### **O**UTLINE

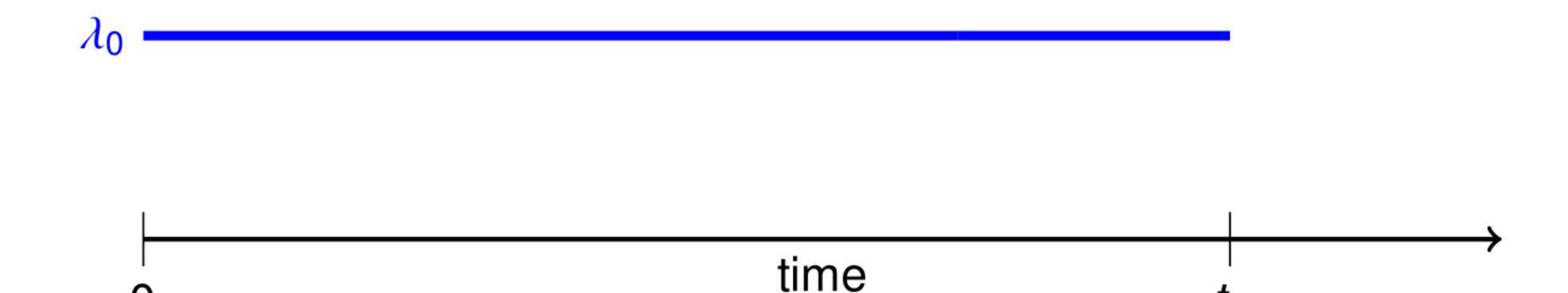
- CONTINUOUS TIME MARKOV CHAINS
  - Main concepts
  - Poisson Process
  - Time-inhomogeneous rates
- 2 POPULATION CONTINUOUS TIME MARKOV CHAINS
- **SIMULATION** 
  - SSA
  - Next Reaction Method
  - τ-leaping

- Consider a single  $\eta$  transition in a time interval [0, t] in which it never fires.
- As other transitions may fire, its rate  $r_{\eta}(\mathbf{X}(s))$  is a time-dependent function.
- Therefore, we can sample the firing time of η using the inversion method for time-inhomogeneous exponential distribution, solving for t

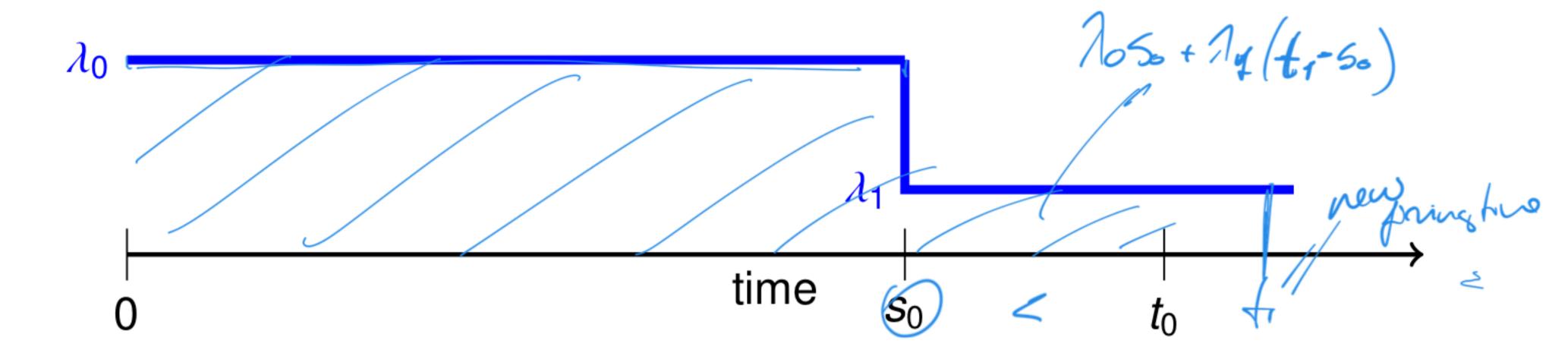
$$\Lambda_{\eta}(t) = \int_0^t r_{\eta}(\mathbf{X}(s)) ds = \xi \sim Exp(1).$$

20= RM (X(0))

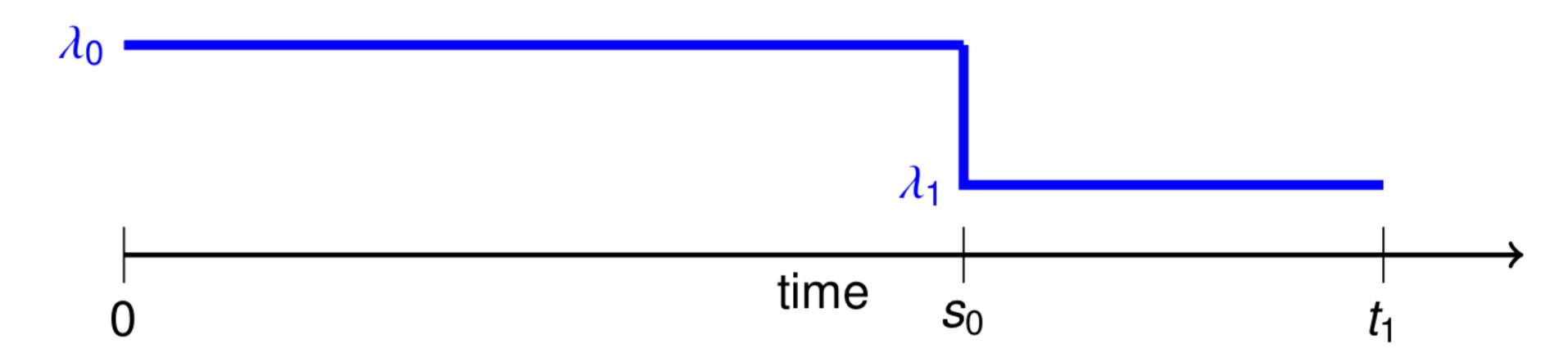
# NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)



• Start at time 0, and suppose the rate of  $\eta$  is  $\lambda_0$ . Assuming it does not change in time, the firing time would be  $t_0 = \frac{1}{\lambda_0} \xi \sim Exp(\lambda_0)$ .

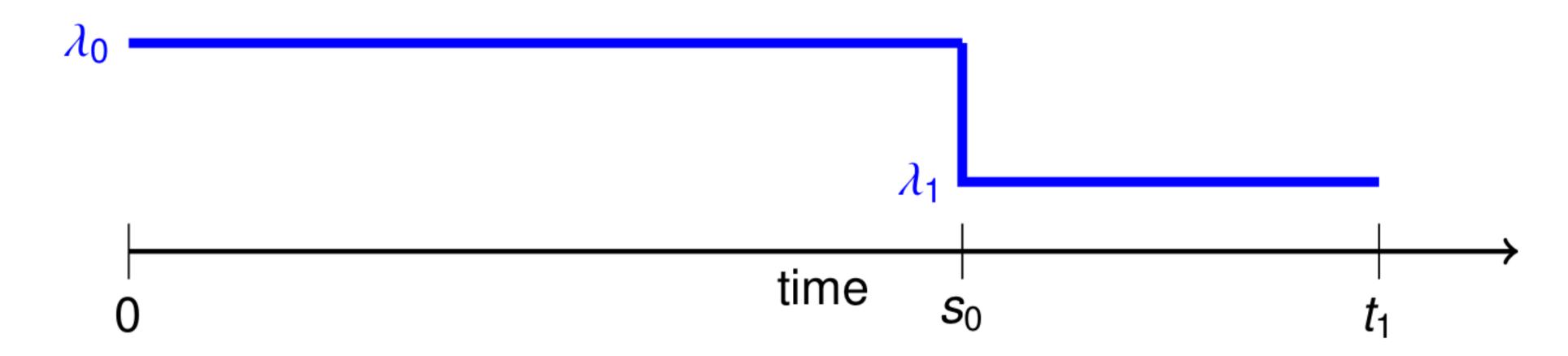


- Start at time 0, and suppose the rate of  $\eta$  is  $\lambda_0$ . Assuming it does not change in time, the firing time would be  $t_0 = \frac{1}{\lambda_0} \xi \sim Exp(\lambda_0)$ .
- Now, suppose at time  $s_0$  another event  $\eta'$  fires, and this changes the rate of  $\eta$  to  $\lambda_1$ .



- Start at time 0, and suppose the rate of  $\eta$  is  $\lambda_0$ . Assuming it does not change in time, the firing time would be  $t_0 = \frac{1}{\lambda_0} \xi \sim Exp(\lambda_0)$ .
- Now, suppose at time  $s_0$  another event  $\eta'$  fires, and this changes the rate of  $\eta$  to  $\lambda_1$ .
- Then the firing time of  $\eta$  would be found by solving  $\lambda_0 s_0 + \lambda_1 (t_1 s_0) = \xi_{, 1}$  from which

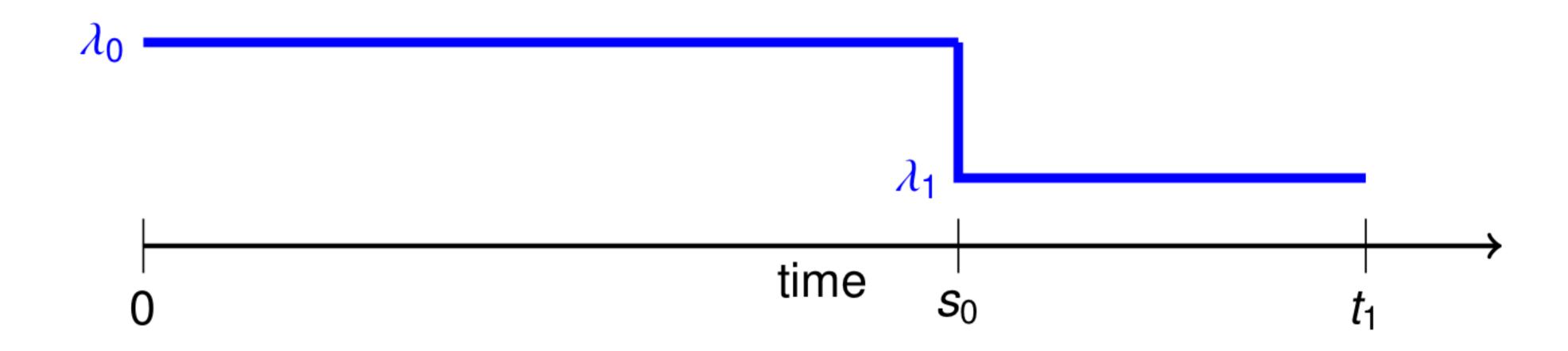
$$t_1 = s_0 + \frac{\lambda_0}{\lambda_1} \left( \frac{1}{\lambda_0} \xi + s_0 \right) = s_0 + \frac{\lambda_0}{\lambda_1} \left( t_0 - s_0 \right).$$



- Start at time 0, and suppose the rate of  $\eta$  is  $\lambda_0$ . Assuming it does not change in time, the firing time would be  $t_0 = \frac{1}{\lambda_0} \xi \sim Exp(\lambda_0)$ .
- Now, suppose at time  $s_0$  another event  $\eta'$  fires, and this changes the rate of  $\eta$  to  $\lambda_1$ .
- Then the firing time of  $\eta$  would be found by solving  $\lambda_0 s_0 + \lambda_1 (t_1 s_0) = \xi$ , from which

$$t_1=s_0+rac{\lambda_0}{\lambda_1}\left(rac{1}{\lambda_0}\xi-s_0
ight)=s_0+rac{\lambda_0}{\lambda_1}(t_0-s_0).$$

 This is the update formula of Gibson-Bruck algorithm (can be easily generalized to n intermediate events by induction).



#### NEXT REACTION METHOD

At each step, with current state **x** and current time *t* 

- $\bullet$  execute transition  $\eta$  with smallest time;
- update rates and firing times of other transitions;

the algorithm uses a priority queue and a dependency graph to speed up operations.

### EXAMPLE: SIR EPIDEMICS

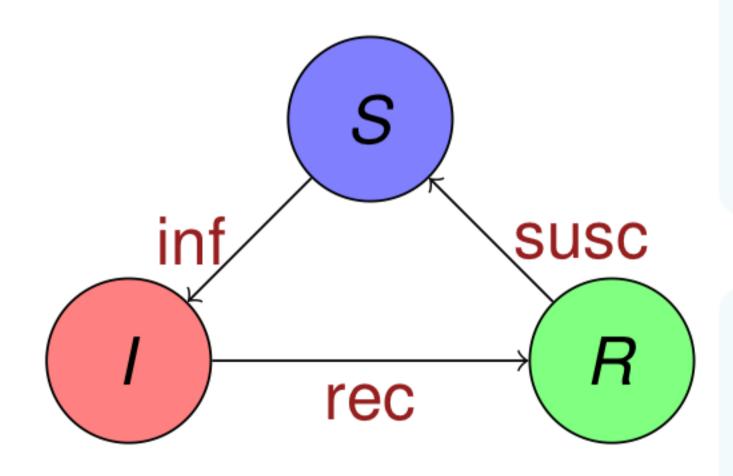
$$N = 10, k_I = 1, k_R = 0.05, k_S = 0.01$$
  
 $X_S(0) = 8, X_I(0) = 2, X_R(0) = 0.$ 

#### STEP 1: RATES OF TRANSITIONS

INFECTION:  $\frac{1}{10} \cdot 8 \cdot 2 = 1.6$ 

RECOVERY:  $0.05 \cdot 2 = 0.1$ 

IMMUNITY LOSS: 0



### STEP 2: COMPUTE FIRING TIMES

INFECTION:  $\frac{1}{1.6} \cdot 0.2228 = 0.1392$ 

RECOVERY:  $\frac{1}{0.1} \cdot 1.9527 = 19.5273$ 

IMMUNITY LOSS:  $\frac{1}{0} \cdot 0 = \infty$ 

### EXAMPLE: SIR EPIDEMICS

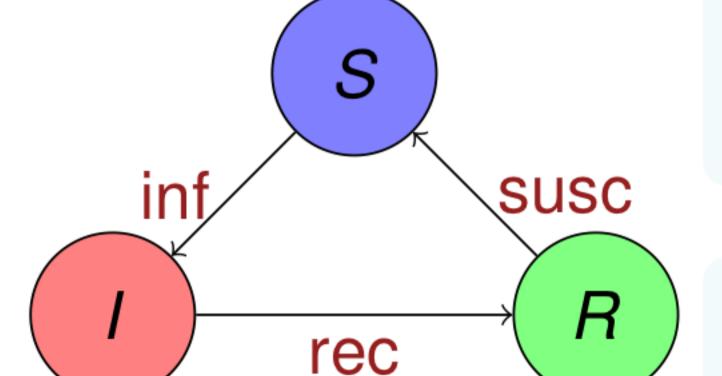
$$N = 10, k_I = 1, k_R = 0.05, k_S = 0.01$$
  
 $X_S(0.1392) = 7, X_I(0.1392) = 3,$   
 $X_R(0.1392) = 0.$ 

#### STEP 1: RATES OF TRANSITIONS

INFECTION:  $\frac{1}{10} \cdot 7 \cdot 3 = 2.1$ 

**RECOVERY:**  $0.05 \cdot 3 = 0.15$ 

IMMUNITY LOSS: 0



### STEP 2: REEVALUATE FIRING TIMES

INFECTION:  $\frac{1}{21} \cdot 3.3323 = 1.5868$ 

RECOVERY:  $0.1392 + \frac{0.1}{0.15} \cdot (19.5273 - 0.1392)$ 

= 13.0646

IMMUNITY LOSS: ∞

### **O**UTLINE

- 1 CONTINUOUS TIME MARKOV CHAINS
  - Main concepts
  - Poisson Process
  - Time-inhomogeneous rates
- 2 POPULATION CONTINUOUS TIME MARKOV CHAINS
- 3 SIMULATION
  - SSA
  - Next Reaction Method
  - $\bullet$   $\tau$ -leaping

### τ-LEAPING (SKETCH)

Consider the Poisson representation of a population CTMC at time  $\tau$ 

$$X(\tau) = X(0) + \sum_{\eta \in \mathcal{T}} \mathbf{v}_{\eta} \mathcal{Y}_{\eta} \left( \int_{0}^{\tau} r_{\eta}(X(s)) ds \right).$$

If  $\tau$  is sufficiently small, we may assume that the rates  $r_{\eta}(X(s))$  are approximately constant in  $[0, \tau]$  and equal to  $a_{\eta}$ .

Then  $\int_0^t r_\eta(X(s))ds \approx a_\eta \tau$ , hence

$$X(\tau) \approx X(0) + \sum_{\eta \in \mathcal{T}} \mathbf{v}_{\eta} \mathcal{Y}_{\eta} (a_{\eta} \tau).$$

CTMC PCTMC SIMULATION 48/49

## τ-LEAPING (SKETCH)

#### τ-LEAPING

At each step, with current state x and current time t

- choose  $\tau$ ;
- of or each  $\eta$ , sample  $n_{\eta}$  from the Poisson r.v.  $\mathcal{Y}_{\eta}\left(a_{\eta}\tau\right)$ ;
- update **x** to  $\mathbf{x} + \sum_{\eta} \mathbf{v}_{\eta} n_{\eta}$  and time to  $t + \tau$ .

#### CHOICE OF $\tau$ : LEAPING CONDITION

The choice of  $\tau$  is an art:

- it has to be small for rates to be approximately constant in  $[t, t + \tau]$ ;
- it has to be as large as possible to make  $\mathcal{Y}_{\eta}(a_{\eta}\tau)$  large to gain in computational efficiency;
- one has to avoid the generation of negative populations.

### REFERENCES

- J.R. Norris. Markov Chains, Cambridge University Press, 1998.
- R. Durrett, Essentials of Stochastic Processes, Springer-Verlag, 1998.
- D.T. Gillespie (1976). A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. Journal of Computational Physics, 22(4): 403-434
- M.A. Gibson and J. Bruck (2000). Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. Journal of Physical Chemistry A, 104(9).
- Y Cao, DT Gillespie, LR Petzold (2006). Efficient step size selection for the tau-leaping simulation method. J Chem Phys, 28;124(4).