Exercises Lecture V Numerical Integration in 1D

1. Equispaced points: comparison trapezoidal-Simpson rules Consider the definite integral :

$$
I=\int_{0}^{1} e^{x} d x=e-1=1.718282 \ldots
$$

(a) Write a code (e.g. int.f90) that calculates the estimate F_{n} of I following the (1) trapezoidal rule or (2) the Simpson rule:

$$
\int_{x_{0}}^{x_{n}} f(x) d x=F_{n}^{\text {trap }}+\mathcal{O}\left(h^{2}\right)=F_{n}^{\text {Simpson }}+\mathcal{O}\left(h^{4}\right)
$$

where

$$
F_{n}^{\text {trap }}=h\left[\frac{1}{2} f_{0}+f_{1}+\ldots+f_{n-1}+\frac{1}{2} f_{n}\right]
$$

and

$$
\begin{gathered}
F_{n}^{\text {Simpson }}=h\left[\frac{1}{3} f_{0}+\frac{4}{3} f_{1}+\frac{2}{3} f_{2}+\frac{4}{3} f_{3}+\ldots+\right. \\
\left.+\frac{4}{3} f_{n-3}+\frac{2}{3} f_{n-2}+\frac{4}{3} f_{n-1}+\frac{1}{3} f_{n}\right]
\end{gathered}
$$

n is the number of divisions of the integration interval (even for the Simpson algorithm), $h=\frac{x_{n}-x_{0}}{n}$ the width. Choose $n=2^{k}$ with $k=2, \ldots 8$. (This choice is convenient to study the dependence on n of the asymptotic error with a log-log plot)
(b) Which is the dependence on n of the error $\Delta_{n}=F_{n}-I$? You should find $\Delta_{n} \approx 1 / n^{2}$ with the trapezoidal rule and $\Delta_{n} \approx 1 / n^{4}$ with the Simpson rule.

2. Monte Carlo method:

generic sample mean and importance sampling

(a) Write a code to compute the numerical estimate F_{n} of $I=\int_{0}^{1} e^{-x^{2}} d x=$ $\frac{\sqrt{\pi}}{2} \operatorname{erf}(1) \approx 0.746824$ with the MC sample mean method using a set $\left\{x_{i}\right\}$ of n random points uniformly distributed in [0,1]:

$$
F_{n}=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

(b) Write a code (a different one, or, better, a unique code with an option) to compute F_{n} using the importance sampling with a set $\left\{x_{i}\right\}$ of points generated according to the distribution $p(x)=A e^{-x}$ (Notice that erf is an intrinsic fortran function; useful to compare the numerical result with the true value). Remind that in the importance sampling approach:

$$
\int_{a}^{b} f(x) d x=\left\langle\frac{f(x)}{p(x)}\right\rangle \int_{a}^{b} p(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \int_{a}^{b} p(x) d x=F_{n}
$$

with $p(x)$ which approximates the behaviour of $f(x)$, and the average is calculated over the random points $\left\{x_{i}\right\}$ with distribution $p(x)$.
Notes: pay attention to:

- the normalization of $p(x)$;
- the exponential distribution: expdev provides random numbers x distributed in $[0,+\infty[$; here we need x in $[0,1] \ldots$
(c) Compare the efficiency of the two sampling methods (uniform and importance sampling) for the estimate of the integral by calculating the following quantities: $F_{n}, \sigma_{n}=\left(<f_{i}^{2}>-<f_{i}>^{2}\right)^{1 / 2}, \sigma_{n} / \sqrt{n}$, where $f_{i}=f\left(x_{i}\right)$ in the first case, and $f_{i}=\frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \int_{a}^{b} p(x) d x$ in the second case (make a log-log plot of the error as a function of n : what do you see?).

3. MC Method: acceptance-rejection

Using the acceptance-rejection method, calculate $\pi=4 I$ with $I=\int_{0}^{1} \sqrt{1-x^{2}} d x$. The numerical estimate of the integral is $F_{n}=\frac{n_{s}}{n}$ where n_{s} is the number of points under the curve $f(x)=\sqrt{1-x^{2}}$, and n the total number of points generated. An example is given in pi.f90. Estimate the error associated, i.e. the difference between F_{n} and the true value. Discuss the dependence of the error on n.
(Notice that many points are needed to see the $n^{-1 / 2}$ behavior, which can be hidden by stochastic fluctuations; it is easier to see it by averaging over many results (obtained from random numbers sequences with different seeds))
4. MC method-sample mean (generic);
error analysis using the "average of the averages" and the "block average" NOTE: THIS EXERCISE IS VERY IMPORTANT !!!
(a) Write a code to estimate the same integral of previous exercise, $\pi=$ $4 I$ with $I=\int_{0}^{1} \sqrt{1-x^{2}} d x$, using the MC method of sample mean with uniformly distributed random points. Evaluate the error $\Delta_{n}=$ $F_{n}-I$ for $n=10^{2}, 10^{3}, 10^{4}$: it should have a $1 / \sqrt{n}$ behaviour.
(b) Choose in particulat $n=10^{4}$ and consider the corresponding error Δ_{n}. Calculate $\sigma_{n}^{2}=<f^{2}>-<f>^{2}$. You should recognize that σ_{n} CANNOT BE CONSIDERED A GOOD ESTIMATE OF THE ERROR (it's much larger than the actual error...)
(c) In order to improve the error estimate, apply the following two different methods of variance reduction: 1) "average of the averages": do $m=10$ runs with n points each, and consider the average of the averages and its standard deviation:

$$
\sigma_{m}^{2}=<M^{2}>-<M>^{2}
$$

where

$$
<M>=\frac{1}{m} \sum_{\alpha=1}^{m} M_{\alpha} \quad e \quad<M^{2}>=\frac{1}{m} \sum_{\alpha=1}^{m} M_{\alpha}^{2}
$$

and M_{α} is the average of each run. You should recognize that σ_{m} is a good estimate of the error associated to each measurement (=each run) and $\sigma_{m} \approx \sigma_{n} / \sqrt{n}$ is the error associated to the average over the different runs.
(d) 2) Divide now the $n=10,000$ points into 10 subsets. Consider the averages f_{s} within the individual subsets and the standard deviation if the average over the subsets:

$$
\sigma_{s}^{2}=<f_{s}^{2}>-<f_{s}>^{2} .
$$

You should notice that $\sigma_{s} / \sqrt{s} \approx \sigma_{m}$.

```
! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
! int.f90:
! integrates f(x)=exp(x) in the interval [vmin,vamx]=[0,1]
! using trapezoidal and Simpson rule
```



```
module intmod
    public :: f, trapez, simpson
contains
    ! function to be integrated
    !
    function f(x)
        implicit none
        real :: f
        real, intent(in) :: x
        f = exp(x)
        return
    end function f
    ! trapezoidal rule
    !
    function trapez(i, min, max)
        implicit none
        real :: trapez
        integer, intent(in) :: i
        real, intent(in) :: min, max
        integer :: n
        real :: x, interval
        trapez = 0.
        interval= ((max-min) / (i-1))
        ! sum over the internal points (extrema excluded)
        do n = 2, i-1
            x = interval * (n-1)
            trapez = trapez + f(x) * interval
        end do
        ! add extrema
        trapez = trapez + 0.5 * (f(min)+f(max)) * interval
        return
    end function trapez
    ! Simpson rule
    !
    function simpson(i, min, max)
        implicit none
        real :: simpson
```

```
        integer, intent(in) :: i
        real, intent(in) :: min, max
        integer :: n
        real :: x, interval
        simpson = 0.
        interval = ((max-min) / (i-1))
        ! loop EVEN points
        do n = 2, i-1, 2
            x = interval * (n-1)
            simpson = simpson + 4*f(x)
        end do
        ! loop ODD points
        do n = 3, i-1, 2
            x = interval * (n-1)
            simpson = simpson + 2*f(x)
        end do
        ! add extrema
        simpson = simpson + f(min)+f(max)
        simpson = simpson * interval/3
        return
    end function simpson
end module intmod
program int
    use intmod
    !
    | variable declaration
    ! accuracy limit
    ! min and max in x
    !
    implicit none
    real :: r1, r2, theo, vmin, vmax
    integer :: i, n
    ! exact value
    vmin = 0.0
    vmax = 1.0
    theo = exp(vmax)-exp(vmin)
    print*,' exact value =',theo
    open(unit=7,file='int-tra-sim.dat',status='unknown')
    !
    write(7,*)"# N, interval, exact, Trap-exact, Simpson-exact"
    do i = 2,8
        n = 2**i
        r1 = trapez(n+1, vmin, vmax)
        r1 = (r1-theo)
```

```
        r2 = simpson(n+1, vmin, vmax)
        r2 = (r2-theo)
        write(7,'(i4,4(2x,f10.6))') n, 1./n, theo, r1, r2
    end do
    close(7)
    print*,' data saved in int-tra-sim.dat (|diff from exact value|)'
    stop
end program int
```



```
!c pi.f90: Calculates pi using MC
```



```
Program pi
    Implicit none
    integer, dimension(:), allocatable :: seed
    real, dimension(2) :: rnd
    Real :: area, x, y
    Integer :: i, max, pigr, sizer
    call random_seed(sizer)
    allocate(seed(sizer)
        print*,' enter max number of points='
    read*, max
    print*,' enter seed (or type /) >'
    read*, seed
    call random_seed(put=seed)
    ! open data file, initializations
    Open(7, File='pigr.dat', Status='Replace')
    pigr=0
    ! points generated within a square of side 2
    ! count how many fall within the circle x*x+y*y <= 1;
    Do i=1, max
        call random_number(rnd)
        x = rnd(1)*2-1
        y = rnd(2)*2-1
        If ((x*x + y*y) <= 1) then
            pigr = pigr+1
        Endif
        area = 4.0 * pigr/Real(i)
        if (mod(i,10)==0) Write(7,*) i, abs(acos(-1.)-area) !write every 10 points
    end do
    Close(7)
    Stop 'data saved in pigr.dat '
End program pi
```

