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| part:
Random motion and

diffusion
-history and analytic treatment-



Random motion

Brownian motion is by now a well-understood problem, but the concepts,
techniques and models have proven fruitful in many different fields, from
statistical mechanics to econophysics. A brief history:

* Robert Brown 1828

» J.C. Maxwell 1867

* Albert Einstein 1905

* Maryan Smoluchowski 1906
» Jean Perrin 1912

 J. Bardeen , C. Herring 1950



Random motion

random motion of tiny particles had been
reported early in scientific literature

before 1827, random motion was attributed
to living particles.

random motion = “brownian motion’’, after
1827, when the British botanist Robert
Brown claimed that even dead particles
could exhibit a random motion




Observations of "active molecules" by scientist Robert Brown in 1827
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%d@/m motion

“Brownian’

® random motion = “brownian motion”, after
1827, when the British botanist Robert
Brown claimed that even dead particles
could exhibit a random motion

® What is the origin of the brownian motion!?
In 1870, Loschmidt suggested that it is caused
by thermal agitation




Brownian motion
-open questions-

Observations of "active molecules” made by Brown in
1827 led the physics community to search for the
proof that molecules indeed existed.

At the turn of 20th century, the atomic nature of
matter was fairly widely accepted among scientists,
but not universally (there was NO direct evidence!)

Another argument under discussion: the kinetic
theory of gases



Maxwell-Boltzmann distribution of velocity
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Kinetic theory of gases
Under discussion in ~1900: %mv_Q = ngT 227

Can we prove its validity from the observation of the
Brownian motion!?

Could 1 be obtained from that relationship? In

principle yes, provided one can measure ¢: But ¢~

cannot be measured from the erratic trajectory of
particles observed at the microscope!

so... What can we really measure?



Brownian motion
-Einstein’s 1905 paper-

In essence, the Einstein’s paper provides:

- evidence for_existence of atoms/molecules
- estimation of the size of atoms/molecules
- estimation of the Avogadro’s humber

Einstein predicted that microscopic particles
dispersed in water undergo random motion as
a result of collisions (stochastic forces) with
water molecules much smaller and light (not
visible on the chosen observation scale).



Brownian motion

.
llllll

fat droplets (0.5-3 pm) in milk
http://www.microscopy-uk.org.uk/dww/home/hombrown.htm
credit to David Walker, Micscape

larger particles (blue = fat droplets) jiggle more slowly
than smaller (red = water) particles;
only the larger particles are visible



http://www.microscopy-uk.org.uk/dww/home/hombrown.htm
http://www.microscopy-uk.org.uk/dww/home/hombrown.htm

A. Einstein:

"On the Movement of Small Particles Suspended in Stationary
Liquids Required by the Molecular-Kinetic Theory of Heat"
Annalen der Physik 19, p. 549 (1905)

In this paper it will be shown that, according to the molecular-kinetic theory
of heat, bodies of a microscopically visible size suspended in liquids
must, as a result of thermal molecular motions, perform motions of such
magnitude that they can be easily observed with a microscope. It is
possible that the motions to be discussed here are identical with so-called
Brownian molecular motion; however, the data available to me on the latter
are so imprecise that | could not form a judgment on the question.

If the motion to be discussed here can actually be observed, together
with the laws it is expected to obey, then [...] an exact determination
of actual atomic sizes becomes possible. On the other hand, if the
prediction of the motion were to be proved wrong, this fact would provide a
far-reaching argument against the molecular-kinetic conception of heat....

Later Einstein wrote: "My major aim in this was to find facts which would
guarantee as much as possible the existence of atoms of definite finite size."



Brownian motion
-Einstein’s 1905 paper-
Einstein suggests that mean square displacements

<Ar?> of suspended particles undergoing brownian
motion rather then their velocities are suitable

observable and measurable quantities, and
directly related to their diffusion coefficient D:

<Ar?2>=2dDt with D = pksT = keT/(6TTNP)

(t time, d dimensionality of the system, U mobility,
P radius of brownian particles; N solvent viscosity; ke =R/N)

<Ar?> (and therefore D),Nn,T measurable => obtain P!



Brownian motion
-Einstein’s 1905 paper-
Einstein suggests that mean square displacements

<Ar?> of suspended particles undergoing brownian
motion rather then their velocities are suitable
observable and measurable quantities, and
directly related to their diffusion coefficient D:
<Ar?>=2dDt with D = pksT = kgT/(6TTNnP)

(t time, d dimensionality of the system, U mobility,
P radius of brownian particles; n solvent viscosity; ke =R/N)

<Ar?> (and therefore D),Nn,T measurable => obtain P!

(*) and (**): from where!?



Diffusion

Part 1 — Sedimentation Equilibrium

First Fick’s law Compare Two Independent Analyses of Final State

(particle
diffusion eq.)  From Mass Transfer Theory: From Thermodynamics:
states that the flux
(MWC) goes‘from flux= pWe - dc ~0 dé CRT dlnc 0
regions of high mig;:algz) N dx dx de If there is a variation
coqcentraftllon to in gravity diffusion graviT;tional M in the po;ential
regions of low ) i otential tential energy of a system,
concentration, with a W = net weight of one particle P B _ PI]::O e | an energy flow will
magnitude that is ¢ = concentration of particles ¢ = WNx = PE per mole occur.
proportional to the velocity 1 N = Avogadro's number
concentration = mobility = = .
eradient | H force  6mn P R = universal gas constant

n = viscosity of fluid T = absolute temperature

P = particle radius RT[=]energy,/mole X

— _m clx)=copexp| —Wx
c(x) coexp( DWx (x)=coexp RT

Compare: exponentials must be equal! =) N = RT% *)

N, R, T known; D measurable, according to Einstein
=> Obtain Y; from U (and 7, known) we get particle size P


http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Energy

Brownian motion and diffusion

Fick’s law of diffusion (1855):a continuum model
Part Il — Statistical Analysis of B.M.

one dimension: d=1
Here: p=c (concentration
p=c ( ) » Dazp

Fick's 2nd law:
Ot 5x2 ( t) 1 x2
xX,t)= exp| ———
8(x) b 4xDi Y| 4D

Initial Condition:  p(x,0)=
B.C.'s: p(£oo,1)

remember the gaussian:

0
1 1 2 2
p(z) = Py e /(207)
3 ) with o2 = 2Dt
Time = 0 0
. 1= | p(x,t)dx forallt
2 o0
> @
= x(t)= | xp(x,t)dx=0
= _ 00
x° ()= _[ x2p(x,t)dx:2Dt (**)
U ) 0 ] 2 s

The mean square displacements <Ar2> of suspended particles are

suitable observable quantities and give D
ok



Random motion in nature

® in gases or diluted matter: random motion
(after how many collisions on average a
particle covers a distance Ar? or which
is the distance from the starting point
covered on average by a particle after N
collisions?)

® in solids: diffusion of impurities (molten
metals) or vacancies..., electronic transport
in metals...



Il part:
Random walks

A very simplified model
for many phenomena,
including brownian motion



Random Walks R

(/.. I

® traditional RW » brownian motion

® modified (interacting) RW » the
motion of the walker depends on his
previous trajectory



Scaling properties of RW

Dependence of (R*(t)) on t :

e normal behavior: (R*(t)) ~ t
for the brownian motion

o superdiffusive behavior:(R*(t)) ~ t** with v > 1/2
in models where autointersections are unfavoured

e subdiffusive behavior  (R?(t)) ~ t*¥ withv < 1/2
in models where autointersections are favoured



One-dlmen5|onal RW
A I‘PHHM{HHH——%

A walker can walk elther Ieft or right:

N :number of steps

¢ :length of the random displacement (random direction)
(s; = ¢ relative displacement of the ¢ step)

TN :displacem?\lfwt from the starting point after /N steps
(TN = Zizl Si, TN € [—Nf, —I—Nf] )
p—, P— :probability of left or right displacement

What can we calculate?
(xn) :average net displacement after N steps
2 .
(x3y) :average square displacement after N steps
Py (x) : probability for = to be the final net displacement
from the starting point after N steps



RW |ID

Exact analytic expressions can be easily derived for p— =p—

Z (if p_=p_)...=0

(Z > Z ‘|‘<ZS7;SJ'>=...(ifp<_=p_>)...:N€2

i=1 i#]
More general:
ry =n (=) +n_(+f) (with N=n_ +n_,)
(xn) = N(p— —p)t  (z3) = [N(p— — p—){]* + 4p_p_NL

therefore:

(Ax?®) = NI



RW |ID

In general, average quantities can be calculated from Py (x)

Let’s make an example

of analytical calculation of Pn(x)
(N=3 is enough!)

(how many
different walks of length N?)



RW |ID

In general, average quantities can be calculated from Py (x)

Let’s make an example

of analytical calculation of Pn(x)
(N=3 is enough!)

(There are 2N different possible walks
of N steps...)



RW |ID

Generalizing the expression for P ():
Pi(1) =p-; Pi(—1) =p—

From:
Pnyi(z) = Py(z — 1)p— + Pn(z + 1)p—
we have:
N' N,z N_ =T
_ 2 2 2 2
PN(x)_(ﬁ+£)v(ﬂ_£)|p_> P
2 2/°\ 2 2)/°
n\x|-5|-4|-3|-2|-1,0]1]2/|3]|4]65
0 1
& IToll P ()
H6 1 - 3 - 3 - 1 Pe =P
g R R
= 4 6| V160169 %01 (Pascal
Sl 5 || 0| 0[5m0 03|05 triangle)




Can be generalized to large N (put N =t/At ,then At — 0,
continuum limit):

P(x, NAt) = 1/ iNe_mQ/(QN) ()
T

which looks like a Gaussian.
Why?

Let’s describe the RWV problem with a space/time differential
equation...



RW |D: Diffusion - continuum limit

(case P— =p-)
P(i,N)=zP(i+1,N—-1)4+iP(i—1,N — 1)
Defining: ¢t = N7, x = 1/ we have:

P(z,t) =sPx+lL,t—71)+ Pz —1,t — 1)

We rewrite this by subtracting P(x,t — 7) and dividing by 7

P(z,t) — P(z,t—7)  Plx+lt—7)+Plx—-1t—7)—2P(z,t—171)

T 2T
-we get

OP(x,t) I 0°P(x,t)
ot T 21 Ox2?

In the limit 7 — 0,1 — 0 but where the ratio I /7 is finite, this becomes an exact relation.



RW |D: Diffusion - continuum limit

The fundamental solution of the continuum diffusion equation of the previous slide, defining
EQ

D= — is:
2T

1 22
P@,t) =\ 157 P\ ~1p7 )

The discretized solution of the RW problem:

2 2

considering t = N7 and the definition of D, can be rewritten as:

[ 1 2
P(CC,t) = @ exp <—4—m)

a part from the normalization which is a factor of 2 larger in this form because of the spatial
discretization that excludes alternatively odd or even values of x.

The solution is therefore a Gaussian distribution with ¢? = 2Dt which describes a pulse
gradually decreasing in height and broadening in width in such a manner that its area is
conserved.



RW |D: Diffusion - continuum limit

physical meaning!

(hint: try to simulate a number of particles
initially concentrated at 0 and
evolving according to the RW model:

... the ‘cloud’ is progressively expanding)



RW |D:simulation

The basic algorithm:

ix = position of the walker (1 run= | particle)
x_N,x2 N = cumulative quantities

rnd(N) = sequence of N random numbers

do irun = 1, nruns

ix = 0 ! initial position of each run

call random_number(rnd) ! get a sequence of random numbers
do istep = 1, N

if (rnd(istep) < 0.5) then ! random move

ix = ix - 1 ! left
else

ix = ix + 1 ! right Note:
end if x_Nand x2_ N are NOT
x_N (istep) = x_N (istep) + ix reset to zero, but summed
x2_N(istep) = x2_N(istep) + ix**2 over the runs (walkers)

end do

P_N(ix) = P_N(ix) + 1 ! accumulate (only for istep = N)
end do
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RW |D: simulation

N O, /

Simulation #1

0
= Simulation #2

— Simulation #3 Z'
— Theory Average

= Auverage of 10

10



RW |D: simulation

P_N (x)
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RW |D: simulation

0.12 T T T T T T T

‘prob_N64_ntrial1000’ ——

0.1

0.08 -

0.06 -

P_N (x)

0.04 -

0.02

oL | nnﬂﬂm”H I H”mﬂ . |

-60 -40 -20 0 20 40 60



RW |D: simulation

012 ! ! I I I I 1

. ‘prob_N64_ntrial1000° ———
0.1 - ) I
1 ‘prob_N64_ntrial9999’ ——

0.08 -

0.06 - ]

P_N (x)

0.04 |- |
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0 L . uuunﬂn I nﬂﬂn_ . ..
-20
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RW |D: simulation

P_N (x)

0.12

0.1

0.08

0.06

0.04

0.02

‘prob_N64_ntrial9999’ ——

‘prob_N64_exact’

20

40
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Random Walks




Random Walks 2D

(R3) =((Azy + ... + Azn)? + (Ays + ... + Ayn)?)= ... = N(Ax] + Ay?) = N£?

(R*) x N

also in 2D! (and in general in each dimension)



Rando

40.0 - T

200 r

0.0

-200 -

400 - ' - - ' -
40 0 200 0.0 200 400

Although the theory of RW predicts that <R2> x NN forlarge N, this
holds only on the average after many trials, and even then only if
particular care is used in generating the random walk.




Random Walks 2D

Generating 2-D random unit steps

1. Choose # a random number in the range [0 271 and then set & = coa, i = &ind

2. Choose a random value for &A= in the range [=1,1]ang &y = £V1— Az? (choose the sign

randomly to0o).

3. Choose separate random values for AT, AY in the range [—1.1] (but not Ar =, Ay = ).
Az, Ay

Normalize so that the step size is 1.

4. Choose a direction (N, E, S, W) randomly as the step direction (no trigonometric functions are
then needed). Note, choosing one of four directions is equivalent to choosing a random
integer on [0,3].

5. Choose separate random values AT, Ay in the range [—v ‘vﬁl Although the step size is

generally not 1, it becomes 1 on the average.

Although all these methods seem to be reasonable, only the last one gives us good results when we
are dealing with a large number of steps.


mp

mp

mp
????


Random Walks 2D
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#
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Although the theory of RW predicts that <R2> x NN forlarge N, this
holds only on the average after many trials, and even then only if
particular care is used in generating the random walk.



0
|0

Random Walks 2D

0.0000000

0.2242774
-1.7333623
-1.4481916
-2.2553353
-3.8911035
-3.6508965

1

0.0000000
3.7794106
1.3218992
-3.1119978
-3.5246484
-6.6665235
-8.0110636

if (mod(i,|0)==0) then

end if

WARITE (...) i,x,y

WARITE (...) i,x,y

WoOoONOC~TLDAAEWDNDN—O

0.0000000
0.6946244
0.9359566
1.8891419
0.9642899
0.1308700
0.2071800
0.9160752
0.2856980
1.0143363
0.2242774
-0.7752404
-1.7280728
-2.0930278
-3.0587580
-2.0729706
-1.8304152
-2.2890768
-1.7717266
-1.1920205
-1.7333623
-1.5798329

0.0000000
0.7193726
1.6898152
1.9922019
2.3725290
2.9251692
3.9222534
4.6275673
3.8512783
3.1663797
3.7794106
3.8104627
3.5069659
4437991 |
4.1784425
4.0104446
3.0403070
2.1516960
1.2959222
0.4810965
1.3218992
0.3337551



Random Walks 2D

self-similarity!

plot every |0 steps

50 L3 Ll T — L Ll ‘5
— dal'u2:3 —
-
2 ¥,
L&/ g =
40 | SN 1
3
4 \"
\ i 2 k
o =N =
’-’[1 | B 5 |
SF
o
20 |
] A
> L
| o -
Z2 y
10 | f%\‘
S F
0 b
10 | L L E— } . 2 L
40 30 20 10 0 10 20 20 15 10 5

plot every step



Brownian motion
and

Si on faisait des pointés a
des intervalles de temps
100 fois plus rapprochés,
chaque segment serait
remplacé par un contour
polygonal relativement
aussi compliqué que le
dessin entier, et ainsi de
suite. On voit comment
s’évanoulit ... la notion de
trajectoire.

Jean Perrin ( 191 2)




Random Walks 2D

on a triangular lattice

.
<
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Other Random Walks
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Examples of the random path of a raindrop to the ground
The probability of a step down is larger than the probability of a step up;
furthermore, this is a restricced RW,i.e. limited by boundaries



Self-avoiding Random WValks

()

a) Schematic illustration of a linear
polymer in a good solvent :
head-tail mean square distance is (in 3D):

(AR%;) ~ N*¥ v = 0.592

b) Simulation with a SAW on a square lattice:
2D model gives v = 3/4

(independent on details such as monomers
and solvent structures)



Other Random Walks

® RW with traps

® persistent RW (superdiffusive behaviour)



Some programes:

on

$/home/peressi/comp-phys/IV-random-walk/f90
[do: $cp /home/peressil...[f90/* ]
or on https://moodle2.units.it

rw1d.f90
rw2d.f90

rw2zoom.f90
contour, pl


https://moodle2.units.it
https://moodle2.units.it

‘pl’: macro for gnuplot for plotting trajectories
(suppose column | is‘time’, 2 is x, 3 is y)
and check self-similarity:

set term postscript color

set size square

set out '|.ps’

p [-20:5][-10:15] 'l.dat" u 2:3 w |

set out '|0.ps’

p [-40:20][-10:50] '10.dat" u 2:3 w |, 'contour’ u 1:2 w |

Use:
gnuplot$ load ‘pl’



Il part:
algorithm for the
Brownian motion

(Langevin treatment)



Other program:

on

$/home/peressi/comp-phys/IV-random-walk/f90
[do: $cp /home/peressil/.../[f90/* .]

brown.f90



The numerical approach:
the ingredients

Here: NOT Einstein’s, but Langevin’s (1906) approach
arriving at a Newtonian equation of motion including a

random force due to the solvent
See: De Grooth BG, Am. J. Phy. 67, 1248 (1999)

Ingredients:

* large Brownian particles - solvent interactions described
by: elastic collisions between large particle (mass M,
velocity V) and small (solvent) particles (m, v);
* momentum and energy conservation at each collision
MV+mv = MV +mv’
MV2/2+mv2/2 = MV’2/2+mv’2/2



The numerical approach:

the equation of motion

After reasonable assumptions (many collisions (i) in a time
interval At, where V, are the same..., m<M..., ... ) =>

arrive at a simple expression for MAV/At=M(V’-V)/At :
Ma = F, - yV(1)

F. : stochastic force, i.e. the cumulative effect, in the time
interval, of many collisions with smaller particles

-yV(t) : drag force, opposite to V(t) (y>0); y can be
expressed (using Stokes’ formula for a sphere of radius P)
as:

v = 6mn P

(both forces have the same origin, in the collisions with the smaller particles)



The numerical approach:

discretization of the equation of motion

Ma = F, - yV(1)
Rewritten as: MAV/At = AV, /At - y V(1)
=> Ve = Vg +AV, - YAT/M)V,

with:
AV, = 2mv/M = (...) = I/M V/Ivl V(2yk;T/n);

At each collision v/|v] is -1 or +1 => after N collisions 2??

the result is a gaussian random variable

Wq centered in O, Sd=\/(N/2) => (see also next lectures)



The numerical approach:

discretized equations for positions and velocities

Vi = Vg - (1/M)V AT +w (\/(2kaTA’r))/M
X = X +V__ At

q+l q+l

- the hearth of our numerical approach
- can be easily implemented for iterative execution

NOTE : we are NOT imposing any specific time
dependence behavior: it will come out as an
“experimental” result of the simulation



The numerical approach:

Input parameters - 1

Vo =V [1 - (y/M)A1] + wq(\/(2kaTA’r))/N\

g+l

- physical parameters of the system: T and vy
(through n and P:  y=67nP)



The numerical approach:
Input parameters - 11

V Vo [1 - (y/M)AT] + wq(\/(ZkaTA’r))/M

g+l =
- time step At : cannot be fixed a priori!

Some suggestions from physical and rough numerical considerations
[(y/M)At < 1 to reproduce the situation of T=0 (damped motion)

At too small: too long numerical simulations necessary...

At too large: serious numerical uncertainties...]

Our numerical work:

choice of At is analogous of an instrument calibration !!!

suggestion: start from small At s.t yA1/M << 1, increase At until important
changes in the diffusion coefficient are observed.



Running the code...

Imposta parametri  Visualizza moto  Grafici kBT:4 1 0_21 J y M - 1 4 1 0_1 Okg,

vvia elocita: uto zoom
-  fween Ly 8.107Ns/m

scala 11587083055:1
iterazione n. 34406

Snapshot of a numerical simulation

of the Brownian motion in 2D

of many large patrticles.

The trajectories of four of them are shown

Azzera le velocita' Inverti le velocita' Avvia una nuova simulazione



Discovering the results

We can prove by numerical experiments:

(i) the linear behavior of the mean square displacement
<R?> with time:
<R2> =2dD ¢t

(i) the validity of the Einstein relation between the slope of
this line and the solvent parameters (temperature and
drag coefficient):

<R?> = (2d kT / y) t



IV part:

Brownian motion in finance

mathematical formulation



Brownian motion in finance

Simulated Returns (Geometric Brownian Motion)

0.010F
0.005 |

0.000 §

price returns

—0.005F

—-0.010¢
0 2000 4000 6000 8000 10000 12000
time (min)

Real Returns (Financial Time-Series)

0.010|

0.005 |

0.000

price returns

—-0.005F

—-0.010¢
0 2000 4000 6000 8000 10000 12000
time (min)

Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001



Random Walk in Finance

* Geometric Brownian motion: u: drift; o: Volatility;EI: random variable
following [normal distribution|with unit Va;ﬁ%e
dt

dS = uSdt + o

Let the 2nd term be 0,

S(1) = Sy exp(ut)

Let the 1st term be 0, then for U =1In S (dU = dS/S)
dU = oe/dt

N
Ut)-U(0) =oAL Y e
i=1
Central-limit theorem states that X, €; is normal distribution with variance V;
let t = NA¢t U(t)-U(0) = ote

1.2 T

e Log-normal distribution

| —

expi-[In8]%2)

credits: Nakano



MC Simulation of Stock Price

Stock price ($)

d

0 50 100 150 200 250 300 350 400
Day

Number of samples

AN
o

;=udt+0\@§

Histogram with 1,000 trials

80 |

)]
o

20 |

10 20 30 40 50
Ending stock price ($)



Stochastic Model of Stock Prices

Basis of Black-Scholes
analysis of option prices

dS = uSdt + oSe~/dt

Sk
....

Sciences in Memory of Alfred Nobel
1997

Myron S. Scholes
@ 1/2 of the prize

Robert C. Merton
@ 1/2 of the prize
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Basis of Black-Scholes
analysis of option prices

~ dS = uSdt + 0Se\dr
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