions are configurable and flexible CSV writers and readers, 
they are most convenient for all numerical data. The Python standard library module csv, on the other hand, 
is most convenient for CSV files with string-valued data. A third method to read CSV files in the Python is 
to use the pandas read_csv function. We have already seen examples of this function in Chapter 12, where 
we used it to create pandas data frames from TSV formatted data files. The read_csv function in Pandas is 
very handy when reading CSV files with both numerical and string-valued fields, and in most cases it will 
automatically determine which type a field has and converts it accordingly. For example, when reading  

http://dx.doi.org/10.1007/978-1-4842-0553-2_12
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the playerstats-2013-2014.csv file using read_csv, we obtain a pandas data frame with all the fields 
parsed into columns with suitable type:

In [24]: df = pd.read_csv("playerstats-2013-2014.csv", skiprows=1)
In [25]: df = df.set_index("Rank")
In [26]: df[["Player", "GP", "G", "A", "P"]]
Out[26]:

Player GP G A P

Rank

1 Sidney Crosby 80 36 68 104

2 Ryan Getzlaf 77 31 56 87

3 Claude Giroux 82 28 58 86

4 Tyler Seguin 80 37 47 84

5 Corey Perry 81 43 39 82

Using the info method of the DataFrame instance df we can see explicitly which type each column has 
been converted to (here the output is truncated for brevity):

In [27]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5 entries, 1 to 5
Data columns (total 20 columns):
Player      5 non-null object
Team        5 non-null object
Pos         5 non-null object
GP          5 non-null int64
G           5 non-null int64
...
S           5 non-null int64
S%          5 non-null float64
TOI/GP      5 non-null object
Shift/GP    5 non-null float64
FO%         5 non-null float64
dtypes: float64(3), int64(13), object(4)
memory usage: 840.0+ bytes

Data frames can also be written to CSV files using the to_csv method of the DataFrame object:

In [28]: df[["Player", "GP", "G", "A", "P"]].to_csv("playerstats-2013-2014-subset.csv")
In [29]: !head -n 5 playerstats-2013-2014-subset.csv
Rank,Player,GP,G,A,P
1,Sidney Crosby,80,36,68,104
2,Ryan Getzlaf,77,31,56,87
3,Claude Giroux,82,28,58,86
4,Tyler Seguin,80,37,47,84
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The combination of the Python standard library, NumPy, and Pandas provides a powerful toolbox 
for both reading and writing CSV files of various flavors. However, although CSV files are convenient and 
effective for tabular data, there are obvious shortcomings with the format. For starters, it can only be used to 
store one- or two-dimensional arrays, and it does not contain metadata that can help interpret the data. Also, 
it is not very efficient in terms of either storage or reading and writing, and it cannot be used to store more 
than one array per file, requiring multiple files for multiple arrays even if they are closely related. The use of 
CSV should therefore be used be limited to simple datasets. In the following section we will look the HDF5 
file format, which was designed to store numerical data efficiently and to overcome all the shortcomings of 
simple data formats such as CSV and related formats.

HDF5
The Hierarchical Data Format 5 (HDF5) is a format for storing numerical data. It is developed by The HDF 
Group,2 a nonprofit organization, and it is available under the BSD open source license. The HDF5 format, 
which was released in 1998, is designed and implemented to efficiently handle large datasets, including 
support for high-performance parallel I/O. The HDF5 format is therefore suitable for use on distributed 
high-performance supercomputers, and can be used to store and operate on datasets of terabyte scale, or 
even larger. However, the beauty of HDF5 is that it is equally suitable for small datasets. As such it is a truly 
versatile format, and an invaluable tool for a computational practitioner.

The hierarchical aspect of the format allows organizing datasets within a file, using a hierarchical 
structure that resembles a filesystem. The terminology used for entities in a HDF5 file is groups and datasets, 
which correspond to directories and files in the filesystem analogy. Groups in an HDF5 file can be nested 
to create a tree structure, and hence hierarchical in the name of the format. A dataset in an HDF5 file is a 
homogenous array of certain dimensions and elements of a certain type. The HDF5 type system supports all 
standard basic data types and also allows defining custom compound data types. Both groups and datasets 
in an HDF5 file can also have attributes, which can be used to store metadata about groups and datasets. 
Attributes can themselves have different types, such as numeric or string valued.

In addition to the file format itself, The HDF Group also provides a library and a reference 
implementation of the format. The main library is written in C, and wrappers to its C API are available for 
many programming languages. The HDF5 library for accessing data from an HDF5 file have sophisticated 
support for partial read and write operations, which can be used to access a small segment of the entire 
dataset. This is a powerful feature that enables computations on datasets that are larger than what can be 
fit a computer’s memory.3 The HDF5 format is a mature file format with widespread support on different 
platforms and computational environments. This also makes HDF5 a suitable choice for long-term storage 
of data. As a data storage platform HDF5 provides a solution to a number of problems: cross-platform 
storage, efficient I/O and storage that scales up to very large data files, and a metadata system (attributes) 
that can be used to annotate and describe the groups and datasets in a file to make the data self-describing. 
Altogether, these features make HDF5 a great tool for computational work.

For Python there are two libraries for using HDF5 files: h5py and PyTables. These two libraries take 
different approaches to using HDF5, and it is well worth being familiar with both of these libraries. The 
h5py library provides an API that is relatively close to the basic HDF5 concepts, with a focus on groups and 
datasets. It provides a NumPy-inspired API for accessing datasets, which makes it very intuitive for someone 
that is familiar with NumPy.

2http://www.hdfgroup.org.
3This is also known as out-of-core computing. For another recent project that also provides out-of-core computing 
capabilities in Python, see the dask library (http://dask.pydata.org/en/latest).

http://www.hdfgroup.org/
http://dask.pydata.org/en/latest
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■■ h5py T he h5py library provides a Pythonic interface to the HDF5 file format, and a NumPy-like interface to 
its datasets. For more information about the project, including its official documentation, see its web page at 
http://www.h5py.org. At the time of writing the most recent version of the library is 2.5.0.

The PyTables library provides a higher-level data abstraction based on the HDF5 format, providing 
database-like features, such as tables with easily customizable data types. It also allows querying datasets as 
a database and the use of advanced indexing features.

■■ PyTables T he PyTables library provides a database-like data model on top of HDF5. For more information 
about the project and its documentation, see the web page http://pytables.github.io. At the time of writing 
the latest version of PyTables is 3.2.0.

In the following two sections we explore in more detail how the h5py and PyTables libraries can be used 
to read and write numerical data with HDF5 files.

h5py
We begin with a tour of the h5py library. The API for h5py is surprisingly simple and pleasant to work with, 
yet at the same time full featured. This is accomplished through thoughtful use of Pythonic idiom such as 
dictionary and NumPy’s array semantics. A summary of basic objects and methods in the h5py library is 
shown in Table 18-1. In the following we explore how to use these methods through a series of examples.

Table 18-1.  Summary of the main objects and methods in the h5py API

Object Method/Attribute Description

h5py.File __init__(name, mode, ...) Open an existing HDF5, or create a new one,  
with filename name. Depending on the value of 
the mode argument, the file can be opened in 
read-only or read-write mode (see main text).

flush() Write buffers to file.

close() Close an open HDF5 file.

h5py.File,  
h5py.Group

create_group(name) Create a new group with name name (can be a path) 
within the current group.

create_dataset(name, data=..., 
shape=..., dtype=..., ...)

Create a new dataset.

[] dictionary syntax Access items (groups and datasets) within a group.

(continued)

http://www.h5py.org/
http://pytables.github.io/
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Files
We begin by looking at how to open existing and create new HDF5 files using the h5py.File object. The 
initializer for this object only takes a file name as a required argument, but we will typically also need to 
specify the mode argument, with which we can choose to open a file in read-only or read-write mode, and if a 
file should be truncated or not when opened. The mode argument takes string values similar to the built-in 
Python function open: "r" is used for read-only (file must exist), "r+" for read-write (file must exist), "w" for 
creating a new file (truncate if exists), "w-" for creating a new file (error if exists), and "a" for read-write  
(if exist, otherwise create). To create a new file in read-write mode, we can therefore use:

In [30]: f = h5py.File("data.h5", mode="w")

The result is a file handle, here assigned to the variable f, which we can use to access and add content to 
the file. Given a file handle we can see which mode it is opened in using the mode attribute:

In [31]: f.mode
Out[31]: 'r+'

Note that even though we opened the file in mode "w", once the file has been opened it is either  
read-only ("r") or read-write ("r+"). Other file-level operations that can be performed using the HDF5 file 
object are flushing buffers containing data that has not yet been written to the file using the flush method, 
and closing the file using the close method:

In [32]: f.flush()
In [33]: f.close()

Groups
At the same time as representing an HDF5 file handle, the File object also represents the HDF5 group object 
known as the root group. The name of a group is accessible through the name attribute of the group object. 
The name takes the form of a path, similar to a path in a filesystem, which specifies where in the hierarchical 
structure of the file the group is stored. The name of the root group is "/":

In [34]: f = h5py.File("data.h5", "w")
In [35]: f.name
Out[35]: '/'

Object Method/Attribute Description

h5py.Dataset dtype Data type.

shape Shape (dimensions) of the dataset.

value The full array of the underlying data of the dataset.

[] array syntax Access elements or subsets of the data in a dataset.

h5py.File,  
h5py.Group,  
h5py.Dataset

name Name (path) of the object in the HDF5 file 
hierarchy.

attrs Dictionary-like attribute access.

Table 18-1.  (continued)
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A group object has the method create_group for creating a new group within an existing group. A new 
group created with this method becomes a subgroup of the group instance for which the create_group 
method is invoked:

In [36]: grp1 = f.create_group("experiment1")
In [37]: grp1.name
Out[37]: '/experiment1'

Here the group experiment1 is a subgroup of root group, and its name and path in the hierarchical 
structure is therefore /experiment1. When creating a new group, its immediate parent group does not 
necessarily have to exist beforehand. For example, to create a new group /experiment2/measurement, we 
can directly use the create_group method of the root group without first creating the experiment2 group 
explicitly. Intermediate groups are created automatically.

In [38]: grp2_meas = f.create_group("experiment2/measurement")
In [39]: grp2_meas.name
Out[39]: '/experiment2/measurement'
In [40]: grp2_sim = f.create_group("experiment2/simulation")
In [41]: grp2_sim.name
Out[41]: '/experiment2/simulation'

The group hierarchy of an HDF5 file can be explored using a dictionary-style interface. To retrieve 
a group with a given path name we can perform a dictionary-like lookup from one of its ancestor groups 
(typically the root node):

In [42]: f["/experiment1"]
Out[42]: <HDF5 group "/experiment1" (0 members)>
In [43]: f["/experiment2/simulation"]
Out[43]: <HDF5 group "/experiment2/simulation" (0 members)>

The same type of dictionary lookup works for subgroups, too (not only the root node):

In [44]: grp_experiment2 = f["/experiment2"]
In [45]: grp_experiment2['simulation']
Out[45]: <HDF5 group "/experiment2/simulation" (0 members)>

The keys method returns an iterator over the names of subgroups and datasets within a group, and the 
items method returns an iterator over (name, value) tuples for each entity in the group. These can be  
used to traverse the hierarchy of groups programmatically.

In [46]: list(f.keys())
Out[46]: ['experiment1', 'experiment2']
In [47]: list(f.items())
Out[47]: [('experiment1', <HDF5 group "/experiment1" (0 members)>),
          ('experiment2', <HDF5 group "/experiment2" (2 members)>)]
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To traverse the hierarchy of groups in an HDF5 file we can also use the method visit, which takes a 
function as argument and calls that function with the name for each entity in the file hierarchy:

In [48]: f.visit(lambda x: print(x))
experiment1
experiment2
experiment2/measurement
experiment2/simulation

or the visititems method which does the same thing except that it calls the a function with both the item 
name and the item itself as argument:

In [49]: f.visititems(lambda name, item: print(name, item))
experiment1 <HDF5 group "/experiment1" (0 members)>
experiment2 <HDF5 group "/experiment2" (2 members)>
experiment2/experiment <HDF5 group "/experiment2/measurement" (0 members)>
experiment2/simulation <HDF5 group "/experiment2/simulation" (0 members)>

In keeping with the semantics of Python dictionaries we can also operate on Group objects using the set 
membership testing with the in Python keyword:

In [50]: "experiment1" in f
Out[50]: True
In [51]: "simulation" in f["experiment2"]
Out[51]: True
In [52]: "experiment3" in f
Out[52]: False

Using the visit and visititems methods, together with the dictionary-style methods keys and items, 
we can easily explore the structure and content of an HDF5 file, even if we have no prior information on 
what it contains and how the data is organized within it. The ability to conveniently explore HDF5 is an 
important aspect of the usability of the format. There are also external non-Python tools for exploring the 
content of an HDF5 file that frequently are useful when working with this type of file. In particular, the h5ls 
command-line tool is handy for quickly inspecting the content of an HDF5 file:

In [53]: f.flush()
In [54]: !h5ls -r data.h5
/                            Group
/experiment1                 Group
/experiment2                 Group
/experiment2/measurement     Group
/experiment2/simulation      Group

Here we used the -r flag to the h5ls program to recursively show all items in the file. The h5ls program 
is part of a series of HDF5 utility programs provided by a package called hdf5-tools (see also h5stat, 
h5copy, h5diff, etc.). Even though these are not Python tools, they are very useful when working with HDF5 
files in general, also from within Python.



Chapter 18 ■ Data Input and Output

435

Datasets
Now that we have explored how to create and access groups within an HDF5 file, it is time to look at how 
to store datasets. Storing numerical data is after all the main purpose of the HDF5 format. There are two 
main methods to create a datasets in an HDF5 file using h5py. The easiest way to create a dataset is to 
simply assign a NumPy array to an item within a HDF5 group, using the dictionary index syntax. The second 
method is to create an empty dataset using the create_dataset method, as we will see examples of later in 
this section.

For example, to store two NumPy arrays, array1 and meas1, into the root group and the experiment2/
measurement groups, respectively, we can use:

In [55]: array1 = np.arange(10)
In [56]: meas1 = np.random.randn(100, 100)
In [57]: f["array1"] = array1
In [58]: f["/experiment2/measurement/meas1"] = meas1

To verify that the datasets for the assigned NumPy arrays where added to the file, let’s traverse through 
the file hierarchy using the visititems method:

In [59]: f.visititems(lambda name, value: print(name, value))
array1 <HDF5 dataset "array1": shape (10,), type "<i8">
experiment1 <HDF5 group "/experiment1" (0 members)>
experiment2 <HDF5 group "/experiment2" (2 members)>
experiment2/measurement <HDF5 group "/experiment2/measurement" (1 members)>
experiment2/measurement/meas1 <HDF5 dataset "meas1": shape (100, 100), type "<f8">
experiment2/simulation <HDF5 group "/experiment2/simulation" (0 members)>

We see that indeed, the array1 and meas1 datasets are now added to the file. Note that the paths used 
as dictionary keys in the assignments determine the locations of the datasets within the file. To retrieve a 
dataset we can use the same dictionary-like syntax as we used to retrieve a group. For example, to retrieve 
the array1 dataset, which is stored in the root group, we can use f["array1"]:

In [60]: ds = f["array1"]
In [61]: ds
Out[61]: <HDF5 dataset "array1": shape (10,), type "<i8">

The result is a Dataset object, not a NumPy array like the one that we assigned to the array1 item.  
The Dataset object is a proxy for the underlying data within the HDF5. Like a NumPy array, a Dataset object 
has several attributes that describe the dataset, including name, dtype, and shape. It also has the method len 
that returns the length of the dataset:

In [62]: ds.name
Out[62]: '/array1'
In [63]: ds.dtype
Out[63]: dtype('int64')
In [64]: ds.shape
Out[64]: (10,)
In [65]: ds.len()
Out[65]: 10
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The actual data for the dataset can be accessed using the value attribute. This returns the entire dataset 
as a NumPy array, which here is equivalent to the array that we assigned to the array1 dataset.

In [66]: ds.value
Out[66]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

To access a dataset deeper down the group hierarchy we can use a filesystem-like path name. For 
example, to retrieve the meas1 dataset in the group experiment2/measurement, we can use:

In [67]: ds = f["experiment2/measurement/meas1"]
In [68]: ds
Out[68]: <HDF5 dataset "meas1": shape (100, 100), type "<f8">

Again we get a Dataset object, whose basic properties can be inspected using the object attributes we 
introduced earlier:

In [69]: ds.dtype
Out[69]: dtype('float64')
In [70]: ds.shape
Out[70]: (100, 100)

Note that the data type of this dataset is float64, while for the dataset array1 the data type is int64. 
This type of information was derived from the NumPy arrays that were assigned to the two datasets. Here 
again we could use the value attribute to retrieve the array as a NumPy array. An alternative syntax for the 
same operation is to use bracket indexing with the ellipsis notation: ds[...].

In [71]: data_full = ds[...]
In [72]: type(data_full)
Out[72]: numpy.ndarray
In [73]: data_full.shape
Out[73]: (100, 100)

This is an example of NumPy-like array indexing. The Dataset object supports most of the indexing 
and slicing types used in NumPy, and this provides a powerful and flexible method for partially reading data 
from a file. For example, to retrieve only the first column from the meas1 dataset, we can use:

In [74]: data_col = ds[:, 0]
In [75]: data_col.shape
Out[75]: (100,)

The result is a 100-element array corresponding to the first column in the dataset. Note that this slicing 
is performed within the HDF5 library, and not in NumPy, so in this example only 100 elements were read 
from the file and stored in the resulting NumPy array, without every fully loading the dataset into memory. 
This is an important feature when working with large datasets that do not fit in memory.

For example, the Dataset object also supports strided indexing:

In [76]: ds[10:20:3, 10:20:3] # 3 stride
Out[76]: array([[-0.22321057, -0.61989199,  0.78215645,  0.73774187],
                [-1.03331515,  2.54190817, -0.24812478, -2.49677693],
                [ 0.17010011,  1.88589248,  1.91401249, -0.63430569],
                [ 0.4600099 , -1.3242449 ,  0.41821078,  1.47514922]])
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as well as “fancy indexing,” where a list of indices are given for one of the dimensions of the array (does not 
work for more than one index):

In [77]: ds[[1,2,3], :].shape
Out[77]: (3, 100)

We can also use Boolean indexing, where a Boolean-valued NumPy array is used to index a Dataset. 
For example, to single out the first five columns (index :5 on the second axis) for each row whose value in 
the first column (ds[:, 0]) is larger than 2, we can index the dataset with the Boolean mask ds[:, 0] > 2:

In [78]: mask = ds[:, 0] > 2
In [79]: mask.shape, mask.dtype
Out[79]: ((100,), dtype('bool'))
In [80]: ds[mask, :5]
Out[80]: array([[ 2.1224865 ,  0.70447132, -1.71659513,  1.43759445, -0.61080907],
                [ 2.11780508, -0.2100993 ,  1.06262836, -0.46637199,  0.02769476],
                [ 2.41192679, -0.30818179, -0.31518842, -1.78274309, -0.80931757],
                [ 2.10030227,  0.14629889,  0.78511191, -0.19338282,  0.28372485]])

Since the Dataset object uses the NumPy’s indexing and slicing syntax to select subsets of the 
underlying data, working with large HDF5 datasets in Python using h5py comes very naturally to someone 
who is familiar with NumPy. Also remember that for large files, there is a big difference in index slicing on 
the Dataset object rather than on the NumPy array that can be access through the value attribute, since the 
former avoids loading the entire dataset into memory.

So far we have seen how to create datasets in an HDF5 file by explicitly assigning data into an item in 
a group object. We can also create datasets explicitly using the create_dataset method. It takes the name 
of the new dataset as the first argument, and we can either set the data for the new dataset using the data 
argument, or create an empty array by setting the shape argument. For example, instead of the assignment 
f["array2"] = np.random.randint(10, size=10), we can also use the create_dataset method:

In [81]: ds = f.create_dataset("array2", data=np.random.randint(10, size=10))
In [82]: ds
Out[82]: <HDF5 dataset "array2": shape (10,), type "<i8">
In [83]: ds.value
Out[83]: array([2, 2, 3, 3, 6, 6, 4, 8, 0, 0])

When explicitly calling the create_dataset method, we have a finer level of control of the properties 
of the resulting data set. For example, we can explicitly set the data type for the dataset using the dtype 
argument, and we can choose a compression method using the compress argument, setting the chunk 
size using the chunks argument, and setting the maximum allowed array size for resizable datasets using 
the maxsize argument. There are also many other advanced features related to the Dataset object. See the 
docstring for create_dataset for details.

When creating an empty array by specifying the shape argument instead of providing an array for 
initializing a dataset, we can also use the fillvalue argument to set the default value for the dataset. For 
example, to create an empty dataset of shape (5, 5) and default value -1, we can use:

In [84]: ds = f.create_dataset("/experiment2/simulation/data1", shape=(5, 5), fillvalue=-1)
In [85]: ds
Out[85]: <HDF5 dataset "data1": shape (5, 5), type "<f4">
In [86]: ds.value
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Out[86]: array([[-1., -1., -1., -1., -1.],
                [-1., -1., -1., -1., -1.],
                [-1., -1., -1., -1., -1.],
                [-1., -1., -1., -1., -1.],
                [-1., -1., -1., -1., -1.]], dtype=float32)

HDF5 is clever about disk usage for empty datasets and will not store more data than necessary, 
in particular if we select a compression method using the compression argument. There are several 
compression methods available, for example, 'gzip'. Using dataset compression we can create very 
large datasets and gradually fill them with data, for example, when measurement results or results of 
computations become available, without initially wasting a lot of storage space. For example, let’s create a 
large dataset with shape (5000, 5000, 5000) with the data1 in the group experiment1/simulation:

In [87]: ds = f.create_dataset("/experiment1/simulation/data1", shape=(5000, 5000, 5000),
                               fillvalue=0, compression='gzip')
In [88]: ds
Out[88]: <HDF5 dataset "data1": shape (5000, 5000, 5000), type "<f4">

To begin with this dataset uses neither memory nor disk space, until we start filling it with data. To 
assign values to the dataset we can again use the NumPy-like indexing syntax and assign values to specific 
elements in the dataset, or to subsets selected using slicing syntax:

In [89]: ds[:, 0, 0] = np.random.rand(5000)
In [90]: ds[1, :, 0] += np.random.rand(5000)
In [91]: ds[:2, :5, 0]
Out[91]: array([[ 0.67240328, 0.        , 0.        , 0.        , 0.        ],
                �[ 0.99613971, 0.48227152, 0.48904559, 0.78807044, 0.62100351]], 

dtype=float32)

Note that the elements that have not been assign values are set to the value of fillvalue that was 
specified when the array was created. If we do not know what fill value a dataset has, we can find out by 
looking at the fillvalue attribute of the Dataset object:

In [92]: ds.fillvalue
Out[92]: 0.0

To see that the newly created dataset is indeed stored in the group where we intended to assign it we 
can again use the visititems method to list the content of the experiment1 group:

In [93]: f["experiment1"].visititems(lambda name, value: print(name, value))
simulation <HDF5 group "/experiment1/simulation" (1 members)>
simulation/data1 <HDF5 dataset "data1": shape (5000, 5000, 5000), type "<f4">

Although the dataset experiment1/simulation/data1 is very large (4 50003´  bytes ~ 465 Gb), since we 
have not yet filled it with much data the HDF5 file still does not take a lot of disk space (only about 357 Kb):

In [94]: f.flush()
In [95]: f.filename
Out[95]: 'data.h5'
In [96]: !ls -lh data.h5
-rw-r--r--@ 1 rob  staff   357K Apr  5 18:48 data.h5
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So far we have seen how to create groups and datasets within an HDF5 file. It is of course sometimes 
also necessary to delete items from a file. With h5py we can delete items from a group using the Python del 
keyword, again complying with the semantics of Python dictionaries:

In [97]: del f["/experiment1/simulation/data1"]
In [98]: f["experiment1"].visititems(lambda name, value: print(name, value))
simulation <HDF5 group "/experiment1/simulation" (0 members)>

Attributes
Attributes are a component of the HDF5 format that makes it a great format for annotating data and 
providing self-describing data through the use of metadata. For example, when storing experimental data, 
there are often external parameters and conditions that should be recorded together with the observed 
data. Likewise, in a computer simulation, it is usually necessary to store additional model or simulation 
parameters together with the generated simulation results. In all these cases, the best solution is to make 
sure that the required additional parameters are stored as metadata together with the main datasets.

The HDF5 format supports this type of meta data through the use of attributes. An arbitrary number of 
attributes can be attached to each group and dataset within an HDF5 file. With the h5py library, attributes 
are accessed using a dictionary-like interface, just like groups are. The Python attribute attrs of Group and 
Dataset objects is used to access a dictionary-like object with HDF5 attributes:

In [99]: f.attrs
Out[99]: <Attributes of HDF5 object at 4462179384>

To create an attribute we simply assign to the attrs dictionary for the target object. For example, to 
create an attribute description for the root group, we can use:

In [100]: f.attrs["description"] = "Result sets for experiments and simulations"

Similarly, to add date attributes to the experiment1 and experiment2 groups:

In [101]: f["experiment1"].attrs["date"] = "2015-1-1"
In [102]: f["experiment2"].attrs["date"] = "2015-1-2"

We can also add attributes directly to datasets (not only groups):

In [103]: f["experiment2/simulation/data1"].attrs["k"] = 1.5
In [104]: f["experiment2/simulation/data1"].attrs["T"] = 1000

Like for groups, we can use the keys and items method of the Attribute object to retrieve iterators over 
the attributes it contains:

In [105]: list(f["experiment1"].attrs.keys())
Out[105]: ['date']
In [106]: list(f["experiment2/simulation/data1"].attrs.items())
Out[106]: [('k', 1.5), ('T', 1000)]
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The existence of an attribute can be tested with the Python in operator, in keeping with the Python 
dictionary semantics:

In [107]: "T" in f["experiment2/simulation/data1"].attrs
Out[107]: True

To delete existing attributes we can use the del keyword:

In [108]: del f["experiment2/simulation/data1"].attrs["T"]
In [109]: "T" in f["experiment2/simulation"].attrs
Out[109]: False

The attributes of HDF5 groups and datasets are suitable for storing metadata together with the actual 
datasets. Using attributes generously can help providing context to the data, which often must be available 
for the data to be useful.

PyTables
The PyTables library offers an alternative interface to HDF5 for Python. The focus on this library is higher-
level table-based data model implemented using the HDF5 format, although PyTables can also be used to 
create and read generic HDF5 groups and datasets, like the h5py library. Here we focus on the table data 
model, as it complements the h5py library that we discussed in the previous section. We demonstrate the 
use of PyTables table objects using the NHL player statistics dataset that we used earlier in this chapter, and 
where we construct a PyTables table from a Pandas data frame for that dataset. We therefore begin with 
reading in the dataset into a DataFrame object using the read_csv function:

In [110]: df = pd.read_csv("playerstats-2013-2014.csv", skiprows=1)
     ...: df = df.set_index("Rank")

Next we proceed to create a new PyTables HDF5 file handle by using the tables.open_file function.4 
This function takes a file name as first argument and the file mode as optional second argument. The result 
is a PyTables HDF5 file handle (here assigned to the variable f):

In [111]: f = tables.open_file("playerstats-2013-2014.h5", mode="w")

Like with the h5py library, we can create HDF5 groups with the method create_group of the file handle 
object. It takes the path to the parent group as the first argument, the group name as the second argument, 
and optionally also the argument title, with which a descriptive HDF5 attribute can be set on the group.

In [112]: grp = f.create_group("/", "season_2013_2014",
     ...:                      title="NHL player statistics for the 2013/2014 season")
In [113]: grp
Out[113]: /season_2013_2014 (Group) 'NHL player statistics for the 2013/2014 season'
            children := []

4Note that the Python module provided by the PyTables library is named tables. Therefore, tables.open_file refers 
to open_file function in the tables module provided by the PyTables library.
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Unlike the h5py library, the file handle object in PyTables does not represent the root group in the HDF5 
file. To access the root node, we must use the root attribute of the file handle object:

In [114]: f.root
Out[114]: / (RootGroup) ''
            children := ['season_2013_2014' (Group)]

A nice feature of the PyTables library is that it is easy to create tables with mixed column types, using 
the struct-like compound data type of HDF5. The simplest way to define such a table data structure with 
PyTables is to create a class that inherits from the tables.IsDescription class. It should contain fields 
composed of data-type representations from the tables library. For example, to create a specification of the 
table structure for the player statistics dataset we can use:

In [115]: class PlayerStat(tables.IsDescription):
     ...:     player = tables.StringCol(20, dflt="")
     ...:     position = tables.StringCol(1, dflt="C")
     ...:     games_played = tables.UInt8Col(dflt=0)
     ...:     points = tables.UInt16Col(dflt=0)
     ...:     goals = tables.UInt16Col(dflt=0)
     ...:     assists = tables.UInt16Col(dflt=0)
     ...:     shooting_percentage = tables.Float64Col(dflt=0.0)
     ...:     shifts_per_game_played = tables.Float64Col(dflt=0.0)

Here the class PlayerStat represents the table structure of a table with eight columns, where the first 
two columns are fixed-length strings (tables.StringCol), the following four columns are unsigned integers 
(tables.UInt8Col and tables.UInt16Col, of 8- and 16-bit size), and where the last two columns have 
floating-point types (tables.Float64Col). The optional dflt argument to data-type objects specifies the 
fields default value. Once the table structure is defined using a class on this form, we can create the actual 
table in the HDF5 file using the create_table method. It takes a group object or the path to the parent node 
as first argument, the table name as second argument, the table specification class as third argument, and 
optionally a table title as fourth argument (stored as an HDF5 attribute for the corresponding dataset):

In [116]: top30_table = f.create_table(grp, 'top30', PlayerStat, "Top 30 point leaders")

To insert data into the table we can use the row attribute of the table object to retrieve a Row accessor 
class that can be used as a dictionary to populate the row with values. When the row object is fully initialized, 
we can use the append method to actually insert the row into the table:

In [117]: playerstat = top30_table.row
In [118]: for index, row_series in df.iterrows():
     ...:     playerstat["player"] = row_series["Player"]
     ...:     playerstat["position"] = row_series["Pos"]
     ...:     playerstat["games_played"] = row_series["GP"]
     ...:     playerstat["points"] = row_series["P"]
     ...:     playerstat["goals"] = row_series["G"]
     ...:     playerstat["assists"] = row_series["A"]
     ...:     playerstat["shooting_percentage"] = row_series["S%"]
     ...:     playerstat["shifts_per_game_played"] = row_series["Shift/GP"]
     ...:     playerstat.append()
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The flush method force a write of the table data to the file:

In [119]: top30_table.flush()

To access data from the table we can use the cols attribute to retrieve columns as NumPy arrays:

In [120]: top30_table.cols.player[:5]
Out[120]: array([b'Sidney Crosby', b'Ryan Getzlaf', b'Claude Giroux',
                 b'Tyler Seguin', b'Corey Perry'],        dtype='|S20')
In [121]: top30_table.cols.points[:5]
Out[121]: array([104,  87,  86,  84,  82], dtype=uint16)

To access data in a row-wise fashion we can use the iterrows method to create an iterator over all the 
rows in the table. Here we use this approach to loop through all the rows and print them to the standard 
output (here the output is truncated for brevity):

In [122]: def print_playerstat(row):
     ...:     print("%20s\t%s\t%s\t%s" %
     ...:           (row["player"].decode('UTF-8'), row["points"],
     ...:            row["goals"], row["assists"]))
In [123]: for row in top30_table.iterrows():
     ...:     print_playerstat(row)
Sidney Crosby   104     36      68
Ryan Getzlaf    87      31      56
Claude Giroux   86      28      58
Tyler Seguin    84      37      47
...
Jaromir Jagr    67      24      43
John Tavares    66      24      42
Jason Spezza    66      23      43
Jordan Eberle   65      28      37

One of the most powerful features of the PyTables table interface is the ability to selectively extract rows 
from the underlying HDF5 using queries. For example, the where method allows us to pass an expression in 
terms of the table columns as a string that is used by PyTables to filter rows:

In [124]: for row in top30_table.where("(points > 75) & (points <= 80)"):
     ...:     print_playerstat(row)
Phil Kessel             80      37      43
Taylor Hall             80      27      53
Alex Ovechkin           79      51      28
Joe Pavelski            79      41      38
Jamie Benn              79      34      45
Nicklas Backstrom       79      18      61
Patrick Sharp           78      34      44
Joe Thornton            76      11      65
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With the where method we can also define conditions in terms of multiple column variables:

In [125]: for row in top30_table.where("(goals > 40) & (points < 80)"):
     ...:     print_playerstat(row)
Alex Ovechkin   79      51      28
Joe Pavelski    79      41      38

What this feature allows us to do is to query a table in a database-like fashion. Although for a small 
dataset like the current one, we could just as well perform these kind of operations directly in memory 
using a pandas data frame, but remember that HDF5 files are stored on disk, and the efficient use of I/O 
in the PyTables library enables us to work with very large datasets that do not fit in memory, which would 
preventing us from using for example NumPy or pandas on the entire dataset.

Before we conclude this section, let us inspect the structure of the resulting HDF5 file that contains the 
PyTables table that we have just created:

In [126]: f
Out[126]: File(filename=playerstats-2013-2014.h5, title='', mode='w', root_uep='/',
               filters=Filters(complevel=0, shuffle=False,
                               fletcher32=False, least_significant_digit=None))
          / (RootGroup) '' /season_2013_2014 (Group) 'NHL player stats for the 2013/2014 season'
          /season_2013_2014/top30 (Table(30,)) 'Top 30 point leaders'
              description := {
              "assists": UInt16Col(shape=(), dflt=0, pos=0),
              "games_played": UInt8Col(shape=(), dflt=0, pos=1),
              "goals": UInt16Col(shape=(), dflt=0, pos=2),
              "player": StringCol(itemsize=20, shape=(), dflt=b'', pos=3),
              "points": UInt16Col(shape=(), dflt=0, pos=4),
              "position": StringCol(itemsize=1, shape=(), dflt=b'C', pos=5),
              "shifts_per_game_played": Float64Col(shape=(), dflt=0.0, pos=6),
              "shooting_percentage": Float64Col(shape=(), dflt=0.0, pos=7)}
           byteorder := 'little'
           chunkshape := (1489,)

From the string representation of the PyTables file handle, and the HDF5 file hierarchy that it contains, 
we can see that the PyTables library has created a dataset /season_2013_2014/top30 that uses an involved 
compound data type that was created according to the specification in the PlayerStat object that we 
created earlier. Finally, when we are finished modifying a dataset in a file we can flush its buffers and force a 
write to the file using the flush method, and when we are finished working with a file we can close it using 
the close method:

In [127]: f.flush()
In [128]: f.close()

Although we do not cover other types of datasets here, such as regular homogenous arrays, it is worth 
mentioning that the PyTables library supports these types of data structures as well (similar to what h5py 
provides). For example, we can use the create_array, create_carray, and create_earray to construct 
fixed-sized arrays, chunked arrays, and enlargeable arrays, respectively. For more information on how to use 
these data structures, see the corresponding docstring.
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Pandas HDFStore
A third way to store data in HDF5 files using Python is to use the HDFStore object in pandas. It can be used 
to persistently store data frames and other pandas objects in an HDF5 file. To use this feature in pandas, the 
PyTables library must be installed. We can create an HDFStore object by passing a file name to its initializer. 
The result is an HDFStore object that can be used as a dictionary to which we can assign pandas DataFrame 
instances to have them stored into the HDF5 file:

In [129]: store = pd.HDFStore('store.h5')
In [130]: df = pd.DataFrame(np.random.rand(5,5))
In [131]: store["df1"] = df
In [132]: df = pd.read_csv("playerstats-2013-2014-top30.csv", skiprows=1)
In [133]: store["df2"] = df

The HDFStore object behaves as a regular Python dictionary, and we can see what objects it contains by 
calling the keys method:

In [134]: store.keys()
Out[134]: ['/df1', '/df2']

and we can test for the existence of an object with a given key using the Python in keyword:

In [135]: 'df2' in store
Out[135]: True

To retrieve an object form the store we again use the dictionary-like semantic and index the object with 
its corresponding key:

In [136]: df = store["df1"]

From the HDFStore object we can also access the underlying HDF5 handle using the root attribute.  
This is actually nothing but a PyTables root group:

In [137]: store.root
Out[137]: / (RootGroup) ''   children := ['df1' (Group), 'df2' (Group)]

Once we are finished with an HDFStore object we should close it using the close method, to ensure that 
all data associated with it is written to the file.

In [138]: store.close()

Since HDF5 is a standard file format, there is of course nothing that prevents us from opening and 
HDF5 file created with pandas HDFStore or PyTables with any other HDF5 compatible software, such as for 
example the h5py library. If we open the file produced with HDFStore with h5py we can easily inspect its 
content and see how the HDFStore object arranges the data of the DataFrame objects that we assigned to it:

In [139]: f = h5py.File("store.h5")
In [140]: f.visititems(lambda x, y: print(x, "\t" * int(3 - len(str(x))//8), y))
df1                      <HDF5 group "/df1" (4 members)>
df1/axis0                <HDF5 dataset "axis0": shape (5,), type "<i8">
df1/axis1                <HDF5 dataset "axis1": shape (5,), type "<i8">
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df1/block0_items         <HDF5 dataset "block0_items": shape (5,), type "<i8">
df1/block0_values        <HDF5 dataset "block0_values": shape (5, 5), type "<f8">
df2                      <HDF5 group "/df2" (8 members)>
df2/axis0                <HDF5 dataset "axis0": shape (21,), type "|S8">
df2/axis1                <HDF5 dataset "axis1": shape (30,), type "<i8">
df2/block0_items         <HDF5 dataset "block0_items": shape (3,), type "|S8">
df2/block0_values        <HDF5 dataset "block0_values": shape (30, 3), type "<f8">
df2/block1_items         <HDF5 dataset "block1_items": shape (14,), type "|S4">
df2/block1_values        <HDF5 dataset "block1_values": shape (30, 14), type "<i8">
df2/block2_items         <HDF5 dataset "block2_items": shape (4,), type "|S6">
df2/block2_values        <HDF5 dataset "block2_values": shape (1,), type "|O8">

We can see that the HDFStore object stores each DataFrame object in a group of its own, and that it has 
split each data frame into several heterogeneous HDF5 datasets (blocks) where the columns are grouped by 
the their data type. Furthermore, the column names and values are stored in separate HDF5 datasets.

In [141]: f["/df2/block0_items"].value
Out[141]: array([b'S%', b'Shift/GP', b'FO%'], dtype='|S8')
In [142]: f["/df2/block0_values"][:3]
Out[142]: array([[ 13.9,  24. ,  52.5],
                 [ 15.2,  25.2,  49. ],
                 [ 12.6,  25.1,  52.9]])
In [143]: f["/df2/block1_values"][:3, :5]
Out[143]: array([[  1,  80,  36,  68, 104],
                 [  2,  77,  31,  56,  87],
                 [  3,  82,  28,  58,  86]])

JSON
The JSON5 (JavaScript Object Notation) is a human-readable, lightweight plain-text format that is suitable for 
storing datasets made up from lists and dictionaries. The values of such lists and dictionaries can themselves 
be lists or dictionaries, or must be of the following basic data types: string, integer, float and Boolean, or the 
value null (like the None value in Python). This data model allows storing complex and versatile datasets, 
without structural limitations such as the tabular form required by formats such as CSV. A JSON document can 
be used as a key-value store, where the values for different keys can have different structure and data types.

The JSON format was primarily designed to be used as a data interchange format for passing 
information between web services and JavaScript applications. In fact, JSON is a subset of JavaScript 
language and, as such, valid JavaScript code. However, the JSON format itself is a language-independent 
data format that can be readily parsed and generated from essentially every language and environment, 
including Python. The JSON syntax is also almost valid Python code, making it familiar and intuitive to work 
with from Python as well.

We have already seen an example of a JSON dataset in Chapter 10, where we looked at the graph of the 
Tokyo Metro network. Before we revisit that dataset, we begin with a brief overview of JSON basics and how 
to read and write JSON in Python. The Python standard library provides the module json for working with 
JSON formatted data. Specifically, this module contains functions for generating JSON data from a Python 
data structure (list or dictionary): json.dump and json.dumps, and for parsing JSON data into a Python data 
structure: json.load and json.loads. The functions loads and dumps take Python strings as input and 
output, while the load and dump operate on a file handle and read and write data to a file.

5For more information about JSON, see http://json.org.

http://dx.doi.org/10.1007/978-1-4842-0553-2_10
http://json.org/
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For example, we can generate the JSON string of a Python list by calling the json.dumps function. 
The return value is a JSON string representation of the given Python list that closely resembles the Python 
code that could be used to create the list. However, a notable exception is the Python value None, which is 
represented as the value null in JSON:

In [144]: data = ["string", 1.0, 2, None]
In [145]: data_json = json.dumps(data)
In [146]: data_json
Out[146]: '["string", 1.0, 2, null]'

To convert the JSON string back into a Python object, we can use json.loads:

In [147]: data = json.loads(data_json)
In [148]: data
Out[148]: ['string', 1.0, 2, None]
In [149]: data[0]
Out[149]: 'string'

We can use exactly the same method to store Python dictionaries as JSON strings. Again, the resulting 
JSON string is essentially identical to the Python code for defining the dictionary:

In [150]: data = {"one": 1, "two": 2.0, "three": "three"}
In [151]: data_json = json.dumps(data)
In [152]: data_json
Out[152]: '{"two": 2.0, "three": "three", "one": 1}'

To parse the JSON string and convert it back into a Python object we again use json.loads:

In [153]: data = json.loads(data_json)
In [154]: data["two"]
Out[154]: 2.0
In [155]: data["three"]
Out[155]: 'three'

The combination of lists and dictionaries makes a versatile data structure. For example, we can store 
lists or dictionaries of lists with variable number of elements. This type of data would be difficult to store 
directly as a tabular array, and further level of nested list and dictionaries would make it very impractical. 
When generating JSON data with the json.dump and json.dumps function we can optionally give the 
argument indent=True, to obtain indented JSON code that can be easier to read:

In [156]: data = {"one": [1],
     ...:         "two": [1, 2],
     ...:         "three": [1, 2, 3]}
In [157]: data_json = json.dumps(data, indent=True)
In [158]: data_json
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Out[158]: {
            "two": [
             1,
             2
             ],
            "three": [
             1,
             2,
             3
            ],
            "one": [
             1
            ]
          }

As an example of a more complex data structure, consider a dictionary containing a list, a dictionary, a 
list of tuples, and a text string. We could use the same method as above to generate a JSON representation 
of the data structure using json.dumps, but instead here we write the content to a file using the json.dump 
function. Compared to json.dumps, it additionally takes a file handle as a second argument, which we need 
to create beforehand:

In [159]: data = {"one": [1],
     ...:         "two": {"one": 1, "two": 2},
     ...:         "three": [(1,), (1, 2), (1, 2, 3)],
     ...:         "four": "a text string"}
In [160]: with open("data.json", "w") as f:
     ...:     json.dump(data, f)

The result is that the JSON representation of the Python data structure is written to the file data.json:

In [161]: !cat data.json
{"four": "a text string", "two": {"two": 2, "one": 1}, "three": [[1], [1, 2], [1, 2, 3]],
 "one": [1]}

To read and parse a JSON formatted file into a Python data structure we can use json.load, to which we 
need to a pass a handle to an open file:

In [162]: with open("data.json", "r") as f:
     ...:     data_from_file = json.load(f)
In [163]: data_from_file["two"]
Out[163]: [1, 2]
In [164]: data_from_file["three"]
Out[164]: [[1], [1, 2], [1, 2, 3]]

The data structure returned by json.load is not always identical to the one stored with json.dump. 
In particular, JSON is stored as Unicode, so strings in the data structure returned by json.load are always 
Unicode strings. Also, as we can see from the example above, JSON does not distinguish between tuples and 
lists, and the json.load always produce lists rather than tuples, and the order in which keys for a dictionary 
are displayed is not guaranteed, unless using the sorted_keys=True argument to the dumps and dump 
functions.
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Now that we have seen how Python lists and dictionaries can be converted to and from JSON 
representation using the json module, it is worthwhile to revisit the Tokyo Metro dataset from Chapter 10. 
This is a more realistic dataset, and an example of a data structure that mixes dictionaries, lists of variable 
lengths, and string values. The first 20 lines of the JSON file is shown here:

In [165]: !head -n 20 tokyo-metro.json
{
     "C": {
         "color": "#149848",
          "transfers": [
             [
                 "C3",
                  "F15"
             ],
              [
                 "C4",
                  "Z2"
             ],
             [
                 "C4",
                  "G2"
             ],
              [
                 "C7",
                  "M14"
             ],

To load the JSON data into a Python data structure we use json.load in the same way as before:

In [166]: with open("tokyo-metro.json", "r") as f:
     ...:     data = json.load(f)

The result is a dictionary with a key for each metro line:

In [167]: data.keys()
Out[167]: dict_keys(['N', 'M', 'Z', 'T', 'H', 'C', 'G', 'F', 'Y'])

The dictionary value for each metro line is again a dictionary that contains line color, lists of transfer 
points, and the travel times between stations on the line:

In [168]: data["C"].keys()
Out[168]: dict_keys(['color', 'transfers', 'travel_times'])
In [169]: data["C"]["color"]
Out[169]: '#149848'
In [170]: data["C"]["transfers"]
Out[170]: [['C3', 'F15'],  ['C4', 'Z2'],  ['C4', 'G2'],  ['C7', 'M14'],  ['C7', 'N6'],
           ['C7', 'G6'],  ['C8', 'M15'],  ['C8', 'H6'],  ['C9', 'H7'],  ['C9', 'Y18'],
           ['C11', 'T9'],  ['C11', 'M18'],  ['C11', 'Z8'],  ['C12', 'M19'],  ['C18', 'H21']]

http://dx.doi.org/10.1007/978-1-4842-0553-2_10
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With the dataset loaded as a nested structure of Python dictionaries and lists, we can iterate over and 
filter items from the data structure with ease, for example using Pythons list comprehension syntax. The 
following example demonstrates how to select the set of connected nodes in the graph on the C line, which 
has a travel time of one minute:

In [175]: [(s, e, tt) for s, e, tt in data["C"]["travel_times"] if tt == 1]
Out[175]: [('C3', 'C4', 1), ('C7', 'C8', 1), ('C9', 'C10', 1)]

The hierarchy of dictionaries and the variable length of the lists stored in the dictionaries make this a 
good example of a dataset that does not have a strict structure, and which therefore is suitable to store in a 
versatile format such as JSON.

Serialization
In the previous section we used the JSON format to generate representation of in-memory Python objects, 
such as lists and dictionaries. This process is called serialization, which in this case resulted in a JSON 
plain-text representation of the objects. An advantage of the JSON format is that it is language independent, 
and can easily be read by other software. Its disadvantages are that JSON files are not space efficient, and 
they can only be used to serialize a limited type of objects (list, dictionaries, basic types, as discussed in the 
previous section). There are many alternative serialization techniques that address these issues. Here we 
briefly will look at two alternatives that address the space efficiency issue and the types of objects that can be 
serialized, respectively: the msgpack library and the Python pickle module. 

We begin with msgpack, which is a binary protocol for storing JSON like data efficiently. The msgpack 
software is available for many languages and environments. For more information about the library and its 
Python bindings, the projects web page is http://msgpack.org. In analogy to the JSON module, the msgpack 
library provides two sets of functions that operate on byte lists (msgpack.packb and msgpack.unpackb) 
and file handles (msgpack.pack and msgpack.unpack), respectively. The pack and packb function converts 
a Python data structure into a binary representation, and the unpack and unpackb functions perform the 
reverse operation. For example, the JSON file for the Tokyo Metro dataset is relatively large and takes about 
27 Kb on disk:

In [171]: !ls -lh tokyo-metro.json
-rw-r--r--@ 1 rob  staff    27K Apr  7 23:18 tokyo-metro.json

Packing the data structure with msgpack rather than JSON results in a considerably smaller file, at 
around 3 Kb:

In [172]: data_pack = msgpack.packb(data)
In [173]: type(data_pack)
Out[173]: bytes
In [174]: len(data_pack)
Out[174]: 3021
In [175]: with open("tokyo-metro.msgpack", "wb") as f:
     ...:     f.write(data_pack)
In [176]: !ls -lh tokyo-metro.msgpack
-rw-r--r--@ 1 rob  staff   3.0K Apr  8 00:40 tokyo-metro.msgpack

http://msgpack.org/
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More precisely, the byte list representation of the dataset uses only 3021 bytes. In applications where 
storage space or bandwidth is essential, this is can be a significant improvement. However, the price we have 
paid for this improvement is that we must use the msgpack library to unpack the data, and it uses a binary 
format and therefore is not human readable. Whether this is an acceptable trade off or not will depend on 
the application at hand. To unpack a binary msgpack byte list we can use the msgpack.unpackb function, 
which recovers the original data structure:

In [177]: del data
In [178]: with open("tokyo-metro.msgpack", "rb") as f:
     ...:     data_msgpack = f.read()
     ...:     data = msgpack.unpackb(data_msgpack)
In [179]: list(data.keys())
Out[180]: ['T', 'M', 'Z', 'H', 'F', 'C', 'G', 'N', 'Y']

The other issue with JSON serialization is that only certain types of Python objects can be stored as 
JSON. The Python pickle module6 can create a binary representation of nearly any kind of Python object, 
including class instances and function. Using the pickle module follows the exact same use pattern as the 
json module: we have dump and dumps functions for serializing an object to a byte array and a file handle, 
respectively, and the load and loads for deserializing a pickled object.

In [181]: with open("tokyo-metro.pickle", "wb") as f:
     ...:     pickle.dump(data, f)
In [182]: del data
In [183]: !ls -lh tokyo-metro.pickle
-rw-r--r--@ 1 rob  staff   8.5K Apr  8 00:40 tokyo-metro.pickle

The size of the pickled object is considerably smaller than the JSON serialization, but larger than the 
serialization produced by msgpack. We can recover a pickled object using the pickle.load function, which 
expects a file handle as an argument:

In [184]: with open("tokyo-metro.pickle", "rb") as f:
     ...:     data = pickle.load(f)
In [185]: data.keys()
Out[185]: dict_keys(['T', 'M', 'Z', 'H', 'F', 'C', 'G', 'N', 'Y'])

The main advantage with pickle is that almost any type of Python object can be serialized. However, 
Python pickles cannot be read by software not written in Python, and it is also not a recommended format 
for long-term storage, because compatibility between Python versions and with different version of libraries 
that define the objects that are pickled cannot always be guaranteed. If possible, using JSON for serializing 
list- and dictionary-based data structures is generally a better approach, and if file size is an issue the 
msgpack library provides a popular and easily accessible alternative to JSON.

6An alternative to the pickle module is the cPickle module, which is a more efficient reimplementation that is also 
available in the Python standard library. See also the dill library at http://trac.mystic.cacr.caltech.edu/
project/pathos/wiki/dill.

http://trac.mystic.cacr.caltech.edu/project/pathos/wiki/dill
http://trac.mystic.cacr.caltech.edu/project/pathos/wiki/dill
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Summary
In this chapter we have reviewed common data formats for reading and writing numerical data to files on 
disk, and we introduced a selection of Python libraries that are available for working with these formats. 
We first looked at the ubiquitous CSV file format, which is a simple and transparent format that is suitable 
for small and simple datasets. The main advantage of this format is that it is human-readable plain text, 
which makes it intuitively understandable. However, it lacks many features that are desirable when working 
with numerical data, such as metadata describing the data and support for multiple datasets. The HDF5 
format naturally takes over as the go-to format for numerical data when the size and complexity of the 
data grows beyond what is easily handled using a CSV format. HDF5 is a binary file format, so it is not a 
human-readable format like CSV, but there are good tools for exploring the content in an HDF5 file, both 
programmatically and using command line and GUI-based user interfaces. In fact, due to the possibility 
of storing meta data in attributes, HDF5 is a great format for self-describing data. It is also a very efficient 
file format for numerical data, both in terms of I/O and storage, and it can even be used as a data model 
for computing with very large datasets that do not fit in the memory of the computer. Overall, HDF5 is a 
fantastic tool for numerical computing that anyone working with computing should benefit greatly from 
being familiar with. Toward the end of the chapter we also briefly reviewed JSON, msgpack, and Python 
pickles for serializing data into text and binary format.

Further Reading
An informal specification of the CSV file is given in RFC 4180, http://tools.ietf.org/html/rfc4180. It 
outlines many of the commonly used features of the CSV format, although not all CSV readers and writers 
comply with every aspect of this document. An accessible and informative introduction to the HDF5 format 
and the h5py library is given by the creator of h5py in a book by Collette. It is also worth reading about the 
NetCDF (Network Common Data Format), http://www.unidata.ucar.edu/software/netcdf, which is 
another widely used format form numerical data. The pandas library also provides I/O functions beyond 
what we have discussed here, such as the ability to read Excel files (pandas.io.excel.read_excel) and 
the fixed-width format (read_fwf). Regarding the JSON format, a concise but complete specification of 
the format is available at the web site http://json.org. With the increasingly important role of data in 
computing, there has been a rapid diversification of formats and data storage technologies in recent years. 
As a computational practitioner, reading data from databases, such as SQL and NoSQL databases is now also 
an important task. Python provides a common database API for standardizing database access from Python 
applications, as described by PEP 249 (https://www.python.org/dev/peps/pep-0249). Another notable 
project for reading databases from Python is SQLAlchemy (http://www.sqlalchemy.org).
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Chapter 19

Code Optimization

In this book we have explored various topics of scientific and technical computing using Python and its 
ecosystem of libraries. As touched upon in the very first chapter of this book, the Python environment for 
scientific computing generally strikes a good balance between a high-level environment that is suitable 
for exploratory computing and rapid prototyping – which minimizes development efforts – and high-
performance numerics – which minimize application run times. High-performance numerics is achieved 
not through the Python language itself, but rather through leveraging libraries that contain or use external 
compiled code, typically written in C or in Fortran. Because of this, in computing applications that rely 
heavily on libraries such as NumPy and SciPy, most of the number crunching is performed by compiled 
code, and the performance is therefore significantly better than if the same computation were to be 
implemented purely in Python.

The key to high-performance Python programs is therefore to efficiently utilize libraries such as NumPy 
and SciPy for array-based computations. The vast majority of scientific and technical computations can 
be expressed in terms of common array operations and fundamental computational routines. Much of 
this book has been dedicated to exploring this style of scientific computing with Python, by introducing 
the main Python libraries for different fields of scientific computing. However, occasionally there is a need 
for computations that cannot easily be formulated as array expressions, or does not fit existing computing 
patterns. In such cases it may be necessary to implement the computation from the ground up, for example, 
using pure Python code. However, pure Python code tends to be slow compared to the equivalent code 
written in a compiled language, and if the performance overhead of pure Python is too large, it can be 
necessary to explore alternatives. The traditional solution is to write an external library in for example  
C or Fortran, which performs the time-consuming computations, and interface it to Python code using an 
extension module.

There are several methods to create extension modules for Python. The most fundamental method 
is to use Python’s C API to build an extension module with functions implemented in C that can be called 
from Python. This is typically very tedious and requires a significant effort. The Python standard library 
itself provides the module ctypes for simplify interfacing between Python and C. Other alternatives include 
the CFFI (C foreign function interface) library1 for interfacing Python with C, and the F2PY2 program for 
generating interfaces between Python and Fortran. These are all effective tools for interfacing Python with 
compiled code, and they all play an important role in making Python suitable for scientific computing. 
However, using these tools requires programming skills and efforts in other languages than Python, and they 
are the most useful when working with a code base that is already written in C or Fortran.

1http://cffi.readthedocs.org.
2http://docs.scipy.org/doc/numpy-dev/f2py/index.html.

http://cffi.readthedocs.org/
http://docs.scipy.org/doc/numpy-dev/f2py/index.html
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For new development there are alternatives closer to Python that are worth considering before 
embarking on a complete implementation of a problem directly in a compiled language. In this chapter we 
explore two such methods: Numba and Cython. These offers a middle ground between Python and low-level  
languages that retains many of the advantages of a high-level language while achieving performance 
comparable to compiled code.

Numba is a just-in-time (JIT) compiler for Python code using NumPy that produces machine code that 
can be executed more efficiently than the original Python code. To achieve this Numba leverages the LLVM 
compiler suite (http://llvm.org), which is a compiler toolchain that has become very popular in recent 
years for its modular and reusable design and interface, enabling for example applications such as Numba. 
Numba is a relatively new project, and is not yet widely used in a lot of scientific computing libraries, but it is 
a promising project with strong backing by Continuum Analytics Inc.,3 and it is likely to have a bright future 
in scientific computing with Python.

■■ Numba T he Numba library provides a just-in-time compiler for Python and NumPy code that is based on the 
LLVM compiler. The main advantage of Numba is that it can generate machine code with minimal or no changes 
to the original Python code. For more information about the project and its documentation, see the projects web 
page at http://numba.pydata.org. At the time of writing the latest version of the library is 0.18.2. Numba is 
an open source project created by Continuum Analytics Inc., which also offers a commercial extended version of 
Numba called NumbaPro (for more information, see http://docs.continuum.io/numbapro/index).

Cython is a superset of the Python language that can be automatically translated into C or C++ and 
compiled into a machine code, which can run much faster than Python code. Cython is widely used in 
computationally oriented Python projects for speeding up time-critical parts of a codebase that is otherwise 
written in Python. Several of the libraries that we have used earlier in this book heavily rely on Cython: these 
include NumPy, SciPy, Pandas, and scikit-learn, just to mention a few.

■■ Cython T he Cython library provides translation of Python code, or decorated Python code, into C or C++, 
which can be compiled into a binary extension module. For more information about the project and its 
documentation, see the projects web page at http://cython.org. At the time of writing the latest version of 
Cython is 0.22.

In this chapter we explore how Numba and Cython can be used to speed up code originally written 
in Python. These methods can be tried when a Python implementation turns out to be unacceptably slow. 
However, before trying to optimize anything that is written in Python, it is advisable to first profile the code, 
for example, using the cProfile module or IPython’s profiling utilities (see Chapter 1), and identifying 
exactly which parts of a code are the bottlenecks. If clear bottlenecks can be identified they may be good 
candidates for optimization efforts. The first optimization attempt should be to use already existing libraries, 
such as NumPy as SciPy, in the most efficient way to solve the problem at hand. Only when existing libraries 
do not already provide functions and methods that allow us to implement a computation in an efficient way 
should we consider optimizing our code with Numba or Cython. Code optimization should only be used as 
a last resort, since premature optimization is often fruitless and result in less maintainable code: “premature 
optimization is the root of all evil” (Donald Knuth).

3The producers of the Anaconda Python environment, see Chapter 1 and Appendix 1.

http://llvm.org/
http://numba.pydata.org/
http://docs.continuum.io/numbapro/index
http://cython.org/
http://dx.doi.org/10.1007/978-1-4842-0553-2_1
http://dx.doi.org/10.1007/978-1-4842-0553-2_1
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Importing Modules
In this chapter we will work with Numba and Cython. Numba is used as a regular Python module, and here 
we assume that this library is imported in its entirety using

In [1]: import numba

Cython can be used in several different ways, as we will see later in this chapter. Typically we are not 
required to explicitly import the Cython library when using Cython code from Python, but instead we import 
the pyximport library provided by Cython, and register an import hook using pyximport.install():

In [2]: import pyximport

This will alter the way Python modules are imported, and in particular it will allow us to import Cython 
files with the file-ending pyx directly as if they where pure Python modules. Occasionally it is also useful to 
explicitly import the Cython library, in which case we assume that it is imported in the following manner:

In [3]: import cython

For basic numerics and plotting we also require the NumPy and Matplotlib libraries:

In [4]: import numpy as np
In [5]: import matplotlib.pyplot as plt

Numba
One of the most attractive aspects of the Numba library is that it can often be used to speed up Python 
code that uses NumPy without changing the target code. The only thing that we need to do is decorating a 
function with the @numba.jit decorator, which results in the function being just-in-time (JIT) compiled into 
code that can be significantly faster that the pure Python code, by as much as a factor of several hundred 
or more. The speed-up is obtained mainly for functions that use NumPy arrays, for which Numba can 
automatically perform type interference, and generate optimized code for the required type signatures.

To get started using Numba, consider the following simple problem: compute the sum of all elements in 
an array. A function that performs this computation is simple to implement in Python using for loops:

In [6]: def py_sum(data):
   ...:     s = 0
   ...:     for d in data:
   ...:         s += d
   ...:     return s

Although this function is nearly trivial, it nicely illustrates the potential and power of Numba. For loops 
in Python are notoriously slow, due to Pythons flexibility and dynamic typing. To quantify this statement 
and benchmark the py_sum function we generate an array with 50,000 random numbers and use the %timeit 
IPython command to measure the typical computation time:

In [7]: data = np.random.randn(50000)
In [8]: %timeit py_sum(data)
100 loops, best of 3: 8.43 ms per loop
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The result suggests that the summing the 50,000 elements in the data array using the py_sum function 
typically takes 8.43 milliseconds on this particular system. Compared to other methods that we explore 
below, this is not a good performance. The usual solution is to use array operations, such as those provided 
by NumPy, instead of iterating over the arrays manually. Indeed, NumPy provides the sum function that does 
exactly what we want to do here. To verify that the py_sum function defined above produces the same results 
as the NumPy sum function, we first issue an assert statement to this effect:

In [9]: assert abs(py_sum(data) - np.sum(data)) < 1e-10

Since assert does not raise an error, we conclude that the two functions produce the same result. Next 
we benchmark the NumPy sum function using %timeit in the same way we used it above:

In [10]: %timeit np.sum(data)
10000 loops, best of 3: 29.8 ms per loop

The NumPy sum function is several hundred times faster than the py_sum function, demonstrating 
that vectorized expressions and operations using, for example, NumPy is the key to good performance in 
Python. We see the same phenomena for other functions that use for loops. For example, consider also the 
accumulative sum, py_cumsum, which takes an array as input and produces an array as output:

In [11]: def py_cumsum(data):
    ...:     out = np.zeros_like(data)
    ...:     s = 0
    ...:     for n in range(len(data)):
    ...:         s += data[n]
    ...:         out[n] = s
    ...:     return out

Benchmarking this function also gives a result that is much slower than the corresponding array-based 
NumPy function:

In [12]: %timeit py_cumsum(data)
100 loops, best of 3: 14.4 ms per loop
In [13]: %timeit np.cumsum(data)
10000 loops, best of 3: 147 ms per loop

Now let’s see how Numba can be used to speed-up the slow py_sum and py_cumsum functions. To activate 
JIT compilation of a function, we simply apply the decorator @numba.jit:

In [14]: @numba.jit
    ...: def jit_sum(data):
    ...:     s = 0
    ...:     for d in data:
    ...:         s += d
    ...:     return s

Next we verify that the JIT-compiled function produces the same result as the NumPy sum function, and 
benchmark it using the %timeit function.

In [15]: assert abs(jit_sum(data) - np.sum(data)) < 1e-10
In [16]: %timeit jit_sum(data)
10000 loops, best of 3: 47.7 ms per loop
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Compared to the pure Python function, the jit_sum function is about 300 times faster, and reaches 
performance that is comparable to the NumPy sum function, in spite of being written in pure Python.

In addition to JIT compiling a function by applying the numba.jit decorator when the function is 
defined, we can apply the decorator after the fact. For example, to JIT compile the py_cumsum function that 
we defined earlier, we can use:

In [17]: jit_cumsum = numba.jit()(py_cumsum)

We verify that the resulting function jit_cumsum indeed produces the same result as the corresponding 
NumPy function, and benchmark it using %timeit:

In [18]: assert np.allclose(np.cumsum(data), jit_cumsum(data))
In [19]: %timeit jit_cumsum(data)
10000 loops, best of 3: 66.6 ms per loop

In this case the jit_cumsum function out-performs the NumPy cumsum function by a factor two. The 
NumPy function cumsum is more versatile than the jit_cumsum function, so the comparison is not entirely 
fair, but it is remarkable that we can reach performance that is comparable to compiled code by JIT 
compiling Python code with a single function decorator. This allows us to use loop-based computations 
in Python without performance degradation, which is particularly useful for algorithms that are not easily 
written in vectorized form.

An example of such an algorithm is the computation of the Julia fractal, which requires a variable 
number of iterations for each element of a matrix with coordinate points in the complex plane: A point z in 
the complex plane belongs to the Julia set if the iteration formula z z c¬ +2  does not diverge after a large 
number of iterations. To generate a Julia fractal graph we can therefore loop over a set of coordinate points, 
and iterate z z c¬ +2  and store the number of iterations required to diverge beyond some pre-determined 
bound (absolute value larger than 2.0 in the following implementation):

In [20]: def py_julia_fractal(z_re, z_im, j):
    ...:    for m in range(len(z_re)):
    ...:        for n in range(len(z_im)):
    ...:            z = z_re[m] + 1j * z_im[n]
    ...:            for t in range(256):
    ...:                z = z ** 2 - 0.05 + 0.68j
    ...:                if np.abs(z) > 2.0:
    ...:                    j[m, n] = t
    ...:                    break

This implementation is very simple and straightforward when using explicit loops, but in pure Python 
these three nested loops are inhibitively slow, as we will see below. However, with JIT compilation using 
Numba we can obtain a great speed-up.

By default Numba gracefully falls back on the standard Python interpreter in cases when it fails to 
produce optimized code. An exception to this rule is when the nopython=True argument to numba.jit is 
given, in which case the JIT compilation will fail if Numba is unable to generate statically typed code. When 
automatic type interference fails the resulting JIT-compiled code generated by Numba typically do not 
provide any speed-up, so it is often advisable to use the nopython=True argument to the jit decorator so 
that we fail quickly when the produced JIT-compiled code is unlikely to result in a speed-up. To assist Numba 
in the code generation it is sometimes useful to explicitly define types of variables that occur in a function 
body, which we can do using the locals keyword argument to the jit decorator, which can be assigned to a 
dictionary that maps symbol names to explicit types. For example, locals=dict(z=numba.complex) specifies 
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that the variable z is a complex number. However, with the current example we do not need to specify the 
types of local variables explicitly, since they can all be inferred from the data types of the NumPy arrays that 
are passed to the function. We can verify that this is the case by using the nopython=True argument to  
numba.jit when decorating the py_julia_fractal function:

In [21]: jit_julia_fractal = numba.jit(nopython=True)(py_julia_fractal)

Next we call the resulting jit_julia_fractal function to compute the Julia set. Note that here we have 
written the function such that all the involved NumPy arrays are defined outside the function. This helps 
Numba recognizing which types are involved in the calculation and allows it to generate efficient code in the 
JIT compilation:

In [22]: N = 1024
In [23]: j = np.zeros((N, N), np.int64)
In [24]: z_real = np.linspace(-1.5, 1.5, N)
In [25]: z_imag = np.linspace(-1.5, 1.5, N)
In [26]: jit_julia_fractal(z_real, z_imag, j)

After the call to the jit_julia_fractal function the result of the computation is stored in the j array. 
To visualize the result we can plot the j array using the Matplotlib imshow function. The result is shown in 
Figure 19-1:

In [27]: fig, ax = plt.subplots(figsize=(8, 8))
    ...: ax.imshow(j, cmap=plt.cm.RdBu_r, extent=[-1.5, 1.5, -1.5, 1.5])
    ...: ax.set_xlabel("$\mathrm{Re}(z)$", fontsize=18)
    ...: ax.set_ylabel("$\mathrm{Im}(z)$", fontsize=18)
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We can compare the speed of the pure Python function py_julia_fractal and the corresponding  
JIT-compiled function jit_julia_fractal using the %timeit command:

In [28]: %timeit py_julia_fractal(z_real, z_imag, j)
1 loops, best of 3: 60 s per loop
In [29]: %timeit jit_julia_fractal(z_real, z_imag, j)
10 loops, best of 3: 140 ms per loop

The speed-up in this particular case is a remarkable 430 times, again by simply adding decorator to a 
Python function. With this type of speed-up, for loops in Pythons do not really need to be avoided after all.

Another useful decorator in the Numba library is numba.vectorize. It generates and JIT compiles 
a vectorized function from a kernel function written for scalar input and output, much like the NumPy 
vectorize function. Consider the Heaviside step function
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Figure 19-1.  The Julia fractal generated by a JIT-compiled Python function using Numba
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If we wanted to implement this function for scalar input x, we could use:

In [30]: def py_Heaviside(x):
    ...:     if x == 0.0:
    ...:         return 0.5
    ...:     if x < 0.0:
    ...:         return 0.0
    ...:     else:
    ...:         return 1.0

This function only works for scalar input, and if we want to apply it to an array or list we have to 
explicitly iterate over the array and apply it to each element:

In [31]: x = np.linspace(-2, 2, 50001)
In [32]: %timeit [py_Heaviside(xx) for xx in x]
100 loops, best of 3: 16.7 ms per loop

This is inconvenient and slow. The NumPy vectorize function solves the inconvenience problem, by 
automatically wrapping the scalar kernel function into a NumPy-array aware function:

In [33]: np_vec_Heaviside = np.vectorize(py_Heaviside)
In [34]: np_vec_Heaviside(x)
Out[34]: array([ 0.,  0.,  0., ...,  1.,  1.,  1.])

However, the NumPy vectorize function does not solve the performance problem. As we see from 
benchmarking the np_vec_Heaviside function with %timeit, its performance is comparable to explicitly 
looping over the array and consecutively calls the py_Heaviside function for each element:

In [35]: %timeit np_vec_Heaviside(x)
100 loops, best of 3: 13.6 ms per loop

Better performance can be achieved by using NumPy array expressions instead of using NumPy 
vectorize on a scalar kernel written in Python:

In [36]: def np_Heaviside(x):
    ...:     return (x > 0.0) + (x == 0.0)/2.0
In [37]: %timeit np_Heaviside(x)
1000 loops, best of 3: 268 ms per loop

However, even better performance can be achieved using Numba and the vectorize decorator, which 
takes a list of function signatures for which to generate JIT-compiled code. Here we choose to generate 
vectorized functions for two signatures: one that takes arrays of 32-bit floating-point numbers as input 
and output, defined as numba.float32(numba.float32), and one that takes arrays of 64-bit floating-point 
numbers as input and output, defined as numba.float64(numba.float64):

In [38]: @numba.vectorize([numba.float32(numba.float32),
    ...:                   numba.float64(numba.float64)])
    ...: def jit_Heaviside(x):
    ...:     if x == 0.0:
    ...:         return 0.5
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    ...:     if x < 0:
    ...:         return 0.0
    ...:     else:
    ...:         return 1.0

Benchmarking the resulting jit_Heaviside function shows the best performance of the methods we 
have looked at:

In [39]: %timeit jit_Heaviside(x)
10000 loops, best of 3: 58.5 ms per loop

and the jit_Heaviside function can be used as any NumPy universal function, including support for 
broadcasting and other NumPy features. To demonstrate that the function indeed implements the desired 
function we can test it on a simple list on input values:

In [40]: jit_Heaviside([-1, -0.5, 0.0, 0.5, 1.0])
Out[40]: array([ 0. ,  0. ,  0.5,  1. ,  1. ])

In this section we have explored speeding up Python code using JIT compilation with the Numba 
library. We looked at four examples: two simple examples for demonstrating the basic usage of Numba, the 
summation and accumulative summation of an array. For a more realistic use-case of Numba that is not 
so easily defined in terms of vector expressions, we looked at the computation of the Julia set. Finally, we 
explored the vectorization of scalar kernel with the implementation of the Heaviside step function. These 
examples demonstrate common use patterns for Numba, but there is also much more to explore in the 
Numba library, such as code generation for GPUs. For more information about this and other topics, see the 
official Numba documentation at http://numba.pydata.org/doc.html.

Cython
Like Numba, Cython is a solution for speeding up Python code, although Cython takes a completely different 
approach to this problem. Whereas Numba is a Python library that converts pure Python code to LLVM code 
that is JIT compiled into machine code, Cython is a programming language that is a superset of the Python 
programming language: Cython extends Python with C-like properties. Most notably, Cython allow us to 
use explicit and static type declarations. The purpose of the extensions to Python introduced in Cython is 
to make it possible to translate the code into efficient C or C++ code, which can be compiled into a Python 
extension module that can be imported and used from regular Python code.

There are two main usages of Cython: speeding up Python code and generating wrappers for interfacing 
with compiled libraries. When using Cython, we need to modify the targeted Python code, so compared to 
using Numba there is a little bit more work involved, and we need to learn the syntax and behavior of Cython 
in order to use it to speed up Python code. However, as we will see in this section, Cython provides more 
fine-grained control of how the Python code is processed, and Cython also has features that are out-of-scope 
for Numba, such as generating interfaces between Python and external libraries, and speeding up Python 
code that does not use NumPy arrays.

While Numba uses transparent just-in-time compilation, Cython is mainly designed for using 
traditional ahead-of-time compilation. There are several ways to compile Cython code into a Python 
extension module, each with different use-cases. We begin with reviewing options for compiling Cython 
code, and then proceed to introduce features of Cython that are useful for speeding up computations written 
in Python. Throughout this section we will work with mostly the same examples that we looked at in the 
previous section using Numba, so that we can easily compare both the methods and the results. We begin 
with looking at how to speed up the py_sum and py_cumsum functions defined in the previous section.

http://numba.pydata.org/doc.html
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To use Cython code from Python it has to pass through the Cython compilation pipeline: First the 
Cython code must be translated into C or C++ code, after which it has to be compiled into machine code 
using a C or C++ compiler. The translation from Cython code to C or C++ can be done using the cython 
command-line tool. It takes a file with Cython code, which we typically store in files using the pyx file 
extension, and produces a C or C++ file. For example, consider the file cy_sum.pyx, with the content shown 
in Listing 19-1. To generate a C file from this Cython file, we can run the command cython cy_sum.pyx. 
The result is the file cy_sum.c, which we can compile using a standard C compiler into a Python extension 
module. This compilation step is platform dependent, and requires using the right compiler flags and 
options as to produce a proper Python extension.

Listing 19-1.  Content of the file Cython file cy_sum.pyx

def cy_sum(data):
    s = 0.0
    for d in data:
        s += d
    return s

To avoid the complications related to platform specific compilation options for C and C++ code we 
can use the distutils and Cython libraries to automate the translation of Cython code into a useful Python 
extension module. This requires creating a setup.py script that calls the setup function from distutils.core 
(which knows how to compile C code into a Python extension) and the cythonize function from  
Cython.Build (which knows how to translate Cython code into C code), as shown in Listing 19-2. When the 
setup.py file is prepared, we can compile the Cython module using the command python setup.py  
build_ext --inplace, which instructs distutils to build the extension module and place it in the same 
directory as the source code.

Listing 19-2.  A setup.py script that can be used to automatically compile a Cython file into a Python 
extension module

from distutils.core import setup
from Cython.Build import cythonize
import numpy as np
setup(ext_modules=cythonize('cy_sum.pyx'),
      include_dirs=[np.get_include()],
      requires=['Cython', 'numpy'])

Once the Cython code has been compiled into a Python extension module, whether by hand or using 
distutils library, we can import it and use it as a regular module in Python:

In [41]: from cy_sum import cy_sum
In [42]: cy_sum(data)
Out[42]: -189.70046227549025
In [43]: %timeit cy_sum(data)
100 loops, best of 3: 5.56 ms per loop
In [44]: %timeit py_sum(data)
100 loops, best of 3: 8.08 ms per loop

Here we see that for this example, compiling the pure Python code in Listing 19-3 using Cython directly 
gives a speed-up of about 30%. This is a nice speed-up, but arguably not worth the trouble of going through 
the Cython compilation pipeline. We will see later how to improve on this speed-up using more features of 
Cython.
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Listing 19-3.  Content of the file Cython file cy_cumsum.pyx

cimport numpy
import numpy
def cy_cumsum(data):
    out = numpy.zeros_like(data)
    s = 0
    for n in range(len(data)):
        s += data[n]
        out[n] = s
    return out

The explicit compilation of Cython code into a Python extension module shown above is useful for 
distributing prebuilt modules written in Cython, as the end result does not require Cython to be installed 
to use the extension module. An alternative way to implicitly invoke the Cython compilation pipeline 
automatically during the import of a module is provided by the pyximport library, which is distributed with 
Cython. To seamlessly import a Cython file directly from Python, we can first invoke the install function 
from the pyximport library:

In [45]: pyximport.install(setup_args=dict(include_dirs=np.get_include()))

This will modify the behavior or the Python import statement, and add support for Cython pyx files. 
When a Cython module is imported, it will first be compiled in C or C++, and then to machine code in the 
format of a Python extension module that the Python interpreter can import. These implicit steps sometimes 
require additional configuration, which we can pass to the pyximport.install function via arguments. For 
example, to be able to import Cython code that uses NumPy related features we need the resulting C code 
to be compiled against the NumPy C header files. We can configure this by setting the include_dirs to the 
value given by np.get_include() in the setup_args argument to the install function, as shown above. 
Several other options are also available, and we can also give custom compilation and linking arguments. 
See the docstring for pyximport.install for details. Once pyximport.install has been called, we can use a 
standard Python import statement to import a function from a Cython module:

In [46]: from cy_cumsum import cy_cumsum
In [47]: %timeit cy_cumsum(data)
100 loops, best of 3: 5.91 ms per loop
In [48]: %timeit py_cumsum(data)
100 loops, best of 3: 13.8 ms per loop

In this example, too, we see a welcome but not very impressive speed-up of a factor of two for the 
Python code that has been passed through the Cython compilation pipeline.

Before we get into the detailed uses of Cython that allow us to improve upon this speed-up factor, 
we quickly introduce yet another way of compiling and import Cython code. When using IPython, and 
especially the IPython notebook, we can use the convenient %%cython command, which automatically 
compiles and loads Cython code in a code cell as Python extension and makes it available in the IPython 
session. To be able to use this command, we first have to activate it using the %load_ext cython command:

In [49]: %load_ext cython
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With the %%cython command activated, we can write and load Cython code interactively in an IPython 
session:

In [50]: %%cython
    ...: def cy_sum(data):
    ...:     s = 0.0
    ...:     for d in data:
    ...:         s += d
    ...:     return s
In [51]: %timeit cy_sum(data)
100 loops, best of 3: 5.21 ms per loop
In [52]: %timeit py_sum(data)
100 loops, best of 3: 8.6 ms per loop

As before, see a direct speed-up by simply adding the %%cython at the first line of the IPython code 
cell. This is reminiscent of adding the @numba.jit decorator to a function, but the underlying mechanics of 
these two methods are rather different. In the rest of this section we will use this method for compiling and 
loading Cython code. When using the %%cython IPython command, it is also useful to add the -a argument. 
This results in Cython annotation output to be displayed as output of the code cell, as shown in Figure 19-2. 
The annotation shows each code line in a shade of yellow, where bright yellow indicates that the line of code 
is translated to C code with strong dependencies on the Python C/API, and a where a white line of code is 
directly translated into pure C code. When working on optimizing Cython code, we generally need to strive 
for Cython code that gets translated into as pure C code as possible, so it is extremely useful to inspect the 
annotation output and look for yellow lines, which typically represent the bottlenecks in the code. As an 
added bonus, clicking on a line of code in the annotation output toggles between the Cython code that we 
provided and the C code that it is being translated into.

In the rest of the section we explore ways of speeding Cython code using language features 
that is introduced by Cython that are particularly useful for computational problems. We first revisit 
implementation of the cy_sum given above. In our first attempt to speed up this function we simply used 
the pure Python passed it through the Cython compilation pipeline, and as a result we saw a speed-up of 
about 30%. The key step to see much larger speedups is to add type declarations for all the variables and 
arguments of the function. By explicitly declaring the types of variables the Cython compiler will be able 
to generate more efficient C code. To specify a type of a variable we need to use the Cython keyword cdef, 

Figure 19-2.  Annotation generated by Cython using the %%cython IPython command with the -a argument
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which we can use with any standard C type. For example, to declare the variable n of integer type, we can use 
cdef int n. We can also use type definitions from the NumPy library: For example, cdef numpy.float64_t s 
declares the variable s to be a 64-bit floating-point number. NumPy arrays can be declared using the type 
specification on the format numpy.ndarray[numpy.float64_t, ndim=1] data, which declare data to be an 
array with 64-bit floating-point number elements, with one dimension (a vector) and of unspecified length. 
Adding type declarations of this style to the previous cy_sum function results in the following code:

In [53]: %%cython
    ...: cimport numpy
    ...: cimport cython
    ...:
    ...: @cython.boundscheck(False)
    ...: @cython.wraparound(False)
    ...: def cy_sum(numpy.ndarray[numpy.float64_t, ndim=1] data):
    ...:     cdef numpy.float64_t s = 0.0
    ...:     cdef int n, N = len(data)
    ...:     for n in range(N):
    ...:         s += data[n]
    ...:     return s

In this implementation of the cy_sum function, we have also applied the two decorators  
@cython.boundscheck(False) and @cython.wraparound(False), which disables time-consuming bound 
checks on the indexing of NumPy arrays. This result in less safe code, but if we are confident that the NumPy 
arrays in this function will not be indexed outside of their valid ranges, we can obtain additional speed-up 
by disable such checks. Now that we have explicitly declared the type of all variables and arguments of the 
function, Cython is able to generate efficient C code that when compiled into a Python module provides 
performance that is comparable to the JIT-compiled code using Numba, and not far from the built-in sum 
function from NumPy (which also is implemented in C):

In [54]: %timeit cy_sum(data)
10000 loops, best of 3: 49.2 ms per loop
In [55]: %timeit jit_sum(data)
10000 loops, best of 3: 47.6 ms per loop
In [56]: %timeit np.sum(data)
10000 loops, best of 3: 29.7 ms per loop

Next let’s turn our attention to the cy_cumsum function. Like the cy_sum function, this function too will 
befit from explicit type declarations. To simplify the declarations of NumPy array types, here we use the 
ctypedef keyword to create an alias for numpy.float64_t to the shorter FTYPE_t. Note also that in Cython 
code, there are two different import statements: cimport and import. The import statement can be used to 
import any Python module, but it will result in C code that calls back into the Python interpreter, and can 
therefore be slow. The cimport statement work like a regular import, but is used for importing other Cython 
modules. Here cimport numpy imports a Cython module named numpy that provides Cython extensions to 
NumPy; mostly type and function declarations. In particular, the C-like types such numpy.float64_t are 
declared in this Cython module. However, the function call numpy.zeros in the function defined below 
results in a call to the function zeros in the NumPy module, and for it we need to include the Python module 
numpy using import numpy.
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Adding these type declarations to the previously defined cy_cumsum function results in the 
implementation given below:

In [57]: %%cython
    ...: cimport numpy
    ...: import numpy
    ...: cimport cython
    ...:
    ...: ctypedef numpy.float64_t FTYPE_t
    ...:
    ...: @cython.boundscheck(False)
    ...: @cython.wraparound(False)
    ...: def cy_cumsum(numpy.ndarray[FTYPE_t, ndim=1] data):
    ...:     cdef int N = data.size
    ...:     cdef numpy.ndarray[FTYPE_t, ndim=1] out = numpy.zeros(N, dtype=data.dtype)
    ...:     cdef numpy.float64_t s = 0.0
    ...:     for n in range(N):
    ...:         s += data[n]
    ...:         out[n] = s
    ...:     return out

Like for cy_sum, we see a significant speed-up after having declared the types of all variables in the 
function, and the performance of cy_cumsum is now comparable to the JIT-compiled Numba function 
jit_cumsum and the faster than the built-in cumsum function in NumPy (which on the other hand is more 
versatile):

In [58]: %timeit cy_cumsum(data)
10000 loops, best of 3: 69.7 ms per loop
In [59]: %timeit jit_cumsum(data)
10000 loops, best of 3: 70 ms per loop
In [60]: %timeit np.cumsum(data)
10000 loops, best of 3: 148 ms per loop

When adding explicit type declarations we gain performance when compiling the function with Cython, 
but we lose generality as the function is now unable to take any other type of arguments. For example, 
original py_sum function, as well as the NumPy sum function, accept a much wider variety of input types. We 
can sum Python lists and NumPy arrays of both floating-point numbers and integers:

In [61]: py_sum([1.0, 2.0, 3.0, 4.0, 5.0])
Out[61]: 15.0
In [62]: py_sum([1, 2, 3, 4, 5])
Out[62]: 15

The Cython compiled version with explicit type declaration, on the other hand, only works for exactly 
the type we declared it:

In [63]: cy_sum(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
Out[63]: 15.0
In [64]: cy_sum(np.array([1, 2, 3, 4, 5]))
---------------------------------------------------------------------------
ValueError: Buffer dtype mismatch, expected 'float64_t' but got 'long'
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Often it is desirable support more than one type of input, such as providing the ability to sum arrays of 
both floating-point numbers and integers with the same function. Cython provides a solution to this problem 
through its ctypedef fused keyword, with which we can define new types that are one out of several provided 
types. For example, consider the modification to the py_sum function given in py_fused_sum here:

In [65]: %%cython
    ...: cimport numpy
    ...: cimport cython
    ...:
    ...: ctypedef fused I_OR_F_t:
    ...:     numpy.int64_t
    ...:     numpy.float64_t
    ...:
    ...: @cython.boundscheck(False)
    ...: @cython.wraparound(False)
    ...: def cy_fused_sum(numpy.ndarray[I_OR_F_t, ndim=1] data):
    ...:     cdef I_OR_F_t s = 0
    ...:     cdef int n, N = len(data)
    ...:     for n in range(N):
    ...:         s += data[n]
    ...:     return s

Here the function is defined in terms of the type I_OR_F_t, which is defined using ctypedef fused to be 
either numpy.int64_t or numpy.float64_t. Cython will automatically generate the necessary code for both 
types of functions, so that we can use the function on both floating-point and integer arrays (at the price of a 
small decrease in performance):

In [66]: cy_fused_sum(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
Out[66]: 15.0
In [67]: cy_fused_sum(np.array([1, 2, 3, 4, 5]))
Out[67]: 15

As a final example of how to speed up Python code with Cython, consider again the Python code for 
generating the Julia set that we looked at in the previous section. To implement a Cython version of this 
function, we simply take the original Python code and explicitly declare the types of all the variables used in 
the function, following the procedure we used above. We also add the decorators for disabling index bound 
checks and wrap around. Here we have both NumPy integer arrays and floating-point arrays as input, so 
we define the arguments as types numpy.ndarray[numpy.float64_t, ndim=1] and numpy.ndarray[numpy.
int64_t, ndim=2], respectively.

The implementation of cy_julia_fractal given below also includes a Cython implementation of 
the square of the absolute value of a complex number. This function is declared as inline using the inline 
keyword, which means that the compiler will put the body of the function at every place it is called, rather 
than creating a function that is called from those locations. This will result in large code, but avoid the 
overhead of an additional function call. We also define this function using cdef rather than the usual def 
keyword. In Cython, def defines a function that can be called from Python, while cdef defines a function 
that can be called from C. Using the cpdef keyword, we can simultaneously define a function that is both 
callable from C and from Python. As it is written here, using cdef, we cannot call the abs2 function from the 
IPython session after executing this code cell, but if we change cdef to cpdef we can.
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In [68]: %%cython
    ...: cimport numpy
    ...: cimport cython
    ...:
    ...: cdef inline double abs2(double complex z):
    ...:     return z.real * z.real + z.imag * z.imag
    ...:
    ...: @cython.boundscheck(False)
    ...: @cython.wraparound(False)
    ...: def cy_julia_fractal(numpy.ndarray[numpy.float64_t, ndim=1] z_re,
    ...:                      numpy.ndarray[numpy.float64_t, ndim=1] z_im,
    ...:                      numpy.ndarray[numpy.int64_t, ndim=2] j):
    ...:     cdef int m, n, t, M = z_re.size, N = z_im.size
    ...:     cdef double complex z
    ...:     for m in range(M):
    ...:         for n in range(N):
    ...:             z = z_re[m] + 1.0j * z_im[n]
    ...:             for t in range(256):
    ...:                 z = z ** 2 - 0.05 + 0.68j
    ...:                 if abs2(z) > 4.0:
    ...:                     j[m, n] = t
    ...:                     break

If we call the cy_julia_fractal function with the same arguments as we previously called the Python 
implementation that was JIT-compiled using Numba, we see that the two implementations have comparable 
performance.

In [69]: N = 1024
In [70]: j = np.zeros((N, N), dtype=np.int64)
In [71]: z_real = np.linspace(-1.5, 1.5, N)
In [72]: z_imag = np.linspace(-1.5, 1.5, N)
In [73]: %timeit cy_julia_fractal(z_real, z_imag, j)
10 loops, best of 3: 113 ms per loop
In [74]: %timeit jit_julia_fractal(z_real, z_imag, j)
10 loops, best of 3: 141 ms per loop

The slight edge to the cy_julia_fractal implementation is mainly due to the inline definition of the 
inner-most loops call to the abs2 function, and the fact that abs2 avoids computing the square root. Making 
a similar change in jit_julia_fractal improves its performance and approximately accounts for the 
difference shown here.

So far we have explored Cython as a method to speed up Python code by compiling it to machine codes 
that are made available as Python extension modules. There is another important use-case of Cython,  
which is at least as important to its widespread use in the Python scientific computing community: Cython 
can also be used to easily create wrappers to compiled C and C++ libraries. We will not explore this in  
depth here, but will give a simple example that illustrates that using Cython we can call out to arbitrary  
C libraries in just a few lines of code. As an example, consider the math library from the C standard library. 
It provides mathematical functions, similar to those defined in the Python standard library with the same 
name: math. To use these functions in a C program, we would include the math.h header file to obtain 
their declarations, and compile and link the program against the libm library. From Cython we can obtain 
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function declarations using the cdef extern from keywords, after which we need to give the name of the C 
header file and list the declarations of the function we want to use in the following code block. For example, 
to make the acos function from libm available in Cython, we can use the following code:

In [75]: %%cython
    ...: cdef extern from "math.h":
    ...:     double acos(double)
    ...:
    ...: def cy_acos1(double x):
    ...:     return acos(x)

Here we also defined the Python function cy_acos1, which we can call from Python:

In [76]: %timeit cy_acos1(0.5)
10000000 loops, best of 3: 83.2 ns per loop

Using this method we can wrap arbitrary C functions into functions that are callable from regular 
Python code. This is a very useful feature for scientific computing applications, since it makes existing code 
written in C and C++ easily available from Python. For the standard libraries, Cython already provides type 
declarations via the libc module, so we do not need to explicitly define the functions using cdef extern 
from. For the acos example, we could therefore instead directly import the function from libc.math using 
the cimport statement:

In [77]: %%cython
    ...: from libc.math cimport acos
    ...:
    ...: def cy_acos2(double x):
    ...:     return acos(x)
In [78]: %timeit cy_acos2(0.5)
10000000 loops, best of 3: 85.6 ns per loop

The resulting function cy_acos2 is identical to cy_acos1 that was explicitly imported from math.h 
earlier. It is instructive to compare the performance of these C math library functions to the corresponding 
functions defined in NumPy and the Python standard math library:

In [79]: from numpy import arccos
In [80]: %timeit arccos(0.5)
1000000 loops, best of 3: 1.07 ms per loop
In [81]: from math import acos
In [82]: %timeit acos(0.5)
10000000 loops, best of 3: 95.9 ns per loop

The NumPy version is about 10 times slower than the Python math function and Cython wrappers to the 
C standard library function, because of the overhead related to NumPy array data structures.
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Summary
In this chapter we have explored methods for speeding up Python code using Numba, which produces 
optimized machine code using just-in-time compilation; and Cython, which produces C code that can be 
compiled into machine code using ahead-of-time compilation. Numba works with pure Python code, but 
heavily relies of type interference using NumPy arrays, while Cython works with an extension to the Python 
language that allows explicit type declarations. The advantages of these methods are that we can achieve 
performance that is comparable to compiled machine code, while staying in a Python or Python-like 
programming environment. The key to the speeding up of Python code is the use of typed variables, either 
by using type interference from NumPy arrays, as in Numba, or by explicitly declaring the types of variables, 
as in Cython. Explicitly typed code can be translated into much more efficient code than the dynamically 
typed code in pure Python, and can avoid much of the overhead involved in type look-ups in Python. Both 
Numba and Cython are convenient ways to obtain impressive speedups of Python code, and they often 
produce code with similar performance. Cython also provides an easy-to-use method for creating interfaces 
to external libraries so that they can be accessed from Python. In both Numba and Cython, the common 
theme is use type information (from NumPy arrays or from explicit declarations) to generate more efficient 
typed machine code. Within the Python community, there has also recently been movement toward adding 
support for optional type hints to the Python language itself. For details about the current status of type 
hints see PEP 484 (https://www.python.org/dev/peps/pep-0484), which is scheduled to be included in a 
future release of Python. While type hints in Python is not likely to be widely available in the near future, it is 
certainly an interesting development to follow.

Further Reading
Thorough guides to using Cython are given in books by Smith and Herron. For more information about 
Numba, see its official documentation at http://numba.pydata.org/doc.html. For a detailed discussion of 
high-performance computing with Python, see also the book by Gorelick.
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Appendix A

Installation

This Appendix covers the installation and setup of a Python environment for scientific computing on 
commonly used platforms. As discussed in Chapter 1, the scientific computing environment for Python 
is not a single product, but rather a diverse ecosystem of packages and libraries, and there are numerous 
possible ways to install and configure a Python environment on any given platform. Python itself is rather 
easy to install,1 and on many operating systems it is even preinstalled. All pure Python libraries that are 
hosted on the Python Package Index2 are also easily installed, for example, using pip and a command such as 
pip install PACKAGE, where PACKAGE is the name of the package to install. The pip software then searches 
for the package on the Python Package Index, and downloads and installs it, if it is found. For example, to 
install IPython we can use:

$ pip install ipython

and to upgrade an already installed package we simply add the --upgrade flag to the pip command:

$ pip install --upgrade ipython

However, many libraries for computing with Python are not pure Python libraries, and they 
frequently have dependencies on system libraries written in other languages, such as C and Fortran. These 
dependencies cannot be handled by pip and the Python Package Index, and to build such libraries from 
source requires C and Fortran compilers to be installed. In other words, installing a full scientific computing 
software stack for Python manually can be difficult, or at least time consuming and tedious. To solve this 
problem, there have emerged a number of prepackaged Python environments with automated installers. 
The most popular environments are Continuum Analytics’s Anaconda3 and Enthought’s Canopy,4 which are 
both sponsored by corporations with close connections to the open-source scientific Python community, 
and Python(x,y),5 which is a community-maintained environment that targets Microsoft’s operating systems. 
These environments all have in common that they bundle the Python interpreter, the required system 
libraries and tools, and a large number of scientific computing-oriented Python libraries in an easy-to-install 
distribution. Any of these environments can readily be used to set up the software required to run the code 
discussed in this book, but in the following we use the Anaconda environment from Continuum Analytics.  
In particular, we discuss Miniconda – a lightweight version of Anaconda – and the package manager conda.

1Installers for all major platforms are available for download at http://www.python.org/downloads
2http://pypi.python.org
3http://continuum.io/downloads
4http://www.enthought.com/products/canopy
5http://python-xy.github.io

http://dx.doi.org/10.1007/978-1-4842-0553-2_1
http://www.python.org/downloads
http://pypi.python.org/
http://continuum.io/downloads
http://www.enthought.com/products/canopy
http://python-xy.github.io
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Miniconda and Conda
The Anaconda environment, which comes bundled with a large number of libraries, is a convenient way 
to get a scientific computing environment for Python up and running quickly. However, for clarity, here 
we start with a Miniconda environment and explicitly install the packages that we need. This way we 
control exactly which packages are included in the environment we set up. Miniconda is a minimal version 
of Anaconda, which only includes the most basic components: a Python interpreter, a few fundamental 
libraries, and the conda package manager. The download page for the Miniconda project http://conda.
pydata.org/miniconda.html contains installers for Linux, Mac OS X, and Windows.6 Download and run 
the installer, and follow the onscreen instructions. When the installation has finished, you should have a 
directory named miniconda in your home directory, and if you choose to add it to your PATH variable during 
the installation, you should now be able to invoke the conda package manager by running conda at the 
command prompt.

Conda7 is a cross-platform package manager that can handle dependencies on Python packages as well 
as system tools and libraries. This is essential for installing scientific computing software, which by nature 
uses a diverse set of tools and libraries. Conda packages are prebuilt binaries for the target platform, and are 
therefore fast and convenient to install. To verify that conda is available on your system you can try:

$ conda --version
conda 3.12.0

In this case, the output tells us that conda is installed and that the version of conda is 3.12.0. To update 
to the latest version of conda, we can use the conda package manager itself:

$ conda update conda

and to update all packages installed in a particular conda environment, we can use:

$ conda update --all

Once conda is installed we can use it to install Python interpreters and libraries. When doing so we 
can optionally specify precise versions of the packages we want to install. The Python software ecosystem 
consists of a large number of independent projects, each with their own release cycles and development 
goals, and there are constantly new versions of different libraries being released. This is exciting – because 
there is steady progress and new features are frequently made available – but unfortunately not all new 
releases of all libraries are backwards compatible. This presents a dilemma for users that require a stable 
and reproducible environment over the long term, and for users that simultaneously work on projects with 
different version dependencies.

The best solution in the Python ecosystem for this problem is to use a package manager such as conda 
to set up virtual Python environments for different projects, in which different versions of the required 
packages are installed. With this approach, it is easy to maintain multiple environments with different 
configurations, such as separate Python 2 and Python 3 environments, or environments with stable versions 
and development versions of relevant packages. I strongly recommend using virtual Python environments 
over using the default system-wide Python environments for the reasons given above.

6Miniconda is available in both 32- and 64-bit versions. Generally the 64-bit version is recommended for modern 
computers, but on Windows a 64-bit compiler might not always be readily available, so staying with the 32-bit version 
might better in some cases on this platform.
7http://conda.pydata.org/docs/index.html.

http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/docs/index.html
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With conda, new environments are created with the conda create command, to which we need to 
provide a name for the new environment using -n NAME, or alternatively a path to where the environment is 
to be stored using -p PATH. When providing a name, the environment is by default stored in the miniconda/
envs/NAME directory. When creating a new environment, we can also give a list of packages to install. At 
least one package must be specified. For example, to create two new environments based on Python 2.7 and 
Python 3.4, we can use the commands:

$ conda create -n py2.7 python=2.7
$ conda create -n py3.4 python=3.4

where we have given the Python 2 and Python 3 environments the names py2.7 and py3.4, respectively. 
To use one of these environments, we need to activate it using the command source activate py2.7 or 
source activate py3.4, respectively, and to deactivate an environment we use source deactivate.8 With 
this method it is easy to switch between different environments, as illustrated in the following sequence of 
commands:

$ source activate py2.7
discarding /Users/rob/miniconda/bin from PATH
prepending /Users/rob/miniconda/envs/py2.7/bin to PATH

(py2.7)$ python --version
Python 2.7.9 :: Continuum Analytics, Inc.

(py2.7)$ source activate py3.4
discarding /Users/rob/miniconda/envs/py2.7/bin from PATH
prepending /Users/rob/miniconda/envs/py3.4/bin to PATH

(py3.4)$ python --version
Python 3.4.2 :: Continuum Analytics, Inc.

(py3.4)$ source deactivate
discarding /Users/rob/miniconda/envs/py3.4/bin from PATH
$

To manage environments, the conda env, conda info and conda list commands are helpful tools. 
The conda info command can be used to list available environments (same as conda env list):

$ conda info --envs
# conda environments:
#
py2.7                    /Users/rob/miniconda/envs/py2.7
py3.4                    /Users/rob/miniconda/envs/py3.4
root                  *  /Users/rob/miniconda

8On Windows, leave out source from these commands.
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and the conda list command can be used to list installed packages and their versions, in a given environment:

$ conda list -n py3.4
# packages in environment at /Users/rob/miniconda/envs/py3.4:
#
openssl                   1.0.1k                        0
python                    3.4.2                         0
readline                  6.2                           2
sqlite                    3.8.4.1                       0
tk                        8.5.15                        0
xz                        5.0.5                         0
zlib                      1.2.8                         0
$

and similar information in YAML format9 is available from the conda env export command:

$ conda env export –n py3.4
name: py3.4
dependencies:
- openssl=1.0.1k=1
- pip=6.1.1=py34_0
- python=3.4.3=0
- readline=6.2=2
- setuptools=16.0=py34_0
- sqlite=3.8.4.1=1
- tk=8.5.18=0
- xz=5.0.5=0
- zlib=1.2.8=0

To install additional packages in an environment, we can either specify a list of packages when the 
environment is created, or we can activate the environment and use conda install, or use the conda 
install command with the -n flag to specify a target environment for the installation. For example, to create 
a Python 2.7 environment with NumPy version 1.8, we could use:

$ conda create -n py2.7-np1.8 python=2.7 numpy=1.8

To verify that the new environment py2.7-np1.8 indeed contains NumPy of the specified version, we 
can use the conda list command again:

$ conda list -n py2.7-np1.8
# packages in environment at /Users/rob/miniconda/envs/py2.7-np1.8:
#
numpy                     1.8.2                    py27_0
openssl                   1.0.1k                        0
python                    2.7.9                         1
readline                  6.2                           2
sqlite                    3.8.4.1                       0
tk                        8.5.15                        0
zlib                      1.2.8                         0

9http://yaml.org

http://yaml.org/
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Here we see that NumPy is indeed installed, and the precise version of the library is 1.8.2. If we do not 
explicitly specify the version of a library, the latest stable release is used.

To use the second method – that is to install additional packages in an already existing environment – 
we first activate the environment

$ source activate py3.4

and then use conda install PACKAGE to install the package with name PACKAGE. Here we can also give a list 
of package names. For example, to install the NumPy, SciPy and Matplotlib libraries, we can use:

(py3.4)$ conda install numpy scipy matplotlib

or, equivalently:

$ conda install –n py3.4 numpy scipy matplotlib

When installing packages using conda, all required dependencies are also installed automatically, and 
the command above actually also installed the packages dateutil, freetype, libpng, pyparsing, pytz, and 
six packages, which are dependencies for the matplotlib package:

(py3.4)$ conda list
# packages in environment at /Users/rob/miniconda/envs/py3.4:
#
dateutil                  2.1                      py34_2
freetype                  2.4.10                        1
libpng                    1.5.13                        1
matplotlib                1.4.2                np19py34_0
numpy                     1.9.1                    py34_0
openssl                   1.0.1k                        0
pyparsing                 2.0.1                    py34_0
python                    2.7.9                         1
pytz                      2014.9                   py34_0
readline                  6.2                           2
scipy                     0.15.0               np19py34_0
six                       1.9.0                    py34_0
sqlite                    3.8.4.1                       0
tk                        8.5.15                        0
zlib                      1.2.8                         0

Note that not all of the packages installed in this environment are Python libraries. For example, 
libpng and freetype are system libraries, but conda is able to handle them and install them automatically as 
dependencies. This is one to the strengths of conda compared to, for example, the Python-centric package 
manager pip.

To update selected packages in an environment we can use the conda update command. For example, 
to update NumPy and SciPy in the currently active environment, we can use:

(py3.4)$ conda update numpy scipy

To remove a package we can use conda remove PACKAGE, and to completely remove an environment we 
can use conda remove -n NAME --all. For example, to remove the environment py2.7-np1.8, we can use:

$ conda remove -n py2.7-np1.8 --all
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Conda locally caches packages that have once been installed. This makes it fast to reinstall a package 
in a new environment, and also quick and easy to tear down and set up new environments for testing and 
trying out different things, without any risk of breaking environments used for other projects. To re-create a 
conda environment, all we need to do is to keep track of the installed packages. Using the -e flag with  
the conda list command gives a list of packages and their versions, in a format that is also compatible  
with the pip software. This list can be used to replicate a conda environment, for example, on another 
system or at later point in time:

$ conda list -e > requirements.txt

With the file requirements.txt we can now update an existing conda environment in the following 
manner:

$ conda install --file requirements.txt

or create a new environment that is a replication of the environment that was used to create the 
requirement.txt file:

$ conda create –n NAME --file requirements.txt

Alternatively, we can use the YAML format dump of an environment produced by conda env export:

$ conda env export –n NAME > env.yml

and in this case we can reproduce the environment using:

$ conda env create --file env.yml

Note that here we do not need to specify the environment name, since the env.yml file also contains 
this information. Using this method also has the advantage that packages installed using pip are installed 
when the environment is replicated or restored.

A Complete Environment
Now that we have explored the conda package manager, and seen how it can be used to setup environments 
and install packages, next we cover the procedures for setting up a complete environment with all the 
dependencies that are required for the material in this book. In the following we use the py3.4 environment, 
which was previously created using the command:

$ conda create –n py3.4 python=3.4

This environment can be activated using

$ source activate py3.4

Once the target environment is activated, we can install the libraries that we use in this book with the 
following commands:

conda install pip ipython jinja2 tornado pyzmq jsonschema spyder pylint pyflakes pep8
conda install numpy scipy sympy matplotlib networkx pandas seaborn
conda install patsy statsmodels scikit-learn
conda install h5py pytables msgpack msgpack-python cython numba cvxopt
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pip install scikit-monaco
pip install pygraphviz
pip install git+https://github.com/pymc-devs/pymc3
pip install version_information

However, one exception is the FEniCS suite of libraries that we used in Chapter 11 to solve partial 
different equations. The FEniCS libraries have many intricate dependencies, making it difficult to 
install using this standard approach.10 For this reason, FEniCS is most easily installed using the prebuilt 
environments available from the project’s web site: http://fenicsproject.org/download. Another good 
solution for obtaining a complete FEniCS environment can be to use a Docker11 container with FEniCS 
preinstalled. See, for example, https://hub.docker.com/r/fenicsproject for more information about this 
method.

Table A-1 presents a breakdown of the installation commands for the dependencies, on a chapter-by-
chapter basis.

Table A-1.  Installation instructions for dependencies for each chapter

Chapter Used libraries Installation

1 IPython, Spyder conda install ipython jinja2 tornado pyzmq 
jsonschema
conda install spyder pylint pyflakes pep8
Here jinja2, tornado, pyzmq and jsonschema 
are packages that are required to run the IPython 
notebook, and pylint, pyflakes, and pep8 are code 
analysis tools that can be used by Spyder.
With the most recent version of IPython, a package 
called **notebook** is also provided, which contains 
the IPython Notebook component and its relevant 
dependencies.
For converting IPython notebooks to PDF, you also 
need a working LaTeX installation.
To bookkeep which versions of libraries that 
were used to execute the IPython notebooks that 
accompany this book, we have used IPython 
extension command %version_information, which 
is available in the version_information package that 
can be installed with pip:
conda install pip
pip install version_information

2 NumPy conda install numpy

3 NumPy, SymPy conda install numpy sympy

4 NumPy, Matplotlib conda install numpy matplotlib

5 NumPy, SymPy, SciPy, Matplotlib conda install numpy sympy scipy matplotlib

10However, there are recent efforts to create conda packages for the FEniCS libraries and their dependencies:  
http://fenicsproject.org/download/installation_using_conda.html. This is currently only available for Linux.
11For more information about software container solution Docker, see https://www.docker.com.

(continued)

https://github.com/pymc-devs/pymc3
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https://hub.docker.com/r/fenicsproject
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Chapter Used libraries Installation

6 NumPy, SymPy, SciPy, Matplotlib, 
cvxopt

conda install numpy sympy scipy matplotlib 
cvxopt

7 NumPy, SciPy, Matplotlib conda install numpy scipy matplotlib

8 NumPy, SymPy, SciPy, Matplotlib, 
Scikit-Monaco

conda install numpy sympy scipy matplotlib pip
There is no conda package for scikit-monaco, so we 
need to install this library using pip:
pip install scikit-monaco

9 NumPy, SymPy, SciPy, Matplotlib conda install numpy sympy scipy matplotlib

10 NumPy, SciPy, Matplotlib, NetworkX conda install numpy scipy matplotlib  
networkx pip
To visualize NetworkX graphs we also need the 
Graphviz library (see http://www.graphviz.org) and 
its Python bindings in the pygraphviz library.
pip install pygraphviz

11 NumPy, SciPy, Matplotlib, and FEniCS conda install numpy scipy matplotlib
For installation of FEniCS, see the prebuilt Python 
environments that are distributed by the FEniCS 
project: http://fenicsproject.org/download

12 NumPy, Pandas, Matplotlib, Seaborn conda install numpy pandas matplotlib seaborn

13 NumPy, SciPy, Matplotlib, Seaborn conda install numpy scipy matplotlib seaborn

14 NumPy, Pandas, Matplotlib, Seaborn, 
Patsy, Statsmodels

conda install numpy pandas matplotlib seaborn 
patsy statsmodels

15 NumPy, Matplotlib, Seaborn, Scikit-
learn

conda install numpy matplotlib seaborn  
scikit-learn

16 NumPy, Matplotlib, PyMC3 conda install numpy matplotlib pip
pip install git+https://github.com/pymc-devs/
pymc3
The last line installs the yet-not-released PyMC3 library, 
which at the time of writing is still in pre-release status. 
Nonetheless, the library is already very useful. See 
http://pymc-devs.github.io/pymc3 for up-to-date 
instructions on how to install the library once it has 
been officially released.

17 NumPy, SciPy, Matplotlib conda install numpy scipy matplotlib

18 NumPy, Pandas, h5py, PyTables, 
msgpack

conda install numpy pandas h5py pytables 
msgpack msgpack-python
At the time of writing the msgpack and msgpack-
python conda packages are not available for all 
platforms. When conda packages are not available, the 
msgpack library needs to be installed manually, and 
its python bindings can be installed using pip.
pip install msgpack-python

19 NumPy, Matplotlib, Cython, Numba conda install numpy matplotlib cython numba

Table A-1.  (continued)

http://www.graphviz.org/
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A list of the packages and their exact versions that were used to run the code included in this book is 
also available in a requirements.txt file, which is available for download together with the code listing. 
With this file we can directly create an environment with all the required dependencies with a single 
command:

$ conda create -n py2.7 --file requirements.txt

Alternatively, we can re-create the py2.7 and py3.4 environments using the exports py2.7-env.yml and 
py3.4-env.yml. These files are also available together with the source code listings.

$ conda env create --file py2.7-env.yml
$ conda env create --file py3.4-env.yml

Summary
In this appendix we have reviewed the installation of the various Python libraries used in this book. 
The Python environment for scientific computing is not a monolithic environment, but rather consists 
of an ecosystem of diverse libraries that are maintained and developed by different groups of people, 
following different release cycles and development paces. As a consequence, it can be difficult to collect 
all the necessary pieces of a productive setup from scratch. In response to this problem, several solutions 
addressing this situation have appeared, typically in the form of prepackaged Python distributions. In 
the Python scientific computing community, Anaconda and Canopy are two popular examples of such 
environments. Here we focused on the conda package manager from the Anaconda Python distribution, 
which in addition to being a package manager, also allows us to create and to manage virtual installation 
environments.

Further Reading
If you are interested in creating Python source packages for you own projects, see, for example,  
http://packaging.python.org/en/latest/index.html. In particular, study the setuptools library, and 
its documentation at http://pythonhosted.org/setuptools. Using setuptools, we can create installable 
and distributable Python source packages. Once a source package has been created using setuptools, it is 
usually straightforward to create binary conda packages for distribution. For information on creating and 
distributing conda packages, see http://conda.pydata.org/docs/build_tutorials/pkgs.html. See also 
the conda-recipes repository at github.com, which contains many examples of conda packages:  
http://github.com/conda/conda-recipes. Finally, http://www.binstar.org is a conda package hosting 
service with many public channels (repositories) where custom-built conda packages can be published and 
installed directly using the conda package manager. Many packages that are not available in the standard 
Anaconda channel can be found on user-contributed channels on binstar.org.

http://packaging.python.org/en/latest/index.html
http://pythonhosted.org/setuptools
http://conda.pydata.org/docs/build_tutorials/pkgs.html
http://github.com/conda/conda-recipes
http://www.binstar.org/
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�       � F
FDM. See Finite-difference method (FDM)
FEM. See Finite-element method (FEM)
FEniCS framework, 265

CellFunction instance, 279
DirichletBC class, 270, 274
dolfin.Constant, 275
dolfin.Expression object, 269
dolfin.FunctionSpace class, 268
dolfin.interactive, 271
dolfin library, 266
dolfin.MeshFunction object, 281
dolfin.refine function, 279
dolfin.solve, 282
function instance, 270
mesh object, 273
RectangleMesh function, 267
refined_mesh, 280
vector method, 272

Finite-difference method (FDM), 257
boundary-value problem, 257
Dirichlet boundary conditions, 261
eye function, 258
ODE problem, 259
reshape method, 260
scipy.sparse module, 260, 262
two-dimensional  

generalization, 259
Finite-element method (FEM), 262
Finite impulse  

response (FIR) filters, 419

�       � G
Generalized least squares (GLS), 335
get_values method, 387

�       � H
Hierarchical Data Format 5 (HDF5), 430

attributes, 439
datasets, 435
files, 432
flush method, 442
group objects, 432
HDFStore object, 444
h5py library, 431
iterrows method, 442
PyTables library, 431, 440
where method, 443

High-and low-level  
languages, trade-off, 1

Hypothesis testing, 325

�       � I
Infinite impulse response (IIR) filters, 420
Installation commands, 477
Integral transforms, 202

Fourier transform function, 205
Laplace transform, 203

Interpolation, 169
bivariate, 185
Chebyshev polynomials, 170
explicit matrix form, 170
griddata function, 182
implicit matrix form, 170
import modules, 169
Legendre polynomials, 170
multivariate situations, 180
polynomial, 173
spline, 177
Vandermonde matrix, 170

Interpreter, 5
IPython, 6

autocompletion, 7
command prompt, 6
documentation, 7
extension commands, 9

debugger mode, 10
file system navigation, 9
%timeit and %time commands, 12
profiler function, 12
reset command, 11
running scripts, 9

input and output caching, 6
notebook, 14

cell-types, 16
dashboard page, 14
editing cells, 17
features, 14
HTML document, 19
JSON-based file format, 15, 21
markdown cells, 18
PDF format, 20

object introspection, 7
Qt console, 13
system shell, 8

�       � J, K
JavaScript Object Notation (JSON) format, 445

json.dump function, 446
json.load function, 446–447

�       � L
LUdecomposition method, 129
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�       � M
Machine learning, 363

classification, 374, 377
classification_report function, 376
confusion_matrix function, 376
data and target attributes, 375
datasets module, 375
linear_model module, 375
load_iris function, 375
predict method, 376
sklearn.ensemble module, 377
sklearn.metrics module, 376
sklearn.tree module, 376
train_test_split function, 375

clustering, 378
confusion_matrix function, 380
K-means method, 378
predict method, 379
sklearn.cluster module, 378

cross-validation, 365
dimensionality reduction, 366
feature extraction, 365
feature selection, 366
regression, 366

ElasticNet class, 373
fit method, 369
LASSO method, 372
LinearRegression instance, 367
LinearRegression object, 368
make_regression function, 366
regularized, 369
score method, 367
SSE, 367

sklearn modules, 364
supervised learning, 364
training, 364
unsupervised learning, 365

Matplotlib
annotations, 102
axes layout managers, 113

GridSpec, 117
insets, 113
plt.subplot2grid function, 116
subplots, 114

axes instances, 91, 96
axis properties, 104

autoscale method, 105
axis ticks, 106
grid lines, 108
log-scale plots, 110
set_title method, 105
set_xlabel and set_ylabel methods, 104
set_xlim and set_ylim methods, 105
set_xticks and set_yticks methods, 107

spine attribute, 112
tick placements, 109
twinx method, 111

color map graph, 119
definition, 89
figure instances, 91, 95
import, 90
interactive mode, 93
legends, 101
line properties, 98
noninteractive nodes, 94
NumPy arrays, 92
plot types, 97
plt.subplots function, 97
text formatting, 102
3D graphs, 120

Matrix and vector operations, 57
Einstein summation convention, 61
elementwise multiplication, 57
Kronecker product, 60
matrix-vector multiplication, 58
nontrivial matrix multiplication, 58

Mesh-grid arrays, 33
Miniconda environment, 472
Multiple integrals, 196

�       � N
Nonparametric methods, 329
Numba library, 454–455

Heaviside step function, 459–460
imshow function, 458
JIT-compiled function, 456
jit_julia_fractal function, 458
NumPy universal function, 461
NumPy-array aware function, 460
py_cumsum function, 456
py_sum function, 456
NumPy vectorize function, 459

Numerical integration methods, 188
interpretation, 188
midpoint rule, 189
Newton–Cotes quadrature rule, 189
quad function, 192
quadrature rule, 190
SciPy, 192
Simpson’s rule, 189
sympy.Lambda function, 190
tabulated integrand, 194
trapezoid rule, 189

NumPy arrays
attributes, 26
Boolean-valued indexing, 39
constant values, 32
creation, 30
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data types, 27
Einstein summation convention, 61
elementwise multiplication, 57
fancy indexing, 39
incremental sequences, 33
indexing and slicing expressions, 36
Kronecker product, 60
logarithmic sequences, 33
matrix creation, 35

arbitrary one-dimensional array, 35
nonzero diagonals, 35

matrix-vector multiplication, 58
memory data, 29
mesh-grid arrays, 33
multidimensional arrays, 37
nontrivial matrix multiplication, 58
properties, 34
Python lists, 31
real and imaginary parts, 29
reshaping and resizing, 41
slices, 36
vectorized expressions, 44

aggregate function, 50
arithmetic operations, 46
array operations, 56
Boolean-valued arrays, 53
conditional expressions, 53
elementary mathematical function, 50
elementwise functions, 48
logical operations, 54
set operations, 55

views, 38
uninitialized values, 34

NumPy library, 26

�       � O
ODEs. See Ordinary differential equations (ODEs)
Optimization, 147

bisection method, 150
constraints, 161

cvxopt library, 166
inequality function, 164
Lagrangian function, 162
L-BFGS-B method, 161
linear programming, 165
objective function, 163–164
optimize.minimize function, 163
SciPy SLSQP solver, 163

continuous and smooth functions, 149
convex problems, 149
feasible method, 150
import libraries, 147
minimization problem, 148

multivariate optimization
BFGS method, 155–156
brute force, 157
Hessian evaluations, 155
Newton’s method, 153
objective function, 157
optimize.minimize function, 158
slice objects, 157
steepest descent method, 153
vectorized functions, 154

nonlinear least square problem
Levenberg–Marquardt method, 159
model function, 160

nonlinear programming problem, 148
univariate optimization, 150

Ordinary differential  
equations (ODEs), 207–208

boundary value conditions, 209
canonical form, 208
direction field graph, 214
dsolve function, 214
homogeneous, 208
import modules, 207
initial value conditions, 209
Laplace transformation, 217
nonhomogeneous, 208
numerical methods, 220

Adams methods, 222
adaptive stepsize/stepsize control, 222
Euler’s method, 220
Runge-Kutta method, 221
SciPy (see SciPy)

source term, 208
standard form, 208
symbolic solution, 209

Ordinary least squares (OLS), 335

�       � P, Q
Pandas library, 285

DataFrame object, 289
apply method, 293
columns attribute, 289
drop method, 296
groupby method, 296
index attributes, 290
info method, 292
ix indexer attribute, 290
read_csv function, 291
sort_index method, 294
sortlevel method, 294
sort method, 295
sum method, 296
value_counts method, 295
values attribute, 290

NumPy arrays (cont.)
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import modules, 286
seaborn graphics library, 306

boxplot function, 308
dropna method, 308
heatmap, 310
jointplot function, 308
kdeplot function, 308
sns.set function, 306
violinplot functions, 308

Series object, 286
describe method, 288
index attribute, 287
kind argument, 288
plot method, 289

time series, 297
concat function, 305
DataFrame.plot method, 301
date_range function, 297
DateTimeIndex instance, 301
DatetimeIndex object, 298
freq keyword, 297
groupby methods, 303
info method, 301
join method, 303
mean function, 303
PeriodIndex class, 299
resample method, 304
reset_index method, 302
to_period method, 299
to_pydatetime method, 298
UNIX timestamps, 300
using read_csv, 299

Partial differential equations (PDEs), 255, 257
FDM, 257

boundary-value problem, 257
Dirichlet boundary conditions, 261
eye function, 258
ODE problem, 259
reshape method, 260
scipy.sparse module, 260, 262
two-dimensional generalization, 259

FEM
Dirichlet/Neumann type, 263
libraries, 264
strong form, 262
test function, 262
trial function, 262

FEniCS framework, 265
DirichletBC class, 270, 274
dolfin.CellFunction, 279
dolfin.Constant, 275
dolfin.Expression object, 269
dolfin.FunctionSpace class, 268
dolfin.interactive, 271
dolfin library, 266

dolfin.MeshFunction object, 281
dolfin.refine function, 279
dolfin.solve, 282
function instance, 270
mesh object, 273
RectangleMesh function, 267
refined_mesh, 280
vector method, 272

import modules, 256
Poisson model, 355
Polynomials, 171
Probability density function (PDF), 387

�       � R
RandomState object, 317
Regression, 366

ElasticNet class, 373
fit method, 369
LASSO method, 373
LinearRegression instance, 367
LinearRegression object, 368
make_regression function, 366
regularized, 369
score method, 367
SSE, 367

�       � S, T
SciPy

args argument, 227
definition, 125
double pendulum, dynamics, 233
eigenvalue equation, 134
import modules, 126
integrate.odeint, 224
linear equation system, 126

condition number, 127
higher-order polynomial model, 133
SciPy la.lstsq method, 132
LUdecomposition method, 129
parameters/constant values, 126
rectangular systems, 131
square systems, 127
symbolic variables, 130
sympy.solve function, 132
unique solution, 127
unknown model parameters, 132

Lokta–Volterra equation, 226
nonlinear equations, 136

bisection method, 138
Broyden’s method, 142
multivariate equation systems, 142
Newton’s method, 139
numerical techniques, 137
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optimize module, 141
sympy.solve function, 136
trigonometric equations, 136
univariate function, 136
univariate systems, 143
vector-valued function, 142
visualization, 144

odeint function, 223
odeint solver, 227
set_integrator method, 229
set_jac_params method, 230
sympy.lambdify, 232

Serialization, 449
Signal processing, 405

import modules, 405
signal files, 418

convolution filters, 418
FIR and IIR filters, 420

spectral analysis, 406
Fourier transform, 406
frequency-domain filter, 410
spectogram, 414
window function, 411

Slices, 36
Social component, 3
Sparse matrices, 235

eigen value problems, 245
graphs and networks, 247

add_edges_from, 248
degree method, 251
edge_color argument, 250
Tokyo Metro graph, 252
transfer attribute, 252

import modules, 235
linear algebra functions, 242
linear equation systems, 242
pyplot module, 240
in SciPy, 236
sp.sparse module, 240

Spline interpolation, 177
Spyder IDE

object inspector, 23
overview, 21
panes, 21
Python and IPython consoles, 23
shell prompt, 22
source code editor, 22

Spyder Integrated  
Development Environment, 4

Statistics, 313
import modules, 313
ndarray methods, 314
population, 314

random module, 315
choice function, 317
randint function, 315–316
RandomState class, 318
RandomState instance, 317
seed function, 317

random variable and distributions, 318
discrete Poisson distribution, 321
interval method, 320, 323
moment method, 320
SciPy stats module, 318–319, 324
stats method, 320

var and std methods, 315
statsmodels library, 333

datasets, 349
discrete regression, 351

logistic regression, 351
Poisson model, 355

import module, 334
linear regression, 343
mathematical model, 335
multivariate linear regression, 335
patsy library, 334, 336

binary-valued treatment fields, 342
DataFrame objects, 338
design_info attribute, 340
design matrix, 338, 342
formula syntax, 337
function call notation, 341
np.linalg.lstsq function, 339

simple linear regression, 335
time-series analysis, 358

ARMA model, 358
AR model, 360
fit method, 360
plot_acf function, 359–360

Steepest descent method, 153
Sum of squared errors (SSE), 367
Symbolic and arbitrary-precision integration, 200
Symbolic computing.  

See Symbolic Python (SymPy)
Symbolic Python (SymPy), 63

equation solving, 83
linear algebra, 85
LUsolve method, 87
manipulating expressions, 72

substitutions, 75
sympy.apart function, 75
sympy.cancel function, 75
sympy.collect function, 75
sympy.expand function, 73
sympy.factor function, 74
sympy.simplify function, 72
sympy.together function, 75

SciPy (cont.)



■ Index

487

mathematical expressions, 70
mathematical symbols, 64

arbitrary function, 69
constants and  

special symbols, 69
floating-point number, 68
integer class, 67
lambda functions, 70
rational number, 68
sin function, 70
unapplied function, 69
undefined functions, 70
unevaluated function, 69

numerical evalution, 76
symbolic calculus, 77

derivatives, 77
integrals, 79
limits, 82
series expansions, 80
sums and products, 83

sympy.init_printing function, 64

�       � U
Univariate optimization, 150

�       � V
Vectorized expressions

aggregate function, 50
arithmetic operations, 46
array operations, 56
Boolean-valued arrays, 53
conditional expressions, 53
elementary mathematical function, 50
elementwise functions, 48
logical operations, 54
set operations, 55

Visualization. See Matplotlib

�       � W, X, Y, Z
Weighted least squares (WLS), 335
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