OUTLINE

© PoPULATION CONTINUOUS TIME MARKOV CHAINS
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POPULATION PROCESSES
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@ Consider a CTMC model of a
population epidemics in which
each of N individuals can be in

SIR epidemics model one of three states: susceptible
single individual Eg)) infected (/), and recovered

@ Infection rate depends on the
density of infected individuals;

@ The CTMC for N agents has 3"
ki X;/N Ks states (if we dlstlngwsr21 the
individuals) or (N + 1)< states (if
we just count them): it’s
/ 1 R impossible to write down the Q
KR matrix explicitly.

@ We need a better description of
population CTMCs.
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POPULATION CTMC

A population CTMC model is a tuple X = (X, D, 7, Xg), Where:

Q@ X — vector of variables Countlng how many |nd|V|duals IN
\ ) -
each state. >< s X W) /\/\ — (N

- <

Q D=1]],D — (countable) state space

O Xo € D —initial state.
Q@ n; € T — global transitions, n; = (a, $(X), v, r(X))
@ a— event name (optional).

® ¢(X)— guard.
© Vv € R" — update vector (from X to X + v)

O r:D - R.o— rate function.
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EXAMPLE: SIR EPIDEMICS

Three variables: Xg,X;,Xpg.
State space:

D ={(n1,n2,n3) | N1+ No+ N3 =
N} c {0,...,N})3.
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EXAMPLE: SIR EPIDEMICS —+ T
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Three variables: Xg,X;,XR.
State space:

D ={(M,n2,n3) | Ny +nNo+n3 =
N} c {0,...,N})3.

Tran5|t|ons

Q /nf T, @@O k/
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EXAMPLE: SIR EPIDEMICS

7*‘*7J2 /%{\{“yl‘

Three variables: Xg,X;,Xpg.
State space:

D ={(n,n2,n3) | N1 +nN2+nN3 =
N} c{0,...,N}°.

Transitions:

o (inf, T,(~1,1,0)k%Xs)

e (rec, T:L(O/’@,@
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EXAMPLE@ PIDEMICS

Three variables: Xg,X;,Xpg.
State space:

D ={(n,n2,n3) | N +nN2+n3 =
N} c{0,...,N})3.

Transitions:
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EXAMPLE: SIR EPIDEMICS
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" N=100, k = 1, kg = 0.05, ks = 0.0°
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EXAMPLE: SIR EPIDEMICS

N =100, ks = 1, kg = 0.05, kg = 0.01
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MASTER EQUATION

The Kolmogorov equation in the context of Population
Processes Is often know as master equation.

There i1s one equation per state x € D, for the probability mass
P(x, t), which considers the inflow and outflow of probability at
time t. |

dPXt Zrnx Vv, )P(X —v,, 1) Z:r,7

neT nes
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POISSON REPRESENTATION

Population CTMC admit a simple description in terms of Poisson
processes.




