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Other deterministic
methods



Numerical integration;
other deterministic methods:

® in the simplest equally-spaced-point methods, we
choose weights to calculate the average of the function:

b N
[ f@dem Py =3 it
a i=1
b — b —
rectangular rule: x; = a+ Nai, V; = Na Vi=1,...N —1
b—a b—a b—a
trapezoidal rule: x; a + N v; N Vi£1,N; v =uvn N

(at variance with these methods, in MC methods such as
the ‘importance sampling’, we choose only points, not weights)



Numerical integration;
other deterministic methods:

® in the simplest equally-spaced-point methods, we
choose weights to calculate the average of the function:

N

/ f(z)dx =~ Fy = Zvif(wi)

1=1

idea: choose not only weights but also points:
more degrees of freedom!

L :?, (%) =7



Another deterministic method:

Gaussian quadrature - |
Con5|der/ f(x)dx and a function W (x) defined on |a, b

We can always formally write:

[ f@iz= [ Wi i~ wiF () iwjvf;<gj?)j§]vjlvjf<xj>

J=1

22

with v = wj/W(a:j)

to be determined, depending on W(x) (*)

(This will be convenient in particular if the resulting F(x) is smooth,

but not necessarily)

(*) in general: w; # W(x;)



Another deterministic method:
Gaussian quadrature - |l

b
Consider/ f(x)dz and a function W (x) defined on |a, b

¥y N N N
/f(flf)dflj = /W(f)F(fE)de(%)Z w;i () = Z’wy‘ Vé(g]?) =) vif(a;)

j=1

For a given W (z),the N points and weights {z;}, {w;}
can be chosen to make the approximate

relationship (*) an exact equality if F'(x) is a

2N-| degree polynomial.



Another deterministic method:
Gaussian quadrature - |l
Consider /?V(:U)F(:L‘)dx = ijF(xj)

F'(x) a2N - | degree polynomial. Which are the N {z;}, {w; }2

If there is a set of polynomials{pxn(x)} which are orthogonal
in the same interval and for the same weight function W(x):

(v lpN )W = n s dee / W (@)pw (@)pn (2)dz = Sx

the points {x; } are exactly the roots of the pn(z)
polynomials. The weights {w,} are related to them, but
in general w; # W(x,).



Gauss-Legendre quadrature
r2 N
Consider/ W(x)F(r)dr = Z’wg‘F(%)
T1 j=1
with F'(z)a 2N - | degree polynomial.

If: W(x)=1and z1=-1, z2=1

the Legendre polynomials { Pn(z)} defined by:
(J+1)Pjp1 = (2j+1)xP; — jPj_4

are orthogonal in [-1,1] with W(x)=1;

{Clij}, {wj}are such that Pnx(x;) =0 and
2

w,; —

(1 — ) [Py ()]



The first few Legendre polynomials are:

P,(z)
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Legendre polynomials in Physics: examples of applications

|) For a polynomial expansion of a gravitational or coulombic potential:
1 1 f: r't Bileos )

— /1 CO

x—x] VI +72 =2rfcosy =g !

where r and ' are the lengths of the vectors x and x’ respectively and - is the angle between those two vectors.

2) solution of Laplace's equation of the static potential, V2<I>(x) = (), in a charge-free region of space.

if the boundary conditions have axial symmetry :
@ is the angle between the position of the observer and the z axis (the zenith angle) ;

the solution for the potential will be

®(r,0) = [Agr + Byr~(HH1) ] P;(cos )
e



3) solving Schrédinger equation in three dimensions for a central force :

the associated Legendre polynomials are derivatives of ordinary Legendre polynomials (m = 0)

PP(z) = (~1)"(1 - 22" =+ (Py(2))

The Legendre polynomials are closely related to the spherical harmonics

(2¢+1)(£ — m)!

In(l+m) P} (cos ) o' —£<m<L
i m)!

Y(,m (9) ¢) —




Gaussian quadrature

In practice, we choose W(x) and N and use the
set of N points and weights {x,},{w;} for the
approximate integration:




Gauss-Legendre quadrature

For: 1 =—-1, 2z, =1
N | 1 T; w; degree | degree of the polynomial
| exactly integrable
e 0 9 1
9 | 1| -0.577350269180626 1 3
o | 0.577350260180626 1
3 | 1| -0.774596669241483 | 0.555555555555556 | 5
9 0 0.888888888888880
3 | 0.774506660241483 | 0.555555555555556
4] 1] -0.861136311504053 | 0.347854845137454 | 7
9 | -0.330081043584856 | 0.652145154862546
3 | 0.330081043584856 | 0.652145154862546
4 | 0.861136311504053 | 0.347854845137454

The integration in an interval [a,b] different from [-1,1]

(“old”) can be easily done performing the scaling:

b—a N b+ a J b—a
Lnew — —~ <o Wnew — —x  Wo
9 ld 9 an 9 ld




Gauss-Legendre quadrature

In case of classical, well known, orthogonal polynomials,
ready-to-use subroutines exist for the computation of

Abscissas and Weights {%‘}7 {’wj}

e.g. GAULEG(z1, x2, x, w, n) of Numerical Recipes
which, given x1, x2, n, provides as output the arraysz(n), w(n)



Some programs:
on
$/home/peressi/comp-phys/Vl-integr
[do: $cp /home/peressil/.../VI-integr/* ]
and https://moodle2.units.it/

gauleg-llorder.f90

gauleg-others.f90 (generation of points up to |5 points
in [-1,1] using GAULEG adapted from “Numerical Recipes” (self-
contained) and some tests for easy-to-integrate functions)

In the subdirectory: gauss-nr90/

find the original routine from “Numerical Recipes’
and related external routines/modules/interfaces
and a main program for test (see following slide)

’




Gauss-Legendre from Numerical Recipes
Use of GAULEG:

In order to use the routines of Numerical Recipes, you have to compile
and link the main program with:

- the subroutine gauleg.f90 which gives points and abscissas
- nrtype.f90 containing type declarations;

- hrutil.f90 containing moduli and utilities;

- nr.f90 containing (through the interfaces) the conventions
to call the subroutines with the main program

i) You must first compile these files with the option “-c’:

this produces .mod and .o (the objects).

ii) In a second step compile the main program.

iii) Finally you link all the files *.0 and produce the executable:

€95 -c nrtype.f90 nrutil.f90 nr.f90 gauleg.f90
g95 -c gauleg nr_test.f90
g95 -0 a.out gauleg nr_test.o nrtype.o nrutil.o nr.o gauleg.o



gauleg.f90 from Numerical Recipes

SUBROUTINE gauleg(xl,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp
INTEGER(I4B) :: its,j,m,n
INTEGER (I4B), PARAMETER :: MAXIT=10
REAL(DP) :: x1,xm
REAL(DP), DIMENSION((size(x)+1)/2) :: pl,p2,p3,pp,z,zl
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauleg’)
m=(n+1) /2
xm=0.5_dp* (x2+x1)
x1=0.5_dp* (x2-x1)
z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp))

x(1:m)=xm-x1*z
x(n:n-m+1:-1)=xm+x1*z
w(l:m)=2.0_dp*x1/((1.0_dp-z**2)*pp**2)
w(n:n-m+1:-1)=w(1:m)

END SUBROUTINE gauleg



nrtype.f90 from Numerical Recipes

MODULE nrtype
INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)

REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197 _sp

TYPE sprs2_sp
INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol
END TYPE sprs2_sp
TYPE sprs2_dp
INTEGER(I4B) :: n,len
REAL (DP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol
END TYPE sprs2_dp
END MODULE nrtype



nr.f90 from Numerical Recipes

MODULE nr
INTERFACE
SUBROUTINE gauleg(xl,x2,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gauleg
END INTERFACE

I ... the original file contains several other INTERFACES ...

END MODULE nr



nrutil.f90 (Here only for: array copy, arth, assert_eq, nrerror)

MODULE nrutil
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8

INTERFACE array_copy
MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i
END INTERFACE

I ... 1’originale contiene ancora molte altre INTERFACEs....
CONTAINS

SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src

! .... and many other FUNCTIONs and SUBROUTINEs ....
END MODULE nrutil



Summary of numerical integration
(MC and deterministic) methods
MC sample mean

b N
1
/ f(x)dx = (b—a) < f >~ (b—a)N g f(x;) with {x;} randomly uniformly distributed in [a,b]

=1 1
! <z’t can be considered as Importance sampling with p(x) = in |a, b])

b—a
/:p(w)dle

with {x;} randomly distributed according p(x)

MC importance sampling

b b b N
/ f(x)dx :/ %p(w)dw =< % > / p(x)dr =~ %Z

f(z;)
P(%)

Deterministic, equispaced points

b—a
7

b N
/a f(x)dx ;U f(x;) with z; =a+ N v; to be determine

Deterministic, non equispaced points

b N
/ f(x)dx ~ quzf(xz) with {z;} , {v;} to be determined
a i=1



Numerical integration, deterministic methods:
comparison of errors in 1D

0 ! ! ! !

traplezoid double r;rec.
Simpson double prec.
Gauss-Legendre double prec.

error ~ 1/N*?

log(Err(N))

error ~ 1/N*

35 1 1 1 1 1 1

log(N)

(double precision needed to appreciate the convergence of Gauss-Legendre numerical estimate)



Error estimate:
comparison between
deterministic and MC

methods

in d-dimension



Error estimate for numerical integration
with deterministic methods

(Reminder from
previous Lecture)

/f(a:)da: = I, + error

How to evaluate the error? Consider the Taylor expansion
of the integrand function and then integrate:

fl@) = fa) + f(e)(a —z) + 5 @)@ —2) 4.

/%Hf(@ dr = f(x;)Ax + %f’(wz)(Ax)Q 1+ éf”(%)(A@?’ . (*)

Ar =x;41 —



Error estimate for numerical integration:
Rectangular approximation

(Reminder from
previous Lecture)

Compare || with (%):
/%Hlf(x) dr = f(x;)Ax + %f’(wz)(Aa:)Q 1 éf”(ﬂ%)(Ax):g 4

(leading order in Az )

For T intervals (Az = (b—a)/n): erroris n(Ax)* ~ 1/n

(...and similarly for
higher-order approximations)



Numerical integration:

multidimensional integrals
F= [ty dedy
R

The rectangular approximation gives AzAy ~ (Az)? ~ 1/n, being n
the number of parts (or pairs of points) of the integration domain:

Lg4+1 Yi+1 By
/ / f(x,y)dzdy ~ f(x:,y;)AxAy ()
The Taylcgr expanzsion of the integrand function gives:
flzoy) = f(@i, us) + folzs yi) (@ — z) + fo (@i, y) (Y — vi) + - ..

Ti+1 Yit+1 AZE 2
/ / f(z,y)dzdy = f(x;, yi)AwAy‘Ffa/:(%,yz‘)( 2)
Tq Y;

(*) against (**) => error
(leading order in Ax )

For 1 intervals: erroris n(Az)° ~ 1/711/2

aBI ()



Numerical integration:
multidimensional integrals

Therefore for rectangular approx.:

d=I: error ~ 1/n d=2: error ~ 1/n1/2

In general:

—a/d

if the error decreases as n=® for d = 1, then the error decreases as n in d dimensions.

Classical formulas with equispaced points:
slowly decreasing error for multidimensional integration !



Numerical integration:
error in MC methods

O-n/\/ﬁ%()-m%0-8/\/g

(O nis roughly constant; if points are uncorrelated,
the variance of the averages goes like ~ 1/n'/? )

The average function value
(1) = %if(m

The average squared function value
(f?) = Nlri;fg(%)

Estimate of the integrand (+/- standard error)
‘ 2
/f dV ~ V (f) iv\/<f2>N<f>




Numerical integration:
errors in multidimensional integrals

d | Rect. Trap. | Simps. | MC

1 | 1/n 1/n? 1/n? 1/nt/?
2 | 1/n'/2 | 1/n 1/n?2 | 1/n'/?
4 | 1/nt4 | 1/nY2 | 1/n 1/nt/?

if the error decreases as n~® for d = 1, then the error decreases as n~%% in d dimensions.

the error for all Monte Carlo integration methods decreases as n™'/? independently
of the integral.

Monte Carlo convenient for multidimensional integration !



Summary:
advantages of MC integration methods

convergence as ~N'2 in any dimension regardless of the smoothness of
the integrand

simplicity: only two simple steps required (namely, producing a set of
sampling points and evaluating the integrand function over such points)

generality: sampling can be used even on domains that do not have a
natural correspondence with the ‘standard’ domain [0,1]9and thus are not
well-suited to numerical quadrature

better suited than quadrature for integrands with singularities
(importance sampling can handle this problem)

flexibility: easy to add more points as needed (in the Gaussian quadrature,
increasing the accuracy implies doing calculations from scratch)



The central limit theorem



The central limit theorem

® the variance of the averages
® the Gaussian distribution

Consider a continuous random variable x with probability density f(x).
characterized by (x™) :/xmf(x) dz and o0.° = (z°) — (2)°.

Consider ¥y s.t. w, corresponding to the average of n values of x:

1
y = yn:E(xl—l—xQ—l—...—l—xn)

Suppose that we make many measurements of y. The variable Y 18

distributed according to a probability density £ (y) # f(x)

quantities of interest are the mean (y), the variance o,% = (y?) — (y)?, and P(y) itself.



The central limit theorem

The random variable:

1
Y = yn:E(az1+x2—|—...+xn)

1s distributed according to:

P(y) : gaussian distribution
with: <y>=<x> O‘y%()'x/\/ﬁ
v

(Therefore, the sample mean of a random sample is better than a single observation)

provided (z) and (x*) exist (finite) and n is large!



The central limit theorem

Analogously, 1s instead of considering the new random variable
as the average we consider just the sum:

y=X/+ X2+ ...+ Xp
it also has a gaussian distribution but with:

<y>=n<x> and o0, = Vn o,

provided (z) and (x*) exist (finite) and n is large!



The central limit theorem

Note: large enough n needed to obtain the gaussian distribution.
Suppose that {(x) 1s uniform: e.g., playing dice:

n=2 not enough n=100 OK

media=35.132200, varianza=29.248723




The central limit theorem

The previous example was for UNIFORM distribution (dice)
but the central limit theorem work also with random deviates x
with NON UNIFORM distribution; e.g. with exponential distribution:

e *, itx>0

F@) =901 2<0.

(NOTE: the central limit theorem gives therefore another
operative method to generate random numbers with a gaussian distribution)



...but sometimes it do

Cauchy-Lorentz
probability density function

flx;xg,7v) = | _. g}

(x — x)* ’“.f'E]

1
.

The Cauchy-Lorentz distribution is an
example of “fat-tailed” distribution.
Fat-tailed distributions decay to infinity
slower than exponentially.

For instance, they can decay with a
power law: f(x) ~ x-(/* %
In some cases the expression "fat-tailed"
indicates distributions where 0 < & < 2.
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...but sometimes it doesn’t work:

Cauchy-Lorentz
probability density function

f(f*?;ﬂ?u,”f) =

1
.

g
(z — ) 4 ”r‘E]

distribution : — arctan
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...but sometimes it doesn’t work:

0.7
= 0,y=05
Cauchy-Lorentz 06 | 0= 0.1=190
probability density function =-2.7=10
05 ¢
* o~ — l 04 ¢
f('?:a Lo, .") - 7
Ty [l | ( E—Ey) ) } 03 b
! 4
]. = 0.2
m [:T - -13{})2 | "‘Ir'g o1 F // -1\"‘\_
N . —
-3 4 3 1 0 1 3 4 5

Mean and variance are not defined

oC oc }
The mean: f rf(x)dxr  which can be rewritten as: L rf(z)dr — f \x| f(x) dx
N — D

is not defined since both terms are infinite; only the Cauchy principal value is defined:
e

lim rf(x)dx

a—20 J _n

Without a defined mean, it is impossible to define the variance (but the second moment is defined and
it is infinite). Some results in probability theory about expected values, such as the law of large
numbers, do not work in such cases.

Also, the mean of a set of random variates drawn from a Cauchy distribution is no better than a single
observation, because the chance of including extreme values is high.



Statistical Properties of Price Returns

Simulated Returns (Geometric Brownian Motion)
0.010 | | | | | | | | | | | | | |

0.005

price returns

-0.010}
0 2000 4000 6000 8000 10000 12000
time (min)

Real Returns (Financial Time-Series)

0.010¢

0.005

0.000

price returns

-0.005¢

-0.010¢
0 2000 4000 6000 8000 10000 12000
time (min)

Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

MARIO FILIASI - UNIVERSITY OF TRIESTE PhD COURSE - FINAL EXAM - MAR 31, 2015




Statistical Properties of Price Returns

Simulated Returns (Geometric Brownian Motion)
0.010 | | | | | | | | | | | | | |

0.0051

price returns
=

—0.005}
-0.010F . : : : :
0 2000 4000 6000 8000 10000 12000
time (min)
/\ Real Returns (Financial TynQ-Series)
0.010¢ large-scale events

0.0051

N

price returns
=

P

&
3
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0 2000 Ao \_/

6000 8000 10000 12000
time (min)

1t issue

Price returns are not normal

Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

MARIO FILIASI - UNIVERSITY OF TRIESTE PhD COURSE - FINAL EXAM - MAR 31, 2015




Empirical Distribution of Price Returns

Empirical Distribution of Returns (superposition of all stocks)
different time-scales — from 1 minute to 2 hours

NE————————————— 3
i normal distribution e 1

- : Student's t-distribution .
1E 1'4 (4 degrees) .

0.1

0.01 F -'j:';:.:".- k " 3

0.001

probability density function

10~k

- 10 = 0

price returns / stock volatility

Filiasi, PhD Thesis
Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

MARIO FILIASI - UNIVERSITY OF TRIESTE PhD COURSE - FINAL EXAM - MAR 31, 2015




Empirical Distribution of Price Returns

empirical distribution of price returns

we——————————

i

it Typical
[ Fluctuations ]

001}

0.001

probability density function

. Large Deviations Large Deviation%'
~ (risky events) (risky events)
Q-3 i__ . 1 . . . h 1 : , ; ; 1 : ) ) :
-10 -3 0 5 10

price returns / stock volatility

Filiasi, PhD Thesis
Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

MARIO FILIASI - UNIVERSITY OF TRIESTE PhD COURSE - FINAL EXAM - MAR 31, 2015




