
M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - Unit V

Numerical integration - I



• deterministic methods in 1D                
equispaced points (trapezoidal, Simpson...), 
others...

• Monte Carlo methods                                
(acceptance-rejection, sample mean, 
importance sampling...)

Error handling:
sample mean
block average
reduction of the variance



Deterministic methods



Deterministic methods
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Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1
∑

i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[

1
2
f(x0) +

n−1
∑

i=1

f(xi) +
1
2
f(xn)

]

∆x. (trapezoidal rule) (11.4)

Start from the geometrical 
interpretation of a definite 
integral:

F =

∫ b

a

f(x)dx

Divide the integration interval into “small” intervals:
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Deterministic methods:
rectangular rule
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Figure 11.2: The rectangular approximation for f(x) = cos x for 0 ≤ x ≤ π/2. The error in
the rectangular approximation is shaded. Numerical values of the error for various values of the
number of intervals n are given in Table 11.1.

A generally more accurate method is to use a quadratic or parabolic interpolation procedure
through adjacent triplets of points. For example, the equation of the second-order polynomial that
passes through the points (x0, y0), (x1, y1), and (x2, y2) can be written as

y(x) = y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)
(x1 − x0)(x1 − x2)

+ y2
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
. (11.5)

What is the value of y(x) at x = x1? The area under the parabola y(x) between x0 and x2 can be
found by simple integration and is given by

F0 =
1
3

(y0 + 4y1 + y2) ∆x, (11.6)

where ∆x = x1−x0 = x2−x1. The total area under all the parabolic segments yields the parabolic
approximation for the total area:

Fn =
1
3
[

f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .

+ 2f(xn−2) + 4f(xn−1) + f(xn)
]

∆x. (Simpson’s rule) (11.7)
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and
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In the trapezoidal approximation or rule the integral is approximated by computing the area
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by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1
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1
2
f(x0) +

n−1
∑
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f(xi) +
1
2
f(xn)

]
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∫ xi+1

xi

f(x)dx = hfi

In one interval:

applied iteratively over consecutive intervals:

O(h2f ′),∝ 1/n2

with error:

with a total error:

O(hf ′),∝ 1/n
h



Deterministic methods:
rectangular rule - error
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package edu.clarku.sip.chapter11;
public interface Function
{

public double evaluate(double x);
}

Let us consider the accuracy of the rectangular approximation for the integral of f(x) = cos x
from x = 0 to x = π/2 by comparing the numerical results shown in Table 11.1 with the exact
answer of unity. Note that the error decreases as n−1. This observed n dependence of the error is
consistent with the analytical derivation of the n dependence of the error obtained in Appendix 11A.
We explore the n dependence of the error associated with other numerical integration methods in
Problems 11.1 and 11.2.

n Fn ∆n

2 1.34076 0.34076
4 1.18347 0.18347
8 1.09496 0.09496
16 1.04828 0.04828
32 1.02434 0.02434
64 1.01222 0.01222
128 1.00612 0.00612
256 1.00306 0.00306
512 1.00153 0.00153
1024 1.00077 0.00077

Table 11.1: Rectangular approximations of the integral of cosx from x = 0 to x = π/2 as a
function of n, the number of intervals. The error ∆n is the difference between the rectangular
approximation and the exact result of unity. Note that the error ∆n decreases approximately as
n−1, that is, if n is increased by a factor of 2, ∆n decreases by a factor 2.

Problem 11.1. The rectangular and midpoint approximations

a. Test the above program by reproducing the results in Table 11.1.

b. Use the rectangular approximation to determine numerical approximations for the definite in-
tegrals of f(x) = 2x + 3x2 + 4x3 and f(x) = e−x for 0 ≤ x ≤ 1 and f(x) = 1/x for a ≤ x ≤ 2.
What is the approximate n dependence of the error in each case?

c. A straightforward modification of the rectangular approximation is to evaluate f(x) at the
midpoint of each interval. Define a MidpointApproximator class by making the necessary
modifications and approximate the integral of f(x) = cos x in the interval 0 ≤ x ≤ π/2. How
does the magnitude of the error compare with the results shown in Table 11.1? What is the
approximate dependence of the error on n?

d. Use the midpoint approximation to determine the definite integrals considered in part (b). What
is the approximate n dependence of the error in each case? Given that our goal is to compute

∆n = Fn − I

I =

∫ π/2

0

cos(x)dx = 1

Fn =
π

2n

n−1∑

0

cos xi; xi = i
π

2n



Deterministic methods:
generalities

• sum values of               with 

• we want to have                                           
as accurate as possible    but with the 
minimum number of calculations of 

f(xi) xi ∈ [a, b]

F =

∫ b

a

f(x)dx

f(xi)

OK simple algorithms, but if the number of 
calculations is too high, improve the algorithm!



Deterministic methods:
trapezoidal rule

∫ xi+1

xi

f(x)dx = h

[

1

2
fi +

1

2
fi+1

]

O(h2f ′′′),∝ 1/n2

O(h3f ′′′),∝ 1/n3

In one interval:
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Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1
∑

i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[

1
2
f(x0) +

n−1
∑

i=1

f(xi) +
1
2
f(xn)

]

∆x. (trapezoidal rule) (11.4)

Applied iteratively over consecutive intervals:

with a total error:

with error:



Deterministic methods:
Simpson’s rule

In one interval:
∫ xi+2

xi

f(x)dx = h

[

1

3
fi +

4

3
fi+1 +

1

3
fi+2

]

+ O(h5f IV ) (error ∝ 1/n5)

∫ xn

x0

f(x)dx = h

[

1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 + . . . +

2

3
fn−2 +

4

3
fn−1 +

1

3
fn

]

+O(h4f IV ) (error ∝ 1/n4)

Iteratively applied to the whole interval of integration (odd number of points!):

Parabolic interpolation procedure 
between triplets of adjacent points



Errors in
deterministic methods



Error estimate for numerical integration 
with deterministic methods
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c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.
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∫
f(x)dx = Fn + error

How to evaluate the error? Consider the Taylor expansion 
of the integrand function and then integrate:

(*)

(**)

∆x ≡ xi+1 − xi



Error estimate for numerical integration:
Rectangular approximation

∫ xi+1

xi

f(x)dx ≈ f(xi)∆x
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f(x) dx

]

− f(xi)∆x ≈ 1
2
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We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
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xi

f(x) dx
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If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

Compare with  (**):

error 
(leading order in         )∆x

For       intervals                               :  error is n n(∆x)2 ∼ 1/n(∆x = (b − a)/n)
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Compare with  (**):

error 
(leading order in         )∆x

For        intervals:  error is n

Error estimate for numerical integration:
Trapezoidal approximation

∫ xi+1

xi

f(x)dx ≈

1

2

[

f(xi+1) + f(xi)
]

∆x

n(∆x)3 ∼ 1/n2

f(xi+1) ≈ f(xi) + f ′(xi)∆x +
1

2
f ′′(xi)∆x2 + . . .

≈

1

2

[

2f(xi) + f ′(xi)∆x +
1

2
f ′′(xi)∆x2 + . . .

]

∆x



Compare with  (**):

error 
(leading order in         )∆x

For       intervals:   error is n

f(xi+1) ≈ f(xi) + f ′(xi)∆x +
1

2
f ′′(xi)∆x + . . .

Error estimate for numerical integration:
Simpson approximation

∫ xi+2

xi

f(x)dx ≈

[

1

3
f(xi) +

4

3
f(xi+1) +

1

3
f(xi+2)

]

∆x

....

....

∫ xi+2

xi

f(x)dx = f(xi)∆x+
1

2!
f ′(xi)(∆x)2+

1

3!
f ′′(xi)(∆x)3+

1

4!
f ′′′(xi)(∆x)4+

1

5!
f ′′′′(xi)(∆x)5+. . .

n(∆x)5 ∼ 1/n4

(homework!)



Numerical integration - deterministic methods:
comparison of errors in 1D
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• constant interpolation             1 point             rectangular rule

• linear interpolation                 2 points            trapezoidal rule

• parabolic interpolation            3 points            Simpson’s rule

• ...                                                 ....

• higher-order polynomial        many points     

Deterministic methods -1

NOT CONVENIENT!

We use a piecewise polynomial interpolation:

Warning:  using higher degrees does not always improve accuracy!

(see also: Runge's phenomenon (polynomial interpolation, oscillation at the edges of an 
interval), Gibbs phenomenon (Fourier transf.)... )



Deterministic methods -1I

Warning: 
using high-order piecewise polynomial interpolation: possible 
strong oscillations between consecutive (xi,f(xi)),  giving a bad 
interpolation of f(x).
Here:          f(x) step function; - linear interp.; - cubic spline

•(xi,f(xi))



Monte Carlo methods
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• enclose the pond in a box of Area Abox

• throw pebbles uniformly and randomly in 
the box

• count the number of pebbles felt in the 
pond with respect to the number felt in the 
box

• Assuming a uniform distribution, the 
number of pebbles falling into the ponds is 
proportional to the area of the pond:

which is Apond   ?
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Monte Carlo methods:
“acceptance-rejection” or “hit or miss”

(to calculate areas)
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Monte Carlo methods:
“acceptance-rejection” or “hit or miss”
(to calculate areas)

π =???



Monte Carlo methods:
“acceptance-rejection” or “hit or miss”

For W(x) positive in the integration 
interval,  the value of the area under  
W(x)  can be obtained by producing 
random points (i.e. (x,y) random pairs) 
uniformly distributed in a rectangle 
containing W(x). 

For each point (x,y) compare y with 
W(x): if y<W(x), the point is accepted. 
The area under W(x) is the number of 
points accepted divided by the total 
number of points generated and 
multiplied by the area of the rectangle.
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∫
W (x)dx = ?

(remember:     also used to generate random numbers xi distributed according W(x))

(to calculate definite integrals)



i.e., the value of the integral of  f(x) 
between a and b equals the length 
of the interval (b-a) times the 
average value of the function <f> 
over the same interval.
(If   f:[a,b] → R   is a continuous 
function, then there exists a number 
c in [a,b] such that f(c)=<f>
(mean value theorem for integration))
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Other simple 

Monte Carlo methods
I =

∫ b

a

f(x)dx = (b − a)〈f〉We can always write:

how to estimate <f> efficiently and accurately?



The sample mean can be calculated 
by sampling the function (if smooth 
enough...) with a sequence of N 
uniform random numbers in [a,b]:

A simple Monte Carlo method:

“sample mean”

∫ b

a

f(x)dx ≈ (b − a)
1

N

N∑
i=1

f(xi) = (b − a)〈f〉

〈f〉 ≈
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f(xi)

I =
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f(x)dx = (b − a)〈f〉
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g(x)
p(x)

f(x)

〈f〉
f(xi)



Since we know the “exact” result I, we can calculate the error in two ways:

1) the actual error from the difference with respect to the exact value:
    

2) the numerical error from the variance of the data           :

Monte Carlo methods:
error estimate

 We can use either acceptance-rejection or sample mean method: I = 4

∫ 1

0

√

1 − x2 = π = 3.1416 . . .

∆n = |Fn − I|

{f(xi)}
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of f(x) = 4
√

1 − x2 in the interval [0, 1] (see Problem 11.3). Our result for a particular sequence
of n = 104 random numbers using the sample mean method is Fn = 3.1489. How does this result
for Fn compare with your result found in Problem 11.3 for the same value of n? By comparing
Fn to the exact result of F = π ≈ 3.1416, we find that the error associated with n = 104 trials is
approximately 0.0073.

How can we estimate the error if the exact result is unknown? How can we know if n = 104

trials is sufficient to achieve the desired accuracy? Of course, we cannot answer these questions
definitively because if the actual error in Fn were known, we could correct Fn by the required
amount and obtain F . The best we can do is to calculate the probability that the true value F is
within a certain range centered on Fn.

If the integrand were a constant, then the error would be zero, that is, Fn would equal F for
any n. Why? This limiting behavior suggests that a possible measure of the error is the variance
σ2 defined by

σ2 = 〈f2〉 − 〈f〉2, (11.14)

where

〈f〉 =
1
n

n
∑

i=1

f(xi), (11.15a)

and

〈f2〉 =
1
n

n
∑

i=1

f(xi)2. (11.15b)

From the definition of the standard deviation σ, we see that if f is independent of x, σ is zero. For
our example and the same sequence of random numbers used to obtain Fn = 3.1489, we obtain
σn = 0.8850. Because this value of σ is two orders of magnitude larger than the actual error, we
conclude that σ cannot be a direct measure of the error. Instead, σ is a measure of how much the
function f(x) varies in the interval of interest.

Another clue to finding an appropriate measure of the error can be found by increasing n and
seeing how the actual error decreases as n increases. In Table 11.2 we see that as n goes from 102

to 104, the actual error decreases by a factor of 10, that is, as ∼ 1/n
1
2 . However, we also see that

σn is roughly constant and is much larger than the actual error.

n Fn actual error σn

102 3.0692 0.0724 0.8550
103 3.1704 0.0288 0.8790
104 3.1489 0.0073 0.8850

Table 11.2: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. The actual error is given by the difference |Fn − π|. The standard deviation σn is
found using (11.14).

One way to obtain an estimate for the error is to make additional runs of n trials each.
Each run of n trials yields a mean or measurement that we denote as Mα. In general, these
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where

and

Fn = (b − a)
1

n

n∑

i=1

f(xi), xi randomwith 

Example:  MC estimate of  π (exact value known)



Monte Carlo methods:
error estimate
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for Fn compare with your result found in Problem 11.3 for the same value of n? By comparing
Fn to the exact result of F = π ≈ 3.1416, we find that the error associated with n = 104 trials is
approximately 0.0073.
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From the definition of the standard deviation σ, we see that if f is independent of x, σ is zero. For
our example and the same sequence of random numbers used to obtain Fn = 3.1489, we obtain
σn = 0.8850. Because this value of σ is two orders of magnitude larger than the actual error, we
conclude that σ cannot be a direct measure of the error. Instead, σ is a measure of how much the
function f(x) varies in the interval of interest.

Another clue to finding an appropriate measure of the error can be found by increasing n and
seeing how the actual error decreases as n increases. In Table 11.2 we see that as n goes from 102

to 104, the actual error decreases by a factor of 10, that is, as ∼ 1/n
1
2 . However, we also see that

σn is roughly constant and is much larger than the actual error.

n Fn actual error σn

102 3.0692 0.0724 0.8550
103 3.1704 0.0288 0.8790
104 3.1489 0.0073 0.8850

Table 11.2: Examples of Monte Carlo measurements of the mean value of f(x) = 4
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1 − x2 in the
interval [0, 1]. The actual error is given by the difference |Fn − π|. The standard deviation σn is
found using (11.14).

One way to obtain an estimate for the error is to make additional runs of n trials each.
Each run of n trials yields a mean or measurement that we denote as Mα. In general, these

1/n1/2

σn

what is the correct error estimate?

∆n

Results: I = 4

∫ 1

0

√

1 − x2 = π = 3.1416 . . .

1) the actual error          decreases as     

2) the numerical error from the variance of the data,      ,        
is roughly constant and is much larger than the actual error         



...typically you do not know which is the “actual error” (you do not know 
the “true” value and you cannot compare your result with that!)....
but we would like to give an error to our numerical estimate...
(to which extent is our numerical estimate reliable?)

Two methods to estimate the error numerically 
from the variance of the data
(“reduction of variance”):

1) average of the averages

II) block average

Monte Carlo methods:
error estimate



MC error handling: method 1
“average of the averages”
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run α Mα actual error
1 3.1489 0.0073
2 3.1326 0.0090
3 3.1404 0.0012
4 3.1460 0.0044
5 3.1526 0.0110
6 3.1397 0.0019
7 3.1311 0.0105
8 3.1358 0.0058
9 3.1344 0.0072
10 3.1405 0.0011

Table 11.3: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. A total of 10 measurements of n = 104 trials each were made. The mean value Mα

and the actual error |Mα − π| for each measurement are shown.

measurements are not equal because each measurement uses a different finite sequence of random
numbers. Table 11.3 shows the results of ten separate measurements of n = 104 trials each. We see
that the actual error varies from measurement to measurement. Qualitatively, the magnitude of
the differences between the measurements is similar to the actual errors, and hence these differences
are a measure of the error associated with a single measurement. To obtain a quantitative measure
of this error, we determine the differences of these measurements using the standard deviation of
the means σm which is defined as

σm
2 = 〈M2〉 − 〈M〉2, (11.16)

where

〈M〉 =
1
m

m
∑

α=1

Mα, (11.17a)

and

〈M2〉 =
1
m

m
∑

α=1

Mα
2. (11.17b)

From the values of Mα in Table 11.3 and the relation (11.16), we find that σm = 0.0068. This
value of σm is consistent with the results for the actual errors shown in Table 11.3 which we see
vary from 0.00112 to 0.01098. Hence we conclude that σm, the standard deviation of the means, is
a measure of the error for a single measurement. The more precise interpretation of σm is that a
single measurement has a 68% chance of being within σm of the “true” mean. Hence the probable
error associated with our first measurement of Fn with n = 104 is 3.149 ± 0.007.

Although σm gives an estimate of the probable error, our method of obtaining σm by making
additional measurements is impractical because we could have combined the additional measure-

one run ≡ n = 10
4

trials each
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approximately 0.0073.
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From the definition of the standard deviation σ, we see that if f is independent of x, σ is zero. For
our example and the same sequence of random numbers used to obtain Fn = 3.1489, we obtain
σn = 0.8850. Because this value of σ is two orders of magnitude larger than the actual error, we
conclude that σ cannot be a direct measure of the error. Instead, σ is a measure of how much the
function f(x) varies in the interval of interest.

Another clue to finding an appropriate measure of the error can be found by increasing n and
seeing how the actual error decreases as n increases. In Table 11.2 we see that as n goes from 102

to 104, the actual error decreases by a factor of 10, that is, as ∼ 1/n
1
2 . However, we also see that

σn is roughly constant and is much larger than the actual error.
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Table 11.2: Examples of Monte Carlo measurements of the mean value of f(x) = 4
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1 − x2 in the
interval [0, 1]. The actual error is given by the difference |Fn − π|. The standard deviation σn is
found using (11.14).

One way to obtain an estimate for the error is to make additional runs of n trials each.
Each run of n trials yields a mean or measurement that we denote as Mα. In general, these
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measurements are not equal because each measurement uses a different finite sequence of random
numbers. Table 11.3 shows the results of ten separate measurements of n = 104 trials each. We see
that the actual error varies from measurement to measurement. Qualitatively, the magnitude of
the differences between the measurements is similar to the actual errors, and hence these differences
are a measure of the error associated with a single measurement. To obtain a quantitative measure
of this error, we determine the differences of these measurements using the standard deviation of
the means σm which is defined as
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From the values of Mα in Table 11.3 and the relation (11.16), we find that σm = 0.0068. This
value of σm is consistent with the results for the actual errors shown in Table 11.3 which we see
vary from 0.00112 to 0.01098. Hence we conclude that σm, the standard deviation of the means, is
a measure of the error for a single measurement. The more precise interpretation of σm is that a
single measurement has a 68% chance of being within σm of the “true” mean. Hence the probable
error associated with our first measurement of Fn with n = 104 is 3.149 ± 0.007.

Although σm gives an estimate of the probable error, our method of obtaining σm by making
additional measurements is impractical because we could have combined the additional measure-
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additional measurements is impractical because we could have combined the additional measure-
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run α Mα actual error
1 3.1489 0.0073
2 3.1326 0.0090
3 3.1404 0.0012
4 3.1460 0.0044
5 3.1526 0.0110
6 3.1397 0.0019
7 3.1311 0.0105
8 3.1358 0.0058
9 3.1344 0.0072
10 3.1405 0.0011

Table 11.3: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. A total of 10 measurements of n = 104 trials each were made. The mean value Mα

and the actual error |Mα − π| for each measurement are shown.

measurements are not equal because each measurement uses a different finite sequence of random
numbers. Table 11.3 shows the results of ten separate measurements of n = 104 trials each. We see
that the actual error varies from measurement to measurement. Qualitatively, the magnitude of
the differences between the measurements is similar to the actual errors, and hence these differences
are a measure of the error associated with a single measurement. To obtain a quantitative measure
of this error, we determine the differences of these measurements using the standard deviation of
the means σm which is defined as

σm
2 = 〈M2〉 − 〈M〉2, (11.16)

where

〈M〉 =
1
m

m
∑

α=1

Mα, (11.17a)

and

〈M2〉 =
1
m

m
∑

α=1

Mα
2. (11.17b)

From the values of Mα in Table 11.3 and the relation (11.16), we find that σm = 0.0068. This
value of σm is consistent with the results for the actual errors shown in Table 11.3 which we see
vary from 0.00112 to 0.01098. Hence we conclude that σm, the standard deviation of the means, is
a measure of the error for a single measurement. The more precise interpretation of σm is that a
single measurement has a 68% chance of being within σm of the “true” mean. Hence the probable
error associated with our first measurement of Fn with n = 104 is 3.149 ± 0.007.

Although σm gives an estimate of the probable error, our method of obtaining σm by making
additional measurements is impractical because we could have combined the additional measure-

withCalculate: ,

Let Mα be the average of each run :
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=⇒ σm = 0.0068
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ments to make a better estimate. In Appendix 11.8 we derive the relation

σm =
σ√

n − 1
(11.18a)

≈ σ√
n

. (11.18b)

The reason for the expression 1/
√

n − 1 in (11.18a) rather than 1/
√

n is similar to the reason for the
expression 1/

√
n − 2 in the error estimates of the least squares fits (see (7.27c)). The idea is that to

compute σ, we need to use n trials to compute the mean, 〈f(x)〉, and, loosely speaking, we have only
n− 1 independent trials remaining to calculate σ. Because we almost always make a large number
of trials, we will use the relation (11.18b) and consider only this limit in Appendix 11A. Note that
(11.18) implies that the most probable error decreases with the square root of the number of trials.
For our example we find that the most probable error of our initial measurement is approximately
0.8850/100 ≈ 0.009, an estimate consistent with the known error of 0.007 and with our estimated
value of σm ≈ 0.007.

subset k Sk

1 3.14326
2 3.15633
3 3.10940
4 3.15337
5 3.15352
6 3.11506
7 3.17989
8 3.12398
9 3.17565
10 3.17878

Table 11.4: The values of Sk for f(x) = 4
√

1 − x2 for 0 ≤ x ≤ 1 is shown for 10 subsets of 103

trials each. The average value of f(x) over the 10 subsets is 3.14892, in agreement with the result
for Fn for the first measurement shown in Table 11.3.

One way to verify the relation (11.18) is to divide the initial measurement of n trials into s
subsets. This procedure does not require additional measurements. We denote the mean value of
f(xi) in the kth subset by Sk. As an example, we divide the 104 trials of the first measurement into
s = 10 subsets of n/s = 103 trials each. The results for Sk are shown in Table 11.4. As expected,
the mean values of f(x) for each subset k are not equal. A reasonable candidate for a measure
of the error is the standard deviation of the means of each subset. We denote this quantity as σs

where

σs
2 = 〈S2〉 − 〈S〉2, (11.19)

where the averages are over the subsets. From Table 11.4 we obtain σs = 0.025, a result that is
approximately three times larger than our estimate of 0.007 for σm. However, we would like to
define an error estimate that is independent of how we subdivide the data. This quantity is not σs,

Instead of doing additional measurements, divide them into “s SUBSETS”
and let           be the average within each subset :
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trials each. The average value of f(x) over the 10 subsets is 3.14892, in agreement with the result
for Fn for the first measurement shown in Table 11.3.

One way to verify the relation (11.18) is to divide the initial measurement of n trials into s
subsets. This procedure does not require additional measurements. We denote the mean value of
f(xi) in the kth subset by Sk. As an example, we divide the 104 trials of the first measurement into
s = 10 subsets of n/s = 103 trials each. The results for Sk are shown in Table 11.4. As expected,
the mean values of f(x) for each subset k are not equal. A reasonable candidate for a measure
of the error is the standard deviation of the means of each subset. We denote this quantity as σs

where

σs
2 = 〈S2〉 − 〈S〉2, (11.19)

where the averages are over the subsets. From Table 11.4 we obtain σs = 0.025, a result that is
approximately three times larger than our estimate of 0.007 for σm. However, we would like to
define an error estimate that is independent of how we subdivide the data. This quantity is not σs,

MC error handling: method 1I
“block averages”

Sk

The variance associated to the average of the subsets 
gives                          , but 

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 384

ments to make a better estimate. In Appendix 11.8 we derive the relation

σm =
σ√

n − 1
(11.18a)

≈ σ√
n

. (11.18b)

The reason for the expression 1/
√

n − 1 in (11.18a) rather than 1/
√

n is similar to the reason for the
expression 1/

√
n − 2 in the error estimates of the least squares fits (see (7.27c)). The idea is that to

compute σ, we need to use n trials to compute the mean, 〈f(x)〉, and, loosely speaking, we have only
n− 1 independent trials remaining to calculate σ. Because we almost always make a large number
of trials, we will use the relation (11.18b) and consider only this limit in Appendix 11A. Note that
(11.18) implies that the most probable error decreases with the square root of the number of trials.
For our example we find that the most probable error of our initial measurement is approximately
0.8850/100 ≈ 0.009, an estimate consistent with the known error of 0.007 and with our estimated
value of σm ≈ 0.007.

subset k Sk

1 3.14326
2 3.15633
3 3.10940
4 3.15337
5 3.15352
6 3.11506
7 3.17989
8 3.12398
9 3.17565
10 3.17878

Table 11.4: The values of Sk for f(x) = 4
√

1 − x2 for 0 ≤ x ≤ 1 is shown for 10 subsets of 103

trials each. The average value of f(x) over the 10 subsets is 3.14892, in agreement with the result
for Fn for the first measurement shown in Table 11.3.

One way to verify the relation (11.18) is to divide the initial measurement of n trials into s
subsets. This procedure does not require additional measurements. We denote the mean value of
f(xi) in the kth subset by Sk. As an example, we divide the 104 trials of the first measurement into
s = 10 subsets of n/s = 103 trials each. The results for Sk are shown in Table 11.4. As expected,
the mean values of f(x) for each subset k are not equal. A reasonable candidate for a measure
of the error is the standard deviation of the means of each subset. We denote this quantity as σs

where

σs
2 = 〈S2〉 − 〈S〉2, (11.19)

where the averages are over the subsets. From Table 11.4 we obtain σs = 0.025, a result that is
approximately three times larger than our estimate of 0.007 for σm. However, we would like to
define an error estimate that is independent of how we subdivide the data. This quantity is not σs,
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but the ratio σs/
√

s, which for our example is approximately 0.025/
√

(10) ≈ 0.008. This value is
consistent with both σm and the ratio σ/

√
n. We conclude that we can interpret the n trials either

as a single measurement or as a collection of s measurements with n/s trials each. In the former
interpretation, the probable error is given by the standard deviation of the n trials divided by the
square root of the number of trials. In the same spirit, the latter interpretation implies that the
probable error is given by the standard deviation of the s measurements of the subsets divided by
the square root of the number of measurements.

We can make the error as small as we wish by either increasing the number of trials or by
increasing the efficiency of the individual trials and thereby reducing the standard deviation σ.
Several reduction of variance methods are introduced in Sections 11.7 and 11.8.
Problem 11.6. Estimate of the Monte Carlo error

a. Estimate the integral of f(x) = e−x in the interval 0 ≤ x ≤ 1 using the sample mean Monte
Carlo method with n = 102, n = 103, and n = 104. Compute the standard deviation σ as
defined by (11.14). Does your estimate of σ change significantly as n is increased? Determine
the exact answer analytically and estimate the n dependence of the error. How does your
estimated error compare with the error estimate obtained from the relation (11.18)?

b. Generate nineteen additional measurements of the integral each with n = 103 trials. Compute
σm, the standard deviation of the twenty measurements. Is the magnitude of σm consistent with
your estimate of the error obtained in part (a)? Will your estimate of σm change significantly
if more measurements are made?

c. Divide your first measurement of n = 103 trials into s = 20 subsets of 50 trials each. Compute
the standard deviation of the subsets σs. Is the magnitude σs/

√
s consistent with your previous

error estimates?

d. Divide your first measurement into s = 10 subsets of 100 trials each and again compute the
standard deviation of the subsets. How does the value of σs compare to what you found in part
(c)? What is the value of σs/

√
s in this case? How does the standard deviation of the subsets

compare using the two different divisions of the data?

e. Estimate the integral
∫ 1

0
e−x2

dx (11.20)

to two decimal places using σn/
√

n as an estimate of the probable error.
∗Problem 11.7. Importance of randomness
We will learn in Chapter ?? that the random number generator included with many programming
languages is based on the linear congruential method. In this method each term in the sequence
can be found from the preceding one by the relation

xn+1 = (axn + c) modm, (11.21)

where x0 is the seed, and a, c, and m are nonnegative integers. The random numbers r in the unit
interval 0 ≤ r < 1 are given by rn = xn/m. The notation y = xmod m means that if x exceeds m,

is consistent with the actual error



Monte Carlo methods:
error estimate - variance reduction 

summary
σn/

√
n ≈ σm ≈ σs/

√
s

from the variance of 
the whole set of data

the variance 
of the 

average of 
the averages

from the variance 
of the

block averages

the most convenient! 
but: change block size 
and check that             
it does not change(proof)

Note: for 
uncorrelated data !



We have introduced :

* “acceptance-rejection”

* “sample mean” to estimate 

both  OK  for smoothly varying functions, but
not very efficient for rapidly varying functions

〈f〉 ≈
1

N

N∑

i=1

f(xi)

Monte Carlo methods:
summary

How to improve the efficiency of MC integration?



Therefore:

A trick for numerical integration:

“reduction of variance”

Given a function         to integrate, suppose that          exists,
whose integral is known and such that:     

f(x) g(x)

|f(x) − g(x)| << ε

F =

∫ b

a

f(x)dx =

∫ b

a

((

f(x)−g(x)
)

+g(x)
)

dx =

∫

(f(x) − g(x)) dx−

∫

g(x)dx

easy to calculate

(Note: same word, but different meaning w.r.t. previous slides on error handling)

+



Another simple Monte Carlo method:

“importance sampling”
Mean value: easy to calculate for smoothly varying functions.    
But not for functions rapidly varying.

N = 10, 000 Nc = 7, 854 �(10, 000) = 3.1416
⇤ 1�

N
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How to manage such cases?



where

F =

∫ b

a

f(x)dx =

∫ b

a

[

f(x)

p(x)

]

p(x)dx =

〈

f(x)

p(x)

〉
∫ b

a

p(x)dx

〈f〉 ≈
1

N

N∑

i=1

f(xi)

Another simple Monte Carlo method:

“importance sampling”
Mean value: easy to calculate for smoothly varying functions.    
Idea: in order to calculate:

consider a distribution function          easy to integrate 
analytically and  close to        :f(x)

p(x)

〈

f(x)

p(x)

〉

≈

1

N

N
∑

i=1

[

f(xi)

p(xi)

]

 with         distributed according to   {xi} p(x)

(particular case: 
uniform distrib.
 p(x)=1/(b-a) ...)



Monte Carlo methods:
“importance sampling”

Calculate:
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We can evaluate the integral (11.45) by sampling according to the probability distribution p(x)
and constructing the sum

Fn =
1
n

n
∑

i=1

f(xi)
p(xi)

. (11.46)

The sum (11.46) reduces to (11.10) for the uniform case p(x) = 1/(b − a).
We wish to choose a form for p(x) that minimizes the variance of the integrand f(x)/p(x).

Because we cannot evaluate σ analytically in general, we determine σ a posteriori and choose a
form of p(x) that mimics f(x) as much as possible, particularly where f(x) is large. A suitable
choice of p(x) would make the integrand f(x)/p(x) slowly varying, and hence the variance will be
reduced. As an example, we again consider the integral (see Problem ee)

F =
∫ 1

0
e−x2

dx. (11.47)

The estimate of F with p(x) = 1 for 0 ≤ x ≤ 1 is shown in the first column of Table 11.5.
A reasonable choice of a weight function is p(x) = Ae−x, where A is chosen such that p(x) is
normalized on the unit interval. Note that this choice of p(x) is positive definite and is qualitatively
similar to f(x). The results are shown in the second column of Table 11.5. We see that although
the computation time per trial for the nonuniform case is larger, the smaller value of σ makes the
use of the nonuniform probability distribution more efficient.

p(x) = 1 p(x) = Ae−x

n (trials) 4 × 105 8 × 103

Fn 0.7471 0.7469
σ 0.2010 0.0550
σ/

√
n 3 × 10−4 6 × 10−4

Total CPU time (s) 35 1.35
CPU time per trial (s) 10−4 2 × 10−4

Table 11.5: Comparison of the Monte Carlo estimates of the integral (11.47) using the uniform
probability density p(x) = 1 and the nonuniform probability density p(x) = Ae−x. The normal-
ization constant A is chosen such that p(x) is normalized on the unit interval. The value of the
integral to four decimal places is 0.7468. The estimates Fn, variance σ, and the probable error
σ/n1/2 are shown. The CPU time (seconds) is shown for comparison only.

Problem 11.13. Importance sampling

a. Choose f(x) =
√

1 − x2 as in the text and consider p(x) = A(1−x) for x ≥ 0. What is the value
of A that normalizes p(x) in the interval [0, 1]? What is the relation for the random variable
x in terms of r assuming this form of the probability density p(x)? What is the variance of
f(x)/p(x) in the unit interval?

b. Choose the importance function p(x) = Ae−x and evaluate the integral
∫ 3

0
x3/2 e−x dx. (11.48)

efficient !
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normalized on the unit interval. Note that this choice of p(x) is positive definite and is qualitatively
similar to f(x). The results are shown in the second column of Table 11.5. We see that although
the computation time per trial for the nonuniform case is larger, the smaller value of σ makes the
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Table 11.5: Comparison of the Monte Carlo estimates of the integral (11.47) using the uniform
probability density p(x) = 1 and the nonuniform probability density p(x) = Ae−x. The normal-
ization constant A is chosen such that p(x) is normalized on the unit interval. The value of the
integral to four decimal places is 0.7468. The estimates Fn, variance σ, and the probable error
σ/n1/2 are shown. The CPU time (seconds) is shown for comparison only.

Problem 11.13. Importance sampling

a. Choose f(x) =
√

1 − x2 as in the text and consider p(x) = A(1−x) for x ≥ 0. What is the value
of A that normalizes p(x) in the interval [0, 1]? What is the relation for the random variable
x in terms of r assuming this form of the probability density p(x)? What is the variance of
f(x)/p(x) in the unit interval?

b. Choose the importance function p(x) = Ae−x and evaluate the integral
∫ 3

0
x3/2 e−x dx. (11.48)

with “sample mean” with random numbers with uniform 
distribution or using the “importance sampling” with p(x) = e

−x

(pay attention to the normalization of p(x)...)
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The sum (11.46) reduces to (11.10) for the uniform case p(x) = 1/(b − a).
We wish to choose a form for p(x) that minimizes the variance of the integrand f(x)/p(x).

Because we cannot evaluate σ analytically in general, we determine σ a posteriori and choose a
form of p(x) that mimics f(x) as much as possible, particularly where f(x) is large. A suitable
choice of p(x) would make the integrand f(x)/p(x) slowly varying, and hence the variance will be
reduced. As an example, we again consider the integral (see Problem ee)

F =
∫ 1

0
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The estimate of F with p(x) = 1 for 0 ≤ x ≤ 1 is shown in the first column of Table 11.5.
A reasonable choice of a weight function is p(x) = Ae−x, where A is chosen such that p(x) is
normalized on the unit interval. Note that this choice of p(x) is positive definite and is qualitatively
similar to f(x). The results are shown in the second column of Table 11.5. We see that although
the computation time per trial for the nonuniform case is larger, the smaller value of σ makes the
use of the nonuniform probability distribution more efficient.
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Fn 0.7471 0.7469
σ 0.2010 0.0550
σ/

√
n 3 × 10−4 6 × 10−4
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Table 11.5: Comparison of the Monte Carlo estimates of the integral (11.47) using the uniform
probability density p(x) = 1 and the nonuniform probability density p(x) = Ae−x. The normal-
ization constant A is chosen such that p(x) is normalized on the unit interval. The value of the
integral to four decimal places is 0.7468. The estimates Fn, variance σ, and the probable error
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Problem 11.13. Importance sampling

a. Choose f(x) =
√

1 − x2 as in the text and consider p(x) = A(1−x) for x ≥ 0. What is the value
of A that normalizes p(x) in the interval [0, 1]? What is the relation for the random variable
x in terms of r assuming this form of the probability density p(x)? What is the variance of
f(x)/p(x) in the unit interval?

b. Choose the importance function p(x) = Ae−x and evaluate the integral
∫ 3

0
x3/2 e−x dx. (11.48)

this p(x) is normalized to 1 in (0,1)

F =

∫ b

a

f(x)dx =

∫ b

a

[

f(x)

p(x)

]

p(x)dx =

〈

f(x)

p(x)

〉
∫ b

a

p(x)dx

this is not normalized

(pay attention to the normalization of p(x)...)

Choice of the importance sampling function
Ex. 2



on 
$/home/peressi/comp-phys/V-integr/f90  
[do: $cp /home/peressi/.../f90/* .]
and on https://moodle2.units.it/

int.f90  (trapezoidal and Simpson integration) for Ex.  1

pi.f90 (Montecarlo integration for calculation of π ) for Ex. 3

for the other exercises: write yourself the code!

Some programs: 
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 6  7  8  9  10  11  12  13  14  15  16  17

’pigr.dat’ u (log($1)):(log($2))
’pigr.db.dat’  u (log($1)):(log($2))

error(MC)~1/√N  => see log(error) vs. log(N)
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-4

-3

-2

 0  1  2  3  4  5  6  7  8  9  10

log(numero di step) vs. log(scarto q. medio) per: sample mean
importance_sampling.dat

error(MC)~1/√N  => see log(error) vs. log(N)

but with different prefactors 
for sample means vs importance sampling


