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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

o Consider a single n transition in a time interva@n
which it never fires.

time-dependent function.

@ Therefore, we can sample the firing time of  using the
inversion method for time-inhomogeneous exponential
distribution, solving for t

[
Ap(t) = | r(X(s))ds =&~ Exp(1)
o<

@ As other transitions may fire, its rate r,7 Xﬁ IS a] Aelo 7
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)
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@ Start at time 0, and suppose the rate of n is 1. Assuming it does

not change in time, the firing time would be’[?o—: %@” Exp(p).
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

Ao ~ o < Ty 4(5°>
PV I W et
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@ Start at time 0, and suppose the rate of n is 1. Assuming it does
not change in time, the firing time would be t) = 1-¢ ~ Exp(o).

@ Now, suppose at time sy another event n’ fires, and this changes
the rate of n to A;.

j\oéo t ﬂa (éq"z»):
,//],(1 ’vﬂa‘)o -://1153 =% é
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

Ao i
A1

0 time So 3

@ Start at time 0, and suppose the rate of n is 1. Assuming it does
not change in time, the firing time would be t) = 1-¢ ~ Exp(o).

@ Now, suppose at time sy another event n’ fires, and this changes
the rate of n to A;.

@ Then the firing time of n would be found by solving
AoSp + A1 (t1 — So) = £, from which
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

Ao i
A1

e

0 time So t

@ Start at time 0, and suppose the rate of n Is 1o. Assuming it does
not change in time, the firing time would be t) = 1-¢ ~ Exp(o).

@ Now, suppose at time sy another event n’ fires, and this changes
the rate of n to A;.

@ Then the firing time of n would be found by solving
AoSo + A1 (t1 — SQ) = &, from which o

2o [ 1 ) )
1 = So /1(1) (/l—of — ﬂ— S0 - /1:) (fo — So).

@ This is the update formula of@s&@fwkaloﬁhm can be
easily generalized to n intermediate events by induction).
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

NEXT REACTION METHOD
At each step, with current state x and current time ¢

Q execute transition n with smallest time;

©Q update rates and firing times of other transitions;

@ sample a new firing time for n. )

the algorithm uses a priority queue and a dependency graph to speed
up operations.
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EXAMPLE: SIR EPIDEMICS

N =10,k =1, kg = 0.05, k¢ = 0.01
Xs(0) =8, X;(0) =2, Xg(0) = 0.
STEP 1: RATES OF TRANSITIONS

INFECTION: 11—0 .8.2=16
RECOVERY: 0.05-2 =0.1
IMMUNITY LOSS: O

STEP 2: COMPUTE FIRING TIMES
INFECTION: 7= -0.2228 = 0.1392
RECOVERY: 5= -1.9527 = 19.5273

IMMUNITY LOSS:

1.0 —
o 0 =00
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EXAMPLE: SIR EPIDEMICS

N =10, k; = 1, kg = 0.05, kg = 0.01
X5(0.1392) = 7, X;(0.1392) = 3,
Xg(0.1392) = 0.

STEP 1: RATES OF TRANSITIONS

INFECTION: 75-7-3 =2.1
RECOVERY: 0.05-3=0.15
IMMUNITY LOSS: O

STEP 2: REEVALUATE FIRING TIMES
INFECTION: 5= - 3.3323 = 1.5868

RECOVERY: 0.1392 + 54 - (19.5273 — 0.1392)
= 13.0646

IMMUNITY LOSS:

oo



OUTLINE

© SIMULATION

@ 7-leaping



SIMULATION 47 149

T-LEAPING (SKETCH)

Consider the Poisson representation of a population CTMC at
time 7

0+ v, (f X(s ))ds)

nes

If 7 is sufficiently small, we may assume that the rates r,(X(s))
are approximately constant in |0, 7| and equal to a,,.

Then fo s))ds ~ a,, hence

X(t) = X(0) Z v,V anT
nevs
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T-LEAPING (SKETCH)

T-LEAPING
At each step, with current state x and current time ¢

O choose T;
@ for each n, sample n, from the Poisson r.v. Y, (a,7);
© update xto x + >, v,nn, and time to t + .

CHOICE OF 7: LEAPING CONDITION
The choice of T I1s an art:

@ It has to be small for rates to be approximately constant in
it t+ 7];

e it has to be as large as possible to make Y, (a,7) large to
gain in computational efficiency;

@ one has to avoid the generation of negative populations.
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