COMPUTATIONAL MODELLING CONTINUOUS TIME MARKOV CHAINS

Luca Bortolussi¹

¹Dipartimento di Matematica e Geoscienze Università degli studi di Trieste

Office 328, third floor, H2bis luca@dmi.units.it

Trieste, Summer Semester, 2017

Ti, iel Tin Exp(1) RACE CONSITION

To win Ti

Kore independent

Kore independent

To Exp(21)

Pr(K=K)= 7K

Z1;

i

OUTLINE

- CONTINUOUS TIME MARKOV CHAINS
- 3

- Main concepts •
- Poisson Process
- Time-inhomogeneous rates •
- POPULATION CONTINUOUS TIME MARKOV CHAINS
- 3 SIMULATION
 - SSA
 - Next Reaction Method
 - τ-leaping

CTMC: DEFINITION

Let S be finite or countable. A continuous-time random process

 $(X_t)_{t\geq 0}=\{X_t\mid t\geq 0\}$, with values in S, is a family of random variables

 $X_t: (\Omega, \mathcal{S}) \to (\mathcal{S}, 2^{\mathcal{S}})$ that are *right-continuous* w.r.t. *t*.

Therefore, X_t (or X(t)) has cadlag sample paths.

Right continuous processes are determined by their finite-dimensional distributions.

A Continuous Time Markov Chain is a right-continuous continuous-time random process satisfying the memoryless condition: for each n, t_i and s_i :

 $\mathbb{P}(X_{t_n} = s_n \mid X_{t_0} = s_0, \dots, X_{t_{n-1}} = s_{n-1}) = \mathbb{P}(X_{t_n} = s_n \mid X_{t_{n-1}} = s_{n-1}).$

CTMC: RACE CONDITION

A CTMC on a state space S can be seen as a labelled graph. Each edge takes some time to be crossed, exponentially distributed with the rate labelling the edge.

In each state, there is a race condition between the different exiting edges: the fastest is traversed.

The memoryless property follows from that of the exponential distribution.

A Q-matrix is the $|S| \times |S|$ matrix such that:

- $q_{ij} \ge 0$, $i \ne j$ is the rate of the exponential distribution giving the time needed to go from state s_i to state s_i
- $q_{ii} = -\sum_{j\neq i} q_{ij}$ is the opposite of the exit rate from state i.

Therefore, each row of the *Q*-matrix sums up to zero.

JUMP CHAIN AND HOLDING TIMES

In each state i, we have a race condition between k transitions, each exponentially distributed with rate q_{ii} . Hence, the time spent is $T = \inf T_{ii}$.

By the properties of the exponential distribution, we know that T has rate $q_i = \sum_j q_{ij}$, and that the transition that fires is independent from T and the next state j is chosen with probability q_{ij}/q_i .

We can therefore factorize X(t) into

- e can therefore factorize X(t) into

 a DTMC Y_n , with probability matrix Π , defined by $\pi_{ij} = \frac{q_{ij}}{-q_{ii}}$, if $i \neq j$, and $\pi_{ii} = 0;$
- a sequence of jump times τ_n , where τ_n is the time of the *n*-th jump. Letting q_i the jump rate from state s_i , then $T_n = \tau_n - \tau_{n-1}$, the n-th holding time, is distributed exponentially with rate q_{Y_n} .
- Y_n and each T_i are independent.
- Hence $X(t) = Y_n$ for $\tau_n \le t < \tau_{n+1}$.

$$S = \{happy, blue, angry\}$$

Exit rates

$$q = \left(\frac{3}{10}, \frac{7}{10}, \frac{3}{2}\right)$$

CTMC PCTMC SIMULATION

CHAPMAN-KOLMOGOROV EQUATIONS

Let
$$P_{ij}(t) = \mathbb{P}\{X(t) = |s_{j}| | X(0) = s_{i}\}$$
. Then
$$P(a, b) = P(a, b) = P(a,$$

Hence P(t), as a matrix, satisfies

$$P(t+s) = P(t)P(s) = P(s)P(t),$$

which is the semigroup property, also known as Chapman-Kolmogorov equations.

KOLMOGOROV EQUATIONS

Using properties of the exponential, we can compute P(dt):

$$P_{ij}(dt) = q_{ij}dt$$
, for $i \neq j$;

•
$$P_{ii}(dt) = 1 - \sum_{j\neq i} q_{ij}dt = 1 + q_{ii}dt$$

Hence P(dt) = I + Qdt

From the CK equations: P(t + dt) = P(t) + P(t)Qdt, from which

$$\lim_{t \to \infty} \frac{P(t+dt)-I(t)}{dt} = \underbrace{P(t)Q}_{t}$$

$$\lim_{t \to \infty} \frac{P(t+dt)-I(t)}{dt} = \underbrace{P(t)Q}_{t}$$

$$\lim_{t \to \infty} \frac{P(t+dt)-I(t)}{dt} = \underbrace{P(t)Q}_{t}$$

which is the forward Kolmogorov equation.

Using CK the other way round: P(t + dt) = P(t) + QP(t)dt, so

$$\frac{dP(t)}{dt} = QP(t);$$

which is the backward Kolmogorov equation.

 $S = \{happy, blue, angry\}$

$$\frac{d}{dt}p_0P(t) = p(t)$$

OUTLINE

- **1** CONTINUOUS TIME MARKOV CHAINS
 - Main concepts
 - Poisson Process
 - Time-inhomogeneous rates
- POPULATION CONTINUOUS TIME MARKOV CHAINS
- 3 SIMULATION
 - SSA
 - Next Reaction Method
 - τ-leaping

POISSON PROCESS: DEFINITION

A Poisson process $\mathcal{N}_{\lambda}(0,t)$ with rate λ is a process that counts how many times an exponential distribution with rate λ has fired from time 0 to time t.

It can be seen as a CTMC on the state space $S = \mathbb{N}$, with rate matrix Q given by $q_{i,i+1} = \lambda$, and zero elsewhere. It's a very common process. For instance, it is the simplest model of job arrivals in a queue.

POISSON PROCESS: BASIC PROPERTIES

A Poisson random variable $\mathcal{Y}(\lambda)$ with rate λ ($\mathcal{Y}(\lambda) \sim Poisson(\lambda)$) is a r.v. on \mathbb{N} with probability distribution $\mathbb{P}\{\mathcal{Y}(\lambda) = n\} = \frac{e^{-\lambda}\lambda^n}{n!}$.

Its generating function is $G(z) = \mathbb{E}[z^{\mathcal{Y}(\lambda)}] = e^{\lambda(z-1)}$.

The distribution of $\mathcal{N}_{\lambda}(0,t)$ is $Poisson(\lambda t)$.

We show that $G_t(z) = \mathbb{E}[z^{\mathcal{N}(0,t)}] = e^{\lambda t(z-1)}$.

By the Markov property, $\mathcal{N}(0, t + s) = \mathcal{N}(0, t) + \mathcal{N}(t, s)$, and the two processes on the right are independent.

Then $G_{t+dt}(z) = \mathbb{E}[z^{N(0,t)}]\mathbb{E}[z^{N(t,t+dt)}]$. But $\mathbb{E}[z^{N(t,t+dt)}] = (1 - \lambda dt)z^0 + \lambda dtz^1$, hence $G_{t+dt}(z) = G_t(z) + \lambda(z-1)G_t(z)dt$, and so

$$\frac{dG_t(z)}{dt} = \lambda(z-1)G_t(z),$$

which has solution $G_t(z) = e^{\lambda t(z-1)}$, as $\mathcal{N}_{\lambda}(0,0) = 0$ with probability 1.

INVARIANT MEASURES AND STEADY STATE Po P(t) ~ de p(t) = p(t)Q invoncet => P.Q=0 -

Consider a CTMC with rate matrix Q and finite state space S. An invariant measure for the CTMC is a probability distribution π satisfying

If Q is irreducible (has a strongly connected graph), then it has a unique invariant measure.

Consider an irreducible CTMC with rate matrix Q and finite state space S, and let π be its invariant probability distribution. Then, for each $s_i, s_i \in S$,

$$\lim_{t\to\infty} P_{ij}(t) = \pi_{j}.$$

Notice that aperiodicity is not required. Why?

Case countible 5 Its positive recorrence

EXAMPLE: BIRTH-DEATH PROCESS

A birth-death process is a CTMC on $S = \mathbb{N}$ with birth rate λ_i (from i to i + 1) and death rate μ_i (from i to i - 1).

To derive the steady state π , we can use the fact that the net flow along each cut must be zero (why?):

$$\pi_i \lambda_i = \pi_{i+1} \mu_{i+1}$$

Hence we get:

$$\pi_k = \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}} \pi_0; \qquad \pi_0 = \left(1 + \sum_{k=1}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}\right)^{-1}$$

EXAMPLE: BIRTH-DEATH PROCESS

Consider a birth-death process with constant birth rate λ and constant death rate μ . It is the model of an $M/M/\infty$ queue.

$$\pi_k = \left(\frac{\lambda}{\mu}\right)^k \pi_0; \qquad \pi_0 = \left(1 + \sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu}\right)^k\right)^{-1}$$

- If $\lambda \ge \mu$, then $\pi_0 = 0 = \pi_k$. No state is positive recurrent, there is no invariant measure. The chain escapes to infinity.
- If $\lambda < \mu$, then $\pi_0 = \frac{1-\lambda/\mu}{2-\lambda/\mu}$ and $\pi_k = \left(\frac{\lambda}{\mu}\right)^k \frac{1-\lambda/\mu}{2-\lambda/\mu}$

EXAMPLE: BIRTH-DEATH PROCESS

If
$$\lambda < \mu$$
, then $\pi_0 = \frac{1-\lambda/\mu}{2-\lambda/\mu}$ and $\pi_k = \left(\frac{\lambda}{\mu}\right)^k \frac{1-\lambda/\mu}{2-\lambda/\mu}$

Assume $\lambda = 1$, $\mu = 2$.

CTMC PCTMC SIMULATION

MATRIX EXPONENTIAL

The solution of the forward Kolmogorov equation $\frac{dP(t)}{dt} = P(t)Q$, for a generic CTMC, can be given in terms of the matrix

exponential

$$P(t) = e^{Qt} = \sum_{n=0}^{\infty} \frac{t^n Q^n}{n!}.$$

However, numerical computation of the series expansion is numerically unstable.

UNIFORMIZATION

A more efficient strategy is to solve the uniformized CTMC.

Let $\gamma_i \geq \max_i \{-q_{ii}\}$.

Then one considers a CTMC with jump chain Y(n) with matrix

$$\Pi = I + \frac{1}{\lambda}Q,$$

and uniform exit rate λ .

The number of fires of this CTMC up to time t is a Poisson process $N_{\lambda}(0, t)$, and so

It follows that
$$P(X(t) = X(t) = X(t) = X(t) = N P(x) =$$

which can be truncated above (and below) by bounding the Poisson r.v.

Upper bound on exit rate: 2

$$P(t) = \sum_{n=0}^{\infty} \frac{e^{-2t}(2t)^n}{n!} \Pi^n$$

$$\Pi = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -\frac{3}{10} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{2} & -\frac{7}{10} & \frac{1}{5} \\ 1 & \frac{1}{2} & -\frac{3}{2} \end{pmatrix} = \begin{pmatrix} \frac{17}{20} & \frac{2}{20} & \frac{1}{20} \\ \frac{5}{20} & \frac{13}{20} & \frac{2}{20} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$