

Impianti di abbattimento delle emissioni

Appunti

prof. ing. Marco Boscolo

Sommario

1.	INTRODUZIONE	9
2.	DIRETTRICI GENERALI DELLA NORMATIVA PER LA PREVENZIONE E LA RIDUZIONE DELL'INQUINAMENTO ATMOSFERICO	10
3.	LA LEGISLAZIONE NAZIONALE IN MATERIA DI INQUINAMENTO ATMOSFERICO	11
	3.1 Evoluzione del quadro legislativo	
	3.1.1 La legge 615/1966 prima "norma quadro"	11
	3.1.2 Il D.P.R. n°203/1988	
	3.1.3 I temi degli anni '90	
	3.2 La legislazione vigente	
	3.2.1 Premessa	
	3.2.2 Il D.Lgs. n°152 2006	
	3.2.3 La parte quinta del D.Lgs. 152 2006	
	3.2.3.1 Il titolo I – "Prevenzione e limitazione delle emissioni in atmosfera di impianti e attività 3.2.3.2 Il titolo II – Impianti temici civili	
	3.2.3.3 Il Titolo III – Combustibili	
	3.3 Disciplina delle emissioni industriali: Il Titolo I della Parte Quinta del D.Lgs. 152/2006	
	3.3.1 Principi generali e campo di applicazione	
	3.3.2 Definizioni	
	3.3.2.1 Inquinamento atmosferico:	
	3.3.2.2 Emissione in atmosfera:	
	3.3.2.3 Emissione convogliata	
	3.3.2.4 Emissione diffusa	
	3.3.2.6 Emissioni totali:	
	3.3.2.7 Stabilimento	
	3.3.2.8 Impianto	
	3.3.2.9 Valore limite di emissione:	
	3.3.2.10 Migliori tecniche disponibili	
	3.3.2.11 Composto organico volatile (COV):	
	3.3.2.12 Attività	
	3.3.3 Regime autorizzatorio	
	3.3.4.1 Convogliamento delle emissioni	
	3.3.4.2 Valori limite di emissione	
	3.3.4.3 Applicabilità dei limiti	
	3.4 Cenni sulla disciplina delle immissioni	
4.	VALUTAZIONE DELLA CONFORMITÀ AI LIMITI DI EMISSIONE	25
	4.1 Condizioni di marcia degli impianti	25
	4.2 Criteri di valutazione	
	4.2.1 Misure in continuo.	
	4.2.2 Misure discontinue	26
	4.2.2.1 Numero di campionamenti	26
	4.2.2.1.1 Classificazione del processo produttivo ai sensi del manuale UNICHIM N° 158	
	(Edizione 1988)	
	4.2.2.2 Durata di ciascun campionamento	
	4.2.2.3 Successione dei campionamenti	
	4.4 Ruolo dell'incertezza associata a risultati di misura"	30
	4.4.1 Misurazione e incertezza di misura	
	4.4.2 Regole decisionali	
5.	CARATTERIZZAZIONE DELLE SOSTANZE INQUINANTI	34
. =	5.1 Premessa	
	5.2 Emissioni in atmosfera	
	5.2.1 Elementi specifici di pericolosità delle emissioni	
	5.2.1.1 Composizione chimica	
	5.2.1.2 Granulometria	

	5.2.1.3 Concentrazione	36
	5.3 Principali inquinanti aerodispersi	
	5.3.1 Ossidi di zolfo (SO _X)	36
	5.3.2 Ossidi di azoto (NOX)	
	5.3.3 Monossido di carbonio (CO)	
	5.3.4 Particolato atmosferico (PM)	
	5.3.5 Benzene (C6H6)	
	5.3.6 Idrocarburi Policiclici Aromatici (IPA)	
	5.3.7 Metalli pesanti (As, Cd, Ni)	
	5.3.8 Piombo (Pb)	
	5.4 Proprietà dinamiche del particolato	
	5.4.1 Sedimentazione	
	5.4.3 Urto	
	5.4.4 Campo elettrico	
	5.5 Proprietà dei gas	
	5.5.1 Assorbimento	
	5.5.2 Adsorbimento	
	5.5.2.1 Carbone attivo	
6.	EFFLUSSO E MOVIMENTO IN CONDOTTI DEGLI AERIFORMI	49
	6.1 Teorema di Torricelli	10
	6.2 Equazione di continuità	
	6.3 Teorema di Bernulli	
	0.5 Teoretia di Bertatti	
7.	PROGETTO DEGLI IMPIANTI DI ASPIRAZIONE	58
	7.1 Tipi di cappe	50
	7.1 Tipi di cappe	
	7.3 Perdita di carico nelle cappe	
	7.4 Portata d'aria occorrente	
	7.5 Elettroventilatori	
	7.5.1 Ventilatori centrifughi	
	7.5.1.1 Pale curve rovesce	
	7.5.1.2 Pale diritte	
	7.5.1.3 Pale rivolte in avanti	72
	7.5.1.4 Prestazioni	72
	7.5.2 Ventilatori assiali	73
0	DEPURAZIONE DELLE EMISSIONI POLVEROSE	76
8.		
	8.1 Depurazione a secco	7 <i>6</i>
	8.1.1 Depuratori meccanici	
	8.1.2 Filtri a maniche.	
	8.1.3 Elettrofiltri a secco	
	8.2 Abbattimento a umido	
	8.2.1 Torri a nebulizzazione	
	8.2.2 Torri a piatti	
	8.2.3 Torri a riempimento	
	8.2.4 Idrofiltri ad azione centrifuga	
	8.2.6 Elettrofiltri a umido	
	8.2.7 Scelta del depuratore	
	8.3 Combustione	
	8.3.1 Combustori termici	
	8.3.2 Combustori termocatalitici	
	8.4 Adsorbimento	
	8.4.1 Letto filtrante carbone attivo	
	8.4.2 Iniezione di carbone attivo in polvere nei fumi da depurare	
	8.4.3 Rotoconcentrazione	
	8.5 Biofiltrazione	97
^	DIFFDIMENTI MODIMATIVA E DIDI 1000 AFIO	
9.	RIFERIMENTI NORMATIVI E BIBLIOGRAFICI	
	9.1 Leggi	
	0.2 Norma tagnisha di sattara	00

9.3 Bibliografia	99
10. APPENDICE 1: VERIFICA DEL RISPETTO DEI LIMITI DI EMISSIONE DI COV IN UN CANTIERE NAVALE	
10.1 Premessa	. 100
10.2 Il contesto operativo	
10.2.1 Fabbricato	
10.2.2.1 Ventilatori di aspirazione ed espulsione	
10.2.2.2 Scrubber	. 102
10.2.3 Lavorazioni	
10.3.1 Individuazione dei limiti di emissione	
10.3.2 Inquadramento dell'impiantistica di processo ai sensi del D.Lgs 152/06	. 106
10.3.3 Le attività svolte negli impianti autorizzati ai sensi del D.Lgs. 152/06	
10.3.4.1 Considerazioni di principio	
10.3.4.2 Individuazione dei manufatti da assoggettare alla attività di rivestimento	
10.3.4.3 Analisi del ciclo produttivo ed individuazione dei requisiti minimi da rispettare per il conseguimento delle condizioni di esercizio più gravose	110
10.3.5 Classificazione del processo produttivo	
10.3.6 Individuazione dei criteri di campionamento	112
10.3.7 Individuazione delle metodologie di misura	
10.3.8 Fund di campionamento	
10.4.1 Andamento delle prove	. 114
10.4.2 Condizioni di carico effettivamente registrate	
10.5 Valori di emissione	
10.6.1 Misure continue	. 118
10.6.2 Misure discontinue	
10.6.2.1 Criterio di valutazione	
10.7 Conclusioni	
Indice delle figure Figura 1 Il grande smog di Londra (1952)	12
Figura 2 Articolazione della parte Quinta del D.Lgs. 152/2006	16
Figura 3 Livelli di emissione	
Figura 4 Predisposizione del punto di prelievo	30
Figura 5 Punto di prelievo su condotto verticale	30
Figura 6 Incertezza di misura	
Figura 7 Intervallo di accettabilità	
Figura 8 Confronto tra valore limite e intervalli di misura	
Figura 9 Curva di ritenzione polmonare	
Figura 11 Velocità terminali di particelle di quarzo in aria ferma	
Figura 12 Velocità e forze e agenti su una particella trascinata da una corrente in movimento rotatori	
Figura 13 Moto di una corrente d'aria polverosa che investe un cilindro	
Figura 14 Curve dell'efficienza di separazione di particelle microscopiche (presenti in una corrente d'aria) ottenut	
con ostacoli di sezione trasversale diversa	
Figura 15 Principali tipologie di apparecchiature impiegate per l'assorbimento	
Figura 16 Efflusso di un liquido da un recipiente forato	49
Figura 17 Efflusso di un aeriforme da un recipiente forato	50
Figura 18 Modalità di misura delle tre pressioni in un condotto: a) totale, b) statica, c) dinamica	51

Figura 19 Perdita di carico dovute all'attrito dell'aria standard ($\rho = 1.2 \text{ kg/m3}$) in condotti circolari riferita a 10 m	ι
di condotto in $[kg/m^2]$ (1 $kg/m^2 = 9.81 Pa$)	53
Figura 20 Valore della pressione cinetica per movimento dell'aria nei condotti in funzione della velocità e della	
densità dell'aria (10^5 Pa e al 60% UR) [kg/m²]	54
Figura 21 Perdite di carico dovute a resistenze accidentali espresse in lunghezze equivalenti.	55
Figura 22 Valori del fattore di perdita di carico J per condotti a sezione circolare, quadrata o rettangolare.	56
Figura 23 Schema di una cappa aspirante	57
Figura 24 Coefficiente di moltiplicazione delle perdite di carico dovute al flusso di aria pulita in condotti per tener	
conto del fatto che nell'aria aspirata da ambienti inquinati sono presenti particelle solide	58
Figura 25 Schema di un impianto di aspirazione con indicazione dell'andamento delle pressioni	58
Figura 26 Cappe installate a bordo di macchine per la lavorazione del legno	59
Figura 27 Impianto di aspirazione localizzata dei fumi di saldatura	59
Figura 28 Cabina di verniciatura a chiusura parziale (a sinistra) e a chiusura totale (a destra)	60
Figura 29 Cappe aspiranti per impieghi specifici	60
Figura 30 Confronto fra le curve di livello delle velocità relative a una sorgente aspirante puntiforme e a condotti	
aspiranti a sezione circolare	61
Figura 31 Curve di livello delle velocità e linee di flusso in un piano passante per l'asse di un condotto aspirante a	
sezione circolare	62
Figura 32 Velocità assiali per aperture aspiranti di diametri diversi	62
Figura 33 Curve di livello della velocità e linee di flusso in un piano passante pe l'asse di simmetria di un condotto	
aspirante a sezione quadrata	63
Figura 34 Curve di livello della velocità e linee di flusso in un piano passante pe l'asse di simmetria di un condotto	
aspirante a sezione rettangolare (con rapporto tra i lati 1:3)	63
Figura 35 Curve di livello delle velocità e linee di flusso in un piano verticale passante per l'asse longitudinale di	
una cappa sovrastante una vasca di decapaggio	64
Figura 36 Impianto di aspirazione di una vasca	64
Figura 37 Curve di livello della velocità e linee di flusso nel piano assiale verticale di una cappa appoggiata su un	
piano orizzontale	65
Figura 38 Coefficiente di ingresso e fattore di perdita di carico j di alcune cappe aspiranti	66
Figura 39 Coefficiente di ingresso e fattore di perdita di carico j di alcune bocche o orifici	66
Figura 40 Correlazione fra il fattore di perdita di carico j e il coefficiente di ingresso C	66
Figura 41 Parametri ed espressioni fondamentali per la progettazione di una cappa aspirante	67
Figura 42 Girante radiale per trasporto materiale	71
Figura 43 Ventilatore centrifugo	71
Figura 44 Girante con pale rovesce	71
Figura 45 Giranti a pale diritte	72
Figura 46 Girante con pale in avanti	72
Figura 47 Curve caratteristiche e determinazione del punto di funzionamento di un ventilatore centrifugo	72
Figura 48 Orientamenti delle bocche di mandata (viste dal lato delle bocche di aspirazione)	73
Figura 49 Ventilatore centrifugo a doppia aspirazione	73
Figura 50 Ventilatore assiale	74
Figura 51 Ventilatori assiali installati su tubazioni: a) gruppo rotante accessibile attraverso sportelli apribili; b)	
gruppo rotante fissato a uno sportello apribile	74

Figura 52 Curve caratteristiche di un ventilatore assiale	75
Figura 53 Camere di sedimentazione	76
Figura 54 separatore ad urto	77
Figura 55 Ciclone separatore	77
Figura 56 Dispositivo di abbattimento polveri per impiego nell'industria siderurgica. Si notano due cicloni in	
parallelo seguiti da filtro a maniche	<i>7</i> 8
Figura 57 Filtro a maniche – Principio di funzionamento	79
Figura 58 Intelaiatura portamanica	79
Figura 59 Sistame di pulizia delle maniche	79
Figura 60 Maniche viste dal lato di ingresso dell'aria polverosa	80
Figura 61 Filtro a maniche: evidenziazione dei flussi	80
Figura 62 Elettrofiltro a piastre	81
Figura 63 Sistema di pulizia basato su percussori	81
Figura 64 Schema di torre spry	83
Figura 65 Torre a piatti – scema di funzionamento	84
Figura 66 Alcuni esempi di corpi di riempimento	84
Figura 67 Torre a riempimento	85
Figura 68 Alcuni tipi di separatore di gocce	85
Figura 69 Depuratore ad umido ad azione centrifuga	86
Figura 70 Diagramma dell'efficienza di un idrofiltro ad azione centrifuga	86
Figura 71 Depuratore Venturi – Principio di funzionamento	87
Figura 72 Venturi	87
Figura 73 Depuratore elettrostatico a umido	88
Figura 74 Campi approssimativi di impiego dei depuratori industriali	89
Figura 75 Schema di combustore termico	90
Figura 76 Incenerimento di gas provenienti da forni di essiccazione vernici mediante combustore a recupero di	
calore	90
Figura 77 Combustore termocatalitico	91
Figura 78Combustore termocatalitico (schema)	91
Figura 79 Corpi di riempimento ceramici	91
Figura 80 Relazione tra efficienza di abbattimento dell'emissione di COV e temperatura di combustione.	92
Figura 81 Schema di combustore termocatalitico	93
Figura 82 Combustore termocatalitico con recupero di calore	93
Figura 83 Filtro a carbone attivo	95
Figura 84 Colonna a carbone attivo	95
Figura 85 Sistema di iniezione di carboni attivi	96
Figura 86 Rotoconcentratore (schema)	97
Figura 87 Rotoconcentratore: rotore in zeolite	97
Figura 88 Impianti di abbattimento con rotoconcentratore	97
Figura 89 Biofiltro (schema di impianto)	98
Figura 90 Biofiltro per trattamento COV da verniciatura	98
Figura 91 Blocco in lavorazione all'interno di una delle Capannette	100
Figura 92. Capannette di Pitturazione – Fabbricato	101

Figura 93 Capannette – Planimetria e sezioni impianto termoventilazione	102
Figura 94 Scrubber	103
Figura 95 Schema di funzionamento dello scrubber	103
Figura 96 Occupazione capannette ottobre 2015 (consuntivo)	105
Figura 97. Pitturazione di elementi di parapetto	108
Figura 98 Pitturazione di elementi di paiolato. Manufatti predisposti per la pitturazione (sinistra) e relativi depos	
di vernice (destra)	109
Figura 99 Emissioni al camino durante la prova di efficienza di abbattimento	
Figura 100 Emissione al camino registrate sui quattro camini delle capannette il giorno 11/05/2016	110
Figura 101 Diagramma tipo di occupazione delle capannette	111
Figura 102 Punti di campionamento sulle capannette (sinistra) e sull'impianto trattamento lamiere (destra)	113
Figura 103 Misure elementari della concentrazione ponderata totale del camino equivalente	116
Indice delle tabelle Tabella 1 Impianti termici civili assoggettati al Titolo II	17
	1/
Tabella 2 Valori limite di qualità dell'aria relativi a biossido di zolfo, biossido e ossido di azoto, materiale parti	2.4
colato, piombo, benzene e monossido di carbonio.	
Tabella 3 Soglie di allarme per SO ₂ e NO ₂ .	
Tabella 4 Valore bersaglio e soglie di informazione e di allarme per le concentrazioni di ozono nell'aria.	
Tabella 5 Classi di emissione (UNICHIM N° 158 (Edizione 1988))	
Tabella 6 Criteri di campionamento per classe di emissione	2/
Tabella 7 valori di densità ρ , viscosità dinamica η e viscosità cinematica ν per l'aria alla pressione	
atmosferica (10 5 Pa) e a varie temperature	
Tabella 8 Valori del coefficiente di attrito del movimento entro condotti in lamiera zincata e per valori della veloc	
dell'aria compresi tra 15 e 20 m/s.	52
Tabella 9 Portata d'aria aspirata, depressione necessaria e diametro dei condotti aspiranti per alcuni impianti di fonderia	67
Tabella 10 Valori minimi della velocità dell'aria per il controllo delle emissioni prodotte in alcune lavorazioni	
industriali	68
Tabella 11 Velocità frontali dell'aria nelle cappe per mole pendolari	
Tabella 12 Valori della velocità dell'aria necessari per trasportare alcune polluzioni industriali (m/s)	
Tabella 13 Dati di targa dei ventilatori	
Tabella 14 Consumo settimanale di riferimento	
Tabella 15 Parametri di funzionamento delle Capannette da rispettare durante i cinque giorni di campionamento	
Tabella 16 Individuazione della classe di emissione per i due impianti considerati	
Tabella 17 Quantitativi di vernice consumati nella settimana di prove	
Tabella 18 Condizioni di carico degli impianti	
Tabella 19 Medie ponderate orarie	
Tabella 20 Media di cinque prelievi consecutivi dalle 11 alle 20 del 11/05/2016	
Tabella 21 Media di cinque prelievi consecutivi dalle 17 alle 23.59 del 12/05/2016	
Tabella 22 Valutazione dei risultati (misurazioni continue)	
Tabella 23 Valutazione dei risultati	
2 or other 20 , armino, rotte wer i in minute	

1. Introduzione

Il corso di *impianti di abbattimento delle emissioni*, specificatamente rivolto agli allievi ingegneri della Laurea Magistrale in Ingegneria Meccanica, viene acceso nell'anno accademico 2016/17 sulla scorta dell'esperienza ormai ventennale maturata dal docente nel campo del controllo delle emissioni in atmosfera degli impianti industriali.

Il corso, complementare a quello di *impianti meccanici* che ne costituisce l'implicito presupposto, si pone l'ambizioso programma di esplorare le diverse direttrici di una materia complessa e stimolante secondo un approccio necessariamente multidisciplinare che spazia dal Diritto alla Fisica nelle sue varie declinazioni, alla tecnologia.

Lo scopo è quello di dare un utile contributo alla formazione di ingeneri in grado di inserirsi agevolmente nei settori della protezione ambientale, indipendentemente dall'organizzazione nella quale si troveranno ad operare (Azienda, Autorità di Controllo, Società di Ingegneria, ecc.), capaci di interagire con gli altri protagonisti del settore attraverso la conoscenza di un linguaggio comune.

Va infatti rilevato che quanto trattato non può assolutamente ritenersi esaustivo ai fini di una sufficiente formazione in materia ambientale, non già per gli inevitabili limiti di tempo che delimitano il corso, ma per la deliberata rinuncia alla considerazione delle rimanenti matrici ambientali (acqua e suolo) che un'esaustiva trattazione richiederebbe.

Dopo un sommario richiamo della genesi e dell'evoluzione normativa nel campo della prevenzione e riduzione dell'inquinamento atmosferico, viene presentato e commentato il quadro legislativo vigente nelle sue più ampie sfaccettature, dall'enunciazione dei principali concetti, alla definizione dei limiti di emissione, alla modalità di esecuzione delle misure e all'interpretazione dei risultati.

Segue una disamina delle principali emissioni in relazione ai specifici fattori di pericolosità quali la tossicità, le modalità di diffusione nell'ambiente e l'assimilazione da parte degli organismi viventi.

La seconda parte del corso, di taglio più "tradizionale" per degli allievi ingeneri, è dedicato a richiami di idraulica, con specifico riferimento al moto di aeriformi entro condotti, e di macchine, limitatamente alle macchine aerauliche che li realizzano. In conclusione si presentano le principali tecniche di abbattimento con approccio sistemico.

Il corso si completa con delle esercitazioni in aula su casi di studio proposti di volta in volta dal docente che coprono la totalità degli argomenti trattati.

2. Direttrici generali della normativa per la prevenzione e la riduzione dell'inquinamento atmosferico

Le accresciute capacità di indagine dei fenomeni connessi all'inquinamento hanno consentito di correlare in termini sempre più efficaci i rapporti di causa-effetto tra *immissioni* ed *emissioni*, permettendo di definire limiti di emissione rispettosi e coerenti con il conseguimento di livelli "accettabili" o "critici" per gli inquinanti (immissioni), in grado di tener conto del progresso tecnologico, delle conseguenze sullo sviluppo economico nonché delle sempre più spinte acquisizioni della scienza.

Le direttrici fondamentali della normativa comunitaria e internazionale improntata a questo duplice approccio sono di seguito brevemente richiamati.

- 1. Fissazione di limiti specifici alle emissioni:
 - a. <u>Impianti industriali, grandi impianti di combustione, impianti tecnologici e di servizio</u>: definizione di valori limite di emissione espressi sia in termini di concentrazione che, in taluni casi, di flusso di massa, riferiti ad un amplissimo numero di inquinanti, con limiti sia di tipo generale che riferiti ad uno specifico ciclo tecnologico;
 - b. <u>Impianti di riscaldamento domestico</u>: definizione di valori di emissione specifici del settore e concomitante riduzione dei consumi attraverso l'efficientamento energetico e la corretta manutenzione degli impianti;
 - c. <u>Autoveicoli altri mezzi di trasporto, macchine operatrici</u>: fissazione di limiti sia per l'omologazione (EURO6) che per l'esercizio (controllo periodico delle emissioni dei veicoli).
- 2. Disciplina delle caratteristiche merceologiche dei combustibili, con specifiche disposizioni riferite ai seguenti aspetti:
 - a. <u>Combustibili per uso industriale</u>, in relazione alla natura del combustibile (solido, liquido, gassoso) e alla potenza termica degli impianti di utilizzazione;
 - b. <u>Combustibili per usi civili</u>, in relazione alla natura del combustibile (solido, liquido, gassoso) e alla potenza termica degli impianti di utilizzazione;
 - c. <u>Benzine</u>, con particolare riferimento al tenore di piombo, benzene, idrocarburi aromatici ed olefinici e zolfo:
 - d. Altri carburanti per autotrazione, compresi quelli innovativi (biodiesel, alcol, ecc.).
- 3. Disciplina delle caratteristiche e degli obiettivi di qualità dell'aria ambiente con disposizioni riguardanti:
 - a. Le concentrazioni di un limitato assortimento di parametri, per i quali si fissano:
 - *i. Valori limite* che non dovrebbero essere mai superati, disposti al fine di evitare, prevenire o ridurre gli effetti nocivi per la salute umana o per l'ambiente;
 - Soglie di allarme, riferite a situazioni acute di inquinamento, rappresentative di condizioni di rischio per la salute umana, anche nel caso di esposizione di breve periodo;
 - *iii. Valori obiettivo*, da conseguire entro determinati limiti temporali, per evitare, nel lungo periodo, ulteriori effetti dannosi per la salute umana e per l'ambiente;
 - b. Le modalità di valutazione della qualità dell'aria ambiente;
 - c. <u>I piani di azione e le misure</u> da assumere per il miglioramento della qualità dell'aria in corrispondenza delle zone in cui si riscontri il superamento o il rischio di superamento dei valori limite, ovvero per il mantenimento dei livelli già conseguiti nei contesti in cui i livelli limite risultano soddisfatti, ferma restando, in entrambi i casi, l'esigenza di ulteriori azioni di periodo medio-lungo finalizzate al conseguimento dei valori-obiettivo.
- 4. Disposizioni per la riduzione o la cessazione della produzione o dell'uso di determinate sostanze pericolose con particolare riferimento a:
 - a. Sostanze capaci di depauperare lo strato di ozono stratosferico (CFC)
 - b. Diossine

- c. Composti Organici Volatili¹
- 5. Fissazione di obiettivi generali di riduzione da conseguire a livello nazionale e/o internazionale per talune categorie di emissioni, con conseguente prevedibile impatto sulle disposizioni relative ai limiti specifici riferiti alle singole tipologie emissive.

3. La legislazione nazionale in materia di inquinamento atmosferico

3.1 Evoluzione del quadro legislativo

3.1.1 La legge 615/1966 prima "norma quadro"

La prima norma quadro adottata dall'ordinamento nazionale italiano in materia di tutela dell'ambiente fu la legge 615/1966 "Provvedimenti contro l'inquinamento atmosferico".

Il problema dell'inquinamento atmosferico, e della necessità di una più organica normativa per la sua prevenzione e il suo controllo, era balzato, nell'immediato secondo dopoguerra, alla ribalta internazionale dopo il famoso "Grande smog di Londra²" della prima settimana del mese di dicembre 1952, durante la quale nell'area metropolitana londinese si registrarono 12000 decessi riconducibili all'acuta situazione di degrado della qualità dell'aria intervenuta in quell'occasione, a causa dell'entità delle emissioni e di una situazione metereologica eccezionalmente avversa. Ne derivò un dibattito, prima circoscritto al mondo scientifico, ma poi apertosi anche ai decisori politici, che condusse all'adozione, nei diversi Paesi, di specifici provvedimenti per prevenire e contrastare il fenomeno.

¹ La classe dei composti organici volatili, (COV) o VOC (dall'inglese Volatile Organic Compounds), comprende diversi composti chimici formati da molecole dotate di gruppi funzionali diversi, aventi comportamenti fisici e chimici differenti, ma caratterizzati da una certa volatilità, caratteristica, ad esempio, dei comuni solventi organici aprotici apolari, come i diluenti per vernici e benzine. Tali composti vengono classificati come COV (o VOC in inglese) e comprendono gli idrocarburi (contenenti, come elementi unici, carbonio e idrogeno, e che si dividono in alifatici e aromatici) e i composti contenenti ossigeno, cloro o altri elementi oltre al carbonio e l'idrogeno, come gli aldeidi, gli eteri, gli alcooli, gli esteri, i clorofluorocarburi (CFC) ed gli idroclorofluorocarburi (HCFC).

La legislazione italiana definisce composti organici volatili quei composti organici che, alla temperatura di 293,15 K (20 °C), abbiano una pressione di vapore di 0,01 kPa o superiore.

L'emissione in atmosfera dei composti organici volatili concorre alla formazione del cosiddetto "Smog Fotochimico", ovvero a un fenomeno di inquinamento, favorito dalla radiazione ultravioletta solare, che vede coinvolti, oltre ai COV anche gli ossidi di azoto (provenienti da ogni combustione: traffico, riscaldamento, produzioni industriali, stoccaggio e distribuzione carburanti, ecc.); tale fenomeno si evidenzia con la creazione di Ozono nella troposfera, ovvero nella parte dell'atmosfera nella quale viviamo.

² Una coltre di smog, nebbia densa e maleodorante, avvolse Londra a partire dal 5 dicembre 1952 e durò fino al 9 dicembre 1952. Causò la morte di 12 000 persone, a cui si devono aggiungere anche 100 000 malati. Le cause del fenomeno vanno ricercate in un brusco aumento del livello di inquinamento verificatosi nei giorni precedenti. Durante i primi giorni di dicembre una fredda nebbia calò su Londra. A causa del freddo i londinesi aumentarono la potenza degli impianti di riscaldamento e cominciarono a bruciare più carbone del normale. Il conseguente inquinamento dell'aria costituito dai fumi di combustione fu intrappolato da una inversione termica formata da una densa massa di aria fredda. La concentrazione di inquinanti, fumo freddo in particolare, crebbe drammaticamente. Il problema fu reso peggiore dall'uso per riscaldamento di carbone di bassa qualità, ad alto contenuto di zolfo, per permettere l'esportazione del carbone di alta qualità a causa della critica situazione economica della Gran Bretagna dopo la Seconda guerra mondiale. La nebbia fu così spessa che la circolazione automobilistica divenne difficile o impossibile. La gente camminava appoggiata ai muri. Le autorità raccomandarono di tenere a casa i bambini per il rischio che potessero perdersi. Lo smog entrò facilmente anche dentro gli edifici e concerti, rappresentazioni teatrali e proiezioni cinematografiche furono sospese poiché la scena o lo schermo non erano visibili al pubblico. I servizi medici compilarono statistiche per le quali ci furono nella prima settimana 4 000 decessi aggiuntivi dovuti a infezioni dell'apparato respiratorio, ipossia dovuta all'ostruzione a causa del pus del passaggio di aria nei polmoni, insufficienza respiratoria, bronchite acuta e polmonite. Ulteriori 8 000 morti seguirono nelle settimane e nei mesi successivi.

Figura 1 Il grande smog di Londra (1952)

Figlia della cultura degli anni '60 - e delle caratteristiche dello sviluppo di quel tempo, - la legge "antismog" ravvisava le fonti prioritarie dell'inquinamento atmosferico nelle emissioni degli impianti di riscaldamento domestico e degli impianti industriali, riservando attenzione ben inferiore alle sorgenti mobili e agli effetti del traffico veicolare. Essa conteneva tuttavia una rudimentale ancorché indiretta definizione di inquinamento atmosferico, da intendersi come alterazione delle normali condizioni di salubrità dell'aria comportante pregiudizio diretto o indiretto alla salute dei cittadini e danno ai beni pubblici e privati, causata dell'emissione in atmosfera di "fumi, polveri, gas e odori", derivanti dall'esercizio "di impianti termici, alimentati con combustibili minerali solidi o liquidi, nonché di impianti industriali e mezzi di trasporto".

Le disposizioni esecutive della L. n. 615/1966 erano demandate per le materie oggetto del suo campo d'applicazione a Regolamenti applicativi, emanati poi negli anni successivi, dei quali è sopravvissuto fino all'entrata in vigore del D.Lgs. n. 152/ 2006 quello relativo alla disciplina degli impianti di riscaldamento civile.

Per quanto riguarda le **emissioni industriali**, la norma centrale andava individuata nella prescrizione che tutti gli stabilimenti industriali dovessero essere dotati, in conformità al Regolamento d'esecuzione riguardante il settore, di "impianti, installazioni o dispositivi" tali da contenere entro i più ristretti limiti consentiti dal progresso della tecnica, "l'emissione di fumi o gas o polveri o esalazioni" in grado di costituire pericolo per la salute pubblica e/o contribuire all'inquinamento atmosferico: ciò, per altro, non in modo omogeneo sull'intero territorio nazionale, ma solo nelle zone potenzialmente esposte ad un inquinamento significativo, denominate rispettivamente Zona A e Zona B¹, con disposizioni più

a) i Comuni dell'Italia centro-settentrionale con popolazione da settanta mila a trecentomila abitanti, ovvero con popolazione inferiore, ma con caratteristiche industriali o urbanistiche o geografiche o meteorologiche particolarmente sfavorevoli nei riguardi dell'inquinamento atmosferico, secondo il giudizio della Commissione centrale di cui all'art. 3 della medesima legge;

¹ L'art. 2 della legge 615/66 prevedeva che ai fini della prevenzione dell'inquinamento atmosferico, il territorio nazionale fosse suddiviso in due zone di controllo, denominate rispettivamente zona A e zona B.

La zona A, in tal senso, comprendeva:

b) i Comuni dell'Italia meridionale ed insulare con popolazione da trecentomila abitanti ad un milione, ovvero con popolazione inferiore, ma con caratteristiche industriali o urbanistiche o geografiche o meteorologiche particolarmente sfavorevoli nei riguardi dell'inquinamento atmosferico secondo il giudizio della predetta Commissione centrale;

c) le località che, a parere della stessa Commissione, rivestissero un particolare interesse pubblico. La zona B comprendeva invece:

a) i Comuni dell'Italia centro-settentrionale con popolazione superiore a 300.000 abitanti ed i Comuni dell'Italia meridionale ed insulare con popolazione superiore a 1.000.000 di abitanti;

b) i Comuni di cui sopra, con popolazione anche inferiore a quelle sopra indicate, purché presentanti caratteristiche industriali o urbanistiche e geografiche o meteorologiche particolarmente sfavorevoli nei riguardi dell'inquinamento atmosferico, secondo il giudizio della citata Commissione centrale.

Sulla restante parte del territorio nazionale, esclusa *ex lege* dal campo d'applicazione della legge 615/66, non era prevista alcuna forma di controllo o di disciplina dell'inquinamento atmosferico.

rigorose nelle seconde rispetto alle prime. Analogamente, anche la disciplina degli impianti di riscaldamento domestico riguardava solo le Zone A e B, e non l'intero territorio nazionale.

Nel corso degli anni '70, oltre ai regolamenti esecutivi della L. n. 615/1966, venivano approvati primi provvedimenti riferiti alle **emissioni degli autoveicoli**, di alcune **specifiche tipologie di impianti industriali** e alla **disciplina dei combustibili e dei carburanti per autotrazione**, questi ultimi allora caratterizzati dalla presenza di elevate concentrazioni di piombo tetraetile;

Dovevano trascorrere oltre tre lustri dall'entrata in vigore della L. n. 615/1966 perché nell'ordinamento nazionale fossero introdotte prime disposizioni concernenti la qualità dell'aria: ciò avvenne con D.P.C.M. 28 marzo 1983 "Limiti massimi di accettabilità delle concentrazioni e di esposizione relativi ad inquinanti dell'aria nell'ambiente esterno", che fissava per la prima volta valori di concentrazione limite per i principali inquinanti aerodispersi, validi su tutto il territorio nazionale, e prevedeva l'adozione di Piani di Risanamento d'iniziativa regionale, per conseguirne il rispetto, là dove non risultassero rispettati, introducendo la nozione di "standard di qualità dell'aria".

L'istituzione del Ministero dell'Ambiente, intervenuta con L. 8 luglio 1986, n. 349, impresse una decisiva accelerazione alla definizione della normativa e della legislazione per tutti i *campi* della tutela dell'ambiente, e perciò anche nel settore dell'inquinamento atmosferico.

Primo tangibile risultato di tale rinnovato impegno fu l'adozione del D.P.R. 24 maggio 1988, n. 203 "Attuazione delle direttive CEE nn. 80/779, 82/19884, 84/ 360 e 85/203 concernenti norme in materia di qualità dell'aria, relativamente a specifici agenti inquinanti, e di inquinamento prodotto dagli impianti industriali, ai sensi dell'art. 15 della L. 16 aprile 1987, n.183", che nel recepire le fondamentali direttive comunitarie nel frattempo emanate nel corso della prima metà degli anni '80, unificava in un unico provvedimento le disposizioni concernenti la disciplina delle emissioni degli impianti industriali e tecnologici, (fatta eccezione per gli impianti di riscaldamento civile, che continuavano ad essere regolamentati dalla L. n. 615/1966), e quella sulla "qualità dell'aria ambiente"

3.1.2 II D.P.R. n°203/1988

Con il D.P.R. n. 203/1988, dotato del respiro di "Norma quadro" sulla tutela dall'inquinamento atmosferico, erano stati dettati i fondamenti della disciplina riguardante:

- tutti gli impianti che possono dar luogo ad emissioni in atmosfera;
- i valori limite ed i valori guida per gli inquinanti dell'aria nell'ambiente esterno ed i relativi metodi di campionamento, analisi e valutazione;
- le caratteristiche merceologiche dei combustibili ed il loro impiego.

Sul fronte delle emissioni le più significative novità riguardavano l'introduzione di un regime autorizzatorio che diventò da allora uno degli aspetti salienti della normativa ambientale.

Si sanciva a tal riguardo, in termini di principio, **l'obbligo di preventiva autorizzazione** espressa per tutti i nuovi impianti in grado di produrre emissioni in atmosfera, da rilasciarsi, previa domanda del gestore opportunamente supportata (dal progetto dell'impianto e da una Relazione tecnica), da parte dell'Autorità competente (Regione o altro ente – spesso le provincie – da essa delegato).

Venivano così a cessare la funzione autorizzatoria prima in capo ai Sindaci e nel contempo più puntualmente disciplinati sia gli adempimenti delle aziende, che della Pubblica amministrazione e degli Organi di controllo.

Mentre la definizione dei limiti per i nuovi impianti era infatti affidata alla discrezionale valutazione delle Regioni sulla base delle migliori tecnologie (allora) disponibili, i valori limite per le emissioni degli impianti esistenti furono invece disciplinati da uno dei più importanti provvedimenti d'attuazione del D.P.R. n. 203/1988 ossia il D.M. 12 luglio 1990 "Linee guida per il contenimento delle emissioni inquinanti degli impianti industriali e la fissazione dei valori minimi di emissione". In esso si fissavano:

- le linee guida per il contenimento delle emissioni degli impianti esistenti;
- i valori di emissione minimi e massimi per gli impianti esistenti;
- i metodi generali di campionamento, analisi e valutazione delle emissioni;

- i criteri per l'utilizzazione delle tecnologie disponibili per il controllo delle emissioni;
- i criteri temporali per l'adeguamento progressivo degli impianti esistenti.

Le emissioni venivano disciplinate, attraverso la fissazione di connessi valori limite, ricorrendo a i seguenti criteri:

- con riferimento alla concentrazione;
- con riferimento ai flussi di massa (massa di sostanza inquinante emessa nell'unità di tempo);
- con riferimento ai fattori di emissione caratteristici di taluni processi e attività (rapporto fra massa di sostanza inquinante emessa e unità di misura specifica di prodotto elaborato o fabbricato).

Il Decreto prevedeva "limiti generali" applicabili, con riferimento a gruppi di sostanze inquinanti, alle emissioni di qualsiasi impianto, purché in presenza di un flusso di massa al di sopra di determinate soglie di rilevanza; e, per circa sessanta tipologie di impianti industriali e tecnologici, anche "limiti specifici", sostitutivi di quelli generali, per ciascuno dei parametri tipici del processo produttivo considerato.

Il D.P.R. n. 203/1988 non riguardava, per altro, solo il controllo delle emissioni da impianti fissi, ma si era proposto anche di fissare i **principi strategici sulla qualità dell'aria ambiente** nonché i principi per la **disciplina dei combustibili** significativi ai fini dell'inquinamento atmosferico.

3.1.3 I temi degli anni '90

Mentre gli anni '80 si chiudevano coi decreti attuativi del D.P.R. n. 203/1988, e con l'adozione di un primo provvedimento - si trattò del D.M. 8 maggio 1989 - sulla "limitazione delle emissioni nell'atmosfera di taluni inquinanti originati dei grandi impianti di combustione", il successivo decennio fu caratterizzato dall'approccio ai temi riguardanti:

- gli episodi di inquinamento acuto ed il miglioramento della qualità dell'aria in ambito urbano¹;
- la **riduzione del piombo** e del benzene nella benzina e il miglioramento della qualità degli altri carburanti per autotrazione;
- il **recepimento di diverse direttive comunitarie riguardanti** le emissioni degli autoveicoli² e l'inquinamento prodotto dagli impianti d'incenerimento di rifiuti.

Una pluralità di temi, in sostanza, più indirizzati al versante della qualità dell'aria, che non, fatta eccezione per gli inceneritori, alle emissioni degli impianti industriali e tecnologici, la cui disciplina continuò ad essere governata dal D.P.R. n. 203/1988 e relativi decreti d'attuazione.

Gli anni '90 si chiudevano con l'introduzione nell'ordinamento nazionale della normativa IPPC relativa alla prevenzione e riduzione integrate dell'inquinamento³.

• DD.MM. 15 aprile 1994 e 25 novembre 1994, che diedero luogo, tra l'altro, all'introduzione (e poi all'aggiornamento e all'integrazione) di va/ori d'attenzione e d'allarme per alcuni inquinanti caratteristici delle aree urbane, alla definizione dei provvedimenti locali da assumere in caso di superamento di tali soglie e alla previsione del rilevamento sistematico di **benzene** e **idrocarburi policiclici aromatici**, fissando i relativi obiettivi di qualità;

Prof Ing. Marco Boscolo

¹ Al proposito si richiamano i seguenti provvedimenti:

[•] Il D.M. 21 aprile 1999, n. 163, col quale si definirono criteri operativi per far fronte all'inquinamento da traffico urbano, ai sensi del quale i Comuni con più di 150.000 abitanti avrebbero dovuto:

[•] applicare le misure di limitazione del traffico ai sensi dell'(allora) nuovo codice della strada;

[•] vietare la circolazione nei centri abitati a tutti gli autoveicoli che non avessero effettuato il controllo dei gas di scarico;

[•] acquisire i dati di monitoraggio della qualità dell'aria per la predisposizione di rapporti annuali al Ministero dell'Ambiente, e per la definizione di misure, anche strutturali, per il contenimento dell'inquinamento atmosferico da traffico urbano;

[•] inoltre i Comuni avrebbero dovuto adottare misure di limitazione del traffico nei casi in cui i valori medi annuali di benzene, IPA e PM10 superassero i valori obiettivo di cui al D.M. 25 novembre 1994, ovvero, si riscontrassero frequenti e significativi superamenti dei livelli di attenzione per biossido di zolfo, biossido di azoto, particelle sospese, monossido di carbonio e ozono, anch'essi stabiliti dal decreto appena richiamato.

² Diventa obbligatorio l'impiego della marmitta catalitica sulle automobili.

³ Ci si riferisce alla Direttiva 96/61 CE recepita attraverso il D.Lgs. 4 agosto 1999, n. 372, poi pressoché totalmente abrogato dal successivo D.Lgs. 18 febbraio 2005, n. 59, di "attuazione integrale" della citata Direttiva.

3.2 La legislazione vigente

3.2.1 Premessa

L'attività normativa prodotta fino alla fine degli anni 90 sulla tutela dell'aria e sul contenimento delle emissioni aveva dato luogo ad un numero di provvedimenti emanati in un lunghissimo arco temporale tale da renderne pressoché impossibile anche la sola elencazione, ed caratterizzata da sovrapposizioni, disposizioni contrastanti, norme speciali riferite a particolari fattispecie disseminate su più provvedimenti, da far venir meno la certezza della loro corretta applicazione, anche da parte di chi si fosse proposto di seguire scrupolosamente le regole.

Emergeva pertanto l'opportunità di procedere con un intervento di integrazione e coordinamento capace di garantire al contempo una valida tutela all'ambiente e l'adeguamento alla normativa europea nel frattempo emanata. Sono queste le motivazioni alla base del conferimento al Governo della delega per il riordino, il coordinamento e l'integrazione della legislazione in materia di ambiente con la legge 308/2004.

3.2.2 II D.Lgs. n°152 2006

La delega ha trovato attuazione con il D.Lgs 3 aprile 2006 n.152 (Codice dell'ambiente), unico corpus normativo composto da 318 articoli, 45 allegati, una decina di appendici e suddiviso in sei parti; pubblicato su G.U. 14/4/2006 n.88.

Il D.Lgs 152/2006 è suddiviso in 6 parti¹:

- la prima contiene le disposizioni comuni e i principi generali
- la seconda è relativa alle procedure per la valutazione ambientale strategica, per la valutazione di impatto ambientale e per l'autorizzazione ambientale integrata.
- la terza parte si incentra sulla difesa del suolo, sulla lotta alla desertificazione, sulla tutela delle acque e gestione delle risorse idriche.
- nella quarta viene esposta la disciplina riguardante la gestione dei rifiuti e la bonifica dei siti inquinati.
- nella quinta si affronta il tema della tutela dell'aria e della riduzione delle emissioni in atmosfera
- nella sesta ed ultima parte viene regolamentata la tutela risarcitoria contro i reati ambientali.

Malgrado lo sforzo meritoriamente speso nell'intento di unificazione di cui si è detto in precedenza, sono rimasti esclusi dal testo unico sull'ambiente e perciò demandati ad altri disposti normativi:

- Le procedure e i provvedimenti autorizzativi cui possono restare assoggettati taluni particolari tipi di impianti che pure danno luogo ad emissioni atmosferiche;
- Le prescrizioni sui valori limite di emissione degli inceneritori di rifiuti o le emissioni di CO₂ ed altri gas serra;

¹ Il decreto ha nel frattempo subito diverse modifiche. Di seguito si richiamano le principali.

Con il D.Lgs. 8 novembre 2006, n.284 è stata apportata la prima serie di modifiche al Codice dell'ambiente, che ha interessato gli articoli 159, 160, 170, 207 e 224.

Nel 2008 è stato emanato il D.Lgs. 16 gennaio 2008 n.4 che ha introdotto i principi di diritto ambientale (art. 3), ha riscritto la parte II contenente le norme in materia di VIA e VAS, ha modificato la disciplina delle acque (parte III) ed è intervenuto soprattutto nella disciplina dei rifiuti (parte IV).

Una nuova modifica al codice dell'ambiente è stata apportata con il D.Lgs. 29 giugno 2010, n.128. il decreto in questione apporta correzioni ed integrazioni alla parte I, parte II e parte V (norme in materia di tutela dell'aria e di riduzione delle emissioni in atmosfera).

Accanto a questi massicci interventi, altri provvedimenti sono intervenuti a modificare singole parti del codice ambientale: il D.Lgs. 3 dicembre 2010, n.205 che ne modifica in maniera rilevante la parte IV per dare attuazione alla direttiva 2008/98/CE in materia di rifiuti e del D.Lgs. 10 dicembre 2010 n.219 che apporta alcune modifiche in materia di tutela delle acque nella parte III.

Il 4 marzo 2014 viene emanato il D.Lgs. n.46 per attuare la direttiva europea 2010/75/CE relativa alle emissioni industriali (prevenzione e riduzione integrate dell'inquinamento).

Le ultime modifiche sono state apportate con la legge 20/2015, 68/2015, 115/2015 e 125/2015

• Le prescrizioni per la disciplina delle caratteristiche di determinati prodotti impiegati in processi produttivi, primi fra tutti i Composti Organici Volatili (COV).

3.2.3 La parte quinta del D.Lgs. 152 2006

La Parte quinta "Norme in materia di tutela dell'aria e delle riduzione delle emissioni in atmosfera" del D.lgs. 152/2006 è composta da trentadue articoli e dieci allegati, articolati su tre titoli:

- Titolo 1 "Prevenzione e limitazione delle emissioni in atmosfera di impianti e attività"
- Titolo 2 "Impianti termici civili"
- Titolo 3 "Combustibili"

Figura 2 Articolazione della parte Quinta del D.Lgs. 152/2006

3.2.3.1 Il titolo I – "Prevenzione e limitazione delle emissioni in atmosfera di impianti e attività

Il Titolo I disciplina le emissioni da impianti fissi, industriali e tecnologici, compresi i grandi impianti di riscaldamento civile, che producono emissioni in atmosfera con disposizioni specifiche per le diverse categorie impiantistiche che vengono specificate negli allegati. Vengono inoltre date prescrizioni sia sulle emissioni "convogliate" che su quelle "diffuse", siano esse tecnicamente convogliabili, o meno.

Degna di nota risulta la riforma delle procedure autorizzative con il ricorso alla *Conferenza dei Servizi* e l'introduzione di una "durata a termine" delle autorizzazioni rilasciate.

3.2.3.2 Il titolo II – Impianti temici civili

Il titolo definisce innanzitutto le definizioni di *impianto termico* e *impianto termico civile* nei termini di seguito riportati:

- Impianto termico civile: Impianto termico la cui produzione di calore è destinata, anche ad edifici ad uso non residenziale, al riscaldamento o alla climatizzazione di ambienti o al riscaldamento di acqua per usi igienici e sanitari.
- Impianto termico: impianto destinato alla produzione di calore costituito da uno o più generatori di calore e da un unico sistema di distribuzione e utilizzazione di tale calore, nonché di appositi dispositivi di regolazione e di controllo

Si precisa che il titolo disciplina soltanto gli impianti termici civili aventi una potenza termica nominale compresa tra un minimo di 35 kW e un massimo che dipende dal tipo di combustibile impiegato

Prof Ing. Marco Boscolo Dispense del corso di Impianti di abbattimento delle emissioni

(Tabella 1), essendo quelli di potenza superiore assoggettati al Titolo I (e che pertanto vengono considerati alla stregua degli impianti industriali) e quelli di potenza inferiore (le caldaiette domestiche) disciplinati da altri disposti legislativi (DPR 412/93 e s.m.i.) limitatamente alla progettazione, installazione, esercizio e manutenzione, che riguardano l'intero settore del riscaldamento civile indipendentemente dalla potenzialità dell'impianto.

Tabella 1 Impianti termici civili assoggettati al Titolo II

Tipo di impianto	Intervallo di potenza
Impianti alimentati a carbone da vapore, coke metallurgico,	0.035MW <p.t.n.<3 mw<="" td=""></p.t.n.<3>
coke da gas, antracite, prodotti antracitosi o miscele di antracite	
e prodotti antracitosi	
Impianti alimentati a biomasse, gasolio tal quale o in emulsione,	0.035MW <p.t.n.<1 mw<="" td=""></p.t.n.<1>
o biodiesel	
Impianti alimentati ad olio combustibile, tal quale o in	0.035MW <p.t.n.<0.3 mw<="" td=""></p.t.n.<0.3>
emulsione	
Impianti alimentati a metano o GPL	0.035MW <p.t.n.<0.3 mw<="" td=""></p.t.n.<0.3>
Impianti alimentati a biogas	0.035MW <p.t.n.<3 mw<="" td=""></p.t.n.<3>

La disciplina tratta i profili di tipo amministrativo (il proprietario, il responsabile per l'esercizio e la manutenzione, l'Autorità competente, ecc.) i requisiti tecnici e costruttivi, i valori limite di emissione (polveri totali < 50 mg/Nm³) nonché le disposizioni relative all'esercizio e alla conduzione degli impianti termici (controllo periodico delle emissioni, abilitazione per il personale, ecc.).

3.2.3.3 Il Titolo III – Combustibili

Il Titolo III è prevalentemente incentrato sulla disciplina delle caratteristiche merceologiche dei combustibili ai fini del loro impiego negli impianti contemplati ai Titoli I e II e delle relative condizioni di utilizzo. Esso comprende anche le prescrizioni finalizzate ad ottimizzare il rendimento di combustione degli impianti industriali e tecnologici, nonché gli impianti termici civili, i metodi di misura delle caratteristiche merceologiche dei combustibili, e norme in materia di combustibili per uso marittimo.

3.3 Disciplina delle emissioni industriali: Il Titolo I della Parte Quinta del D.Lgs. 152/2006

3.3.1 Principi generali e campo di applicazione

Il Titolo I "Prevenzione e limitazione delle emissioni in atmosfera di impianti e attività" si applica a tutti gli impianti (inceneritori esclusi, che restano specificatamente normati) che producono emissioni in atmosfera, disciplinandolo il procedimento autorizzatorio e stabilendo:

- I valori di emissione;
- Le prescrizioni per talune tipologie di impianti
- I metodi di campionamento e di analisi delle emissioni;
- I criteri per la valutazione della conformità dei valori misurati ai valori limite.

3.3.2 Definizioni

Di seguito si riportano, commentandole, alcune delle definizioni dettate dall'articolo 268 del Decreto in esame.

3.3.2.1 Inquinamento atmosferico:

Ogni modificazione dell'aria atmosferica, dovuta all'introduzione nella stessa di una o di più sostanze in quantità e con caratteristiche tali da ledere o da costituire un pericolo per la salute umana o per la qualità dell'ambiente oppure tali da ledere i beni materiali o compromettere gli usi legittimi dell'ambiente;

La definizione sottende ad un'alterazione (percettibile almeno dagli strumenti di misura) dello stato di qualità dell'aria derivante dall'immissione di sostanze – sotto forma di particelle solide, liquide o gassose – che ordinariamente non rientrano tra quelle che la compongono, in termini tali da provocare effetti documentati, o prevedibili, sulla biosfera e sui suoi elementi costitutivi, compresi i manufatti.

Detti effetti non devono necessariamente essere lesivi della salute umana o dei beni materiali, essendo sufficiente la compromissione della qualità dell'ambiente o dei suoi usi legittimi. In tale accezione l'inquinamento da odori molesti rientra a pieno titolo nella definizione di inquinamento atmosferico.

3.3.2.2 Emissione in atmosfera:

Qualsiasi sostanza solida, liquida o gassosa introdotta nell'atmosfera che possa causare inquinamento atmosferico e, per le attività di cui all'articolo 275, qualsiasi scarico, diretto o indiretto, di COV nell'ambiente;

Lo scarico di sostanze indesiderabili in atmosfera può avere origini *naturali* o *antropiche*: tra le prime basterà ricordare le eruzioni vulcaniche e gli incendi boschivi spontanei; in quanto alle seconde, quelle prioritarie sono, come a tutti noto, rappresentate dagli scarichi dei mezzi di trasporto, dalle emissioni derivanti dagli impianti industriali e dal riscaldamento degli ambienti di vita e di lavoro.

Sovente si distingue tra *emissioni* e *immissioni*. Le prime sono misurate al camino mentre le seconde vengono misurate nell'aria ambiente, in genere al di fuori del perimetro industriale e danno la misura dell'inquinamento.

Con riferimento alle polveri, a tutti sono noti i fenomeni di inquinamento che, soprattutto d'inverno, caratterizzano aree anche molto estese del paese per la concomitanza di diversi fattori sfavorevoli, primi tra tutti l'accensione degli impianti di riscaldamento, il traffico veicolare e la sussistenza di particolari condizioni meteoclimatiche. In tale contesto la misura dell'inquinamento è data dalla presenza nell'aria di polveri sottili (PM10) la cui concentrazione può tranquillamente superare i 100 µg/Nm³. Tale valore corrisponde all'*immissione* ed è l'effetto di numerosissimi scarichi in atmosfera (veicoli a motore, impianti di riscaldamento, impianti industriali), ciascuno caratterizzato dai propri valori di *emissione*, normati dalla legge e in genere inferiori a 50 mg/Nm³.

Le *immissioni* possono essere *dirette*, ossia già presenti nella sorgente che le genera (ad esempio le polveri di cui al caso precedente) e che provvede a scaricarle *direttamente* in atmosfera, oppure *indirette*, ossia non direttamente prodotte da una sorgente ma derivanti per interazione chimica o fotochimica con l'atmosfera di sostanze emesse dalla sorgente stessa.

Tra le immissioni dirette ricordiamo l'anidride carbonica CO₂ emessa a seguito della combustione mentre tra le seconde le più note sono quelle di acido solforico e acido nitrico formatisi in atmosfera a seguito dell'immissione di anidride solforosa e diossido di azoto, alla base del fenomeno delle piogge acide.

Le immissioni in atmosfera sono generate da sorgenti che danno luogo ad *emissione* capaci di indurre un carico inquinante che dipende essenzialmente dalla *concentrazione* della particolare sostanza inquinante e dalla *portata volumetrica* normalizzata, fattori che concorrono in termini ovvi alla definizione del *flusso di massa* alla base della "pericolosità" della sorgente. Nei riguardi di queste ultime si è ormai consolidata le seguente classificazione, derivante dalla normativa Comunitaria:

- 1. Sorgenti fisse
 - a. Impianti industriali
 - i. Emissioni puntuali (convogliate)
 - ii. Emissioni diffuse
 - b. Impianti di riscaldamento
- 2. Sorgenti mobili
 - a. Traffico veicolare
 - b. Macchine operatrici
 - c. Natanti e aeromobili

3.3.2.3 Emissione convogliata

Emissione di un effluente gassoso effettuata attraverso uno o più appositi punti;

Il convogliamento, caratteristica peculiare di questo tipo di emissioni, consente non solo di misurarle sia in termini di concentrazione che di flusso di massa (orario, giornaliero, annuo) ma ne consente anche l'abbattimento con idonei dispositivi.

3.3.2.4 Emissione diffusa

Emissione diversa da quella ricadente nella lettera c)¹; per le lavorazioni di cui all'articolo 275 le emissioni diffuse includono anche i COV contenuti negli scarichi idrici, nei rifiuti e nei prodotti, fatte salve le diverse indicazioni contenute nella parte III dell'Allegato III alla parte quinta del presente decreto;

Sono diffuse tutte le emissioni che non sono convogliate. Esse possono derivare da perdite degli impianti o dall'esecuzione di particolari operazioni in regime di non confinamento (movimentazione di materiali polverulenti mediante pala meccanica, pitturazioni all'aperto, perdite fughe di fumi per imperfetta tenuta, ecc.).

3.3.2.5 Emissione tecnicamente convogliabile:

Emissione diffusa che deve essere convogliata sulla base delle migliori tecniche disponibili o in presenza di situazioni o di zone che richiedono una particolare tutela;

In precedenza si è osservato che il convogliamento di un'emissione implica il confinamento della fonte, il che può comportate seri problemi sia di natura tecnica che economica. Con riferimento al parco carbone di un centrale termoelettrica di medie dimensioni (circa 1 GW), il convogliamento dell'emissione di polveri conseguenti all'erosione eolica, comporta la necessità di realizzare sili di stoccaggio di dimensioni ragguardevoli (circa 100.000 m³) che, a fronte di un indiscusso vantaggio ambientale, implica sia problemi di costo che di sicurezza conseguenti alla necessità di prevenire atmosfere potenzialmente esplosive.

La necessità di sintesi tra le diverse e contrastanti esigenze in precedenza richiamate, trova coronamento nell'emanazione da parte del legislatore delle "Migliori tecnologie disponibili" di cui si dirà più oltre.

3.3.2.6 Emissioni totali:

la somma delle emissioni diffuse e delle emissioni convogliate;

3.3.2.7 Stabilimento

Il complesso unitario e stabile, che si configura come un complessivo ciclo produttivo, sottoposto al potere decisionale di un unico gestore, in cui sono presenti uno o più impianti o sono effettuate una o più attività che producono emissioni attraverso, per esempio, dispositivi mobili, operazioni manuali, deposizioni e movimentazioni. Si considera stabilimento anche il luogo adibito in modo stabile all'esercizio di una o più attività;

Tra gli elementi caratterizzanti lo stabilimento si evidenziano la stabilità, il ciclo produttivo, la presenza di uno o più impianti e l'assoggettamento al potere decisionale di un unico gestore.

Il termine "complesso" viene in questo contesto usato come sostantivo ad indicare un *insieme* di elementi, non solo dunque *impianti* nell'accezione di cui al punto successivo, ma anche fabbricati, strade, mense, infermerie, depositi di vario tipo, ecc., purché tutti assoggettati al potere decisionale di un unico gestore.

Tali elementi devono essere tutti caratterizzati da *unitarietà* nello svolgimento di un ciclo produttivo nel suo complesso, ciclo produttivo che può quindi assumersi come discriminante nello stabilire se un elemento appartenga o meno all'insieme in esame.

La *stabilità* è da intendersi non in termini "statici", ossia in relazione al tipo di equilibrio implicato, ma in termini temporali, ossia di un qualcosa destinato a protrarsi nel tempo e con una durata

_

¹ Ossia l'emissione convogliata

non prestabilita, e quindi in contrapposizione ai *cantieri* (autostradali, edili, destinati alla costruzione di installazioni di varia natura) generalmente caratterizzati da *temporaneità*, di durata spesso determinabile a priori (in base quella prevista dei lavori) e comunque condizionati all'ultimazione dell'opera.

3.3.2.8 *Impianto*

Il dispositivo o il sistema o l'insieme di dispositivi o sistemi fisso e destinato a svolgere in modo autonomo una specifica attività, anche nell'ambito di un ciclo più ampio;

Nell'individuare le caratteristiche essenziali di un impianto, il legislatore evidenzia come requisiti imprescindibili la *mobilità*, la dedizione ad un *specifica attività* e *l'autonomia*.

Nei riguardi della mobilità si sottolinea come l'impianto deve esserne privo. Non a caso spesso si impiega quale sinonimo di impianto il termine *installazione*, quasi a volerne sottolineare la stabilità. In tale accezione, tutti i dispositivi dotati di mobilità (autonoma, soluzioni su rimorchio, moduli carrabili di diversa natura) non possono ritenersi *impianti* ai sensi della legge in esame.

Quanto all' attività, se ne sottolinea come aspetto imprescindibile la *destinazione specifica*, ossia il fatto che l'impianto debba essere destinato a fare qualcosa di concreto: un installazione artistica, per quanto ben ancorata al suolo, non può ritenersi un impianto per l'assenza di *attività specifica*.

Da ultimo, si sottolinea *l'autonomia*. Tale aspetto risulta importante molto spesso per definire i "limiti" dell'impianto e per stabilire se un insieme di attrezzature interconnesse possa considerarsi un *impianto* o debba piuttosto ritenersi un suo sottoinsieme (componente).

3.3.2.9 Valore limite di emissione:

Il fattore di emissione, la concentrazione, la percentuale o il flusso di massa di sostanze inquinanti nelle emissioni che non devono essere superati. I valori di limite di emissione espressi come concentrazione sono stabiliti con riferimento al funzionamento dell'impianto nelle condizioni di esercizio più gravose e, salvo diversamente disposto dal presente titolo o dall'autorizzazione, si intendono stabiliti come media oraria;

I termini hanno il seguente significato:

- Fattore di emissione: rapporto tra massa di sostanza inquinante emessa e unità di misura specifica di prodotto o di servizio. (ad esempio nell'attività di produzione dell'alluminio, il valore limite di emissione per le polveri è stabilito in 5kg/t di alluminio prodotto come media giornaliera se all'effluente gassoso dei forni elettrolitici è aggiunta l'aria di ventilazione dei locali di elettrolisi Comma 23), All.I alla parte quinta)
- Concentrazione: è il modo più usuale per assegnare un limite di emissione. Esso viene espresso in termini massa per unità di volume di effluente, in genere mg/Nm³; nel caso di cui al punto precedente, qualora non venga aggiunta l'aria di ventilazione, il limite per le polveri è di 30 mg/Nm³.
- **Percentuale**: rapporto tra la massa di sostanza inquinante emessa e la massa della stessa sostanza utilizzata nel processo produttivo, moltiplicato per cento. (Per esempio nell'attività di *finitura di autoveicoli* con consumo di solvente annuo superiore a 5 t/anno, il limite di emissione diffusa di COV è pari al 25% dell'input di solvente).
- Flusso di massa: massa di sostanza inquinante emessa per unità di tempo (p.es. t/anno, kg/h)
- **Soglia di rilevanza**: flusso di massa per singolo inquinante, misurato a monte di eventuali sistemi di abbattimento e nelle condizioni di esercizio più gravose dell'impianto, al di sotto del quale non si applicano valori limite di emissione (p.es. per gli *impianti per la produzione di accumulatori al piombo* la *soglia di rilevanza* per l'applicazione dei limiti di emissioni di polveri è pari a **0,005 kg/h**, superata la quale vige il limite di emissione di 0,5 mg/Nm³).

3.3.2.10 Migliori tecniche disponibili

La più efficiente ed avanzata fase di sviluppo di attività e relativi metodi di esercizio indicanti l'idoneità pratica di determinate tecniche ad evitare ovvero, se ciò risulti impossibile, a ridurre le emissioni; a tal fine, si intende per:

- 1) tecniche: sia le tecniche impiegate, sia le modalità di progettazione, costruzione, manutenzione, esercizio e chiusura degli impianti e delle attività;
- 2) disponibili: le tecniche sviluppate su una scala che ne consenta l'applicazione in condizioni economicamente e tecnicamente valide nell'ambito del pertinente comparto industriale, prendendo in considerazione i costi e i vantaggi, indipendentemente dal fatto che siano o meno applicate o prodotte in ambito nazionale, purché il gestore possa avervi accesso a condizioni ragionevoli;
- 3) migliori: le tecniche più efficaci per ottenere un elevato livello di protezione dell'ambiente nel suo complesso;

3.3.2.11 Composto organico volatile (COV):

Qualsiasi composto organico che abbia a 293,15 K una pressione di vapore di 0,01 kPa o superiore, oppure che abbia una volatilità corrispondente in condizioni particolari di uso. Ai fini della parte quinta del presente decreto, è considerata come COV la frazione di creosoto che alla temperatura di 293,15 K ha una pressione di vapore superiore a 0,01 kPa;

La classe dei composti organici volatili, (COV) o VOC (dall'inglese Volatile Organic Compounds), comprende diversi composti chimici formati da molecole dotate di gruppi funzionali diversi, aventi comportamenti fisici e chimici differenti, ma caratterizzati da una certa volatilità, caratteristica, ad esempio, dei comuni solventi organici aprotici apolari, come i diluenti per vernici e benzine.

Tali composti vengono classificati come COV (o VOC in inglese) e comprendono gli idrocarburi (contenenti, come elementi unici, carbonio e idrogeno, e che si dividono in alifatici e aromatici) e i composti contenenti ossigeno, cloro o altri elementi oltre al carbonio e l'idrogeno, come gli aldeidi, gli eteri, gli alcooli, gli esteri, i clorofluorocarburi (CFC) ed gli idroclorofluorocarburi (HCFC).

3.3.2.12 Attività

Con il termine attività secondo il vocabolario Treccani si intende un sinonimo di "lavoro; esplicazione di lavoro, di energia (anche non materiale) da parte di singoli o di gruppi: svolgere a. letteraria, artistica, sportiva, didattica; uomo che ha molteplici a.; a. sociali, assistenziali, culturali, ricreative; dedicarsi a un'a. redditizia; gli introiti della propria a. professionale; la ripresa dell'a. politica, dell'a. parlamentare, dell'a. giudiziaria (degli organi cioè che amministrano la giustizia), ecc.; le a. industriali, commerciali, economiche di una provincia; a. terziarie (v. terziario); a. produttiva, improduttiva, ecc¹."

Il termine viene spesso richiamato nelle leggi ed è in genere seguito da un complemento di specificazione finalizzato ad individuarne il tipo. (p. es. attività di pulitura a secco, attività di ricoprimento (come la verniciatura di navi, la verniciatura di aerei), attività energetiche, attività di prodizione e trasformazione dei metalli)

Si può dunque affermare che con il termine *attività di*....si indichi l'insieme delle operazioni (*fasi di un processo*) finalizzate al conseguimento di un ben preciso obbiettivo (*prodotto finito*, *servizio reso*). È evidente che in tale accezione l'*attività* è ben distinta dalle *fasi del processo* che la compongono.

Con riferimento *all'attività di prodizione e trasformazione dei metalli*, per esempio, risulta pertanto evidente come le fasi o lavorazioni ad essa afferenti non siano solo quelle "metallurgiche" in senso stretto come la fusione del rottame nel forno ad arco o le operazioni di metallurgia secondaria, ma possano rientrarvi a pieno titolo anche quelle di preparazione e rivestimento del prodotto finito, come per esempio il confezionamento di *coils* con regettature, selle e quant'altro necessario alla spedizione.

.

¹ La definizione è tratta dal vocabolario Treccani.

3.3.3 Regime autorizzatorio

L'art. 269 stabilisce che "per tutti gli impianti che producono emissioni, deve essere richiesta una autorizzazione" con conseguente obbligo per il gestore che intenda installare un impianto nuovo di presentare apposita domanda all'Autorità competente, accompagnandola da un **progetto** dell'impianto e da una **relazione tecnica** descrittiva del ciclo produttivo in cui si inserisce la specifica attività cui l'impianto è destinato.

Entro trenta giorni dalla ricezione della domanda, l'Autorità competente (Provincia o Regione a seconda dei casi) convoca una *Conferenza dei servizi*, tenuta a pronunciarsi sul progetto così da consentire il rilascio del **provvedimento di autorizzazione** entro un tempo prestabilito (120 giorni).

La conferenza di servizi è un istituto della legislazione italiana di semplificazione amministrativa dell'attività della pubblica amministrazione. Ha lo scopo di facilitare l'acquisizione da parte della P.A. di autorizzazioni, atti, licenze, permessi e nulla-osta o di altri elementi comunque denominati, mediante convocazione di apposite riunioni collegiali tra gli enti interessati (nello specifico il Gestore dell'impianto, il Comune, la Provincia, l'Azienda sanitaria, i Vigili del Fuoco, ecc.).

Al termine dei lavori della Conferenza, viene rilasciata l'autorizzazione in cui si stabiliscono (art. 269) le emissioni *tecnicamente convogliabili* indicandone:

- le modalità di captazione e convogliamento:
- I valori di emissione;
- I metodi di campionamento e di analisi delle emissioni;
- I criteri per la valutazione della conformità dei valori misurati ai valori limite.

Per le emissioni diffuse, si stabiliscono apposite prescrizioni finalizzate ad assicurarne il contenimento.

Ulteriori contenuti dell'autorizzazione riguardano le fasi di messa a regime dell'impianto e i campionamenti da svolgere in autocontrollo.

3.3.4 Disciplina delle emissioni

3.3.4.1 Convogliamento delle emissioni

Ove tecnicamente possibile nei termini in precedenza richiamati, le emissioni devono essere convogliate.

Di norma ogni impianto o macchinario fisso dotato di autonomia funzionale deve avere un *unico* punto di convogliamento delle emissioni, sul quale si applicano i prescritti valori limite di emissione.

Nell'impossibilità di un punto di convogliamento unico, può essere tuttavia autorizzata una pluralità di punti di emissione, anche per un singolo impianto; in tal caso i valori limite espressi come flusso di *massa*, *fattore di emissione* e *percentuale* andranno riferiti al complesso delle emissioni dell'impianto o del macchinario fisso, mentre per quelli espressi in termini di concentrazione i valori limite dovranno essere rispettati **in corrispondenza dei singoli punti di emissione autorizzati**.

In deroga a tale disposizione, l'autorizzazione può tuttavia prevedere che i valori limite di emissione si riferiscano alla *media ponderata* delle emissioni di sostanze inquinanti uguali provenienti dai diversi punti di emissione dell'impianto, fermo restando che il flusso di massa complessivo dell'impianto non può essere superiore a quello che si avrebbe se i valori limite di emissione si applicassero ai singoli punti di emissione.

3.3.4.2 Valori limite di emissione

Nello stabilire i valori limite di emissione, la legge distingue in funzione degli impianti e delle attività da cui derivano, distinguendo tra limiti di emissione che devono essere osservati dagli impianti in generale (*limiti generali*) e *limiti di emissione specifici*, particolari di talune tipologie di impianti.

Con riferimento ai *limiti generali*, nell'impossibilità di considerare la totalità delle tipologie impiantistiche e dei processi e le relative tipologie di emissioni implicate, il legislatore ha ritenuto di

prescindere da un *approccio per tipologia di impianto*, prevedendo piuttosto dei valori limite *generali* riferiti a *gruppi di inquinanti* definiti in base a considerazioni di natura fisica e pericolosità.

Preliminarmente è stata eseguita una classificazione in base alle caratteristiche di pericolosità e di stato fisico individuando le seguenti *macrocategorie*:

- 1. Sostanze cancerogene e/o teratogene¹ e/o mutagene;
- 2. Sostanze di tossicità e cumulabilità particolarmente elevata;
- 3. Sostanze inorganiche in polvere;
- 4. Sostanze inorganiche allo stato di gas e vapore;
- 5. Sostanze organiche sotto forma di gas, vapori o polveri;
- 6. Polveri totali, essendosi attribuito particolare rilievo al quantitativo totale di polveri emesse.

Successivamente, ciascuna macrocategoria è stata suddivisa in *classi omogenee* in funzione della pericolosità delle sostanze, individuando per ciascuna di esse una *soglia di rilevanza* (espressa in flusso di massa) e i relativi limiti. Maggiore è la pericolosità della singola sostanza e minore è il valore limite di emissione.

Si perviene dunque ad una disciplina generale delle emissioni che stabiliti i limiti di legge per le diverse tipologie di inquinanti, ne demanda all'Autorità competente l'adozione in funzione della specificità del caso, così come risultante dalla documentazione prodotta nel processo istruttorio.

I limiti generali trovano universale applicazione, salvo particolari e tutto sommato contenute tipologie di impianti che vengono specificatamente normati (*limiti specifici*), in considerazione della diffusione o della particolare rilevanza economica e strategica.

È il caso per esempio degli impianti ricadenti nel campo delle *attività energetiche*, della *produzione e trasformazione dei metalli*, dell'*industria chimica*, dell'*industria alimentare* nonché di *altri impianti e attività*, per i quali si danno i valori limite riportati nell'allegato I, parte III. Altre tipologie considerate sono le *raffinerie*, i *grandi impianti di combustione*, nonché gli impianti comportanti le emissioni di COV (art. 275 che recepisce la direttiva 1999/12/CE).

3.3.4.3 Applicabilità dei limiti

I valori limite di emissione si applicano in ogni caso nei periodi di **normale funzionamento** degli impianti, intesi come i periodi in cui l'impianto è in funzione, con esclusione dei periodi di avviamento e di arresto e dei periodi in cui si verificano guasti tali da non permettere il rispetto dei valori stessi.

Giova ricordare che in conseguenza di ciò, restano esclusi dalla normativa di settore anche tutti i punti di emissione che corrispondono ad eventuali sistemi di sicurezza degli impianti quali le fiaccole di emergenza, gli scarichi di emergenza a monte dei filtri (bypass), le valvole di sovrapressione, ecc., in quanto destinati ad intervenire in condizioni di anomalo funzionamento dell'impianto se non addirittura di guasto dello stesso.

3.4 Cenni sulla disciplina delle immissioni

La disciplina delle *immissioni* quale oggi conosciamo, trova i sui fondamenti nel D.Lgs. 4 agosto 1999, n°351 che, in recepimento della Direttiva 96/62 "*sulla valutazione e gestione della qualità dell'aria ambiente*", definiva i princìpi fondamentali per la diminuzione dell'inquinamento atmosferico e per il raggiungimento di *valori limite* e *soglie di allarme*, demandandone a successivi decreti attuativi l'applicazione concreta, avvenuta con l'emanazione del D.M. 2 aprile 2002, n. 60. Il decreto fissava i *valori limite* e le *soglie di allarme* per alcuni agenti inquinanti normalmente presenti nell'atmosfera al fine di evitare, prevenire o ridurre gli effetti dannosi per la salute umana e per l'ambiente nel suo complesso.

Tale complesso legislativo è stato sostituito da una unica norma, il Decreto Legislativo del 13 agosto 2010, n.155 "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa"

-

¹ La teratogenesi (dal greco terato- e -genesi "creazione di mostri") indica lo sviluppo anormale di alcune regioni del feto durante la gravidanza, che si traduce nella nascita di un bambino che presenta gravi difetti congeniti

Il Decreto del 2010 - recepimento della direttiva europea 2008/50/CE - introduce importanti novità nell'ambito del complesso e stratificato quadro normativo in materia di qualità dell'aria in ambiente, introducendo nuovi strumenti che si pongono come obiettivo di contrastare più efficacemente l'inquinamento atmosferico.

Oltre a fornire una metodologia di riferimento per la caratterizzazione delle zone (zonizzazione), definisce i valori di riferimento che permettono una valutazione della qualità dell'aria, su base annuale, in relazione alle concentrazioni dei diversi inquinanti. Sono precisati (Tabella 2):

- i valori limite annuali per biossido di zolfo, ossido e biossido di azoto, materiale particolato PM10, piombo e benzene;
- i valori limite giornalieri od orari per biossido di zolfo, ossidi di azoto, particolato PM10 e monossido di carbonio.

Tabella 2 Valori limite di qualità dell'aria relativi a biossido di zolfo, biossido e ossido di azoto, materiale parti colato, piombo, benzene e monossido di carbonio.

Biossido di zolfo	Periodo di mediazione	Valore limite
1 . Valore limite orario per la	1 ora	350 μg/m³ da non superare più di
protezione della salute umana		24 volte per anno civile
2. Valore limite di 24 ore per la	24 ore	125 μg/m³ da non superare più di
protezione della salute umana		3 volte per anno civile
Valore limite per la protezione	Anno civile e inverno	2° μg/m³
degli ecosistemi	(1/10 - 31/3)	
Biossido e ossidi di azoto	Periodo di mediazione	Valore limite
 Valore limite orario per la 	1 ora	200 μg/m³ NO ₂ da non superare più
protezione della salute umana		di 18 volte per anno civile
Valore limite annuale per la	Anno civile	40 μg/m³ NO ₂
protezione della salute umana		
Valore limite annuale per la	Anno civile	30 μg/m³ NO _x
protezione della vegetazione		
Materiale particolato (PM10)	Periodo di mediazione	Valore limite
 Valore limite di 24 ore per la 	24 ore	50 μg/m³ da non superare più di
protezione della salute umana		35 volte per anno civile
Valore limite annuale per la	Anno civile	40 μg/m³ PM10
protezione della salute umana		
Piombo	Periodo di mediazione	Valore limite
Valore limite annuale per la	Anno civile	0,5 μg/m³
protezione della salute umana		
Benzene	Periodo di mediazione	Valore limite
Valore limite annuale per la	Anno civile	51 μg/m³
protezione della salute umana		
Monossido di carbonio	Periodo di mediazione	Valore limite
Valore limite annuale per la	Media massima	10 μg/m³
protezione della salute umana	giornaliera su 8 ore	

Per i biossidi di zolfo e di azoto, il Decreto fissa delle soglie di allarme, a cui corrispondono dei livelli di concentrazione di inquinanti in atmosfera superati i quali sorgerebbero seri rischi per la salute umana, anche in caso di esposizioni di breve durata. Nel caso si verifichi tale situazione di pericolo, le autorità competenti sono tenute all'adozione immediata di misure capaci di ridurre le concentrazioni di inquinante al di sotto del valore di allarme (Tabella 3).

Per il parametro ozono nell'aria resta definito un valore bersaglio, che rappresenta il livello fissato al fine di evitare effetti nocivi sulla salute umana e sull'ambiente nel suo complesso. Il Decreto definisce anche - sempre per l'ozono - la soglia di allarme e la soglia di informazione alla popolazione (Tabella 4)

Tabella 3 Soglie di allarme per SO₂ e NO₂.

Soglie di allarme per il biossido di zolfo e per il biossido di azoto:

I 500 μg/m³ per il SO₂ e 400 μg/m³ per il NO₂, misurati su tre ore consecutive in un sito rappresentativo della qualità dell'aria di un'area di almeno 100 km².

Informazioni che devono essere fornite al pubblico in caso di superamento delle soglie di allarme:

a) data, ora e luogo del fenomeno e la causa;
b) previsioni:

II - sulle variazioni dei livelli;
- sulla zona geografica interessata;
- sulla durata del fenomeno;
c) categorie di popolazione potenzialmente sensibili al fenomeno;

Tabella 4 Valore bersaglio e soglie di informazione e di allarme per le concentrazioni di ozono nell'aria.

Valore bersaglio	Media su B ore massima giornaliera:	120 μg/m³ (da non superare per più di 25 giorni/anno)
Soglia di informazione		$180 \mu \text{g/m}^3$
Soglia di allarme	Media di 1 ora:	240 μg/m ³

A conclusione della sintetica esposizione si riportano le seguenti definizioni:

d) precauzioni che la popolazione deve prendere.

- *Valore limite*: livello fissato al fine di evitare gli effetti dannosi sulla salute umana o sull'ambiente nel suo complesso.
- *Soglia di allarme*: livello oltre il quale vi è un rischio per la salute umana in caso di esposizione di breve durata.
- *Valore bersaglio*: livello fissato al fine di evitare, a lungo termine, effetti nocivi sulla salute umana e sull'ambiente; deve essere raggiunto entro un dato periodo di tempo.
- Soglia di informazione: livello oltre il quale vi è un rischio per la salute umana in caso di esposizione di breve durata e raggiunto il quale gli Stati membri devono immediatamente intervenire.

4. Valutazione della conformità ai limiti di emissione

4.1 Condizioni di marcia degli impianti

La conformità ai limiti di emissione va valutata nelle *condizioni di esercizio più gravose* nei riguardi delle emissioni stesse, da stabilirsi in relazione alla *capacità nominale* dell'impianto, così come desumibile dai documenti disponibili (collaudo).

Di volta in volta tale dato potrà essere riconducibile ad una determinata produzione, alla potenza erogata, all'assorbimento elettrico degli elettrofiltri, ecc. Altri esempi possono essere riguardare la produzione giornaliera (coke, ghisa, sedie, automobili, paia scarpe, ecc.) o il consumo di materia prima (vernice in una cabina di verniciatura, abrasivo nelle operazioni di sabbiatura, ecc.).

4.2 Criteri di valutazione

Ai sensi del D.Lgs. 152/06 la valutazione dei risultati¹ viene fatta adottando due diversi criteri a seconda che le misure siano state eseguite in modo continuo² o discontinuo³.

4.2.1 Misure in continuo

Il criterio di valutazione dei risultati di misure continue prevede che in caso di misure in continuo, le emissioni convogliate si considerano conformi ai valori limite se nessuna delle medie di 24 ore supera

Università degli Studi di Trieste

¹ D.Lgs. 152/06, allegato IV alla parte quinta, punto 2. Metodi di valutazione delle misure effettuate dal gestore dell'impianto e dall'autorità competente per il controllo.

² D.Lgs. 152/06, allegato IV alla parte quinta, punto 2.2. Salvo diversamente indicato nel presente decreto, in caso di misure in continuo, le emissioni convogliate si considerano conformi ai valori limite se nessuna delle medie di 24 ore supera i valori limite di emissione e se nessuna delle medie orarie supera i valori limite di emissione di un fattore superiore a 1,25.

³ D.Lgs. 152/06, allegato IV alla parte quinta, punto 2.3. Salvo diversamente indicato nel presente decreto, in caso di misure discontinue, le emissioni convogliate si considerano conformi ai valori limite se, nel corso di una misurazione, la concentrazione, calcolata come media di almeno tre letture consecutive e riferita ad un'ora di funzionamento dell'impianto nelle condizioni di esercizio più gravose, non supera il valore limite di emissione.

i valori limite di emissione e se nessuna delle medie orarie supera i valori limite di emissione di un fattore superiore a 1,25.

Va sottolineato che una misura continua implica il censimento di *dati elementari* ottenuti come medie dei valori istantanei di emissione su un tempo non superiore al minuto. Tali dati devono essere disponibili per l'intero periodo di funzionamento degli impianti durante la fase di test che è bene si protragga per un tempo non inferiore a tre giorni.

4.2.2 Misure discontinue

Il D.Lgs. 152/06, allegato IV alla parte quinta, punto 2.3, stabilisce che "Salvo diversamente indicato nel presente decreto, in caso di misure discontinue, le emissioni convogliate si considerano conformi ai valori limite se, nel corso di una misurazione, la concentrazione, calcolata come media di almeno tre letture consecutive e riferita ad un'ora di funzionamento dell'impianto nelle condizioni di esercizio più gravose, non supera il valore limite di emissione"

Si evidenziano alcuni aspetti meritevoli di considerazione in relazione al numero, alla sequenza temporale e alla durata di ciascun campionamento che di seguito vengono analizzati e discussi.

4.2.2.1 Numero di campionamenti

La locuzione *media di almeno tre letture*, ancorché non idonea in riferimento alle misure discontinue a camino, indica in tre il minimo numero di campionamenti da eseguirsi, lasciandone peraltro indeterminato l'eventuale numero massimo. Il problema è sentito in tutti i casi in cui si possa ritenere che l'andamento dell'emissione nel tempo sia estremamente variabile per cui risulti verosimile la possibilità di una errata valutazione del fenomeno emissivo.

Proprio in risposta a tale problematica, venne emanato nel 1988 il Manuale UNICHIM 158 nel quale si perveniva ad un'interessante inquadramento del *livello di emissione* (costante e continuo, costante e discontinuo ecc.) che veniva assunto quale discriminante nell'individuazione del numero di campionamenti (compresi tra tre e cinque).

Nell'aprile del 2008 è stata emanata la norma **UNI EN 15259 (2008)** – *Misurazione di emissioni da sorgente fissa* – *Requisiti delle sezioni e dei siti di misurazione e dell'obiettivo, del piano e del rapporto di misurazione*, versione ufficiale in lingua inglese della norma europea EN 15259 dell'ottobre 2007. La nota relativa al punto 7.2.3 riferisce che, nel caso di emissioni stabili, è buona pratica condurre un minimo di tre campionamenti mentre per emissioni instabili il numero di prelievi dovrebbe essere maggiore. Il punto B.1 *Examples of the timing of emission measurements* dell'Allegato B alla norma UNI EN 15259 riporta un periodo di campionamento di 30' per processi continui.

Stante quanto sopra si ritiene, ove non diversamente specificato nel decreto di autorizzazione o imposto da normative settoriali, che per la conduzione dei campionamenti a camino, al fine di ottenere un valore medio finale che sia rappresentativo delle reali operazioni che si svolgono all'interno del singolo ciclo produttivo, si debbano eseguire di

4.2.2.1.1 Classificazione del processo produttivo ai sensi del manuale UNICHIM N° 158 (Edizione 1988)

Al fine di garantire l'ottenimento di misure rappresentative dell'effettivo livello medio di emissione e della sua variabilità è necessario individuare la tipologia di processo alla base del fenomeno emissivo. A tal fine la norma UNICHIM N° 158 (Edizione 1988) considera i seguenti aspetti:

- livello di emissione: può essere costante o variabile.
- **andamento di emissione**: continuo o discontinuo; se continuo, nell'arco dell'intera giornata l'emissione non si annulla mai, pur potendo assumere valori diversi in ragione della *variabilità del livello di emissione*. Per l'annullamento dell'emissione si richiede l'annullamento della concentrazione o l'annullamento della portata.
- **conduzione d'impianto**: costante o variabile a seconda che se ne moduli o meno la potenzialità (p. es. variazione della potenza elettrica erogata da un gruppo di continuità)
- marcia di impianto: la marcia può essere continua o discontinua a seconda che il funzionamento degli impianti si protragga all'intera giornata (24 h) o a parte di essa.

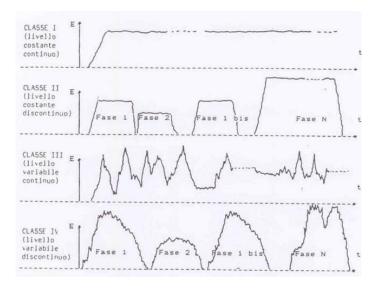


Figura 3 Livelli di emissione

La combinazione dei fattori in precedenza richiamati dà luogo al quattro classi di livello di emissione riportati in Tabella 5 unitamente al tipo di conduzione e, per ciascuna classe, al numero minimo di campionamenti di cui alla Tabella 6.

Tabella 5 Classi di emissione (UNICHIM N° 158 (Edizione 1988))

classe di emissione	I	II	III	IV
livello di emissione	costante	costante	variabile	variabile
andamento di emissione	continuo	discontinuo	continuo	discontinuo
conduzione d'impianto	costante	costante	variabile	variabile
marcia di impianto	continua	discontinua	continua	discontinua
note	(*)	(*) (**) (***)		(**) (***)

NOTE:

Il livello di emissione dipende normalmente dal carico di impianto al quale vengono eseguite le misure per cui tale dato deve essere accuratamente registrato.

Il livello di emissione a valle di impianti di abbattimento è legato all'efficienza del sistema: tanto maggiore è l'efficienza tanto minore è il livello di emissione.

Le variazioni di carico di impianto possono non influenzare il livello di emissione.

- (*) pur essendo il livello di emissione sostanzialmente costante, possono aversi variazioni di lieve entità.
- (**) i livelli di emissione sono generalmente differenti in fasi diverse di processo.
- (***) il livello di emissione parte in genere da zero e ritorna a zero.

Tabella 6 Criteri di campionamento per classe di emissione

cla	sse	I	II	III	IV
liv	ello di emissione	costante	costante	variabile	variabile
and	damento di emissione	continuo	discontinuo	continuo	discontinuo
1	PERIODO DI OSSERVAZIONE	qualsiasi periodo	durata fase	qualsiasi periodo	durata fase
	note	(1.1)	(1.2/3)	(1.4)	
2	DURATA DI CAMPIONAMENTO note	30'	30'	30'	durata fase
	CAMPIONAMENTO note	(2.1/2/3)	(2.1/2/3)	(2.1/2/3)	
3	TIPO DI CAMPIONAMENTO	casuale	casuale	casuale	durata fase
	note	(3.1)	(3.1)	(3.1)	
4	NUMERO DI CAMPIONAMENTI note	≥3 (4.1)	≥3 per fase (4.1/2)	≥5 per fase (4.3)	≥3 per fase

DEFINIZIONI

PERIODO DI OSSERVAZIONE: periodo di funzionamento del processo produttivo nell'arco del quale deve essere effettuata la serie di campionamenti o misure per la caratterizzazione della emissione.

DURATA DI CAMPIONAMENTO: durata della operazione di campionamento effettuata secondo il procedimento di prelievo singolo o multiplo (vedi Appendice 2 - DURATA DEI CAMPIONAMENTI).

TIPO DI CAMPIONAMENTO: criterio di scelta della sequenza temporale dei campionamento (casuale o prestabilita) per la caratterizzazione dell'emissione.

NUMERO DI CAMPIONAMENTI: numero di campionamenti o di misure da effettuare.

NOTE:

1. PERIODO DI OSSERVAZIONE

- 1.1. Data la costanza del livello di emissione i rilevamenti possono essere eseguiti indifferentemente in qualsiasi periodo di funzionamento dell'impianto a regime, annotando il carico attuale di impianto.
- 1.2. Data la costanza del livello di emissione durante ogni singola fase i rilevamenti possono essere eseguiti indifferentemente in qualsiasi momento nell'ambito della durata del a fase, annotando la denominazione e la durata della fase in questione e Il carico attuale di impianto.
- 1.3. Per quanto riguarda i transitori: periodi di Avviamento, Cambio fase e Fermata non è necessario effettuare controlli specifici:
 - se il rapporto fra durata del periodo in questione e durata della fase di processo è orientativamente minore di 0,05;
 - se i livelli di emissione sono prevedibilmente dello stesso ordine di grandezza o inferiori ai valori misurabili durante la fase di processo.
 - Nel caso debbano essere eseguiti rilevamenti bisognerà seguire criteri di campionamento relativi alla classe IV.
- 1.4. I rilevamenti debbono essere eseguiti in qualsiasi periodo di funzionamento dell'impianto a regime entro un arco di tempo ampio se la variabilità del livello di emissione è prevedibilmente elevata.

2. DURATA DI CAMPIONAMENTO

- 2.1. Allo scopo di permettere una migliore comparabilità dei dati di caratterizzazione delle emissioni fra impianti produttivi similari, la durata di campionamento è stabilita in un valore di tempo unico e determinato. Questa prassi è consigliabile anche per tenere conto del fatto che il campo di variabilità (differenza fra livello di misura minimo e massimo) è funzione del tempo di campionamento e precisamente tanto più ampio quanto minore è la durata del campionamento.
- 2.2. La durata di campionamento è stabilita in 30 minuti primi in considerazione del fatto che tale durata:
 - rappresenta la durata che risponde alle esigenze di campionamento e di analisi più comuni
 - permette l'effettuazione di più misure nell'arco della stessa giornata e quindi un migliore utilizzo delle risorse
 - è stata valutata la più idonea per l'effettuazione delle misure dei livelli di emissione anche in normative europee e statunitensi.
- 2.3. Possono tuttavia imporsi durate di campionamento differenti da quella consigliata nei seguenti casi:
 - è possibile superare la durata di campionamento di 30' quando questa è incompatibile con il limite di rilevabilità del metodo. E' da notare comunque che tale deroga per le classi I e II non porta a errori di caratterizzazione
 - se il metodo impiegato permette solamente l'effettuazione di campionamenti più brevi dei 30', dovranno essere eseguite più misure in modo da coprire significativamente la durata di campionamento indicata (vedi APPENDICE 2 Campionamento mediante prelievi multipli di frazione del periodo).
 - In particolare questa situazione si viene a creare nel caso di rilevamenti effettuati mediante campionamento e analisi offline, quando, per la presenza di concentrazioni elevate, anche l'utilizzo di flussi di campionamento ridotti non permette tempi di campionamento di 30' senza sovrasaturare il sistema di captazione dell'inquinante
 - se la fase ha una durata inferiore ai 30' sarà necessario eseguire più campionamenti, su fasi dello stesso tipo consecutive, fino a coprire la durata di campionamento richiesta;
 - se esistono norme di legge, o assimilabili, relative alle emissioni e se i risultati vengono utilizzati per verificare il rispetto di un limite di emissione, la durata di campionamento deve essere uguale al tempo associato al limite di emissione o comunque tale da coprire significativamente tale tempo.

3. TIPO DI CAMPIONAENTO

3.1. I campionamenti di 30' debbono essere effettuati in modo casuale (random) in modo da minimizzare la probabilità di prendere tutti i minimi o tutti i medi o tutti i massimi.

4. NUMERO DI CAMPIONAMENTI

- 4.1. Tre campionamenti rappresentano il numero minino idoneo per ottenere un quadro rappresentativo dell'effettivo livello medio e della eventuale variabilità dei dati. Come verrà discusso nel capitolo "valutazione dei risultati", nel caso di effettuazione di una sola misura sarà necessario depurare il dato dall'errore complessivo di campionamento e di analisi; questo sistema ha comunque minore validità.
- 4.2. Se la fase ha una durata dell'ordine di grandezza dei 30', onde poter effettuare il numero di rilevamenti richiesti, sarà necessario effettuare i campionamenti in periodi differenti di ripetizione della fase di interesse scelti sempre con il criterio casuale.
- 4.3. Data la ipotizzata ampia variabilità dei livelli di emissione, l'esecuzione di un numero maggiore di campionamenti permette la riduzione della deviazione standard dei risultati e quindi una più precisa caratterizzazione della emissione. Per questa ragione viene consigliata l'effettuazione di almeno cinque campionamenti.

4.2.2.2 Durata di ciascun campionamento

Il comma 2.3 dell'allegato VI alla parte V del D. Lgs. 152/06 cita l'esecuzione di "tre letture consecutive e **riferite a un'ora di funzionamento dell'impianto**", lasciando alcuni margini di interpretazione se le tre letture debbano essere ognuna della durata di un'ora o se la somma dei tempi delle singole letture debba essere un'ora (ad esempio tre letture da 20').

Al riguardo le fonti normative in precedenza richiamate sono concordi nell'indicare in 30 minuti il tempo minimo di ciascun campionamento. Sembra dunque condivisibile la prassi consolidata seguita dagli organismi di controllo (le Agenzie Regionali per la Protezione dell'Ambiente) che eseguono campionamenti di sessanta minuti.

4.2.2.3 Successione dei campionamenti

La legge prescrive *almeno tre letture consecutive*, per cui l'intervallo temporale tra un prelievo (di un'ora) e l'altro deve essere quello strettamente necessario all'eventuale predisposizione degli strumenti di misura.

4.3 Puti di prelievo

La misura delle emissioni convogliate va fatta a valle dei dispositivi di abbattimento e prima della bacca del camino, in un punto della condotta che va opportunamente scelto in considerazione dei seguenti aspetti:

- fluidodinamica
- sicurezza
- accessibilità

Come noto, l'esecuzione di misure di portata di aeriformi richiede stazionarietà e omogeneità del flusso nel punto di misura, il che implica una scelta oculata dello stesso che deve essere adeguatamente distante da singolarità geometriche in grado di indurre significative perturbazioni. A tal fine, fermo restando che il punto di prelievo può essere posizionato indifferentemente sia su tratti orizzontali che verticali del condotto, si richiede¹ che esso sia posizionato in un tratto rettilineo del camino pari ad almeno 5 diametri a valle e 5 diametri a monte di qualsiasi deformazione del condotto (curve, aspiratori, restringimenti, silenziatori ecc.) o, quando questo non sia possibile per difficoltà costruttive o di accesso, nel punto centrale di un tratto rettilineo il più lungo possibile.

In corrispondenza del punto di prelievo risulta necessario predisporre un attacco (*tronchetto*) per l'introduzione delle sonde di campionamento e una pedana conforme alle norme in materia di sicurezza che consenta lo stazionamento degli operatori e l'installazione degli strumenti di misura.

Rimandando alla normativa citata per quanto attiene ai dettagli costruttivi delle predisposizioni, in Figura 4 se ne dà schematica rappresentazione mentre in Figura 5 si riporta un'applicazione.

¹ UNI EN ISO 16911-1:2013

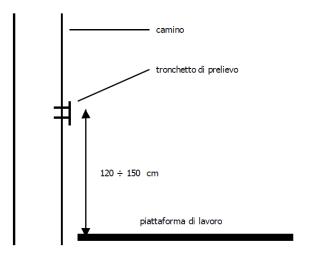


Figura 4 Predisposizione del punto di prelievo

Figura 5 Punto di prelievo su condotto verticale

4.4 Ruolo dell'incertezza associata a risultati di misura"

Per una più organica e razionale programmazione delle attività finalizzate alla realizzazione della Rete dei Laboratori del Sistema delle Agenzie Ambientali (ISPRA/ARPA/APPA), nel 2007 è stato costituito un gruppo di lavoro con esperti ISPRA¹ e rappresentanti delle direzioni tecniche delle ARPA/APPA. Questo gruppo ha individuato la tematica della valutazione di conformità in presenza dell'incertezza di misura associata ai risultati analitici come una delle priorità per rendere omogenee a livello nazionale le risposte delle attività di controllo ambientale. E' stato dato quindi mandato ad un

_

¹ Istituto Superiore per la. Protezione e la Ricerca Ambientale

gruppo di esperti delle Agenzie Ambientali di Veneto, Lazio, Toscana, Lombardia, Piemonte, Marche e dell'ISPRA, di elaborare un documento di riferimento per tutti gli operatori del Sistema.

Il lavoro effettuato è presentato in questa linea di indirizzo condivisa dagli esperti del Sistema delle Agenzie e approvata dal Consiglio Federale nella riunione del 5 ottobre 2009.

4.4.1 Misurazione e incertezza di misura

L'operazione di misurazione è eseguita su un oggetto o un fenomeno allo scopo di quantificare una o più proprietà o grandezza (misurando) ad esso relativo. Tale quantificazione si concretizza in uno o più valori (misure) ricavati per mezzo dell'interazione tra l'oggetto e la strumentazione; ciascuna misura rappresenta una stima del "valore vero" che, a causa dell'incertezza che caratterizza qualunque fenomeno fisico, fra cui quelli alla base dell'operazione di misurazione stessa, e all'inevitabile approssimazione legata alla risoluzione degli strumenti, rimane non conoscibile in termini deterministici. Ad ogni misura dovrà dunque essere associata l'incertezza legata al complesso dell'operazione di misurazione che consente di valutare probabilisticamente la vicinanza tra la stima (misura) e il "valore vero¹".

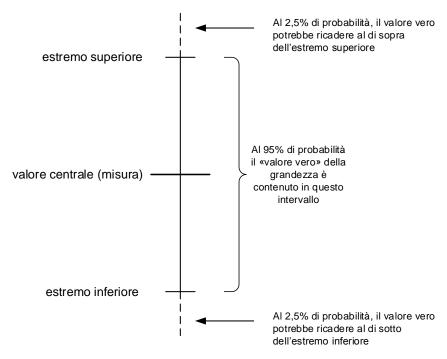


Figura 6 Incertezza di misura

L'incertezza di misura è calcolata secondo i principi della norma UNI 13005 e rappresenta l'intervallo, determinato con un livello di confidenza convenzionalmente pari al 95%, al cui interno ricade il "valore vero" della grandezza di interesse. La misura costituisce la migliore stima di tale valore: centrando l'intervallo su di essa, si potrà quindi dire che il "valore vero" ricadrà in tale intervallo con una probabilità del 95% (Figura 6). Al diminuire dell'incertezza, legata allo strumento di misurazione e al metodo impiegato per eseguire la misurazione stessa, l'ampiezza dell'intervallo diminuisce. Vale rilevare che il metodo impiegato consente di impiegare validamente l'incertezza ad esso collegata solo nell'ipotesi di esecuzione delle operazioni secondo quanto stabilito nel metodo stesso. Appare quindi chiaro che questo fenomeno abbia un'influenza fondamentale quando si debba confrontare una grandezza misurata (ad esempio, un valore di emissione) con un valore limite predeterminato, in particolare per stabilirne il superamento o meno.

4.4.2 Regole decisionali

Con riferimento a questi importanti aspetti, le linee guida dell'Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA, "L'analisi di conformità con i valori di legge: il ruolo dell'incertezza

Università degli Studi di Trieste

¹ Chiamato "Valore reale nel manuale UNICHIM 158, cfr. Errore, L'origine riferimento non è stata trovata.

associata a risultati di misura" Manuali e linee guida 52/2009) forniscono degli indirizzi per l'esecuzione dell'analisi di conformità tra il risultato di analisi o misurazioni eseguite dalle Agenzie Ambientali, in presenza di espressione dell'incertezza di misura e il valore limite (VL) previsto dalle norme di legge.

Le linee guida ISPRA sottolineano come l'incertezza di misura associata al risultato dell'operazione di misurazione costituisca uno strumento per la valutazione di conformità, nei casi in cui la norma di riferimento non dia indicazioni sulle regole decisionali da adottare in merito; nei casi in cui tali indicazioni siano invece presenti, esse dovranno sicuramente essere adottate. Nei casi di assenza di indicazioni, le linee guida suggeriscono di non confrontare direttamente la migliore stima del valore della proprietà di interesse (valore misurato) con il valore limite (che si configura come l'estremo superiore dell'intervallo di accettazione) stabilito dalla normativa (Figura 7). La proposta è di confrontare l'intervallo di accettazione con l'intervallo costituito dall'incertezza associata alla migliore stima del "valore vero" della proprietà di interesse. Il confronto può portare, secondo le linee guida a quattro casi, di seguito brevemente discussi.

Figura 7 Intervallo di accettabilità

In assenza di regole decisionali stabilite dalle norme, per l'analisi di non conformità deve essere utilizzato un criterio probabilistico che considera il risultato della misura (R) "non conforme" quando esso risulta maggiore di VL con una probabilità maggiore del 95% ("oltre ogni ragionevole dubbio"). In altri termini, l'emissione campionata è non conforme al VL quando R supera VL "oltre ogni ragionevole dubbio", cioè tenuto conto dell'incertezza di misura (U), stimata ad un livello di confidenza del 95%.

Indicata con UR la semi-ampiezza dell'intervallo determinato in funzione dell'incertezza e del livello di confidenza, si hanno i casi indicati in Figura 8; per essi si può, secondo le linee guida ISPRA, affermare quanto segue:

- caso 1, l'emissione misurata è "NON non conforme";
- caso 2, l'emissione misurata è "NON non conforme";
- caso 3, non è possibile stabilire la non conformità della misura "oltre ogni ragionevole dubbio";
- caso 4, l'emissione misurata è non conforme "oltre ogni ragionevole dubbio".

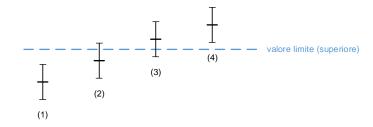


Figura 8 Confronto tra valore limite e intervalli di misura

Si noti che tali condizioni prendono come riferimento il valore limite superiore (VL) che è tipicamente utilizzato per determinare il superamento di un valore emissivo e la differenza tra valore misurato R e semi-ampiezza UR. R-UR corrisponde infatti al limite inferiore dell'intervallo di confidenza al 95% (Figura 6); di conseguenza, se (R-UR) è maggiore di VL la probabilità che il "valore vero" dell'emissione sia inferiore al valore limite sarà al più pari al 2,5%: si potrà quindi affermare che l'emissione misurata è non conforme "oltre ogni ragionevole dubbio" (si rientra cioè nella fattispecie 4 di Figura 8). Tale affermazione non è invece possibile per la fattispecie 3 di Figura 8, in cui (R-UR) è minore o uguale di VL. In questo caso, le linee guida ISPRA sottolineano che non è possibile stabilire "oltre ogni ragionevole dubbio" la non conformità rispetto al valore limite. In conclusione, il commento che le linee guida suggeriscono quando si riscontri questa fattispecie è la seguente: "il valore misurato, tenuto conto dell'incertezza, non risulta significativamente maggiore di VL, al livello di confidenza del 95%."

5. Caratterizzazione delle sostanze inquinanti

5.1 Premessa

Nei capitoli introduttivi si è avuto modo di evidenziare come sia possibile individuare un rapporto di causa effetto tra l'inquinamento nella sua più ampia accezione e determinate sorgenti, principalmente ricondotte alle attività industriali, al riscaldamento domestico e ai trasporti.

Sul piano dell'inquinamento dell'aria a cui questo corso si riferisce, tale nesso causale viene ricondotto alla dualità che caratterizza quelle sostanze che in termini generali potrebbero dirsi *inquinanti* e che, a seconda che siano presenti *al camino* o nell'*ambiente* esterno vengono dette *emissioni* o *immissioni* rispettivamente.

Alla luce di quanto sopra esposto e nell'ottica di individuare delle iniziative volte a contenere le dispersione degli inquinanti in atmosfera appare evidente l'opportunità di caratterizzarli non solo in rapporto ai loro effetti sugli esseri viventi e sull'uomo in particolare (*tossicità*), ma anche in relazione allo stato fisico che ne condiziona le modalità di propagazione.

In ambito industriale la considerazione dell'eventuale tossicità di una sostanza prodotta da determinate lavorazioni fa sì che il confine tra l'igiene del lavoro industriale (nella fattispecie la *qualità dell'aria indoor*) e il rischio di inquinamento ambientale (l'eventuale contaminazione esterna), sia molto sottile e sfumato in quanto le aspirazioni localizzate trasferiscono gli inquinanti presenti all'interno dello stabilimento, eventualmente dopo un processo depurativo, all'esterno (e quindi all'ambiente), con tutte le (eventuali) conseguenze del caso.

Appare dunque opportuno caratterizzare le emissioni atmosferiche sia in relazione ai loro effetti sulle condizioni del posto di lavoro, e quindi sulla salute dei lavoratori, che in relazione al loro impatto sull'ambiente esterno.

5.2 Emissioni in atmosfera

Le emissioni atmosferiche sono sostanze inquinanti prodotte, in particolare, nelle lavorazioni industriali ed introdotte in atmosfera tramite un effluente gassoso. In relazione al loro stato fisico, esse sono classificabili in

- Solide
- Liquide
- Gassose

Le emissioni solide si identificano nelle polveri, costituite da particelle solide di dimensioni variabili dal campo submicroscopico al campo visivo, che si originano nelle lavorazioni di materiali solidi (macinazione, frantumazione, classificazione, ecc.), nei trattamenti termici (in quanto i gas uscenti da forni, essiccatoi, ecc. contengono polveri in quantità più o meno rilevanti), in molti processi meccanici (per esempio, molatura); nella combustione di materiali organici (idrocarburi, oli, legno, ecc.) i cui fumi trascinano particelle solide, come cenere e carbone totalmente o parzialmente incombusto.

Le emissioni liquide sono costituite da nebbie, ossia da sospensioni di minutissime goccioline di dimensioni microscopiche o submicroscopiche, prodotte da fenomeni di distillazione, condensazione, ossidazione (fusione di metalli, reazioni chimiche) o particolari lavorazioni (pitturazione, pulizia mediante getti di acqua in pressione).

Le emissioni gassose consistono in sostanze aeriformi, ovvero gas e vapori sviluppati per reazione chimica, ebollizione o evaporazione di liquidi o per sublimazione di solidi, non comprese tra i normali componenti dell'aria o che ne alterino la composizione.

5.2.1 Elementi specifici di pericolosità delle emissioni

Com'è noto, la respirazione prolungata da parte dell'uomo di polveri, fumi e gas può provocare gravi alterazioni a carico del suo organismo.

La pericolosità delle emissioni atmosferiche dipende dalla composizione chimica, dalla granulometria e dalla concentrazione.

5.2.1.1 Composizione chimica

La composizione chimica rappresenta uno specifico elemento di tossicità intesa come la capacità di alcune sostanze di agire per via chimica sull'organismo con effetto nocivo più o meno esteso.

Certi inquinanti producono, a seguito di inalazioni più o meno prolungate, veri e propri avvelenamenti; basti ricordare le emissioni di metalli quali il piombo, l'arsenico, il manganese.

Altri inquinanti, se pure meno nocivi, presentano proprietà irritanti che cagionano infiammazioni delle mucose, specie delle vie respiratorie (polvere di silice libera e di amianto): il contatto prolungato con tali polveri determina vere e proprie malattie professionali generalmente denominate pneumoconiosi (silicosi, asbestosi, ecc.). A loro volta, le polveri di cromati alcalini, di fluoruri, dell'antracene, dell'anilina, del piombo e di altre sostanze sono all'origine di processi infiammatori della cute (dermatiti professionali tipo eczemi, discromie, distrofie ed anche neoplasie).

Ricordiamo ancora le polveri radioattive e quelle allergizzanti (fra le quali citiamo le emissioni di cotone, lino, canapa, farina, ecc.). Queste ultime possono dar luogo ad allergie, fra le quali la più temuta è l'asma bronchiale, pericoloso stadio che può preludere alla bronchite cronica e all'enfisema polmonare.

5.2.1.2 Granulometria

Limitatamente alle emissioni solide, la composizione chimica non ne rappresenta il solo elemento di pericolosità, essendo significativa al riguardo anche la *granulometria*, in quanto da essa dipende la capacità di penetrazione attraverso l'apparato respiratorio.

Al riguardo si ricordi come emissioni di carbone, ferro, addirittura la farina ed altre sostanze cosiddette inerti provochino depositi e stratificazioni nell'apparato respiratorio, riducendone le capacità funzionali.

La *granulometria* si riferisce alle dimensioni medie (espresse in µm) dei granuli o delle particelle costituenti un aggregato, quale risultato di un operazione di *classificazione*, ossia di passaggio attraverso le maglie di un dato setaccio, essendo trattenute dal setaccio immediatamente inferiore. In altri casi si intende il diametro di una sfera equivalente che impiega uguale tempo a sedimentare.

A proposito dell'influenza della granulometria sulla pericolosità delle particelle costituenti una polluzione, rileviamo che:

- la maggior parte delle particelle di silice che si depositano negli alveoli polmonari ha dimensioni medie prossime a 1 µm;
- la massima ritenzione di polvere di piombo si ha per particelle aventi dimensioni comprese fra 0.5 e $1~\mu m$;
- la polvere di uranio è più pericolosa se le particelle hanno dimensioni di 0,45 μm.

Mediamente e a titolo indicativo, si può dire che la dimensione delle particelle che più facilmente si depositano negli alveoli polmonari è compresa fra 0.5 e $2~\mu m$.

D'altra parte, è risaputo che alle particelle aventi un diametro maggiore di $5\div10~\mu m$ è impedita la penetrazione nei polmoni dalle naturali difese dell'organismo, mentre le particelle di dimensioni inferiori a 0,2 μm sono troppo piccole per essere trattenute nell'apparato respiratorio (Figura 9). E' opinione generale che, fino al limite inferiore di 0,5 μm , la pericolosità aumenti con il diminuire delle dimensioni delle particelle.

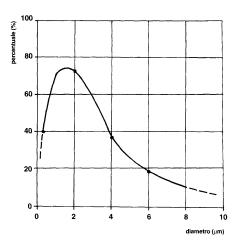


Figura 9 Curva di ritenzione polmonare

5.2.1.3 Concentrazione

Per concentrazione di un inquinante nell'aria, si intende la quantità di particelle di quell'inquinante presente nell'unità di volume di aria. La concentrazione può essere espressa in:

- μ g/Nm³ = peso in μ g delle particelle contenute in 1 m³ di aria in condizioni *normali*¹;
- ppm = volume delle particelle contenute in 10^6 unità di volume (parti per milione);

Se, d'altra parte, si tiene presente che una persona adulta, impegnata in un lavoro normale, respira da 7 a 10 litri d'aria al minuto, si comprende come la pericolosità delle emissioni sia anche legata, oltre che al tipo di inquinante, alla quantità di questo presente nell'aria (ed alle dimensioni delle particelle, come visto in precedenza).

5.3 Principali inquinanti² aerodispersi

5.3.1 Ossidi di zolfo (SO_X)

Sono costituiti essenzialmente da anidride solforosa (SO_2) e in minima parte da anidride solforica (SO_3) .

Il biossido di zolfo (SO₂) è un gas dal caratteristico odore pungente che reagisce facilmente con tutte le principali classi di biomolecole: in vitro sono state dimostrate interazioni con gli acidi nucleici, le proteine, i lipidi e varie altre componenti biologiche.

Rappresentano i tipici inquinanti delle aree urbane e industriali dove l'elevata densità degli insediamenti ne favorisce l'accumulo soprattutto in condizioni meteorologiche di debole ricambio delle masse d'aria.

Le situazioni più serie sono spesso verificate nei periodi invernali ove alle normali fonti di combustione si aggiunge il contributo del riscaldamento domestico. E' comunque da notare che in seguito alla diffusa metanizzazione degli impianti di riscaldamento domestici il contributo inquinante degli ossidi di zolfo è notevolmente diminuito nel corso degli anni.

Le emissioni di origine antropica sono dovute prevalentemente all'utilizzo di combustibili solidi e liquidi e correlate al contenuto di zolfo, sia come impurezza, sia come costituenti nella formulazione molecolare del combustibile (gli oli).

A causa dell'elevata solubilità in acqua l'SO₂ viene assorbito facilmente dalle mucose del naso e del tratto superiore dell'apparato respiratorio (solo piccolissime quantità raggiungono la parte più profonda del polmone).

² Fonte: ARPAV – Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto (http://www.arpa.veneto.it)

1

¹ Ossia alla pressione atmosferica ed alla temperatura di 0°C

Fra gli effetti acuti imputabili all'esposizione ad alti livelli di SO₂ sono compresi un aumento della resistenza al passaggio dell'aria a seguito dell'inturgidimento delle mucose delle vie aeree, l'aumento delle secrezioni mucose, bronchite, tracheite, spasmi bronchiali e/o difficoltà respiratoria negli asmatici.

Fra gli effetti a lungo termine ricordiamo le alterazioni della funzionalità polmonare e l'aggravamento delle bronchiti croniche, dell'asma e dell'enfisema. I gruppi più sensibili sono costituiti dagli asmatici e dai bronchitici. È stato accertato un effetto irritativo sinergico in seguito all'esposizione combinata con il particolato, probabilmente dovuto alla capacità di quest'ultimo di veicolare l'SO₂ nelle zone respiratorie profonde del polmone.

5.3.2 Ossidi di azoto (NOx)

Comprendono il monossido NO e il biossido di azoto NO₂. L'ossido di azoto è un gas inodore e incolore che costituisce il componente principale delle emissioni di ossidi di azoto nell'aria e viene gradualmente ossidato a NO₂. Il biossido di azoto ha un colore rosso-bruno ed è caratterizzato ad alte concentrazioni da un odore pungente e soffocante.

In presenza di altri inquinanti, quali per esempio gli idrocarburi, l'ozono e altri radicali liberi prodotti per reazioni di fotodissociazione, possono innescare un complesso di reazioni chimiche che portano alla formazione dello smog fotochimico. I costituenti principali di tale smog, oltre all'ozono, sono le aldeidi e i perossiacilnitrati (PAN), composti altamente tossici, che risultano essere intermedi di reazione o prodotti secondari. La produzione di smog fotochimico dipende quindi dalle concentrazioni in atmosfera degli ossidi di azoto e degli idrocarburi ed è strettamente legata alle emissioni dovute al traffico veicolare.

La pericolosità degli ossidi di azoto e in particolare del biossido, è legata anche al ruolo che essi svolgono nella formazione dello smog fotochimico. In condizioni meteorologiche di stabilità e di forte insolazione (primavera-estate), le radiazioni ultraviolette possono determinare la dissociazione del biossido di azoto e la formazione di ozono, che può ricombinarsi con il monossido di azoto e ristabilire una situazione di equilibrio.

Le fonti antropiche, rappresentate da tutte le reazioni di combustione, comprendono principalmente gli autoveicoli, le centrali termoelettriche e il riscaldamento domestico.

L'NO₂ è circa 4 volte più tossico dell'NO. I meccanismi biochimici mediante i quali l'NO₂ induce i suoi effetti tossici non sono del tutto chiari anche se è noto che provoca gravi danni alle membrane cellulari a seguito dell'ossidazione di proteine e lipidi. Gli effetti acuti comprendono l'infiammazione delle mucose, il decremento della funzionalità polmonare e l'edema polmonare. Gli effetti a lungo termine includono un aumento dell'incidenza delle malattie respiratorie, le alterazioni polmonari a livello cellulare e tissutale, un aumento della suscettibilità alle infezioni polmonari batteriche e virali. Il gruppo a maggior rischio è costituito dagli asmatici e dai bambini.

5.3.3 Monossido di carbonio (CO)

Viene prodotto dalla combustione incompleta delle sostanze contenenti carbonio. Il monossido di carbonio è un gas incolore e inodore, di densità superiore a quella dell'aria, principalmente riconducibile al traffico veicolare.

Le condizioni più favorevoli al ristagno degli inquinanti si verificano nei periodi invernali.

Le fonti antropiche che lo generano sono costituite dagli scarichi delle automobili, soprattutto a benzina, dal trattamento e smaltimento dei rifiuti, dalle industrie e raffinerie di petrolio, dalle fonderie.

Il CO raggiunge facilmente gli alveoli polmonari e quindi il sangue dove compete con l'ossigeno per il legame con l'emoglobina. La carbossiemoglobina così formatasi è circa 250 volte più stabile dell'ossiemoglobina e quindi riduce notevolmente la capacità del sangue di portare ossigeno ai tessuti. Gli effetti sanitari sono essenzialmente riconducibili ai danni causati dall'ipossia a carico del sistema nervoso, cardiovascolare e muscolare. Comprendono i seguenti sintomi: diminuzione della capacità di concentrazione, turbe della memoria, alterazione del comportamento, confusione mentale, alterazione

della pressione sanguigna, accelerazione del battito cardiaco, vasodilatazione e vasopermeabilità con conseguenti emorragie, effetti perinatali. I gruppi più sensibili sono gli individui con malattie cardiache e polmonari, gli anemici e le donne in stato di gravidanza.

5.3.4 Particolato atmosferico (PM)

Viene così identificato l'insieme di tutte le particelle solide o liquide che restano in sospensione nell'aria. Il particolato sospeso totale rappresenta un insieme estremamente eterogeneo di sostanze la cui origine può essere primaria (emesse come tali) o derivata (da una serie di reazioni fisiche e chimiche).

Una caratterizzazione esauriente del particolato sospeso si basa oltre che sulla misura della concentrazione e l'identificazione delle specie chimiche coinvolte anche sulla valutazione della dimensione media delle particelle.

Le particelle di dimensioni maggiori (diametro $> 10~\mu m$) hanno un tempo medio di vita nell'atmosfera che varia da pochi minuti ad alcune ore e la possibilità di essere aerotrasportate per una distanza massima di 1-10 Km. Le particelle di dimensioni inferiori hanno invece un tempo medio di vita da pochi giorni fino a diverse settimane e possono venire veicolate dalle correnti atmosferiche per distanze fino a centinaia di Km.

Il periodo critico per tale tipo di inquinante è l'inverno, quando sono più frequenti le condizioni di ristagno dell'aria.

Le fonti antropiche di particolato sono essenzialmente le attività industriali ed il traffico veicolare. Stime preliminari a livello nazionale (con riferimento al 1994) indicano per i trasporti un contributo alle emissioni intorno al 30% rispetto al totale; gli impianti di riscaldamento contribuiscono per circa il 15%; le emissioni da fonte industriale (inclusa la produzione di energia elettrica) danno conto di quasi il 50% delle emissioni di PM₁₀.

Per quanto riguarda le emissioni di polveri da traffico, sono soprattutto i veicoli diesel a contribuire alle emissioni allo scarico, e tali emissioni nei centri urbani risultano grosso modo equiripartite tra auto e veicoli commerciali leggeri da una parte, e bus e veicoli commerciali pesanti dall'altra. Un'altra fonte significativa di emissione di PM da attribuire al traffico è quella dovuta all'usura di freni, gomme, asfalto stradale.

Sempre nei centri urbani, una frazione variabile, che può raggiungere il 60-80% in massa del particolato fine presente in atmosfera è di origine secondaria, ovvero è il risultato di reazioni chimiche che, partendo da inquinanti gassosi sia primari (cioè emessi direttamente in atmosfera come gli idrocarburi e altri composti organici, gli ossidi di azoto, gli ossidi di zolfo, il monossido di carbonio, l'ammoniaca) che secondari (frutto di trasformazioni chimiche come l'ozono e altri inquinanti fotochimici), generano un enorme numero di composti in fase solida o liquida come solfati, nitrati e particelle organiche.

Nella maggior parte delle città si registra un incremento percentuale significativo della frazione PM_{10} , anche in presenza di una diminuzione della quantità totale di particolato. Nelle città in cui sono monitorate entrambe le frazioni di particolato (PM_{10} e $PM_{2.5}$), e in alcuni casi studio specifici, è stato registrato un rapporto percentuale del PM_{10} sul particolato totale variabile dal 40 all'80%. La concentrazione media della frazione respirabile $PM_{2.5}$ risulta essere generalmente pari al 45-60% della frazione inalabile PM_{10} .

La dimensione media delle particelle determina inoltre il grado di penetrazione nell'apparato respiratorio e la conseguente pericolosità per la salute umana. Il monitoraggio ambientale del particolato con diametro inferiore a $10~\mu m$ (PM₁₀) può essere considerato un indice della concentrazione di particelle in grado di penetrare nel torace (frazione inalabile). La determinazione delle particelle con diametro inferiore a $2.5~\mu m$, frazione respirabile (PM_{2.5}), è inoltre un indice della concentrazione di una serie molto eterogenea di composti chimici primari o derivati in grado di raggiungere la parte più profonda del polmone. Tra i composti primari, cioè emessi come tali, vi sono le particelle carboniose derivate dalla combustione di legname e dai fumi dei motori diesel; nella seconda categoria, cioè tra i composti prodotti da reazioni secondarie, rientrano le particelle carboniose originate durante la sequenza fotochimica che

porta alla formazione di ozono, di particelle di solfati e nitrati derivanti dall'ossidazione di SO₂ e NO₂ rilasciati in vari processi di combustione.

Ai fini degli effetti sulla salute è molto importante la determinazione delle dimensioni e della composizione chimica delle particelle. Le dimensioni determinano il grado di penetrazione all'interno del tratto respiratorio mentre le caratteristiche chimiche determinano la capacità di reagire con altre sostanze inquinanti (IPA, metalli pesanti, SO₂).

Le particelle che si depositano nel tratto superiore o extratoracico (cavità nasali, faringe e laringe) possono causare effetti irritativi locali quali secchezza e infiammazione; quelle che si depositano nel tratto tracheobronchiale (trachea, bronchi e bronchioli) possono causare costrizione e riduzione della capacità epurativa dell'apparato respiratorio, aggravamento delle malattie respiratorie croniche (asma, bronchite ed enfisema) ed eventualmente neoplasie. Le particelle con un diametro inferiore ai 5-6 µm possono depositarsi nei bronchioli e negli alveoli e causare infiammazione, fibrosi e neoplasie. Il particolato fine può anche indurre indirettamente effetti sistemici su specifici organi bersaglio a seguito del rilascio nei fluidi biologici degli inquinanti da esso veicolati. I gruppi più sensibili sono costituiti dagli asmatici e dai bronchitici. E' stato accertato un effetto sinergico in seguito all'esposizione combinata di particelle sospese e SO₂

5.3.5 Benzene (C₆H₆)

E' un liquido incolore e dotato di un odore caratteristico. Il benzene è un idrocarburo aromatico tipico costituente delle benzine.

Gli autoveicoli rappresentano la principale fonte di emissione: in particolare, circa l'85% viene immesso nell'aria con i gas di scarico e il 15% rimanente per evaporazione del combustibile e durante le operazioni di rifornimento.

Significativo può essere il contributo dell'industria (cokeria, depositi petroliferi, raffinerie, ecc.)

L'intossicazione di tipo acuto è dovuta all'azione del benzene sul sistema nervoso centrale. A concentrazioni moderate i sintomi sono stordimento, eccitazione e pallore seguiti da debolezza, mal di testa, respiro affannoso, senso di costrizione al torace. A livelli più elevati si registrano eccitamento, euforia e ilarità, seguiti da fatica e sonnolenza e, nei casi più gravi, arresto respiratorio, spesso associato a convulsioni muscolari e infine a morte.

Fra gli effetti a lungo termine vanno menzionati interferenze sul processo emopoietico (con riduzione progressiva di eritrociti, leucociti e piastrine) e l'induzione della leucemia nei lavoratori maggiormente esposti. Il benzene è stato inserito da International Agency for Research on Cancer (IARC) nel gruppo 1 cioè tra le sostanze che hanno un accertato potere cancerogeno sull'uomo.

5.3.6 Idrocarburi Policiclici Aromatici (IPA)

Sono costituiti da due o più anelli aromatici condensati e derivano dalla combustione incompleta di numerose sostanze organiche.

Sono presenti ovunque in atmosfera; vengono prodotti dalla combustione incompleta di materiale organico e derivano dall'uso di olio combustibile, gas, carbone e legno nella produzione di energia.

La fonte più importante di origine antropica è rappresentata dalle emissioni veicolari seguita dagli impianti termici, dalle centrali termoelettriche e dagli inceneritori e dalle cokerie.

Gli idrocarburi policiclici aromatici sono molto spesso associati alle polveri sospese. In questo caso la dimensione delle particelle del particolato aerodisperso rappresenta il parametro principale che condiziona l'ingresso e la deposizione nell'apparato respiratorio e quindi la relativa tossicità. Presenti nell'aerosol urbano sono generalmente associati alle particelle con diametro aerodinamico minore di 2 micron e quindi in grado di raggiungere facilmente la regione alveolare del polmone e da qui il sangue e quindi i tessuti. Oltre ad essere degli irritanti di naso, gola ed occhi sono riconosciuti per le proprietà mutagene e cancerogene. E' accertato il potere cancerogeno di tutti gli IPA a carico delle cellule del polmone, e tra questi anche del benzo(a)pirene (BaP) (gli IPA sono stati inseriti nel gruppo 1 della

classificazione IARC). Poiché è stato evidenziato che la relazione tra BaP e gli altri IPA, detto profilo IPA, è relativamente stabile nell'aria delle diverse città, la concentrazione di BaP viene spesso utilizzata come indice del potenziale cancerogeno degli IPA totali.

5.3.7 Metalli pesanti (As, Cd, Ni)

I metalli, presenti in tracce come Arsenico (As), Cadmio (Cd), Nichel (Ni), sono sostanze inquinanti spesso presenti nell'aria a seguito di emissioni provenienti da diversi tipi di attività industriali.

Le concentrazioni in aria di alcuni metalli nelle aree urbane e industriali può raggiungere valori 10-100 volte superiori a quelli delle aree rurali.

Le fonti antropiche responsabili dell'incremento della quantità naturale di metalli sono principalmente l'attività mineraria, le fonderie e le raffinerie, la produzione energetica, l'incenerimento dei rifiuti e l'attività agricola. I metalli pesanti sono presenti in atmosfera *sotto forma di particolato aerotrasportato*; le dimensioni delle particelle a cui sono associati e la loro composizione chimica dipende fortemente dalla tipologia della sorgente di emissione.

L'esposizione agli elementi in tracce è associata a molteplici effetti sulla salute: tra i metalli pesanti quelli maggiormente rilevanti sotto il profilo tossicologico sono il Nichel e il Cadmio. Questi ultimi sono classificati dall'Agenzia Internazionale di Ricerca sul Cancro come cancerogeni per l'uomo.

5.3.8 Piombo (**Pb**)

Il piombo è un elemento in traccia altamente tossico. Negli ultimi anni l'avvelenamento da piombo per gli esseri umani ha cambiato provenienza ma ha probabilmente aumentato la sua estensione.

La principale fonte di inquinamento atmosferico è costituita dagli scarichi dei veicoli alimentati con benzina super (il piombo tetraetile veniva usato come additivo antidetonante). Con il definitivo abbandono della benzina "rossa" i livelli di piombo nell'aria urbano dovrebbero quindi diminuire in modo significativo. Le altre fonti antropiche derivano dalla combustione del carbone e dell'olio combustibile, dai processi di estrazione e lavorazione dei minerali che contengono Pb, dalle fonderie, dalle industrie ceramiche e dagli inceneritori di rifiuti.

Il Pb assorbito attraverso l'epitelio polmonare entra nel circolo sanguigno e si distribuisce in quantità decrescenti nelle ossa, nel fegato, nei reni, nei muscoli e nel cervello. L'intossicazione acuta è rara e si verifica solo in seguito all'ingestione o all'inalazione di notevoli quantità di Pb. La tossicità del Pb può essere spiegata in parte dal fatto che, legandosi ai gruppi sulfidrilici delle proteine o sostituendo ioni metallici essenziali, interferisce con diversi sistemi enzimatici. Tutti gli organi costituiscono potenziali bersagli e gli effetti sono estremamente vari (anemia, danni al sistema nervoso centrale e periferico, ai reni, al sistema riproduttivo, cardiovascolare, epatico, endocrino, gastro-intestinale e immunitario). I gruppi maggiormente a rischio sono costituiti dai bambini e dalle donne in gravidanza. Il livello di piombo nel sangue è l'indicatore più attendibile delle esposizioni ambientali a questo inquinante e le linee guida dell'OMS propongono un valore critico pari ad una concentrazione di 100 μg/l. Alcuni studi condotti su bambini indicano che una ricaduta al suolo giornaliera superiore a 250 μg/m² è responsabile di un significativo incremento di piombo nel sangue.

5.4 Proprietà dinamiche del particolato

In vista del controllo delle emissioni, rivestono la massima importanza le leggi del moto del particolato nell'aria ambiente.

È noto che una particella microscopica, abbandonata in aria calma, non aumenta la sua velocità di caduta secondo la legge di gravità, ma raggiunge rapidamente la cosiddetta *velocità terminale*, costante e molto bassa (dell'ordine di pochi cm o mm all'ora). In tali circostanze infatti, in conseguenza della relativamente grande area superficiale della particella per unità di massa, si instaura un equilibrio tra la resistenza aerodinamica e la forza di gravità.

Ciò spiega il motivo per cui polveri, fumi e gas possono rimanere nell'aria anche per lungo tempo. Inoltre, la notevole resistenza dell'aria sulle piccole particelle costituenti le emissioni rende difficoltosa la loro rimozione dall'atmosfera in cui si trovano disperse.

La resistenza dell'aria al moto di una particella dipende dalla grandezza e dalla forma della particella stessa, dalla velocità di questa e dalla viscosità del mezzo secondo la relazione:

$$R = \frac{C_r \, \rho_a \, s \, u^2}{2}$$

Dove:

R resistenza del mezzo [N]

 C_r coefficiente di resistenza [-]

 ρ_a densità dell'aria [kg/m³]

s area della particella misurata normalmente alla direzione del moto [m²]

u velocità della particella rispetto all'aria [m/s]

g accelerazione di gravità [m/s²]

Il coefficiente C_r varia con il numero di Reynolds Re = ρ_a d u/η (d = diametro medio della particella in m; η =coefficiente di viscosità dinamica dell'aria in Pa·s) e con la forma della particella. Nei moti aventi caratteristiche di turbolenza (in pratica per valori di Re > 1000), C_r è praticamente costante; nel caso di particelle sferiche, $C_r \approx 0,44$, per cui la resistenza del mezzo (essendo S= π d²/4) vale:

$$R = 0.44 \; \frac{\pi}{8} \; \rho_a \; d^2 \; u^2$$

In moto laminare (Re < 3), C_r è inversamente proporzionale a Re:

$$C_r = \frac{24}{Re}$$

Per cui

$$R = k \eta d u$$

Nel caso di sfere $k=3\pi$.

Per Re variabile approssimativamente fra 3 e 1000, si può avere un moto intermedio fra il laminare ed il turbolento. Per tale moto, la cui delimitazione rispetto agli altri due moti non è peraltro definibile con precisione, è stata ricavata la seguente espressione di *Cr*:

$$C_r = \frac{18,5}{Re^{0,6}}$$

per cui, nel caso di particelle sferiche, la resistenza del mezzo vale:

$$R = \frac{18.5}{2} \frac{\pi}{4} \rho_a^{0.4} d^{1.4} u^{1.4} \eta^{0.6}$$

Tabella 7 valori di densità ρ , viscosità dinamica η e viscosità cinematica ν per l'aria alla pressione atmosferica (10^5 Pa) e a varie temperature

T [°C]	-20	0	20	40	60	80	100	200
$\rho [kg/m^3]$	1,40	1,29	1,20	1,12	1,06	1,00	0,95	0,75
$\eta (10^6 \text{Pa} \cdot \text{s})$	1,65	1,72	1,85	1,95	2,04	2,93	2,22	2,66
$v [10^6 \text{m}^2 \text{s}^{\text{-}1}]$	11,6	13,3	15,1	16,9	18,9	20,9	23,1	35,0

5.4.1 Sedimentazione

Definita la resistenza del mezzo in relazione al tipo di moto, si consideri dapprima il caso della caduta libera delle particelle in aria calma. La loro sedimentazione dipende ovviamente dalla forza di gravità. Questa, nel caso di sfere e trascurando la spinta di Archimede dell'aria, vale (in N):

$$F_g = \frac{4}{3} \pi \frac{d^3}{8} \rho_m g = \frac{\pi}{6} d^3 \rho_m g$$

dove, oltre ai simboli noti, ρ_m è la densità della particella [kg/m³]

Come si è accennato più sopra, quando la particella ha raggiunto la velocità terminale, la resistenza dell'aria equilibra l'attrazione gravitazionale. Pertanto, la velocità di sedimentazione di particelle abbandonate in aria calma e in condizioni di moto stazionario, si ottiene uguagliando la resistenza dell'aria R e la forza di gravità F_g :

In regime turbolento (Re>1000) e sempre nel caso di sfere, si ottiene (legge di Newton)

$$\frac{\pi}{6} d^3 \rho_m g = 0.44 \frac{\pi}{8} \rho_a d^2 u^2 \rightarrow u_t = \sqrt{\frac{8 \rho_m d g}{6 \cdot 0.44 \cdot \rho_a}} = \sqrt{\frac{3 \rho_m d g}{\rho_a}}$$

Mentre in regime laminare (legge di Stokes)

$$\frac{\pi}{6} d^3 \rho_m g = 3 \eta d u_t \implies u_t = \frac{\rho_m g d^2}{18 \eta}$$

Quando le particelle sono così piccole da risultare paragonabili al cammino libero medio delle molecole gassose¹, la resistenza del mezzo diminuisce e, di conseguenza, la velocità terminale delle particelle risulta superiore a quella valutata con la legge di Stokes.

Questa situazione si verifica nella parte inferiore della zona caratterizzata dalla legge di Stokes: per la stessa è stato proposto il seguente fattore di correzione della velocità (fattore di Cunningham)

$$k_c \approx 1 + 2.5 \frac{\lambda}{d}$$

essendo λ il cammino libero medio delle molecole gassose: nell'aria, in condizioni "standard" (20°C, 10⁵Pa, umidità relativa 50%, ρ = 1,20 kg/m³), λ = 0.1 μ m; quindi per d = 0,1 μ m, k_c = 2,87, mentre per d = 1 μ m, k_c = 1,16.

Particelle ancora più piccole ($d < 0.1 \mu m$), essendo soggette agli urti provocati dalle molecole gassose, acquistano un moto oscillatorio casuale, noto come *moto Browniano*.

Le espressioni che forniscono l'accelerazione e lo spazio percorso da una particella nella sedimentazione naturale in aria calma si ottengono dalla F = ma = mg - R, essendo m la massa della particella.

Così, in condizioni di moto turbolento e per particelle di forma sferica:

$$F = ma = mg - 0.44 \frac{\pi}{8} \rho_a d^2 u^2$$

Dalla quale si ricava l'espressione dell'accelerazione

$$a = \frac{du}{dt} = g - \frac{1}{3} \frac{\rho_a}{\rho_m} \frac{u^2}{d}$$

E quindi, per integrazione, l'espressione dello spazio percorso

$$S = \int_{t_0}^t u \, dt = \int_{u_0}^u u \frac{du}{\frac{du}{dt}} = \int_{u_0}^u u \frac{du}{g - \frac{1}{3} \frac{\rho_a}{\rho_m} \frac{u^2}{d}} = \frac{3}{2} \frac{\rho_m}{\rho_a} d \left[\ln \left| u^2 - \frac{3g d \rho_m}{\rho_a} \right| \right]_{u_0}^u$$

Analogamente in regime laminare e sempre per particelle di forma sferica

$$F = ma = mg - \pi \mu d u$$

Prof Ing. Marco Boscolo

¹ Si definisce cammino libero medio la distanza media percorsa dalle molecole tra una collisione e la successiva

Per cui

$$a = \frac{du}{dt} = g - \frac{18 \eta u}{\rho_m d^2}$$

$$S = \int_{u_0}^{u} u \frac{du}{\frac{du}{dt}} = -g \left(\frac{\rho_m d^2}{18 \eta}\right)^2 \cdot \left[\frac{18 \eta u}{g \rho_m d^2} u + \ln\left|1 - \frac{18 \eta}{g \rho_m d^2} u\right|\right]_{u_0}^{u}$$

La quale, introducendo il valore della velocità terminale diventa

$$S = -\frac{u_t^2}{g} \left[\frac{u}{u_t} + \ln \left| 1 - \frac{u}{u_t} \right| \right]_{u_0}^u$$

Nel caso di particelle prodotte in corrispondenza di una sorgente con elevate velocità iniziali (Figura 10), lo studio del moto può svolgersi trascurando la forza di gravità.

Figura 10 Particolato metallico emesso ad elevata velocità durante un'operazione di smerigliatura

In tal caso le equazioni del moto si possono ricavare da quanto in precedenza determinato, ponendo g = 0. Per particelle di forma sferica in moto turbolento risulta

$$a = \frac{du}{dt} = -\frac{1}{3} \frac{\rho_a}{\rho_m} \frac{u^2}{d}$$
$$S = \int_{t_0}^t u \, dt = 3 \frac{\rho_m}{\rho_a} \, d \ln \frac{u_0}{u}$$

Per particelle sferiche in moto laminare si ottiene:

$$a = -\frac{3 \pi g \eta d u}{m}$$

$$S = \int_{t_0}^{t} u dt = \frac{m (u_0 - u)}{g 3 \pi \eta d} = \frac{\rho_m d^2 (u_0 - u)}{18 \eta}$$

Poiché nell'aria, come si è detto, le particelle microscopiche raggiungono molto rapidamente la velocità terminale, nell'analisi del loro comportamento durante la caduta I ibera, si può trascurare la fase di accelerazione. Per tutta l'altezza di caduta si può quindi considerare la velocità terminale¹.

Il grafico della Figura 11 fornisce, in funzione della granulometria, la velocità di sedimentazione in aria calma di particelle di quarzo aventi forma irregolare (e quindi dotate di velocità di caduta minori di quelle che avrebbero particelle sferiche, sempre di quarzo e di pari diametro). Tale grafico mette anche in evidenza l'esistenza del moto intermedio fra il laminare (o di Stokes) e il turbolento (o di Newton), noto come moto di Allen.

Dalla figura si rileva inoltre che la zona del moto turbolento interessa le particelle di quarzo aventi una granulometria da $2~\mu m$ in su; quella del moto laminare include particelle di diametro medio inferiore a $85~\mu m$ (e approssimativamente superiore a $0.5~\mu m$, al di sotto del quale il movimento delle particelle è condizionato non più dalla gravità, ma dalle correnti d'aria presenti nell'ambiente): infine, la zona intermedia comprende particelle da $85~a~2000~\mu m$ di diametro.

Molto grossolanamente, tale suddivisione vale anche per le particelle di forma irregolare costituite da minerali diversi dal quarzo.

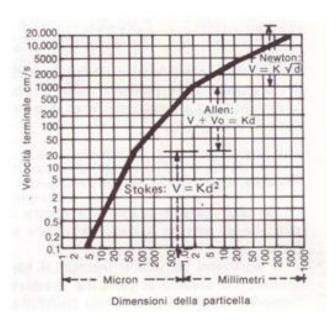


Figura 11 Velocità terminali di particelle di quarzo in aria ferma

5.4.2 Centrifugazione

Se il particolato si trova immerso in una corrente d'aria avente movimento rotatorio, è soggetto ad una forza centrifuga che nel caso di sfere vale (trascurando la spinta d'Archimede dell'aria - Figura 12)

$$F_c = \frac{\pi}{6} d^3 \rho_m r \omega^2$$

con

ω velocità angolare (rad/s):

r raggio della traiettoria della corrente (m).

Prof Ing. Marco Boscolo

¹ Ovviamente, non si può fare altrettanto per le particelle più grandi, aventi cioè massa tale per cui la resistenza dell'aria non equilibra più la forza peso.

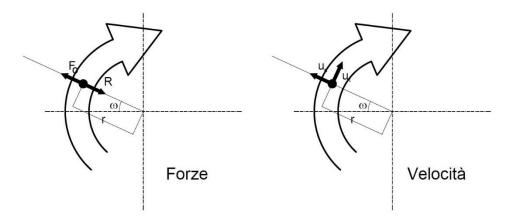


Figura 12 Velocità e forze e agenti su una particella trascinata da una corrente in movimento rotatori In moto laminare, ponendo $F_c = R$, si ottiene

$$u_c = \frac{r \ \omega^2 \ \rho_m \ d^2}{18 \ \eta}$$

Confrontando tale espressione con quella ottenuta per la velocità di caduta u_t di sfere soggette alla gravità in moto laminare, si perviene alla espressione:

$$u_c = \frac{r \,\omega^2}{g} \,u_t = \frac{v^2}{r \,g} u_t$$

dove v è la velocità della corrente che si muove di moto rotatorio.

Il termine v2/rg prende il nome di *fattore di separazione* e misura l'efficacia della forza centrifuga rispetto alla forza di gravità al fine di separare particelle inquinanti da una corrente gassosa.

5.4.3 Urto

Se una corrente d'aria urta contro un ostacolo, essa viene deviata, mentre le particelle di polvere, a causa della loro maggiore inerzia, tendono a fermarsi contro l'ostacolo. La situazione è schematizzata In Figura 13, in riferimento alla quale emerge che, a fronte di una superficie di cattura corrispondente all'intero diametro del cilindro, solamente una superficie inferiore, compresa tra le linee di flusso A e B, delimita la quantità di particelle che effettivamente andranno a raccogliersi sul corpo cilindrico.

Tale circostanza consente di definire l'efficienza di separazione del dispositivo, data dal rapporto H/D.

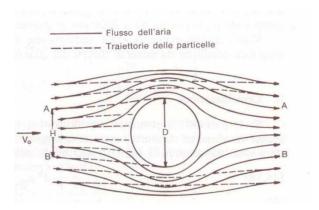


Figura 13 Moto di una corrente d'aria polverosa che investe un cilindro

Appare scontato osservare che, a parità di altri fattori, l'efficienza di separazione dipenderà dalla densità delle particelle e dalla loro dimensione.

A seguito di prove sperimentali effettuate su correnti in regime di Stokes, si è trovato che l'efficienza di un separatore ad urto è funzione della espressione adimensionale

$$\frac{u_t\,V_0}{g\,D}$$

- ut velocità terminale di sedimentazione delle particelle sotto l'azione della gravità [m/s];
- V_0 velocità media della corrente d'aria che investe l'ostacolo [m/s];
- g accelerazione di gravità [m/s²];
- D diametro o ingombro dell'ostacolo [m].

Tale risultato, evidenziato dalla Figura 14, può ritenersi applicabile, in prima approssimazione, anche nel caso di correnti d'aria in regime turbolento.

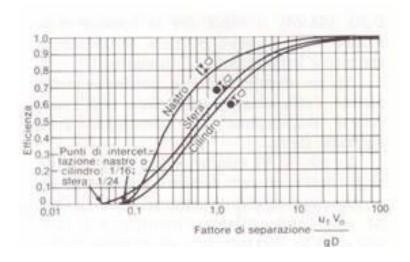


Figura 14 Curve dell'efficienza di separazione di particelle microscopiche (presenti in una corrente d'aria) ottenute con ostacoli di sezione trasversale diversa

5.4.4 Campo elettrico

Esaminiamo ancora il caso del moto in un campo elettrico: le particelle caricate sono soggette ad una forza che le sposta verso gli elementi generatori del campo stesso per una dei seguenti motivi:

- Se le particelle sono già cariche esse subiscono la forza del campo elettrostatico, forza che risulta proporzionale al valore locale del campo stesso ed alla preesistente carica delle particelle;
- Se le particelle non sono cariche, è sufficiente che il campo elettrico non sia omogeneo; in tal caso, infatti, le particelle vengono polarizzate e subiscono una forza proporzionale al gradiente del campo ed al loro coefficiente di polarizzazione.

I depuratori elettrostatici di cui si dirà più avanti consistono essenzialmente in un campo elettrico trasversale alla direzione dei fumi e con un forte gradiente anch'esso trasversale per sfruttare appieno la forza sul momento di dipolo. Un campo siffatto si ottiene facilmente usando come elettrodi fili e pistre alternati: il campo elettrico tra un filo ed una piastra è infatti fortemente disuniforme perché il suo flusso deve essere uguale sui due elettrodi e quindi la densità di flusso (cioè l'intensità del campo) cresce avvicinandosi al filo, che ha superficie minore.

L'esperienza indica che per particelle piccole (dimensioni inferiori a $1\mu m$), l'efficienza di separazione è indipendente dalle dimensioni delle particelle, mentre aumenta linearmente per diametri superiori a $1 \mu m$.

5.5 Proprietà dei gas

5.5.1 Assorbimento

Processo attraverso il quale un gas puro portato a contatto con un liquido, in condizioni assegnate di temperatura e pressione, tende a sciogliersi parzialmente sino al raggiungimento delle condizioni di

equilibrio termodinamico. Per es. 1 litro d'acqua, in condizioni normali, può sciogliere 710 l di ammoniaca, 8 l di anidride solforosa, 28 cm³ di ossigeno.

Il gas passando in soluzione conserva lo stesso stato molecolare e l'isoterma di assorbimento, ovvero la relazione che intercorre fra la pressione del gas e la sua concentrazione nel liquido C a temperatura costante, ha la forma p=H C, dove H non dipende dalla concentrazione ma solo dalla temperatura. Tale semplice relazione lineare, detta legge di Henry, presenta delle deviazioni nel caso di gas molto solubili. Per miscele gassose si applica ancora la legge di Henry sostituendo alla pressione totale quella parziale di ciascun componente presente nella fase gassosa. Talora il gas disciolto reagisce con il liquido solvente (assorbimento con reazione chimica) come si verifica per es. nel caso in cui l'anidride carbonica sciogliendosi in soluzioni di idrati alcalini forma i corrispondenti sali.

L'assorbimento di un gas costituisce una delle operazioni impiegate con maggiore frequenza nell'industria chimica ed è basato sulla diversa solubilità dei componenti presenti in una miscela gassosa in un opportuno liquido solvente. La loro diversa ripartizione fra la fase gassosa e un appropriato liquido solvente con il quale vengono messi a contatto permette infatti di separare in modo spesso molto selettivo uno o più componenti dalla miscela gassosa di partenza.

Poiché la quantità di un gas che si discioglie in un liquido aumenta al diminuire della temperatura e al crescere della pressione, conviene condurre le operazioni di assorbimento alla più bassa temperatura e alla più alta pressione, compatibilmente con i vincoli economici del processo. Talora l'assorbimento è associato a una reazione chimica in virtù della quale si scioglie una quantità più elevata di gas, con l'inconveniente però di rendere meno agevole la rigenerazione del liquido solvente.

Le principali apparecchiature adottate sono quelle a riempimento, a spruzzo e a piatti, che presentano il comune obiettivo di realizzare un intimo contatto fra le due fasi presenti. La velocità di assorbimento è proporzionale alla superficie di contatto fra le due fasi e alla differenza fra la pressione parziale del componente nel gas e il valore che gli competerebbe in condizioni di equilibrio.

Gli assorbitori a riempimento consistono in colonne cilindriche verticali alimentate con due flussi in controcorrente (il liquido discendente e il gas ascendente). La presenza del materiale di riempimento costituito da piccoli oggetti a forma di anelli forati o piccole sellette (fig. 1), di grande superficie specifica, agevola il contatto fra le due fasi in gioco. Gli assorbitori a spruzzo sono costituiti da colonne interamente vuote nelle quali l'elevata superficie di contatto fra il liquido discendente e il gas ascendente è assicurata dalla nebulizzazione del liquido assorbente in goccioline molto piccole. Gli assorbitori a piatti sono del tutto simili alle colonne a piatti (forati o a campanelle) adoperate per la distillazione.

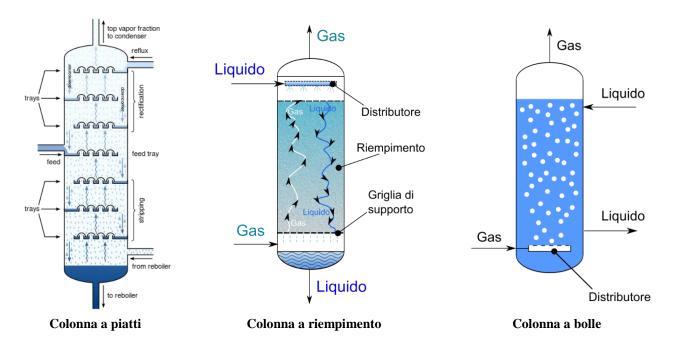


Figura 15 Principali tipologie di apparecchiature impiegate per l'assorbimento

5.5.2 Adsorbimento

Fenomeno in virtù del quale la superficie di una sostanza solida, detta adsorbente, fissa molecole provenienti da una fase gassosa o liquida con cui è a contatto (per superficie si deve intendere non solo quella esterna ma anche quella 'interna' dei canalicoli capillari, delle fratture ecc.).

L'adsorbimento è un fenomeno spontaneo e quindi è accompagnato da una diminuzione dell'energia libera del sistema. Inoltre, poiché una molecola adsorbendosi diminuisce i suoi gradi di libertà, l'adsorbimento è accompagnato da una diminuzione di entropia. I processi di adsorbimento sono esotermici. Il calore sviluppato nell'adsorbimento di una mole è chiamato calore di adsorbimento.

L'adsorbimento può essere di due tipi, fisico o chimico a seconda che entrino in gioco forze di attrazione molecolare (forze di Van der Waals) oppure ordinarie forze di valenza. L'adsorbimento fisico (di diretto interesse ai nostri fini) ha luogo con uno sviluppo di calore relativamente basso, e il processo si svolge con alta velocità. Il il calore d'adsorbimento è dello stesso ordine di grandezza del calore di condensazione, e ammonta a qualche migliaio di joule per mole.

Nell'adsorbimento fisico si può formare un unico strato di molecole sino a saturare la superficie o più strati sovrapposti uno all'altro. Per un dato gas o vapore e per una massa unitaria di un dato adsorbente, il volume v di gas adsorbito all'equilibrio è funzione solo della pressione p e della temperatura p. Quando la pressione del gas viene variata a temperatura costante, la funzione v = p (p; p = p cost.) descrive la cosiddetta isoterma di adsorbimento.

L'adsorbimento trova molte applicazioni industriali nella deumidificazione dell'aria o di altri gas a pressione sia atmosferica sia a essa superiore (condizionamento dell'aria, essiccazione di cibi a bassa temperatura, preparazione di atmosfere controllate in forni metallurgici ecc.); altre applicazioni si hanno nel ricupero di solventi volatili, nelle maschere di protezione contro gas tossici, per la depurazione di acque inquinate.

Particolari utilizzazioni dell'adsorbimento si hanno nell'analisi cromatografica. Industrialmente l'adsorbimento si applica in due modi: in sistemi a percolazione (dove il fluido da cui si devono asportare uno o più componenti passa su uno strato fisso di materiale adsorbente granulare) o a contatto (dove le fini particelle d'adsorbente sono mantenute in sospensione nel fluido, dal quale si separano, per es. per filtrazione, dopo sufficiente durata del contatto). Naturalmente l'adsorbente dopo un certo periodo si esaurisce, cioè perde la sua capacità d'adsorbimento e deve essere rigenerato o riattivato, ciò che di solito si può ottenere facendo passare sull'adsorbente vapore o gas caldo.

5.5.2.1 Carbone attivo

Il carbone attivo è un materiale contenente principalmente carbonio amorfo e avente una struttura altamente porosa ed elevata area specifica (cioè elevata area superficiale per unità di volume). Grazie all'elevata area specifica il carbone attivo è in grado di trattenere al suo interno molte molecole di altre sostanze, potendo accomodare tali molecole sulla sua estesa area superficiale interna; in altre parole, il carbone attivo è un materiale che presenta elevate capacità adsorbenti.

Il carbone attivo è utilizzato nell'ambito della filtrazione, purificazione, deodorizzazione e decolorazione di fluidi. Esso si trova in due forme:

- il carbone attivo granulare (o GAC Granular activated carbon): è formato da particelle di dimensioni paragonabili a quelle della sabbia (circa 0,8 mm) ed è utilizzato nel caso in cui sia necessario un materiale con pori piccoli e superficie specifica elevata;
- il carbone attivo in polvere (o PAC Powdered activated carbon): è formato da particelle più minute ed è utilizzato nel caso in cui sia necessario un carbone attivo con pori più grandi e sia sufficiente una superficie specifica minore.

La proprietà principale del carbone attivo è l'elevata superficie specifica (da 500 a 2500 m²/g), dovuta alla sua elevata porosità: un grammo di carbone attivo presenta una superficie equivalente a quella di un campo di calcio.

L'accumulo di inquinanti sulla superficie del carbone attivo determina la perdita graduale del potere di adsorbimento fino al suo annullamento. A questo punto il carbone attivo esausto deve essere

sostituito oppure rigenerato attraverso un processo di rigenerazione che fa riacquistare al carbone le proprietà adsorbenti.

La rigenerazione può avvenire mediante:

- metodo chimico che prevede l'utilizzo di reattivi chimici per l'ossidazione delle sostanze organiche adsorbite o la loro estrazione con solventi;
- flusso di vapore o di gas inerte a temperature relativamente alte per l'allontanamento delle sostanze volatili adsorbite;
- processi di rigenerazione biologica;
- processi termici, attuati attraverso il riscaldamento del materiale in forni rotanti ad atmosfera controllata fino a temperature di 800-900 °C.

Il metodo più efficace è la riattivazione cioè quello termico ad alte temperature (850-2500 °C).

6. Efflusso e movimento in condotti degli aeriformi

Si richiamano ancora le leggi fondamentali che regolano l'efflusso ed il moto in condotti dei fluidi gassosi, nell'ipotesi che tale moto avvenga in regime permanente ossia stazionario.

6.1 Teorema di Torricelli

Il teorema di Torricelli permette di determinare la velocità di uscita di un liquido da un recipiente attraverso un foro sul quale insista un battente di liquido H.

$$v = \sqrt{2 g h}$$

dove:

v₂ velocità in corrispondenza della vena contratta [m/s];

g accelerazione di gravità (9,81 -2-); s

h differenza di pressione tra l'interno del recipiente e l'esterno (misurata in metri di colonna di fluido che effluisce).

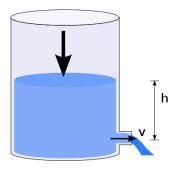


Figura 16 Efflusso di un liquido da un recipiente forato

Esso è valido anche per gli aeriformi, purché la differenza di pressione P_1 - P_2 sia molto piccola (come avviene, per esempio, negli impianti di ventilazione) in modo che si possa considerare il peso specifico praticamente costante. In tal caso, esprimendo le pressioni in P_3 , si ottiene:

$$v_2 = \sqrt{2 g \frac{\Delta p}{\rho g}} = \sqrt{2 \frac{\Delta p}{\rho}}$$

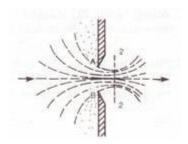
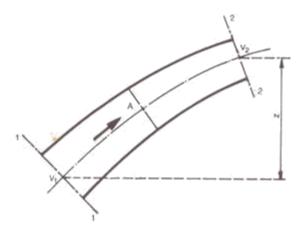


Figura 17 Efflusso di un aeriforme da un recipiente forato

In pratica la velocità di efflusso media in corrispondenza della vena fluida risulta inferiore a quella vista in precedenza, che va corretta secondo l'espressione

$$v_{eff} = C \sqrt{2 \frac{\Delta p}{\rho}}$$

Dove C è il *coefficiente di efflusso* che dipende dalla geometria del foro e dalla perdita di carico ad esso conseguente.


6.2 Equazione di continuità

$$\dot{m} = \rho A v = costante$$

dove:

- ρ densità del fluido (kg/m³) nelle condizioni di temperatura e pressione esistenti in una sezione qualunque del condotto;
- A area di una sezione normale qualunque del condotto (m²);
- v velocità media del fluido (m/s);

6.3 Teorema di Bernulli

Per una corrente fluida per la quale si possa ritenere costante la densità e in condizioni di moto ideale ovvero in assenza di fenomeni dissipativi, vale la relazione

$$p + \rho \frac{v^2}{2} + \rho gz = cost$$

Avendo indicato con:

- ρ densità del fluido [kg/m³]
- v velocità del fluido lungo una linea di flusso [m/s]
- g accelerazione di gravità [m·s⁻²]
- h quota potenziale media della sezione,
- p pressione statica lungo la linea di flusso.

Nel caso di fluidi reali (e quindi in presenza di fenomeni dissipativi) e con riferimento agli aeriformi per i quali si possa trascurare il termine ρgz si ottiene:

$$\left(p_1 + \rho \frac{v_1^2}{2}\right) - \left(p_2 + \rho \frac{v_2^2}{2}\right) = W$$

Avendo indicato con w la perdita di carico [Pa].

Si chiama pressione totale in una sezione qualunque del condotto la somma

$$h_s = p + \rho \frac{v^2}{2}$$

della pressione statica p e della pressione dinamica (o cinetica) $h_v = \rho v^2/2$.

Quanto in precedenza osservato permette di ricondurre la determinazione della velocità dell'aria all'interno di una condotta alla pressione atmosferica (10⁵ Pa) alla misura della pressione statica h_s. Vale infatti:

$$h_v = \rho \, \frac{v^2}{2} \Rightarrow v = \frac{2}{1.2} \sqrt{h_v}$$

La misura delle tre pressioni può effettuarsi con manometri disposti come indicato in Figura 18.

Figura 18 Modalità di misura delle tre pressioni in un condotto: a) totale, b) statica, c) dinamica

Come noto, la *perdita di carico* viene spesa per vincere le resistenze passive che si oppongono al moto. Esse sono riconducibili a:

- resistenze di attrito (perdite continue)
- resistenze dovute a cambiamenti di sezione, direzione, ostacoli di vario genere (*perdite localizzate*)

La perdita di carico per attrito in un condotto rettilineo può essere calcolata mediante la legge di Fanning-Darcy [mmH₂O]

$$h = \lambda \, \rho \, \frac{v^2}{2g} \, \frac{L}{D}$$

dove:

- v velocità media del fluido [m/s];
- L lunghezza del condotto [m];
- D diametro (costante) di condotto a sezione circolare ovvero diametro medio di condotto a sezione non circolare [m].
- ρ densità dell'aria [kg/m³]

Com'è noto, il valore di λ (coefficiente di attrito del movimento entro condotti) dipende principalmente dalla natura, stato di levigatezza, incrostazioni della superficie interna del tubo; decresce con l'aumentare della velocità e del diametro.

Nel regime turbolento λ è dato dalle espressioni di Darcy, Weisbach, Rietschel, ecc.

Quando il moto del fluido è turbolento (come avviene nei casi che ci interessano) e per aria alla pressione atmosferica ed a temperature anche fino a 100°C, λ è dato da una delle seguenti espressioni:

$$\lambda = \frac{0,0155}{v^{0,076} \cdot D^{0,281}}$$

oppure

$$\lambda = \frac{0{,}016}{A^{0{,}184}}$$

Dove A è la portata d'aria che passa nel condotto [m³/s].

Per valori normali della velocità dell'aria (15 \div 20 m/s) e per condotti in lamiera zincata, si possono assumere i valori di λ forniti dalla Tabella 8.

Tabella 8 Valori del coefficiente di attrito del movimento entro condotti in lamiera zincata e per valori della velocità dell'aria compresi tra 15 e 20 m/s.

Diametro	Coefficiente
del condotto	di attrito
m	λ
0,075	0,0215
0,100	0,0205
0,125	0,0191
0,150	0,0182
0,175	0,0175
0,200	0,0168
0,225	0,0161
0,250	0,0160
0,275	0,0158
0,300	0,0155
0,350	0,0150
0,400	0,0145
0,450	0,0140
0,500	0,0137
0,625	0,0131
0,750	0,0127
0,875	0.0123
1,000	0,0118

Ricordiamo ancora che la perdita di carico dovuta all'attrito in un condotto metallico di sezione circolare può essere valutata con la seguente formula ricavata sperimentalmente e valida per aria fredda e calda:

$$h = 8.12 \cdot 10^{-4} \rho_a^{0.852} \frac{v^{1,924}}{D^{1.3}} L$$
 [kg/m²]

dove:

- v velocità media del fluido [m/s];
- L lunghezza del condotto [m];
- D diametro (costante) di condotto a sezione circolare ovvero diametro medio di condotto a sezione non circolare (D = 2 ab/(a+b) in [m].
- ρ densità dell'aria [kg/m³]

Sulla base di tale espressione è stato costruito il diagramma di Figura 19 consente di ricavare direttamente le perdite di pressione dovute all'attrito dell'aria in condotti metallici.

Nel caso del moto di aeriformi (ossia di fluidi che riempiono completamente il condotto), se il condotto ha sezione di forma diversa da quella circolare (normalmente, quadrata o rettangolare), si assume come valore di D quello del diametro equivalente, definito come il diametro del condotto circolare che, a parità di portata d'aria, determina la stessa caduta di pressione.

Risulta, com'è facile dimostrare D=4A/P avendo indicato con A e P l'area e il perimetro della sezione rispettivamente. Perciò, nel caso di un condotto a sezione quadrata di lato a, risulta D = a, mentre per un condotto a sezione rettangolare di lati a, b si ha D = 2 ab/(a+b).

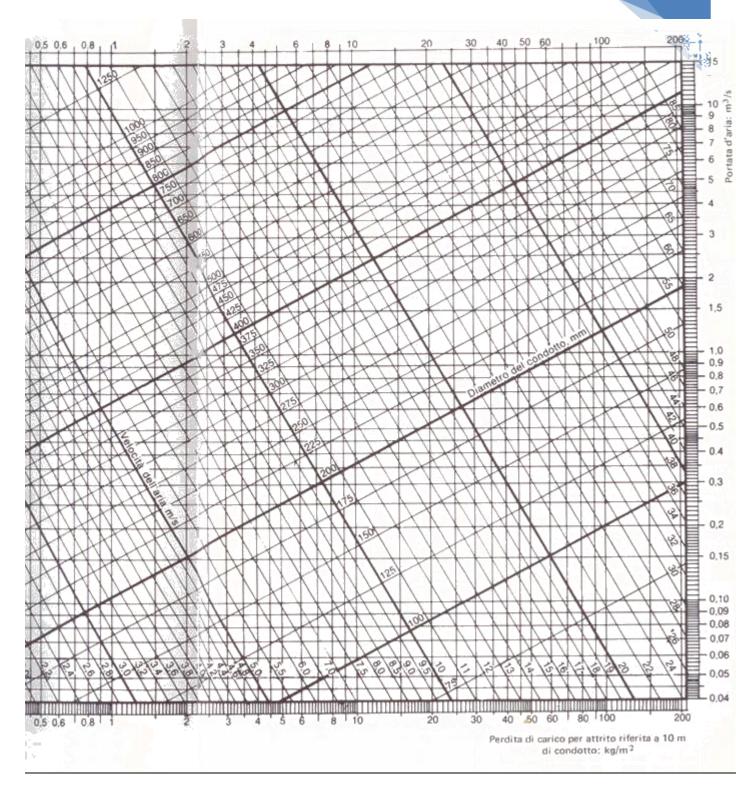


Figura 19 Perdita di carico dovute all'attrito dell'aria standard ($\rho = 1.2 \text{ kg/m3}$) in condotti circolari riferita a 10 m di condotto in [kg/m²] (1 kg/m² = 9.81 Pa)

Nel grafico di Figura 20 si riporta infine il valore della pressione cinetica per diverse condizioni di temperatura e a pressione barometrica e umidità relativa normali (10^5 Pa e al 60% UR). I valori sono espressi in kg/m² ($1 \text{ kg/m}^2 = 9.81 \text{ Pa}$).



Figura 20 Valore della pressione cinetica per movimento dell'aria nei condotti in funzione della velocità e della densità dell'aria (10⁵ Pa e al 60% UR) [kg/m²]

ipo di resistenza accidentale	Figura	Caratteristiche	į.
00" (*)	0+0	gomito R/D = 0,75	

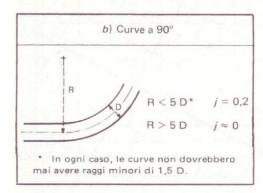
L = lunghezza equivalente addizionale.

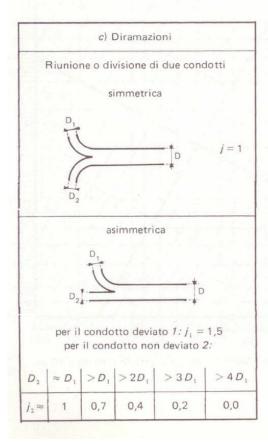
Tipo di resistenza accidentale	Figura	Carat	teristiche	L/D
Curva a 90" (*) Sezione circolare	0	R/D R/D R/D	omito = 0,75 = 1,00 = 1,50 = 2,00	65 23 17 12 10
		H/W	R/W (**)	L/W
	*	0,25	gomito 0,50 0,75 1,00 1,50	25 25 12 7 4
Curva a 90° (*) Sezione	H. F.	0,50	gomito 0,50 0,75 1,00 1,50	49 40 16 9
rettangolare		1,00	gomito 0,50 0,75 1,00 1,50	75 50 21 11 4,5
	HI TO SERVICE STATE OF THE SER	4,00	gomito 0,50 0,75 1,00 1,50	110 65 43 17 6
Gomito con alette			alore di queste	
Ti curvilineo		consider	ri l'analoga cui	rva.

^(*) Per curve di angolo $\alpha \neq 90^\circ$, si moltiplica la perdita di una curva a 90° per $\alpha/90^\circ$.) Si noti la convenienza di adottare il rapporto R/W = 1,5 cui corrisponde un minimo di L/W.

Figura 21 Perdite di carico dovute a resistenze accidentali espresse in lunghezze equivalenti.

Le perdite di carico dovute a cambiamenti di sezione e di direzione, curve, ti, ecc. (perdite di carico accidentali o localizzate) si possono calcolare ricorrendo alle lunghezze equivalenti (Figura 21) oppure tenendo presente che le perdite localizzate sono in prima approssimazione proporzionali alla pressione dinamica dell'aria


$$h = j\rho \frac{v^2}{2}$$
 [Pa]


dove j è il cosiddetto fattore di perdita di carico.

Quando si applichi la formula precedente, grafici o tabelle forniscono i valori di j per i vari tipi di resistenze accidentali. In Figura 22 si riportano i valori di *j* per le resistenze accidentali più correnti.

Tanto se si ricorre alle lunghezze equivalenti quanto se si adotta il fattore di perdita di carico, le perdite dovute alle resistenze accidentali si sommano alle perdite per attrito calcolate per l'intera lunghezza del condotto, ivi compresa la lunghezza delle curve, raccordi, gomiti, ecc.

	a) Variazioni di sezio	ne	
Aumento di sezione raccordato	A_1 β	$\beta < 5^{\circ}$ $\beta = 5^{\circ}$ $\beta = 7^{\circ}$ $\beta = 10^{\circ}$ $\beta = 20^{\circ}$ $\beta = 30^{\circ}$ $\beta = 40^{\circ}$	$j \approx 0$ j = 0,17 j = 0,22 j = 0,28 j = 0,45 j = 0,59 j = 0,73
Diminuzione di sezione raccordata	A ₁ A ₂	$\beta < 30^{\circ}$ $\beta = 30^{\circ}$ $\beta = 45^{\circ}$ $\beta = 60^{\circ}$	$j_2 \approx 0$ $j_2 = 0.02$ $j_2 = 0.04$ $j_2 = 0.07$
Variazione di sezione raccordata, con aree co- stanti alle estremità	A ₁	β ≤ 14°	j = 0,15

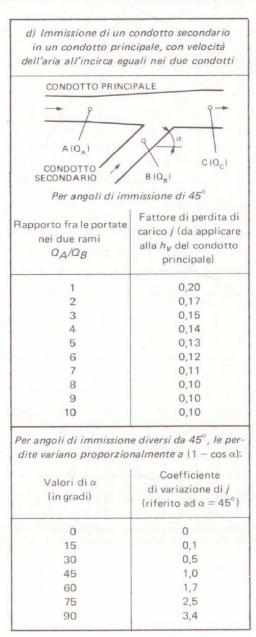


Figura 22 Valori del fattore di perdita di carico J per condotti a sezione circolare, quadrata o rettangolare.

Una perdita di carico localizzata che qui ci interessa in modo particolare è quella che si registra in corrispondenza di una cappa aspirante, con fluido costituito da aria (Figura 23): fra l'esterno, in un punto (punto 1) adeguatamente distante dall'imbocco della cappa in cui il potenziale di velocità possa ritenersi ragionevolmente nullo e l'imbocco del condotto (punto due) in cui la cappa si immette, tenendo presente che v_1 è praticamente trascurabile, si ha

$$p_1 - p_2 = \rho \frac{v_2^2}{2} + W$$

dove W rappresenta appunto la perdita di carico nella cappa che può essere espressa in funzione della pressione cinetica, ottenendo la seguente espressione:

$$p_1 - p_2 = \rho \frac{v_2^2}{2} + j\rho \frac{v_2^2}{2} = (1+j)\rho \frac{v_2^2}{2}$$

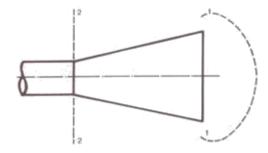


Figura 23 Schema di una cappa aspirante

Le leggi sul movimento degli aeriformi che abbiamo sopra richiamato si riferiscono, com'è noto, ad aria pulita. Esse però si possono applicare in prima approssimazione anche ad aria contenente polvere ed altre sostanze liquide o gassose purché il rapporto tra il materiale trasportato e l'aria sia sufficientemente basso.

In merito, però, sussistono pareri discordanti.

Diversi Autori sostengono l'opportunità di tener conto, nel caso del trasporto di fluidi non omogenei, di un coefficiente di maggiorazione delle perdite di carico nei condotti.

Proponiamo, per il caso in cui l'aria contenga particelle solide (polveri), l'impiego del diagramma di _______, costruito sulla base di prove sperimentali: esso fornisce il valore di un coefficiente k, per il quale vanno moltiplicate le perdite di carico nei condotti dovute al solo flusso dell'aria, in funzione del rapporto dei pesi materiale/aria (ossia del rapporto fra il peso dell'inquinante trasportato nell'unità di tempo e il peso di aria necessaria per trasportarlo).

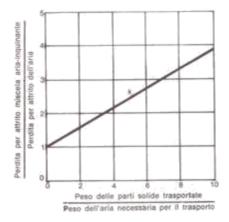


Figura 24 Coefficiente di moltiplicazione delle perdite di carico dovute al flusso di aria pulita in condotti per tener conto del fatto che nell'aria aspirata da ambienti inquinati sono presenti particelle solide

7. Progetto degli impianti di aspirazione

7.1 Tipi di cappe

Un impianto di aspirazione delle emissioni atmosferiche ha la funzione di provocare un flusso d'aria fra la sorgente inquinante e una cappa di forma opportuna, sistemata il più vicino possibile alla sorgente, in modo da aspirare l'aria inquinata e impedire che questa si disperda nello spazio circostante.

La Figura 25 illustra schematicamente un impianto per l'aspirazione di polveri, fumi, gas. Nelle sue parti essenziali, un impianto del genere comprende, nel caso più generale:

- una o più cappe aspiranti;
- uno o più condotti colleganti le cappe a un depuratore (separatore delle impurità contenute nel l'aria);
- un elettroventilatore;
- un condotto per lo scarico nell'atmosfera dell'aria aspirata dal locale in cui si produce l'inquinante.

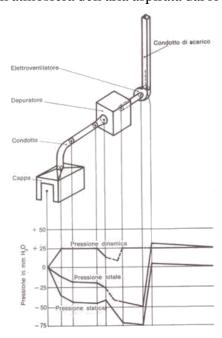


Figura 25 Schema di un impianto di aspirazione con indicazione dell'andamento delle pressioni

Le particelle di maggiori dimensioni si disperdono nell'ambiente in conseguenza dell'energia cinetica ricevuta al momento della loro formazione. La dispersione delle particelle più piccole è invece provocata dal movimento dell'aria in corrispondenza della sorgente di formazione. Di qui, l'importanza determinante, per un'efficiente aspirazione delle emissioni prodotte da una o più sorgenti inquinanti, di

circoscrivere e isolare quanto più possibile queste ultime con cappe, cabine o altre chiusure aventi lo scopo precipuo di impedire la dispersione delle polveri, fumi o vapori nell'ambiente circostante.

E' proprio al fine di realizzare il massimo isolamento delle sorgenti inquinanti e quindi di impedire la dispersione nell'ambiente delle emissioni prodotte dalle stesse, che si ricerca di volta in volta il tipo di cappa più adatto allo scopo.

In pratica, si hanno:

- cappe installate direttamente sulle macchine (cappe a cuffia);
- cappe installate superiormente alle sorgenti inquinanti (cappe a tetto o a baldacchino);
- cappe a chiusura totale o parziale (cappe a camera o cabine).

Le cappe installate a bordo delle macchine (Figura 26) captano le polveri direttamente alla sorgente impedendone la dispersione nell'ambiente.

Figura 26 Cappe installate a bordo di macchine per la lavorazione del legno

Le cappe disposte sopra la sorgente (Figura 27) sono adottate specialmente per l'aspirazione di fumi, esalazioni e vapori più leggeri dell'aria.

Figura 27 Impianto di aspirazione localizzata dei fumi di saldatura

Le cabine (a chiusura totale o parziale - Figura 28) sono generalmente impiegate per impianti di verniciatura, saldatura, molatura, ecc.)

Figura 28 Cabina di verniciatura a chiusura parziale (a sinistra) e a chiusura totale (a destra)

Quando non è possibile racchiudere la fonte inquinante, né coprirla con cappe installate superiormente, si ripiega su cappe disposte lateralmente alla fonte stessa (cappe tangenziali).

In Figura 29 si riportano alcune tipologie di cappe di corrente impiego negli impianti di aspirazione delle emissioni industriali.

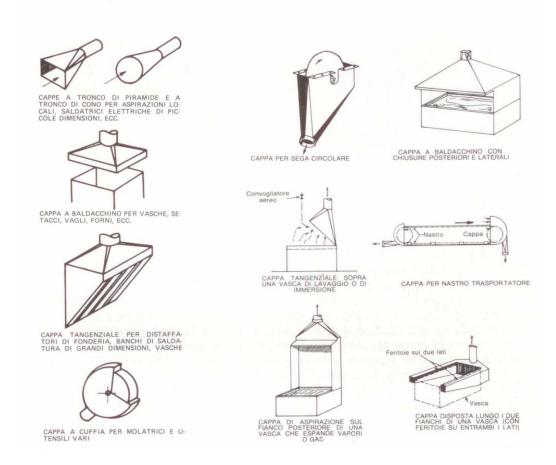


Figura 29 Cappe aspiranti per impieghi specifici

Nella scelta e nel dimensionamento delle cappe si dovrebbero sempre tenere presenti i seguenti criteri fondamentali:

- applicare la cappa il più vicino possibile alla sorgente di contaminazione, possibilmente includendovela;
- sistemare la cappa e configurarla in modo che le particelle inquinanti prodotte dalla sorgente si dirigano verso l'apertura aspirante (preferibilmente verso la parte centrale di essa);
- disporre la cappa in modo che l'operatore non si trovi mai fra la sorgente inquinante e la cappa stessa:

- limitare, con schermi o sipari, le correnti d'aria che possano disperdere le emissioni;
- prevedere cappe con flange, al fine di ridurre la portata d'aria occorrente.

Va da sé che, per rimuovere le particelle inquinanti dal punto in cui si formano, è necessario assicurare, in corrispondenza dello stesso, una velocità dell'aria (*velocità di captazione*) più elevata della velocità di fuga delle particelle. Pertanto, i principali fattori che influiscono sulla efficienza di un impianto di aspirazione sono la forma della cappa o della chiusura attorno alla sorgente inquinante e la portata di aria aspirata.

7.2 Caratteristiche delle cappe

Si consideri una sorgente di aspirazione puntiforme. Il flusso d'aria verso la stessa è identico in tutte le direzioni e la portata d'aria attraverso l'unità di area (velocità) varia inversamente con il quadrato della distanza dalla sorgente. Pertanto, il luogo di tutti i punti caratterizzati dalla stessa velocità è una sfera (superficie di livello della velocità).

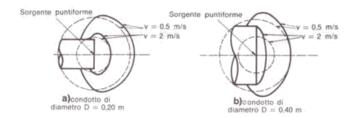


Figura 30 Confronto fra le curve di livello delle velocità relative a una sorgente aspirante puntiforme e a condotti aspiranti a sezione circolare

Analogamente, il flusso verso una sorgente rettilinea di lunghezza infinita è identico lungo tutti i raggi e la velocità dell'aria intorno alla "linea" varia inversamente con la distanza: le superfici di livello delle velocità sono dunque cilindriche.

In pratica, anziché una sorgente puntiforme o lineare si avrà una cappa o un condotto di dimensioni finite. Interessa rilevare come le linee di flusso e le superfici di livello delle velocità risultino alterate rispetto ai due casi (teorici) precedenti.

La Figura 30 mette appunto a confronto il caso di una sorgente puntiforme con quello di un condotto aspirante a sezione circolare piana: in prossimità dell'apertura aspirante (specie ai bordi della stessa) le superfici di livello delle velocità relative al condotto si scostano sensibilmente dalle superfici di livello teoriche, ma, allontanandosi frontalmente dalla cappa, esse tendono ad approssimarsi a quelle proprie di una sorgente puntiforme. Ciò è dovuto al fatto che l'area di influenza della cappa diventa grande rispetto all'area della sua apertura, la quale pertanto si può identificare, in prima approssimazione, con una sorgente puntiforme. Aumentando ancora l'area dell'apertura (Figura 30b), lo scostamento dalla distribuzione teorica diventa più marcato e si estende a una distanza maggiore.

La Figura 31a riporta le curve di livello delle velocità e le linee di flusso in un piano passante per l'asse di un condotto o di una cappa a sezione circolare. Data la simmetria della cappa (rotonda), un solo diagramma rappresenta l'andamento delle linee a velocità costante e delle linee di direzione in tutti i piani passanti per l'asse del condotto. La figura consente di rilevare come la velocità diminuisca all'aumentare della distanza dall'ingresso nella cappa. Ciò è ancor meglio messo in evidenza dalla Figura 31b, dove le distanze dall'apertura aspirante sono espresse come percentuali del diametro D dell'apertura e le velocità, misurate lungo l'asse della cappa, sono indicate come percentuali della velocità media in corrispondenza dell'apertura (velocità frontale). Ma, proprio in conseguenza del fatto che le variazioni della velocità dell'aria fuori della cappa aspirante sono funzione del diametro di questa, si può anche dedurre che, a parità di velocità frontale, aumentando le dimensioni della cappa, se ne estende l'influenza in punti più lontani dall'apertura, ovvero le curve di livello rappresentanti la stessa percentuale della velocità frontale si trovano più distanti dall'imbocco: la Figura 32 mostra come varia la velocità assiale per alcune cappe a sezione circolare aventi aree di imbocco diverse.

Figura 31 Curve di livello delle velocità e linee di flusso in un piano passante per l'asse di un condotto aspirante a sezione circolare

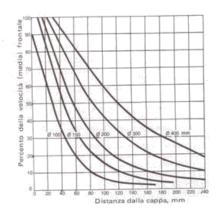


Figura 32 Velocità assiali per aperture aspiranti di diametri diversi

In ogni caso, la rapida diminuzione della velocità dell'aria lungo l'asse della cappa messa in rilievo dalla Figura 31b, giustifica il suggerimento, di ubicare la cappa il più vicino possibile al punto di generazione delle emissioni.

In Figura 33 e Figura 34 si illustrano le curve di livello delle velocità e le linee di flusso nei piani assiali passanti per le mediane di condotti o cappe aspiranti a sezione quadrata e rettangolare.

Dall'esame di Figura 31, Figura 33 e Figura 34 si rileva che la posizione delle curve di livello e delle velocità lungo l'asse dei condotti aspiranti varia con la forma degli stessi, ma il loro andamento, indipendentemente dal valore effettivo della velocità frontale (e quindi della portata d'aria aspirata), è del tutto simile per i tre tipi di aperture considerate.

Dalle distribuzioni relative alle cappe a sezione circolare, quadrata o rettangolare, si può risalire a quelle di qualsiasi altra apertura composta, sommando vettorialmente le velocità relative alle singole cappe tipo.

In sostanza, qualunque sia il tipo di cappa adottato, la sua influenza sul comportamento di una particella inquinante non va oltre una certa distanza dalla cappa stessa. Esperienze condotte in proposito hanno consentito di ricavare la seguente formula approssimata, che fornisce la velocità dell'aria fuori delle cappe, lungo l'asse longitudinale, in funzione della portata d'aria aspirata Q, della distanza x dalla cappa e dell'area frontale A_0 di questa (formula di Q Dalla Valle):

$$v = \frac{Q}{10x^2 + A_0}$$

Tale formula, utilizzata per costruire le curve della Figura 32, conferma la rapidità con cui la velocità dell'aria aspirata diminuisce allorché ci si allontana dall'apertura della cappa e mette in evidenza

la relativa influenza dell'aumento dell'area dell'apertura aspirante sull'efficienza della cappa. La formula è stata ricavata operando su cappe a sezione circolare; in prima approssimazione, però, può essere applicata anche a cappe a sezione quadrata e rettangolare.

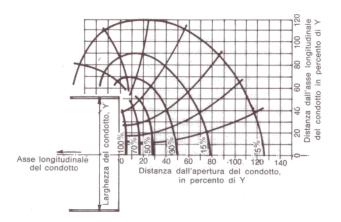


Figura 33 Curve di livello della velocità e linee di flusso in un piano passante pe l'asse di simmetria di un condotto aspirante a sezione quadrata

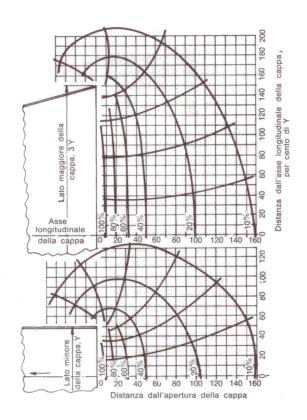


Figura 34 Curve di livello della velocità e linee di flusso in un piano passante pe l'asse di simmetria di un condotto aspirante a sezione rettangolare (con rapporto tra i lati 1:3)

Nel caso specifico di una cappa disposta superiormente a una vasca______, la velocità dell'aria sotto la cappa è misurata con sufficiente approssimazione mediante la formula sperimentale

$$v = 0.71 \frac{Q}{P \cdot z}$$

Dove:

- v velocità dell'aria [m/s];
- Q portata d'aria nella cappa [m/s]
- P perimetro della vasca [m]
- z distanza dalla cappa misurata verticalmente [m].

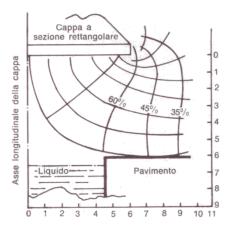


Figura 35 Curve di livello delle velocità e linee di flusso in un piano verticale passante per l'asse longitudinale di una cappa sovrastante una vasca di decapaggio

Una scanalatura aspirante situata ai lati di una vasca approssima il caso teorico della sorgente lineare: si è riscontrato che la velocità dell'aria fuori della scanalatura diminuisce all'incirca secondo la

$$v = \sqrt{x}$$

Dove x misura la distanza dalla scanalatura stessa.

Le cappe tangenziali esercitano un'efficiente azione aspirante a distanze inferiori a 1 m dalla superficie frontale: pertanto, quando la larghezza delle vasche è maggiore, si ricorre a sistemazioni del tipo schematizzato in Figura 36, che prevede un getto d'aria in pressione (*cortina d'aria*) contrapposto alla cappa aspirante. La portata d'aria Q₁ soffiata dalla scanalatura è data dalla

$$Q_1 = \frac{C}{L} \cdot Q_2$$

essendo:

- L larghezza della vasca [m]
- C coefficiente di efflusso¹
- Q₂ 0,6÷0,8 m³/s per ogni m² di superficie orizzontale della vasca.

L'altezza W della fessura deve essere tale che la velocità di uscita sia di 5÷10 m/s. L'altezza H della cappa si adotta pari a

$$H = L \cdot tg \ 10^{\circ} = 0.18 \ L$$

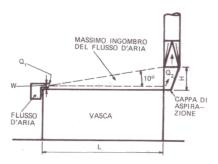


Figura 36 Impianto di aspirazione di una vasca

_

¹ Per il coefficiente C si assumono i seguenti valori:

La presenza di flange sui bordi dell'apertura delle cappe o dei condotti aspiranti, riducendo il flusso dell'aria dalle zone periferiche, determina un allontanamento delle curve di livello della velocità dall'apertura stessa. In linea di massima si può dire che, a parità di velocità, la presenza di flange in corrispondenza dell'apertura aspirante consente di ridurre fino al 30% la portata necessaria per assicurare una data velocità di fronte alla cappa, rispetto al caso di cappe prive di risvolti.

Analogamente, se la cappa è appoggiata su una superficie piana, il volume d'aria occorrente è circa il 25% in meno di quello richiesto dalla stessa cappa libera nello spazio: ciò in quanto, com'è evidenziato nella Figura 37 tutto avviene come se la cappa giacente sulla superficie piana avesse dimensioni doppie.

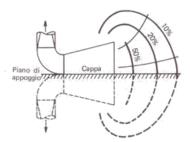


Figura 37 Curve di livello della velocità e linee di flusso nel piano assiale verticale di una cappa appoggiata su un piano orizzontale

7.3 Perdita di carico nelle cappe

La Figura 39 fornisce i valori del coefficiente di ingresso¹ *C* per alcuni tipi di bocche o aperture a sezione circolare. Tali valori si applicano anche ad aperture e condotti a sezione quadrata e rettangolare.

La Figura 38 riporta i valori di *C* per alcune cappe di più frequente impiego nella pratica. Tali valori sono applicabili, con sufficiente approssimazione, anche a cappe aventi forme geometriche assimilabili a quelle tipo riportate nella figura.

Forme più complesse possono essere quasi sempre considerate come combinazioni di due o più cappe tipo (per esempio, disposte in serie); in tali casi, si valutano le variazioni di velocità e si stimano le perdite di pressione per ciascuna apertura componente; si perviene infine a un coefficiente di ingresso globale.

Le figure citate forniscono anche, per le varie aperture o cappe, il fattore di perdita di carico j all'imbocco; la conoscenza di tale fattore torna utile quando si deve determinare la depressione statica necessaria perché all'imbocco del condotto si abbia una data velocità media. Infatti, all'inizio del condotto successivo alla cappa (Figura 23), risulta, considerando aria a 20° C, 10^{5} Pa e con un grado medio di umidità:

$$\Delta p = (1+j)\rho \frac{v^2}{2} = (1+j) \cdot 1, 2 \cdot \frac{v^2}{2}$$

La Figura 40 fornisce i valori di j in funzione di C e viceversa. La correlazione fra j e C si ricava facilmente ricordando che la velocità dell'aria all'imbocco del condotto, in base al teorema di Torricelli è così esprimibile:

$$v = C \sqrt{2 \frac{\Delta p}{\rho}}$$

Da cui, ricavando per Δp si ottiene

-

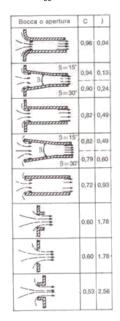
¹ Definito al paragrafo 6.1

$$\Delta p = \frac{\rho v^2}{2C^2}$$

Eguagliando le diverse formulazioni di Δp appena determinate, si ottiene:

$$(1+j)\rho \frac{v^2}{2} = \frac{\rho v^2}{2C^2}$$

$$1 + j = \frac{1}{C^2} \Rightarrow j = \frac{1 - C^2}{C^2}$$


Come si può rilevare dai dati riportati nelle figure precedenti, i valori del coefficiente C variano da 0,98 per una buona conformazione dell'apertura a poco più di 0,50 nel caso di semplici orifizi; mediamente $C\approx0,7$. In termini di pressione cinetica, la perdita all'ingresso varia normalmente da 0,1 h_v, a 2,5 h_v; come media, si può assumere ≈ 1 h_v.

Tipo di cappa	C	į.
0	0,72	0,93
0	0,90	0.24
P	0,83	0,45
	0.75	0,78
1	0,82	0,49

Tipo di cappa	С	1
50	0,82	0,49
K	0,82	0.49
0	0,79	0,60
4	0,82	0,49

Tipo di cappa	c	1.
S	0,57	2,08
	0,61	1,69
	0,57	2,08
	0.71	0,99

Figura 38 Coefficiente di ingresso e fattore di perdita di carico j di alcune cappe aspiranti

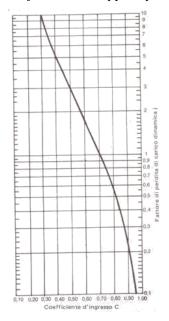


Figura 39 Coefficiente di ingresso e fattore di perdita di carico j di alcune bocche o orifici

Figura 40 Correlazione fra il fattore di perdita di carico j e il coefficiente di ingresso C

7.4 Portata d'aria occorrente

La portata d'aria necessaria per l'aspirazione di un'emissione mediante una cappa, può essere valutata solo dopo che si sono stabilite l'ubicazione e la forma della cappa stessa.

Nelle pagine precedenti si è messo in evidenza il fatto che la zona di influenza delle correnti aspiranti è ristretta ad uno spazio molto prossimo all'apertura della cappa, per cui si deve localizzare tale

apertura il più vicino possibile alla sorgente inquinante ed in posizione tale che la polluzione si diriga verso la parte centrale della cappa. Si è pure segnalata l'opportunità di eliminare o di ridurre al minimo, mediante l'adozione di schermi o sipari, le correnti d'aria che possono disperdere la polluzione. La cappa inoltre dovrebbe essere disposta in modo che l'aria aspirata, e quindi inquinata, si allontani dall'operatore. Si è anche rilevata l'importanza di prevedere flange o risvolti lungo i bordi dell'apertura aspirante.

Aggiungiamo ancora che in tutti i punti dello spazio in cui si ha formazione di polvere, la velocità dell'aria aspirata (ossia la velocità di captazione delle particelle) deve risultare più alta della *velocità di fuga* delle particelle. D'altra parte, la velocità dell'aria all'ingresso nella cappa deve essere la minima possibile in relazione alla velocità richiesta nella zona di formazione della polvere.

Quanto sopra premesso, proponiamoci di determinare la portata d'aria necessaria per effettuare con successo l'aspirazione di un'emissione mediante una cappa.

In linea generale, una volta scelto e dimensionato il tipo di cappa e stabilita la posizione rispetto alla sorgente inquinante, si possono presentare diversi casi (Figura 41)

- 1) E' nota la portata d'aria occorrente Q e perciò si possono ricavare la velocità frontale v_0 , la velocità v in corrispondenza dell'imbocco del condotto successivo alla cappa e, attraverso le curve di livello della velocità fuori della cappa oppure mediante la formula di *Dalla Valle* o seguenti, la velocità v_c in corrispondenza della sorgente inquinante. Sovente la portata d'aria è approssimativamente conosciuta in base all'esperienza o a dati forniti dalle case costruttrici di certi macchinari (si veda a titolo di esempio la Tabella 9).
- 2) È data la velocità frontale dell'aria v_0 e da quella si risale alla portata d'aria Q, alla velocità fuori della cappa, alla depressione statica h_s ed alla velocità v all'imbocco del condotto successivo alla cappa. Per esempio, la Tabella 10 (ultima colonna) e la Tabella 11 forniscono le velocità di ingresso consigliate per la captazione di alcune emissioni di origine industriale.

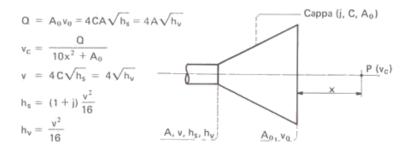


Figura 41 Parametri ed espressioni fondamentali per la progettazione di una cappa aspirante

Tabella 9 Portata d'aria aspirata, depressione necessaria e diametro dei condotti aspiranti per alcuni impianti di fonderia

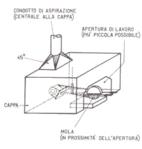

Tipo di impianto	Diametro del condotto m	Depressione statica kg/m²	Portata d'aria m³/s
Granigliatrice <i>Pangborn</i> 3GO continua a barile	0,50	70	4,3
Granigliatrice <i>Pangborn</i> ES 385 continua	0,65	70	7,0
Forno fusorio ghisa da 18 t	1,10	120	17,5
Macchina per formatura anime in cassa d'anima calda <i>Sutter</i> a 2 stazioni	0,65	80	5,8

Tabella 10 Valori minimi della velocità dell'aria per il controllo delle emissioni prodotte in alcune lavorazioni industriali

		Velocità dell'aria (m/s) in corrispondenza		
Tipo d'industria	Impianto o lavorazione	della sorgente	dell'apertura della cappa	
Lavorazione del mar-	Utensili pneumatici manuali	1	_	
mo	Macchine per lavorazioni super- ficiali	7,5	_	
	Utensili vari	_	7,5	
Trasportatori di ma-	Elevatori con testata parapolvere	-	2,5	
teriali alla rinfusa	Trasportatori a nastro (punti di scarico)	_	1 (*)	
Verniciatura a spruzzo	Cabina di verniciatura Metallizzazione a spruzzo:	_	0,25-1	
	piombo	1	_	
	zinco	0,7	_	
Lavorazione delle sab-	Macchine insaccatrici	2	_	
bie	Mescolatori	_	1	
Galvanostegia	Cromatura	_	7,5	
	Vasche di acidi e vapori	0,4-0,5	-	
Feltrifici	Spazzolatura	1	_	
	Macchine da taglio	2	_	
Saldatura elettrica	Saldatura	1	_	
Industrie estrattive	Frantoi (per minerali, pietre, ecc.)	_	1	
	Vagli (racchiusi)		1 (**)	

Ovvero $0.5~\text{m}^3/\text{s}$ per metro di larghezza del nastro. Attraverso le aperture di ispezione.

Tabella 11 Velocità frontali dell'aria nelle cappe per mole pendolari

Larghezza dell'apertura	Velocità frontale
mm	m/s
1200 ÷ 1800	0,5 ÷ 0,8
600 ÷ 750	1,2

- 3) E' nota la velocità necessaria per "catturare" la polluzione prodotta (velocità di captazione v_c) ed allora si può valutare la velocità frontale v_0 , la portata d'aria Q e la depressione statica h_s all'imbocco del condotto in cui sfocia la cappa. La Tabella 10 già citata riporta (penultima colonna) alcuni valori della velocità v_c necessari per assicurare l'aspirazione di polveri, fumi, gas e vapori prodotti in alcune lavorazioni industriali.
- 4) È nota la velocità da assegnare all'aria nei condotti dell'impianto di aspirazione o, il che è lo stesso, la relativa pressione dinamica, e pertanto è possibile determinare la portata, la velocità di ingresso nella cappa e la velocità all'esterno di quest'ultima, oltre alla depressione statica all'imbocco del condotto. La Tabella 12 elenca un certo numero di materiali polverosi e per ognuno indica le velocità di trasporto nei condotti.

Tabella 12 Valori della velocità dell'aria necessari per trasportare alcune emissioni industriali (m/s)

Polveri di	$\mathbf{v}_{\mathbf{min}}$	$\mathbf{v}_{\mathbf{max}}$
Smerigliatrici	7	10
Rettificatrici	15	20
Fonderia	15	22
Scorie d'altoforno	15	20
Piombo	20	25

Polveri di	Vmin	Vmax
Cereali	15	17
Cuoio	15	20
Gomma	10	12
Granito	15	20
Carbone	18	20
Marmo	6	10

5) E' data la depressione statica h_s (in Pa) e/o il diametro all'inizio del condotto a cui si collega la cappa; così, a titolo di esempio, la Tabella 9 riporta, per determinate macchine, il diametro del condotto immediatamente successivo alla cappa e la depressione statica che deve essere assicurata all'imbocco dello stesso. In questo caso si può ricorrere al teorema di Torricelli, per il quale la portata d'aria è funzione della sezione A del condotto in cui sfocia la cappa, della depressione h_s , e del coefficiente di ingresso C; ossia, per aria a 20°C, 760 mm Hg e con un grado medio di umidità

$$Q = C \cdot A \cdot \sqrt{\frac{2\Delta p}{\rho}} = 1,291 \cdot C \cdot A \cdot \sqrt{\Delta p}$$

Ovviamente, l'aria sottratta all'ambiente dagli impianti di aspirazione deve essere reimmessa. Rileviamo in proposito che se non occorre una reintegrazione di aria superiore a circa un ricambio/ora, le condizioni ambientali sono sovente mantenute a livelli accettabili per effetto di imperfezioni di tenuta dei serramenti. Per un numero più elevato di ricambi/ora, è necessario prevedere una immissione integrativa. Questa però deve avvenire senza che gli operatori siano sottoposti a correnti d'aria aventi velocità troppo elevate¹ e temperature troppo diverse dalla temperatura ambiente.

Quali criteri da adottare in pratica per realizzare la reintegrazione artificiale dell'aria ambiente estratta dagli impianti di aspirazione, citiamo i seguenti:

- le prese d'aria esterne debbono essere in posizioni ed a distanze tali da escludere praticamente apprezzabili fenomeni di ricircolo;
- mediamente, l'aria di reintegro deve avere, nel periodo di riscaldamento, una differenza di temperatura superiore di almeno 4÷5°C rispetto alla temperatura ambiente per v ≤ 0,5 m/s; la differenza di temperatura può raggiungere valori tanto più elevati quanto maggiore è la velocità di immissione dell'aria. Nel periodo di eventuale raffrescamento, la sensibilità degli operatori alla velocità ed alla differenza di temperatura diventa una funzione assai complessa di vari fattori: modalità di immissione dell'aria nell'ambiente di lavoro; umidità relativa dell'aria al contatto con l'epidermide degli operatori; condizioni di termoregolazione fisiologica degli interessati (età, sesso, coibenza degli abiti, latitudine di provenienza, ecc.): il problema deve quindi essere affrontato caso per caso.

7.5 Elettroventilatori

La portata d'aria occorrente per aspirare le emissioni atmosferiche è assicurata da elettroventilatori. Questi, in generale, si distinguono in due categorie principali:

- ventilatori centrifughi o radiali;
- ventilatori elicoidali o assiali.

I primi aspirano l'aria parallelamente al loro asse e la restituiscono in direzione radiale. I secondi aspirano e mandano l'aria in direzione assiale.

A parità di portata d'aria, i ventilatori centrifughi generano pressioni maggiori, sono più ingombranti e risultano meno rumorosi dei ventilatori elicoidali.

Principali caratteristiche degli elettroventilatori sono:

¹) Affinché l'immissione dell'aria non risulti fastidiosa, la velocità v a contatto dell'operatore è bene non superi 0,3÷0,5 m/s in relazione alla differenza di temperatura (+ $1^{\circ} \div + 5^{\circ}$ C) tra l'aria immessa e quella ambiente.

1) la portata d'aria Q (m³/s); talvolta, il volume d'aria trasportato nell'unità di tempo si esprime in "normal metri cubi", vale a dire viene riferito allo stato normale dell'aria (O°C e 10⁵Pa); risulta:

$$Q(m^3/s) = (\frac{Nm^3}{s}) \cdot \frac{273 + t^{\circ}}{273}$$

dove t° è la temperatura dell'aria in gradi centigradi;

2) la prevalenza H (Pa):

$$H = h_s + h_v$$

essendo:

h_s pressione statica (pressione manometrica misurata perpendicolarmente alla direzione del flusso) necessaria per vincere le resistenze del circuito;

h_v pressione dinamica o energia cinetica dell'aria alla bocca di uscita del ventilatore;

3) la potenza assorbita N (kW):

$$N = \frac{Q \cdot H}{1000 \cdot \eta}$$

dove η è il rendimento totale del ventilatore.

Mentre la portata di un ventilatore non varia con la temperatura dell'aria, le altre due caratteristiche variano con la temperatura proporzionalmente alla densità ρ (kg/m³):

$$\frac{H_1}{H_2} = \frac{N_1}{N_2} = \frac{\rho_1}{\rho_2}$$

essendo $\rho = 1,293 \cdot \frac{273}{(273+t^\circ)}$, per aria secca a t°C e a 10^5 Pa.

Inoltre, a peso specifico dell'aria costante, le tre caratteristiche dei ventilatori variano con la velocità di funzionamento n secondo le espressioni:

$$\frac{Q_1}{Q_2} = \frac{n_1}{n_2}$$
; $\frac{H_1}{H_2} = \left(\frac{n_1}{n_2}\right)^2$; $\frac{N_1}{N_2} = \left(\frac{n_1}{n_2}\right)^3$

La regolazione (cioè la variazione della portata d'aria resa) dei ventilatori può essere ottenuta:

- variando la velocità di funzionamento mediante motore a corrente alternata e *inverter*, motore a corrente continua, motore a più polarità oppure mediante giunto oleodinamico;
- installando sul lato aspirazione una serranda a palette multiple radiali;
- inserendo nel circuito aeraulico una resistenza addizionale (per esempio, una serranda sul lato mandata).

Se le polveri assorbite sono infiammabili od esplosive, si ricorre a ventilatori con pale in leghe di alluminio o altri metalli non ferrosi (quelle di acciaio potrebbero dar luogo a scintille); inoltre, è bene prevedere una buona messa a terra.

Quando il materiale aspirato passa attraverso il ventilatore, occorre che questo abbia particolari caratteristiche: così, la girante avrà pale aperte nel caso di fibre di cotone, truccioli, ecc. al fine di evitare intasamenti (Figura 42); la macchina sarà costruita in leghe speciali (per ridurre l'usura) nel caso di polveri abrasive; e così via. Se l'impianto di depurazione è installato a monte del ventilatore, tali precauzioni assumono minore importanza; non vanno però trascurate del tutto in relazione all'efficienza di depurazione dell'impianto stesso.

Figura 42 Girante radiale per trasporto materiale

7.5.1 Ventilatori centrifughi

Le parti costituenti fondamentali dei ventilatori centrifughi sono (Figura 43):

- la girante;
- il boccaglio o cono di aspirazione;
- il diffusore a chiocciola.

La girante aspira il fluido dalla bocca di entrata e gli imprime una spinta centrifuga e quindi energia cinetica che si trasforma poi in energia statica. Il boccaglio di aspirazione provvede a far pervenire il fluido alla girante in condizioni ottimali: in particolare, riducendo al minimo l'urto del fluido entrante contro le pale della girante.

Le giranti dei ventilatori centrifughi hanno pale di forme svariate; le più impiegate sono le seguenti:

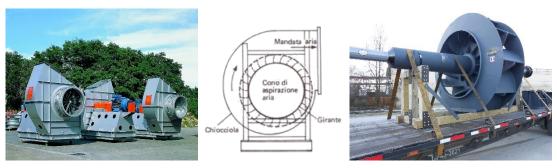


Figura 43 Ventilatore centrifugo

7.5.1.1 Pale curve rovesce

Questo tipo di giranti sono caratterizzate da buoni rendimenti (0,80÷0,90) e impiegate dove siano necessarie portate elevate con basse prevalenze, preferibilmente per il trasporto di aria e gas puliti (la presenza di polvere potrebbe dar luogo a depositi sul retro delle pale, sbilanciando il complesso).

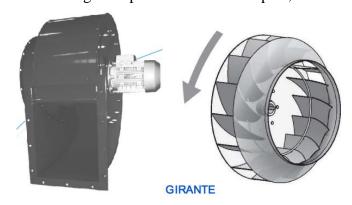


Figura 44 Girante con pale rovesce

7.5.1.2 Pale diritte

Sono caratterizzate da rendimenti compresi fra 0,65 e 0,75, sono particolarmente adatte per il trasporto di aria polverosa (il distacco delle particelle avviene più facilmente che non nel caso di pale curve); quando l'aria che perviene al ventilatore contiene trucioli, carta, filacce, ecc., le pale vengono rinforzate sul retro e la girante è sprovvista di disco anteriore: il rendimento scende a 0,55÷0,65;

Figura 45 Giranti a pale diritte

7.5.1.3 Pale rivolte in avanti

Rappresentano un'ottima soluzione contro i depositi polverosi; il loro rendimento è leggermente superiore a quello delle pale diritte radiali (0,70+0,75).

Figura 46 Girante con pale in avanti

7.5.1.4 Prestazioni

La Figura 47 fornisce le curve caratteristiche di un ventilatore centrifugo funzionante a velocità costante. Sovrapponendo alle curve caratteristiche di più ventilatori la caratteristica del circuito, si individua la macchina più adatta allo scopo.

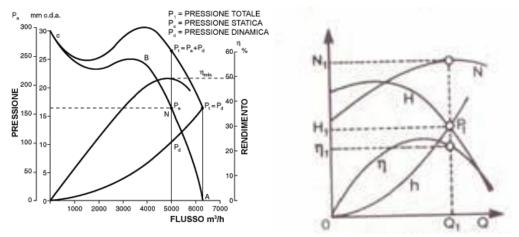


Figura 47 Curve caratteristiche e determinazione del punto di funzionamento di un ventilatore centrifugo

La prevalenza massima raggiungibile con i ventilatori centrifughi è di 15000 Pa (1500 kg/m²); normalmente, non si superano 5000 Pa. Le normali forme costruttive dei ventilatori centrifughi sono legate alla posizione della bocca di mandata e presentano 16 combinazioni diverse (Figura 48): infatti, le posizioni normali della bocca premente variano da 0° a 315° di 45° in 45° e ad ognuna delle otto posizioni della bocca premente, corrispondono due posizioni della bocca aspirante. La rotazione del ventilatore è definita oraria o antioraria a seconda del senso di rotazione della girante vista dal lato aspirazione.

I ventilatori centrifughi hanno una o due bocche di aspirazione (Figura 49): nel secondo caso, a parità di diametro, velocità, peso specifico e pressione totale, il ventilatore ha portata doppia ed assorbe potenza doppia rispetto al ventilatore a semplice aspirazione.

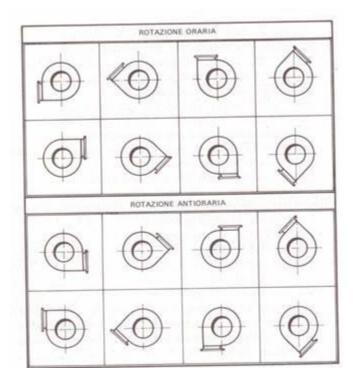


Figura 48 Orientamenti delle bocche di mandata (viste dal lato delle bocche di aspirazione)

Figura 49 Ventilatore centrifugo a doppia aspirazione

7.5.2 Ventilatori assiali

Gli elementi fondamentali dei ventilatori assiali sono (Figura 50):

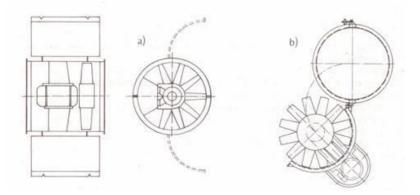
- la girante;
- la cassa o tamburo con eventuale boccaglio o cono di aspirazione sull'entrata e diffusore sull'uscita;
- le pale direttrici a valle (o a monte) della girante.

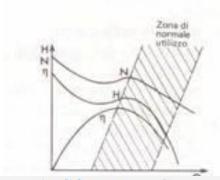
Queste ultime hanno lo scopo di "raddrizzare" la corrente ricuperando parte dell'energia della componente rotazionale del fluido, presente in genere all'uscita delle pale. Quando il ventilatore aspira

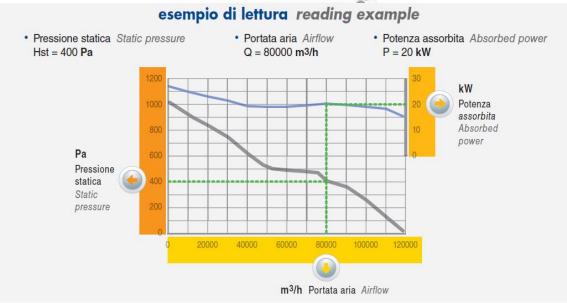
da un ambiente, occorre applicare, a monte della girante, un boccaglio avente lo scopo di ridurre le perdite d'imbocco e di assicurare un efflusso regolare dell'aria. Il boccaglio non è più necessario quando il ventilatore aspira da una tubazione. La funzione dell'eventuale diffusore a valle della girante consiste nel trasformare parte della pressione dinamica esistente a valle dei raddrizzatori in pressione statica.

Figura 50 Ventilatore assiale

Sempre nel caso di ventilatori installati su tubazioni, al fine di consentire l'accesso alla girante ed ai relativi cuscinetti senza smontare l'intero ventilatore, si realizza sovente l'involucro esterno apribile per circa metà della sua circonferenza (fig. 4S.40a) oppure si installa l'intero gruppo motore-girante sulla parte apribile dell'involucro (fig. 45AOb).




Figura 51 Ventilatori assiali installati su tubazioni: a) gruppo rotante accessibile attraverso sportelli apribili; b) gruppo rotante fissato a uno sportello apribile.


Le pale dei ventilatori elicoidali possono essere fisse oppure orientabili a girante ferma o in moto (quest'ultima alternativa è adottata solo nei ventilatori di maggior portata): la loro inclinazione è stabilita dalle prestazioni richieste, dal diametro della girante e dalla velocità periferica di questa.

La Figura 52 riporta le curve caratteristiche di un ventilatore assiale: la caratteristica prevalenzaportata dipende dall'inclinazione delle pale rispetto al loro piano di rotazione. In ogni caso, la potenza assorbita cresce al diminuire della portata.

Quando sussistono problemi di rumorosità, non conviene superare velocità tangenziali superiori a 20 m/s.

La prevalenza dei ventilatori elicoidali raggiunge al massimo 2000 Pa. L'accoppiamento ventilatore-motore può essere del tipo diretto (il motore è pertanto immerso nel flusso d'aria) oppure assicurato a mezzo di cinghie.

mod.1406/B •22kW Potenza intallata Motor power

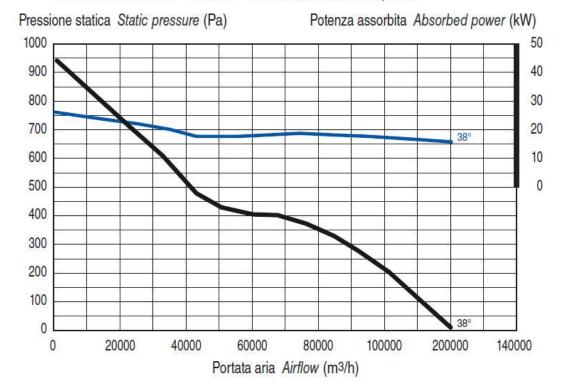


Figura 52 Curve caratteristiche di un ventilatore assiale

8. Depurazione delle emissioni polverose

La funzione dei dispositivi di depurazione è quella di sottrarre le emissioni al flusso d'aria che le ha aspirate dagli ambienti di lavoro o dalle fonti inquinanti, scaricando l'aria in condizioni conforme ai limiti di legge. Quando le emissioni sono costituite da polveri o fumi, tale separazione è ottenuta con impianti di depurazione del tipo a secco oppure a umido.

Si definisce efficienza di un sistema di depurazione il rapporto fra l'emissione trattenuta dall'impianto stesso e l'emissione totale presente nella corrente effluente prima della depurazione. In pratica, si fa sovente riferimento alla quantità di inquinante rimasta nell'aria a valle dell'impianto, normalmente misurata in mg/Nm³ di gas.

8.1 Depurazione a secco

8.1.1 Depuratori meccanici

Tra i depuratori meccanici ricordiamo:

- le camere di sedimentazione;
- i separatori a urto;
- i cicloni ed i multicicloni.

Le *camere di sedimentazione* (Figura 53) rappresentano il tipo più semplice di depuratore: consistono in una camera di dimensioni tali da ridurre la velocità dell'aria e consentire la sedimentazione delle particelle di polvere per gravità.

Per ottenere una buona separazione delle polveri dall'aria, occorre quindi disporre di camere molto grandi oppure avere a che fare con particelle sufficientemente pesanti. Pertanto, anche se la loro costruzione è semplice e poco costosa, le camere di sedimentazione sono poco usate a causa del notevole ingombro e della bassa efficienza di separazione.

La loro applicazione è limitata, in genere, alla separazione delle particelle più grossolane (superiori a 50÷100 μm) a monte di impianti di depurazione più efficienti.

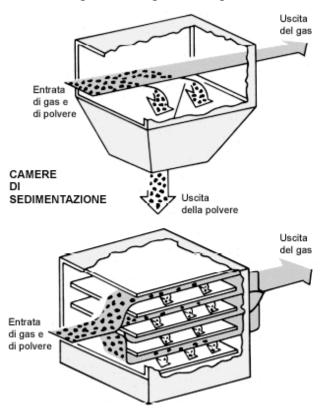


Figura 53 Camere di sedimentazione

I *separa tori a urto* (Figura 54) provocano, grazie ad appositi deflettori, una brusca variazione di direzione della corrente gassosa: conseguentemente, la maggior inerzia della polvere provoca la sua separazione dall'aria. Le particelle che si possono trattenere nei separa tori a urto hanno una granulometria media superiore ai 50 μm.

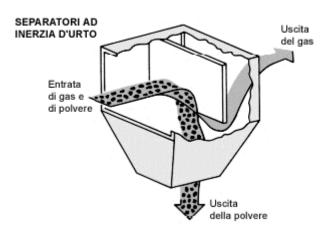


Figura 54 separatore ad urto

Essenzialmente, un ciclone (Figura 55) consiste in un cilindro con un'entrata tangenziale, una uscita assiale verso l'alto e una parte inferiore di forma conica dotata di apparecchiatura per lo scarico delle polveri trattenute (spesso una *rotocella*).

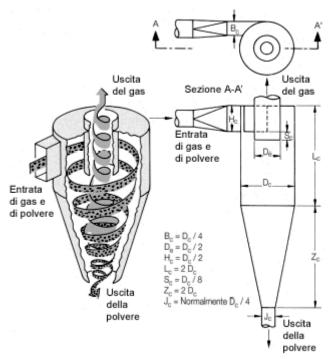


Figura 55 Ciclone separatore

La posizione tangenziale dell'apertura di ingresso nel ciclone e l'alta velocità dell'aria provocano un moto circolare del flusso gassoso: conseguentemente, le particelle, a causa della maggior inerzia, precipitano lungo le pareti del separatore. L'aria invece segue dapprima una spirale discendente per poi risalire assialmente verso l'uscita.

Poiché l'efficacia della forza centrifuga diminuisce all'aumentare del diametro del ciclone, quando le portate d'aria inquinata sono elevate, anziché maggiorare le dimensioni del ciclone si ricorre a più cicloni disposti in parallelo (Figura 56).

Figura 56 Dispositivo di abbattimento polveri per impiego nell'industria siderurgica. Si notano due cicloni in parallelo seguiti da filtro a maniche.

A fronte di un costo di acquisto e di esercizio relativamente modesto, i depuratori a ciclone non sono adatti per separare particelle aventi una granulometria media inferiore a 30 μ m e raggiungono efficienze di separazione non molto elevate (80% circa per particelle aventi una granulometria media di 30 μ m; come massimo si può arrivare al 90% nel caso dei multicicloni): per questi motivi sono sovente installati a monte di impianti di depurazione aventi più elevate efficienze.

8.1.2 Filtri a maniche.

I filtri a maniche (Figura 57) consistono essenzialmente in:

- una camera contenente il sistema filtrante,
- un sistema filtrante costituito da una serie di maniche tubolari
- un dispositivo di pulizia

Il sistema filtrante è costituito da una serie di maniche (Figura 58 e Figura 60) tubolari o "a sacco", confezionate con tessuti scelti in relazione alle caratteristiche chimico-fisiche del fluido da depurare: si impiegano tessuti in fibre naturali (cotone, lana, ecc.), sintetiche (nylon, teflon, ecc.) o minerali (fibre di vetro, ecc.);

Il dispositivo di pulizia (Figura 59) è finalizzato a rimuovere le particelle trattenute dalle maniche del sistema filtrante. I dispositivi più frequentemente impiegati sono del tipo a scuotimento meccanico delle maniche o ad insufflazione di aria in senso opposto a quello del fluido da depurare; tali sistemi richiedono che, durante le operazioni di pulizia, il flusso dell'aria polverosa si interrompa; per ovviare a tale inconveniente si adottano sovente altri dispositivi, detti a pulizia continua, i quali alimentano getti d'aria ad alta pressione sulla superficie pulita delle maniche, in modo da rimuovere particelle depositatesi sulla superficie opposta. Per non interrompere il funzionamento dell'impianto di depurazione, l'operazione di pulizia (attuata con uno dei metodi suddetti), interessa successivamente gruppi parziali di maniche.

La scelta del dispositivo di pulizia dipende in modo particolare dalle caratteristiche chimico-fisiche delle particelle da separare (granu lometria, tem pera¬tura, ecc.).

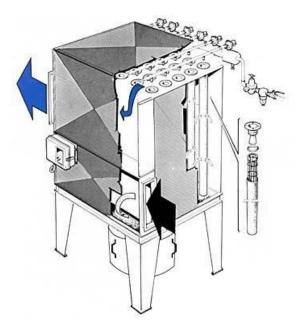


Figura 57 Filtro a maniche – Principio di funzionamento

Figura 58 Intelaiatura portamanica

Figura 59 Sistame di pulizia delle maniche

Figura 60 Maniche viste dal lato di ingresso dell'aria polverosa

Nell'impianto di Figura 61, l'aria e la polvere in essa contenuta vengono immessi, attraverso una condotta, in una camera sottostante ai filtri a maniche veri e propri; in tale camera avviene - per gravità - una prima separazione delle particelle più grandi o più pesanti. La restante polluzione è trascinata dall'aria sulle maniche e qui trattenuta (sulla superficie esterna del tessuto) mentre la corrente gassosa attraversa il tessuto e, depurata, prosegue il cammino verso l'apposita condotta di uscita dal filtro.

Tale conformazione consente la pulizia periodica della manica per mezzo di un violento getto di aria compressa che investe la manica dal lato interno (pulito) e scuotendola, fa cadere la polvere depositatasi sul lato esterno che va a raccogliersi sul fondo della camera conformato a tramoggia da dove viene periodicamente allontanato da dispositivi dedicati.

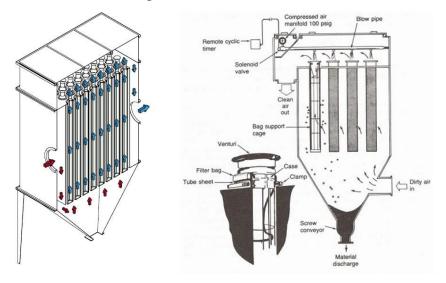


Figura 61 Filtro a maniche: evidenziazione dei flussi

I depuratori a tessuto sono adatti per inquinanti aventi granulometria anche molto piccola (inferiore al micrometro), per i quali raggiungono efficienze di separazione elevate (in certi casi di poco inferiori al 100%). Ciò significa, in pratica, che essi possono garantire emissioni inferiori a 10 mg/Nm³.

8.1.3 Elettrofiltri a secco

La corrente da depurare viene fatta passare attraverso un campo elettrostatico ad alta tensione formato da due gruppi di elettrodi, di cui quello negativo è carico, mentre quello positivo è posto a terra. In tale campo, le particelle ricevono una carica negativa, dopo di che sono attratte verso l'elettrodo positivo.

La struttura dell'elettrofiltro (Figura 62) prevede che in entrata il flusso d'aria da trattare passi dapprima in una sezione di maggiori dimensioni subendo così una diminuzione di velocità. Solitamente

in questa zona sono presenti una serie di griglie perforate che servono a garantire l'appropriata distribuzione di flusso. Da notare che queste griglie tendono a raccogliere del particolato sulla loro superficie, per cui devono essere periodicamente ripulite.

L' aria che fuoriesce da questa parte di transizione va quindi a fluire orizzontalmente lungo un gran numero di setti verticali e paralleli con al centro gli elettrodi verticali di emissione, in genere sottili fili metallici. Le piastre che rappresentano le pareti dei setti sono invece gli elettrodi di captazione con messa a terra. Solitamente sono presenti più campi di raccolta disposti in serie, ciascuno costituito da elettrodi di emissione e di captazione. All'aumentare del numero dei campi aumenta anche l'efficienza di abbattimento dell'elettrofiltro.

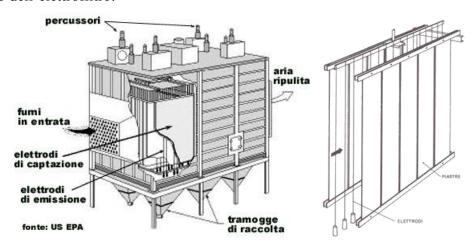


Figura 62 Elettrofiltro a piastre

Come le griglie di distribuzione del flusso, anche gli elettrodi di emissione e le piastre di raccolta devono essere ripulite dal particolato che si deposita. L'operazione è svolta da gruppi separati di componenti detti percussori che provvedono a percuotere periodicamente le zone dove si deposita il particolato facendolo cadere nelle tramogge di raccolta.

Esistono essenzialmente due tipi di percussori, quelli montati sulla sommità del filtro e quelli posizionati sulla fiancata.

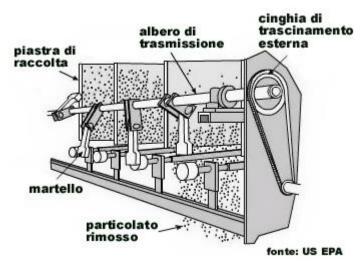


Figura 63 Sistema di pulizia basato su percussori

Un filtro elettrostatico con i percussori sulla sommità presenta un gran numero di singoli percussori, ognuno connesso al supporto di un singolo elettrodo di emissione, o a una singola griglia di distribuzione del flusso o ad una sezione dell'elettrodo di raccolta. I percussori delle piastre di raccolta e delle griglie di distribuzione del gas effettuano lo scuotimento tramite un martelletto metallico. I percussori degli elettrodi di emissione utilizzano invece un martelletto isolante per prevenire la trasmissione dell'alto voltaggio al percussore e alle aree accessibili alle persone presenti sul tetto dell'elettrofiltro.

Il sistema di percussione montato sulla fiancata del filtro presenta invece dei motori esterni che fanno girare un sistema ad albero di trasmissione all'interno. Su questo sistema di trasmissione sono montati dei martelletti che percuotono ogni singolo elettrodo di raccolta e ogni supporto degli elettrodi di emissione per far cadere il particolato adeso.

Per entrambi i sistemi, come è logico, la frequenza e l'intensità della percussione deve essere attentamente calcolata per fare in modo il filtro operi in condizioni ottimali.

I filtri elettrostatici sono particolarmente adatti per la depurazione di fumi e polveri molto fini (cioè aventi una granulometria media inferiore al micrometro) e consentono di ottenere efficienze dello stesso ordine di grandezza di quella dei filtri a maniche; i residui di polvere nell'aria depurata variano mediamente da 20 a 60 mg/Nm³ (a seconda del tipo e della composizione dell'emissione).

Gli elettrofiltri vengono suddivisi in più sezioni, in modo che sia possibile intercettare una sezione alla volta per rimuovere la polvere senza dover interrompere il funzionamento dell'impianto e, ovviamente, senza che l'efficienza di captazione ne risenta.

8.2 Abbattimento a umido

I sistemi di abbattimento ad umido prevedono la rimozione degli inquinanti presenti in un flusso gassoso contaminato mediante l'azione di un liquido, solitamente l'acqua; per questo motivo simili impianti vengono anche definiti sistemi di lavaggio.

Per le particelle di diametro superiore ad un micrometro, il principale meccanismo che entra in gioco nella depurazione è dato dall'impatto dei contaminanti con le gocce del liquido o con le superfici bagnate delle strutture appositamente predisposte per favorire un migliore abbattimento. L'acqua cattura questi contaminanti e li trascina via permettendo così di ripulire il flusso inquinato.

Al contrario, per il particolato di diametro inferiore e per i gas la depurazione avviene essenzialmente perché i contaminanti vengono assorbiti nella sostanza liquida.

Nelle applicazioni industriali, in genere, è possibile ottenere la massima efficienza nell'abbattimento contemporaneo di particolato e di gas solo quando i gas da eliminare hanno un'altissima solubilità nel liquido di lavaggio. E' anche preferibile che il particolato sia presente a concentrazioni relativamente basse perché spesso si formano dei fanghi reflui particolarmente difficili da smaltire. Questa particolare situazione non si verifica spesso, così, per rispondere meglio alle diverse esigenze tecniche, i depuratori ad umido sono solitamente progettati o per l'eliminazione del particolato o per l'abbattimento dei gas. Quindi a seconda delle esigenze industriali si dovrà scegliere il tipo di impianto che meglio risponde alle richieste del caso e che garantisce allo stesso tempo alta efficienza ed economicità.

Di solito l'efficienza nell'abbattimento del particolato supera il 95%, mentre per quanto riguarda l'abbattimento dei gas e dei vapori l'efficienza varia dal 70 al 99%. Bisogna comunque notare che alla depurazione dei flussi d'aria contaminati si accompagna inevitabilmente la produzione di fanghi e di liquidi reflui che, in molti casi, devono essere smaltiti dopo opportuno trattamento.

Le diverse soluzioni ingegneristiche hanno condotto alla realizzazione di un numero estremamente elevato di sistemi di abbattimento ad umido, soprattutto perché si dimostrano estremamente utili quando i flussi contaminati presentano polveri, gas e vapori potenzialmente combustibili o esplosivi. Comunque, in linea di massima, semplificando molto possono essere individuati sostanzialmente quattro diverse tipologie di impianti:

- le torri a nebulizzazione;
- le torri a piatti forati;
- le torri con corpi di riempimento;
- i sistemi Venturi.

Tutti questi sistemi vengono anche definiti scrubber e sono estremamente diffusi sia come tali che combinati strutturalmente tra loro o con altri sistemi di abbattimento.

8.2.1 Torri a nebulizzazione

I sistemi di abbattimento tramite nebulizzazione sono dei dispositivi che vengono quasi esclusivamente utilizzati per depurare le emissioni di gas altamente solubili e di particolato con diametro superiore a 5 micrometri.

Strutturalmente molto semplici, consistono in una camera rettangolare o cilindrica all'interno della quale il flusso gassoso contaminato viene ripulito mediante il contatto con un liquido nebulizzato da appositi ugelli. Solitamente questi dispositivi di abbattimento sono verticali e di grandi dimensioni, per cui vengono comunemente indicati come torri o colonne spray, dato che il liquido di lavaggio viene per l'appunto diffuso sotto forma di spray. Gli ugelli che provvedono a spruzzare il liquido possono essere fissi o mobili e posizionati su uno o più livelli, a seconda della particolare configurazione dell'impianto.

In genere il flusso d'aria da trattare viene fatto fluire all'interno della torre dalla parte inferiore, poi risalendo verso l'alto incontra in controcorrente lo spray emesso dagli ugelli posizionati nella parte superiore. Il particolato ed i gas vengono raccolti quando impattano le goccioline del liquido di lavaggio.

Figura 64 Schema di torre spry

8.2.2 Torri a piatti

Le torri a piatti (Figura 65) sono dei sistemi di abbattimento ad umido che vengono utilizzati per depurare le varie emissioni contaminate da gas e vapori o da particolato con diametro superiore al micrometro.

Sono dispositivi verticali solitamente di grandi dimensioni e caratterizzati dalla presenza di vari supporti forati collocati in posizione orizzontale, i cosiddetti piatti.

Il liquido di lavaggio viene immesso dall'alto e scende a cascata da un piatto all'altro, mentre il flusso d'aria da depurare entra dalla parte inferiore del dispositivo e fluisce verso l'alto passando attraverso dei fori o delle valvole presenti sui piatti. La velocità del flusso d'aria fa sì che il liquido di lavaggio non scenda attraverso le aperture dei piatti che si comportano in definitiva come se fossero dei veri e propri gorgogliatori. I piatti più elaborati presentano a ridosso dei fori anche delle strutture più complesse che prolungano il tempo di contatto fra i diversi flussi favorendo la solubilizzazione dei gas e la rimozione del particolato.

Gli *scrubber* a piatti sono abbastanza vulnerabili all'accumulo di sostanze solide e sono soggetti a problemi di intasamento, per cui vengono spesso progettati in modo tale che sia relativamente semplice operare la manutenzione e la pulizia dei singoli piatti; in questo modo risultano più adatti delle torri a corpi di riempimento all'abbattimento del particolato.

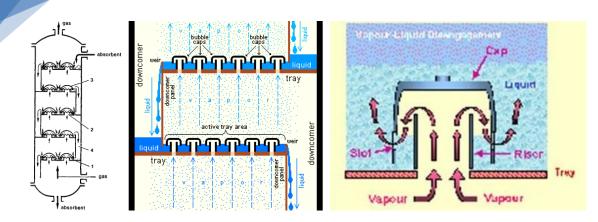


Figura 65 Torre a piatti – scema di funzionamento

8.2.3 Torri a riempimento

Questi sistemi di abbattimento hanno la caratteristica di contenere all'interno una gran quantità di oggetti (*corpi*) di piccole dimensioni e di forma di solito elaborata, fatti solitamente di plastica, ma anche di metallo o di ceramica, a seconda delle varie applicazioni (Figura 66).

I corpi di riempimento sono tutti caratterizzati dall'avere un elevato rapporto superficie/volume e presentano allo stesso tempo delle aperture che consentono il passaggio del flusso d'aria trattato; vengono posizionati su di un supporto presso la base della torre e sono mantenuti in sede da una serie di reti solitamente metalliche.

Figura 66 Alcuni esempi di corpi di riempimento

Come le torri a nebulizzazione, anche i sistemi con i corpi di riempimento possono avere una configurazione in controcorrente, a flusso incrociato o a flusso coincidente (Figura 67).

Il grande vantaggio delle torri con corpi di riempimento è dato dal fatto che il liquido scendendo si distribuisce su di un sottile velo che va a bagnare la vasta superficie del materiale utilizzato. In questo modo si forma un'estesa area di contatto fra l'aria ed il liquido di lavaggio e l'abbattimento dei contaminanti risulta estremamente facilitato. Per la sua natura, quindi, il sistema si presta molto bene all'assorbimento di vapori e gas (soprattutto inorganici) e all'abbattimento del particolato fine purché a bassa concentrazione.

Un limite all'applicazione delle torri a riempimento è chiaramente evidente quando si deve abbattere il particolato solido presente ad alta concentrazione: in questo caso le polveri si sedimentano nel materiale ed intasano tutto il sistema che, di per sé, già non si presta alla pulizia ordinaria e periodica.

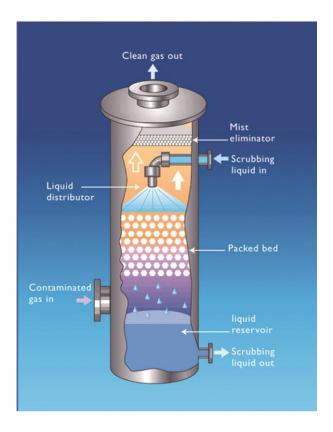


Figura 67 Torre a riempimento

8.2.4 Idrofiltri ad azione centrifuga

La fig. 45.51 si riferisce ad uno di tali depuratori: una torre cilindrica contiene una serie di settori costituiti da alette direttrici lambite da una pioggia d'acqua che cade dall'alto. L'aria entra nella parte inferiore della torre da una apertura tangenziale che le imprime un moto circolare; subisce perciò una prima azione volta a rimuovere le particelle più grossolane. Successivamente, la corrente fluida attraversa i vari settori separatori, dove avviene la vera e propria azione di lavaggio. Infine, incontra un "separatore di gocce" (Figura 68) che trattiene le particelle d'acqua in sospensione, evitando che le stesse vengano trascinate all'esterno con il gas depurato.

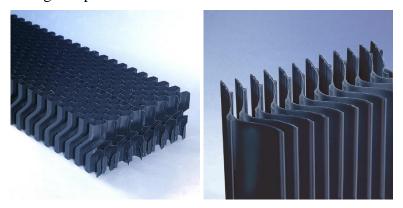


Figura 68 Alcuni tipi di separatore di gocce

I depuratori a umido ad azione centrifuga sono adatti per filtrare gas contenenti fino al 25% di polvere con granulometria media inferiore a $10\mu m$. E' possibile ottenere efficienze di separazione del 95 \div 97%, mentre il residuo medio di polvere che rimane nell'aria all'uscita da tali filtri varia da 50 a 150 mg/Nm³, a seconda delle emissioni. Il fabbisogno di acqua varia di solito da 300 a 500 litri ogni 1000 m³ di aria spirata.

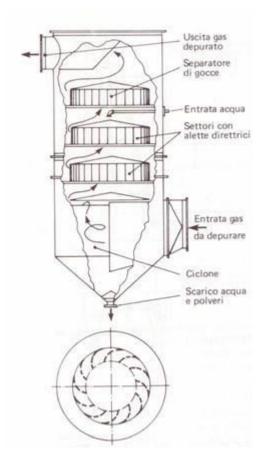


Figura 69 Depuratore ad umido ad azione centrifuga

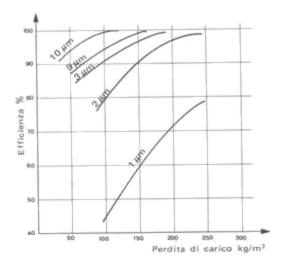


Figura 70 Diagramma dell'efficienza di un idrofiltro ad azione centrifuga

8.2.5 Venturi

I sistemi Venturi permettono di abbattere la concentrazione del particolato aerodisperso con un'efficienza che, nelle varie applicazioni, può variare fra il 70 ed il 99%. In genere l'efficienza maggiore viene ottenuta nell'abbattimento del particolato caratterizzato da un diametro di 0,5-5 micrometri. Da notare che i Venturi possono essere utilizzati anche come assorbitori di contaminanti gassosi qualora gli inquinanti presenti possiedano un'affinità moderatamente alta per il liquido di lavaggio.

Estremamente utilizzati, questi dispositivi funzionano accelerando il flusso d'aria contaminato mediante un restringimento nella struttura, definito anche "gola". Man mano che il flusso d'aria procede attraverso questo restringimento, aumenta la propria velocità e turbolenza (Figura 71).

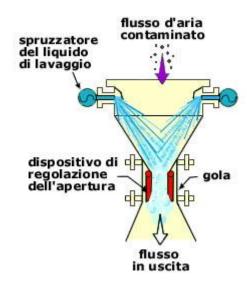


Figura 71 Depuratore Venturi – Principio di funzionamento

A seconda delle modalità di progettazione di questi sistemi, il liquido di lavaggio può essere spruzzato nel flusso d'aria prima che raggiunga la gola o all'interno di questa, anche in controcorrente. L'azione del flusso d'aria fa sì che il liquido di lavaggio si nebulizzi; in questo modo viene fortemente aumentata la superficie di contatto fra la fase gassosa e quella liquida e viene facilitato l'abbattimento degli inquinanti. Alcuni sistemi utilizzano anche degli ugelli appositi per nebulizzare il liquido di lavaggio prima che incontri il flusso d'aria, il tutto per aumentare il numero delle gocce aerodisperse che devono catturare gli inquinanti.

Dopo la gola, la sezione più ridotta si allarga nuovamente ed il flusso rallenta e perde la turbolenza, facilitando così la coesione delle goccioline e la loro precipitazione.

A valle di questo particolare sistema di abbattimento ad umido viene sempre posizionato un dispositivo per separare dal flusso d'aria il liquido contaminato, solitamente un ciclone: il flusso che fuoriesce dal Venturi viene immesso tangenzialmente in un cilindro verticale e le goccioline vengono rimosse per forza centrifuga e per gravità a causa del movimento a spirale dell'aria.

Figura 72 Venturi

Un tipo particolare di Venturi è il sistema con gola a sezione variabile. Dato che l'abbattimento degli inquinanti avviene in funzione della velocità dell'aria nella sezione della gola, quando la portata

dei flussi da trattare può cambiare si utilizzano dei Venturi che possono variare la sezione interna. La sezione viene di solito scelta in modo tale da mantenere una caduta di pressione fissa lungo il dispositivo.

8.2.6 Elettrofiltri a umido

Un precipitatore elettrostatico umido è utile nelle applicazioni industriali dove deve essere attuato l'abbattimento di particolato liquido o dove il particolato solido presenta delle indesiderabili proprietà fisiche od elettriche, come una bassa resistività che lo porta ad aderire debolmente all'elettrodo di captazione. Viene impiegato anche quando si devono abbattere dei contaminanti che andrebbero a formare delle concrezioni difficili da asportare in un elettrodo di captazione convenzionale.

In questi elettrofiltri le superfici di captazione sono percorse da un film liquido costituito di solito dall'acqua, eventualmente additivata di composti chimici in grado di condizionare parametri come la conduttività elettrica ed il pH.

Da notare che gli elettrofiltri umidi sono di solito preceduti da una camera o da una sezione di raffreddamento per saturare il flusso d'aria da trattare, per cui le superfici di raccolta del materiale permangono sempre bagnate dal velo d'acqua e non vengono essiccate dall'eventuale alta temperatura del flusso d'aria trattato.

Con riferimento alla Figura 73, l'ingresso dei fumi avviene dall'alto. Il flusso d'aria si distribuisce poi in una serie di tubi verticali di materiale plastico che si estendono fino alla base del collettore.

Gli elettrodi di emissione sono montati nel centro di ogni tubo e caricano elettricamente il particolato che di conseguenza migra sulle superfici di raccolta bagnate dall'acqua che cola per tracimazione da una vasca sovrastante. L'acqua scende così lungo le superfici interne dei tubi trasportando il materiale raccolto fino al bacino di raccolta; poi viene pompata di nuovo verso la vasca sovrastante entrando in ricircolo

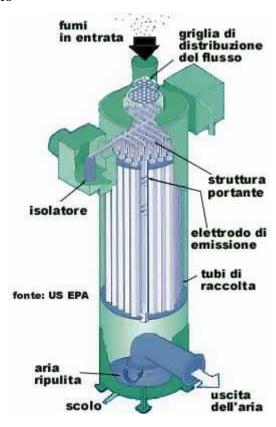


Figura 73 Depuratore elettrostatico a umido

8.2.7 Scelta del depuratore

La scelta di un impianto di depurazione va anzitutto circoscritta ai tipi che risultano adatti allo scopo prefissato, in base ai seguenti parametri:

- grado di depurazione che si vuole ottenere;
- portata e caratteristiche chimico-fisiche della corrente fluida;
- caratteristiche chimico-fisiche delle particelle inquinanti;
- concentrazione dell'emissione nella corrente fluida.

Il grafico di Figura 74 fornisce una indicazione approssimata dei campi di impiego dei depuratori in funzione della granulometria delle emissioni.

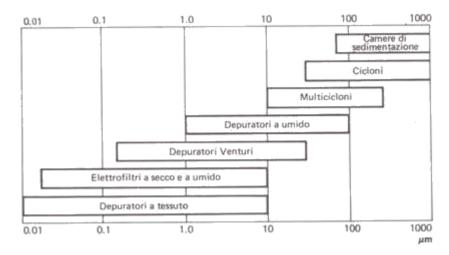


Figura 74 Campi approssimativi di impiego dei depuratori industriali

Effettuata una prima selezione in base ai fattori di cui sopra, si sceglie il tipo di impianto di depurazione considerando i seguenti elementi:

- costo di acquisto, esercizio e manutenzione;
- valori dell'efficienza di separazione in funzione delle dimensioni medie e della composizione percentuale delle emissioni da filtrare, nonché del periodo intercorrente fra una (eventuale) pulizia e l'altra del filtro;
- dimensioni di ingombro dell'impianto di depurazione;
- perdita di carico minima (dopo la pulizia), media e massima (prima della pulizia).

8.3 Combustione

La tecnica di demolire le molecole dei composti organici con la combustione è sicuramente la più affidabile dal punto di vista tecnico. Infatti, ad una certa temperatura, le molecole dei composti organici vengono decomposte ed ossidate, generando prodotti tipici della combustione: CO₂, H₂O, SO₂.

I trattamenti di combustione si suddividono in:

- termici, se hanno luogo a temperature superiori a 600°C;
- termocatalitici, se hanno luogo a temperature inferiori a 600°C con l'ausilio di un catalizzatore.

Nel caso dei trattamenti termici, si raggiunge la temperatura necessaria alla ossidazione completa bruciando metano. Nel secondo caso, le temperature raggiunte con il combustibile sono più basse (dell'ordine di 300°C) e la reazione di ossidazione viene indotta mediante catalizzatori specifici (a base di vanadio od ossidi di alluminio).

8.3.1 Combustori termici

La Figura 75 riporta lo schema di un combustore termico. I gas da depurare vengono parzialmente utilizzati come aria comburente (o primaria) per la combustione del metano e in parte immessi direttamente nella camera di combustione dove si raggiunge la temperatura richiesta.

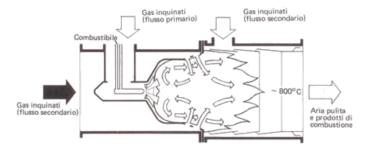


Figura 75 Schema di combustore termico

Poiché la combustione comporta dei significativi costi di gestione in conseguenza dei volumi di gas naturale richiesti, si sono sviluppate diverse soluzioni atte a recuperare il calore generato per preriscaldare i gas da depurare.

Un esempio di tale ricupero energetico è schematizzato in Figura 76 dove di addotta uno scambiatore a flusso incrociato: il combustore è utilizzato per depurare i gas inquinati estratti da un forno di essiccazione vernici; gli stessi vengono preriscaldati a spese dei fumi della combustione, trattati nel combustore e, previa miscelazione con aria fredda (nel "mixer"), parzialmente utilizzati per riscaldare il forno. L'aliquota di gas trattati in eccesso può essere smaltita al camino o costituire una ulteriore fonte di calore di recupero utilizzabile anche direttamente in bruciatori di altre utenze, essendo ormai esente da inquinanti.

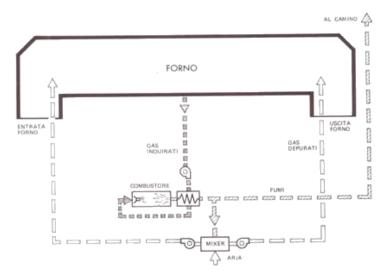


Figura 76 Incenerimento di gas provenienti da forni di essiccazione vernici mediante combustore a recupero di calore.

Un'altra modalità di recupero del calore si concretizza nel ricorso ad impianti *rigenerativi* a cui la Figura 77 si riferisce. Il sistema rigenerativo permette efficienze di recupero energetico fino a 96% riducendo al minimo i costi di gestione dell'impianto. In condizioni di autosostentamento, il calore prodotto dalla reazione di ossidazione esotermica delle sostanze organiche è sufficiente a mantenere la temperatura in camera di combustione senza apporto di combustibile ausiliario.

L'unità di combustione (Figura 78) è formata da una camera di combustione dotata di bruciatore e da due camere di preriscaldamento/recupero calore. La camera di combustione, realizzata da una struttura principale in acciaio al carbonio, è rivestita internamente con fibra ceramica. La temperatura minima operativa prevista è 720 °C ed il tempo di permanenza minimo 0,6 s.

Le due camere di preriscaldamento/recupero calore, contengono corpi di riempimento in materiale ceramico (Figura 79) che, alternativamente, hanno funzione di preriscaldare i gas in ingresso e recuperare calore dai fumi in uscita. Il flusso di ingresso, e dunque di uscita, viene invertito alternativamente secondo cicli temporizzati di circa 90÷120 s mediante valvole a tampone a perfetta tenuta.

La camera di compensazione, che, in funzione della concentrazione in ingresso, può non essere necessaria, ha la funzione di stoccare l'aria non depurata che deriva dal transitorio di inversione ingresso/uscita.

Figura 77 Combustore termocatalitico

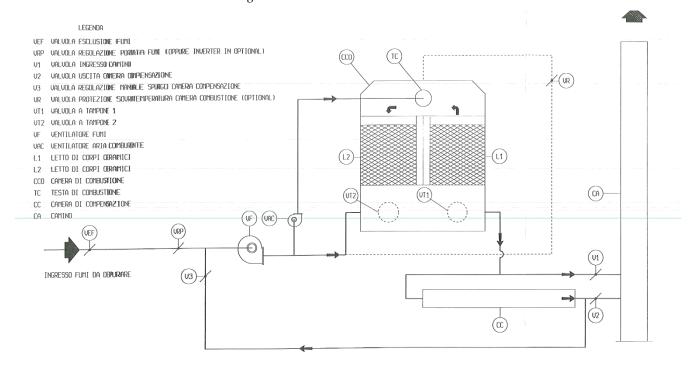


Figura 78Combustore termocatalitico (schema)

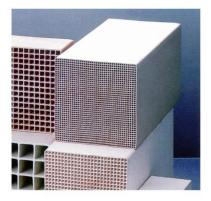


Figura 79 Corpi di riempimento ceramici

8.3.2 Combustori termocatalitici

Nella Figura 81 è schematizzato un combustore termocatalitico. Inoltre, la Figura 82 esemplifica l'applicazione di un combustore del genere per la depurazione delle emissioni di un forno di verniciatura: i gas da trattare vengono preriscaldati a 300°÷350°C dai bruciatori di preriscaldo; quindi raggiungono il catalizzatore, nel quale si completa l'eliminazione delle sostanze organiche. I gas depurati possono essere riutilizzati nel forno stesso od avviati ad altre destinazioni.

La scelta fra i due metodi viene fatta sulla base delle caratteristiche dell'effluente da trattare, tenendo conto dei composti che esso trascina e che potrebbero influire negativamente sul processo depurativo (per esempio, avvelenando il catalizzatore di ossidazione).

Dal punto di vista economico, l'incenerimento termocatalitico costituisce una buona soluzione del problema abbattimento delle sostanze organiche. Infatti, se si effettua il recupero del calore di incenerimento, il costo del riscaldamento a circa 600°C dei gas da depurare risulta accettabile.

Tuttavia, questa tecnica di trattamento è assai sofisticata e risulta adatta all'abbattimento di gas "puliti", nei quali cioè non siano presenti particelle metalliche (mercurio, arsenico, zinco, piombo, ecc.) incombustibili. La temperatura di esercizio non dovrebbe mai scendere al di sotto di circa 600°C, per evitare la formazione di prodotti di parziale ossidazione (aldeidi, chetoni, acidi organici). In tali condizioni, l'efficienza di depurazione supera il 90%.

Per quanto riguarda la combustione termica, le temperature di trattamento sono decisamente più elevate, raggiungendo spesso $800^{\circ} \div 900^{\circ}$ C. L'efficienza di depurazione è funzione diretta della temperatura, come risulta dalla Figura 80.

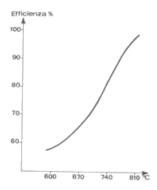


Figura 80 Relazione tra efficienza di abbattimento dell'emissione di COV e temperatura di combustione.

Noti i parametri caratteristici dell'emissione, si definisce la percentuale di abbattimento necessaria e, di conseguenza, si valuta la temperatura minima occorrente per eliminare le sostanze organiche con cui si ha a che fare. Poiché il raggiungimento di tale temperatura richiede generalmente l'impiego di combustibile di integrazione, ne derivano rilevanti costi gestionali. Per questo motivo si sono sviluppate ricerche tendenti a recuperare il calore prodotto (fino al $60 \div 80\%$): il conseguente risparmio energetico ha reso la tecnica dell'incenerimento termico economicamente competitiva con altre soluzioni.

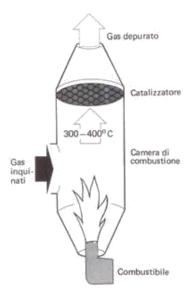


Figura 81 Schema di combustore termocatalitico

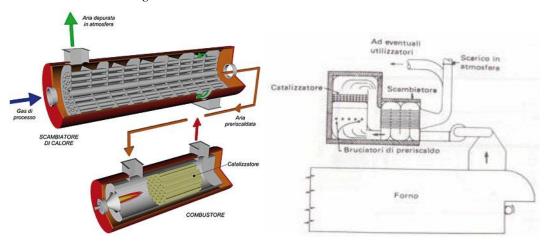


Figura 82 Combustore termocatalitico con recupero di calore

8.4 Adsorbimento

Nel campo dei sistemi di bonifica delle emissioni si sfrutta questo processo facendo fluire l'aria da trattare attraverso un materiale poroso; il materiale, detto adsorbente, è in grado di trattenere gli inquinanti sulla sua superficie e permette così di ripulire il flusso dai contaminanti volatili.

Il processo di adsorbimento viene utilizzato in presenza di un gran numero di composti organici a bassa concentrazione, ove è necessario provvederne alla concentrazione preliminarmente alla combustione termica o catalitica.

Gli adsorbenti più utilizzati sono quelli che permettono di attuare la rigenerazione. Le numerose applicazioni industriali prevedono il raro utilizzo del gel di silice, dell'allumina attivata e dei polimeri sintetici, molto diffuse sono invece le zeoliti sintetiche ed estremamente utilizzato è il carbone attivo.

Tutti questi materiali sono caratterizzati da una microporosità talmente elevata da garantire loro uno sviluppo superficiale impressionante. La superficie per unità di peso è quasi sempre superiore a 500 metri quadrati per ogni grammo di materiale per cui le sostanze in grado di legarsi sono quantitativamente molto elevate.

I sistemi di adsorbimento si impiegano spesso per la rimozione dei composti organici e possono essere utilizzati nell'ambito di un'ampia gamma di concentrazioni che varia da 10 ppm a circa 10000 ppm. Il limite superiore di concentrazione è essenzialmente dovuto al pericolo di esplosione.

Per quanto riguarda l'efficacia nell'abbattimento, un sistema ad adsorbimento predisposto nel modo più appropriato è generalmente in grado di rimuovere dal 95 al 98% dei contaminanti organici presenti nell'aria.

L'industrializzazione del processo può avvenire in vari modi, tra i quali ricordiamo i seguenti.

8.4.1 Letto filtrante carbone attivo

La superficie solida più comunemente impiegata è costituita da una massa carboniosa ad altissima porosità (*carboni attivi*) la cui attività è direttamente proporzionale alla superficie della sua porosità.

La capacità di adsorbimento è fortemente influenzata da molti altri fattori, tra i quali ricordiamo la concentrazione, l'umidità, la temperatura, la velocità di passaggio, tempo di contatto ed alla granulometria del carbone stesso.

L'adsorbimento è sempre un processo esotermico, di conseguenza l'incremento della concentrazione dei solventi comporta un aumento di temperatura ed una conseguente diminuzione del valore di adsorbimento. In generale è necessario non superare i 40°C di temperatura durante il lavoro e tenersi sempre sotto il 25% del L.E.L¹.

Nei filtri a carbone attivi, il letto a carbone attivo presenta una cavità assiale che permette all'aria da trattare di attraversarlo dall'interno verso l'esterno. Questo accorgimento fa in modo che durante l'attraversamento del carbone attivo, man mano che l'aria si impoverisce di inquinante, diminuisca anche la velocità di attraversamento nel carbone, aumentando così la resa di abbattimento. Tale accorgimento ha lo scopo di ottimizzare al massimo l'utilizzo del letto di carbone attivo che, quando si satura deve essere sostituito.

¹ I limiti di esplosione (o limiti di esplosività) di un gas o dei vapori di un liquido sono dei limiti che definiscono l'intervallo di concentrazione entro cui, se la miscela aria-vapore o gas infiammabile è opportunamente innescata (ad esempio da una scintilla), si verifica l'accensione della miscela. Questa combustione può essere una detonazione o solamente una "fiammata" (deflagrazione), in funzione di numerosi fattori (concentrazione di combustibile in primis, tipo di recipiente). Il limite di esplosione viene considerato in un *range* che va da un minimo ad un massimo di percentuale di combustibile in aria (o più raramente in altri comburenti), in inglese *lower explosive limit* (LEL), e *upper explosive limit* (UEL).

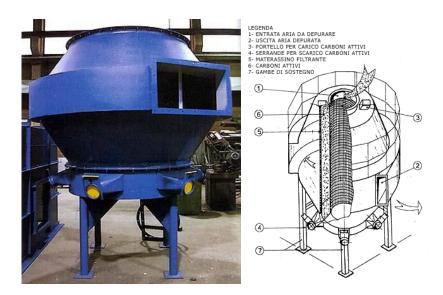


Figura 83 Filtro a carbone attivo

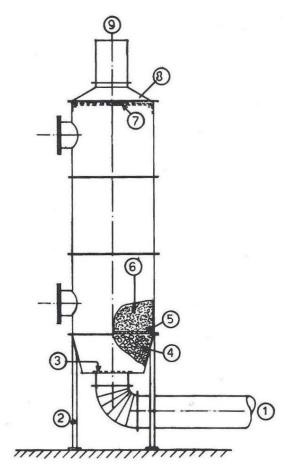


Figura 84 Colonna a carbone attivo¹

8.4.2 Iniezione di carbone attivo in polvere nei fumi da depurare

Nei casi in cui, oltre che alle sostanze organiche in fase gassosa, nei fumi sia presente del particolato il cui abbattimento richieda l'adozione di un filtro a maniche, può essere vantaggioso per l'abbattimento delle sostanze organiche ricorrere all'iniezione di carbone attivo in polvere nella corrente effluente.

¹ LEGENDA: 1) ingresso fumi, 2) struttura di sostegno, 3) rete, 4) letto di ghiaia (prefiltro), 5) rete, 6) carboni attivi, 7) rete, 8) raccordo, 9) uscita fumi

Il carbone attivo, depositandosi sul tessuto filtrante del filtro, vi realizza un vero e proprio letto filtrante che viene rinnovato con la periodica asportazione del materiale di deposito destinato allo smaltimento.

Il sistema, estremamente semplice, prevede l'adozione di un'apparecchiatura di stoccaggio, macinazione e iniezione del tipo rappresentato in Figura 85.

Figura 85 Sistema di iniezione di carboni attivi

8.4.3 Rotoconcentrazione

La rotoconcentrazione è una tecnica di abbattimento che nella sua versione più diffusa unisce in un unico sistema l'applicazione dei due principi chimico fisici dell'adsorbimento e dell'ossidazione termica di sostanze in forma gassosa.

Essa nasce con lo scopo di ridurre la portata dell'effluente e di concentrare le sostanze organiche (COV) prima dell'ingresso nell'apparecchiatura di abbattimento vera e propria, con evidenti vantaggi economici, soprattutto in termini di dimensioni ridotte degli impianti e condizioni di funzionamento più prossime a quelle di massima efficienza.

Il metodo più utilizzato per la concentrazione di dette sostanze prevede l'adsorbimento e l'accumulo dei COV su un supporto adsorbente, l'estrazione dal mezzo adsorbente con una portata d'aria ridotta e l'alimentazione della portata concentrata e ridotta all'apparecchiatura di abbattimento.

Per concentrare e ridurre in modo continuo alte portate di effluenti (a partire da 5.000 Nm³/h) a bassa concentrazione di COV (generalmente comprese tra 0.1 e 1 g/Nm³) si utilizzano i rotoconcentratori, che consistono in disco rotante di mezzo adsorbente (in carboni attivi o zeoliti) che lavora a settori.

L'aria a una bassa concentrazione di VOC entra nella camera d'ingresso attraversando un filtro che rimuove le polveri e le particelle in eccesso. Dalla camera d'entrata, l'aria passa attraverso il rotore dove vengono adsorbiti i VOC, quindi l'aria depurata arriva nella camera d'uscita e tramite le tubazioni predisposte viene espulsa in atmosfera.

I VOC adsorbiti, sono rimossi dal rotore facendo passare un ridotto flusso d'aria calda attraverso una parte del rotore nella direzione opposta al flusso d'aria principale che deve essere trattato, con il risultato di ottenere un flusso d'aria ridotto ma con una concentrazione di VOC elevata (Il rapporto di concentrazione ottenibile va da5:1 a 15:1).

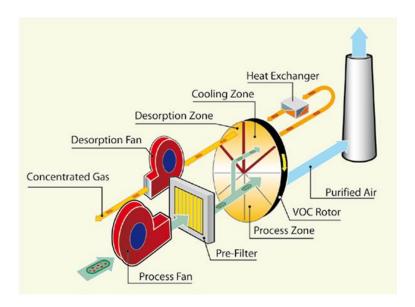


Figura 86 Rotoconcentratore (schema)

Figura 87 Rotoconcentratore: rotore in zeolite

Figura 88 Impianti di abbattimento con rotoconcentratore

8.5 Biofiltrazione

La biofiltrazione è una tecnologia di depurazione delle emissioni gassose contenenti composti organici (spesso maleodoranti, come quelli ridotti dello zolfo, dell'azoto e del carbonio) che vengono

ossidati da microrganismi aerobi. In particolare l'ossidazione biologica per l'abbattimento delle emissioni ha notevoli vantaggi nel trattamento di COV a medio-bassa concentrazione.

L'effluente da trattare entra in contatto con la biomassa insediata su un substrato a letto fisso, che costituisce il supporto su cui i batteri si accrescono degradando le sostanze organiche presenti nell'effluente.

Il substrato è formato in parte da materiale inerte dotato di un nucleo idrofilo e in parte da una copertura di materiale organico (tra cui carbone attivo) che immagazzina i COV. In condizioni di carico inquinante variabile, la presenza di materiale adsorbente nel corpo filtrante migliora le prestazioni del biofiltro perché il meccanismo di adsorbimento-desorbimento permette di livellare le fluttuazioni di concentrazione di COV nella fase acquosa assicurando costante alimento per i microrganismi.

Giova ricordare che affinché il processo possa aver luogo nei fumi soggetti a depurazione non devono essere contenute sostanze tossiche per i batteri.

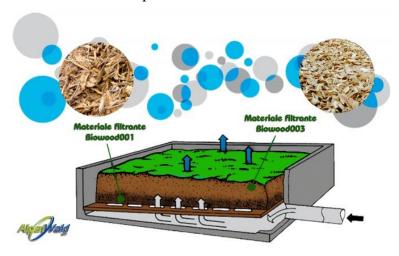


Figura 89 Biofiltro (schema di impianto)

Figura 90 Biofiltro per trattamento COV da verniciatura

9. Riferimenti normativi e bibliografici

9.1 Leggi

- 1.1 Decreto Legislativo n. 152 del 3 aprile 2006 "Norme in materia ambientale" e successive modifiche o integrazioni; in particolare:
- 1.1.1 Titolo I Parte V artt. da 267 a 280
- 1.1.2 art. 275 (emissioni COV)
- 1.1.3 All. I alla Parte V (valori di emissione e prescrizioni)
- 1.1.4 All. III alla Parte V (emissioni di COV)
- 1.1.5 All. VI alla Parte V (criteri per la valutazione della conformità dei valori misurati ai valori limite di emissione)
- 1.2 D.P.R. 13 marzo 2013, n. 59 "Regolamento recante la disciplina dell'autorizzazione unica ambientale (...)"
- 1.3 Ministero dell'Ambiente e della tutela del Territorio e del Mare "Circolare recante chiarimenti interpretativi relativi alla disciplina dell'Autorizzazione Unica Ambientale nella fase di prima applicazione del Decreto del Presidente della Repubblica 13 marzo 2013 n. 59", 7 novembre 2013

9.2 Norme tecniche di settore

- 1.4 UNI CEN/TS 13649:2015 "Emissioni da sorgente fissa Determinazione della concentrazione in massa di singoli composti organici in forma gassosa. Metodo per adsorbimento seguito da estrazione con solventi o desorbimento termico"
- 1.5 UNI EN 12619:2013 "Emissioni da sorgente fissa Determinazione della concentrazione di massa del carbonio organico totale in forma gassosa Metodo in continuo con rivelatore a ionizzazione di fiamma"
- 1.6 Manuale UNICHIM 158/1988 "Strategie di campionamento e criteri di valutazione delle emissioni"
- 1.7 Manuale ISPRA 52/2009: "L'analisi di conformità con i valori di legge: il ruolo dell'incertezza associata a risultati di misura"
- 1.8 Rapporto ISTISAN 91/41 "Criteri generali per il controllo delle emissioni"

9.3 Bibliografia

- 1.9 Armando Mnte: "Elementi di impianti industriali", Edizioni Libreria Cortina, Torino, 2009
- 1.10 Alberto Muratori, Maria Cristina Vandelli: "Emissioni in atmosfera da impianti fissi. La nuova disciplina dopo il D.Lgs. 152/2006 e la sua riforma", Wolters Kluwer Italia, 2008
- 1.11 http://www.nonsoloaria.com/

10. Appendice 1: Verifica del rispetto dei limiti di emissione di COV in un cantiere navale

10.1 Premessa

Nel presente capitolo si riporta un interessante caso di studio relativo alla verifica del rispetto dei limiti di emissione di COV nell'ambito delle costruzioni navali. L'intento è quello di familiarizzare con le nozioni di diritto e tecniche presentate in precedenza.

A tal fine, dopo una dettagliata esposizione del contesto operativo, di prendono in considerazione i vincoli normativi e legislativi per addivenire alla formulazione delle linee generali di una campagna di indagine di cui si espongono i risultati.

10.2 Il contesto operativo

Con il termine "Capannette" si indica un fabbricato entro il quale si svolgono le operazioni di rivestimento, tramite pitturazione, di manufatti in acciaio di varia natura. Si tratta per lo più di "blocchi" (Figura 91), ossia di elementi di nave destinati ad essere assiemati in unità di carico di maggiori dimensioni (dette sezioni) che, trasportate in bacino per mezzo di possenti gru a portale, sono saldate alla nave in fase di costruzione. Oltre ai blocchi, nelle capannette si possono rivestire anche particolari di minori dimensioni quali mancorrenti, scale, ancore, catene e così via.

Figura 91 Blocco in lavorazione all'interno di una delle Capannette

10.2.1 Fabbricato

Il fabbricato ospitante le *capannette* (Figura 92) presenta un unico piano fuori terra a pianta rettangolare (Figura 93) di dimensioni approssimative di 125x30 m e altezza al filo di catena di 14 m, con pilastri e travi di copertura di tipo reticolare in carpenteria metallica, pareti perimetrali non omogenee, realizzate con impiego di blocchi di cemento, pannelli in vetroresina, lamiera grecata e zincata. La copertura è in pannelli prefabbricati in lamiera grecata e zincata.

Nel fabbricato ci sono complessivi 6 locali, quattro dei quali rappresentano le "capannette" vere e proprie, ove avvengono tutte le attività di rivestimento, mentre i rimanenti sono destinati a contenere le apparecchiature asservite agli impianti di aspirazione, produzione dell'aria compressa e sabbiatura.

Ciascuna *capannetta* ha un varco principale di dimensioni approssimative 12x14m dotato di portone scorrevole motorizzato, che consente l'ingresso ai blocchi e ai relativi mezzi di movimentazione, nonché un varco secondario, di tipo pedonale, anch'esso dotato di portone, che la mette in collegamento con l'attiguo vano tecnico.

Al fine di assicurare buone condizioni di confinamento, sia il portone principale che la porta pedonale sono dotati di guarnizioni di tenuta in elastomero, in grado di limitare l'ingresso di aria esterna. Allo stesso modo e con identica finalità, sia le strutture perimetrali che la copertura risultano sostanzialmente integre, con fori modesti sia per numerosità che per dimensioni.

Figura 92. Capannette di Pitturazione – Fabbricato

10.2.2 Impianto di termoventilazione

Ciascuna delle quattro *capannette* è servita da un impianto di termoventilazione indipendente (Figura 93), in grado di movimentare aria all'interno dei locali, al fine di riscaldarli e di impedire la fuoriuscita di emissioni diffuse, secondo l'articolazione di seguito riportata.

Una canalizzazione di mandata preleva l'aria esterna dalla sommità del fabbricato e per mezzo di un'Unità Trattamento Aria (UTA) la filtra ed eventualmente la riscalda, prima di immetterla all'interno della *capannetta* in corrispondenza dell'intradosso copertura. All'interno della copertura l'aria esegue un percorso dall'alto verso il basso, dove è prelevata da una serie di bocchette di aspirazione disposte sulle pareti che delimitano il locale a circa 1,50 m da terra.

Per mezzo di tali bocchette, l'aria perviene alla canalizzazione di estrazione che provvede a recapitarla ad un filtro ad umido da dove, tramite il ventilatore di mandata, sarà espulsa in atmosfera attraverso il camino.

10.2.2.1 Ventilatori di aspirazione ed espulsione

I ventilatori che provvedono alla movimentazione dell'aria in ingresso ed in uscita dalla *capannetta*, presentano le caratteristiche di cui alla Tabella 13, ove si evidenzia una significativa discordanza di potenza, verosimilmente conseguente non solo alla diversità di perdite di carico implicate dalle differenti soluzioni distributive dei canali di adduzione e deduzione, ma anche ad una differenza di portata, finalizzata al mantenimento in depressione dell'ambiente servito, come peraltro si è avuto modo di riscontrare in sede di sopraluogo.

Tabella 13 Dati di targa dei ventilatori¹

Ventilatore di estrazione	
Potenza	110 kW
Velocità di rotazione	1480 rpm
Ventilatore di immissione	
Potenza	18.5 kW
Velocità di rotazione	1470 rpm

_

¹ In entrambi i casi non è stato possibile reperire i dati di portata. Relativamente ai ventilatori di espulsione sono stati forniti i valori di portata registrati in occasione delle misure in autocontrollo di seguito riportati: 31 – 33.000 Nm³/h, 32 – 44.390 Nm³/h, 33 – 61.100 Nm³/h, 34 – 43.900Nm³/h.

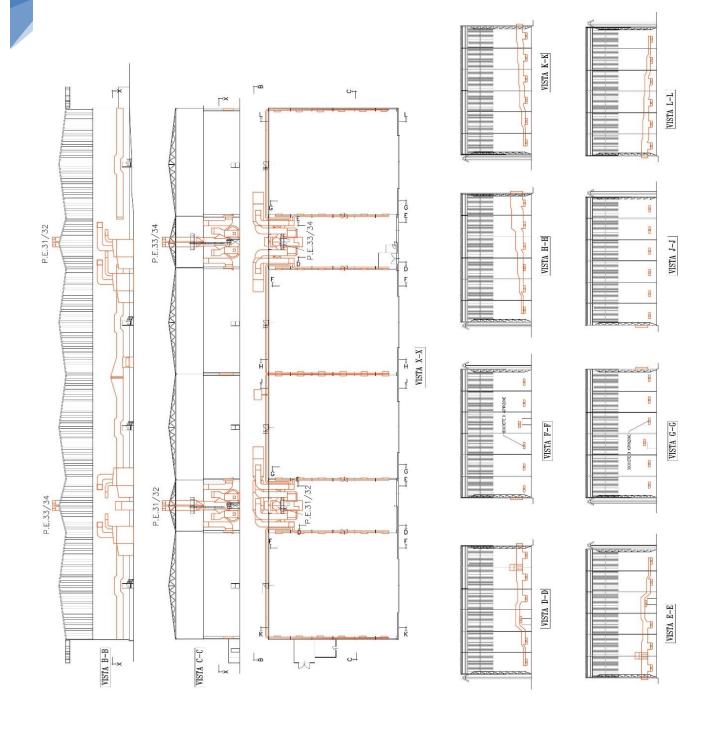


Figura 93 Capannette – Planimetria e sezioni impianto termoventilazione

10.2.2.2 Scrubber

Le portate d'aria prelevate nei locali serviti contengono emissioni di diversa natura che devono essere rimosse preliminarmente al loro rilascio in atmosfera. Tale operazione avviene in filtro ad umido entro il quale le emissioni passano dalla corrente d'aria ad un bagno d'acqua ove precipitano depositandosi sul fondo da dove sono quindi rimosse sotto forma di fanghi.

Il filtro in questione, realizzato in robusta carpenteria metallica, è costituito da un recipiente con il fondo conformato a tramoggia e riempito d'acqua per circa la metà dello spazio complessivamente disponibile. Sullo specchio d'acqua che ne risulta, viene indirizzata la corrente da depurare che per uscire deve compiere un'inversione di marcia di 180°. Tale brusca variazione di direzione comporta la separazione del particolato per impatto sull'acqua che, trascinata in modesta misura, viene trattenuta da

un separatore di gocce installato sul percorso di uscita, sottoposto a lavaggio tramite un getto d'acqua ricircolata dalla vasca sottostante.

Appare pleonastico osservare che se il sistema in precedenza descritto presenta verosimilmente una buona efficienza nell'eliminazione del particolato e delle nebbie di diversa natura, per contro l'efficacia di abbattimento nei riguardi dei COV è molto modesta in relazione alla scarsa superficie di contatto vapore/acqua e alla modesta affinità che li caratterizza.

Figura 94 Scrubber

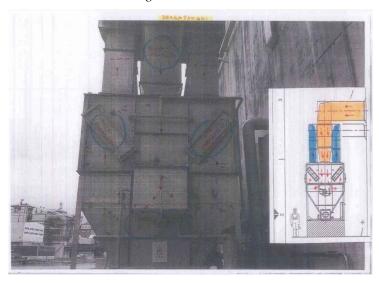


Figura 95 Schema di funzionamento dello scrubber

10.2.3 Lavorazioni

La programmazione delle attività nelle capannette è svolta dal gestore e comunicata alla ditta appaltatrice che le organizza in base allo stato di occupazione delle stesse e alle condizioni operative (disponibilità dei materiali, stato delle attrezzature, del personale ecc.). Tipicamente, da un programma previsionale (stabilito in base al programma di costruzione della nave) si passa a diverse rielaborazioni dello stesso: solo a consuntivo è possibile avere il quadro del programma effettivamente realizzato e degli stati di occupazione delle diverse *capannette*. Dei diagrammi (Figura 96), consentono di ricavare le seguenti informazioni:

- data di ingresso di un blocco in una specifica capannetta;
- denominazione e codifica del blocco lavorato;
- data di uscita del blocco dalla capannetta;
- date di inizio e conclusione di altre operazioni accessorie (ad esempio, manutenzioni dei locali o degli impianti);

• codifica delle operazioni accessorie.

Il ciclo di lavorazione inizia con il posizionamento dei blocchi all'interno della singola *capannetta* dove essi pervengono per mezzo di grandi carrelli gommati che provvedono a prelevarli dall'officina navale dove sono stati appena realizzati. A tal fine si richiede l'approntamento di opere provvisionali per la loro messa in sicurezza con l'impiego di appoggi regolabili, scale, parapetti e attrezzature di altro tipo finalizzate ad evitarne il ribaltamento, a garantire la sicurezza degli operatori e a rendere accessibili le diverse superfici da trattare. Vale rilevare che la *capannetta* di destinazione di un blocco è scelta in relazione allo stato di occupazione delle stesse; può essere privilegiata la *capannetta* n°4 solo nei casi di blocchi particolarmente ingombranti che possono rendere problematiche le manovre di movimentazione e deposito nella stessa.

Esaurita la fase di approntamento, si procede con la fase di pulizia manuale finalizzata alla rimozione, tramite straccio impregnato di solvente, degli eventuali depositi oleosi originatisi nelle lavorazioni precedenti.

Segue quindi la fase di sabbiatura che ha lo scopo di rimuovere, tramite abrasione, sia (integralmente o parzialmente) il primer di cui è ricoperto il blocco (applicato per prevenire gli effetti degli agenti atmosferici), sia tutti i materiali depositatisi sulla superficie delle lamiere, come residui di saldatura, ossido di ferro, calamina, scaglie di laminazione; l'operazione permette inoltre il sicuro ancoraggio della pittura che verrà applicata in seguito. La sabbiatura, di tipo manuale, viene eseguita da operatori che impiegano delle *spingarde*, una sorta di lancia in grado di produrre un violento getto di graniglia metallica (o materiale lapideo) per mezzo di aria compressa. In genere, su ciascun blocco, non vengono impiegate, per motivi di ingombro, più di due squadre di due operai, uno con funzioni di capo pezzo e l'altro di servente. In ogni caso, l'impianto dell'aria compressa, a servizio delle capannette, non consente un utilizzo contemporaneo di più di quattro spingarde. Dall'operazione in esame risulta una superficie con un grado di finitura più o meno spinto, in dipendenza dalle specifiche dell'Armatore. La durata dell'operazione dipende principalmente dalle dimensioni del blocco.

Poiché nel processo vi è una nutrita produzione di polvere, sia a seguito dei materiali rimossi che della macinazione subita dalla graniglia abrasiva, prima di procedere con le rimanenti operazioni è necessario non solo pulire accuratamente le superfici trattate ma anche il locale, almeno nelle zone immediatamente circostanti il blocco in lavorazione, per prevenire l'inevitabile trascinamento di polveri che altrimenti ne conseguirebbe nella fasi successive. La pulizia viene eseguita manualmente con delle grosse aspirapolveri. La graniglia aspirata è recuperata, se i grani conservano dimensioni accettabili, e re-immessa nel ciclo di lavorazione.

La fase di sabbiatura si conclude con un collaudo che viene svolto in contraddittorio tra rappresentanti dell'Armatore, del Cantiere Navale e della ditta Appaltatrice.

La pitturazione può aver luogo solo dopo che il collaudo ha decretato la conformità del trattamento di sabbiatura alle specifiche di progetto. Essa prevede l'applicazione di una o più mani, in quantità controllata, da eseguirsi manualmente, impiegando delle pistole *airless*, ossia in grado di nebulizzare la pittura senza emissione ad aria compressa. La pressione esercitata può essere modulata in base alle caratteristiche della pittura e allo spessore del ricoprimento che si vuole ottenere. In genere, per ragioni operative, si evita di operare contemporaneamente con più di due addetti e rispettive pistole (due postazioni di lavoro) ed il consumo orario per ciascuna postazione di lavoro è di circa quattro latte da 20 litri di pittura pronta all'uso¹. L'applicazione di un'ulteriore mano può avvenire solo dopo che la precedente si è essiccata completamente. La fase di essiccazione richiede un tempo variabile in funzione della temperatura e dell'umidità relativa dell'aria ambiente, ma che non può essere inferiore a 8 ore e che in genere non eccede le 24 ore. Di fatto, per quanto possibile, si evita l'applicazione di due mani nella stessa giornata, e si procede con una mano al giorno.

Durante le operazioni di pitturazione, gli operatori eseguono misure sul ricoprimento per verificarne lo spessore. Esaurita la fase di pitturazione, si esegue un collaudo secondo le stesse modalità

¹ Ossia già addizionata di catalizzatore, trattandosi in genere di pitture bicomponenti.

viste in precedenza per la sabbiatura, successivamente al quale il blocco può essere rimosso dalle *capannette* per essere assiemato nella *sezione* destinata ad accoglierlo prima del suo imbarco in bacino.

Come si può facilmente comprendere, in ragione della notevole variabilità di complessità costruttiva e di dimensioni, il tempo di permanenza di ciascun blocco all'interno della *capannetta* è molto variabile, tra un minimo di tre e un massimo di 12 giorni.

L'impianto di aspirazione a servizio della capannetta è avviato quando il blocco è stato posizionato all'interno ed è pronto per essere sottoposto al ciclo di ricoprimento. Il sistema di regolazione consente due modalità operative: *normale* e "*sabbiatura*"; quest'ultima modalità è finalizzata al recupero della graniglia e il suo trasferimento nel silo di stoccaggio ed è utilizzata solo in corrispondenza della fase omonima. L'impianto di aspirazione è spento ogni giorno alle 24.00 e rimane in tale stato fino all'inizio del turno del giorno successivo.

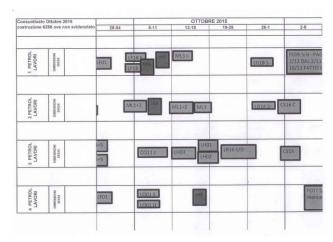


Figura 96 Occupazione capannette ottobre 2015 (consuntivo)

10.3 Definizione dei criteri di prova e delle modalità operative

10.3.1 Individuazione dei limiti di emissione

I camini dei reparti di verniciatura denominati "*capannette*" e della linea di trattamento lamiere (detta di primerizzazione) rappresentano la totalità dei punti di emissione di COV convogliate dell'intero stabilimento¹.

L'Autorità Competente ha stabilito che, con riferimento alle emissioni di COV, si applicano i valori limite espressi in termini di flusso di massa complessivo di sostanza inquinante [mg/h] e di media ponderata (di concentrazione) [mg/Nm³], da valutarsi secondo le espressioni di cui al paragrafo **Errore.** L'origine riferimento non è stata trovata. di pag. Errore. Il segnalibro non è definito. che per comodità di lettura e con diretto riferimento ai COV si riportano di seguito:

$$\sum_{i=1}^{n} C_i \cdot \frac{Q_i}{\sum_{i=1}^{n} Q_i} < 50 \tag{1}$$

$$FM_{TOT} = \sum_{i=1}^{n} C_i \cdot Q_i < 50 \cdot \sum_{i=1}^{n} Q_i$$
 (2)

Ove i simboli hanno il seguente significato:

- FM_{TOT} Flusso di massa complessivo espresso in termini di COT [kg/h]
- C_i concentrazione di COV espressa in termini di COT misurata nel punto i-esimo [mg/Nm³]
- Q_i portata misurata nel punto i-esimo [Nm³/h]

Tali espressioni implicano l'aggregazione pesata delle emissioni di COV provenienti dai camini delle *capannette* (dal N. 31 al N.34).

_

¹ cfr. Allegato Tecnico del provvedimento AUA di cui alla Parte V del D.Lvo 152/06 s.m.i

10.3.2 Inquadramento dell'impiantistica di processo ai sensi del D.Lgs 152/06

L'articolo 268, comma l del D.Lgs. 152/06 definisce "impianto: il dispositivo o il sistema o l'insieme di dispositivi o sistemi fisso e destinato a svolgere in modo autonomo una specifica attività, anche nell'ambito di un ciclo più ampio".

Se in riferimento all'impianto di primerizzazione la qualifica di impianto appare evidente in conseguenza della specifica attività di ricoprimento delle lamiere svolta in completa autonomia nell'ambito del più ampio ciclo produttivo di costruzione navale, le capannette necessitano di una più attenta considerazione per stabilire se esse debbano considerarsi come un unico impianto o costituiscano piuttosto quattro impianti separati.

Giova a questo punto richiamare la descrizione delle *capannette* in precedenza eseguita ove si evidenzia la mutua dipendenza delle quattro celle che costituiscono le capannette che ne condiziona l'operatività. Tale circostanza deriva dalla condivisione dei medesimi impianti di servizio (aria compressa e termoventilazione) nonché dal fatto di essere ospitate nel medesimo fabbricato. La condivisione del medesimo impianto di produzione dell'aria compressa rende tecnicamente impossibile l'esecuzione contemporanea dell'operazione di sabbiatura in tutte e quattro le celle mentre la condivisione del medesimo fabbricato comporta nello specifico l'impossibilità, per ragioni di sicurezza antincendio, di esecuzione concomitante delle operazioni di sabbiatura e verniciatura nelle celle 32 e 33. Tali circostanze fanno dunque venir meno la richiesta condizione di autonomia nello svolgimento della specifica attività di ricoprimento¹ di superfici metalliche che si richiede per la qualifica di *impianto*.

Al contrario, tale qualifica emerge con tutta evidenza se si considerano le capannette nel loro insieme, essendo soddisfatta sia la condizione di autonomia che quella di dedizione alla specifica attività di ricoprimento.

Tale circostanza è messa per altro in luce dal documento² "La proposta di individuazione delle migliori tecniche disponibili per la categoria IPPC 6.7 (Trattamento di superfici con solventi)" ove, nel trattare la cantieristica navale, a pagina 145 il carattere unitario dell'impianto viene evidenziato nel titolo stesso del paragrafo ad esso dedicato:

Impianto di verniciatura manuale blocchi, manufatti e componenti di allestimento "Capannette di Verniciatura"

Per l'effettuazione delle attività di pitturazione dei componenti di allestimento e quando tecnicamente possibile, dei blocchi, e manufatti di scafo, in regime di confinamento, vengono utilizzate delle "Capannette" di dimensioni adeguate e dotate di sistemi di convogliamento ed abbattimento delle emissioni (specificare). Le operazioni di verniciatura vengono svolte prevalentemente mediante spruzzatura airless oppure quando necessario manualmente a rullo o pennello.

A conclusione di tutto quanto sopra esposto e con riferimento allo stabilimento in esame, si può affermare che gli impianti in grado di dar luogo ad emissioni di COV siano in tutto due, ossia l'impianto di trattamento lamiere con il camino "A" e l'impianto "Capannette" con quattro punti di emissione distinti (camini dal 31 al 34) che, secondo l'articolo 270 del D.Lgs. 152/06, vanno convogliati ad un unico camino e, in subordine, possono essere mantenuti distinti qualora ricorrano impedimenti di natura tecnica od economica che sono stati invocati nell'AUA.

¹ cfr. Parte III dell'Allegato III alla Parte Quinta del D. Lgs. 152/2006

² redatto a cura della Commissione Nazionale ex art. 3, comma 2, del decreto legislativo 372/99 (recepimento della direttiva 96/61/CE nota come IPPC), per la redazione delle linee guida per l'individuazione delle Migliori Tecniche Disponibili (MTD), istituita con decreto del Ministro dell'ambiente e della tutela del territorio, di concerto con il Ministro delle attività produttive e con il Ministro della salute, in data 15 aprile 2003.

10.3.3 Le attività svolte negli impianti autorizzati ai sensi del D.Lgs. 152/06

Le attività all'origine delle emissioni di COV presso lo stabilimento in esame sono caratteristiche degli impianti *linea di trattamento lamiere* e *Capannette*, dove si svolgono rispettivamente le attività di *3. verniciatura in continuo di metalli (coil coating)* con soglia di consumo superiore alle 25 t/anno e 2.c. *Attività di rivestimento di superfici metalliche e di plastica (comprese le superfici di aeroplani, navi, treni)* con soglia di consumo superiore a 5 t/anno.

Riguardo quest'ultima, si sottolinea come l'attività di *rivestimento* non sia confinabile nel ristretto ambito della sola verniciatura, ma comprenda tutte quelle fasi di lavorazione propedeutiche o successive alla stessa, quali la sistemazione dei manufatti, la preparazione superficiale mediante sabbiatura e pulizia, l'essiccazione, ecc.

Tale concetto viene esplicitato dal legislatore in riferimento agli impianti di verniciatura in serie di autoveicoli che, pur nella loro specificità, presentano problematiche tecnologiche simili a quelle del caso in specie. Nell'Allegato I alla parte 5° del D.Lgs. 152/06, alla parte III art. 47, nell'assegnare i limiti di emissione, ci si riferisce esplicitamente, includendoli, agli impianti *in cui si effettuano i trattamenti preliminari:*

(47) Impianti per la verniciatura in serie, inclusi gli impianti in cui si effettuano i trattamenti preliminari, delle carrozzerie degli autoveicoli e componenti degli stessi, eccettuate le carrozzerie degli autobus.

Fatto salvo quanto previsto dall'articolo 275, si applicano i seguenti valori di emissione, espressi in grammi di solvente per metro quadrato di manufatto trattato, inclusi i solventi emessi dagli impianti in cui si effettuano i trattamenti preliminari:

- a) vernici a due strati 120 g/m²
- b) altre vernici 60 g/m^2 .

Per le zone d'applicazione della vernice all'aria di ventilazione delle cabine di verniciatura non si applicano i valori di emissione indicati nella parte II, paragrafo 4, classi III, IV e V. Per gli essiccatori il valore di emissione per le sostanze organiche, espresse come carbonio organico totale, è pari a 50 mg/Nm³. Il valore di emissione per le polveri è pari a 3 mg/Nm³.

Sempre con riferimento agli impianti di verniciatura di autoveicoli, Nella parte III dell'allegato III alla parte 5a del D.Lgs. 152/06, all'appendice *APPENDICE 1 - Attività i rivestimento i autoveicoli con una soglia i consumo i solvente superiore a 15 tonnellate/anno*, al comma 3 si afferma che:

"...il valore limite di emissione totale espresso come fattore di emissione si riferisce a tutte le fasi del processo che si svolgono nello stesso impianto, dal rivestimento mediante elettroforesi o altro processo, sino alle operazioni di lucidatura finale comprese, nonché al solvente utilizzato per pulire l'attrezzatura, compresa la pulitura delle cabine di verniciatura a spruzzo e delle altre attrezzature fisse, sia durante il tempo di produzione che al di fuori di esso..."

Appare dunque del tutto evidente come nell'attività di rivestimento di superfici metalliche e di plastica (comprese le superfici di aeroplani, navi, treni) siano ricomprese non solo le operazioni di mera pitturazione ma anche tutte quelle ad essa propedeutiche o conseguenti, purché circoscritte nell'ambito del medesimo impianto, indipendentemente dall'input di solvente implicato.

Infatti, proprio in ragione del fatto che dette operazioni si eseguono tutte nel medesimo *impianto*, non si può escludere la circostanza che delle fasi di processo nominalmente in grado di non dar luogo ad emissioni di un determinato tipo, possano al contrario originarne, in virtù della contaminazione dei luoghi e dei macchinari risultante dalle fasi di processo precedentemente svolte nei medesimi ambienti.

_

¹ cfr. Parte III dell'Allegato III alla Parte Quinta del D. Lgs. 152/2006

Con riferimento al caso in specie, è noto come la sabbiatura non sia in grado di produrre direttamente emissioni di COV in quanto impiega come *input* materiali (graniglia metallica ed aria compressa) che non contengono solventi organici. Tuttavia, in virtù del fatto che tale operazione viene eseguita in ambienti e su manufatti sottoposti ad operazioni che invece impiegano solventi organici, in considerazione della loro persistenza in ambiente, l'eventualità di constatare emissioni di COV non trascurabili durante la fase di sabbiatura è tutt'altro che remota.

Il fenomeno non è ovviamente circoscrivibile alla sola sabbiatura ma a qualsiasi fase di lavorazione conseguente ad una in cui l'impiego di prodotti contenenti COV possa aver dato luogo a contaminazioni dell'ambiente in grado di persistere interessando la fase successiva.

Tipica in questo senso risulta la pitturazione di numerosi pezzi di piccole dimensioni che a tal fine necessitano di venire ordinatamente disposti sul pavimento, come ben testimoniato dalla foto di Figura 97. In casi come questi, la modalità di verniciatura con pistola a spruzzo da luogo inevitabilmente all'imbrattamento del pavimento con significativi depositi di vernice la cui completa essicazione comporta dei tempi ben superiori a quelli richiesti per la manipolazione dei manufatti appena trattati. Ne consegue che la rimozione degli stessi avvenga in genere prima della completa essicazione del pavimento, sicché nella successiva fase di lavorazione possono aver luogo delle emissioni di COV malgrado l'operazione implicata non sia di per se in grado di giustificarle, per la mancanza di *input* di solvente. La Figura 98 si riferisce ad analogo fenomeno riscontrato durante la campagna di misura.

Si rileva inoltre che in una stessa cella possono essere eseguite contemporaneamente più operazioni (pulizia degli utensili, di porzioni di manufatti, ecc.) da parte del personale. Va da se che, considerata la complessità delle operazioni che si realizzano all'interno delle capannette e la molteplicità delle condizioni operative che si possono verificare, non è affatto da escludersi l'impiego di quantitativi di solvente in grado di dar luogo a concentrazioni "ambientali" non trascurabili di COV rilevabili anche durante le operazioni che nominalmente non implicano input di solvente (approntamento, rimozione o controllo dei blocchi, sabbiatura).

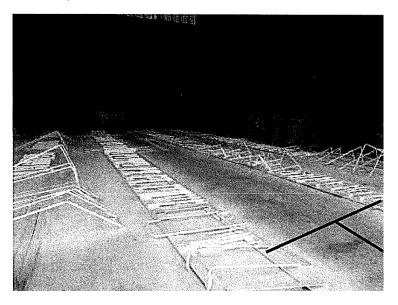


Figura 97. Pitturazione di elementi di parapetto

Figura 98 Pitturazione di elementi di paiolato. Manufatti predisposti per la pitturazione (sinistra) e relativi depositi di vernice (destra)

10.3.4 Individuazione delle "condizioni di esercizio più gravose".

10.3.4.1 Considerazioni di principio

Nell'individuazione delle condizioni di esercizio più gravose si è tenuta nel dovuto conto l'opportunità di realizzare delle modalità di prova conformi alle effettive condizioni di esercizio degli impianti, al fine di ottenere dei risultati realmente rappresentativi del quadro emissivo, caratterizzato da una marcata variabilità su base temporale, caratteristica di impianti come quelli in esame ove, in conseguenza della scarsa o inesistente automazione e della concomitante presenza di diversi operatori, le condizioni di massimo carico sono spesso imprevedibili e dettate dalla contingenza.

Per tale motivo si è rinunciato alla realizzazione di condizioni di prova "simulate" che, richiedendo la preventiva formulazione di un determinato programma di somministrazione, avrebbe inevitabilmente comportato il rischio di una errata stima del fenomeno e sarebbe stata il presupposto di una tanto lunga quanto inconcludente serie di valutazioni di opportunità nella definizione dei requisiti per l'esecuzione della prova stessa.

La rinuncia al ricorso a prove "simulate" e la ricercata aderenza al reale ciclo di lavorazione ha comportato non pochi problemi di pianificazione che sono alla base del lungo lavoro di preparazione della campagna di misura e della sua significativa durata. Di seguito le considerazioni effettuate e le conclusioni cui si è pervenuti vengono riportate in riferimento a ciascuno degli impianti in precedenza considerati.

10.3.4.2 Individuazione dei manufatti da assoggettare alla attività di rivestimento

La richiesta aderenza al reale ciclo di lavorazione ha avuto come prima conseguenza la rinuncia all'impiego di manufatti estranei alle normali operazioni di trattamento e il ricorso a pezzi provenienti direttamente dalle linee di produzione, la cui disponibilità in numero e foggia adeguata è da queste condizionato. Si rileva, infatti, che il flusso dei materiali è pianificato in base alle tempistiche di realizzazione della nave e dunque non prevede lo stazionamento dei blocchi da assemblare in magazzini intermedi da cui l'impianto di pitturazione potrebbe approvvigionarsi secondo una propria programmazione "locale" (come avviene nelle produzioni disaccoppiate dal ciclo dell'ordine, ad esempio, nelle produzioni a lotti). Tale possibilità non è inoltre fattibile in virtù della dimensione dei blocchi, che richiederebbe l'occupazione di estese aree di piazzale allo scopo di assicurare scorte di adeguata capacità.

Giova ricordare che il ricorso a pezzi di scarsa complessità e non destinati all'inclusione nella nave, se per un verso avrebbe comportato tempi ridotti di pianificazione e di realizzazione della campagna di misura, dall'altro avrebbe comportato il rischio di ottenere dei risultati fuorvianti.

A giustificazione di quanto asserito, in Figura 99 si riporta l'andamento delle emissioni al camino registrate il giorno 06/05/2016 durante l'esecuzione della prova di efficienza di abbattimento del filtro di

cui si dirà più oltre, mentre la Figura 100 si riferisce alle emissioni ai quattro camini delle capannette durante il giorno 11/05/2016, nel corso delle prove di emissione.

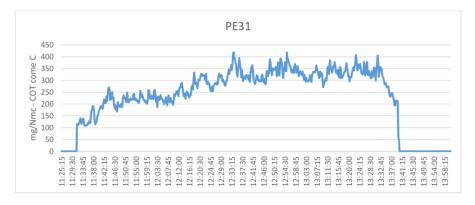


Figura 99 Emissioni al camino durante la prova di efficienza di abbattimento

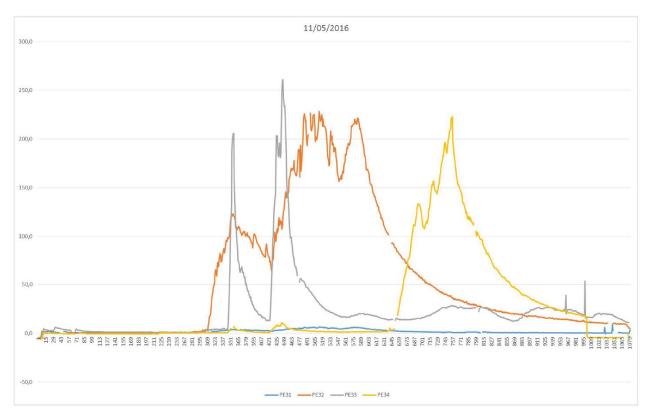


Figura 100 Emissione al camino registrate sui quattro camini delle capannette il giorno 11/05/2016

Nel primo caso i due operatori presenti nella cella stavano pitturando dei container (circa 16) simili quanto a dimensioni e forma, senza alcun limite sullo spessore di ricoprimento e con il solo scopo di conseguire un determinato consumo di pittura nell'arco di un'ora (condizione di esercizio simulate), mentre nel secondo caso si stava operando in condizione ordinarie, su manufatti (*blocchi*) decisamente più complessi e marcatamente più estesi dei container in precedenza richiamati ed in presenza di predefinite tolleranze dimensionali sugli spessori di ricoprimento.

La significativa differenza nell'andamento si concretizza nella diversa incidenza di picchi e nei tempi di applicazione decisamente inferiori del primo caso rispetto al secondo. In termini di emissioni medie durante la fase di applicazione si riscontra un valore di circa 300 mg/Nm³ nel primo caso, contro valori di circa 150 mg/Nm³ nel secondo.

10.3.4.3 Analisi del ciclo produttivo ed individuazione dei requisiti minimi da rispettare per il conseguimento delle condizioni di esercizio più gravose

L'analisi del ciclo produttivo delle Capannette condotta al paragrafo 10.2.3 ha evidenziato i seguenti aspetti salienti:

- La programmazione dell'occupazione delle capannette è fatta su base settimanale prendendo come riferimento il crono-programma di produzione della nave;
- Le differenze tra l'occupazione preventivata e quella effettivamente riscontrata sono in genere significative;
- La programmazione della lavorazione di un singolo blocco su base settimanale offre requisiti di attendibilità decisamente superiori ad una programmazione su base giornaliera.

Emergeva dunque la difficoltà nel programmare le prove limitandone la durata ad un unico giorno, circostanza che avrebbe comportato la concreta possibilità di incrociare condizioni di prova ben lontane da quelle "più gravose".

In considerazione di ciò, si ritenne di estendere la durata delle prove ad un'intera settimana, previa definizione di opportuni requisiti minimi in grado di rendere significative le condizioni di prova, riservandosi di individuare *ex post* le più gravose condizioni di esercizio effettivamente realizzatesi in conseguenza della inevitabile variabilità di marcia.

Si è quindi formulato lo schema di lavorazione tipo di cui alla Figura 101, coerente con le caratteristiche degli schemi di lavorazione acquisiti, al quale l'Azienda si sarebbe dovuta conformare nella pianificazione della produzione durante la settimana di prove.

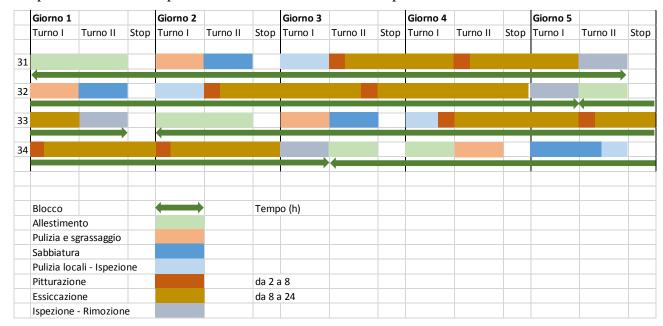


Figura 101 Diagramma tipo di occupazione delle capannette

Nell'intento di definire dei parametri che possano dare evidenza della significatività dei risultati ottenuti, si ritenne utile fissare dei valori medi di consumo complessivo di pittura in una settimana lavorativa tipo, che inizi con il primo turno del lunedì mattina e si concluda con l'ultimo turno del venerdì, e quindi con esclusione dell'eventuale lavoro straordinario del sabato.

Sulla base del diagramma in precedenza presentato e tenute nel dovuto conto le informazioni avute dall'ing Alfonsi della ditta Petrol Lavori, il quale indicava in circa 4 latte/ora il consumo di una postazione di verniciatura, in Tabella 14 si perviene al consumo settimanale di riferimento.

Tabella 14 Consumo settimanale di riferimento

4.00	latte/settimana
4	
2	
2	
4	latte/ora
2	
	2 2 4

In definitiva i parametri di funzionamento degli impianti da rispettare durante i cinque giorni di campionamento, in base ai quali pianificare l'occupazione delle *capannette* e le attività da svolgervi, sono stati i seguenti (Tabella 15):

Tabella 15 Parametri di funzionamento delle Capannette da rispettare durante i cinque giorni di campionamento

Durata minima delle operazioni di pitturazione complessivamente svolte in tutti e quattro	32 Ore-postazione
i locali durante i cinque giorni di campionamento	
Numero minimo di operazioni di pitturazione in ciascuna delle quattro capannette durante	1
i cinque giorni di campionamento	
Consumo complessivo di vernice di riferimento relativo alle quattro capannette e ai	128 Bidoni da 20 1
cinque giorni di campionamento	
Orario di funzionamento degli impianti di termoventilazione delle capannette durante i	Dalle 6:00 alle 24:00 dal
cinque giorni di campionamento	lunedì al venerdì
Orario di svolgimento delle attività produttive durante i cinque giorni di campionamento	Dalle 6:00 alle 24:00 dal
	lunedì al venerdì

10.3.5 Classificazione del processo produttivo

Al fine di garantire l'ottenimento di misure rappresentative dell'effettivo livello medio di emissione e della sua variabilità è necessario individuare la tipologia di processo alla base del fenomeno emissivo. La norma UNICHIM individua quattro classi per le condizioni operative di processo¹:

- a marcia continua con livello di emissione costante;
- a marcia discontinua con livello di emissione costante:
- a marcia continua con livello di emissione variabile;
- a marcia discontinua con livello di emissione variabile.

I processi alla base dei fenomeni emissivi in esame, sono così riassumibili:

- Trattamento lamiere (primerizzazione),
- Rivestimento con pitture presso le *capannette*.

Per ciascuno di essi si evidenziano le caratteristiche di seguito riportate in Tabella 16 ove si perviene all'inquadramento del fenomeno nella classe quarta.

Tabella 16 Individuazione della classe di emissione per i due impianti considerati

	Trattamento lamiere	Capannette
Livello di emissione	Variabile	Variabile
Andamento di emissione	Discontinuo	Discontinuo
Conduzione di impianto	Variabile	Variabile
Marcia di impianto	Discontinua	Discontinua

10.3.6 Individuazione dei criteri di campionamento

L'inquadramento del processo produttivo in precedenza effettuato delinea, per ciascuno degli impianti considerati, un fenomeno emissivo di livello variabile e andamento discontinuo (classe IV), a cui compete un periodo di osservazione, una durata di campionamento e un tipo di campionamento estesi a tutta la *fase*, nonché un numero di campionamenti ≥ 3 (cfr. Tabella 6).

Giova qui ricordare che ai sensi del manuale Unichim 158, l'elemento qualificante di una fase è la possibilità di inquadrarla entro confini temporali precisi delimitati da due intervalli temporali successivi entro i quali le emissioni si annullano. Ciò può avvenire, come nel caso delle raffinerie, in virtù del processo produttivo quando questo comporta delle interruzioni come nel caso del craking termico oppure, come nel caso in specie, a seguito delle interruzioni notturne della produzione. Nel merito ne consegue la necessità di protrarre il periodo di osservazione all'intera giornata lavorativa.

¹ Si pone in evidenza il fatto che la già citata norma di riferimento più recente, cioè la UNI EN 15259 del 2008, all'allegato B (Annex B) indica tre tipologie di processi: processi continui (con emissioni costanti), processi continui soggetti a effetti variabili nel tempo e processi "batch". Tale norma però non affronta i punti esposti nella UNICHIM allo stesso livello di dettaglio.

L'identificazione del periodo temporale in cui si rileva il fenomeno emissivo, caratteristico di tutti i processi produttivi non continui, è per altro trattata, coerentemente a quanto sopra esposto in altri due importanti riferimenti. La norma UNI EN 15259 del 2008 al punto B.1.3. dell'allegato B delinea sinteticamente la caratteristica dei processi "batch". Il documento ISTISAN 91/41 "Criteri generali per il controllo delle emissioni" classifica le emissioni in base al loro andamento temporale:

- emissioni continue quando la portata dell'effluente gassoso è diversa da zero per un periodo di tempo uguale o superiore ad un'ora;
- emissione discontinua quando la portata dell'effluente gassoso in un intervallo di tempo pari ad un'ora può raggiungere il valore zero;
 - e in base ai livelli di concentrazione dell'inquinante
- emissioni costanti quando la concentrazione dell'inquinante può essere considerata costante per un periodo di tempo uguale o superiore all'ora;
- emissioni variabili quando la concentrazione dell'inquinante non può essere considerata costante per un periodo di tempo di almeno un'ora.

In conclusione, il caso in esame si configura come un processo con emissione discontinua e variabile, in cui l'intervallo di tempo oggetto del campionamento è esteso all'intera giornata lavorativa, essendo esso circoscritto temporalmente dai periodi in cui la portata dell'effluente gassoso è nulla.

10.3.7 Individuazione delle metodologie di misura

In virtù della necessità di osservare il fenomeno in modo continuativo per l'intero periodo giornaliero di accensione degli impianti e per un'intera settimana lavorativa, si è ritenuto di dover effettuare le misurazioni in continuo per mezzo di un FID portatile. Ciò ha comportato l'impiego di cinque misuratori, uno per ciascuno dei cinque camini interessati, mantenuti tutti in contemporanea acquisizione.

Il metodo analitico impiegato è stato quello di cui alla norma UNI EN 12619 (maggio 2012) "Emissioni da sorgente fissa - Determinazione della concentrazione di massa del carbonio organico totale in forma gassosa – Metodo in continuo con rivelatore a ionizzazione di fiamma".

10.3.8 Punti di campionamento

I campionamenti sono stati eseguiti in corrispondenza delle prese già predisposte sui camini 31, 32, 33 e 34 delle così dette *capannette* di verniciatura nonché sul camino "A" della linea di trattamento lamiere.

Figura 102 Punti di campionamento sulle capannette (sinistra) e sull'impianto trattamento lamiere (destra)

-

¹ Bertolaccini M. A. (a cura di), Criteri generali per il controllo delle emissioni, Istituto Superiore di Sanità, ISTISAN 91/41, Roma 1991 (ISSN 0391 1675)

10.4 Descrizione delle prove

10.4.1 Andamento delle prove¹

Nei cinque giorni di indagine programmati per il monitoraggio delle cabine di verniciatura sono state eseguite misure di COV su tutte le sezioni finali di emissione dei camini 31, 32, 33 e 34 e per i primi due giorni di indagine anche sulla sezione del camino "A" della linea di trattamento lamiere.

All'inizio delle attività di ogni mattina, una volta raggiunte le temperature di esercizio, gli analizzatori sono stati sottoposti a taratura mediante le medesime bombole certificate e verifica del dato di zero con aria ambiente purificata (cfr punto 5.2.4 del metodo di riferimento UNI EN 12619:2013). Una volta verificata la taratura e il punto di zero dei FID in campo, sono state avviate le acquisizioni delle misure. Le registrazioni dei dati strumentali sono state programmate in modo da avere a disposizione almeno misure elementari di concentrazione di 1 minuto (mg/Nm³).

Essendo presenti sul punto di emissione finale 3 bocchelli di prelievo, la sonda di prelievo è stata installata sul bocchello centrale e posizionata su un affondamento centrale rispetto all'asse del condotto laddove la velocità puntuale risultava confrontabile con la velocità media all'interno dello stesso.

Sono stati utilizzati materiali di riferimento (bombola standard) per tutti i FID, contenenti propano in azoto e ossigeno a concentrazione di circa 150 mg/Nm³ di COT (cfr punti 5.2.3 – 5.2.4 del metodo di riferimento UNI EN 12619:2013) di cui si riportano in allegato alla relazione dell'Ing. Spinelli i certificati di analisi.

Tutte le verifiche di taratura effettuate durante tutte le prove e registrate nelle acquisizione dati hanno mostrato scostamenti, tra il valore misurato e quello atteso, inferiori al 5% del valore certificato, pertanto tutte le misure sono risultate accettabili (cfr UNI EN 12619:2013 punto 6.2.3).

10.4.2 Condizioni di carico effettivamente registrate

In Tabella 17 si riportano i quantitativi di vernici effettivamente impiegati nella settimana di prova che evidenziano il rispetto dei quantitativi minimi individuati in sede di pianificazione.

In Tabella 18 e in **Errore. L'origine riferimento non è stata trovata.**, si riportano i dati di consumo giornaliero che permettono di individuare le più gravose condizioni di carico degli impianti. Queste si verificano il giorno mercoledì 11 maggio quando 43 bidoni di vernice bicomponente e un bidone di pittura antivegetativa già pronta all'uso (*SEA QUANTUM PRO U*) vengono applicati a partire dalle 11 circa. Quattro bidoni di diluente verranno inoltre impiegati per la pulizia delle attrezzature. In totale si consumano 48 bidoni *standard*.

Tabella 17 Quantitativi di vernice consumati nella settimana di prove

JOTACOTE UNIVERSAL N10	51
JOTAMASTIC 80	33
PENGUARD PRIMER	13
SAFEGUARDS UNIVERSAL ES	12
SEA QUANTUM PRO U	10
JOTUN THINNER N17	10
Totale latte di vernice	119
Totale latte di vernice compreso diluente	129

Tabella 18 Condizioni di carico degli impianti

ATTIVITA' DI VERNICIATURA	09/05/2016	10/05/2016	11/05/2016	12/05/2016	13/05/2016
PE 31					
PE 32					
PE 33					
PE 34					

-

¹ Dalla relazione dell'Ing. Spinelli

10.5 Valori di emissione

Nei grafici di Figura 103 si riporta l'andamento dell'emissione media ponderata *istantanea* (dato elementare) ottenuta come valore medio nel tempo ogni 20 secondi e registrata per ciascuna delle cinque giornate consecutive di campionamento.

Emerge un andamento di emissione discontinuo, fortemente variabile, con dei picchi accentuati (100 mg/Nm³) in fase di verniciatura e un "fondo" sempre presente, pur su valori molto più bassi, in tutte le altre fasi.

Sulla base di tali risultati in Tabella 19 si perviene alla definizione delle medie ponderate orarie per ciascuna delle cinque giornate di campionamento.

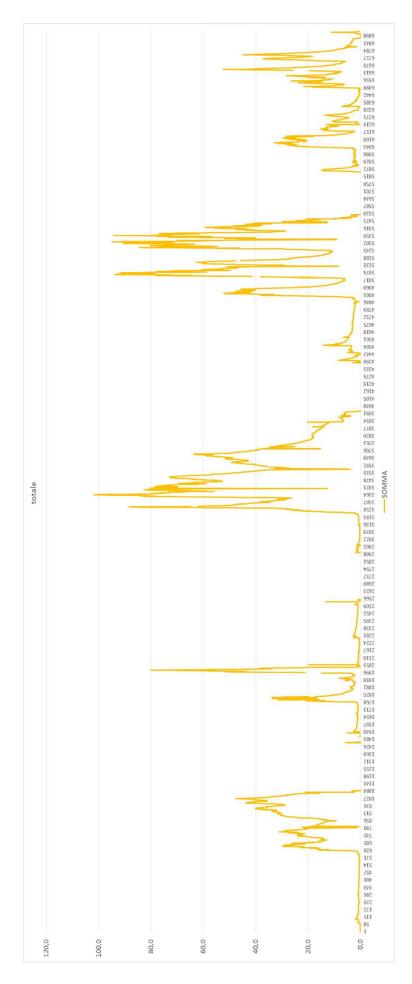


Figura 103 Misure elementari della concentrazione ponderata totale del camino equivalente

Tabella 19 Medie ponderate orarie

Ora inizio	Ora fine	09/5/16		IMcomposta	10/5/16		IM _{composta}	11/5/16		IM composta	12/5/16		IM _{composta}	13/5/16		IM _{composta}
		Risultati		I.M.	Risultati		I.M.	Risultati		I.M.	Risultati		I.M.	Risultati		I.M.
		mg/Nmc		mg/Nmc	mg/Nmc		mg/Nmc	mg/Nmc		mg/Nmc	mg/Nmc		mg/Nmc	mg/Nmc		mg/Nmc
6,00	7,00	0,1	±		-	±		0,4	±	0,1	2,2	±	0,7	5,2	±	0,7
7,00	8,00	0,8	±	0,1	0,5	±	0,1	0,6	±	0,1	2,8	±	0,4	2,2	±	0,2
8,00	9,00	1,6	±	0,2	1,4	±	0,2	0,3	±	0,1	6,5	±	0,9	2,2	±	0,2
9,00	10,00	6,2	±	0,8	19,6	±	1,4	0,4	±	0,1	4,3	±	0,6	19,4	±	2,9
10,00	11,00	9,3	±	1,1	8,3	±	1,0	0,7	±	0,1	3,1	±	0,4	20,6	±	3,2
11,00	12,00	24,3	±	1,4	14,7	±	2,3	27,8	±	3,5	2,8	±	0,3	9,5	±	1,4
12,00	13,00	2,8	±	0,4	6,6	±	1,0	39,6	±	4,9	2,5	±	0,3	9,0	±	1,3
13,00	14,00	13,8	±	1,4	2,7	±	0,4	72,5	±	7,6	2,1	±	0,2	6,5	±	0,9
14,00	15,00	16,6	±	1,4	4,1	±	0,5	72,2	±	8,7	21,0	±	3,3	4,2	±	0,7
15,00	16,00	1,1	±	0,1	33,2	±	4,7	63,3	±	8,1	31,2	±	4,7	1,2	±	0,2
16,00	17,00	13,8	±	1,5	1,1	±	0,1	41,2	±	5,6	10,7	±	1,2	3,3	±	0,5
17,00	18,00	20,7	±	3,1	0,6	±	0,1	43,6	±	4,5	69,8	±	7,0	15,0	±	2,1
18,00	19,00	21,3	±	3,3	0,4	±	0,1	52,5	±	5,5	50,6	±	5,2	14,4	±	1,8
19,00	20,00	17,5	±	2,7	1,7	±	0,2	33,1	±	3,5	21,7	±	2,2	21,7	±	2,5
20,00	21,00	17,6	±	2,8	1,8	±	0,3	19,7	±	2,0	41,2	±	4,1	22,6	±	3,0
21,00	22,00	32,6	±	4,8	1,3	±	0,2	16,6	±	1,6	67,8	±	7,3	16,0	±	2,2
22,00	23,00	34,9	±	5,1	1,1	±	0,2	11,4	±	1,2	55,8	±	5,7	3,6	±	0,4
23,00	0,00	30,1	±	4,4	1,3	±	0,2	6,3	±	0,9	43,9	±	4,8	0,7	±	0,3
media giorn	aliera +IM	14,7	±	2,5	5,9	±	1,3	27,9	±	4,3	24,4	±	3,7	9,9	±	1,7
media giorn		14,7	±	2,7	5,9	±	2,1	27,9	±	6,0	24,4	±	5,8	9,9	±	1,8

Si evidenziano delle criticità nei giorni 11 e 12 maggio, per i quali vi sono dei valori medi orari di emissione superiori ai valori limite (50 mg/Nm³). Per gli intervalli di tempo più critici in tali giorni, in Tabella 20 e Tabella 21 si riportano le medie di cinque prelievi consecutivi e le incertezze di misura calcolate.

Tabella 20 Media di cinque prelievi consecutivi dalle 11 alle 20 del 11/05/2016

Ora inizio	Ora fine	12/05/16		IM _{composta}	σ/√N
		Risultati			
		mg/Nmc		mg/Nmc	mg/Nmc
11,00	16,00	55,1	±	6,9	9,1
12,00	17,00	57,8	±	7,1	7,3
13,00	18,00	58,6	±	7,1	6,8
14,00	19,00	54,6	±	6,7	5,9
15,00	20,00	46,8	±	5,6	5,2

Tabella 21 Media di cinque prelievi consecutivi dalle 17 alle 23.59 del 12/05/2016

Ora inizio	Ora fine	13/05/16		IM _{composta}	σ/√N
		Risultati			
		mg/Nmc		mg/Nmc	mg/Nmc
17,00	22,00	50,2	±	5,5	8,9
18,00	23,00	47,4	±	5,2	7,7
19,00	0,00	46,1	±	5,1	7,7

10.6 Valutazione dei risultati

Ai sensi del D.Lgs. 152/06 la valutazione dei risultati¹ viene fatta adottando due diversi criteri a seconda che le misure siano state eseguite in modo continuo² o discontinuo³.

In considerazione del fatto che nell'atto autorizzativo ci si richiama unicamente *ai criteri di cui all'allegato VI* del decreto in precedenza citato, e tenuto conto che l'imponente mole di dati rilevati consente l'applicazione di entrambi i criteri, di seguito si riportano le conclusioni alle quali si perviene applicando i criteri in precedenza citati.

10.6.1 Misure continue

Il criterio di valutazione dei risultati di misure continue prevede che in caso di misure in continuo, le emissioni convogliate si considerano conformi ai valori limite se nessuna delle medie di 24 ore supera i valori limite di emissione e se nessuna delle medie orarie supera i valori limite di emissione di un fattore superiore a 1,25.

Le medie giornaliere registrate nei cinque giorni di campionamento in precedenza presentate risultano tutte inferiori al limite di emissione di 50 mg/Nm³, mentre, limitatamente alle medie orarie, si osserva in 7 occasioni il superamento dei limiti.

In tal caso il valore di emissione medio orario deve restare al di sotto del limite di emissione aumentato del 25%. Nella fattispecie e adottando un numero di decimali coerente con quello con cui è espresso il limite (zero) si perviene ai seguenti risultati:

 $L_{25\%}=50\times1,25=62,5$ che viene arrotondato a 63 mg/Nm³.

Per due ore consecutive (dalle 13 alle 15 del 11/05/2016), la media oraria diminuita dell'incertezza di misura calcolata si attesta al di sopra del valore in precedenza calcolato.

Tabella 22 Valutazione dei risultati (misurazioni continue)

Periodo	Media oraria	Incertezza	Differenza	Valore	Limite	Superamento
				arrotondato		
	[mg/Nm ³]	$[mg/Nm^3]$	$[mg/Nm^3]$	$[mg/Nm^3]$	$[mg/Nm^3]$	[-]
13÷14	72,5	7,6	64,9	65	63	SI
14÷15	72,2	8,7	63,5	64	63	SI

Si evidenzia pertanto il superamento dei limiti di legge "al di là di ogni ragionevole dubbio".

10.6.2 Misure discontinue

10.6.2.1 Criterio di valutazione

Il D.Lgs. 152/06, allegato IV alla parte quinta, punto 2.3, stabilisce che "Salvo diversamente indicato nel presente decreto, in caso di misure discontinue, le emissioni convogliate si considerano conformi ai valori limite se, nel corso di una misurazione, la concentrazione, calcolata come media di almeno tre letture consecutive e riferita ad un'ora di funzionamento dell'impianto nelle condizioni di esercizio più gravose, non supera il valore limite di emissione"

¹ D.Lgs. 152/06, allegato IV alla parte quinta, punto 2. Metodi di valutazione delle misure effettuate dal gestore dell'impianto e dall'autorità competente per il controllo.

² D.Lgs. 152/06, allegato IV alla parte quinta, punto 2.2. Salvo diversamente indicato nel presente decreto, in caso di misure in continuo, le emissioni convogliate si considerano conformi ai valori limite se nessuna delle medie di 24 ore supera i valori limite di emissione e se nessuna delle medie orarie supera i valori limite di emissione di un fattore superiore a 1,25.

³ D.Lgs. 152/06, allegato IV alla parte quinta, punto 2.3. Salvo diversamente indicato nel presente decreto, in caso di misure discontinue, le emissioni convogliate si considerano conformi ai valori limite se, nel corso di una misurazione, la concentrazione, calcolata come media di almeno tre letture consecutive e riferita ad un'ora di funzionamento dell'impianto nelle condizioni di esercizio più gravose, non supera il valore limite di emissione.

Al riguardo, nel documento "Standardizzazione delle metodologie operative per il controllo delle emissioni in atmosfera" a cura di ARPAV – Dipartimento provinciale di Treviso, 2011¹, si osserva che fino all'entrata in vigore del D. Lgs. 152/06 il riferimento per la quantificazione del numero di campioni da prelevare, la durata dei singoli prelievi e la valutazione dei risultati era il Manuale UNICHIM 158/88 in cui la discriminante per la scelta dell'opportuna strategia era rappresentata dal "livello di emissione" (costante e continuo, costante e discontinuo ecc.); il Manuale, con le dovute eccezioni, raccomandava, comunque, un minimo di 3 campionamenti della durata di 30' ciascuno.

Peraltro, il comma 2.3 dell'allegato VI alla parte V del D. Lgs. 152/06 cita, pur se con terminologia non idonea in riferimento alle misure discontinue a camino, l'esecuzione di "tre letture consecutive e riferite a un'ora di funzionamento dell'impianto", lasciando alcuni margini di interpretazione se le tre letture debbano essere ognuna della durata di un'ora o se la somma dei tempi delle singole letture debba essere un'ora (ad esempio tre letture da 20').

Con parere del 05/06/2007 Prot. 72350 a firma del Direttore Tecnico Ing. Sandro Boato, condiviso dallo scrivente Perito, A.R.P.A.V. – Area Tecnico-Scientifica si esprimeva proprio sull'ambiguità di tale definizione inviando alle Amministrazioni Provinciale del Veneto le proprie considerazioni ribadendo il numero minimo di prelievi, 3, e il tempo di campionamento per singolo prelievo, 1 ora.

Nell'aprile del 2008 è stata emanata la norma UNI EN 15259 (2008) – Misurazione di emissioni da sorgente fissa – Requisiti delle sezioni e dei siti di misurazione e dell'obiettivo, del piano e del rapporto di misurazione, versione ufficiale in lingua inglese della norma europea EN 15259 dell'ottobre 2007. La nota relativa al punto 7.2.3 riferisce che, nel caso di emissioni stabili, è buona pratica condurre un minimo di tre campionamenti mentre per emissioni instabili² il numero di prelievi dovrebbe essere maggiore. Il punto B.1 Examples of the timing of emission measurements dell'Allegato B alla norma UNI EN 15259 riporta un periodo di campionamento di 30' per processi continui.

Altro riferimento recente per le emissioni in atmosfera è la Parte V del D. Lgs. 152/06 così come modificata dal D. Lgs. 128/10 del 29 giugno 2010 – Modifiche ed integrazioni al decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale, a norma dell'articolo 12 della legge 18 giugno 2009, n. 69. Particolarmente significativo risulta ora l'articolo 268, comma 1, lettera q) che recita testualmente:

"valore limite di emissione: il fattore di emissione, la concentrazione, la percentuale o il flusso di massa di sostanze inquinanti nelle emissioni che non devono essere superati. I valori limite di emissione espressi come concentrazione sono stabiliti con riferimento al funzionamento dell'impianto nelle condizioni di esercizio più gravose e, salvo diversamente disposto dal presente titolo o dall'autorizzazione, si intendono stabiliti come media oraria."

Stante quanto sopra si ritiene, ove non diversamente specificato nel decreto di autorizzazione o imposto da normative settoriali, che per la conduzione dei campionamenti a camino, al fine di ottenere un valore medio finale che sia rappresentativo delle reali operazioni che si svolgono all'interno del singolo ciclo produttivo, si debbano seguire le presenti indicazioni:

- eseguire sempre un minimo di 3 (tre) prelievi per parametro;
- eseguire sempre prelievi di durata di 60 (sessanta) minuti;
- ricavare il dato di concentrazione finale come media dei 3 o più prelievi effettuati nella stessa giornata;
- confrontare il dato finale con il valore limite imposto.

In merito a quest'ultimo punto si sottolinea che i risultati analitici e/o la relazione tecnica associata ad essi, dovranno riportare, oltre al metodo utilizzato, anche l'incertezza di misura associata a tale risultato finale; si considera superato il limite di legge quando l'estremo inferiore dell'intervallo di confidenza della misura (cioè il valore medio rilevato sottratto dell'incertezza associata) risulta superiore al valore limite autorizzato.

_

¹ Al quale il presente paragrafo si richiama in maniera pressoché integrale.

² Come quelle in esame

10.6.2.2 Valutazione dei risultati

Come ipotizzato in fase di pianificazione, l'attività nelle *capannette* non è stata costante nei cinque giorni ma, al contrario, si è constatato l'accentuarsi delle attività nelle giornate di mercoledì e giovedì, quale conseguenza delle contingenze di produzione e della variabilità delle condizioni meteorologiche. Tali giornate si sono distinte per i quantitativi di pittura consumati, i più elevati valori di emissione media giornaliera e la presenza di medie orarie di emissione ponderata superiori ai limiti di legge, anche in modo significativo (fino al 44%) e prolungato (>5 h).

Ciò consente di determinare un preciso intervallo di tempo, compreso tra le ore 12 di mercoledì 11 maggio e le ore 17 dello stesso giorno in cui si può ritenere che l'impianto abbia raggiunto le più onerose condizioni di esercizio. Entro tale intervallo di tempo la media di cinque medie orarie consecutive è pari a 57,8 mg/Nm³, con un incertezza di ± 7,1 mg/Nm³. Ne consegue che la media oraria dell'emissione diminuita dell'incertezza di misura è pari a

$$E_{min} = 57.8 - 7.1 = 50.7 > 50.$$

Si denota il superamento dei limiti di legge.

Tabella 23 Valutazione dei risultati

Ora Inizio	Ora Fine	Media delle medie [mg/Nm³]	Incertezza [mg/Nm³]	Differenza [mg/Nm³]	Valore approssimato [mg/Nm³]	Limite [mg/Nm³]	Superamento dei limiti [-]
11	16	55,1	6,9	48,2	48	50	NO
12	17	57,8	7,1	50,7	51	50	SI
13	18	58,6	7,1	51,5	52	50	SI
14	19	54,6	6,7	47,9	48	50	NO
15	20	46,8	5,6	41,2	41	50	NO

10.7 Conclusioni

Durante la campagna di misura, al raggiungimento delle più gravose condizioni di esercizio degli impianti delle capannette si sono misurate delle emissioni di COV al camino che denotano il superamento dei limiti di legge *al di là di ogni ragionevole dubbio*.