
Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 383

Outline 2017/03/24
• How to avoid crashing
• How to report bugs
• How to debug a program

– l/s trace
– ldd
– nm
– valgrind
– ddd

• Make and CMake

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 384

Avoid crashing (whenever possible)
A program that crashes badly:
1) could create “core” dump filling the disk;
2) could create a problems when part of a procedure;
3) force the developer to search for the bug with few

clues.

Hence: try to catch possible errors!

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 385

Avoid crashing (whenever possible)
For example:
A program needs to connect to a given server to

retrieve a certain number.
The program crashes because the number used in the

code has no sense...
• is it a problem on the server (the stored number was

wrong)?
• is it a problem with the connection (somebody

unplugged the network cable)?
• is it a problem with the server filename (user

provided a mispelled name)?
• is it a bug in the code (overriding our variable)?

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 386

Avoid crashing (whenever possible)

A program that crashes is like a person who dies while
eating mushrooms... were the mushroom
venenous? did the person eat too much? was it
uncorrelated to the mushrooms?

A program that exit with an error is like a person who
feels sick but can still talk and tell you what is
wrong. The person can tell you that he/she spit the
mushrooms since they had a bitter flavour; the
person can tell you that he/she was eating
mushrooms when a lamp felt on his/her head, etc.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 387

Avoid crashing (whenever possible)
How to avoid a crash:
• is it a problem on the server (the stored number was

wrong)?
check the result of the query, is it a number? if you expect the

number to be in a certain range, is it in the range? if not,
print out an error line stating what is wrong and exit.

• is it a problem with the connection (somebody
unplugged the network cable)?

• is it a problem with the server filename (user
provided a mispelled name)?
check the connection! when you try to connect to the server

what it the answer? no connection available? no such a
server? print out an error line and exit.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 388

Bugs reporting
http://wwwusers.ts.infn.it/~mocchiut/bugs/bugs.html

• It doesn’t work
• Show me
• Show me how to show myself
• Works for me, what goes wrong?
• So then I tried...
• I think the tachyon modulation must be wrongly

polarized
• That’s funny, I did it one a moment ago!
• So I loaded the disk on to my Windows...

http://wwwusers.ts.infn.it/%7Emocchiut/bugs/bugs.html

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 389

Bugs reporting
• It doesn’t work

Give the programmer some credit for basic
intelligence: if the program really didn't work at
all, they would probably have noticed. Since
they haven't noticed, it must be working for
them. Therefore, either you are doing
something differently from them, or your
environment is different from theirs. They
need information; providing this information is
the purpose of a bug report. More information
is almost always better than less.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 390

Bugs reporting
• Show me

One of the very best ways you can report a bug is by
showing it to the programmer. Stand them in front of
your computer, fire up their software, and
demonstrate the thing that goes wrong. Let them
watch you start the machine, watch you run the
software, watch how you interact with the software,
and watch what the software does in response to
your inputs

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 391

Bugs reporting
• Show me how to show myself

If you have to report a bug to a programmer who
can't be present in person, the aim of the exercise is
to enable them to reproduce the problem. You want
the programmer to run their own copy of the
program, do the same things to it, and make it fail in
the same way.
So tell them exactly what you did. If it's a graphical
program, tell them which buttons you pressed and
what order you pressed them in. If it's a program you
run by typing a command, show them precisely what
command you typed.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 392

Bugs reporting
• Works for me, what goes wrong?

Possibly the fault doesn't show up on every
computer; your system and theirs may differ in some
way. Possibly you have misunderstood what the
program is supposed to do, and you are both looking
at exactly the same display but you think it's wrong
and they know it's right.
Describe what happened. Tell them exactly what you
saw. Tell them why you think what you saw is wrong;
better still, tell them exactly what you expected to
see. If you say "and then it went wrong", you have
left out some very important information.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 393

Bugs reporting
• So then I tried...

Some users are like a mongoose (mangusta) backed into a
corner: with its back to the wall and seeing certain death
staring it in the face, it attacks frantically, because doing
something has to be better than doing nothing. This is not
well adapted to the type of problems computers produce.
Instead of being a mongoose, be an antelope. When an
antelope is confronted with something unexpected or
frightening, it freezes. It stays absolutely still and tries not
to attract any attention, while it stops and thinks and works
out the best thing to do (if antelopes had a technical
support line, it would be telephoning it at this point). Then,
once it has decided what the safest thing to do is, it does it.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 394

Bugs reporting
• I think the tachyon modulation must be wrongly

polarized
“Doctor, I need a prescription for Hydroyoyodyne”.
People know not to say that to a doctor: you describe
the symptoms, the actual discomforts and aches and
pains and rashes and fevers, and you let the doctor
do the diagnosis of what the problem is and what to
do about it.
It's the same with programmers. Providing your own
diagnosis might be helpful sometimes, but always
state the symptoms. The diagnosis is an optional
extra, and not an alternative to giving the symptoms.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 395

Bugs reporting
• That’s funny, I did it one a moment ago!

Most intermittent faults are not truly intermittent.
Most of them have some logic somewhere. Some
might occur when the machine is running out of
memory, some might occur when another program
tries to modify a critical file at the wrong moment,
and some might occur only in the first half of every
hour!
Try to remember as much detail as you can about
what you were doing to it when it did fall over, and if
you see any patterns, mention them. Anything you
can provide has to be some help.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 396

Bugs reporting
• So I loaded the disk on to my Windows...

Writing clearly is essential in a bug report. If the programmer can't
tell what you meant, you might as well not have said anything:
– Be specific. If you can do the same thing two different ways,

state which one you used. "I selected Load" might mean "I
clicked on Load" or "I pressed Alt-L". Say which you did.
Sometimes it matters.

– Be verbose. Give more information rather than less. If you say
too much, the programmer can ignore some of it. If you say too
little, they have to come back and ask more questions. One bug
report I received was a single sentence; every time I asked for
more information, the reporter would reply with another single
sentence. It took me several weeks to get a useful amount of
information, because it turned up one short sentence at a time.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 397

Bugs reporting
• So I loaded the disk on to my Windows...

– Be careful of pronouns. Don't use words like "it", or references
like "the window", when it's unclear what they mean. Consider
this: "I started FooApp. It put up a warning window. I tried to
close it and it crashed." It isn't clear what the user tried to close.
Did they try to close the warning window, or the whole of
FooApp? It makes a difference. Instead, you could say "I started
FooApp, which put up a warning window. I tried to close the
warning window, and FooApp crashed." This is longer and more
repetitive, but also clearer and less easy to misunderstand.

– Read what you wrote. Read the report back to yourself, and see
if you think it's clear. If you have listed a sequence of actions
which should produce the failure, try following them yourself, to
see if you missed a step.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 398

Debugging
First and more important rule of all:

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 399

Debugging
First and more important rule of all:

g++ -Wall Ex1.cpp -o Ex1
Ex1.cpp: In function “int main()”:
Ex1.cpp:30:4: error: expected “,” or “;” before “Float_t”
Ex1.cpp:36:26: error: “qt” was not declared in this scope

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 400

Debugging
First and more important rule of all:

g++ -Wall Ex1.cpp -o Ex1
Ex1.cpp: In function “int main()”:
Ex1.cpp:30:4: error: expected “,” or “;” before “Float_t”
Ex1.cpp:36:26: error: “qt” was not declared in this scope

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 401

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 402

Debugging, some tools
• strace
• ltrace
• ldd
• nm
• valgrind
• gdb/ddd

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 403

Debugging, strace
http://linux.die.net/man/1/strace

In the simplest case strace runs the
specified command until it exits. It intercepts and
records the system calls which are called by a
process and the signals which are received by a
process. The name of each system call, its
arguments and its return value are printed.

http://linux.die.net/man/1/strace

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 404

Debugging, strace
|Emi@marte ~>cat /dev/null

|Emi@marte ~>

|Emi@marte ~>strace cat /dev/null

execve("/bin/cat", ["cat", "/dev/null"], [/* 33 vars */]) = 0

brk(0) = 0x16776000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b5b4f81a000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b5b4f81b000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=127827, ...}) = 0

mmap(NULL, 127827, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2b5b4f81c000

close(3) = 0

open("/lib64/libc.so.6", O_RDONLY) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\220\332\1\3028\0\0\0"..., 832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=1718232, ...}) = 0

mmap(0x38c2000000, 3498328, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x38c2000000

mprotect(0x38c214e000, 2093056, PROT_NONE) = 0

mmap(0x38c234d000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x14d000) = 0x38c234d000

mmap(0x38c2352000, 16728, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x38c2352000

close(3) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b5b4f83c000

arch_prctl(ARCH_SET_FS, 0x2b5b4f83c6e0) = 0

mprotect(0x38c234d000, 16384, PROT_READ) = 0

mprotect(0x38c1e1c000, 4096, PROT_READ) = 0

munmap(0x2b5b4f81c000, 127827) = 0

brk(0) = 0x16776000

brk(0x16797000) = 0x16797000

open("/usr/lib/locale/locale-archive", O_RDONLY) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=56430176, ...}) = 0

mmap(NULL, 56430176, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2b5b4f83d000

close(3) = 0

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 3), ...}) = 0

open("/dev/null", O_RDONLY) = 3

fstat(3, {st_mode=S_IFCHR|0666, st_rdev=makedev(1, 3), ...}) = 0

read(3, "", 4096) = 0

close(3) = 0

close(1) = 0

exit_group(0) = ?

|Emi@marte ~>

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 405

Debugging, ltrace
http://linux.die.net/man/1/ltrace
ltrace is a program that simply runs the
specified command until it exits. It intercepts and
records the dynamic library calls which are called by
the executed process and the signals which are
received by that process. It can also intercept and
print the system calls executed by the program.Its
use is very similar to strace.

http://linux.die.net/man/1/ltrace

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 406

Debugging, ltrace

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 407

Debugging, ldd
http://linux.die.net/man/1/ldd
ldd prints the shared libraries required by each
program or shared library specified on the command
line.

http://linux.die.net/man/1/ldd

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 408

Debugging, ldd

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 409

Debugging, nm
http://linux.die.net/man/1/nm
nm lists the symbols from object files.

class methods

http://linux.die.net/man/1/nm

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 410

Debugging, valgrind
Not a standard installed program on ubuntu! ask
your system managers if you need it!
http://valgrind.org/
Valgrind is a GPL'd system for debugging and
profiling Linux programs. With Valgrind's tool
suite you can automatically detect many memory
management and threading bugs, avoiding hours of
frustrating bug-hunting, making your programs more
stable. You can also perform detailed profiling to
help speed up your programs.

http://valgrind.org/

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 411

Debugging, valgrind

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 412

Debugging, the ultimate debugger: GDB/DDD

http://linux.die.net/man/1/gdb
The purpose of a debugger such as GDB is to allow you to see

what is going on ''inside'' another program while it executes-or
what another program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support
of these) to help you catch bugs in the act:

Start your program, specifying anything that might affect its
behavior.

• Make your program stop on specified conditions.
• Examine what has happened, when your program has stopped.
• Change things in your program, so you can experiment with

correcting the effects of one bug and go on to learn about
another.

You can use GDB to debug programs written in C, C++, and
Modula-2.

DDD is a graphic interface to GDB (and other debuggers):
http://www.gnu.org/software/ddd/

http://linux.die.net/man/1/gdb
http://www.gnu.org/software/ddd/

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 413

Debugging, GDB/DDD how to use it

1. compile your executable and libraries with
the option “-g”, for example:

g++ -Wall -g -I./ -L./ -fPIC –c TrapeziumO.cpp

g++ -Wall -g -I./ -L./ -shared TrapeziumO.o -o libTrapeziumO.so

g++ -Wall -g -I./ -L./ -c classTestO.cpp -o classTestO.o

g++ -Wall -g -I./ -L./ libTrapeziumO.so classTestO.o -o classTestO

2. run “ddd executable”
cd /home/mocchiut/scripts/classExample

ddd ./classTest

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 414

Debugging, GDB/DDD how to use it

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 415

make: makefiles
• Makefiles are a simple way to organize code compilation
• Complex and multiple compilation lines are coded in a text file
(Makefile)
• Easy compilation from the prompt by giving the command
“make”
test.cpp
#include <iostream>
using namespace std;

int main() {
cout << "ciccio" << endl;
for (int i = 0; i < 10; i++) {

cout << " i " << i << endl;
}
return 0;

}
bash> g++ -Wall test.cpp –o test

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 416

make: makefiles
Makefile:

hello: test.cpp
g++ –Wall test.cpp -o test

bash> make hello

The basic makefile is composed
of:

target: dependencies
[tab] system command

http://mrbook.org/tutorials/make/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

http://mrbook.org/tutorials/make/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 417

make: makefiles
Makefile:

hello: test.cpp
g++ –Wall test.cpp -o test

bash> make hello

This is a “tab”, not 8 spaces!

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 418

make: makefiles
Makefile:

CC=g++
CFLAGS=-Wall
hello: test.cpp

$(CC) $(CFLAGS) test.cpp -o test

bash> make hello

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 419

make: makefiles
Makefile:

CC=g++
CFLAGS=-Wall
hello: test.o

$(CC) $(CFLAGS) test.o -o test

bash> make hello

By putting the object files - test.o - in the
dependency list and in the rule, make knows it
must first compile the .cpp versions individually,
and then build the executable

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 420

make: makefiles
Makefile:

CC=g++
CFLAGS=-Wall
if any test.h exists put it here
DEPS = test.h

%.o: %.cpp $(DEPS)
$(CC) -c -o $@ $< $(CFLAGS)

hello: test.o
$(CC) $(CFLAGS) test.o -o test

bash> make hello

The rule says that the .o file depends upon the .cpp version of the file and the .h
files included in the DEPS macro. The rule then says that to generate the .o file,
make needs to compile the .cpp file. The -o $@ says to put the output of the
compilation in the file named on the left side of the :, the $< is the first item in
the dependencies list

rule that applies to all files ending in the .o
suffix

commented lines
start with #

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 421

make: makefiles
Makefile:

CC=g++
CFLAGS=-Wall
if any test.h exists put it here
DEPS = test.h
OBJ = test.o
%.o: %.cpp $(DEPS)

$(CC) -c -o $@ $< $(CFLAGS)

hello: $(OBJ)
$(CC) $(CFLAGS) $^ -o $@

bash> make hello

The $^ represents the right side of the :

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 422

make: cmake
• cmake is a command that generates the makefiles given a set of
text files properly and simply formatted.
• it permits (and require) a good organization of files in directories
and subdirectories.

http://www.cmake.org/

http://www.cmake.org/cmake-tutorial

http://www.elpauer.org/stuff/learning_cmake.pdf

http://www.cmake.org/
http://www.cmake.org/cmake-tutorial/
http://www.elpauer.org/stuff/learning_cmake.pdf

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 423

Cmake: simplest example
• one executable: hello.cpp

#include <iostream>
using namespace std;

int main(){
cout<<"hello world!\n";
return 0;

}

bash# ls
hello.cpp

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 424

Cmake: simplest example
Suggestion: create a good directory tree, for example:

bash# ls -l
drwxr-x--- 2 mocchiut users 4.0K Apr 15 22:02 build/
drwxr-x--- 5 mocchiut users 4.0K Apr 15 22:01 installed/
drwxr-x--- 3 mocchiut users 4.0K Apr 15 21:48 trapezio/

build : directory needed only for compilation of programs
installed : directory where project files (executables, libraries,
headers,...) are installed
trapezio : directory containing the project source files only

empty at the beginning

source code

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 425

Cmake: simplest example
Suggestion: create a good directory tree, for example:

bash# ls build
bash# ls installed
bash# ls trapezio
hello.cpp
bash#

build : directory needed only for compilation of programs
installed : directory where project files (executables, libraries,
headers,...) are installed
trapezio : directory containing the project source files only

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 426

Cmake: simplest example
Step1: create the main cmake file in the project main directory

bash# cd trapezio
bash# gedit CMakeLists.txt

done! you are ready to compile hello.cpp!!

cmake files MUST be called “CMakeLists.txt”

cmake_minimum_required (VERSION 2.6)
project (Trapezio)
add_executable(hello hello.cpp)

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 427

Cmake: simplest example
Step2: go to the compilation directory (it can be anywhere on the
disk and it can be called as you prefer), we created “build”, so:
bash# cd ../
bash# cd build
bash# cmake /full/path/to/trapezio

bash# make

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 428

Cmake: simplest example
Step3: inside the compilation directory give the command:
bash# make

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 429

Cmake: how to install files
Edit the CMakeLists.txt:

bash# cd trapezio
bash# gedit CMakeLists.txt

add the red line and go back to the compilation directory

cmake_minimum_required (VERSION 2.6)
project (Trapezio)
add_executable(hello hello.cpp)

install (TARGETS hello DESTINATION bin)

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 430

Cmake: how to install
Go to the compilation directory:
bash# cd ../
bash# cd build
bash# cmake -DCMAKE_INSTALL_PREFIX=/full/path/to/installed/ /full/path/to/trapezio

bash# make all install

bash# ls -R /full/path/to/installed/
/full/path/to/installed/:
bin/

/full/path/to/installed/bin:
hello*

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 431

Cmake: how to install

NB: to fully exploit the potentiality of installation edit the file
“.bashrc” in your home directory and add something like:

export PATH=/full/path/to/installed/bin:$PATH
export LD_LIBRARY_PATH=/full/path/to/installed/lib:$LD_LIBRARY_PATH

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 432

Cmake: libraries how to
Assume to have:
• a class made of header and implementation files
• a program using that class
• another independent program

for example:
bash# cd trapezio
bash# ls
hello.cpp classTestI.cpp Polygon.cpp Polygon.h

we want to create a shared library, compile the two programs and
properly install everything.

Polygon.h is included in classTestI.cpp

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 433

Cmake: libraries how to
CMakeLists.txt will be:
cmake_minimum_required (VERSION 2.6)
project (Trapezio)

include_directories("${PROJECT_SOURCE_DIR}")

add_executable(hello hello.cpp)

add_executable(classTestI classTestI.cpp)
target_link_libraries (classTestI Polygon)

add_library(Polygon SHARED Polygon.cpp)

install (FILES Polygon.h DESTINATION include)
install (TARGETS Polygon DESTINATION lib)

install (TARGETS hello DESTINATION bin)
install (TARGETS classTestI DESTINATION bin)

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 434

Cmake: libraries how to
CMakeLists.txt will be:
cmake_minimum_required (VERSION 2.6)
project (Trapezio)

include_directories("${PROJECT_SOURCE_DIR}")

add_executable(hello hello.cpp)

add_executable(classTestI classTestI.cpp)
target_link_libraries (classTestI Polygon)

add_library(Polygon SHARED Polygon.cpp)

install (FILES Polygon.h DESTINATION include)
install (TARGETS Polygon DESTINATION lib)

install (TARGETS hello DESTINATION bin)
install (TARGETS classTestI DESTINATION bin)

look for headers in the project directory

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 435

Cmake: libraries how to
CMakeLists.txt will be:
cmake_minimum_required (VERSION 2.6)
project (Trapezio)

include_directories("${PROJECT_SOURCE_DIR}")

add_executable(hello hello.cpp)

add_executable(classTestI classTestI.cpp)
target_link_libraries (classTestI Polygon)

add_library(Polygon SHARED Polygon.cpp)

install (FILES Polygon.h DESTINATION include)
install (TARGETS Polygon DESTINATION lib)

install (TARGETS hello DESTINATION bin)
install (TARGETS classTestI DESTINATION bin)

the executable classTestI will need to be
linked to a library called libPolygon.so

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 436

Cmake: libraries how to
CMakeLists.txt will be:
cmake_minimum_required (VERSION 2.6)
project (Trapezio)

include_directories("${PROJECT_SOURCE_DIR}")

add_executable(hello hello.cpp)

add_executable(classTestI classTestI.cpp)
target_link_libraries (classTestI Polygon)

add_library(Polygon SHARED Polygon.cpp)

install (FILES Polygon.h DESTINATION include)
install (TARGETS Polygon DESTINATION lib)

install (TARGETS hello DESTINATION bin)
install (TARGETS classTestI DESTINATION bin)

create a shared library called libPolygon.so
from file Polygon.cpp

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 437

Cmake: how to install
Go to the compilation directory:
bash# cd ../
bash# cd build
bash# cmake -DCMAKE_INSTALL_PREFIX=/full/path/to/installed/ /full/path/to/trapezio

bash# make all install
bash# ls -R /full/path/to/installed/
/full/path/to/installed/:
bin/ lib/ include/

/full/path/to/installed/bin:
classTestI* hello*

/full/path/to/installed/lib:
libPolygon.so

/full/path/to/installed/include:
Polygon.h

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 438

Standard Template Library (STL)

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 439

Templates

Suppose you write a function that prints an
input number multiplied by two:
void PrintTwice(int data) {

cout << "Twice is: " << data * 2 << endl;

}

Which can be called passing an int:

PrintTwice(120); // 240

http://www.codeproject.com/Articles/257589/An-Idiots-Guide-to-Cplusplus-Templates-Part-1

http://www.codeproject.com/Articles/257589/An-Idiots-Guide-to-Cplusplus-Templates-Part-1

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 440

Templates
Now, if you want to print double of a double, you

would overload this function as:
void PrintTwice(double data) {
cout << "Twice is: " << data * 2 <<
endl;

}

Interestingly, class type ostream (the type of cout
object) has multiple overloads for operator <<
for all basic data-types. Therefore, same/similar
code works for both int and double, and no
change is required for our PrintTwice overloads
– yes, we just copy-pasted it.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 441

Templates
void PrintTwice(int data) {

cout << "Twice is: " << data * 2 << endl;
}
void PrintTwice(double data) {

cout << "Twice is: " << data * 2 << endl;
}
This is one of the many situations where we can utilize the groovy

feature provided by the C++ language: Templates!
Templates are of two types:
• Function Templates
• Class Templates
C++ templates is a programming model that allows plugging-in of

any data-type to the code (templated code). Without template,
you would need to replicate same code all over again and again,
for all required data-types. And obviously, as said before, it
requires code maintenance.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 442

Templates
Here is the templated function PrintTwice:
template<class TYPE>

void PrintTwice(TYPE data) {

cout<<"Twice: " << data * 2 << endl;

}

The first line of code:
template<class TYPE>
tells the compiler that this is a function-template. The actual

meaning of TYPE would be deduced by compiler
depending on the argument passed to this function. Here,
the name, TYPE is known as template type parameter.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 443

Templates
PrintTwice(124);
TYPE would be replaced by compiler as int, and compiler would instantiate this template-

function as:
void PrintTwice(int data) {
cout<<"Twice: " << data * 2 << endl;

}
And, if we call this function as:
PrintTwice(4.5547);
It would instantiate another function as:
void PrintTwice(double data) {
cout<<"Twice: " << data * 2 << endl;

}
It means, in your program, if you call PrintTwice function with int and double parameter

types, two instances of this function would be generated by compiler:
void PrintTwice(int data) { ... }
void PrintTwice(double data) { ... }
Yes, the code is duplicated. But these two overloads are instantiated by the compiler and

not by the programmer. The true benefit is that you need not to do copy-pasting the
same code, or to manually maintain the code for different data-types, or to write up a
new overload for new data-type that arrives later. You would just provide a template of
a function, and rest would be managed by compiler.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 444

Templates
template<class TYPE>

TYPE Add(TYPE n1, TYPE n2) {

TYPE result;

result = n1 + n2;

return result;

}

Under the assumption that class TYPE:
• is having a default constructor (so that TYPE result; is

valid)
• supports the usage of operator + (so that n1+n2 is valid)
• has an accessible copy/move-constructor (so that return

statement succeeds)

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 445

Standard Template Library
What is the STL?
It's a sophisticated and powerful library of template classes and template functions
that implement many common data structures and algorithms, and forms part of
the C++ Standard Library.

Why should a C++ programmer be interested in the STL?
Because the STL embodies the concept of reusable software components, and
provides off-the-shelf solutions to a wide variety of programming problems. It is
also extensible, in the sense that any programmer can write new software
(containers and algorithms, for example), that "fit in" to the STL and work with the
already-existing parts of the STL, provided the programmer follows the
appropriate design guidelines.

What is the design philosophy of the STL?
The STL exemplifies generic programming rather than object-oriented
programming, and derives its power and flexibility from the use of templates,
rather than inheritance and polymorphism. It also avoids new and delete for
memory management in favor of allocators for storage allocation and deallocation.
The STL also provides performance guarantees, i.e., its specification requires that
the containers and algorithms be implemented in such a way that a user can be
confident of optimal runtime performance independent of the STL implementation
being used.

http://cs.stmarys.ca/~porter/csc/ref/stl/

http://cs.stmarys.ca/%7Eporter/csc/ref/stl/

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 446

Standard Template Library

The STL has things called containers, iterators
and algorithms. Our purpose here will be to
see how these three things come together in
what might be called “typical STL fashion”.

Fortunately, we can begin by drawing some
analogies between STL containers, iterators
and algorithms and things you already know
about.

http://cs.stmarys.ca/~porter/csc/ref/stl/ – tutorial introduction

http://cs.stmarys.ca/%7Eporter/csc/ref/stl/

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 447

STL – analogies
• We begin by noting that, at a superficial level at least, any

STL container is analogous to an array, in that it is
something that allows you to store and retrieve elements.
All STL containers are implemented by template classes,
For example, the STL has a container called vector, which
the most array-like of all the STL containers, and in in fact it
is often billed as a “better array”.

arrayscontainers

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 448

STL – analogies
• Your C++ experience will have provided you with an

opportunity to use pointers to "point at" and manipulate
array elements. STLiterators are used to "point at" and
manipulate STL container elements in a manner quite
analogous to the way in which pointers are used in the
array context. But ... each STL container class will have its
own kind of iterator, one which is most appropriate for that
particular container.

pointersSTLiterators

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 449

STL – analogies
• And algorithms ... well, you know what they are. Often they

come in the form of stand-alone or "free" functions which
usually take in some data via a parameter list and perform
some task and/or return one or more computed values. And
all of this is true of STL algorithms as well. But ... where
STL algorithms get their additional power and flexibility is
from the fact that many of their parameters are STL
iterators rather than STL containers. Since these iterators
can point at the elements of many different kinds of STL
containers this means that STL algorithms have a "built-in"
ability to deal with a variety of containers containing a
variety of element types. In other words, an algorithm can
work on the elements of a container without knowing or
caring what kind of container it is.

functionsalgorithms

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 450

STL – vector example
int a[10];

declaration of an ordinary C++ “array of integers” of size 10, a
place to store 10 values of type int.

Using STL we can do:
#include <vector>

...

vector<int> v(10);

declaration of a STL-style “vector of integers” of size 10, a
place to store 10 values of type int.

So... what is the difference?

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 451

STL – vector example, index type
The elements of v are v[0], v[1], ... v[9], just as the

elements of a are a[0], a[1], ... a[9], and both are
used in the same way. But even here there is a “hidden” and
potentially confusing difference to be aware of in the type of the
index variable.

To output the values in the array a one would normally use a loop
idiom like the following:

for (int i=0; i<10; i++) cout << a[i];
With STL we must write:
for (vector<int>::size_type i=0; i<10; i++) cout

<< v[i];
The reason for this is that the int data type has values (all the

negative ones) that cannot possibly be valid indices for a vector.
Thus the vector class would like to be sure that we always use
non-negative index values when accessing vector components
and provides for us an alias called size_type (an unsigned
integer type) for just this purpose.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 452

STL – vector example, self-knowledge
A vector, unlike an array, has self-knowledge: it knows how

big it is.
When outputting values for an array, the programmer needs to

know the size of the array. Another advantage of a vector
over an array is that (because the vector is a class object)
the vector knows its own size.

Hence we can (and should) write:
for (vector<int>::size_type i=0; i<v.size(); i++)

cout << v[i];

which will work for any vector of whatever size.
We no longer need to know and remember that the size of the

vector v is 10, in this example.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 453

STL – vector example, initialization

Unlike a, v is a class object, and we have used one
of several constructors from the vector container
class to create v.

Among other things, this means that each element
of v is guaranteed to be initialized with the default
value of the component type (0 here, since the
component type is int).

On the other hand, the elements of a may or may
not be initialized to 0, depending on where the
declaration is located in the program, for example.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 454

STL – vector example, variable size
Once declared as above, the size of a is fixed and cannot

be altered later during the program execution.
But the vector class contains a push_back() member

function which can be used like this
v.push_back(17);
to add the value 17 (for example) to the end of the vector.
After execution of this statement the size of the

vector v has increased to 11 and v[10] contains the
value 17 (remember that the first 10 values of v are all
0, and are found in the locations with indices in the
range 0,...,9).

This ability of a vector to “grow” in order to accommodate
the addition of new values to its “back end” is one of
the major advantages of vectors over arrays.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 455

STL – vector example, init with an array
Although declaring an empty array, as in
int a[0];
makes no sense, since nothing can ever be stored in it, declaring an empty vector and then adding

some values makes perfect sense:
vector<int> v; //construct an empty vector to hold some integers
v.push_back(3); // v now contains 3 in v[0]
v.push_back(6); // v now contains 3 in v[0], 6 in v[1]
v.push_back(4); // v now contains 3 in v[0], 6 in v[1], 4 in v[2]
This is clearly a rather laborious and inconvenient way to get values into a vector. Since an array

containing the same values can be initialized with the statement
int a[3] = {3, 6, 4};
a useful way of combining the old and the new to initialize a vector with a sequence of specific values is

illustrated by the following two lines of code:
int a[3] = {3, 6, 4}; //initialize array a
vector<int> v(a, a + (sizeof(a)/sizeof(int))); //construct v with values

from a which works independently of the size of the array a.

This vector definition (declaration with initialization) requires a few words of explanation. We are using
another constructor from the vector class, this time the one that takes two input parameters which
are "iterators" (or in this case, ordinary pointers acting as iterators) pointing at the beginning
element, and "one-past-the-last" element of a range of values to be placed in the newly constructed
vector.

In this case the first parameter (a), is a pointer to the first element of the array a, and the second
parameter (a+(sizeof(a)/sizeof(int))) is a pointer to the "first position beyond the last
element" of the array a. This notion of a "range" of elements being determined by a pair of
iterators (or pointers) pointing to the first element and "one-past-the-last" element (as opposed to
the last element itself) of a sequence of values permeates the STL and is something beginning STL
programmers need to get a handle on right up front.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 456

STL – vector example, init with an array
int a[3] = {3, 6, 4}; //initialize array a

vector<int> v(a, a + (sizeof(a)/sizeof(int)); //construct v with
values from a which works independently of the size of the
array a.

In this case the first parameter (a), is a pointer to the first element of the array a,
and the second parameter (a+(sizeof(a)/sizeof(int))) is a pointer to
the "first position beyond the last element" of the array a. This notion of a
"range" of elements being determined by a pair of iterators (or pointers) pointing to
the first element and "one-past-the-last" element (as opposed to the last element
itself) of a sequence of values permeates the STL and is something beginning STL
programmers need to get a handle on right up front.

a[0] a[1] a[2]
3 6 4

0x00 0x04 0x08 0x0C pointers to array elements
a a+1 a+2 a+3

sizeof(int) = 4 bytes
sizeof(a) = 4 bytes times 3 = 12 bytes

so a+(sizeof(a)/sizeof(int)=3a

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 457

STL – vector example, iterators
The STL vector class provides an iterator which can be used to access the

component values of any vector in the same way that ordinary pointers
are used to access array elements.

The member function begin() returns an iterator object pointing to the
first component of the vector on which it is invoked and the member
function end() returns an iterator object pointing to one-past-the-last
component.

The fact that it is one-past-the-last and not the last makes it convenient
when writing a loop to process all vector elements, as in the following
example.

int a[3] = {3, 6, 4};

vector<int> v(a, a+(sizeof(a)/sizeof(int)));

for (vector<int>::iterator p=v.begin(); p!=v.end();
p++) cout << *p << " "; //output all values of v

Note that the iterator object p is incremented in the same way that an
ordinary array pointer would be incremented, and that *p is used to
dereference p and get access to the value to which p is pointing.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 458

STL – vector example, algorithms
One particularly nice feature of the STL is that it provides a large

collection of algorithms that perform many of the common
programming tasks that programmers frequently need to have done
in their programs.

Most of those algorithms are available from the <algorithm> header,
but a few are located in the <numeric> header.

To quickly get a sense of how this works, look at this code
#include <algorithm>

...

sort(v.begin(), v.end());

which shows the STL sort algorithm being used to sort the values in a
vector. By default this algorithm sorts in ascending order and will
work for a vector of any items whatsoever, as long as operator
<() is defined for the components of v, so that the sort algorithm
knows what it means for one component to precede another.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 459

STL – vector example, assignements and comparisons

A number of other operations are available for vectors that that
have no counterpart when you are working with arrays.

For example, it is possible to assign one vector to another, as in
v1 = v2; // let v1 be (3,6,4), v2 is set to be
(3,6,4) same as v1 (you need a loop using
arrays!)

and the relational operators also work with vectors, so that you
can make tests like

if (v1 == v2) ...

if (v1 < v2) ...

provided you know what v1 (operator) v2 means.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 460

Documentation, doxygen

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 461

Doxygen
Not a standard installed program on ubuntu! ask
your system managers if you need it!
http://www.stack.nl/~dimitri/doxygen/
Doxygen is a documentation system for C++, C,
Java, Objective-C, Python, IDL (Corba and Microsoft
flavors), Fortran, VHDL, PHP, C#, and to some
extent D.

http://www.stack.nl/%7Edimitri/doxygen/

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 462

Doxygen
Doxygen can generate an on-line documentation
browser (in HTML) and/or an off-line reference
manual (in Latex) from a set of documented source
files. There is also support for generating output in
RTF (MS-Word), PostScript, hyperlinked PDF,
compressed HTML, and Unix man pages. The
documentation is extracted directly from the
sources, which makes it much easier to keep the
documentation consistent with the source code.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 463

Doxygen, source commenting

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 464

Doxygen, source commenting

DOXYGEN commands!

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 465

Running doxygen

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 466

Running doxygen

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 467

Doxygen, output

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 468

Doxygen, output

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 469

Doxygen, output

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 470

Repositories

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 471

Repositories, CVS and GIT
CVS and GIT (and many others! e.g. RCS, subversion, perforce,
etc.) are version control system.
With version control system is meant the management of changes
to documents, computer programs, large web sites, and other
collections of information. Changes are usually identified by a
number or letter code, termed the “revision number”, “revision
level”, or simply “revision”.
For example, an initial set of files is “revision 1”. When the first
change is made, the resulting set is “revision 2”, and so on. Each
revision is associated with a timestamp and the person making the
change. Revisions can be compared, restored, and with some
types of files, merged.
The need for a logical way to organize and control revisions has
existed for almost as long as writing has existed, but revision
control became much more important, and complicated, when the
era of computing began. The numbering of book editions and
of specification revisions are examples that date back to the print-
only era. Today, the most capable (as well as complex) revision
control systems are those used in software development, where a
team of people may change the same files.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 472

Repositories, CVS and GIT
Revisions can be compared, restored, and with
some types of files, merged.
The need for a logical way to organize and control
revisions has existed for almost as long
as writing has existed, but revision control became
much more important, and complicated, when the
era of computing began. The numbering of book
editions and of specification revisions are examples
that date back to the print-only era.
Today, the most capable (as well as complex)
revision control systems are those used in software
development, where a team of people may change
the same files.

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 473

Repositories, CVS and GIT
CVS: http://cvs.nongnu.org/
CVS was one of the most used version control
system till some years ago.

GIT: http://git-scm.com/
GIT is very actual and interesting, you can try it from
the web browser by clicking here:
http://try.github.com

http://cvs.nongnu.org/
http://git-scm.com/
http://try.github.com/

Emiliano Mocchiutti, INFN Trieste Programmazione C++ per la Fisica Università degli Studi di Trieste, 2016/2017 474

2017/03/24 – take home messages
• Avoid crash!
• READ WARNING AND ERROR MESSAGES
• CMake easy and comfty... but you need to be clean
and make order in your dirs

	Outline 2017/03/24
	Avoid crashing (whenever possible)
	Avoid crashing (whenever possible)
	Avoid crashing (whenever possible)
	Avoid crashing (whenever possible)
	Bugs reporting
	Bugs reporting
	Bugs reporting
	Bugs reporting
	Bugs reporting
	Bugs reporting
	Bugs reporting
	Bugs reporting
	Bugs reporting
	Bugs reporting
	Debugging
	Debugging
	Debugging
	Diapositiva numero 401
	Debugging, some tools
	Debugging, strace
	Debugging, strace
	Debugging, ltrace
	Debugging, ltrace
	Debugging, ldd
	Debugging, ldd
	Debugging, nm
	Debugging, valgrind
	Debugging, valgrind
	Debugging, the ultimate debugger: GDB/DDD
	Debugging, GDB/DDD how to use it
	Debugging, GDB/DDD how to use it
	make: makefiles
	make: makefiles
	make: makefiles
	make: makefiles
	make: makefiles
	make: makefiles
	make: makefiles
	make: cmake
	Cmake: simplest example
	Cmake: simplest example
	Cmake: simplest example
	Cmake: simplest example
	Cmake: simplest example
	Cmake: simplest example
	Cmake: how to install files
	Cmake: how to install
	Cmake: how to install
	Cmake: libraries how to
	Cmake: libraries how to
	Cmake: libraries how to
	Cmake: libraries how to
	Cmake: libraries how to
	Cmake: how to install
	Standard Template Library (STL)
	Templates
	Templates
	Templates
	Templates
	Templates
	Templates
	Standard Template Library
	Standard Template Library
	STL – analogies
	STL – analogies
	STL – analogies
	STL – vector example
	STL – vector example, index type
	STL – vector example, self-knowledge
	STL – vector example, initialization
	STL – vector example, variable size
	STL – vector example, init with an array
	STL – vector example, init with an array
	STL – vector example, iterators
	STL – vector example, algorithms
	STL – vector example, assignements and comparisons
	Documentation, doxygen
	Doxygen
	Doxygen
	Doxygen, source commenting
	Doxygen, source commenting
	Running doxygen
	Running doxygen
	Doxygen, output
	Doxygen, output
	Doxygen, output
	Repositories
	Repositories, CVS and GIT
	Repositories, CVS and GIT
	Repositories, CVS and GIT
	2017/03/24 – take home messages

