Metropolis algorithm

|) to generate random points with a given
distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - Unit VI

Metropolis Algorithm

by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

A special case of importance sampling where certain
possible sampling attempts are rejected.

- generate points according p(z)

- importance sampling of f(z) using p(x)

Metropolis algorithm

|) to generate random points with a given
distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

Metropolis Algorithm

|) to generate random points with a given distribution
p(x)

Idea: produce a random walk with points {xz}

whose asymptotic probability distribution pn(Xx)

of the occupied positions approaches p(r) after

a large number N of steps

Metropolis Algorithm

|) to generate random points with a given distribution
p(x)

Idea: produce a random walk with points {xz}

whose asymptotic probability distribution pn(Xx)

of the occupied positions approaches p(r) after

a large number N of steps

A random walk in general is defined by specifying a
transition probability T'(x; — xj) from one value ;
to another value x; and the distribution of points

To, T1, Tg, ... converges to a certain p(x)

Comment:
need to consider a RW more general than the ‘standard’
RW with length and probability fixed for each step.

Remind: a RW with fixed length and pieft = pright gives
Pn(x) that for large N tends to a gaussian distribution
with a standard deviation that depends on N:

e t 2 /(2N
2 _ . _ . — 2 _ p2 —
o° = Dt; D_ZAt’ At—N:>J =(*N/2 P(a?,NAt) 7TN€

(here £{=1; remind also the factor of 2 due to discretization)

The recipe to obtain a gaussian distribution with given O
from simple RWs was to generate several RWs with the

same N and do the histogram of their end-points.

The approach we are going to discuss now is something

different, the focus being one RW.

Markov chains

Consider a sequence of “configurations” C={C,, C,, ...
CnN } stochastically generated, i.e. Ci+ is obtained from
the previous one, Ci, by making some random changes
on the former.

The sequence is a Markov chain, if the probability of
making a transition from Ci to Cy+ is not dependent
on how we arrived at C (its history), i.e. no memory.

The sequence of points xg, x1, T2, ... of a simple RW
is a Markov chain.

The detailed balance

Choose a transition probability T'(x; — ;) from
one value g, to another value x; (from one
configuration C; to another one Ci+|) such that the
distribution of points xq, 1, T2, ... (of configurations)
converges to the desired p().

It is sufficient (not necessary) to satisfy the condition:

p(z;)T(z; — xj) = p(x;)T(x; — ;)

A simple choice (not unique!) is:

T(z; — ;) = min |1,

(We can easily verify...)

P(X})

probability
distribution

Xj (%) X
move with probability <€— 77— GO! since p(x)/p(xi) > |

p(x)/p(x) < | |

initial position

T(z; — z;) = min ll,p(x?)]

The Metropolis algorithm

p(ZL') 1s given.
If the “walker” is at position z; and we wish to generate x;,1, we can implement this choice of
T(x; — x;) by the following steps:

1. Choose a trial position Xty = x; + d;, where ¢; is a random number in the interval [—4, J].
2. Calculate w = p(@rial) /p(x;).

3. If w > 1, accept the change and let z;11 = Ttrial-
else

4. If w < 1, generate a random number r.

5. If r < w, accept the change and let x;11 = T¢yial-

6. If the trial change is not accepted, then let ;11 = z;.

The algorithm from |) to 6) has to be repeated until
the distribution p(x) of the points {z;} is reached.

note:

it's important how to handle the rejected attempts for
the generation of the random walk:

in case of a rejected attempt, the walker does not move,
and we have to consider again the point where we tried
to move from;

in the integration with importance sampling, a point
which is unchanged after a rejected attempt, does enter
again in the average, i.e. its weight in the sum increases

Questions:

® how to choose XL !

® how to choose O ?
(if too small, most trial steps accepted, but
the walker moves too slowly; if too large,
only a few trial steps are accepted...)

® cquilibration is necessary (how many steps?)

Answers:

® how to choose XL !
Convenient to start from a maximum

® how to choose O ?
(if too small, most trial steps accepted, but
the walker moves too slowly; if too large,
only a few trial steps are accepted...)
A good compromise is a choice accepting
from ~ |/3 to ~|/2 of the trial steps

® cquilibration is necessary (how many steps?)
A possible criterion based on error estimate

Some programs:

on

$/home/peressi/comp-phys/VIl-metropolis/
[do: $cp /home/peressil/.../VII-metropolis/* .]
or in moodle2.units.it

gauss_metropolis.f90

metropolis_sampling.f90
direct_sampling.f90
boltzmann_metropolis.f90

! gauss metropolis.f90
! METROPOLIS generation of random numbers with a Gaussian distribution
! P(x) = exp(-x**2/(2*sigma**2))/sqgrt(2*pi*sigma**2)
start from a given x=x0
do i=1,n

!ccececececececececececceccccccCccccceececece
expx = - x**2 /(2*sigma**2) !
call random number (rnd) !
Xp = X + delta * (rnd-0.5) !
expxp = - xp**2 /(2*sigma**2) ! metropolis
W = exp (expxp-expx) ! algorithm
call random number (rnd) !
if (w > rnd) then !

X = Xp !
lccecececececeecececececceccccccCccccceeecece

endif

enddo

! gauss metropolis.f90

! METROPOLIS generation of random numbers with a Gaussian distribution
exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)

start from a given x=x0

! P(x) =

do i=1,n
X1l =
X2 =
X3
X4 =

x1
X2

= x3

x4

+
+
+

+

X

x*%2 calculate some momenta
X**3

X**4

! cceccecceccecececcececcccececceceeecececececcccccccecece

expx

- X**2 /(2*sigma**2)

call random number (rnd)

!
!
Xp = X + delta * (rnd-0.5) !
expxp = - xp**2 /(2*sigma**2) ! metropolis
W = exp (expxp-expx) ! algorithm
call random number (rnd) !
if (w > rnd) then !
X = Xp !
lcccecececccececceccccecececccecececcceccccececee .
acc=acc+1. > calculate the acceptance ratio
endif .
ibin = nint(x/deltaisto) «—— Calculate the histogram

if (abs(ibin) < maxbin/2) istog(ibin) = istog(ibin) + 1

enddo

Metropolis generation of
random numbers distribution

)
let’s use the Metropolis method to generate a
gaussian distribution

example of application:
(n=1000, x0=0, 5=5, 0=1)

(with gauss_metropolis.£90)

Answers from numerical experiments:

® how to choose X!
Convenient to start from a maximum

® how to choose 0?
(if too small, most trial steps accepted, but the
walker moves too slowly; if too large, only a few
trial steps are accepted...)
A good compromise is a choice accepting from ~
|/3 to ~1/2 of the trial steps: depends on O

® cquilibration is necessary (how many steps?)
A possible criterion based on error estimate:
. 2\ . 2
consider when (z°) ~ o

Metropolis algorithm

|) to generate random points with a given
distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

example of application of the
Metropolis algorithm

|) to generate arbitrary probability distributions

2) to compute averages

of the form (f) = fpf(f?)(i)(xd)xdx

where the probability distribution p(x) does not need

to be normalized
(here: ID, but generally useful also for multidimensional integrals)

reminder from LectureV:

“importance sampling”

consider a distribution function p(x) easy to integrate
and close to f(x):

where (53~ 32155
with {Z; } distributze_d according to p(x).

f(z)

p(z)

o) (@) do
[p(x) dx

Here : substituting —> f(x) and rewriting, we have : <f>

Some programs:

on

$/home/peressi/comp-phys/VIl-metropolis/
[do: $cp /home/peressil/.../VII-metropolis/* .]
or in moodle2.units.it

gauss_metropolis.f90

metropolis_sampling.f90
direct_sampling.f90
boltzmann_metropolis.f90

Metropolis Sampling

Using a method to generate a distribution p(z),
we can efficiently sample integrals of the form

_ Jp(@)f(z)dx
(f) = [p(z) da

example of application:
See metropolis sampling.£90 in the exercises:

example of estimate of average position, average
kinetic, potential and total energies in the ground
state of the harmonic oscillator:

f(x) : physical quantity; p(z) = |1(x)|?

Metropolis Sampling

gy = JP@)f () d

fp(a:) dx
f(z) : physical quantity; p(z) = |1 (z)|?
Consider the hamiltonian : H = —%VQ + %:{:2

Consider a wavefunction (not necessarily the ground state) : 1 (x) = exp(—x?/40?)

Interesting physical quantities are related to Epot, Ekin, Etot
The potential energy can be considered as f(x) (it is a multiplicative operator); kinetic and
total energy can not, but their expectation value can be related to the average value of x*

Wkl _ [3oy ()| 2da
(@) [()2
ol vy S (=) () Pda

Bhin) = 01y = [Te(@)Pdz

<Epot> —

Metropolis Sampling

() = fp}af)f(fc) dz
p(a

f(x) : physical quantity; p(x) = |¢(z)|’

1

Consider the hamiltonian : H = —§V2 + 5:{:2

Consider a wavefunction (not necessarily the ground state) : v (z) = exp(—xz?/40?)

Useful exercise, since in this case <Epo™> and <Eyin> can be calculated also analytically:

W) [a?(@)Pdr 1
(W]¥) [(z)|2dx 9
(Erin) = <¢‘ — %V2W> _ f (ﬁ — 8“’%) ()2 da)

2

<Epot> —

! metropolis sampling.f90
|
! METROPOLIS sampling of physical observables for the
hamiltonian: ! h= -1/2\nabla”2 + x%2/2 on psi®2(x), with
psi(x)=exp(-x"2/(4\sigma”2))
start from a given x=x0...
do i=1,n

lcceceeccecececcececcecececccecececccecececccecececece
expx = - x**2 /(2*sigma**2) !
call random number (rnd) !
Xp = X + delta * (rnd-0.5 dp) !
expxp = - xp**2 /(2*sigma**2) ! metropolis
P = exXp (expxp-expXx) ! algorithm
call random number(rnd) !
if (p > rnd) then !

X = Xp !
!cceceeccececeecececececceccccccCccCcCcCcCeeecece

endif
enddo

! metropolis sampling.f90
!
! METROPOLIS sampling of physical observables for the
hamiltonian: ! h= -1/2\nabla”2 + x%2/2 on psi®2(x), with
psi(x)=exp(-x"2/(4\sigma”2))
start from a given x=x0...
do i=1,n
ekin = ekin - 0.5 dp * ((x/(2*sigma**2))**2 — 1/(2*sigma**2))
epot = epot * 0.5.dp * x**2 data accumulation on all points!
etot = ekin + epot
xl = x1 + X
X2 = X2 + X*%*2
X3 = X3 + x**3
X4 = x4 + xX**4
lccececcecceccececcececcccecccecccccccecceccee
expx = - x**2 /(2*sigma**2)
call random number (rnd)
Xp = X + delta * (rnd-0.5 dp)
exXpxXp = - Xp**2 /(2*sigma**2)
p = exp (expxXp-expXx)
call random number(rnd)
if (p > rnd) then
X = Xp
lccecececcecceccececcceccecceccceccccceccecceccececee
acc=acc+1.0 dp
endif
enddo

metropolis

!
!
!
!
! algorithm
|
1
1

Correlations

The Metropolis algorithm generates statistically independent
configurations (Markov chain).

But how many Monte Carlo steps are required between two
configurations before they can be considered statistically
independent! This important question can be answered by
studying autocorrelation functions.

C(]) _ <$i+j$i> — <x2>2

(z7) — (2:)?

where the averages are over the index i (counting the number of Monte Carlo steps)

Correlations

2

C(]) _ <xi—|—jxi> _ <'CCZ>

(27) — (2)?

where:
(...) : average over the random walk
C(j=0) =1

C(j #0) =0 expected for points totally uncorrelated
since in that case <£EZ£EJ> — <CL‘Z><$J> — <ZEZ>2
It is not always the case, but at least for

ergodic simulations we should expect the
autocorrelation function approach 0 as j = 0.

Origin of correlations

Metropolis algorithm:
necessarily the points of the walker are correlated
each other over a short “time” scale (measured in

terms of Monte Carlo steps; at least 1 time step!)

Correlation exponentially decaying with a certain
characteristic “time” 1

Only points separated by 2t or 3T can be
considered statistically independent

Calculation of correlations

In Metropolis simulations, the autocorrelation time is often
measured as the simulation is running:

- Create an array, say “corr” with j elements and initialize it to
ZEero.

- Maintain a list of the | most recently computed values of the

observable C. This can be an array of length j in which the

value of Cn is stored at index “n mod j”.
- At each step n = j accumulate the values of C..,Cn.i fori =0,

1,...]—1Inthe array elements corr]i].
- At the end of the run, divide each corr[i] by n —j, subtract (C)2,

and divide by corr[0] to normalize.

(do the code yourself!)
Calculate C(j) for different 7 and check when it approaches 0

Notes - |

* Correlation may cause fictitiously a variance of the
averages much smaller than the actual error!

* The relationship
Tn/ VN~ O & 0s/V/s

is based on the assumption of uncorrelated data
(at least, uncorrelated among different blocks)

Notes - ||

Not good to use correlated points...

How to estimate correlations! How to estimate 7 ?
How to control the reliability of the statistical sampling?

Use block averages with different block size and
compare the numerical error estimates o./vsand o, /Vs' .
If they coincides, the correlation time is smaller than

the smallest block size used.

Suppose n=1000 data.
|) do blocking of s=20 sets with 50 points and calculate averages and errors
2) do blocking of s’=10 sets of 100 points and calculate averages and errors

50 is therefore the smallest block size used.
If 020/V20 = 019/V 10, this means that 7 << 50

Metropolis Sampling

Using a method to generate a distribution p(z),
we can efficiently sample integrals of the form

_ Jp(@)f(z)dx
(f) = [p(z) da

Particularly useful integrals (or averages) are those
related to ensemble averages

Metropolis algorithm

|) to generate random points with a given
distribution

2) to calculate averages with importance sampling

3) in particular: in the canonical ensemble

Review of some
concepts of
statistical mechanics

(microstate /| macrostate / trajectory / statistical ensemble;
statistical and temporal averages)

Microstates

|) Examples of a microstate: characterized by:

o |U,) (1 index related to N particles) in
the Hilbert space in Quantum Mechanics

® a point in the phase space (large number of
variables) in Classical Mechanics

examples of microstates:

o O @O
O— @@
o 0 O

O—e—0O—e
distribution of spins on a lattice
(open circles: spin up;
closed circles: spin down)

distribution of particles in a box
(list of positions)

Macrostate and Trajectory

2) For a classical system, the temporal evolution (with

possible changes of microstates) is a trajectory (a
line) in the phase space:

® along the trajectory, some parameters or variables
such as N,orV,or Tare fixed (constraints -
macrostate)

® others do change

The trajectory is on a certain surface in the phase
space (typically still high-dimensional)

examples of changes of microstates:

o6

oé—O— @

——@-

e . .
AR AR &
flip of one spin in a lattice

(open circles: spin up;
closed circles: spin down)

moving one particle in a box

(the macrostate here is
characterized by the
temperature T and
by the total number of lattice sites)

(the macrostate here is
characterized by the
number of particles N)

(random choice of spin flip/particle move in case of Markov chain)

Stochastic processes and Markov chains

Stochastic process:

evolves through a series of well defined configurations
(microstates in a given ensemble)

C={C|, Cy, ... CN } stochastically generated, i.e. Ci+|is
obtained from the previous one, Cy, by making some

random changes on the former. % e

Markov chain:

is defined by a matrix of transition probabilities 7 from
configuration i to j, and the probability 7%+, for a
transition from Cy to Ci+| does not depend on the
previous history, i.e. no memory.

Statistical averages

3) which info from the trajectory in the phase space!

After a sufficiently long time, the system will assume all
possible microstates compatible with the constraints i.e.
with the macrostate : the ensemble of such microstates

is a statistical ensemble

Suppose to make N independent measurements of an observable G:

1 N
Gobs = N E (G,«— the measure is on a microstate
a=1
1 # of times in which the (M is the number of the

— E [N ' (microstate S is observed)] GS possible different

s microstates s)

M < L.

° statistical average (Ps detPi“dsbdtthle

— S microstate s but also
- Z PSGS =< G > or on the macrostate)

s=1 ensemble average

statistical average = temporal average

is a fundamental assumption of the statistical mechanics;
OK if:

® the system is ergodic (after a sufficient long

time, the trajectory visits all the possible
microstates)

® observation time is Iong (T >> Trelaz or equil)

® observations are independent (d >> dcorrel)

The canonical ensemble

(N,V,T) fixed. The probability that the system is in the
microstate S with energy I/, is given by:

(here the energy identifies different microstates, it is not a characteristic of the macrostate)

1
P, = Ee_ﬁ Ps (canonical distribution)

where 0 = 1/kT, and Z is a normalization constant. Because) Ps =1,

M
—FE /KT - :
Z = Z e/ partition function
s=1

(M: all accessible microstates of the system)
characterized by different F

Ensemble averages (e.g. for the energy):

M 1 M
(E) =) E,P, = ~ > E,e P
s=1 s=1

Averages in the canonical
ensemble

We can generate only a finite number m of the total

number M of accessible microstates; we hope that:
™m
Z AS 6_/8ES

_m
Z e—PEs (Note: m, not M !)
s=1

A crude MonteCarlo procedure:

: XK
generate a microstate s at random, calculate E;, A,, and e P+, and evaluate ()

Poorly efficient! Ps for the generated microstates could be
rather small. An importance sampling method is better!

Importance sampling in the
canhohical ensemble

m
g Ase_/BEs
1 m 6_BES
Y —_ S= _ . L
§ 6_/8E3 s=1 j :e_BES
(*) NO importance sampling:
s=1 generate m configurations s=1

with uniform random distribution, (N ote : T # PS ')

then make a weighted average of A)

If we generate microstates according to 7, the calculation of A,,, reduces to:

I with importance sampling
A — E A (generate m configurations
U m = with random distribution 7,
s=1 then make a simple average of A)

(much more efficient than (*))

Importance sampling in the
canhohical ensemble

Therefore, summarising: we aim at calculating

m

1
<A>Sx — Z A, with microstates s generated according to 7y

m
s=1

The transition matrix that generates microstates s according to my is :

Told new = MIN [1, Wnew] = man [1, pnew] = man [1

e_BEnew]
Told Pold

" e—BEoid

hence, using Metropolis, the procedure 1s as following:

Metropolis algorithm in the
canonical ensemble

© w0 N o v s w

10.

. Establish an initial microstate.

Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

Compute AE = Ei a1 — Folq, the change in the energy of the system due to the trial change.
If AFE is less than or equal to zero, accept the new microstate and go to step 8.

If AFE is positive, compute the quantity w = e #~F.

Generate a random number r in the unit interval.

If r < w, accept the new microstate; otherwise retain the previous microstate.

Determine the value of the desired physical quantities.

Repeat steps (2) through (8) to obtain a sufficient number of microstates.

Periodically compute averages over microstates.

Metropolis algorithm in the
canonical ensemble

Steps 2 to 7 give really the desired distribution using:
T(i — j) = min(1, e ?2¥) (Metropolis algorithm),
where AE = Ej _Ez

A few remarks:

|) ERGODICITY implicitly assumed!

2) TEMPERATURE:

If Ep > Eja, accept the new (higher energy) configuration with probability p =
e~ (EB—EA)/T This means that when the temperature is high, we don’t mind taking
steps in the “wrong” direction, but as the temperature is lowered, we are forced to
settle into the lowest configuration we can find in our neighborhood.

Metropolis algorithm in the
cahohnical ensemble:
other remarks

|) Because it is necessary to evaluate only the ratio P;/P; = e PAE

it 1s not necessary to normalize the probability.

(Pj/ P =mj/m;)

2) Other choices of 74 are possible. Instead of writing:

m

> s
m 1 m
=1
<A>N AR == =Z@”SZEZAS
Z e_ﬁES s=1 s=1
1 (no importance (with importance
rewrite:) sampling) sampling)
A /mg) e PP,
A = .(no importance sampling)

If we generate microstates with probability 7., eq. becomes:

5" (Ay/ms) e PEe

A, == .(importance sampling)

5" (1/7,) e~BE-

=1

—t

(V)

3) If T(i— j)e P =T(j —i)e P (detailed balance),

Metropolis algorithm generates states with Boltzmann distribution

(we will prove it empirically : see exercise 4)

Some programs:

Some programs:

on

$/home/peressi/comp-phys/VIl-metropolis/
[do: $cp /home/peressil/.../VII-metropolis/* .]
or in moodle2.units.it

gauss_metropolis.f90

metropolis_sampling.f90
direct_sampling.f90
boltzmann_metropolis.f90

Boltzmann distribution
in the canonical ensemble

The Metropolis algorithm really produces microstates
with the Boltzmann distribution:
application to ideal classical ID gas (exercise n. 2)

1
1 free particle: Energy: E = §mv2

in this case, velocity or energy labels a microstate

(the energy with a factor of 2, due to +/- sign of v);

we generate different microstates by random variations of the velocity and
we accept/reject with Metropolis

Important quantities are the probabilities:
P(v)dv that the system has a velocity between v and v+dv
or P(E)dE that the system has an energy between E and E+dE

ideal classical 1D gas

A particle moving randomly has in each direction a distribution of the compo-
nent of the velocity:

- 1/2
_ —muv2 /2kgT
f(va) (27rkBT) c (1)
too kgT
2\ 2 kB
(vi) = /_OO vy fug)dv, = - (2)
In 1D:
f(v)2dv = P(E)dE
that gives: P(E) = 1 ! e~ E/kBT
| (mkpT)Y? E
In 3D:

P(E) = 2 ! VE exp (—i> (3D)

Boltzmann distribution
in the canonical ensemble

T . 1.00000 T =1 — <E> (egjpected) — (0.5 (m — 1)

<EO> : .000000

<v0> : .000000

dvmax : 2.00000

deltaE : 5.000000E-02
nbin 79

==> boltzmann.1lK <==

nMCsteps: 1000

<E> : .501263

<v> : T7.456664E-02

S i 7ia7e0 o/v/n = 0.022 (o is the variance of the energy)

==> boltzmann.10K <==
nMCsteps: 10000
<E> : .507580
<v> : 3.366172E-02

accept. : .707700
sigm}; : .726145 O'/\/ﬁ = 0.007

==> boltzmann. 1M <==

H H H

H O H H

nMCsteps: 1000000

<E> : .500138

<> : 1.833840E-04

accept. : .693837

sigma : .TOT4T2 0/\/7 = 0.0007
NOTE:

- Accuracy of ~ 1% on <E> and 10% on <v> : NMCS=1000 is enough

NOT ENOUGH to well reproduce the BOLTZMANN DISTRIBUTION! (1M needed!)
ACCEPTANCE RATIO: constant, depends only on dvmax

SIGMA also

Boltzmann distribution
in the canonical ensemble

many particles: Energy: E =" lm;?

in this case, the energy is NOT a label of a microstate
(there are several microstates with the same total energy)

Note: the energy histogram is NOT the distribution of microstates!

1
P(E)= Y P with P, = e "

Z
states s
with Eg=E
—(E—(E))? | ,
P(E) x=e 202 with (E) average over all the microstates

What is P(E)! (exercise n. 4)

PLCED/N)

=1, N=10, dvnae=l, nMCstepa=10™,,

s : *bi-18allad, dat”
*bi-16alla%, dat”
*bi=16alla?,dat”
*
.
»
-
-
* -
.
; |
=
.
N Ll . , "
0. 1 1.3 2

PLCED/N)

0,12

=2, N=10, dvnae=l, nMCstepa=1o™, .

= : ; *h2-18al Lad. dat *
+ b2-18allaf dat”
2 ‘ba=10alla?, dat”
..
. +*
-
.
o8
.
£,
»
+
z
.
* .
-
L
- ’ . ‘
- *
2 asa SNNewe "
1 2 3 4
<ESM

