past week:

3. Intrinsic generators

(b) For a quantitative test of uniformity consider the moment of order k :

$$
\left\langle x^{k}\right\rangle^{c a l c}=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{k} ; \quad\left\langle x^{k}\right\rangle^{t h}=\int_{0}^{1} d x x^{k} P(x)
$$

For the uniform distribution $p_{u}(x)$ in $[0,1[$, i.e. for

$$
p_{u}(x)=\left\{\begin{array}{l}
1 \text { for } 0 \leq x \leq 1 \\
0 \text { outside }
\end{array}\right.
$$

we have $\left\langle x^{k}\right\rangle^{t h}=1 /(k+1)$. Consider the error

$$
\Delta_{N}(k)=\left|\left\langle x^{k}\right\rangle^{c a l c}-\left\langle x^{k}\right\rangle^{t h}\right|=\left|\frac{1}{N} \sum_{i=1}^{N} x_{i}^{k}-\frac{1}{k+1}\right|
$$

for the expected moment of order k and study its asymptotic behaviour for large N. If the behaviour is $\sim 1 / \sqrt{N}$, then the distribution is random and uniform. Do the test for $k=1,3,7$, and $N=100$, 10.000, 100.000.

how to calculate the sum of the series for increasing N ?

 no need of recalculating again the sum from scratch; print out partial sums:ALLOCATE FHDCDD
CALL RAHDOM_HUMEER(RHD)
SUM $=0$
$00 \mathrm{I}=1, \mathrm{H}$
SUM=SUM+RHD(D)
FRINT: I, SUM/I
EHD DO
print out the result as a function of " i "

do you want to check a power law?

linear regression: much better

do you want to fit with gnuplot?

Suppose you have the data in two columns, x and y, and you suspect a power low $y=x^{a}+$ const

Consider that: $\log (y)=a * \log (x)+b$
gnuplot> $f(x)=a * x+b$
gnuplot> fit $f(x)$ 'data.dat' $u(\log (\$ 1)):(\log (\$ 2))$ via a, b
gnuplot> plot f(x), 'data.dat'

Test of unifornity for intrinsic randon number generator

I) Random numbers with non uniform distributions and II) random processes

M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit III

last lecture:

generation of real (pseudo)random numbers with uniform distribution in [0; I [

Part I - Random numbers with non uniform distributions:

How can we generate random numbers with a given distribution $\mathrm{p}(\mathrm{x})$?

Part I - Random numbers with non uniform distributions:

I) inverse transformation method (general)
2) rejection method (general)
3) some "ad hoc" methods: the Box-Muller algorithm for the gaussian distribution

Non uniform random numbers distribution: I) inverse transformation method (general)

 Problem: Generate sample of a random variable (or variate) x with a given distribution p.Solution: 2-step process

- Generate a random variate uniformly distributed in $[0,1]$.. also called a random number
- Use an appropriate transformation to convert the random number to a random variate of the correct distribution

Non uniform random numbers distribution:

 I) inverse transformation method - algorithm
cumulative distribution function $P(x)$

$$
\int_{-\infty}^{+\infty} p(x) d x=1
$$

Let $p(x)$ be a desired distribution, and $y=P(x)=\int_{-\infty}^{x} p\left(x^{\prime}\right) d x^{\prime}$ the corresponding cumulative distribution. Assume that $P^{-1}(y)$ is known.

- Sample y from an equidistribution in the interval $(0,1)$. (i.e., use $\left.p_{u}(y)\right)$
- Compute $x=P^{-1}(y)$.

The variable x then has the desired probability density $p(x)$.
$y=P(x) \Longrightarrow d y=d P(x) \Longrightarrow p_{u}(y) d y=d P(x) \quad\left(\right.$ since $p_{u}(y)=1$ for $\left.0 \leq y \leq 1\right)$ But : $\quad d P(x)=p(x) d x$, therefore $p(x) d x=p_{u}(y) d y$

Non uniform random numbers distribution:

I) inverse transformation method - the concept $\mathbf{P}(\mathbf{x})$ intuitive rationale: also a regular uniform sampling in y

Non uniform random numbers distribution: I) inverse transformation method - examples

I) $\quad p(x)=\left\{\begin{array}{cl}\frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { otherwise }\end{array}\right.$

$$
y=P(x)= \begin{cases}0 & x \leq a \\ \int_{a}^{x} \frac{1}{b-a} d x^{\prime}=\frac{x-a}{b-a} & a \leq x \leq b \\ 1 & x>b\end{cases}
$$

$$
x=y(b-a)+a
$$

2) $\quad p(x)= \begin{cases}0 & x \leq 0 \\ a e^{-a x} & x \geq 0\end{cases}$
$y=P(x)= \begin{cases}0 & x \leq 0 \\ 1-e^{-a x} & x \geq 0\end{cases}$
$x=-\frac{1}{a} \ln (1-y) \quad$ or (same distribution!) $\quad x=-\frac{1}{a} \ln y$

Non uniform random numbers distribution: 2) rejection method (general)

Let $[a, b]$ be the allowed range of values of the variate x, and p_{m} the maximum of the distribution $p(x)$.

1. Sample a pair of equidistributed random numbers, $x \in[a, b]$ and $y \in\left[0, p_{m}\right]$.
2. If $y \leq p(x)$, accept x as the next random number, otherwise return to step 1 .

Due to Von Newmann (1947). Applicable to almost all distributions. Can be inefficient if the area of the rectangle $[a, b] \otimes\left[0, p_{m}\right]$ is large compared to the area below the curve $\mathrm{p}(\mathrm{x})$

Non uniform random numbers distribution:

3) gaussian distribution

How to produce numbers with gaussian distribution?

- Inverse transformation method: impossible

The cumulative distribution function $\mathrm{P}(\mathrm{x})$ cannot be analytically calculated!

- Rejection method: inefficient

Non uniform random numbers distribution:

 3) gaussian distribution - Box-Muller technique$$
p(x)=\frac{1}{\sigma} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} /\left(2 \sigma^{2}\right)}
$$

Hint: consider the distribution in 2D instead of ID (here $\sigma=1$):

$$
p(x) p(y) d x d y=(2 \pi)^{-1} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y
$$

Non uniform random numbers distribution:

 3) gaussian distribution - Box-Muller technique$$
p(x)=\frac{1}{\sigma} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} /\left(2 \sigma^{2}\right)}
$$

Hint: consider the distribution in 2D instead of ID (here $\sigma=1$):

$$
p(x) p(y) d x d y=(2 \pi)^{-1} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y
$$

Use polar coordinates: $r=\sqrt{x^{2}+y^{2}}, \theta=\arctan (y / x)$; def.: $\rho \equiv r^{2} / 2$

Non uniform random numbers distribution: 3) gaussian distribution - Box-Muller technique

$$
p(x)=\frac{1}{\sigma} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} /\left(2 \sigma^{2}\right)}
$$

Hint: consider the distribution in 2D instead of ID (here $\sigma=1$):

$$
p(x) p(y) d x d y=(2 \pi)^{-1} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y
$$

Use polar coordinates: $r=\sqrt{x^{2}+y^{2}}, \theta=\arctan (y / x)$; def.: $\rho \equiv r^{2} / 2$

$$
\rightarrow d x d y=r d r d \theta=d \rho d \theta
$$

and therefore:

$$
p(x) p(y) d x d y=p(\rho, \theta) d \rho d \theta=(2 \pi)^{-1} e^{-\rho} d \rho d \theta
$$

Non uniform random numbers distribution: 3) gaussian distribution - Box-Muller technique

$$
p(x)=\frac{1}{\sigma} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} /\left(2 \sigma^{2}\right)}
$$

Hint: consider the distribution in 2D instead of ID (here $\sigma=1$):

$$
p(x) p(y) d x d y=(2 \pi)^{-1} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y
$$

Use polar coordinates: $r=\sqrt{x^{2}+y^{2}}, \theta=\arctan (y / x)$; def.: $\rho \equiv r^{2} / 2$

$$
\rightarrow d x d y=r d r d \theta=d \rho d \theta
$$

and therefore:

$$
p(x) p(y) d x d y=p(\rho, \theta) d \rho d \theta=2 \pi)^{-1} e^{-\rho} d \rho d \theta
$$

If $\left\{\begin{array}{l}\rho \text { exponentially distributed } \\ \theta \text { uniformly distributed in }[0,2 \pi]\end{array} \rightarrow\left\{\begin{array}{l}x=r \cos \theta=\sqrt{2 \rho} \cos \theta \\ y=r \sin \theta=\sqrt{2 \rho} \sin \theta \\ x, y \text { have gaussian distribution } \\ \text { with }\langle x\rangle=\langle y\rangle=0 \text { and } \sigma=1\end{array}\right.\right.$

Non uniform random numbers distribution: 3) gaussian distribution - Box-Muller recipe \#I

If $\left\{\begin{array}{l}\rho \text { exponentially distributed } \\ \theta \text { uniformly distributed in }[0,2 \pi]\end{array} \rightarrow\left\{\begin{array}{l}x=r \cos \theta=\sqrt{2 \rho} \cos \theta \\ y=r \sin \theta=\sqrt{2 \rho} \sin \theta \\ x, y \text { have gaussian distribution } \\ \text { with }\langle x\rangle=\langle y\rangle=0 \text { and } \sigma=1\end{array}\right.\right.$

Recipe \#I (BASIC FORM):

$\left\{\begin{array}{l}X, Y \text { unif. distrib. in }[0,1[\\ \rho=-\ln (X) \text { distributed with } p(\rho)=e^{-\rho} \\ \theta=2 \pi Y \text { distributed with }(2 \pi)^{-1} p_{u}\end{array} \rightarrow\left\{\begin{array}{l}x=r \cos \theta=\sqrt{-2 \ln X} \cos (2 \pi Y) \\ y=r \sin \theta=\sqrt{-2 \ln X} \sin (2 \pi Y)\end{array}\right.\right.$

NOTE:

x, y are normally distributed and statistically independent. Gaussian variates with given variances σ_{x},
σ_{y} are obtained by multiplying x and y by σ_{x} and σ_{y} respectively

Non uniform random numbers distribution: 3) gaussian distribution - Box-Muller recipe \#2

If $\left\{\begin{array}{l}\rho \text { exponentially distributed } \\ \theta \text { uniformly distributed in }[0,2 \pi]\end{array} \rightarrow\left\{\begin{array}{l}x=r \cos \theta=\sqrt{2 \rho} \cos \theta \\ y=r \sin \theta=\sqrt{2 \rho} \sin \theta \\ x, y \text { have gaussian distribution } \\ \text { with }\langle x\rangle=\langle y\rangle=0 \text { and } \sigma=1\end{array}\right.\right.$

Recipe \#2 (POLAR FORM) (implemented in boxmuller.f90) :
$\left\{\begin{array}{l}X, Y \text { uniformly distributed in }[-1,1] ; \\ \text { take }(X, Y) \text { only within the unitary circle; } \\ \Rightarrow R^{2}=X^{2}+Y^{2} \text { is } \\ \text { uniformly distributed in }[0,1]\end{array} \rightarrow\left\{\begin{array}{l}x=\sqrt{-2 \ln R^{2}} \frac{X}{R} \\ y=\sqrt{-2 \ln R^{2}} \frac{Y}{R} \\ \begin{array}{l}\operatorname{since}: \\ \cos \theta=\frac{X}{R}, \sin \theta=\frac{Y}{R} \\ \begin{array}{l}\text { Advantages: avoids the calculations } \\ \text { of sin and cos functions }\end{array}\end{array}\end{array}\right.\right.$

Some programs:

on moodle2 or on INFIS account: \$/home/peressi/comp-phys/III-random-non-uniform-and-processes/f90 [do: \$cp /home/peressi/... .../f90/* .]
expdev.f90
boxmuller.f90

A look at the expdev.f90 code
subroutine expdev(x)
REAL, intent (out) :: x
REAL :: r
do
call random _number(r)
if($r>0$) exit
end do but $r=0$ has to be discarded;
$x=-\log (r)$
END subroutine expdev and calculate its log

A look at the boxmuller.f90 code
SUBROUTINE gasdev(rnd)
IMPLICIT NONE
REAL, INTENT(OUT) :: rnd
REAL :: r2, x, y
REAL, SAVE ::g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then
rnd $=\mathrm{g}$
gaus_stored=.false.
else
do
call random_number(x)
call random_number(y) $x=2 . * x-1$.
$y=2 . * y-1$.
r2 $=x^{* *} 2+y^{* *} 2$
if ($r 2>0$. and. $\mathrm{r} 2<1$.) exit
end do
r2=sqrt $(-2 . * \log (r 2) / r 2) \longrightarrow$ since:

$$
r n d=x * r 2
$$

$\mathrm{g}=\mathrm{y}$ * r 2
gaus_stored=.true.

2 examples of optimization!

$$
x=\sqrt{-2 \ln R^{2}} \frac{X}{R}=X \sqrt{-2 \ln R^{2} / R^{2}}
$$

(thus avoiding the calculation of
another $\sqrt{ }$ to calculate R separately)
END SUBROUTINE gasdev

A look at the gasdev.c code

```
#include <math.h>
float gasdev(long *idum)
{
    float ran1(long *idum);
    static int iset=0;
    static double gset;
    double fac,rsq,v1,v2;
    if (iset == 0) {
        do {
                v1=2.0*ran1(idum)-1.0;
                v2=2.0*ran1(idum)-1.0;
            rsq=v1*v1+v2*v2;
        } while (rsq >= 1.0 || rsq == 0.0);
        fac=sqrt(-2.0*log(rsq)/rsq); since: }x=\sqrt{}{-2\operatorname{ln}\mp@subsup{R}{}{2}}\frac{X}{R}=X\sqrt{}{-2\operatorname{ln}\mp@subsup{R}{}{2}/\mp@subsup{R}{}{2}
        gset=v1*fac;
        iset=1;
        return (float)(v2*fac);
    } else {
        iset=0;
        return (float)gset;
    }
}
```


Other programs:

in the same directories indicated before:
(optional, but usefu!!)
random.f90 (is a module)
t_random. 990
to compile:
\$gfortran random. 990 t_random.f90 (the module first!)

Part II Using random numbers to simulate random processes

Random processes: radioactive decay

$N(t)$ Atoms present at time t
λ Probability for each atom to decay in Δt
$\Delta N(t)$ Atoms which decay between t and $t+\Delta t$

$$
\Delta N(t)=-\lambda N(t) \Delta t
$$

we use the probability λ of decay of each atom to simulate the behavior of the number of atoms left; we should be able to obtain (on average):

$$
N(t)=N(t=0) e^{-\lambda t}
$$

Radioactive decay: numerical simulation

A scheme for the simulation

1. Assign a value to the decay constant $\lambda \leq 1$ (the probability for each nucleus to decay in a given interval of time Δt)
λ establishes the time scale; one iteration in the "do loop" corresponds to one time step Δt
2. Start with Nleft $=$ Nstart $=$ total number of nuclei at time $t=0$
3. Basic algorithm: for each nucleus left (not yet decayed):

- Generates a random number $0 \leq x \leq 1$
- if $x \leq \lambda$, the nucleus decays and Nleft $=$ Nleft - 1, otherwise it remains and Nleft is unchanged.

4. Repeat for each nucleus
5. Repeat the cycle for the next time step

$\left.{ }^{*}\right)$ Notice that the upper bound of the inner loop (nleft) is changed within the execution of the loop; but with most compilers, in the execution the loop goes on up to the initial value of nleft; this ensures that the implementation of the algorithm is correct. The program checkloop.f90 is a test for the behavior of the loop. Look also at decay_checkloop.f90. If nleft would be changed (decreased) during the execution, the effect would be an overestimate of the decay rate. CHECK with your compiler!

Programs:

in the same directory indicated before:

decay.f90
 decay_checkloop.f90

checkloop.f90

```
    Details on Fortran: unbounded loops
    [name:] DO
    exit [name]
```

or [name:] DO
END DO [name]
(name is useful in case of nested loops for explicitly indicating from which loop to exit)
possible forms of "do while":
DO
if (condition)exit
END DO
or:
DO WHILE (.not. condition)
END DO
NOTE: first is better ("if () ..exit" can be placed everywhere in the loop, whereas DO WHILE must execute the loop up to the end)

- Additional note:

Difference between EXIT and CYCLE

Radioactive decay:

 results of numerical simulation

Radioactive decay: results of numerical simulation

Semilog plot of the results of decay simulation for the same decay rate and different initial number of atoms:
almost a straight line, but with important deviations
(stochastic) for small N
numerical simulations:
OK on average and for large numbers

Other random processes: order and disorder

A box is divided into two parts communicating through a small hole. One particle randomly can pass through the hole per unit time, from the left to the right or viceversa.
$\mathrm{N}_{\text {left }}(\mathrm{t})$: number of particles present at time t in the left side Given $\mathrm{N}_{\text {left }}(0)$, what is $\mathrm{N}_{\text {left }}(\mathrm{t})$?
(see later, lectures on the statistical ensembles)

Other random processes: random walks

Part III - Fitting data

Least-square method

- Suppose to have N_{D} data (independent measurements of the variable y which is function of the variable x):

$$
\left(x_{i}, y_{i} \pm \sigma_{i}\right), \quad i=1, N_{D}
$$

with $\pm \sigma_{i}$ error associated to the i value of y.

- Purpose: determine the function $y=f(x)$ which better described these data. If the analytic form of the function is known, a part from a set M_{P} of parameters $\left\{a_{1}, a_{2} \ldots, a_{M_{P}}\right\}$, i.e., $f(x)=f\left(x ;\left\{a_{m}\right\}\right)$, the goal is to find the best set of parameters.

To test whether the data fit via $f(x)$ is good or not calculate the quantity

$$
\chi^{2}:=\sum_{i=1}^{N_{D}}\left(\frac{y_{i}-f\left(x_{i} ;\left\{a_{m}\right\}\right)}{\sigma_{i}}\right)^{2}
$$

Note that by dividing by σ_{i}, data with larger errors have smaller weight in this weighted average.

- The smallest χ^{2}, the better the fit is.
- Least-squares fitting: The parameters M_{P} that minimize χ^{2} are found by:

$$
\begin{array}{r}
\frac{\partial \chi^{2}}{\partial a_{m}}=0 \quad\left(m=1, M_{P}\right) \\
\Longrightarrow \sum_{i=1}^{N_{D}} \frac{y_{i}-f\left(x_{i}\right)}{\sigma_{i}^{2}} \frac{\partial f\left(x ;\left\{a_{m}\right\}\right)}{\partial a_{m}}=0 \tag{1}
\end{array}
$$

example: see program fit.f90

- If $f(x ; a, b)=a x+b$ (linear regression), the equations giving χ^{2} minimum reduce to:

$$
\begin{array}{r}
a=\frac{S S_{x y}-S_{x} S_{y}}{\Delta}, \quad b=\frac{S_{x x} S_{y}-S_{x} S_{x y}}{\Delta} \\
S=\sum_{i=1}^{N_{D}} \frac{1}{\sigma_{i}^{2}}, \quad S_{x}=\sum_{i=1}^{N_{D}} \frac{x_{i}}{\sigma_{i}^{2}} \\
S_{y}=\sum_{i=1}^{N_{D}} \frac{y_{i}}{\sigma_{i}^{2}}, \quad S_{x x}=\sum_{i=1}^{N_{D}} \frac{x_{i}^{2}}{\sigma_{i}^{2}} \\
S_{x y}=\sum_{i=1}^{N_{D}} \frac{x_{i} y_{i}}{\sigma_{i}^{2}}, \quad \Delta=S S_{x x}-S_{x}^{2} \tag{2}
\end{array}
$$

Examples - linear regression

radioactive decay:
$N(t) \sim N_{0} \exp (-a t)$
we can fit with the exp. but it is better to fit:
$\log (N(t))=\log N_{0}-a t$
Random walk:
$\left\langle x^{2} N\right\rangle \sim N^{a}$
but it is better to fit:

$$
\log \left\langle x^{2} N\right\rangle=a \log N
$$

Example: fit using gnuplot - I

Suppose you want to fit your data (say, 'data.dat') with an exponential function. You have to give: 1) the functional form ; 2) the name of the parameters

```
gnuplot> f(x) = a * exp (-x*b)
```

Then we have to recall these informations together with the data we want to fit: it can be convenient to inizialize the parameters:
gnuplot> $\mathbf{a}=\mathbf{0} . ; \mathbf{b}=\mathbf{I} . \quad$ (for example)
gnuplot> fit $\mathbf{f}(\mathbf{x})$ 'data.dat' via a,b
On the screen you will have something like:
Final set of parameters Asymptotic Standard Error
$a=1+/-8.276 e-08(8.276 e-06 \%)$
b $=10+/-1.23 e-06$ ($1.23 e-05 \%$)
correlation matrix of the fit parameters:
ab
a 1.000
b 0.6711 .000
It's convenient to plot together the original data and the fit:
gnuplot> plot f(x), 'data.dat'

Example: fit using gnuplot - II

If you prefer to use linear regression, use logarithmic data in the data file, or directly fit the log of the original data using gnuplot:
gnuplot> $\mathbf{f}(\mathbf{x})=\mathbf{a}+\mathbf{b} * \mathbf{x}$
Then we have to recall these informations together with the data we want to fit (in the following example: $x=\log$ of the first column; $y=\log$ of the second column):
gnuplot> fit $f(x)$ 'data.dat' u $(\log (\$ 1)):(\log (\$ 2))$ via a,b

Final set of parameters Asymptotic Standard Error

```
======================= =========================== (..gnuplot will work for you....)
```

Also in this case it will be convenient to plot together the original data and the fit:
gnuplot> plot $\mathbf{f}(\mathbf{x})$, 'data.dat' u (log(\$ 1$)):(\log (\$ 2))$
In case of needs, we can limit the set of data to fit in a certain range [x_min:x_max]:
gnuplot> fit [x_min:x_max] f(x) 'data.dat' u ... via ...

Part IV more on fortran

A few notes on Fortran

related to the exercises

Intrinsic functions:

LOGARITHM

log returns the natural logarithm
$\log 10$ returns the common (base 10) logarithm
(NOTE: also in gnuplot, $\boldsymbol{\operatorname { l o g }}$ and $\log \mathbf{1 0}$ are defined with the same meaning)

INTEGER PART

nint(x) and the others, similar but different (see Lect. II) => ex. Il requires histogram for negative and positive data values

Arrays:

possible to label the elements from a negative number or 0 : dimension array(-n:m) (e.g., useful for making histograms) [default in Fortran: $n=1$; in c and $c++: n=0$]

what is int() ? similar intrinsic functions? how to choose?

AINT(A[,KIND])

- Real elemental function
- Returns A truncated to a whole number. $\operatorname{AINT}(\mathrm{A})$ is the largest integer which is smaller than $|\mathrm{A}|$, with the sign of A. For example, $\operatorname{AINT}(3.7)$ is 3.0 , and $\operatorname{AINT}(-3.7)$ is -3.0 .
- Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

- Real elemental function
- Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and $\operatorname{AINT}(-3.7)$ is -4.0.
- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND)

- Integer elemental function
- Returns the largest integer \leq A. For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4 .
- Argument A is Real of any kind; optional argument KIND is Integer
- Argument KIND is only available in Fortran 95

INT(A[,KIND])

- Integer elemental function
- This function truncates A and converts it into an integer. If A is complex, only the real part is converted. If A is integer, this function changes the kind only.
- A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])

- Integer elemental function
- Returns the nearest integer to the real value A.
- A is Real
fortran90 intrisinc functions

Array dimension:

default : dimension array([I:]n)
but also using other dimensions e.g.: dimension array(-n:m)
Important to check dimensions of the array when compiling or during execution!
If not done, it is difficult to interpret error messages (typically: "segmentation fault"), or even possible to obtain unpredictable results!

Default in g95 and gfortran: boundaries not checked; use compiler option:

gfortran -fbounds-check myprogram.f90

Print:

man gfortran

and scroll the pages to see the possible options of compilation

Structure of a main program with one function

program name_program
(see: expdev.f90 or boxmuller.f90) implicit none (*)
<declaration of variables>
<executable statements>
contains

```
subroutine ... (or function)
```

end subroutine
end program
(*) General suggestion for variable declaration:
Use "implicit none" + explicit declaration of variables
See also the use of module in Lect. II and III.

