Exercises Lecture VII:
 Metropolis - Monte Carlo algorithm

gaussian and Boltzmann distributions

1. Random numbers with gaussian distribution:

 Metropolis algorithmHere we use the Metropolis algorithm to generate points with the distribution $P(x)=e^{-x^{2} /\left(2 \sigma^{2}\right)}$. The algorithm is implemented for instance in the code gauss_metropolis.f90. We consider $\sigma=1$, but the suggestion is to write the code for a generic σ.
(a) Start from $x_{0}=0$ and choose $\delta=5 \sigma$ to be the maximum displacement for each step. Execute runs with $n=100,1000,10000,100000$ points, make an histogram of the points generated and compare it with the gaussian distribution. For which n the agreement is satisfactory?
(b) Choose n which gives a satisfactory result. For σ fixed, change the step size δ (i.e., change the ratio δ / σ). Determine qualitatively the dependence of the acceptance ratio on δ / σ. Make a plot. How to choose δ / σ in order to accept from $\approx 1 / 3$ to $\approx 1 / 2$ of trial changes?
(c) By varying n in a more refined way (e.g. from 100 to 10000 with steps of 100), compare the first moments of the distribution obtained numerically with the exact ones analytically calculated with the Gaussian. In particular, focus on the second moment and make a plot of the difference "exact variance - numerical variance" as a function of n.
(d) For fixed $\sigma=1$ and $\delta=5 \sigma$, determine qualitatively the equilibration time (i.e. the number of steps necessary to equilibrate the system); a possible criterion is that the numerical estimate of $\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$ is close enough to σ^{2}, say within 5%.

2. Sampling physical quantities: direct sampling and Metropolis sampling

Consider the quantum harmonic oscillator and its ground state. The exact solution and the expectation values of kinetic, potential and total energy are know analitically, and can be used to compare the numerical results.
(a) Direct sampling. Estimate kinetic energy, potential energy, first moments $\left\langle x^{i}\right\rangle$ of the wavefunction $\psi(x)=A e^{-x^{2} /\left(4 \sigma^{2}\right)}$. with a samplemean Monte Carlo calculation of the integral of the expectation values using a sequence of random points directly obtained for instance from the gasdev subroutine (see Lecture III). See for instance the code direct_sampling.f90. Study the numerical accuracy and the convergence of the previous quantities as a function of the number of sampling points (since variance and kinetic, potential and total energy depend on the second moment $\left\langle x^{2}\right\rangle$, you should find the same behavior for all these quantities, a part from a scaling factor).
(b) Is the normalization constant A of the wavefunction important for our purposes?
(c) Metropolis sampling. Repeat the sampling using the Metropolis algorithm. See for instance the code metropolis_sampling.f90. Evaluate the numerical accuracy and convergence of the more relevant quantities as a function of the number of sampling points. (see the comment in (a))
(d) Compare the behavior of the absolute error on the total energy with respect to the exact value as a function of the number of sampling points in case of direct and of Metropolis sampling, making a log-log plot. Comment on the results and explain the possible differences (consider how the points are generated in the two methods...).

3. Correlations

(a) Calculate the autocorrelation function $C(j)=\frac{\left\langle x_{i} x_{i+j}\right\rangle-\left\langle x_{i}\right\rangle^{2}}{\left\langle x_{i}^{2}\right\rangle-\left\langle x_{i}\right\rangle^{2}}$ for a sequence or random numbers distributed according to a gaussian, generated (i) using the Metropolis method and (ii) using some ad-hoc routine, like for instance gasdev based on the Box-Muller algorithm. Discuss the results.

4. Verification of the Boltzmann distribution

We can verify directly that the Metropolis algorithm yields the Boltzmann distribution. We consider a single classical particle in one dimension in equilibrium with a heath bath (canonical ensemble). We fix therefore the temperature T, which labels a macrostate. The energy E can vary according to the particular microstate (in this particular case, it is enough to label a microstate, a part from the sign of the velocity).
(a) Write a code (see e.g. boltzmann_metropolis.f90) to determine the form of the probability distribution $\mathrm{P}(\mathrm{E})$ that is generated by the Metropolis algorithm. Let for instance $T=1$, the initial velocity vinitial $=0$, the number of Monte Carlo steps nmcs $=1000$, and the maximum variation of the velocity dvmax=2. Calculate the mean energy, the mean velocity, and the probability density $\mathrm{P}(\mathrm{E})$.
(b) Consider $\ln P(E)$ as a function of E . Can you recognize the expected behavior? (see slides for the analytic derivation of $\mathrm{P}(\mathrm{E})$) You should recognise that the asymptotic behavior is a straight line whose slope is $-1 / T$.
(c) How many nmcs do you need to have a reasonable estimate of the mean energy and mean velocity ?
(d) Verify that your results do not depend from the initial conditions by changing vinitial. What does it change? What does it changes by changing instead dvmax?
(e) Modify the program to simulate an ideal gas of \mathbf{N} particles in one dimension. [Hint: modify the subroutine Metropolis inserting a loop over the particles] Consider for instance $N=20, T=100$, nmcs $=200$. Assume all particles to have the same initial velocity vinitial $=10$. Determine the value of dvmax so that the acceptance ratio is about 50% ? What are the mean energy and mean velocity?
(f) Calculate $\mathrm{P}(\mathrm{E})$, make a plot and describe its behaviour. Is it similar to the case $N=1$? Comment on that.
(g) Calculate the mean energy for $T=10,20,30,90,100$, and 110, and estimate the heat capacity as the numerical derivative of the energy with respect to the temperature, $C=\partial<E>/ \partial T$.
(h) Calculate the mean square energy fluctuation $<\Delta E^{2}>=<E^{2}>$ $-<E>^{2}$ for $\mathrm{T}=10$ and $\mathrm{T}=40$. Compare the magnitude of the ratio $C=<\Delta E^{2}>/ T^{2}$ numerically estimated from the mean square energy fluctuation with that obtained in (f).


```
! metropolis_sampling.f90
! METROPOLIS sampling of several physical observables for the
! hamiltonian: \(\quad h=-1 / 2\) \nabla^2 \(+1 / 2 x^{\wedge} 2\) ),
! comparison exact expected results with numerical results
! on psi^2(x), with \(\mathrm{psi}(\mathrm{x})=\exp \left(-\mathrm{x}^{\wedge} 2 /(4 \backslash\right.\) sigma^2) \()\)
! \sigma=1 => psi^2(x) = costant * standard gaussian
! \(\mathrm{P}(\mathrm{x})=\exp (-\mathrm{x} * * 2 /(2 *\) sigma**2)\() /\) sqrt(2*pi*sigma**2)
```



```
program metropolis_sampling
    implicit none
    integer, parameter :: dp=selected_real_kind(13)
    integer :: i,n
    real(kind=dp):: sigma, etot, ekin, epot, rnd
    real (kind=dp): : x, x1, x2, x3, x4, xp, delta, expx, expxp,w, acc
    character (len=13), save : f format1 = "(a7,2x,2f9.5)"
    \(\mathrm{x}=0.0 \_\mathrm{dp}\)
    acc \(=0.0 \_d p\)
    x1 = 0.0_dp
    \(\mathrm{x} 2=0.0 \_\mathrm{dp}\)
    x3 \(=0.0 \_d p\)
    \(\mathrm{x} 4=0.0 \_\mathrm{dp}\)
    ekin \(=0.0 \_d p\)
    epot \(=0.0 \_d p\)
    print*, "n, sigma, \(x 0\), delta"
    read*, \(n\),sigma, \(x\),delta
    do \(i=1, n\)
        ekin \(=\) ekin - 0.5_dp * ((x/(2*sigma**2)) **2 - 1/(2*sigma**2))
        epot \(=\) epot + 0.5_dp * x**2
        etot \(=\) ekin + epot
        \(\mathrm{x} 1=\mathrm{x} 1+\mathrm{x}\)
        \(\mathrm{x} 2=\mathrm{x} 2+\mathrm{x} * * 2\)
        \(\mathrm{x} 3=\mathrm{x} 3+\mathrm{x} * * 3\)
        x 4 = \(\mathrm{x} 4+\mathrm{x} * * 4\)
```



```
        expx \(=-\mathrm{x} * * 2 /(2 *\) sigma**2) !
        call random_number(rnd) !
        xp \(=\mathrm{x}+\) delta \(*\) (rnd-0.5_dp) !
        expxp \(=-\operatorname{xp**2~/(2*sigma**2)~!~metropolis~}\)
        \(\mathrm{w}=\exp (\operatorname{expxp}-\operatorname{expx})\) ! algorithm
        call random_number (rnd) !
        if (w > rnd) then !
            \(\mathrm{x}=\mathrm{xp}\) !
```

```
            !cccccccccccccccccccccccoccoccc
                acc=acc+1.0_dp
            endif
    enddo
    write(unit=*,fmt=*)"acceptance ratio = ",acc/n
    write(unit=*,fmt=*)"# Results (simulation vs. exact results):"
    write(unit=*,fmt=format1)"etot = ",etot/n,1.0_dp/(8.0_dp*sigma**2)&
    +0.5_dp*sigma**2
    write(unit=*,fmt=format1)"ekin = ",ekin/n,1.0_dp/(8.0_dp*sigma**2)
    write(unit=*,fmt=format1)"epot = ",epot/n,0.5_dp*sigma**2
    write(unit=*,fmt=format1)"<x> = ",x1/n,0.0_dp
    write(unit=*,fmt=format1)"<x^2>= ",x2/n,sigma**2
    write(unit=*,fmt=format1)"<x^3>= ",x3/n,0.0_dp
    write(unit=*,fmt=format1)"<x^4>= ",x4/n,3.0_dp*sigma**4
end program metropolis_sampling
```



```
! boltzmann_metropolis.f90
! Metropolis algorithm used as importance-sampling:
! generation of microstates with Boltzmann distribution,
! here for a classical particle in 1D.
! The interesting quantity is the probability P(E)dE for a particle
! to have energy between E and E+dE (here E can label a microstate,
! a part from the sign +/- of the velocity)
```



```
module common
    implicit none
    public :: initial, Metropolis, data, probability, averages
    real, public :: E,T,del_E,beta,dvmax,vel,accept
    integer, public, dimension(:), allocatable :: seed
    integer, public :: nbin,nmcs,sizer
    real, public, dimension(:), allocatable :: P
contains
    subroutine initial(nequil,vcum,ecum,e2cum)
        real, intent(out) :: vcum,ecum,e2cum
        integer, intent(out) :: nequil
        print*," number of MC steps >"
        read *, nmcs
        print*," absolute temperature >"
        read *, T
        print*," initial velocity >"
        read *, vel
        print*," maximum variation of the velocity (hint: 4*sqrt(T)=",4*sqrt(T),") >"
        read *, dvmax
        call random_seed(sizer)
        allocate(seed(sizer))
        print *,'Here the seed has ',sizer,' components; insert them (or print "/") >'
        read *, seed
        call random_seed(put=seed)
        beta = 1/T
        nequil = 0.1 * nmcs ! WARNING : VERIFY this choice !
        E = 0.5 * vel * vel
        del_E = T/20 ! a reasonable width of the bin for the histogram of P(E)
        nbin = int(4*T / del_E) ! max. number of bins
        print *,"# T :",T
        print *,"# <EO> :",E
        print *,"# <v0> :",vel
        print *,"# dvmax :",dvmax
        print *,"# nMCsteps:",nmcs
```

```
    print *,"# deltaE :",del_E
    print *,"# nbin :",nbin
    open(unit=9,file="boltzmann.dat",status="replace",action="write")
    write(unit=9,fmt=*)"# T :",T
    write(unit=9,fmt=*)"# <EO> :",E
    write(unit=9,fmt=*)"# <v0> :",vel
    write(unit=9,fmt=*)"# dvmax :",dvmax
    write(unit=9,fmt=*)"# nMCsteps:",nmcs
    write(unit=9,fmt=*)"# deltaE :",del_E
    write(unit=9,fmt=*)"# nbin :",nbin
    allocate (P(0:nbin))
    ecum = 0.0
    e2cum = 0.0
    vcum = 0.0
    P=0.0
    accept= 0.0
end subroutine initial
subroutine Metropolis()
    real :: dv,vtrial,de,rnd
    call random_number(rnd)
    dv = (2*rnd - 1) * dvmax ! trial variation for v
    vtrial = vel + dv ! trial velocity v
    de = 0.5 * (vtrial*vtrial - vel*vel) ! corresponding variation of E
    call random_number(rnd)
    if (de >= 0.0) then
        if ( exp(-beta*de) < rnd ) return ! trial step not accepted
    end if
    vel = vtrial
    accept = accept + 1
    E = E + de
end subroutine Metropolis
subroutine data(vcum,ecum,e2cum)
    real, intent(inout) :: vcum,ecum,e2cum
    Ecum = Ecum + E
    E2cum = E2cum + E*E
    vcum = vcum + vel
    call probability()
end subroutine data
subroutine probability()
    integer :: ibin
    ibin = int(E/del_E)
    if ( ibin <= nbin ) P(ibin) = P(ibin) + 1
end subroutine probability
```

```
    subroutine averages(nequil,vcum,Ecum,E2cum)
    integer, intent(in) :: nequil
    real, intent(in) :: vcum,Ecum,E2cum
    real :: znorm, Eave, E2ave, vave, sigma2
    integer :: ibin
    znorm = 1.0/nmcs
    accept = accept / (nmcs+nequil) ! acceptance ratio
    Eave = Ecum * znorm ! average energy
    E2ave = E2cum * znorm !
    vave = vcum * znorm ! average velocity
    sigma2 = E2ave - Eave*Eave
    print *,"# <E2>num.:",E2ave
    print *,"# <E> num.:",Eave
    print *,"# <E> th. :",T/2
    print *,"# <v> :",vave
    print *,"# accept. :",accept
    print *,"# sigma :",sqrt(sigma2)
    write(unit=9,fmt=*)"# <E2>num:",E2ave
    write(unit=9,fmt=*)"# <E> num.:",Eave
    write(unit=9,fmt=*)"# <E> th. :",T/2
    write(unit=9,fmt=*)"# <v> :",vave
    write(unit=9,fmt=*)"# accept. :",accept
    write(unit=9,fmt=*)"# sigmaE :",sqrt(sigma2)
    write(unit=9,fmt=*)"# ibin*del_E, P(E)"
    do ibin = 0,nbin
        write(unit=9,fmt=*) ibin*del_E, P(ibin) * znorm
    end do
    close(unit=9)
    end subroutine averages
end module common
program Boltzmann
    use common
    real :: vcum, ecum, e2cum
    integer :: imcs,nequil
    ! parameters and variable initialization
    call initial(nequil,vcum,ecum,e2cum)
    do imcs = 1 , nmcs + nequil
            call Metropolis()
            ! data accumulation after each Metropolis step
            if ( imcs > nequil ) call data(vcum,ecum,e2cum)
    end do
    call averages(nequil,vcum,Ecum,E2cum)
    deallocate(P)
end program Boltzmann
```

