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Numerical integration - II

- other deterministic methods
- errors in deterministic methods

- comparison of efficiency between 
deterministic and  Monte Carlo methods
- Central Limit Theorem and related algorithms



Other deterministic 
methods



(at variance with these methods, in MC methods such as 
the ‘importance sampling’, we choose only points, not weights)

∫ b

a

f(x)dx ≈ FN =
N∑

i=1

vif(xi)

...

Numerical integration;
other deterministic methods:

• in the simplest equally-spaced-point methods, we 
choose weights to calculate the average of the function:

rectangular rule: 

trapezoidal rule:
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Numerical integration;
other deterministic methods:

idea: choose not only weights but also points: 
more degrees of freedom!

xi =?, vi =?

∫ b

a

f(x)dx ≈ FN =
N∑

i=1

vif(xi)

• in the simplest equally-spaced-point methods, we 
choose weights to calculate the average of the function:



Another deterministic method:
Gaussian quadrature - I 

Consider

∫
f(x)dx =

∫
W (x)F (x)dx ≈

N∑
j=1

wjF (xj) =
N∑

j=1

wj
f(xj)

W (xj)
=

N∑
j=1

vjf(xj)

∫ b

a

f(x)dx and a function W (x) defined on [a, b]

We can always formally write: 

(This will be convenient in particular if the resulting           is smooth, 

but not necessarily)    
F (x)

vj = wj/W (xj)

wj != W (xj)

to be determined, depending on W(x) (*)

(*) in general:

with



Another deterministic method:
Gaussian quadrature - II

For a given         , the N points and weights
can be chosen to make the approximate 
relationship (*) an exact equality if        is a 
2N-1 degree polynomial.

W (x) {xj}, {wj}

Consider

∫
f(x)dx =

∫
W (x)F (x)dx ≈

N∑
j=1

wjF (xj) =
N∑

j=1

wj
f(xj)

W (xj)
=

N∑
j=1

vjf(xj)

∫ b

a

f(x)dx and a function W (x) defined on [a, b]

(*)

F (x)



Another deterministic method:
Gaussian quadrature - III

∫
W (x)F (x)dx =

N∑
j=1

wjF (xj)Consider

a 2N - 1 degree polynomial.  Which are the N                 ?  {xj}, {wj}

If  there is a set of polynomials             which are orthogonal 
in the same interval and for the same weight function W(x):    

the points          are exactly the roots of the    
polynomials.  The weights          are related to them, but 
in general                      .

{xi} pN (x)

F (x)

〈pN |pN ′〉W = δN,N ′ , i.e.,

∫ x2

x1

W (x)pN (x)pN ′(x)dx = δN,N ′

{pN (x)}

x1

x2

{wj}
wj != W (xj)



Consider

Gauss-Legendre quadrature
∫ x2

x1

W (x)F (x)dx =
N∑

j=1

wjF (xj)

If: W (x) = 1 and x1 = −1, x2 = 1

the Legendre polynomials defined by:

(j + 1)Pj+1 = (2j + 1)xPj − jPj−1

                 are such that                        and{xj}, {wj} PN (xi) = 0

{PN (x)}

wi =
2

(1 − x2
i
)[P ′

N
(xi)]2

, 

are orthogonal in [-1,1] with W(x)=1;

a 2N - 1 degree polynomial. F (x)with



polynomials are odd or even in x  ➱  roots are even 



Legendre polynomials in Physics: examples of applications

1)  For a polynomial expansion of a gravitational or coulombic potential:

2)  

if the :

;



3) :



In practice, we choose W(x) and N and use the
set of N points and weights                     for the 
approximate integration:

Gaussian quadrature

{xj}, {wj}

∫
f(x)dx =

∫
W (x)F (x)dx ≈

N∑
j=1

wjF (xj) =
N∑

j=1

wj
f(xj)

W (xj)
=

N∑
j=1

vjf(xj)



Gauss-Legendre quadrature
If:

degree of the polynomial

x1 = −1, x2 = 1For:

exactly integrable

The integration in an interval [a,b] different from [-1,1] 
(“old”) can be easily done performing the scaling:

xnew =
b − a

2
xold +

b + a

2
wnew =

b − a

2
woldand

N



e.g. GAULEG(                     ) of Numerical Recipes
which, given             , provides as output the arrays

Gauss-Legendre quadrature
If:

In case of classical, well known, orthogonal polynomials, 
ready-to-use subroutines exist for the computation of
Abscissas and Weights {xj}, {wj}

x1, x2, x, w, n

x1, x2, n x(n), w(n)



on 
$/home/peressi/comp-phys/VI-integr  
[do: $cp /home/peressi/.../VI-integr/* .]
and https://moodle2.units.it/

gauleg-IIorder.f90  
gauleg-others.f90 (generation of points up to 15 points 
in [-1,1] using GAULEG  adapted from “Numerical Recipes” (self-
contained) and some tests for easy-to-integrate functions)

In the subdirectory:  gauss-nr90/
find the original routine from “Numerical Recipes” 
and related external routines/modules/interfaces 
and a main program for test (see following slide)

Some programs: 



Use of GAULEG:
In order to use the routines of Numerical Recipes, you have to compile
and link the main program with:
- the subroutine gauleg.f90 which gives points and abscissas
- nrtype.f90 containing type declarations;
- nrutil.f90 containing moduli and utilities;
- nr.f90  containing (through the interfaces) the conventions
to call the subroutines with the main program
i) You must first compile these files with the option “-c”: 
this produces  .mod and  .o (the objects).
ii) In a second step compile the main program.
iii) Finally you link all the files *.o and produce the executable:

g95 -c nrtype.f90 nrutil.f90 nr.f90 gauleg.f90
g95 -c gauleg_nr_test.f90
g95 -o a.out gauleg_nr_test.o nrtype.o nrutil.o nr.o gauleg.o

Gauss-Legendre from Numerical Recipes
If:



gauleg.f90 from Numerical Recipes

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp
INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: xl,xm
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauleg’)
m=(n+1)/2
xm=0.5_dp*(x2+x1)
xl=0.5_dp*(x2-x1)
z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp))
unfinished=.true.
do its=1,MAXIT

where (unfinished)
p1=1.0
p2=0.0

end where
do j=1,n

where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j

end where
end do
where (unfinished)

pp=n*(z*p1-p2)/(z*z-1.0_dp)
z1=z
z=z1-p1/pp
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)
x(1:m)=xm-xl*z
x(n:n-m+1:-1)=xm+xl*z
w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2)
w(n:n-m+1:-1)=w(1:m)

END SUBROUTINE gauleg
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gauleg.f90 from Numerical Recipes

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp
INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: xl,xm
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauleg’)
m=(n+1)/2
xm=0.5_dp*(x2+x1)
xl=0.5_dp*(x2-x1)
z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp))
unfinished=.true.
do its=1,MAXIT

where (unfinished)
p1=1.0
p2=0.0

end where
do j=1,n

where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j

end where
end do
where (unfinished)

pp=n*(z*p1-p2)/(z*z-1.0_dp)
z1=z
z=z1-p1/pp
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)
x(1:m)=xm-xl*z
x(n:n-m+1:-1)=xm+xl*z
w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2)
w(n:n-m+1:-1)=w(1:m)

END SUBROUTINE gauleg
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...

...

...



nrtype.f90 from Numerical Recipes

MODULE nrtype
INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)
INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))
INTEGER, PARAMETER :: LGT = KIND(.true.)
REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp
TYPE sprs2_sp

INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp
TYPE sprs2_dp

INTEGER(I4B) :: n,len
REAL(DP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_dp
END MODULE nrtype

nr.f90 from Numerical Recipes

MODULE nr
INTERFACE

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w

END SUBROUTINE gauleg
END INTERFACE
! ... the original file contains several other INTERFACES ...

END MODULE nr

9

nrtype.f90 from Numerical Recipes

MODULE nrtype
INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)
INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))
INTEGER, PARAMETER :: LGT = KIND(.true.)
REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp
TYPE sprs2_sp

INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp
TYPE sprs2_dp

INTEGER(I4B) :: n,len
REAL(DP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_dp
END MODULE nrtype

nr.f90 from Numerical Recipes

MODULE nr
INTERFACE

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w

END SUBROUTINE gauleg
END INTERFACE
! ... the original file contains several other INTERFACES ...

END MODULE nr
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nrtype.f90 from Numerical Recipes

MODULE nrtype
INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)
INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))
INTEGER, PARAMETER :: LGT = KIND(.true.)
REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp
TYPE sprs2_sp

INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp
TYPE sprs2_dp

INTEGER(I4B) :: n,len
REAL(DP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_dp
END MODULE nrtype

nr.f90 from Numerical Recipes

MODULE nr
INTERFACE

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w

END SUBROUTINE gauleg
END INTERFACE
! ... the original file contains several other INTERFACES ...

END MODULE nr
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...

...

...

...



nrtype.f90 from Numerical Recipes

MODULE nrtype
INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)
INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))
INTEGER, PARAMETER :: LGT = KIND(.true.)
REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp
TYPE sprs2_sp

INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp
TYPE sprs2_dp

INTEGER(I4B) :: n,len
REAL(DP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_dp
END MODULE nrtype

nr.f90 from Numerical Recipes

MODULE nr
INTERFACE

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w

END SUBROUTINE gauleg
END INTERFACE
! ... the original file contains several other INTERFACES ...

END MODULE nr
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nrutil.f90 (Here only for: array copy, arth, assert eq, nrerror)

MODULE nrutil
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8
INTERFACE array_copy

MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i
END INTERFACE
INTERFACE assert_eq

MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE
INTERFACE arth

MODULE PROCEDURE arth_r, arth_d, arth_i
END INTERFACE
! ... l’originale contiene ancora molte altre INTERFACEs....

CONTAINS

SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_r

SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_d

SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
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nrutil.f90 (Here only for: array copy, arth, assert eq, nrerror)

MODULE nrutil
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8
INTERFACE array_copy

MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i
END INTERFACE
INTERFACE assert_eq

MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE
INTERFACE arth

MODULE PROCEDURE arth_r, arth_d, arth_i
END INTERFACE
! ... l’originale contiene ancora molte altre INTERFACEs....

CONTAINS

SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_r

SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_d

SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
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nrutil.f90 (Here only for: array copy, arth, assert eq, nrerror)

MODULE nrutil
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8
INTERFACE array_copy

MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i
END INTERFACE
INTERFACE assert_eq

MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE
INTERFACE arth

MODULE PROCEDURE arth_r, arth_d, arth_i
END INTERFACE
! ... l’originale contiene ancora molte altre INTERFACEs....

CONTAINS

SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_r

SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_d

SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
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...

...

...

...

if (n <= NPAR_ARTH) then
do k=2,n

arth_d(k)=arth_d(k-1)+increment
end do

else
do k=2,NPAR2_ARTH

arth_d(k)=arth_d(k-1)+increment
end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

if (k >= n) exit
k2=k+k
arth_d(k+1:min(k2,n))=temp+arth_d(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if

END FUNCTION arth_d

FUNCTION arth_i(first,increment,n)
INTEGER(I4B), INTENT(IN) :: first,increment,n
INTEGER(I4B), DIMENSION(n) :: arth_i
INTEGER(I4B) :: k,k2,temp
if (n > 0) arth_i(1)=first
if (n <= NPAR_ARTH) then

do k=2,n
arth_i(k)=arth_i(k-1)+increment

end do
else

do k=2,NPAR2_ARTH
arth_i(k)=arth_i(k-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

if (k >= n) exit
k2=k+k
arth_i(k+1:min(k2,n))=temp+arth_i(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if

END FUNCTION arth_i
! .... and many other FUNCTIONs and SUBROUTINEs ....

END MODULE nrutil
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b − a

N
i , vi to be determined

with {xi} randomly distributed according p(x)

∫ b

a

f(x)dx ≈
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i=1

vif(xi) with {xi} , {vi} to be determined

Summary of numerical integration 
(MC and deterministic) methods

MC sample mean

MC importance sampling

Deterministic, equispaced points

Deterministic, non equispaced points

∫ b

a

f(x)dx = (b−a) < f >≈ (b−a)
1

N

N∑
i=1

f(xi) with {xi} randomly uniformly distributed in [a, b]
(

it can be considered as Importance sampling with p(x) =
1

b − a
in [a, b]

)
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c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 397

c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
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If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
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∫
f(x)dx = Fn + error

How to evaluate the error? Consider the Taylor expansion 
of the integrand function and then integrate:

(*)

∆x ≡ xi+1 − xi

(Reminder from  
previous Lecture)
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∫ xi+1

xi

f(x)dx ≈ f(xi)∆x
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Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
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2
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and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
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f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +
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6
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We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

Compare          with  (*):

error 
(leading order in         )∆x

For       intervals                               :  error is n n(∆x)2 ∼ 1/n(∆x = (b − a)/n)

(Reminder from  
previous Lecture)

(...and similarly for 
higher-order approximations)
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the error as a function of the number of trials n for n ≥ 104. How many trials are needed to
determine Fn to two decimal places? What is the approximate functional dependence of the
error on n for large n?

c. Determine the computational time per trial using the two Monte Carlo methods. Which Monte
Carlo method is preferable?

11.3 ∗Numerical Integration of Multidimensional Integrals

Many problems in physics involve averaging over many variables. For example, suppose we know
the position and velocity dependence of the total energy of ten interacting particles. In three
dimensions each particle has three velocity components and three position components. Hence
the total energy is a function of 60 variables, and a calculation of the average energy per particle
involves computing a d = 60 dimensional integral. (More accurately, the total energy is a function
of 60 − 6 = 54 variables if we use center of mass and relative coordinates.) If we divide each
coordinate into p intervals, there would be p60 points to sum. Clearly, standard numerical methods
such as Simpson’s rule would be impractical for this example.

A discussion of the n dependence of the error associated with the standard numerical methods
for d-dimensional integrals is given in Appendix 11A. We show that if the error decreases as n−a for
d = 1, then the error decreases as n−a/d in d dimensions. In contrast, we find (see Section 11.4) that
the error for all Monte Carlo integration methods decreases as n−1/2 independently of the dimension
of the integral. Because the computational time is roughly proportional to n in both the classical
and Monte Carlo methods, we conclude that for low dimensions, the classical numerical methods
such as Simpson’s rule are preferable to Monte Carlo methods unless the domain of integration
is very complicated. However, the error in the conventional numerical methods increases with
dimension (see Appendix 11A), and Monte Carlo methods are essential for higher dimensional
integrals.

To illustrate the general method for evaluating multidimensional integrals, we consider the
two-dimensional integral

F =
∫

R
f(x, y) dxdy, (11.11)

where R denotes the region of integration. The extension to higher dimensions is straightforward,
but tedious. Form a rectangle that encloses the region R, and divide this rectangle into squares of
length h. Assume that the rectangle runs from xa to xb in the x direction and from ya to yb in the
y direction. The total number of squares is nxny, where nx = (xb − xa)/h and ny = (yb − ya)/h.
If we use the midpoint approximation, the integral F is estimated by

F ≈
nx
∑

i=1

ny
∑

j=1

f(xi, yj)H(xi, yj) h2, (11.12)

where xi = xa + (i − 1
2 )h, yj = ya + (j − 1

2 )h, and the function H(x, y) equals unity if (x, y) is in
R and is zero otherwise.

(*)

The Taylor expansion of the integrand function gives:

∫ xi+1

xi

∫ yi+1

yi

f(x, y)dxdy ≈ f(xi, yi)∆x∆y

∫ xi+1

xi

∫ yi+1

yi

f(x, y)dxdy = f(xi, yi)∆x∆y+f ′

x(xi, yi)
(∆x)2

2
∆y+f ′

y(xi, yi)∆x
∆y)2

2
+. . . (**)

The rectangular approximation gives                               , being       
the number of parts (or pairs of points) of the integration domain:

(*) against (**) => error 
(leading order in         )∆x

For       intervals:   error is n n(∆x)3 ∼ 1/n1/2

∆x∆y ∼ (∆x)2 ∼ 1/n n
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coordinate into p intervals, there would be p60 points to sum. Clearly, standard numerical methods
such as Simpson’s rule would be impractical for this example.

A discussion of the n dependence of the error associated with the standard numerical methods
for d-dimensional integrals is given in Appendix 11A. We show that if the error decreases as n−a for
d = 1, then the error decreases as n−a/d in d dimensions. In contrast, we find (see Section 11.4) that
the error for all Monte Carlo integration methods decreases as n−1/2 independently of the dimension
of the integral. Because the computational time is roughly proportional to n in both the classical
and Monte Carlo methods, we conclude that for low dimensions, the classical numerical methods
such as Simpson’s rule are preferable to Monte Carlo methods unless the domain of integration
is very complicated. However, the error in the conventional numerical methods increases with
dimension (see Appendix 11A), and Monte Carlo methods are essential for higher dimensional
integrals.

To illustrate the general method for evaluating multidimensional integrals, we consider the
two-dimensional integral

F =
∫
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f(x, y) dxdy, (11.11)

where R denotes the region of integration. The extension to higher dimensions is straightforward,
but tedious. Form a rectangle that encloses the region R, and divide this rectangle into squares of
length h. Assume that the rectangle runs from xa to xb in the x direction and from ya to yb in the
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F ≈
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2 )h, and the function H(x, y) equals unity if (x, y) is in
R and is zero otherwise.
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error ∼ 1/n error ∼ 1/n1/2

Therefore for rectangular approx.:

d=1: d=2:

In general:

Classical formulas with equispaced points: 
slowly decreasing error for multidimensional integration !
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(σ n is roughly constant; if points are uncorrelated, 
the variance of the averages goes like                 )      ∼ 1/n1/2

σn/
√

n ≈ σm ≈ σs/
√

s

Definitions

! The average function value

! The average squared function value

! Estimate of the integrand (+/- standard error)
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Carlo method is preferable?

11.3 ∗Numerical Integration of Multidimensional Integrals

Many problems in physics involve averaging over many variables. For example, suppose we know
the position and velocity dependence of the total energy of ten interacting particles. In three
dimensions each particle has three velocity components and three position components. Hence
the total energy is a function of 60 variables, and a calculation of the average energy per particle
involves computing a d = 60 dimensional integral. (More accurately, the total energy is a function
of 60 − 6 = 54 variables if we use center of mass and relative coordinates.) If we divide each
coordinate into p intervals, there would be p60 points to sum. Clearly, standard numerical methods
such as Simpson’s rule would be impractical for this example.

A discussion of the n dependence of the error associated with the standard numerical methods
for d-dimensional integrals is given in Appendix 11A. We show that if the error decreases as n−a for
d = 1, then the error decreases as n−a/d in d dimensions. In contrast, we find (see Section 11.4) that
the error for all Monte Carlo integration methods decreases as n−1/2 independently of the dimension
of the integral. Because the computational time is roughly proportional to n in both the classical
and Monte Carlo methods, we conclude that for low dimensions, the classical numerical methods
such as Simpson’s rule are preferable to Monte Carlo methods unless the domain of integration
is very complicated. However, the error in the conventional numerical methods increases with
dimension (see Appendix 11A), and Monte Carlo methods are essential for higher dimensional
integrals.

To illustrate the general method for evaluating multidimensional integrals, we consider the
two-dimensional integral

F =
∫

R
f(x, y) dxdy, (11.11)

where R denotes the region of integration. The extension to higher dimensions is straightforward,
but tedious. Form a rectangle that encloses the region R, and divide this rectangle into squares of
length h. Assume that the rectangle runs from xa to xb in the x direction and from ya to yb in the
y direction. The total number of squares is nxny, where nx = (xb − xa)/h and ny = (yb − ya)/h.
If we use the midpoint approximation, the integral F is estimated by

F ≈
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ny
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f(xi, yj)H(xi, yj) h2, (11.12)
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Monte Carlo convenient for multidimensional integration !

d Rect. Trap. Simps. MC

1 1/n 1/n2 1/n4 1/n1/2

2 1/n1/2 1/n 1/n2 1/n1/2

3 1/n1/4 1/n1/2 1/n 1/n1/2

... ... ... ...

1

4



• convergence as ~N1/2 in any dimension regardless of the smoothness of 
the integrand

• simplicity: only two simple steps required (namely, producing a set of 
sampling points and evaluating the integrand function over such points)

• generality: sampling can be used even on domains that do not have a 
natural correspondence with the ‘standard’ domain [0,1]d and thus are not 
well-suited to numerical quadrature

• better suited than quadrature for integrands with singularities 
(importance sampling can handle this problem)

• flexibility: easy to add more points as needed (in the Gaussian quadrature, 
increasing the accuracy implies doing calculations from scratch)

Summary: 
advantages of MC integration methods



The central limit theorem



• the variance of the averages
• the Gaussian distribution

CHAPTER 12. RANDOM WALKS 416

For simplicity, we first consider a walker in two dimensions with p(a) chosen so that each step
has unit length. At each step the walker takes a step of unit length at a random angle. Write a
Monte Carlo program to compute PN (r)∆r, the probability that the displacement of the walker
is in the range r to r + ∆r after N steps, where r is the distance from the origin. Verify that
for sufficiently large N , the probability density PN (r) can be approximated by a Gaussian. Is a
Gaussian a good approximation for small N? Is it necessary to do a Monte Carlo simulation to
confirm that 〈R2

N 〉 ∼ N , or can you give a simple argument for this dependence based on the form
of PN (r)?
Problem 12.7. Random walks with steps of variable length

a. Consider a random walk in one dimension with jumps of all lengths allowed. The probability
density that the length of a single step is a is denoted by p(a). If the form of p(a) is given
by p(a) = e−a, what is the form of PN (x)? Suggestions: Use the inverse transform method
discussed in Section 11.5 to generate step lengths according to the probability density p(a).
Consider a walk of N steps and determine the net displacement x. Generate many such walks
and determine PN (x). Plot PN (x) versus x and confirm that the form of PN (x) is consistent with
a Gaussian distribution. Is this random walk equivalent to a diffusion process for sufficiently
large N?

b. Assume that the probability density p(a) is given by p(a) = C/a2 for a ≥ 1. Determine the
normalization constant C using the condition C

∫ ∞
1 a−2 da = 1. Does the second moment of

p(a) exist? Do a Monte Carlo simulation as in part (a) and verify that the form of PN (x) is
given by

PN (x) ∼ bN

x2 + b2N2
, (12.8)

What is the magnitude of the constant b? Does the variance 〈x2〉− 〈x〉2 of PN (x) exist? Is this
random walk equivalent to a diffusion process?

Problem 12.8. The central limit theorem
Consider a continuous random variable x with probability density f(x). That is, f(x)∆x is the
probability that x has a value between x and x +∆x. The mth moment of f(x) is defined as

〈xm〉 =
∫

xmf(x) dx. (12.9)

The mean value 〈x〉 is given by (12.9) with m = 1. The variance σx
2 of f(x) is defined as

σx
2 = 〈x2〉 − 〈x〉2. (12.10)

Consider the sum yn corresponding to the average of n values of x:

yn =
1
n

(x1 + x2 + . . . + xn). (12.11)

We adopt the notation y = yn. Suppose that we make many measurements of y. We know that
the values of y are not identical, but are distributed according to a probability density P (y), where
P (y)∆y is the probability that the measured value of y is in the range y to y + ∆y. The main
quantities of interest are the mean 〈y〉, the variance σy

2 = 〈y2〉 − 〈y〉2, and P (y) itself.
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normalization constant C using the condition C

∫ ∞
1 a−2 da = 1. Does the second moment of

p(a) exist? Do a Monte Carlo simulation as in part (a) and verify that the form of PN (x) is
given by

PN (x) ∼ bN

x2 + b2N2
, (12.8)

What is the magnitude of the constant b? Does the variance 〈x2〉− 〈x〉2 of PN (x) exist? Is this
random walk equivalent to a diffusion process?

Problem 12.8. The central limit theorem
Consider a continuous random variable x with probability density f(x). That is, f(x)∆x is the
probability that x has a value between x and x +∆x. The mth moment of f(x) is defined as

〈xm〉 =
∫

xmf(x) dx. (12.9)

The mean value 〈x〉 is given by (12.9) with m = 1. The variance σx
2 of f(x) is defined as

σx
2 = 〈x2〉 − 〈x〉2. (12.10)

Consider the sum yn corresponding to the average of n values of x:

yn =
1
n

(x1 + x2 + . . . + xn). (12.11)

We adopt the notation y = yn. Suppose that we make many measurements of y. We know that
the values of y are not identical, but are distributed according to a probability density P (y), where
P (y)∆y is the probability that the measured value of y is in the range y to y + ∆y. The main
quantities of interest are the mean 〈y〉, the variance σy

2 = 〈y2〉 − 〈y〉2, and P (y) itself.
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The variable      isy

y s.t. 

characterized by

The central limit theorem



σy ≈ σx/
√

n

provided 〈x〉 and 〈x2〉 exist (finite) and n is large!

P (y) : gaussian distribution

< y > = < x >with:

CHAPTER 12. RANDOM WALKS 416

For simplicity, we first consider a walker in two dimensions with p(a) chosen so that each step
has unit length. At each step the walker takes a step of unit length at a random angle. Write a
Monte Carlo program to compute PN (r)∆r, the probability that the displacement of the walker
is in the range r to r + ∆r after N steps, where r is the distance from the origin. Verify that
for sufficiently large N , the probability density PN (r) can be approximated by a Gaussian. Is a
Gaussian a good approximation for small N? Is it necessary to do a Monte Carlo simulation to
confirm that 〈R2

N 〉 ∼ N , or can you give a simple argument for this dependence based on the form
of PN (r)?
Problem 12.7. Random walks with steps of variable length

a. Consider a random walk in one dimension with jumps of all lengths allowed. The probability
density that the length of a single step is a is denoted by p(a). If the form of p(a) is given
by p(a) = e−a, what is the form of PN (x)? Suggestions: Use the inverse transform method
discussed in Section 11.5 to generate step lengths according to the probability density p(a).
Consider a walk of N steps and determine the net displacement x. Generate many such walks
and determine PN (x). Plot PN (x) versus x and confirm that the form of PN (x) is consistent with
a Gaussian distribution. Is this random walk equivalent to a diffusion process for sufficiently
large N?

b. Assume that the probability density p(a) is given by p(a) = C/a2 for a ≥ 1. Determine the
normalization constant C using the condition C

∫ ∞
1 a−2 da = 1. Does the second moment of

p(a) exist? Do a Monte Carlo simulation as in part (a) and verify that the form of PN (x) is
given by

PN (x) ∼ bN

x2 + b2N2
, (12.8)
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The central limit theorem

is distributed according to:

The random variable:

(Therefore, the sample mean of a random sample is better than a single observation)



Analogously, is instead of considering the new random variable 
as the average we consider just the sum:

y = x1 + x2 + ... + xn

it also has a gaussian distribution but with:

< y > = n < x >     and     σy  ≈  √n  σx

The central limit theorem

provided 〈x〉 and 〈x2〉 exist (finite) and n is large!



The central limit theorem
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Dalla figura appare evidente come nel caso di due dadi (sinistra) il punteggio più

probabile è 7 (probabilità 6/36 = 1/6) e quelli meno probabili 2 e 12 (probabilità 1/36).

Inoltre all’aumentare del numero dei dadi (destra) le frequenze tendono ad essere

distribuite secondo una campana gaussiana corrispondente ad una distribuzione

cosiddetta normale.

Corso eccellenza studenti 4
o

anno scuole superiori, Ferrara, 22 giugno 2006 – p. 22/31

n=2   not enough n=100   OK 

Note: large enough  n  needed to obtain the gaussian distribution.
Suppose that f(x) is uniform: e.g., playing dice:



The central limit theorem
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a. Suppose that f(x) is uniform in the interval [−1, 1]. Calculate 〈x〉 and σx analytically. Use a
Monte Carlo method to make a sufficient number of measurements of y to determine P (y), 〈y〉,
and σy with reasonable accuracy. For example, choose n = 1000 and make 100 measurements
of y. Verify that σy is approximately equal to σx/

√
n. Plot P (y) versus y and discuss its

qualitative form. Does the form of P (y) change significantly if n is increased? Does the form
of P (y) change if the number of measurements of y is increased?

b. To test the generality of the results of part (a), consider the exponential probability density

f(x) =

{

e−x, if x ≥ 0
0, if x < 0 .

(12.12)

Calculate 〈x〉 and σx analytically. Modify your Monte Carlo program and estimate 〈y〉, σy, and
P (y). Is σy related to σx as in part (a)? Plot P (y) and discuss its qualitative form and its
dependence on n and on the number of measurements of y.

c. Let y be the Monte Carlo estimate of the integral (see Problem 11.3a)

4
∫ 1

0
dx

√

1 − x2. (12.13)

In this case y is found by sampling the integrand f(x) = 4
√

1 − x2 n times. Choose n ≥ 1000
and make at least 100 measurements of y. Show that the values of y are distributed according
to a Gaussian distribution. How is the variance of P (y) related to the variance of f(x)?

d. Consider the Lorentzian probability density

f(x) =
1
π

1
x2 + 1

. (12.14)

Calculate the mean value 〈x〉. Does the second moment and hence the variance of f(x) exist?
Do a Monte Carlo calculation of 〈y〉, σy, and P (y). Plot P (y) as a function of y and discuss its
qualitative form. What is the dependence of P (y) on the number of trials?

Problem 12.8 illustrates the central limit theorem which states that the probability distribution
of a variable y is a Gaussian centered at 〈y〉 with a standard deviation 1/

√
n times the standard

deviation of f(x). The requirements are that f(x) has finite first and second moments, that the
measurements of y are statistically independent, and that n is large. Use the central limit theorem
to explain your results in Problem 12.8 and in Problem 12.7a. What is the relation of the central
limit theorem to the calculations of the probability distribution in the random walk models that
we already have considered?
Problem 12.9. Generation of the Gaussian distribution
Consider the sum

y =
12
∑

i=1

ri, (12.15)

(NOTE:    the central limit theorem gives therefore another 
operative method to generate random numbers with a gaussian distribution)

The previous example was for UNIFORM distribution (dice)
but the central limit theorem work also with random deviates x 

with NON UNIFORM distribution;  e.g. with exponential distribution:
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From Wikipedia, the free encyclopedia

The Cauchy-Lorentz distribution, named after 

Augustin Cauchy and Hendrik Lorentz, is a 

continuous probability distribution with 

probability density function

where x0 is the location parameter, specifying 

the location of the peak of the distribution, and 

! is the scale parameter which specifies the 

half-width at half-maximum (HWHM).

As a probability distribution, it is known as the 

Cauchy distribution while among physicists it 

is known as the Lorentz distribution or the 

Breit-Wigner distribution. Its importance in 

physics is largely due to the fact that it is the 

solution to the differential equation describing 

forced resonance. In spectroscopy it is the 

description of the line shape of spectral lines 

which are broadened by many mechanisms 

including resonance broadening. The statistical 

term Cauchy distribution will be used in the 

following discussion.

The special case when x0 = 0 and ! = 1 is called 

the standard Cauchy distribution with the 

probability density function

Contents
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1 Properties
2 Why the mean of the Cauchy 
distribution is undefined
3 Why the second moment of the 
Cauchy distribution is infinite

The Cauchy-Lorentz distribution is an 
example of  “fat-tailed” distribution.
Fat-tailed distributions decay to infinity 
slower than exponentially.
For instance, they can decay with  a 
power law:   f(x) ~  x - (1+ α)      as x ⟶	
  +∞
In some cases the expression "fat-tailed" 
indicates distributions where 0 < α < 2.
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Mean and variance are not defined
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If a probability distribution has a density function f(x) then the mean or expected value is

The question is now whether this is the same thing as

If at most one of the two terms in (2) is infinite, then (1) is the same as (2). But in the case of the Cauchy 

distribution, both the positive and negative terms of (2) are infinite. This means (2) is undefined. 

Moreover, if (1) is construed as a Lebesgue integral, then (1) is also undefined, since (1) is then defined 

simply as the difference (2) between positive and negative parts.

However, if (1) is construed as an improper integral rather than a Lebesgue integral, then (2) is 

undefined, and (1) is not necessarily well-defined. We may take (1) to mean

and this is its Cauchy principal value, which is zero, but we could also take (1) to mean, for example,

which is not zero, as can be seen easily by computing the integral.

Various results in probability theory about expected values, such as the strong law of large numbers, will 

not work in such cases.

Also, the sample mean of a random sample taken from a Cauchy distribution is no better than a single 

observation, because the chances of including extreme values is high. However, the sample median, 

which is not affected by extreme values, can be used as a measure of central tendency.

Why the second moment of the Cauchy distribution is infinite

Without a defined mean, it is impossible to consider the variance or standard deviation of a standard 

Cauchy distribution. But the second moment about zero can be considered. It turns out to be infinite:

Relationship to other distributions

The ratio of two independent standard normal random variables is a standard Cauchy variable, a 
Cauchy(0,1). See Hodgson's paradox.
The standard Cauchy(0,1) distribution arises as a special case of Student's t distribution with one 
degree of freedom.

Relation to Lévy skew alpha-stable distribution: if  then 

.
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Without a defined mean, it is impossible to define the variance  (but the second moment is defined and 
it is infinite).  Some results in probability theory about expected values, such as the law of large 
numbers, do not work in such cases.
Also, the mean of a set of random variates drawn from a Cauchy distribution is no better than a single 
observation, because the chance of including extreme values is high.

The mean:
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But what about their generation?


