

7

13

Alkyl halides Dipole moment
 Electronegativities of the halides: F > Cl > Br > I
 Bond lengths increase as the size of the halogen increases: C—F < C—CI < C—Br < C—I
 Bond dipoles: C—CI > C—F > C—Br > C—I 1.56 D 1.51 D 1.48 D 1.29 D
 Molecular dipoles depend on the geometry of the molecule.
1D = 3.336·10 ⁻³⁰ C m

Alkyl halides Reactivity: NUCLEOPHILIC SUBSTITUTION

	Nuc	cleophile		Product	Class of Product
R—X	+	-:Ï:	\longrightarrow	R—Ï:	alkyl halide
R—X	+	−÷ÖH	\longrightarrow	R—ÖH	alcohol
R—X	+	-÷öR′	\longrightarrow	R—ÖR′	ether
R—X	+	-:SH	\longrightarrow	R—SH	thiol (mercaptan)
R—X	+	-:SR'	\longrightarrow	R—ŜR'	thioether (sulfide)
R—X	+	:NH3	\longrightarrow	R — NH_3^+ X^-	amine salt
R—X	+	-:`N=N ⁺ N:-	\longrightarrow	$R \rightarrow N = N = N$	azide
R—X	+	$-:C \equiv C - R'$	\longrightarrow	$R - C \equiv C - R'$	alkyne
R—X	+	-:C≡N:	\longrightarrow	$R \rightarrow C \equiv N$:	nitrile
R—X	+	R′—COÖ∷-	\longrightarrow	R'—COO—R	ester
R—X	+	:PPh3	\longrightarrow	[R—PPh ₃] ⁺ ⁻ X	phosphonium salt

Reactivity: ACIDITY							
TABLE 10-4							
Acid-Dissociation Constants of Representative Alcohols							
Alcohol	Structure	Ka	р <i>К</i> а				
methanol	СН3-ОН	3.2×10^{-16}	15.5				
ethanol	CH ₃ CH ₂ —OH	1.3×10^{-16}	15.9				
2-chloroethanol	Cl-CH ₂ CH ₂ -OH	$5.0 imes 10^{-15}$	14.3				
2,2,2-trichloroethanol	$Cl_3C - CH_2 - OH$	6.3×10^{-13}	12.2				
isopropyl alcohol	$(CH_3)_2CH - OH$	3.2×10^{-17}	16.5				
tert-butyl alcohol	$(CH_3)_3C - OH$	1.0×10^{-18}	18.0				
cyclohexanol	C_6H_{11} —OH	1.0×10^{-18}	18.0				
phenol	С ₆ Н ₅ —ОН	$1.0 imes 10^{-10}$	10.0				
	Comparison with Other Aci	ds					
water	H ₂ O	1.8×10^{-16}	15.7				
acetic acid	CH ₃ COOH	1.6×10^{-5}	4.8				
hydrochloric acid	HCI	$1 \times 10^{+7}$	-7				

$\xrightarrow{\text{tion}} R - O - C - R'$
$\xrightarrow{\text{ion}}$ R—OTs
tosylate esters (good leaving group)
$\xrightarrow{\text{koxide}}$ R—O—R'
i

Aromatic compounds

Physical properties

- Melting points: More symmetrical than corresponding alkane, pack better into crystals, so higher melting points.
- Boiling points: Dependent on dipole moment, so ortho > meta > para, for disubstituted benzenes.
- Density: More dense than nonaromatics, less dense than water.
- Solubility: Generally insoluble in water.

43

Amines

Solubility and odor

- Small amines (< 6 Cs) are soluble in water.
- All amines accept hydrogen bonds from water and alcohol.
- Branching increases solubility.
- Most amines smell like rotting fish.

NH₂CH₂CH₂CH₂CH₂CH₂NH₂ 1,5-pentanediamine or cadaverine

Carboxylic acids

Physical properties: Melting point

- Aliphatic acids with more than 8 carbons are solids at room temperature.
- Double bonds (especially *cis*) lower the melting point. The following acids all have 18 carbons:
 - Stearic acid (saturated): 72°C
 - Oleic acid (one cis double bond): 16°C
 - Linoleic acid (two cis double bonds): -5°C

Carboxylic acids

Solubility

- Water solubility decreases with the length of the carbon chain.
- With up to 4 carbons, acid is miscible in water.
- Very soluble in alcohols.
- Also soluble in relatively nonpolar solvents like chloroform because the hydrogen bonds of the dimer are not disrupted by the nonpolar solvent.

ylic acids			
cidity: effect of substituents			
TABLE 20-4			
Values of K_a and pK_a for	or Substituted Carbo	oxylic Acids	
Acid	Ka	р <i>К</i> а	
F ₃ CCOOH	$5.9 imes10^{-1}$	0.23 at	rongor opida
Cl ₃ CCOOH	$2.3 imes 10^{-1}$	0.64 80	ronger actus
Cl ₂ CHCOOH	$5.5 imes 10^{-2}$	1.26	
O ₂ N-CH ₂ COOH	$2.1 imes 10^{-2}$	1.68	
NCCH ₂ COOH	3.4×10^{-3}	2.46	
FCH ₂ COOH	$2.6 imes 10^{-3}$	2.59	
CICH ₂ COOH	$1.4 imes 10^{-3}$	2.86	
CH ₃ CH ₂ CHClCOOH	$1.4 imes 10^{-3}$	2.86	
BrCH ₂ COOH	1.3×10^{-3}	2.90	
ICH ₂ COOH	$6.7 imes 10^{-4}$	3.18	
CH ₃ OCH ₂ COOH	$2.9 imes 10^{-4}$	3.54	
HOCH ₂ COOH	$1.5 imes10^{-4}$	3.83	
CH ₃ CHClCH ₂ COOH	$8.9 imes 10^{-5}$	4.05	
PhCOOH	6.46×10^{-5}	4.19	
PhCH ₂ COOH	$4.9 imes 10^{-5}$	4.31	
CICH ₂ CH ₂ CH ₂ COOH	3.0×10^{-5}	4.52	
CH ₃ COOH	$1.8 imes 10^{-5}$	4.74	
CH ₃ CH ₂ CH ₂ COOH	$1.5 imes 10^{-5}$	4.82	

