CHIMICA AMBIENTALE

CdL triennale in Scienze e Tecnologie per l'Ambiente e la Natura

> Docente Pierluigi Barbieri

SSD Chimica dell'ambiente e dei beni culturali, CHIM/12

TABELLA 3.1 • Valori di riferime espressi in ppm	iferimento de 1 ppm	lla quali	tà dell'aria	rispetto	di riferimento della qualità dell'aria rispetto al contenuto di gas inquinanti si in ppm	ıs inquinanti	
Gas	OMS	USA	Canada	UE	Australia	Cina	India
Ozono, O3 su 8 ore	0,051	0,075	1	0,061	(0,08 su 4 ore)	-	0,051
1 ora	1	1	0,082	1	0,10	0,061-0,10	0,092
Monossido di carbonio,	L	6	13	6	6	(3,5-5,3 in un giorno)	5,3
1 ora		35	31				3,5
Biossido di azoto, NO ₂ su 1 ora	0,11	0,10	0,21	0,11	0,12		
1 anno	0,021	0,053	0,053	0,021	0,03	0,021-0,042	0,021
Biossido di zolfo, SO ₂ su 1 ora	(0,19 per 10 minuti)	0,075	0,33	0,13	0,20		1
24 ore	800,0	0,14	0,115	0,05	0,08	0,019-0,096	0,031
1 anno		0,03	0,023	1	0,02	0,008-0,039	0,019

Nota: dato che tutte le specie elencate sono gas, la scala in ppm ha la base di moli/moli, equivalenti a volume/volume.

senza g m ⁻³	PM ₁₀ annuale	20			40		40-150	09
itivi alla pre spressi in μ	PM ₁₀ su 24 ore	50	150		50	50	50-250	100
mento rela rticolato, e	PM _{2,5} annuale	10	15		(25)	(8)	1	40
Valori di riferimento relativi alla presenza 3 nell'aria di particolato, espressi in 3	PM _{2,5} su 24 ore	25	35	(30)	1	(25)	1	09
TABELLA 3.2 • Valori di riferimento relativi alla presenza nell'aria di particolato, espressi in μ g m 3	Paese o organizzazione	OMS	USA	Canada	UE	Australia	Cina	India

Nota: le cifre fra parentesi tonde sono valori di riferimento provvisori.

English Français Deutsch Pycckni

Search

About us

Media centre

Data and evidence

Health topics > Environment and health > Air quality > Publications > Review of evidence on health aspects of air pollution – REVIHAAP project: final technical report

Publications

Countries

Health topics

Home

Review of evidence on health aspects of air pollution – REVIHAAP project: final technical report This final technical report for Русский (РDF, 458.6 КВ) English (PDF, 2.6 MB) WHO/Europe, 2013 Download Data and statistics Publications Contact us Air quality Activities Partners Events News Policy

ABSTRACT

review of European Union p

health aspects of air pollution to 24 questions on the heal

are provided. The review concludes that a considerable amount of new scientific This document presents answers to 24 questions relevant to reviewing European policies on air pollution and to addressing health aspects of these policies. The answers were developed by a large group of scientists engaged in the WHO project 'Review of evidence on health aspects of air pollution - REVIHAAP". The experts eviewed and discussed the newly accumulated scientific evidence on the adverse effects on health of air pollution, formulating science-based answers to the information on the adverse effects on health of particulate matter, ozone and nitrogen dioxide, observed at levels commonly present in Europe, has been published in recent years. This new evidence supports the scientific conclusions of the WHO air quality air pollution concentrations lower than those serving to establish these guidelines. It also provides scientific arguments for taking decisive actions to improve air quality guidelines, last updated in 2005, and indicates that the effects in some cases occur at 24 questions. Extensive rationales for the answers, including the list of key references, and reduce the burden of disease associated with air pollution in Europe. This publication arises from the project REVIHAAP and has been co-funded by the European Union.

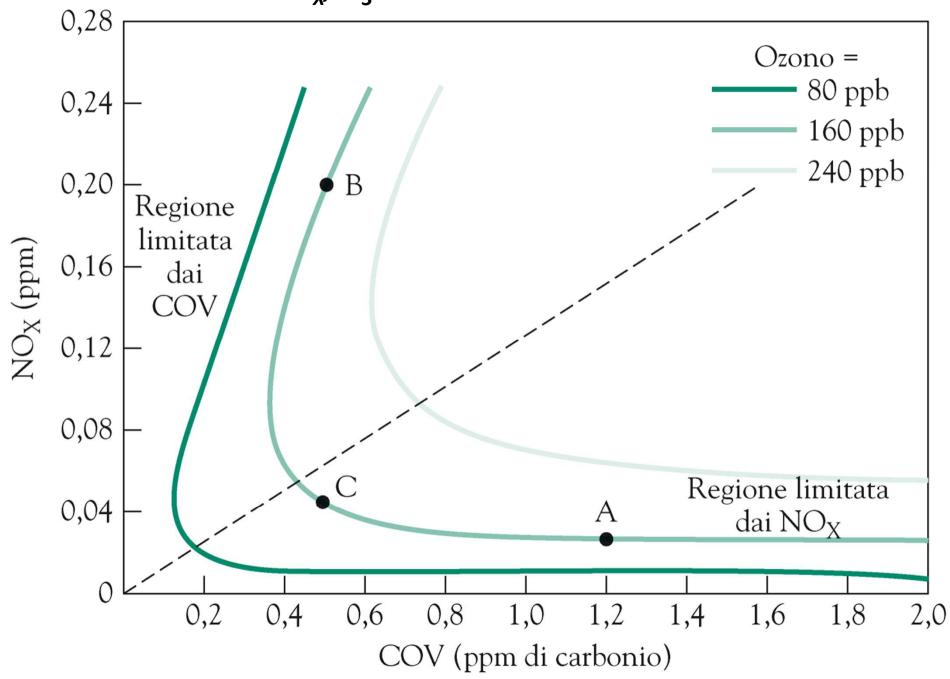
Quali sono gli inquinanti atmosferici oggetto di max attenzione nel FVG?

Principali criticità ambientali e azioni di risposta per il territorio della Regione Friuli Venezia Giulia

https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/ambiente-territorio/tutela-ambiente-gestione-risorse-naturali/FOGLIA209/allegati/Rapporto criticitx allegato a DGR 2405.pdf

Le criticità principali relative alla tematica "Aria" risultano essere il PM10 e gli ossidi di azoto (NOx).

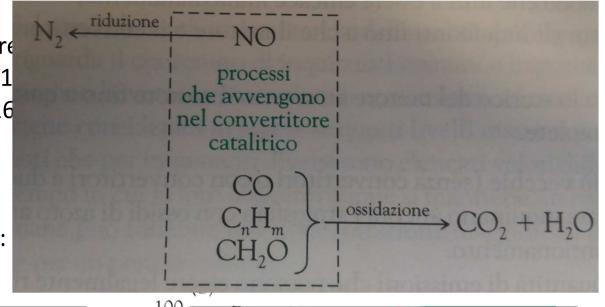
Tali inquinanti, per le loro caratteristiche di rilevanza sotto il profilo della salute umana che obbliga un loro costante monitoraggio (D.Lgs. 155/2010) e data la loro rilevanza in termini di vasta diffusione sul territorio regionale, risultano essere criticità su cui è prioritario intervenire, coerentemente con le politiche europee di settore (Direttiva 2008/50/CE) e con la pianificazione regionale di settore (Piano di miglioramento della qualità dell'aria e Piano di Azione Regionale).

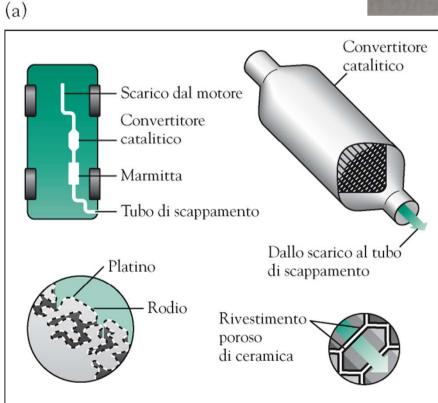

Indicatore	DPSIR	Livello di attenzione						
PM10	S/P	8	Α					
Aree critiche: bassa pianura, pordenonese, triestino (zona costiera) con superamenti della soglia di 35 gg. con concentrazione medie > 50 ug/mc. Fonti principali (in ordine): riscaldamento domestico e nel terziario (combustione non industriale), trasporto su strada, combustione nell'industria (INEMAR ⁴ 2007).								
NOx	S/P	8	Α					
Criticità associate ai principali agglomerati urbani ed industriali, aree portuali e principali Fonti principali (in ordine): trasporto su strada, combustione nell'industria, produzion INEMAR 2007).			ustibili (PRMQA e					

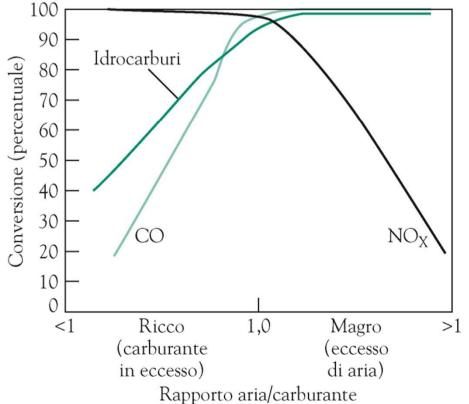
Risposte	Obiet 2020			ra con le finalità della normativa I		a con le finalità della iva nazionale		nza con la Pianifi- ne regionale di re
Adeguamenti e miglioramenti in impianti di riscalda- mento	Si	Riduzione dei consumi energetici; Investire nell'efficienza energetica	Si	Direttiva 2008/50/CE	Si	D.Lgs. 155/2010	Si	PRMQA; PAR
Ammodernamento impiantisti-co industriale	Si	Riduzione dei consumi energetici dei comparti produttivi	Si	Direttiva 2008/50/CE	Si	D.Lgs. 155/2010	Si	PRMQA; PAR
Promuovere il trasporto colletti-vo (privilegiando il trasporto non su gomma) ovvero a modalità di trasporto alternative (ad es. auto elettriche/ibride) e alla pluri-modalità, anche con riferimento al trasporto merci	Si	Modernizzazione e decar- bonizzazione del settore dei trasporti; riduzione del- le emissioni inquinanti; rie- quilibrio modale di merci e passeggeri anche attra- verso sistemi collettivi o di con-divisione del servizio (sharing – pooling)	Si	Direttiva 2008/50/CE	Si	D.Lgs. 155/2010	Si	PRMQA; PAR; PRITMML

PAR - Piano d'Azione Regionale;

PRITMML - Piano Regionale delle Infrastrutture di Trasporto, della Mobilità delle Merci e della Logistica; PRMQA - Piano regionale di miglioramento della qualità dell'aria

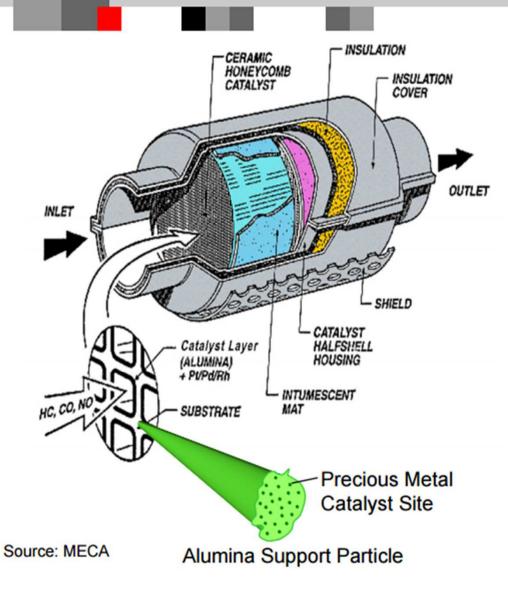

RELAZIONE TRA NO_{x} , O_3 E COV



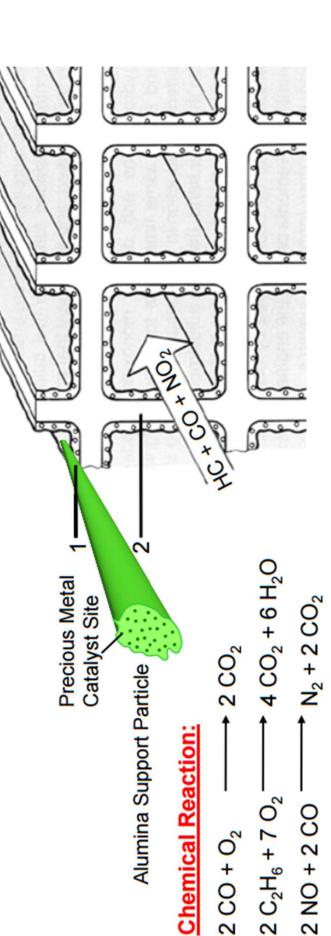

Il **traffico automobilistic**o rappre atmosferico Baird, cap.3.10, 3.1 NO termico, formazione a T > 16

$$N_2 + O \rightarrow NO + N$$

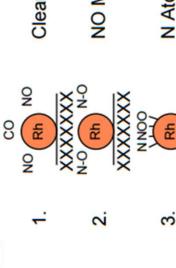
 $N + O_2 \rightarrow NO + O$


ABBATTIMENTO DI NOX E COV:

THE THREE-WAY CATALYTIC CONVERTER



- Catalyst Layer Open Porous Structure With Support Materials of High Thermal Stability
- Mounting Materials With Improved Durability
- High Cell Density Ceramic or Metallic Substrates
- Insulation for Heat Management


http://www.arb.ca.gov/research/seminars/mooney/mooney.pdf

METHOD OF OPERATION OF THE THREE-WAY CATALYTIC CONVERTER

- Catalyst Layer Containing Platinum and Rhodium,
- 2 Ceramic or Metal Substrate.

THREE-WAY CATALYST REACTION MECHANISM

Clean Rh Surface

NO Molecules Attracted to Rh - Electron Bond Stretch

N Atoms and O Atoms Share Electron Bond With Rh

XXXXX

N Atoms Combine and Desorb as N₂ Molecules

Oxygen Atoms Remain

몺

5

XXXXXX

XXXXXXX S

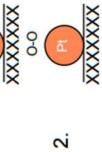
8

R

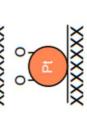
6

CO Molecules React With Oxygen Atoms to Form CO₂

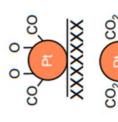
CO₂ Desorbs Leaving a Clean Rh Surface


XXXXXXX

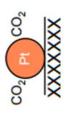
CO Is "Friend" and "Foe". Here "Friend" Reductant CO Removes the O That Is Stuck on Rh Surface.


Pt SURFACE PROVIDES THE MEETING PLACE **FOR OXIDATION REACTANTS**

Clean Pt Surface



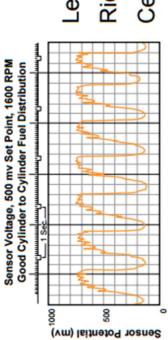
O₂ Molecule Attracted – Electron Bond Stretch



က

O Atoms Share Electron With Pt

CO Reacts With O Atoms to Form CO₂



5

CO₂ Desorbs, Leaving a Clean Pt Surface

Excess "Foe" CO Is Oxidized to CO2.

BASE METALS ASSIST BY STORING AND RELEASING OXYGEN

Lean – Too Much Oxygen

Cerium Oxides (Ceria)

Sensor Voltage, 500 mv Set Point, 1600 RPM
Good Cylinder to Cylinder Fuel Distribution

Sensor Voltage, 500 mv Set Point, 1600 RPM
Good Cylinder to Cylinder Fuel Distribution

The sense of the sense o

Catalyst Inlet

Lean $Ce_2O_3 + 1/2 O_2$ —

 $(2) CeO_2$

(2) CeO₂ + CO —

Rich

(+3) • CO₂ + Ce₂O₃ Ce,O, Captures Excess O, That Would Escape the Tailpipe and Saves it for CO Oxidation When in Short Supply. The Act of O₂ Storage Enhances NO Reduction. Attenzione allo zolfo nei combustibili quando si impiegano i catalizzatori

SO2 -> H2S

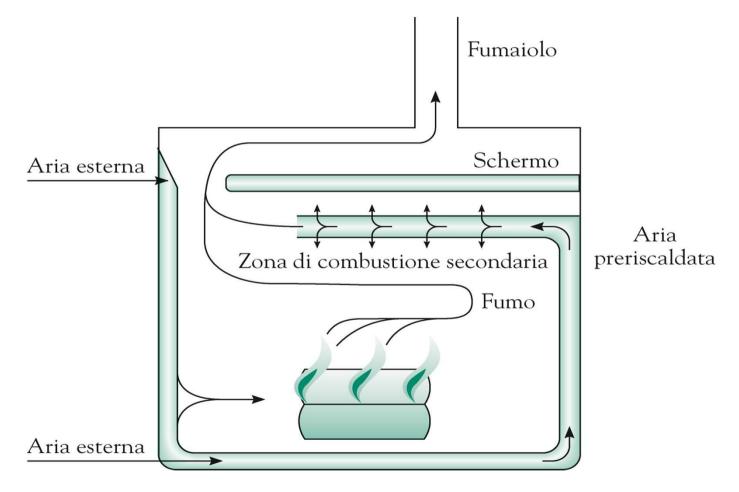
E formazione di solfato che copre e disattiva i siti attivi dei catalizzatori

Emissioni di NO_x da impianti per la produzione di energia

Per ridurre emissioni NO_x

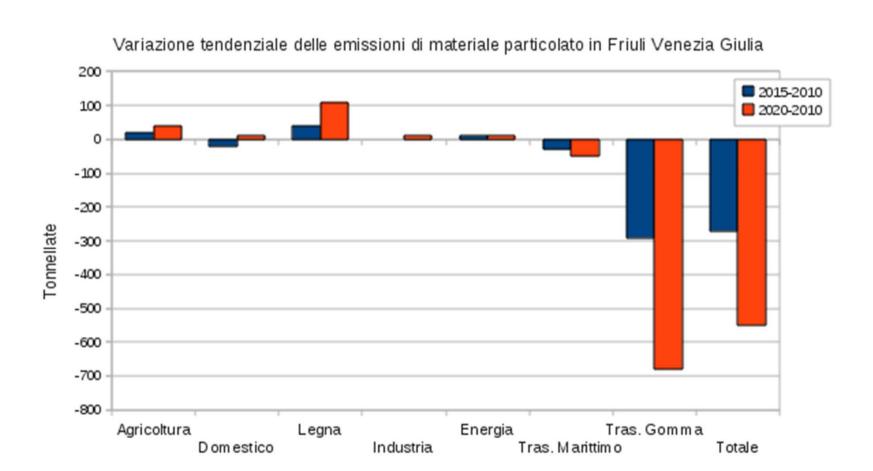
- Diminuire temperatura fiamma o ricircolo frazione di gas di scarico
- Combustione in più fasi (1. alta T, poco O₂; 2. T<, aggiunto O₂ per combustione completa del combustibile): si dimezzano emissioni di NO
- Riduzione catalitica selettiva (SCR) $4 \text{ NH}_3 + 4 \text{NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O} \text{ (T=250-500 °C)}$ abbattimento 80%
- Assorbimento umido dei gas di scarico (scrubber)
 NO + NO₂ + 2 NaOH_(acq) -> 2 NaNO₂ + H₂O

Carbone pulito?: riduzione delle emissioni di SO₂ da centrali elettriche (Baird 3.19)


Lavaggio o desolforazione dei gas combusti

$$SO_2 + CaCO_3 \rightarrow CaSO_3 + CO_2$$

2 $CaSO_3 + O_2 \rightarrow CaSO_4$


Lavaggio a umido rimuove più SO_2 (> 90%) che a secco (> 70%)

Il fumo delle stufe a legna

Baird 3.26

http://cmsarpa.regione.fvg.it/cms/tema/aria/pressioni/Combustioni_biomasse/combustione _legna.html#

Seminario 3 Marzo 2016 STA srl - Quarto d'Altino (VE) Misure alle emissioni di polveri e gas: sistemi di misura e campionamento

Emissioni da combustione domestica di biomasse

PIERLUIGI BARBIERI

Università degli Studi di Trieste
Dipartimento di Scienze Chimiche e Farmaceutiche
ARCo SolutionS S.r.l. – Spin Off DSCF

Ordine provinciale dei Chimici di Trieste

Università degli Studi di Trieste

Dipartimento di Scienze Chimiche e Farmaceutiche - DSCF

«La casa delle scienze chimiche in FVG»

Gruppo di ricerca in chimica ambientale

Particolato aerodisperso - composti organici volatili

Ambiente Ricerca Consulenze e Soluzioni Sostenibili srl

Spin off del DSCF: ARCo SolutionS srl Unità Operativa Sviluppo e Ricerca Techno AREA, Gorizia Iscritta alla Sezione speciale del Registro delle Imprese per le START-UP INNOVATIVE Gruppo LEGNO Agripolis (Legnaro – PD)

Ordine Professionale dei Chimici di Trieste

Progetti su caratterizzazione PM riferibili a combustione da biomasse	Immissioni (recettori)	Emissioni (sorgenti)	Modellistica dispersionale
PRIN SITECOS 2004 (2005)	X		
Comune di Trieste 2005/6	X		
Monitoraggi a Trieste 2007/08	X		
Palazzetti Lelio spa "Valutazione di emissioni di inquinanti da stufe a legna: studi analitici su idrocarburi policiclici aromatici e valutazioni tossicologiche su polveri sottili", 2007-2008		X	
Monitoraggi a Manzano (2010/11)	X		X
			X
PRIN LENS "Valutazione delle emissioni dalla combustione domestica di biomasse legnose: sviluppo di sistemi di campionamento e studi sperimentali su sistemi tradizionali e tecnologie di mitigazione delle emissioni" nell'ambito del PRIN 2008 "La combustione della legna come fonte di energia primaria: sviluppo di metodologie integrate per la valutazione di rischi e benefici. (LENS: Legna, ENergia, Salute; coordinatore Prof. Demetrio Pitea); (2011/12)		X	
POR FESR FVG -Palazzetti Lelio Spa 'Confronto tra apparecchi a legna o a pellet, con diversa camera di combustione, delle emissioni di inquinanti: studi analitici su particolato e idrocarburi policiclici aromatici" 2010/2011		X	
POR FESR FVG -Palazzetti Lelio Spa "Confronto delle prestazioni tra apparecchi a legna e a pellet, con diversa camera di combustione" 2011/2012		X	
	X		
FESR-SHARM (Supporting Human Assets in Research and Mobility) - ARCo SolutionS" –"Combustione domestica sostenibile di biomasse di provenienza regionale (Friuli Venezia Giulia)" 2013		X	20

24-28 febbraio 2016

Mostra internazionale di impianti ed attrezzature per la produzione di calore ed energia dalla combustione di legna

SPECIALE EMISSIONI

Evoluzione del consumo di legna e pellet e delle emissioni di PM10 dalla combustione residenziale in Italia

Proposte al Governo e alle Regioni per dimezzare il PM10

Valter Francescato, AIEL

26 AGRIFORENERGY 1/2016

http://www.progettofuoco.com/system/media/Art.Emissioni_PF.pdf

http://aiel.cia.it/emissioni.html

Grafico 2 – Confronto tra le emissioni di PM10 del traffico stradale e la combustione residenziale dei biocombustibili legnosi (legna e pellet) nel periodo 1990-2013 (Elaborazione AIEL su dati Ispra, 2015)

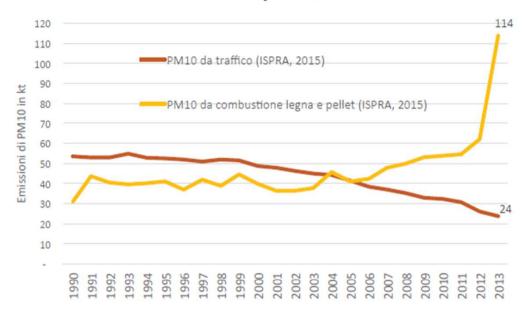


Tabella 2 – Ripartizione del consumo di energia per tipo di generatore e di biocombustibile in Veneto nel 2006 (Elaborazione AIEL su dati Apat-Arpal 2006 e Arpay 2013)

	Intervallo	Potenza	Numero generatori	Ore esercizio	Consumo medio/		no finale ergia	Numero g	jeneratori	Variazione generatori
	di potenza (kW)	media (kW)	(.000)	Pn	generatore (t)	TJ.	%	% 2006	% 2013	(% 2006- 2013)
Camini aperti legna	<15	8	110,1	869	1,8	2.758	9,3%	16,5%	14,0%	-15%
Stufe tradizionale a legna (incl. cucine)	<15	8	370,8	1691	3,5	18.054	60,8%	55,5%	39,0%	-29%
Camini chiusi/ inserti a legna	<15	8	125,7	1691	3,5	6.119	20,6%	18,8%	14,0%	-25%
stufa a legna moderna	<15	8	44,4	1676	3,47	2.145	7,2%	6,6%	19,0%	+6%
Stufe a pellet	<15	7,5	17,3	1344	2,1	626	2,1%	2,6%	14,0%	+445
Totale			668,3			29.701	100%	100%	100%	

Tier 1: $E = F \cdot A \cdot 10^{-6}$ (11.5)

E= emissioni

 $(kg a^{-1})$

F= fattore di emissione medio

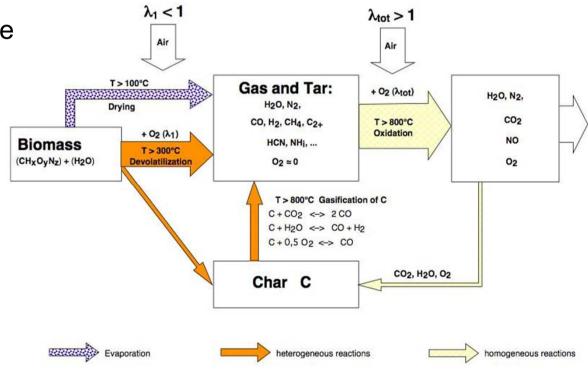
per la combustione residenziale della biomassa (mg GJ¹)

A= biomassa consumata nel settore domestico (GJ a⁻¹)

Tabella 3 – FE utilizzati per il calcolo delle serie storiche 1999-2015 delle emissioni di PM10 dalla combustione residenziale di legna e pellet in Italia.

PM10 g/GJ	Germania	INEMAR	INEMAR	AA.VV.	PoliMi-SSC	BeReal
Anno	2000	2007-2008	7-2011	2012	2013	2014-2015
Camini aperti legna	158	500	860		504	
Stufe a legna	113	200	480	157	175	119
Camini chiusi legna	158	200	380		169	
Cucine a legna	76	200	480		175	
Stufe a pellet	71	70	76	65	107	39
Caldaie a legna	162	150	380	75	136	
Caldaie a pellet	22	29	29	14	53	

Tabella 4 – Serie storica dei FE calcolati in funzione dell'età dell'installato a partire dal 2009, sulla base di FE ottenuti da tre fonti bibliografiche. Nel periodo 1999-2009, e laddove non disponibili FE per i tipi di generatori considerati, si è fatto riferimento ai FE medi recentemente pubblicati dal Politecnico di Milano e la Stazione Sperimentale dei Combustibili (PoliMi-SSC, 2013; tabella 3)

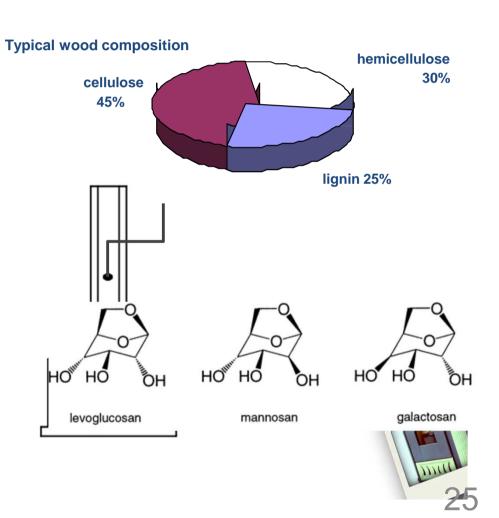

PM10 g/GJ	2009	2010	2011	2012	2013	2014	2015
Camini aperti legna	504	504	504	504	504	504	504
Stufe a legna	165	165	164	162	161	160	159
Camini chiusi legna	159	159	158	157	156	156	155
Cucine a legna	165	165	164	162	161	160	159
Stufe a pellet	61	61	58	56	53	52	50
Caldaie a legna	157	157	156	156	155	154	153
Caldaie a pellet	26	26	24	22	20	19	18

La combustione di biomasse

Processo complesso reazioni consecutive eterogenee ed omogenee:

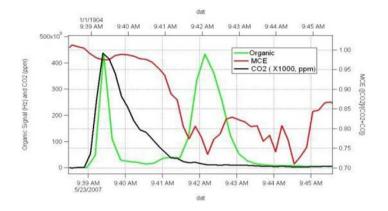
Essicazione, devolatilizzazione, gassificazione, combustione del char ed ossidazioni in fase gassosa

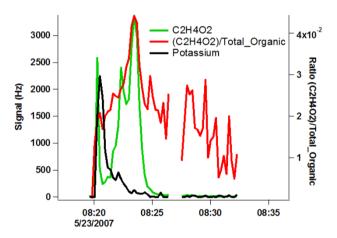
Tempo di ciascuna reazione dipende da dimensioni e proprietà del combustibile, temperatura e condizioni di combustione

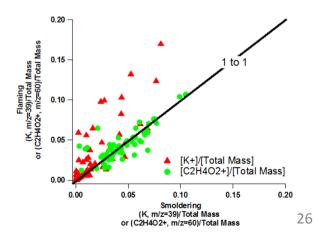


Tra gli incombusti emessi:

Candidate markers

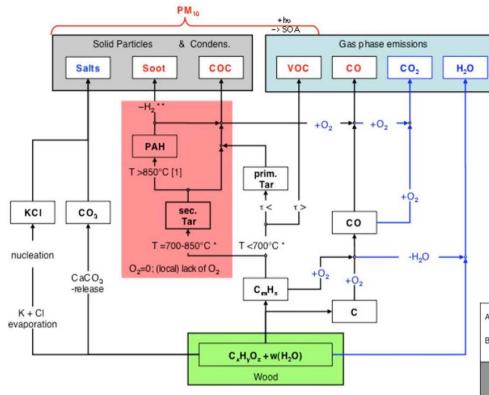

Cellulose
Lignin
p-Coumaryl alcohol Coniferyl alcohol Sinapyl alcohol
Hemicellulose

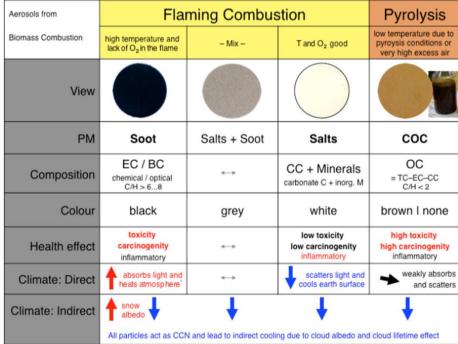

- > K+
 - Common inorganicbiomass burning tracer
- Levoglucosan
 - Cellulose thermal decomposition product
 - Major component of wood smoke
- Mannosan and Galactosan
 - Stereoisomers of levoglucosan
 - Formed from hemicellulose decomposition
 - Much less abundant than levoglucosan

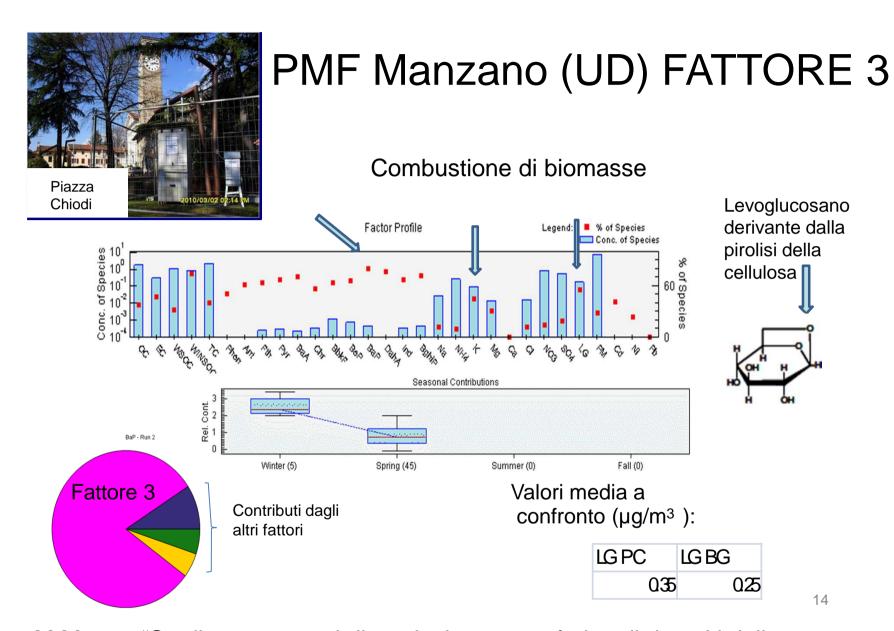


Smoke marker evolution

- Emissions change between flaming and smoldering phases of burn
- K⁺ emitted mostly in flaming phase
- Levoglucosan and related compounds emitted in both flaming and smoldering phases
- Levoglucosan should be a more universal smoke marker




Formazione di inquinanti dalla combustione di biomasse


Formazione di inquinanti:

- 1. Combustione incompleta: -> inquinanti contenenti C (incombusti CO, fuliggine, condensabili organici ("tar"), IPA...)
- 2. NO_x e particolato formati come prodotto naturale di reazione dei *costituenti del combustibile* (N, K, Cl, Ca, Na, Mg, P, S)
- 3. I biocombustibili possono esser portatori di *altri* contaminanti come metalli pesanti, che vengono emessi e catalizzano la formazione di composti anche clorurati

Inquinanti e Formazione del PM

M.Maneo "Studio su sorgenti di particolato atmosferico di due siti della pianura friulana: indagini chimiche e statistiche" Tesi STAN UniTS 2011-12

«Ancora nel novembre 2012 non esiste uno standard europeo comune per la misura delle polveri da impianti di combustione alimentati a combustibili solidi. La norma tecnica specifica europea, ratificata anche in Italia (UNI CEN/TS 15833) riporta diverse metodologie di misura desunte da norme nazionali.

In sostanza, ci sono due principali approcci al campionamento delle polveri: campionamento a caldo e campionamento a diluzione a freddo.

Il metodo di campionamento a caldo mediante filtri preriscaldati non misura le particelle organiche condensabili, che non hanno natura solida alla temperatura di combustione ma condensano in fase di raffreddamento dei fumi in atmosfera. Il metodo di campionamento utilizzato in alternativa è il campionamento a freddo su filtro dal flusso diluito mediante tunnel di diluizione, e comprende nella misura le particelle derivanti dal materiale organico condensabile. I dati sperimentali disponibili in letteratura (Nussbaumer et al., 2008) mostrano come la differenza tra i diversi metodi risulti assai rilevante per i piccoli impianti di combustione, che spesso funzionano in condizioni non ottimali, con elevate emissioni della frazione condensabile. Solo in condizioni di funzionamento ottimale i valori rilevati mediante il campionamento a caldo risultano comparabili con quelli ottenuti tramite la diluizione a freddo (inferiori a questi del 10 %), mentre nelle condizioni reali, con un'elevata quantità di prodotti semivolatili incombusti, le emissioni misurate a freddo possono salire da 2,5 fino a quasi 10 volte. In altre parole, i fattori di emissioni dei piccoli apparecchi a legna sono influenzati, più di altre tipologie di fonti stazionarie, dalle modalità di campionamento e misura del particolato. La frazione condensata dipende anche dal valore del rapporto di diluizione, raggiungendo un massimo intorno a 10 e poi riducendosi a causa dell'evaporazione e del deadsorbimento»

Fattori emissivi

Tier 1:

 $E = F \cdot A \cdot 10^{-6}$

(11.5)

E= emissioni di B(a)P (kg a⁻¹)

F= fattore di emissione medio di B(a)P per la combustione residenziale della biomassa (mg GJ⁻¹) A= biomassa consumata nel settore domestico (GJ a⁻¹)

per caratterizzare sorgenti

			$PM10$ $g GJ^{-1}$	NO ₂		$\begin{array}{ccc} \mathrm{SO}_2 & \mathrm{CO} \\ \mathrm{g} \mathrm{GJ}^1 & \mathrm{g} \mathrm{GJ}^1 & \mathrm{i} \end{array}$		PAH mg GJ ⁻¹	
Open firep	lace		500	70	5,650	13	5,650	280	•
Transfer to the state of the state of	oven, closed firep	olace	250	70	1,130	13	5,650	280	
or insert Innovativ and boiler Pellets pla burning w					Consumo di legna (kt/anno)	(G	E. PM10 uidebook EA) g/GJ	(in	E. PM10 iventario 008) g/GJ
Natural ga	Tier 1	Med	dia		1570		695		284
Gas oil		Can	nino aper	to	309		860		500
Fuel oil	Tier 2 –	Stud	fa izionale		382		810		250
	Media	Can	nino chiu	so	687		450		250
		Stuf	fa innova	tiva	47		240		150
		Stu	fa a pellet		122		76		70

POLITECNICO DI MILANO DIPARTIMENTO DI INGEGNERIA CIVILE ED AMBIENTALE DOTTORATO IN INGEGNERIA AMBIENTALE E DELLE INFRASTRUTTURE

LA COMBUSTIONE DI BIOMASSA IN PICCOLI IMPIANTI RESIDENZIALI: EMISSIONI, INCERTEZZE, SCENARI DI RIDUZIONE

Tesi di dottorato di: Silvia Galante

Relatore:

Ing. Stefano Caserini

Tutor:

Prof. Stefano Cernuschi

	1	AEIG		Proposta del presente studio				
	Valore medio	Intervallo d	li confidenza	Valore medio	Intervallo d	li variazione		
		min	max		min	max		
Caminetto aperto	900	540	1,256	900	540	1,256		
Caminetto chiuso				400	200	700		
Caminetto	900	540	1,256					
Caminetto chiuso avanzato	250	70	260					
Stufa tradizionale	848	509	1,183	500	300	900		
Stufa innovativa	251	69	262	400	200	700		
Stufa a pellet	80	69	251	80	70	150		

			AEIG		Propos	ta del presen	te studio
		Valore	Intervallo d	i confidenza	Valore	Intervallo d	li variazion
		medio	min	max	medio	min	max
	Caminetto aperto	180	130	300	130	20	300
	Caminetto chiuso				100	12	150
	Caminetto	180	130	300			
B(a)P (mg GJ-1)	Caminetto chiuso avanzato	100	12	150			
	Stufa tradizionale	250	150	300	150	12	300
	Stufa innovativa	100	12	150	150	12	150
	Stufa a pellet	50	12	100	25	2	50

come lo stato delle conoscenze sia, per alcuni aspetti del problema della combustione domestico delle biomasse, ancora incompleto. La principale esigenza è quella di maggiori approfondimenti sulle emissioni specifiche dei diversi apparecchi, che risultano dipendenti da numerosissimi fattori32

Dall'analisi svolte nel corso della tesi è emerso

Marzo, 2013

Come campionare il particolato su piccoli impianti/sorgenti per determinare gli EF

A caldo
A freddo (Dil. o impinger)
A caldo + xOGC

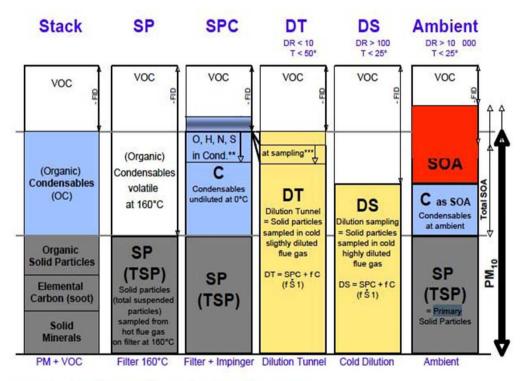


Figure 4.6 Comparison of PM sampling with PM in the ambient.

SP: Filter (Method a) resulting in solid particles SP (total suspended particles TSP).

SPC: Filter + Impinger (Method b) resulting in solid particles and condensables SPC.

DT: Dilution Tunnel (Method c) with typical dilution ratio (DR) in the order of 10 resulting in a PM measurement including SPC and most or all C. DT is identical or slightly smaller than SPC + C due to potentially incomplete condensation, depending on dilution ratio and sampling temperature (since dilution reduces not only the temperature but also the partial pressure of contaminants).

DS: Dilution Sampling with high dilution ratio (DR > 100).

PM10: Total Particulate Matter < 10 microns in the ambient including SP and SOA SOA: Secondary organic aerosols, consisting of condensables C at ambient and SOA formed by secondary reactions such as photochemical oxidation.

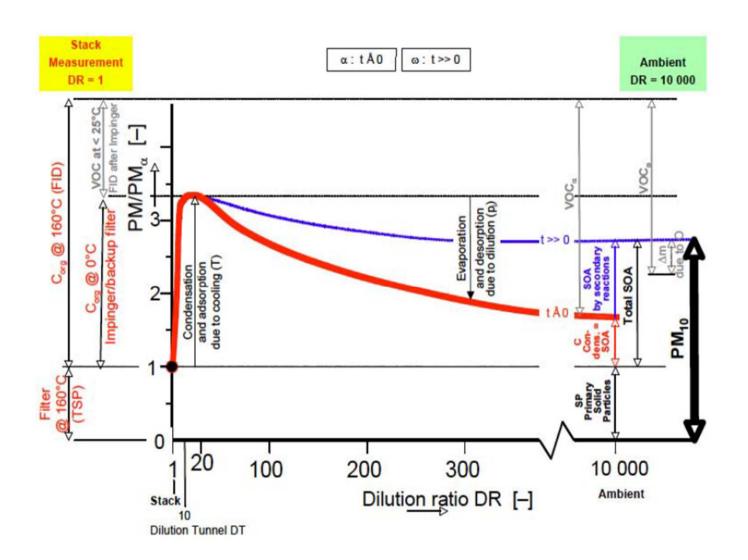


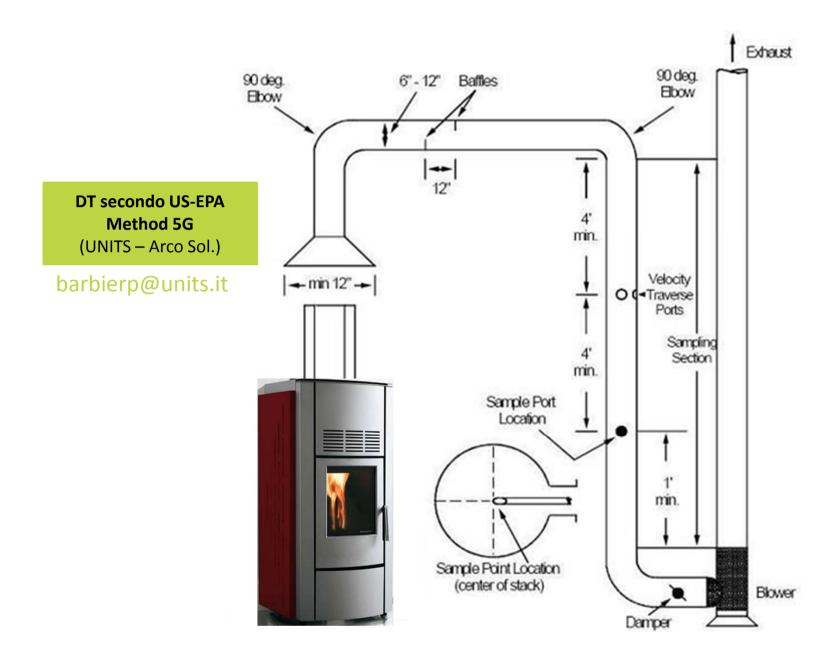
Figure 4.2 Conversion of stack emissions to PM_{10} in the ambient. The graph shows a virtual example with total SOA = 1.8 TSP as measured in the stack and consequently PM_{10} = 2.8 TSP.

Table 3. Advantages and disadvantages of certain dilution methods. (DR = Dilution Ratio)

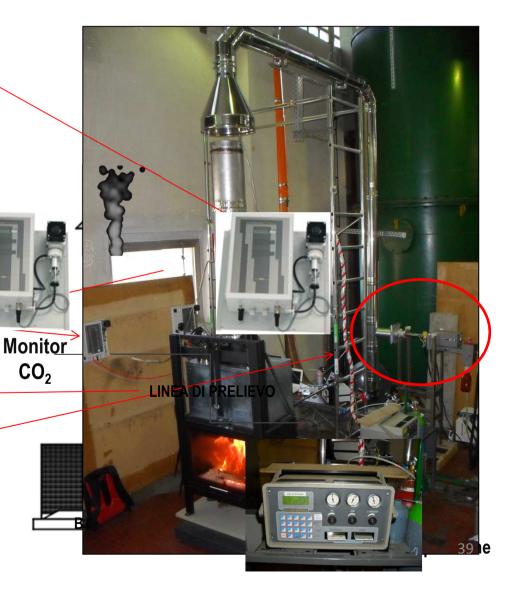
Dilution method	Advantages	Disadvantages	Pay attention to
Ejector diluter (ED)	Stable Good mixing Can be used in the field	Losses (mainly of coarse particles) occur; they can be decreased with larger nozzle (stability decreases). DR cannot be adjusted.	Dilution ratio depends on temperature Small nozzles may clog up Losses have to be determined
Porous tube diluter (PRD)	Losses in diluter are minimized Wide range of DR can be applied Small size; can be used in the field	Sensitive to changes in sample flow	For proper mixing, after diluter there has to be some tubing before sampling equipment Losses have to be determined
PRD+ED	Stable Good mixing Losses have been minimized Wide range of DR can be applied Small size, can be used in the field	Losses have to be determined	
Dilution tunnel (whole/partial flow)	Stable	Dilution is usually high (except for whole flow tunnels) Large size; not suitable for field measurement	Losses have to be determined.
Mini-dilution tunnel	Simple and flexible	Not "standardized" Needs dedicated evaluation	Mixing has to be assured Losses have to be determined
Hood (total flow dilution tunnel)	Low DR can be achieved. "Natural draught" can be simulated	For number measurements, secondary dilution may be needed Large size	Mixing has to be assured The effect of background air on results has to be considered Losses have to be determined
CEN/TS 295 WG 5 "improved hood"	Suitable DR (10-20) for mass measurement. "Natural draught" can be simulated	Designed for TSP measurement, but losses are not defined For number measurements, secondary dilution may be needed Large size	Little experience of the method

Jokiniemi J., Hytönen K., Tissari J., Salonen R. O., Hirvonen M.-R., Jalava P., Pennanen A., Happo M., Vallius M., Markkanen P., Hillamo R., Saarnio K., Frey A., Saarikoski S., Timonen H., Teinilä K., Aurela M., Sillanpää M., Obernberger I., Brunner Th., Bärnthaler G., Friesenbichler J., Hartmann H., Turowski P., Roßmann P., Ellner-Schubert F., Bellmann B., Boman Ch., Pettersson E., Wiinikka H., Sandström Th., Sehlstedt M., Forsberg B. "Clean biomass combustion in residential heating: particulate measurements, sampling, and physicochemical and toxicological characterisation" Biomass-PM Project, 2008 ISSN 0786- 4728

ERA-NET "BIOMASS-PM" Best practice recommendations

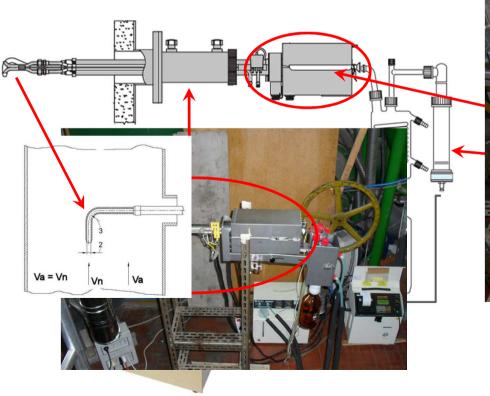

- •A dilution of flue gas with clean air is recommended (condesables)
- •Filtered air should be used
- •Dilution ratio should be monitored by continuous parallel CO2 or NOx in the diluted and undiluted gases. **Dilution ratio** should be high enough to ensure TD < 52°C, in the range **around 20** for the full potential of particle formation by codensation of organic vapours
- •TSP should be monitored also in undiluted gas (a) for comparison with sources where measurements are performed without dilution, (b) to estimate eventual losses of coarse particles
- •A **stepwise chemical analysis** is recommended i) soot, organic and inorganic; ii) EC/OC; iii) fractionation and speciation of inorganic and organic matter for scientific studies, exp. genotoxic PAHs. Dilution ratio should be reported together with results of analyses
- •Concerning batch combustion systems, also the **wood ignition** should be included in the test (samplig should start as soon as CO2 exceeds 1% in volume, should end when CO2 decrease below 4%)
- •The most important size fraction to be investigated for toxicological studies is PM1

Jokiniemi J., Hytönen K., Tissari J., Salonen R. O., Hirvonen M.-R., Jalava P., Pennanen A., Happo M., Vallius M., Markkanen P., Hillamo R., Saarnio K., Frey A., Saarikoski S., Timonen H., Teinilä K., Aurela M., Sillanpää M., Obernberger I., Brunner Th., Bärnthaler G., Friesenbichler J., Hartmann H., Turowski P., Roßmann P., Ellner-Schubert F., Bellmann B., Boman Ch., Pettersson E., Wiinikka H., Sandström Th., Sehlstedt M., Forsberg B. "Clean biomass combustion in residential heating: particulate measurements, sampling, and physicochemical and toxicological characterisation" Biomass-PM Project, August 2008 ISSN 0786-4728


2007 2011

Banco sperimentale per lo studio delle emissioni

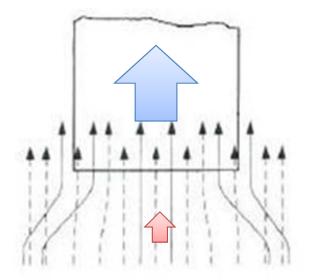
 Analizzatori per la misura della concentrazione dei gas di combustione all'interno della canna fumaria.


Strumenti per il campionamento delle polveri Sonda di prelievo

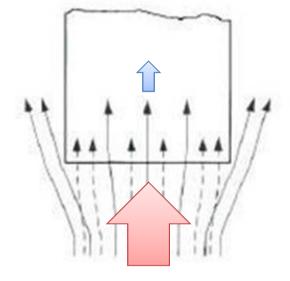
Sistema filtrante per la raccolta polveri

Condensatore e refrigeratore

Filtro PUF per microinquinanti

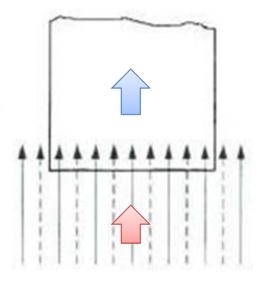

Pompa isocinetica

40


IPERCINETISMO

V aspirazione > V fumi

SOVRASTIMA!

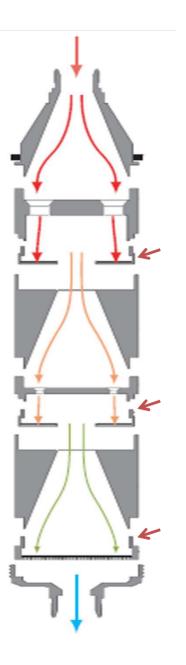

IPOCINETISMO

V aspirazione < V fumi

SOTTOSTIMA!

ISOCINETISMO

V aspirazione


= V fumi

CAMPIONE RAPPRESENTATIVO!

L'impattore multistadio Il sistema TCR TECORA impattore a

• Il sistema TCR TECORA impattore a multistadio (MSSI) costituisce il cuore della linea di campionamento e l'elemento innovativo alla sperimentazione.

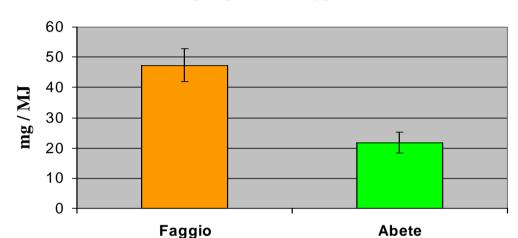
Primo stadio PM>10

Secondo stadio 10>PM>2,5

Terzo stadio PM2,5

Strumenti per la caratterizzazione di Composti Organici Volatili

Rilevante per la speciazione dei COV Solo alcuni (pochi) hanno significato tossicologico, altri sono precursori di SOA, altri né l'uno né l'altro. Quanto dell'uno e degli altri?


- FID ECO-CONTROL ER600
- •Campionatore GasCheck/Analitica Strumenti cartucce TENAX TD Markes Unity/GC-MS Aglilent 6890/5973
- •Rilevatore a fotoionizzazione -PhoCheck Tiger Portable PID VOC Detector

16 test di combustione con **stufa commerciale a pellet** (9kW)

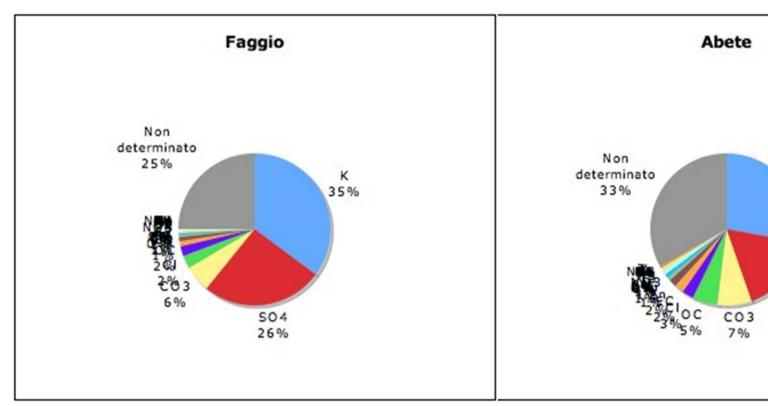
Fattori emissivi medi con intervallo di confidenza per pellet di faggio ed abete

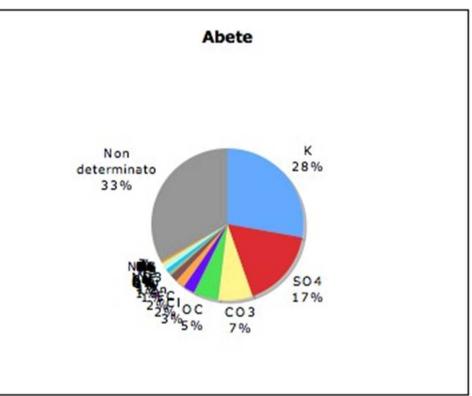
PM>10	2.5 <pm<10< th=""><th>PM<2.5</th></pm<10<>	PM<2.5
[%]	[%]	[%]
6,59	3,78	89,63
3,75	6,17	90,08
2,69	3,26	94,06
2,47	4,56	92,97
8,28	9,87	81,86
4,59	4,27	91,14
2,77	3,72	93,52
2,98	3,25	93,77
2,53	3,14	94,33
1,43	3,27	95,30
3,81	4,53	91,67

PM>10	2.5 <pm<10< th=""><th>PM<2.5</th></pm<10<>	PM<2.5
[%]	[%]	[%]
9,59	12,63	77,79
12,57	12,76	74,67
12,77	14,40	72,84
13,24	13,64	73,12
11,87	16,45	71,68
9,68	13,31	77,01
8,56	8,59	82.85
11,18	13,11	75,71

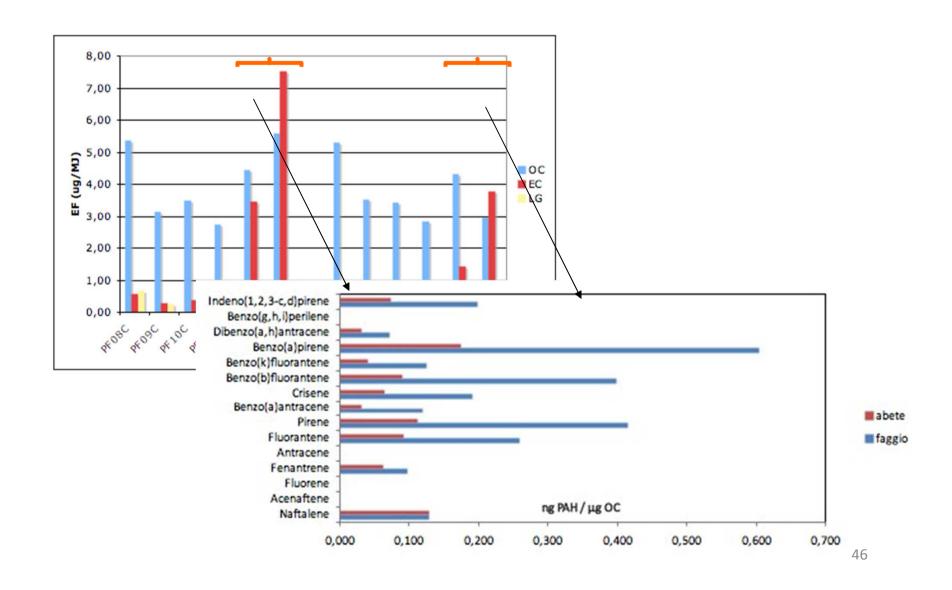
Ben comparabile con

S. Caserini, S. Livio,


M. Giugliano, M. Grosso, L. Rigamonti


"LCA of domestic and centralized biomass combustion:

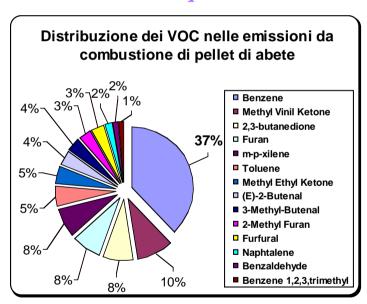
The case of Lombardy (Italy)" Biomass and bioenergy 34 (2010) 474–482


Condizionamento filtri 48h camera T=25° C, umidità 50%; pesata con bilancia 10^{-6} g

Composizione filtri test emissioni post tunnel di diluizione

Fattori emissivi

Risultati speciazione Composti Organici Volatili


Aspirazione e adsorbimento di COV non diluiti su cartuccia TENAX Analisi per desorbimento termico (Markes Unity) e GC/MS (Agilent 6890/5973)

Dati di letteratura riportano **emissioni basse** di COV con relativa abbondanza di benzene

US EPA Emission Factors AP-42, Vol. I, CH1.10: Residential Wood Stoves

	Wood Stove Type En	Wood Stove Type Emission Factor (lb/ton)			
Compounds	Conventional (SCC 21-04-008-051)	Catalytic (SCC 21-04-008-030)			
Ethane	1.470	1.376			
Ethylene	4.490	3.482			
Acetylene	1.124	0.564			
Propane	0.358	0.158			
Propene	1.244	0.734			
i-Butane	0.028	0.010			
n-Butane	0.056	0.014			
Butenes ^c	1.192	0.714			
Pentenes ^d	0.616	0.150			
Benzene	1.938	1.464			
Toluene	0.730	0.520			
Furan	0.342	0.124			
Methyl Ethyl Ketone	0.290	0.062			
2-Methyl Furan	0.656	0.084			
2,5-Dimethyl Furan	0.162	0.002			
Furfural	0.486	0.146			
o-Xylene	0.202	0.186			

Dati LENS su pellet

Stufe con catalizzatori specifici possono abbattere benzene e COV

FSE (Fondo Sociale Europeo)
PROGETTO S.H.A.R.M. (Supporting Human Assets in Research and Mobility)

- "ASSEGNI DI RICERCA IN COLLABORAZIONE CON IMPRESE" -

"Combustione domestica sostenibile di biomasse di provenienza regionale (Friuli Venezia Giulia)"
Dr. Sabina Licen

1 marzo 2013 – 28 febbraio 2014

Test su tre tipi biomassa ritraibile rappresentativi per la regione FVG

latifoglie (prevalentemente *Robinia pseudoacacia* - acacia)

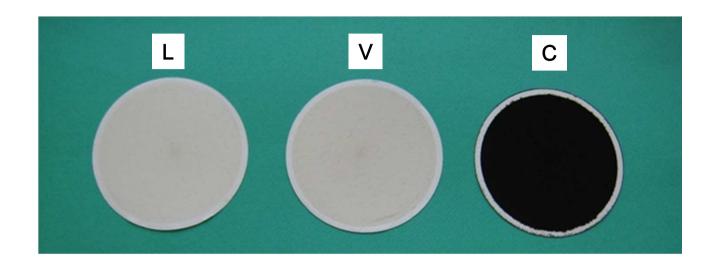
Q = 17.7 MJ/kg Ceneri = 2.4 %

sarmenti di vite

Q = 17.6 MJ/kg Ceneri = 3.4 %

conifere
(prevalentemente

Picea abies - abete rosso)


Q = 18.3 MJ/kg Ceneri =1.3 %

MISURE a CAMINO

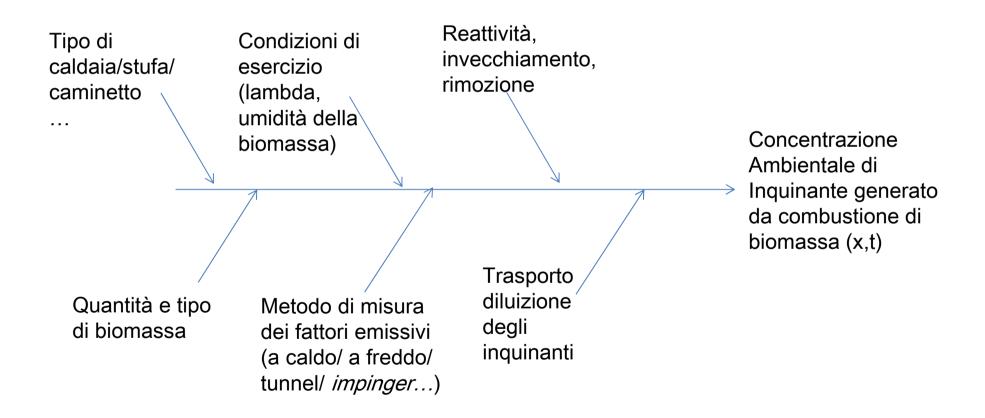
Risultati di 4 test di combustione da 1h in stufa domestica da 9 kW, con un consumo medio di pellet di 2.2 kg/h.

Specie legnosa		Tfumi (°C)	O ₂ (%)	CO ₂ (%)	CO (mg/Nm³)	NOx (mg/Nm³)	OGC (mg/Nm³)	Benzene (ug/Nm³)
Latifoglie	Media (Dev.st.)	171.3 (3.4)	12.2 (0.2)	8.3 (0.2)	270.1 (73.5)	315.0 (19.2)	4.45 (0.5)	2.1 (0.03)
Vite	Media (Dev.st.)	157.2 (4.8)	10.4 (0.2)	10.0 (0.2)	2764.9 (683.6)	290.3 (14.6)	59.4 (10.2)	58.1 (35.4)
Conifere	Media (Dev.st.)	181.4 (1.7)	11.1 (0.1)	9.3 (0.1)	1919.0 (106.7)	115.8 (4.9)	470.3 (111.6)	626.1 (60.8)

PARTICOLATO

		L	V	C
Particolato totale (mg/Nm³)	Media (Dev.st.)	8.7 (1.0)	32.8 (2.1)	9.6 (0.4)
IPA totali (ng/Nm³)	Media (Dev.st.)	88.4 (26.4)	639.9 (236.4)	16451.8 (1223.5)
Benzo[a]pirene (ng/Nm³)	Media (Dev.st.)	2.3 (1.8)	41.3 (16.6)	820.8 (62.9)
Levoglucosano (ug/Nm³)	Media (Dev.st.)	41.6 (15.4)	26.6 (8.6)	22.7 (7.9)

Evoluzione tecnologica


Table 1 Typical PM emission factors for various appliance types for wood combustion indicated as solid particles sampled on hot filters (not including condensable organic compounds) in real-life operation today (left), and achievable best-practice PM emission levels under ideal conditions (right).

*only if operated at full load, which cannot be guaranteed for space heating.

Appliance type	Typical PM emission factors today [mg/MJ]	Achievable PM emission levels [mg/MJ] 50 - 100 15 - 25 not recommended 10 - 20	
Open fireplaces	50 to > 1 000		
Wood stoves & closed inset appliances	20 to > 1 000		
Log wood boilers without heat storage tank	20* to > 1 000		
Log wood boilers (with heat storage tank)	20 to > 100		
Pellet stoves & boilers	10 – 50	10 – 20	
Automatic wood combustion plants with cyclone	50 – 300	50 – 1 00	
with simple ESP	25 – 50	15 – 35	
with advanced ESP	5 – 15	5 – 15	
with fabric filter	< 5	< 5	

Ns dati (DT) stufe a legna 40-120 mg/MJ; a pellet 15-45 f(pellet); In miglioramento...

Ricordiamo che le concentrazioni ambientali di inquinanti prodotti dalla combustione di biomasse sono determinate da molti fattori con variabilità molto ampie, per cui è rilevante una valutazione delle evidenze di presenza di marker di combustione anche nelle immissioni (nell'aerosol a cui è esposta la popolazione che la norma vuole tutelare)

EUROPEAN RESEARCH AREA

Coordination of Research Programmes

Common European method for the determination of particulate matter emissions of solid fuel burning appliances and boilers (EN-PME-TEST 2012-2015)

Partners: INERIS (FR); Technical Research Institute of Sweden(SE); CATSE, Centre of December 2015 Appropriate Technology (CH); UEF, University of Eastern Finland (FI); DTI, Danish Technology Institute (DK); BE2020, BIOENERGY 2020 (AT); EN_PME_TEST Project Position paper Raw Materials, (DE); CTIF, Centre Techn Industries de la Fonderie (FR); CSTR Coil and Technical C IAST, University of Applied Sciences (emissions from solid biomass fuel burning appliances and boilers Research Centre of Finland (FI); Symo (FI)

SINTEF Energy Research (NO); VSB-Technic

University of Ostrava (CZ): CCI

Ciclo di funzionamento degli apparecchi

BEREAL - ADVANCED TESTING METHODS FOR BETTER REAL LIFE PERFORMANCE OF **BIOMASS HEATING APPLIANCES**

Draft of Report on experimental validation of advanced type testing procedure and viability analysis for other technologies

Project duration 1 October 2013 - 31 October 2016 Funded by

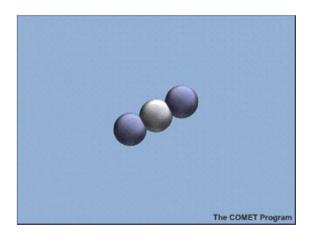
FP7-SME-2013-2, Research for SME associations

Le attività sono possibili grazie ad

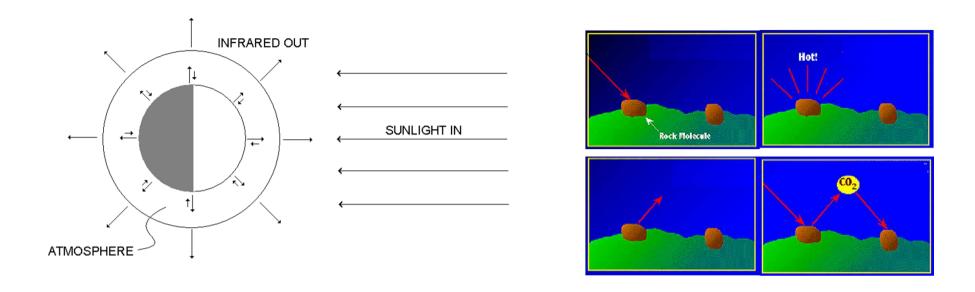
ARCo SolutionS Srl

Dr.Chim. Sergio Cozzutto

Dott. Pol. Terr. Gianpiero Barbieri

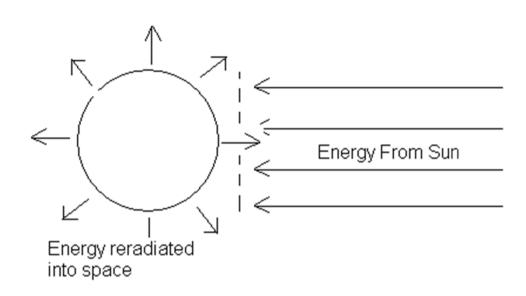

Dr. Chim. Andrea Piazzalunga (ARCo, *UniMi, UniMiB*)

Gruppo di ricerca in Chimica Ambientale DSCF-Università di Trieste Dr.Chim. Sabina Licen Dott. Arianna Tolloi ...e molti tesisti


Effetto Serra

Il meccanismo di base

- Consideriamo un semplice modello radiativo, senza convezione, evaporazione e condensazione
- La radiazione solare scalda la superfice, che a sua volta scalda l'atmosfera
- L'atmosfera emette verso l'alto e verso il basso
- Il flusso infrarosso verso l'alto deve essere bilanciato non soltanto dal flusso in entrata dal sole ma anche quello infrarosso verso la terra
- La temperatura superficiale deve salire fin quando riesce a produrre una radiazione termica che bilancia il flusso termico solare


Effetto Serra

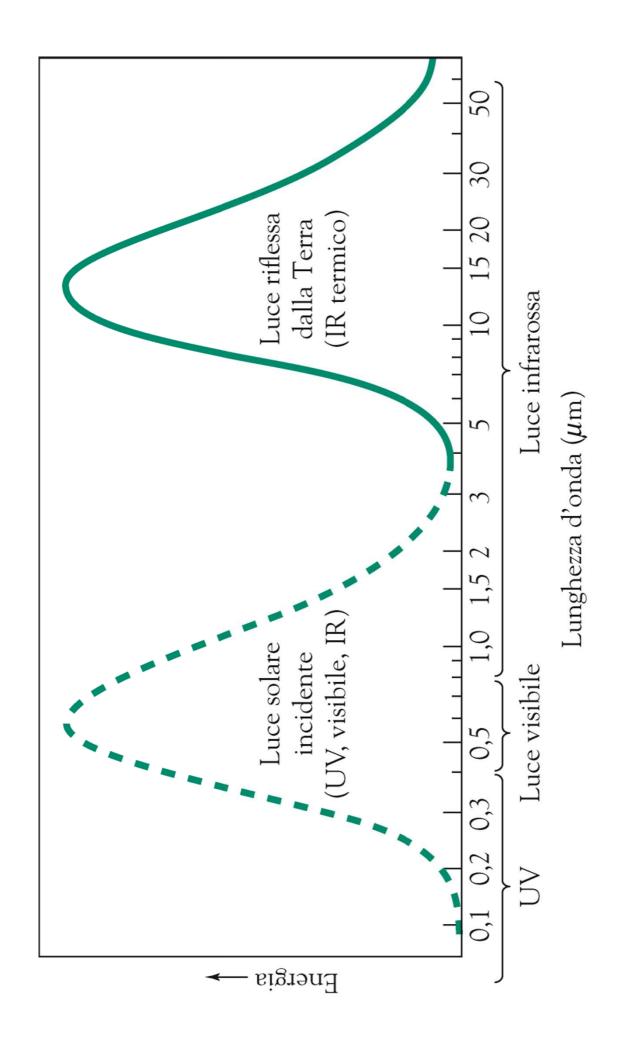
L'atmosfera terrestre produce un effetto serra naturale di circa 34°C (se non ci fosse l'atmosfera la T media del pianeta sarebbe pari a -19°C).

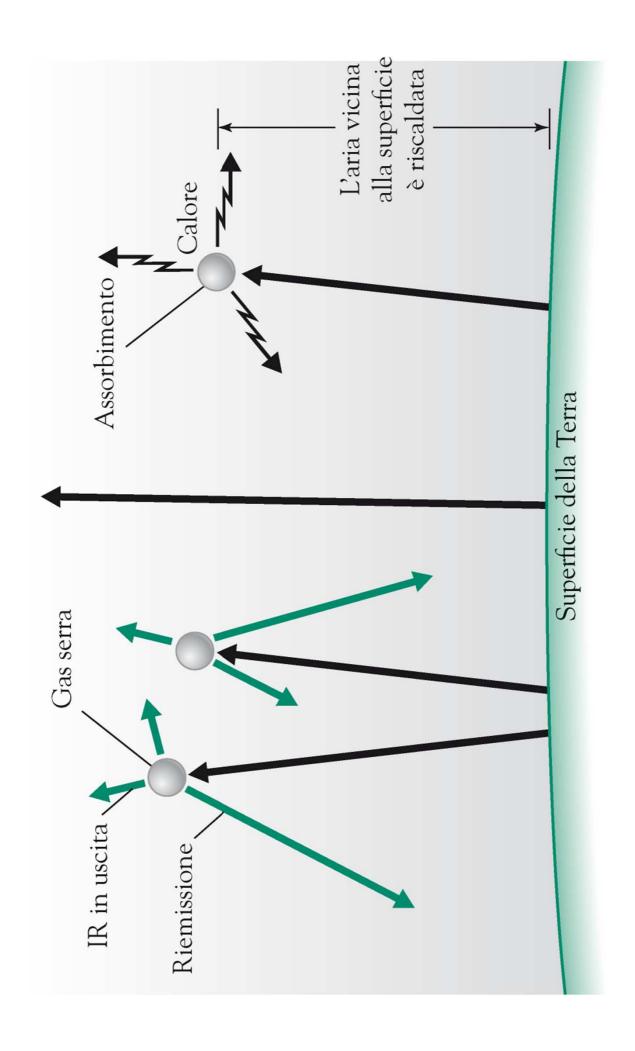
Principale gas serra: **vapore d'acqua**, i cui livelli in atmosfera sono determinati dall'equilibrio naturale tra evaporazione e precipitazioni e non sono direttamente influenzati dalle attività umane.

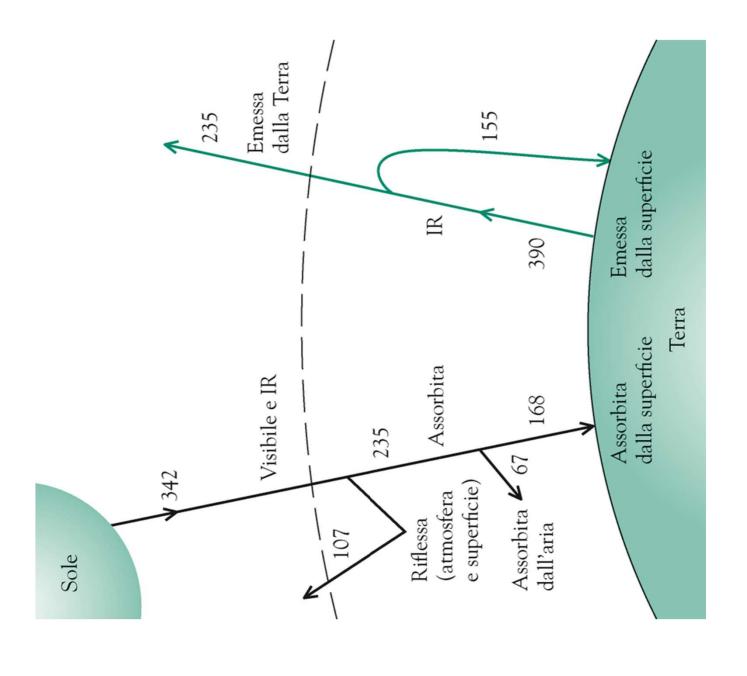
Bilanci di energia nell'atmosfera

$$\frac{S}{\Lambda} = \sigma T^4$$
 342 watts/m² (in arrivo)

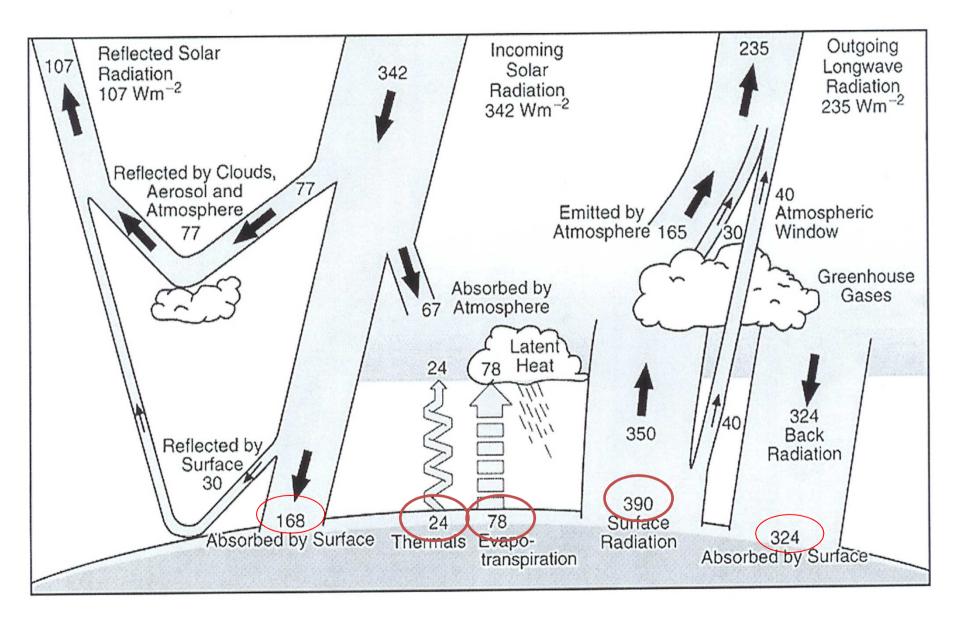
$$(1-A)\frac{S}{\Delta} = \sigma T^4$$
 235 watts/m² (assorbiti)


La legge di Stefan-Boltzmann, che l'energia (per secondo) irradiata da un corpo nero è proporzionale alla quarta potenza della sua temperatura


$$U=\sigma T^4$$

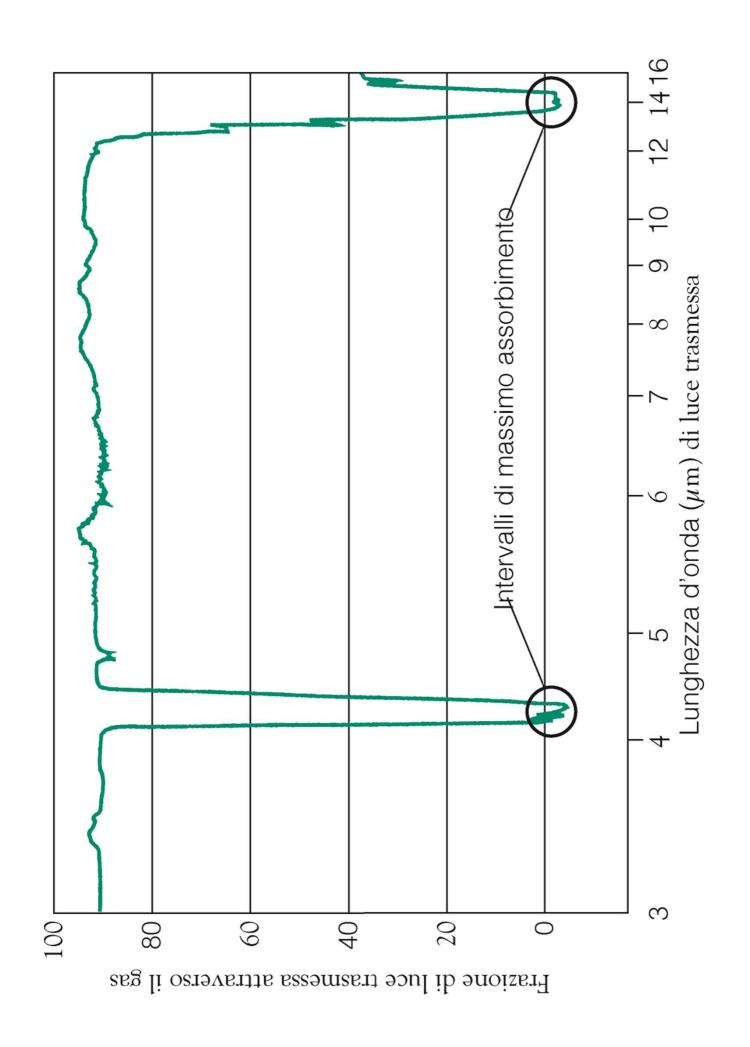

dove U è l'energia irradiata dall'unità di superficie nell'unità di tempo, T la temperatura assoluta espressa in Kelvin e σ è la costante di Stefan-Boltzmann che vale: 5.66 10^{-8} att m⁻²K⁻⁴

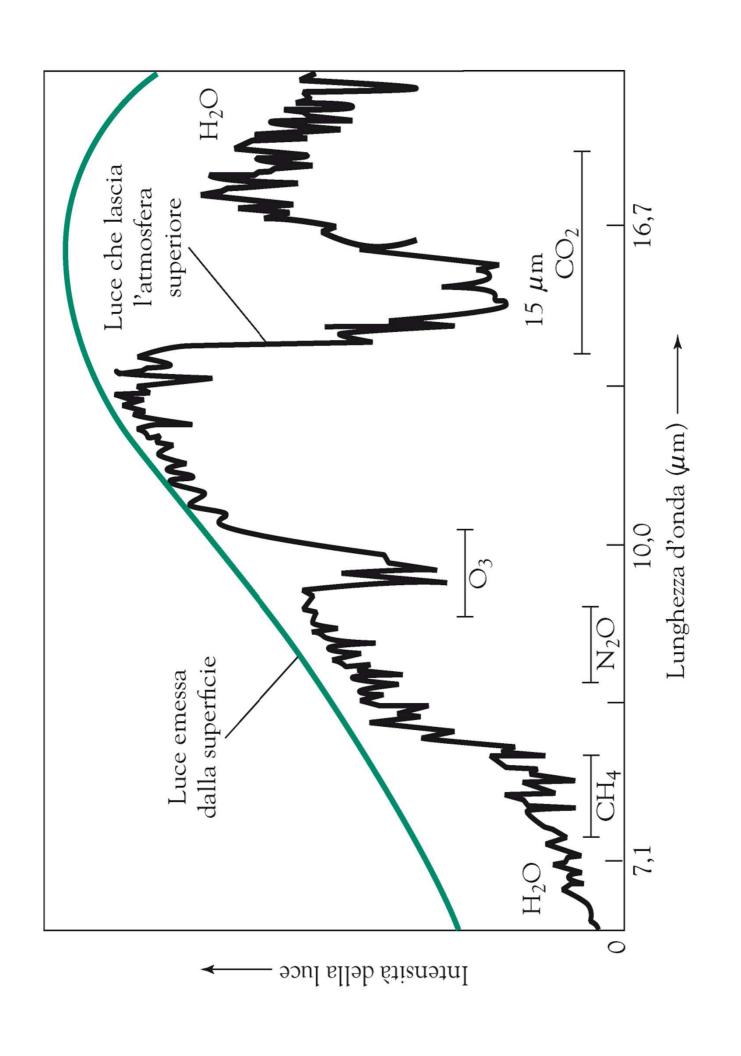
La legge, in questo enunciato, è valida solo per corpi neri ideali.


 $A = Albedo \ planetario - Circa \ 31\%$

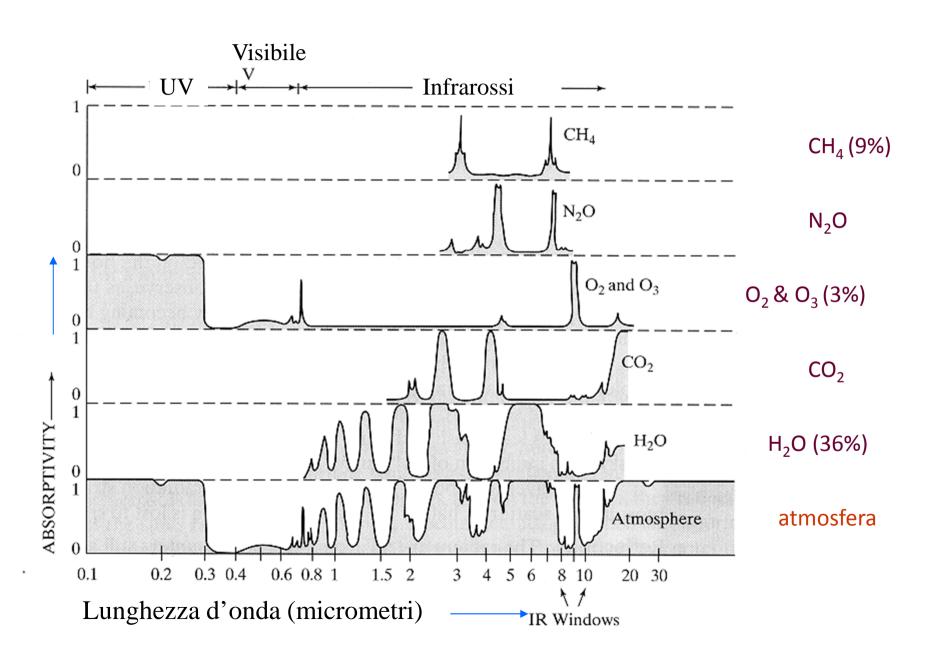
Bilanci di energia nell'atmosfera

IPCC – Climate Change 2001

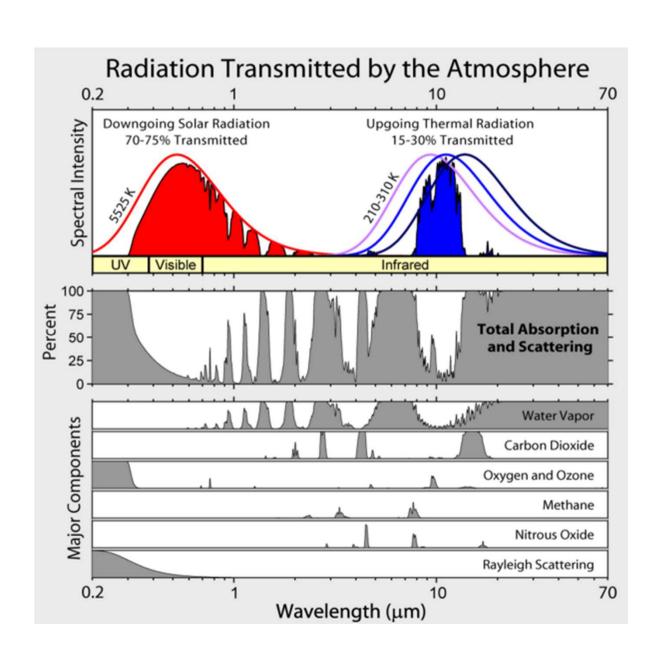

Vibrazione da stiramento di
$$X_{\overline{R}}Y$$
 X — Y


$$X_{\overline{R}}Y$$

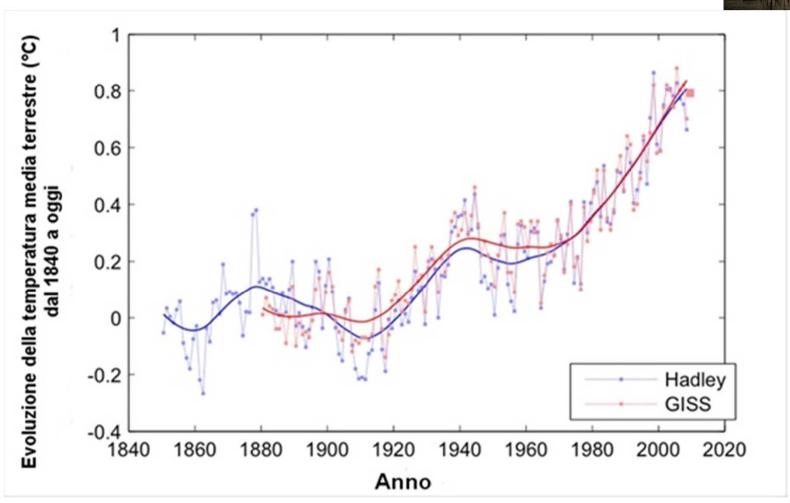
$$X_{\mathbb{R}}^{-}Y$$


$$X \xrightarrow{Y} Z$$

$$X \xrightarrow{Y} Z$$

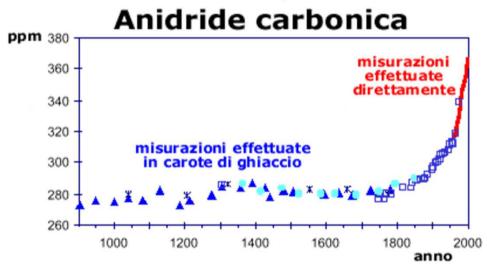


Spettro di assorbimento dei gas atmosferici

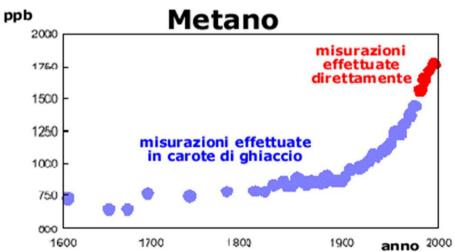


Radiazione IN/OUT

Riscaldamento Globale



Dati forniti da 2 istituzioni di climatologia (Hadley Center e NASA/GISS).

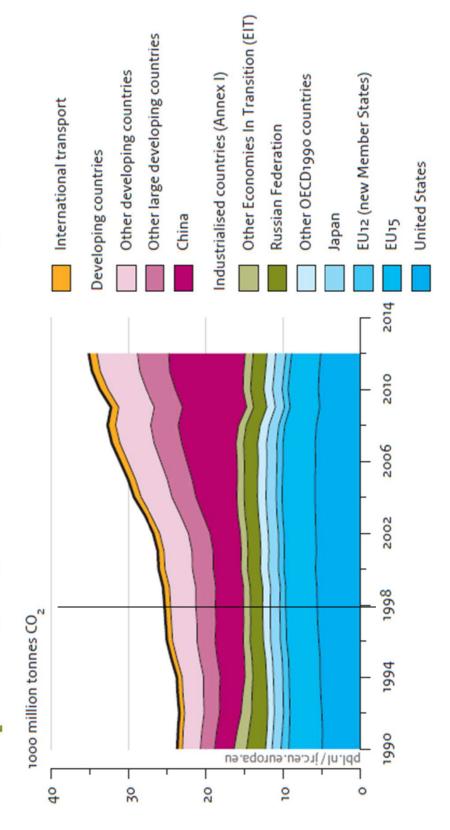

Riscaldamento Globale

Dall'inizio della Rivoluzione Industriale, la concentrazione atmosferica dell'anidride carbonica è aumentata di oltre il 30%, la concentrazione del gas metano è più che raddoppiata.

Secondo il Segretariato delle Nazioni Unite sui cambiamenti climatici – UNFCCC

I combustibili fossili sono responsabili in misura del 96.7% delle emissioni dei gas serra (95% CO2 e 20% CH4) di cui il 39,1% dovuti alla produzione di energia elettrica e il 26,7% dovuti ai trasporti.

Gas serra

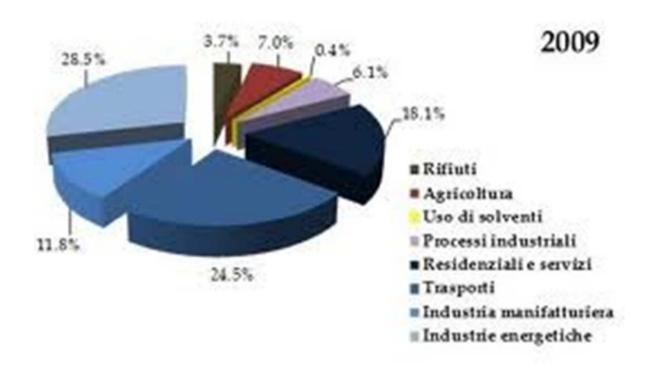

Le emissioni antropiche di gas serra vengono valutate in termini di CO2-equivalente secondo i coefficienti di conversione di seguito elencati

Gas serra	GWP, Global Warming Potential
Anidride carbonica (CO ₂)) 1
Metano (CH ₄)	21
Protossido di azoto (N ₂ O	310
Idrofluorocarburi (HFC)	140 - 11.700 (in media 1.600)
Perfluorocarburi (PFC)	6.500 - 9.200 (in media 7.000)
Esafluoruro di zolfo (SF ₆)	23.900

I sei gas serra sopra elencati sono quelli presi in considerazione dal Protocollo di Kyoto (1997). Paesi industrializzati si sono impegnati a ridurre entro il 2008-2012 le loro emissioni annue complessive del 5,2% rispetto ai livelli del 1990.

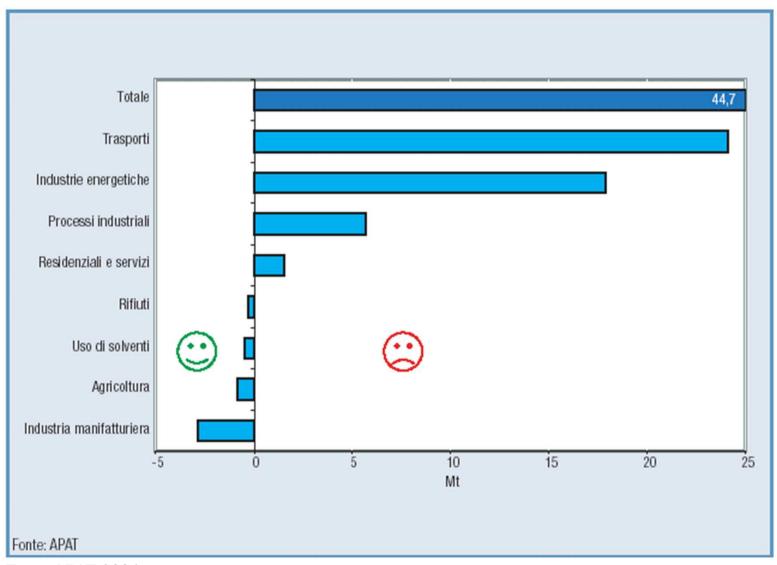
Gli obiettivi per i singoli Paesi sono differenziati: Russia, Ucraina e Nuova Zelanda 0%; Canada, Ungheria, Polonia e Giappone -6%; Usa -7%; Unione Europea -8%.

Global CO₂ emissions per region from fossil-fuel use and cement production

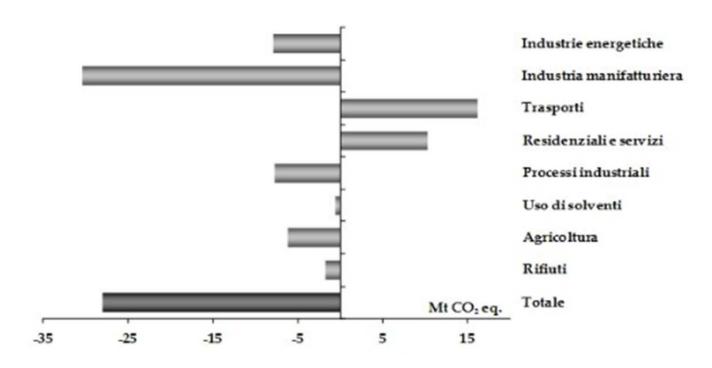


Source: EDGAR 4.2FT2010 (JRC/PBL, 2012); BP, 2013; NBS China, 2013; USGS, 2013; WSA, 2013; NOAA, 2012

Gas serra


Gas traccia	Aumento della concentrazione			Aumento della temperatura [K]
Anidride carbonica (CO ₂)	300	\rightarrow	600 ppm	2 4
Ozono troposferico (O ₃)	0,03	\rightarrow	0,06 ppm	0,9
Clorofluoroidrocarburi (CFC)	0	\rightarrow	1 ppbs	0,6
Protossido di azoto (N ₂ O)	0,3	\rightarrow	0,6 ppm	0,4
Metano (CH ₄)	1,7	\rightarrow	3 ppm	0,3
Ammoniaca (NH ₃)	0	\rightarrow	1 ppb	0,09
Tetraclorocarburo (CCl ₄)	0	\rightarrow	1 ppb	0,08
Cloroformio (CHCl ₃)	0	\rightarrow	1 ppb	0,06
Tetrafluorocarburo (CF ₄)	0	\rightarrow	1 ppb	0,06
Acido nitrico (HNO ₃)	raddo	ppio		0,06
Metilcloruro (CH ₂ CCl ₂)	0	\rightarrow	1 ppb	0,03
Metilcloroformio (CH ₃ CCl ₃)	0	\rightarrow	1 ppb	0,02
Etilene (C ₂ H ₄)	0,2	\rightarrow	0,4 ppb	0,01
Totale (con 3 K per il CO ₂)				5,6

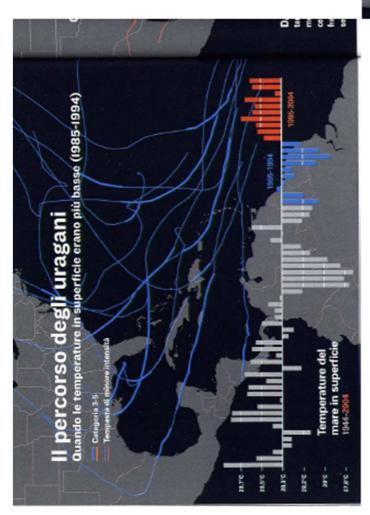
Emissioni nazionali settoriali di gas serra


Peso percentuale dei diversi settori alle emissioni nazionali di gas serra nel 2009

Variazioni delle emissioni nazionali di gas serra per settore (dal 1990 al 2002)

Fonte APAT 2004

Emissioni nazionali complessive di gas serra


Variazioni assolute, 1990 - 2009, delle emissioni nazionali di gas serra per settore

Riscaldamento Globale

Riduzione dei ghiacciai montani

E' L'effetto di un aumento della temperatura dell'acqua di soli 0,3°C

Si stimano costi per 43 miliardi di \$

National Geographic Agosto 2005

