Numerical integration - |

M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - UnitV

® deterministic methods in ID
equispaced points (trapezoidal, Simpson...),
others...

® Monte Carlo methods
(acceptance-rejection, sample mean,
importance sampling...)

Error handling:

sample mean

block average

reduction of the variance

Deterministic methods

Deterministic methods

Start from the geometrical

interpretation of a definite ©
integral: . / \
F = / f(z)dx
a

Divide the integration interval into “small” intervals:

Ap — b—a,7

n

T, = To+ nAx.

Deterministic methods:
rectangular rule

In one interval: with error:
f(x) Li+1
A _ 2
S| f@de=ngi 0wy
4 “ x’i,
‘ applied iteratively over consecutive intervals:

A "
‘ F, = f(z;)Ax.
A ;

1‘ with a total error:
- X

0 (7 m/4 /2 O(hf/)a X 1/”

: The rectangular approximation for f(x) = cosx for 0 < = < 7/2.

|
[t

|
o

Deterministic methods:

rectangular rule - error

/2 n F, Ay,
I — / cos(z)dr =1 |2 1.34076 | 0.34076
0 4 1.18347 | 0.18347
8 1.09496 | 0.09496
o ol | 16 | 1.04828 | 0.04828 | °
F o= Z COST; T = i—1/ 32 | 1.02434 | 0.02434 |3
2n - 2n| 64 | 1.01222 | 0.01222
128 | 1.00612 | 0.00612
A — 7 256 | 1.00306 | 0.00306
n = I'n 512 | 1.00153 | 0.00153
1024 | 1.00077 | 0.00077

Rectangular approximations of the integral of cosz from x = 0 to x = 7/2 as a
function of n, the number of intervals. The error A, is the difference between the rectangular
approximation and the exact result of unity. Note that the error A,, decreases approximately as
n~!, that is, if n is increased by a factor of 2, A,, decreases by a factor 2.

Deterministic methods:
generalities

® sum values of f(xz;) with x; € |a,]
b

® we want to have F = | f(z)dz
as accurate as possible’® but with the
minimum number of calculations of f(g;-z)

OK simple algorithms, but if the number of
calculations is too high, improve the algorithm!

Deterministic methods:
trapezoidal rule

In one interval: with error:

/%Hl f(z)dx = h |:%fz + %fﬂrl] O(hgf”/), X 1/7’L3

Applied iteratively over consecutive intervals:

with a total error:

O(h2 "), 1/n?

Deterministic methods:
Simpson’s rule

y A7 TN
,/ Y=} Parabolic interpolation procedure
between triplets of adjacent points
L : X .
oS T S e In one interval:

h

/ggi+2 f(x)dx = h sz + gfi+1 + %fi+2] + O’ Y)Y (error o< 1/n°)

7

Iteratively applied to the whole interval of integration (odd number of points!):

/ﬂ:n f(x)dx =h [%fo + %fl + %fz + §f3 + ...+ gfn—Q + %fn—l + %fn] +O(h* V) (error o 1/n%)

Errors in
deterministic methods

Error estimate for numerical integration
with deterministic methods

/f(x)dx = F, +error

How to evaluate the error? Consider the Taylor expansion
of the integrand function and then integrate:

f(x) = flx:) + f(z)(x —x;) + %f”(%‘)(ﬂf —z)° 4+ ..., ()

[e = sepne s 5w + g e+)

Ar =201 — T

Error estimate for numerical integration:
Rectangular approximation

/ T @) ~ f(@)Aa

Compare with (**):

/(BHf(x) dr = f(x;)Ax + %f’(xi)(Ax)Q + éf”(wi)(Azc)S L

error
(leading order in Ax)

For 7 intervals (Ax = (b—a)/n): erroris n(AZE)Z ~ 1/n

Error estimate for numerical integration:
Trapezoidal approximation

Li41 1
/ flz)dr =~ 5 f(wig1) + f(2:)] A
f(xiv1) = fzi) + f(2:) Az + %f”(%)A$2 +...

[2]"(%) + f'(x;) Az + %f”(xi)Ax2 + ... | Az

v
T2
Compare with (**):

/%Hf@) dr = f(z;) Az + %f’(gz?z)(Ax)2 1 %f”(%)(Ax)?’ 4

error
(leading order in Ax)

: : 2
For 71 intervals: error is n(Ax)S ~ 1/n

Error estimate for numerical integration:

Simpson approximation

/.i+2 flx)dz ~ Bf(wi) + gf(x’H'l) + %f(%:w) Az
l vees (homework!)

Compare with (**):

/+ f(@)de = F(z:) AH% f’(a;i)(Ax)2—|—% f”(xi)(Aa;)%%f”’(xi)(Aa:)4+$f””(azi)(A:v)5+- ..

error
(leading order in Ax)

For 7Tl intervals: error is n(Aa:)5 ~ 1/n4

Numerical integration - deterministic methods:
comparison of errors in |D

log(Err(N))

-10

-15 |}

20 F

25 |

-30

-35

trap;ezoid double plrec.
Simpson double prec.

error ~ 1/N?

error ~ 1/N*

e 15~10-7

Deterministic methods -1

We use a piecewise polynomial interpolation:

® constant interpolation —} | point —}rectangular rule
® linear interpolation —} 2 points —}trapezoidal rule
® parabolic interpolation —} 3 points —} Simpson’s rule

® higher-order polynomial—} many points —}

NOT CONVENIENT!

Warning: using higher degrees does not always improve accuracy!

(see also: Runge's phenomenon (polynomial interpolation, oscillation at the edges of an
interval), Gibbs phenomenon (Fourier transf.)...)

Deterministic methods - 11

| | | | |
3 /__,'-"‘--.1‘_1 —
S e (xf(xi))
ol- \ / ‘
llll fr"}
\ /
I+ . —
— ',./j‘ —
\\ //’
Warning: —— (17— 55—
using high-order piecewise polynomial interpolation: possible

strong oscillations between consecutive (x;,f(xi)), giving a bad
interpolation of f(x).

Here: f(x) step function; - linear interp.; - cubic spline

Monte Carlo methods

Monte Carlo methods:
“acceptance-rejection’” or “hit or miss”

(to calculate areas) ,
® enclose the pond in a box of Area Abox

which is Apond ? ® throw pebbles uniformly and randomly in
the box

® count the number of pebbles felt in the
pond with respect to the number felt in the

” PO nd . box

. ¢ ® Assuming a uniform distribution, the
@ number of pebbles falling into the ponds is
proportional to the area of the pond:

annd A’pund
annd + Nbox Apox

annd
A
K A’pund Npmd +Nl:|n-: e

Monte Carlo methods:
“acceptance-rejection” or “hit or miss”

(to calculate ar'eas)

N random points in the unit square (
‘coordinates x;,y;

Then, the number of

points N, lying within the quarter circle (i.e. fulfilling the relation z* + y* < 1)

is compared to the total number N of points and the fraction will give us an
approximate value of 7:

Ne(N)

m(N) =4 N

Monte Carlo methods:
“acceptance-rejection’” or “hit or miss’

(to calculate definite integrals)

For W(x) positive in the integration
/ W(ZE)dl’ = 7 interval, the value of the area under

W(x) can be obtained by producing
random points (i.e. (X,y) random pairs)

uniformly distributed in a rectangle
containing W(x).

’

For each point (x,y) compare y with
W(x): if y<WV(x), the point is accepted.
The area under W(x) is the number of
points accepted divided by the total
number of points generated and
multiplied by the area of the rectangle.

(remember: also used to generate random numbers x; distributed according W(x))

Other simple

Monte Carlo methods
We can always write: I = / f(ac)da:' — (b — a)<f>

i.e., the value of the integral of f(x)

| between a and b equals the length

| of the interval (b-a) times the
average value of the function <f>

| over the same interval.

I (If f:[a,b] & R s a continuous
function, then there exists a number

c in [a,b] such that f(c)=<f>
(mean value theorem for integration))

102 10 |

how to estimate <f> efficiently and accurately?

A simple Monte Carlo method:
“sample mean”

b
/L I= | f@yiz=b-a)p
2\ \ f (xz) a
<f > """""" AN The sample mean can be calculated

by sampling the function (if smooth
enough...) with a sequence of N
uniform random numbers in [a,b]:

1 N
a . b <f>%N;f(xz-)

Monte Carlo methods:
error estimate

Example: MC estimate of 7 (exact value known)
1
We can use either acceptance-rejection or sample mean method: [= 4/ V1—2?=m=31416...
0

Since we know the “exact” result 1, we can calculate the error in two ways:

|) the actual error from the difference with respect to the exact value:
1 n
A, =|F,—1 ith F, = (b— —E i ; rand
n = |Fn | wit (a)n 2 f(x;), x; random

2) the numerical error from the variance of the data {f(z;)}:

o = (f*) —{f)*.

1= 23 f) and %) = 23 s

Monte Carlo methods:
error estimate

ReSUItS: 124/01’\/1—$2:7T:3.1416...
n F, actual error On AR
102 3.0692 0.0724 0.8950 | fsf 2

103 3.1704 0.0288 0.8790 | -
104 3.1489 0.0073 0.8850 |

) the actual error A\, decreases as 1/n'/?

2) the numerical error from the variance of the data, O,
is roughly constant and is much larger than the actual error

what is the correct error estimate?

Monte Carlo methods:
error estimate

...typically you do not know which is the “actual error” (you do not know
the “true” value and you cannot compare your result with that!)....

but we would like to give an error to our numerical estimate...

(to which extent is our numerical estimate reliable?)

Two methods to estimate the error numerically
from the variance of the data
(“reduction of variance”):

|) average of the averages

Il) block average

MC error handling: method |
“average of the averages”

make additional runs of n trials each.
Let M, be the average of each run :

run @ M, actual ervor | o 00 = 0 — 10% trials each
1 3.1489 0.0073
2 3.1326 0.0090
3 3.1404 0.0012
4 3.1460 0.0044
5 31526 0.0110
6 3.1397 0.0019
7 31311 0.0105
8 3.1358 0.0058
9 3.1344 0.0072
10 3.1405 0.0011

Examples of Monte Carlo measurements of the mean value of f(z) = 4v/1 — z2 in the
interval [0,1]. A total of 10 measurements of n = 10 trials each were made. The mean value M,
and the actual error |M, — 7| for each measurement are shown.

m 1 m
Calculate: 0,,° = (M?) — (M)* with (M) = %Z = - Z
— 7,, = 0.0068 = =

o,, 18 consistent with the results for the actual errors

MC error handling: method ||
“block averages”

Instead of doing additional measurements, divide them into “s SUBSETS”
and let S j. be the average within each subset :

subset & Sk
3.14326
3.15633
3.10940
3.15337
3.15352
3.11506
3.17989
3.12398
3.17565

0 3.17878

—_ O 00 O O~ W N =

The variance associated to the average of the subsets g 2 _ < S 2> — < S > 2
gives 05 = 0.029, but

05 /z/8, which for our example is approximately 0.025/ \/(10) ~ 0.008.

1s consistent with the actual error

Monte Carlo methods:

error estimate - variance reduction
summary

O-n/T\/ﬁ ~ Om ~ O-S/T\/g

from the variance of

from the variance
the whole set of data

of the
block averages

Note: for the variance
uncorrelated data ! Y .
. of the the most convenient!
average of but: change block size

and check that
(PrOOf) the averages it does not change

Monte Carlo methods:
summary

We have introduced :
* ¢¢ . . b B
acceptance-rejection

N
1
*“sample mean” to estimate (f)~ > f(x)
1=1

both OK for smoothly varying functions, but
not very efficient for rapidly varying functions

How to improve the efficiency of MC integration?

A trick for numerical integration:
“reduction of variance”

(Note: same word, but different meaning w.r.t. previous slides on error handling)

Given a function f(:l:‘)to integrate, suppose that g(x) exists,
whose integral is known and such that:

[f(z) —g(z)| <<e

Therefore:

P | ' f(o)de = / (@) -9(@) +9(a))de = [(@) = (@) dz +[gla)do

T

easy to calculate

Another simple Monte Carlo method:
€C°

importance sampling”

Mean value: easy to calculate for smoothly varying functions.
But not for functions rapidly varying.

g(x) g(x)
V' VN
__H x*k/ \ ~
—
> > L
a r, b a x; 0
smooth function function with singularity

How to manage such cases?

Another simple Monte Carlo method:
“importance sampling”

Mean value: easy to calculate for smoothly varying functions.
ldea: in order to calculate:

N~ Y f)

consider a distribution function p(z) easy to integrate
analytically and close to f(z):

F = /abf(:z:)d:z: - /ab [%} p(z)dx = <%> /abp(az)dx

N
X 1 xX; (particular case:
where <&> ~ -7 Z [f()] uniform distrib.
p(z) N i1 p(z;) p(x)=1/(b-a) ...)

with {Z; } distributed according to p(z)

Monte Carlo methods:

CCe

importance sampling”

Calculate: 1
F:/ e v dx.
0

with “sample mean” with random numbers with uniform

distribution or using the “importance sampling” with p(z) = e~

p(z) =1 | p(z) = Ae””
n (trials) 4 x 10° 8 x 10°
F, 0.7471 0.7469
o 0.2010 0.0550
o/\/n 3x 1074 6 x 1074
Total CPU time (s) 35 1.35
CPU time per trial (s) 10~ 2 x 1074

(pay attention to the normalization of p(x)...)

T

<« efficient !

Choice of the importance sampling function

Ex. 2 [F = /16—1’2 da;]

. /abf(az)d:c _ /ab [M] p(a)da = <%> /abp(:v)das

p(z)
2 T T T
. . . . exp{-x**2) mm——
this p(x) is normalized to 1 in (0,1) ————> exp{-x)*exp{1.}/{exp{1,}-1}
this is not normalized ———— eXp{=R) m—
1 —
1.5
!
“« \
8.5 4
] L 1 1
8 8.2 8.4 8.6 8.8 1

(pay attention to the normalization of p(x)...)

Some programs:

on
$/home/peressi/comp-phys/V-integr/f90

[do: $cp /home/peressi/...[f90/* .]
and on https://moodle2.units.it/

int.f90 (trapezoidal and Simpson integration) for Ex. |
pi.f90 (Montecarlo integration for calculation of) for Ex. 3

for the other exercises: write yourself the code!

-10

-12

-14

-16

-18

error(MC)~ | /\/N =2 see log(error) vs. log(N)

plgr dat’ u (

log
‘pigr.db.dat’ u (log

($1)):
($1)):

(o
(lo

0g($2))
($2))

X
X
X
X
X

+
X

11

12

13 14

15

16

17

error(MC)~| /\/N =2 see log(error) vs. log(N)

but with different prefactors
for sample means vs importance sampling

I I I I I I [I I
log(numero di step) vs. log(scarto q. medio) per: sample mean +

importance_sampling.dat

+ o+ ++

1 2 3 4 5 6 7 8 9 10

