OUTLINE

- CONTINUOUS TIME MARKOV CHAINS
 - Main concepts
 - Poisson Process
 - Time-inhomogeneous rates
- 2 POPULATION CONTINUOUS TIME MARKOV CHAINS
- 3 SIMULATION
 - SSA
 - Next Reaction Method
 - τ-leaping

CTMC PCTMC SIMULATION 27/49

POPULATION PROCESSES

SIR epidemics model single individual

- Consider a CTMC model of a population epidemics in which each of N individuals can be in one of three states: susceptible (S), infected (I), and recovered (R);
- Infection rate depends on the density of infected individuals;
- The CTMC for N agents has 3^N states (if we distinguish the individuals) or (N + 1)² states (if we just count them): it's impossible to write down the Q matrix explicitly.
- We need a better description of population CTMCs.

POPULATION CTMC

A population CTMC model is a tuple $\mathcal{X} = (\mathbf{X}, \mathcal{D}, \mathcal{T}, \mathbf{x_0})$, where:

- ② $\mathcal{D} = \prod_i \mathcal{D}_i$ (countable) state space.
- $\mathbf{x_0} \in \mathcal{D}$ —initial state.
- $\eta_i \in \mathcal{T}$ global transitions, $\eta_i = (a, \phi(\mathbf{X}), \mathbf{v}, r(\mathbf{X}))$
 - a event name (optional).
 - $\phi(\mathbf{X})$ guard.
 - $\mathbf{v} \in \mathbb{R}^n$ update vector (from \mathbf{X} to $\mathbf{X} + \mathbf{v}$)
 - $r: \mathcal{D} \to \mathbb{R}_{\geq 0}$ rate function.

Three variables: X_S, X_I, X_R .

State space:

$$\mathcal{D} = \{(n_1, n_2, n_3) \mid n_1 + n_2 + n_3 = N\} \subset \{0, \dots, N\}^3.$$

CTMC PCTMC SIMULATION

EXAMPLE: SIR EPIDEMICS

29/49

Three variables: X_S, X_I, X_R .

State space:

$$\mathcal{D} = \{(n_1, n_2, n_3) \mid n_1 + n_2 + n_3 = N\} \subset \{0, \dots, N\}^3.$$

Transitions:
$$(inf, \top, (-1, 1, 0))k_I \frac{X_I}{N} X_S)$$

MASS ACTION

CTMC PCTMC SIMULATION

EXAMPLE: SIR EPIDEMICS

Three variables: X_S, X_I, X_R .

State space:

$$\mathcal{D} = \{(n_1, n_2, n_3) \mid n_1 + n_2 + n_3 = N\} \subset \{0, \dots, N\}^3.$$

Transitions:

- $(inf, \top, (-1, 1, 0)k_I \frac{X_I}{N} X_S)$
- $(rec, T, (0, -1, 1), k_RX_I)$

Three variables: X_S, X_I, X_R .

State space:

$$\mathcal{D} = \{(n_1, n_2, n_3) \mid n_1 + n_2 + n_3 = N\} \subset \{0, \dots, N\}^3.$$

Transitions:

- $(inf, \top, (-1, 1, 0) k_I \frac{X_I}{N} X_S)$ $(rec, \top, (0, -1, 1), k_R X_I)$
- $(susc, T, (1, 0, -1), k_S X_R)$

(average)

MASTER EQUATION

The Kolmogorov equation in the context of Population Processes is often know as master equation.

There is one equation per state $\mathbf{x} \in \mathcal{D}$, for the probability mass $P(\mathbf{x}, t)$, which considers the inflow and outflow of probability at time t.

$$\frac{dP(\mathbf{x},t)}{dt} = \sum_{\eta \in \mathcal{T}} r_{\eta}(\mathbf{x} - \mathbf{v}_{\eta}) P(\mathbf{x} - \mathbf{v}_{\eta},t) - \sum_{\eta \in \mathcal{T}} r_{\eta}(\mathbf{x}) P(\mathbf{x},t)$$

POISSON REPRESENTATION

Population CTMC admit a simple description in terms of Poisson processes.

