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@ ConNTINUOUS TIME MARKOV CHAINS =%
@ Main concepts




CTMC

CTMC: DEFINITION

'

—

Let S be finite or countable. A continuous-time random process
(Xt)=0 = {X;: | t > 0}, with values in S, is a family of random variables
Xt 1 (€, 8) — (S, 2°) that are right-continuous w.r.t. t. |

3/49

Therefore, X; (or X(t)) has«cadlag sample path ,{J B
Eight continuous processes are‘determined by their ¢
f

nite-dimensional distributions. <1t {.c®.,. L(Xém | j> —

A Continuous Time Markov Chain is a right-continuous
continuous-time random process satisfying the memoryless
condition: for each n, fj and s;: £

/
\ —Sl_;; 6M%%i;2\\
@th =8n| Xy, = S0,...,Xt,, = Sn_1) =P(Xs, = Sn | Xt = Sn_1)-

\7(/1 2¢ / bzée, ,7{m,é @7/0@’
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CTMC: RACE CONDITION
gy s vl

| T
A CTMC on a state space S can be seen as a labelled graph. Each
edge takes some time to be crossed, exponentially distributed with

the rate labelling the edge.

In each state, there is a race condition between the different exiting
edges: the fastest Is traversed.

The memoryless property follows from that of the exponential
distribution.
A INFIN | TESIMAL GENE RATO R

A Q-matrix is the |S| x |S| matrix such that:

Q g; =0, i #j is the rate of the exponential distribution giving the

time needed to go from state s; to state s; - > Fad

Q qgi = - X+ qj s the opposite of th@from state /.

Therefore, each row of the Q-matrix sums up to zero.
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A SIMPLE EXAMPLE: THE MOOD CHAIN
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JUMP CHAIN AND HOLDING TIMES

In each state /, we have a race condition between k transitions, each

giponentlally distributed with rate g;. Hence, the time spentis T = inf T;.
pfoBy the properties of the exponential distribution, we know that T has rate
2.; 9> and that the transition that fires is independent from T and the

ext state j is chosen with probability g;/q;.

We can therefore factorize X(t) into w O@w«m
@ a DTMC Y, with probability matrix I, defined by 7; = "—C; if i # j, and
mji = 0;

@ a sequence of jump times t,, where 7, Is the time of the n-th jump.
Letting g; the jump rate from state s;, then /f} - Th-1, the n-th

holding tlme IS distributed exponentially w% rate qy, \(/
VL
Q M each T i are mdependent j "’EQ" @ N L?f -
. < Tni. LT T =
- o b e

- Het gy W4 Méf
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A SIMPLE EXAMPLE: THE MOOD CHAIN 4
9 L
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CHAPMAN-KOLMOGOROV EQUATIONS ‘ M“(wa“”\%
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Letﬁ p P{X ) @ X(0) =

Pi(t+s) = PX(t+s)=s;|X(

:@P{Xﬂ—— s)\—/stX( t) = sk | X(0) = sj}

P (X(ew)=g5 | x(5x X () «s(} P(x(t)=5c| XH=s0)

u
*‘E?

|
M
&
é”

W&%M-ﬂ’aih,c).
| &

_s,|X@—skP{X(l‘)—sk\X( ) = Si)

K ?( X('é'{é Q Qu)

N > g _ @(
< - (o)
Hence P(t), as a matrlx, satisfies - 9‘57 < i()
—o | P(t+s) = = P(s)P(t).
which is the semigroup property, also known as
witds

Chapman-Kolmogorov equations.==
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KOLMOGOROV EQUATIONS

Using properties of the exponential, we can compute P(dt):
o) Pj(dt)\= gjat, for i # j;

Hence P(dft) = | + Qa PCEYPIE) = PO [ [ +RE]
From the CK equatlons P(t+ dt) P(t) ( t)Qdt,) from which

&(f:o gﬁ( Q</ @Z

which Is theﬂfor/ward Kolmogorov equatlorD S~
Using CK the other way round: P(t + dt) = P(t) + QP(t)dt, so

dP(1) PHEAE) =P (LOP (0

i
e

which is the backward Kolmogorov equation.

9/49
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A SIMPLE EXAMPLE: THE MOOD CHAIN
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A SIMPLE EXAMPLE: THE MOOD CHAIN
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@ ConNTINUOUS TIME MARKOV CHAINS

@ Poisson Process
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POISSON PROCESS: DEFINITION

A Poisson process N, (0, t) with rate 1 is a process that counts
how many times an exponential distribution with rate A has fired

from time O to time t. Q (-a 1 >
Y= A1 o

@ N W N o
< &Y

It can be seen as a CTMC on the state spacmth rate
matrix @lven by,q, 1 = /lf and zero elsewhere.
It's a very common process. For instance, it is the simplest

model of job arrivals in a queue. -
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POISSON PROCESS: BASIC PROPERTIES

A Poisson random variable V(1) with rate A (Y(1) ~ Poisson(1)) is a
r.v. on N with probability distribution P{¥(1) = n} = &L

n!

lts generating function is G(z) = E[zYWV] = e!(Z71),
—— . . . . \ }
@nbutlon of Na(0, t) is\Poisson(At
We show that G;(z) = E[zV()] = gt(z-1),

By the Markov property, N(O,t+ s) = N(O,t) + N(t, s), and the two
processes on the right are independent.

Then Giqi(2) = EB[ZVODE[2NWEHAD] But E[zNEHAD] = (1 — Adt)Z° + Adtz!,
hence Gt—l—dt(z) — Gt(Z) + /l(Z — 1)Gt(Z)dt, and so

dGi(z)
dt

which has solution G;(z) = e'*=1) as N,;(0,0) = 0 with probability 1.

= Az-1)G(2),
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INVARIANT MEASURES AND STEADY STATE
Pe PO~ Spl)- plO)Q

Consider a CTMC with rate matrix Q and fmute state space S.
An invariant measure for the CTMC is a probability distribution
m satisfying R __—

7Q = 0. I
If Qis irreducible (has a strongly connected graph), then it has
a unigue invariant measure.

Consider an irreducible CTMC with rate matrix Q and finite
state space S, and let 7 be its invariant probability distribution.
Then, for each s;, s; € S, —
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EXAMPLE: BIRTH-DEATH PROCESS

A birth-death process is a CTMC on S = N with birth rate A;
(from /to / + 1) and death rate u; (fromito /- 1).

Ao A1 Ao A3
M1 M2 M3 H4

To derive the steady state z, we can use the fact that the net
flow along each cut must be zero (why?):

Tidj = Ty 1Miy1

Hence we get:
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EXAMPLE: BIRTH-DEATH PROCESS

Consider a birth-death process with constant birth rate A and

constant death rate u. It is the model of a@/@ue\t@f)

@ 0 ® O
H H H

H

1

3

Tk =] 7to. 0 =
H

i)

o If 1> u,then mg = 0 = mx. No state is positive recurrent,
there Is no invariant measure. The chain escapes to
Infinity.

1-A/u

0 If 1< M, then o = 2—A/u

/l)k 1-1/u

and ﬂk:( >~ 1/1

= |
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EXAMPLE: BIRTH-DEATH PROCESS

— K 1_
f A <y, then mo = =% and m = (4)" =44

2—A/u 2—A/u

Assume A =1, u = 2.
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MATRIX EXPONENTIAL

The solution of the forward Kolmogorov equation(d’;gt) = P(1)Q,

for a generic CTMC, can be given in terms of the

T

exponential
— — U
Q-
S/ AT
/0/){ *,,’Z /%9(‘»2
_

. . . . A bor

However, numerical computation of the series expansion Is

numerically unstable.
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UNIFORMIZATION

A more efficient strategy is to solve the uniformized CTMC.

Let\1 & max;{—gj}:

Then one considers a CTMC with jump chain/Y\(n) ith matrix

1=/ :
) 1"

and uniform exit rate A. :

The number of fires of this CTMC up to time t is a Poisson

process N,(0, t), and so

It follows that—

K(t)=s, 0

which can be truncated a
Poisson r.v.

W W\é PQQ?S METHON

(and below ) by bou ding the )\\
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A SIMPLE EXAMPLE: THE MOOD CHAIN

Upper bound on exit rate: 2

1/10
1 00 2t
e <'(2t)" _,
n=0
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