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When shown a pair of digits and asked to select the larger of the two,
subjects make their choice more quickly as the numerical difference between
the digits increases. This article presents and tests a semantic coding model
that can explain this and all previous results. In addition, this model pre-
dicts a semantic congruity effect that previous models do not predict, but
which was found in both of the experiments reported here. The congruity
effect occurs when subjects are asked sometimes to pick the larger and
sometimes the smaller member of the pair. When the digits to be judged
are both small (e.g., 2 and 3), the subjects are able to pick the smaller one
faster than the larger one; when the digits are both large (e.g., 7 and 8),
they pick the larger one faster than the smaller one. This model provides
an alternative to image-processing models for a variety of tasks in which
comparative judgments are made among elements that symbolize continuous
quantities.

The amount of time, required to decide
which of a pair of digits is larger decreases
as the numerical difference between them in-
creases (Moyer & Landauer, 1967). This
somewhat surprising phenomenon, easily
replicated with adults who have had years
of experience with such judgments (and
who, of course, do not find them difficult at
all), has been subjected to three theoretical
interpretations in the past. This article ad-
vances a new model of the phenomenon and
presents results that are natural predictions
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of the model, but cannot be handled except
in an ad hoc way by the previous ones. The
present and previous models are briefly
sketched here, and tests of predictions of the
models are presented in the final section of
the article. For the sake of economy the fol-
lowing terms are used: min, to refer to the
smaller member of a digit pair; max, to refer
to the larger; and split, to refer to the dif-
ference between min and max. Also, digit
pairs are written as two digit numbers (i.e.,
"12" for 1 and 2).

Two of the three previous models assume
that subjects first translate each digit into
an internal magnitude and then decide on the
correct (larger) digit by comparing the in-
ternal representations of the two. The digit
comparison is thereby converted into some-
thing like a psychophysical comparative
judgment. The smaller the split, the smaller
the difference between the internal magni-
tudes, and thus, the longer the time required
for the decision. The first of these is the
original model proposed by Moyer and
Landauer (1967; see also Moyer, 1973). It
assumes that the internal magnitude is an
analog quantity and that it is approximately
a logarithmic function of digit size.
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The second model that postulates a trans-
lation of the digits to an internal magnitude
was proposed by Buckley and Gillman
(1974). Their model assumes that the in-
ternal representation of each digit is a ran-
dom variable whose mean is proportional to
the logarithm of the digit. The main im-
provement of Buckley and Gillman's model
over Moyer and Landauer's is an explicit
comparison process. The comparison is per-
formed by a random walk model that begins
by computing the difference between the two
internal representations. If this difference
exceeds a preset boundary, the indicated re-
sponse is made; if the boundary is not ex-
ceeded, the process resamples the stimulus
information, recomputes the difference, and
adds the new difference to the old one. The
process continues until the boundary is ex-
ceeded and a response can be made.

The third previous model is Parkman's
(1971). This one differs greatly from the
other two because it uses no nonlinear in-
ternal representations to account for the phe-
nomena. The model assumes that when the
pair of digits is presented, an internal
counter begins and that the counter stops
when it reaches the min. The subject then
chooses the other digit as the larger. The
model predicts a linear increase in reaction
time (RT) as a function of min, and this
prediction is upheld by Parkman's data.

Parkman's model predicts the effect of
split on RT by reason of the fact that, with
pairs of digits, min and split are con-
founded. The confounding is such that the
sets of pairs with larger splits also have, on
the average, smaller mins. The mean min for
pairs of split equaling 1 (12, 23, 34, . . . , 89)
is 4.5; and it is 4 for a split of 2, 3.5 for a
split of 3, and so forth. If internal counting-
up time is the chief determinant of RT, then
RT will certainly decrease with split, but
because of the confounded min variable
rather than the size, per se, of the difference
between the pairs.

How have these models fared against the
available data? Parkman's has some prob-
lems. The basic premise that identification
of digits takes place by a counting-up pro-
cess predicts an increase in the simple nam-
ing latency for digits as their size increases,

but such a relationship is not found (Fair-
bank, 1969; Theios, 1973). Also, there is
still a nonlinear residual split effect after the
effect of min is allowed for (Parkman,
1971), and the min effect itself is not al-
ways linear (Buckley & Gillman, 1974). Fi-
nally, Moyer and Landauer (1973) have
shown that both Parkman's functions and
their own (1967) are fitted slightly better by
their equations than by Parkman's.

The models that postulate a nonlinear sub-
jective scale of number, on the other hand,
can account for a wide range of data. Prob-
ably the only available phenomena not read-
ily explained by such models are Fairbank
and Capehart's (1969) finding that choosing
the larger digit is faster than choosing the
smaller and Parkman's finding (1971, Fig-
ures 1 and 4) that the difference between
choosing the larger and the smaller increases
with min. These phenomena are, in fact, se-
mantic congruity effects (discussed below),
and the present model explains them satis-
factorily, as will be seen.

The model proposed here has two stages
of processing: (a) a first encoding stage,
whose function it is to generate a semantic
description of the stimuli—in this case, dig-
its; and (b) a second comparison stage that
uses the semantic codes to compute the cor-
rect response. It is assumed that the total
RT for performing the task is the sum of
times consumed by such stages (see Banks,
Clark, & Lucy, 1975; Sternberg, 1967).
Predictions for the present experiment are
based only on hypothetical processes located
in these two stages.

The encoding stage generates internal
codes of the stimulus information presented
to it, and later stages work only with such
codes. In the case of comparative judgments
of digit magnitudes, the size codes for the
digits will of course be particularly impor-
tant for processing (although other semantic
information about the digits will be made
available by the stage), and the primary task
of this stage is assumed to be that of gen-
erating the size codes as quickly as possible.
Variations in such factors as stimulus dis-
criminability are assumed to have their ef-
fects on the time taken by the encoding stage,
but it is not necessary to assume that coding
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varies systematically with the size of the
digit (Fairbank, 1969; Theios, 1973). It is
assumed, however, that the nonlinear per-
ception of numerical quantity (Banks & Hill,
1974; Rule, 1969; Shepard, Kilpatric, &
Cunningham, 1975) causes a nonlinear map-
ping of digits to size codes.

The earliest size codes made available by
the encoding stage are very crude: A digit
is coded as either larger (L+) or'smaller
(S+) than a cutoff point on the numerical
continuum. The cutoff is assumed to vary
from trial to trial and to have a skewed dis-
tribution that places its mean below the
arithmetic midpoint of the digits used in the
task. The skewed distribution of cutoff
placements derives from the decelerated
(compressive) mapping of digits onto sub-
jective magnitude (Banks & Hill, 1974;
Rule, 1969; Shepard et al., 1975). This com-
pression results in smaller numbers being
spaced further apart on the subjective con-
tinuum than larger numbers; thus, the cutoff
is more likely to fall between small than
large digits.

In this model the same cutoff is always
applied to both digits on a given trial. If both
fall above it, the codes will be L+/L+; if
both fall below it, they will be S+/S+; and
if they straddle the cutoff, they will be L+/
S+ or S+/L+. By assuming a common
cutoff for the digits, the model never has in-
correct codings emerging from the encoding
stage, although they may be ambiguous, as
in L+/L+ or S+/S+. The model does
not, incidentally, have an explicit source of
errorful responses, except for the very gen-
eral one that as more processing steps are
involved, there is a greater chance of an
error. It thus predicts a positive relation-
ship between RT and error rates across
conditions.

The comparison stage computes the cor-
rect response by matching the previously
stored instructional codes with the codes
generated by the encoding stage. The in-
structional codes are cast in the same format
as the codes for the stimuli; thus, the in-
struction "choose larger" is coded as L+
and "choose smaller" as S + . Because of the
necessity for fast responding, the comparison
stage seizes on the earliest codes available

for the stimuli. If these happen to be L+/
S+ or S+/L+, a match between the in-
structional code and one of the two stimulus
codes can be made immediately, and the cor-
rect response will be quick. If, on the other
hand, the stimulus codes are L+/L+ or
S+/S+, the comparison stage needs more
detailed codes to discriminate the digits.
These more detailed codes will determine
which of the large ones is larger or which
of the small ones is smaller. Thus, L+/L+
is always translated to L/L+, and S+/S +
is always translated to S/S+, and then the
comparison stage can select the correct re-
sponse.

According to the model, the overall RT
is a mix of latencies of the comparison stage
resulting from S+/S + , S+/L+, and L+/
L+ codings of the pair. The model predicts
RT by showing how the probabilities of
these codes are affected by various factors.
First, the split effect emerges because the
greater the split, the more likely are the dig-
its to straddle the cutoff and be coded S+/
L+ or L+/S + . The min effect (RT in-
creases with min) comes about because the
cutoff point is usually placed among the
smaller numbers. Across trials, it is most
likely to fall between 1 and 2, next most
between 2 and 3, and so on; and it is very
unlikely to fall between 7 and 8 or 8 and 9.
Thus, the smaller the min, the greater the
probability of S+/L+ coding, and the
greater the probability of a response with-
out any further receding.

As we see, the model can predict min and
split effects, but the prediction that distin-
guishes it from previous models is an inter-
action between the instructions and the over-
all size of the digit pair. That is, for large
pairs (89, for example) the RT will be
relatively faster for instructions to choose
the larger one than for instructions to choose
the smaller one, and the reverse will be true
for smaller pairs, such as 12. This interac-
tion is a crossover effect or, more generally,
a semantic congruity effect (see Banks et
al., 1975).

The semantic congruity effect emerges be-
cause the codes for the digits depend on the
overall size of the pair, and processing
should be faster when the codes for the digits
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match the form of the instructional codes
than when they do not. For example, the
pair 89 is very likely to be initially coded
as L+/L+ and therefore to end up coded
as L/L+. If the instructions are "choose
larger" (coded as L+), the correct member
of the pair 89 can thus be selected faster than
if the instruction were "choose smaller"
(coded as S + ). The S+ instruction takes
longer in this case because it matches neither
L nor L+, and L/LH- must be transformed
to S+/S. On the other hand, a small pair
(such as 12) is' very likely to be coded
S/S+ and will therefore lead to a faster re-
sponse for S+ instructions than for L+ in-
structions. Note also that the smaller and
larger functions will be more nearly equal
for small pairs than large ones because there
is more S+/L+ coding for the small pairs
than large ones and, hence, less effect of con-
gruity for the smaller pairs.

A further prediction of the model is that
the size of the congruity effect will decline
as split increases. This follows because the
larger the split, the more likely is L+/S +
coding; and when there is L+/S+ coding,
there can be no mismatch between stimulus
and instructional codes and thus no congru-
ity effect.

The present experiments seek a congruity
effect in comparative judgments of digits,
since the critical difference between the pres-
ent and previous models is the prediction of
such an effect. Both experiments therefore
cross S+ and L+ instructions orthogonally
with the digit pairs. The semantic congruity
effect can be seen as an interaction between
the instructions and the size of the pair, or
more precisely, as an interaction between in-
structions and mm for each split.

Experiment 1, in addition to testing for a
semantic congruity effect, compares splits of
1 and 2 to determine whether the congruity
effect does decline with split as predicted.
Experiment 1 also arranges the probabilities
of the various digits so that members of two
pairs, 23 and 78, are unconfouncled, that is,
so that under both S+ and L+ instructions
2, 3, 7, and 8 are equally likely to be the
chosen digit. Experiment 2 compares S +
and L+ instructions for all splits of 1, 2,
and 3 that can be formed from the digits 1
through 9.

METHOD

Procedure: Experiments 1 and 2

In both experiments the subjects attempted to
decide which of two simultaneously presented digits
was the larger or the smaller. The digits were pre-
sented side by side in a horizontal row, and the
subject had a hand-held response panel with a pair
of miniature toggle switches also placed side by
side. The subject indicated his choice of a digit by
throwing the switch on the same side as the chosen
digit.

Stimuli were presented in readouts manufactured
by Industrial Electronic Engineers, in which the
digits are back projected as a luminous area on a
black background. The digits were approximately
1.5 X 2.5 cm and were placed 2.5 cm apart. The
subject sat about 1 m from the readouts. A Digi-
Bits logic set controlled all experimental sequences.
A trial began with the experimenter saying either
"choose larger" or "choose smaller" to indicate the
choice the subject was to make, then throwing a
switch that delivered power to the lamps in the
readouts and started a timer. This procedure cre-
ated a constant error in all RTs, because the rise
time of the lamps was about 50 msec. The subject's
response stopped the timer and extinguished the
lamps, and RTs were recorded to the nearest msec.
Errors by the subject caused a buzzer to sound, and
stimuli that led to an error were repeated later
within the experimental block in which they oc-
curred.

Experiment 1. Experiment 1 used the digit pairs
12, 23, 13, 78, 89, and 79 equally often under both
larger and smaller instructions. The pair 37 was
also presented in order to equate response prob-
abilities for 3 and 7 under the various instructions,
and RTs to 37 were not recorded. If 37 had not
been presented, 3 would have always been the cor-
rect digit in a pair under larger instructions and
never under smaller, and the reverse would have
been true for 7. The pair 37 was shown twice as
often as any of the other pairs, thus making in
effect eight digit pair conditions (six experimental
pairs plus 37 twice). Since there were two instruc-
tions and two orders for each pair, there were a
total of 32 stimulus combinations, which were given
to each subject in nine separate blocks of 32. Each
of the nine blocks contained a different random
order of the 32 stimuli, and each subject went
through the set of nine blocks in a different order.
The first block .encountered by each subject was
considered practice, and data from it were not re-
corded. The reported data come from the remaining
eight blocks, but their order of presentation was,
unfortunately, not recorded, and examination of
practice effects is not possible in Experiment 1.

Experiment 2. Experiment 2 used all pairs of the
digits 1 to 9 that form splits of 1, 2, or 3. There
were thus 21 different pairs: (a) 8 having a split
of 1, (b) 7 having a split of 2, and (c) 6 having
a split of 3. Each pair was presented equally often
under larger and smaller instructions. Since each
pair had two orders, there were 2 X 2 X 21 or 84
conditions. These were presented in six blocks of,
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84, with a different random order of stimuli within
each block. The first block was considered practice,
and data from it were discarded. The six blocks
were always presented in the same order, and ef-
fects of practice can be examined.

Subjects

Subjects were male and female students at the
Claremont Colleges, paid $2 per hour. Experiment
1 had 16 subjects, of which 3 were rejected for
exceeding a 5% error criterion, and Experiment 2
had 19, of which 1 was discarded for exceeding the
same criterion.

RESULTS

The effects on RT of the important var-
iables are reported separately for each ex-
periment, followed by sections reporting
other results for both experiments at once.
The standard error of the mean for some
RTs is reported as a ± value in parentheses
after the mean. This standard error is based
on the sampling error over subjects of the
mean in question. Table 1 also presents the
mean RTs from both experiments.

Experiment 1

The results of Experiment 1 are shown in
Figure 1, where Figure 1A plots the mean
RTs for larger and smaller instructions for
the pairs 12 and 89. Figure IB plots the
same functions for the pairs 23 and 78, and
Figure 1C plots them for 13 and 79. Thus,
Figures 1A and IB show the results for a
split of 1, and Figure 1C shows it for a split
of 2. Results for the pairs 23 and 78 are
plotted separately from those for 12 and 89
because 23 and 78 are the unconfounded
pairs whereas the pairs 12 and 89 could pos-
sibly give results confounded by the fact that
1 is always a correct choice under smaller
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FIGURE 1. Reaction time to select the larger or
the smaller digit of the pair indicated for Experi-
ment 1.

TABLE 1
MEAN RTs (IN MSEC) FOR EACH DIGIT PAIR UNDER

BOTH INSTRUCTIONS IN EXPERIMENTS
1 AND 2

Experiment 1 Experiment

Instruction

Digit
pair

12
23
13
78
89
79

Choose
smaller

S3S
548
523
654
654
616

Choose
larger

548
582
522
616
578
566

Digit
pair

12
23
34
45
56
67
78
89
13
24
35
46
57
68
79
14
25
36
47
58
69

2

Instruction

Choose
smaller

559
588
611
591
665
635
699
694
554
545
547
596
594
609
665
528
538
569
562
613
591

Choose
larger

545
597
600
583
637
601
616
590
534
558
558
576
572
581
586
551
539
544
536
549
552

instructions and 9 is always correct under
larger instructions.

A semantic congruity effect clearly holds
for each set of pairs plotted in Figure 1. In
each case an interaction is observed between
the size of the digit pair (12, 23, and 13
being small pairs and 78, 89, and 79 being
large ones) and the instructions. This inter-
action is significant overall 77(1, 12) = 20.3,
p < .01. For the split of 1 alone the inter-
action was F(\, 12) = 20.6, p < .01, and for
the split of 2, it was F(\, 12) = 7.2, p <
.025. The size of the congruity effect de-
creases with split, as predicted by the model.
The measure of the congruity effect is the
mean number of milliseconds needed to move
each point in order to remove the semantic
congruity interaction: It is 20.4 (±4.5)
msec for the split of 1 and 12.5 (±4.6) msec
for the split of 2. This difference in the effect
is significant, t(\2) = 3.72, p < .01.

The two sets of pairs with a split of 1 gave
very similar results. The pairs 12 and 89
were processed 22 msec faster than 23 and
78, but this difference fell short of signifi-
cance, F(l, 12)= 4.42. The size of the con-
gruity effect is about the same in both cases:
22.5 msec for 12 and 89, and 18.2 msec for
23 and 78 (F = 1.03).

The mean RT for a split of 1 was 589
(±23.9) msec, and it was 556 (±20.5)
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msec for a split of 2. Testing the split with
a planned comparison gives significance at
the .01 level, F(l, 60) = 7.36. A test of the
split effect was also performed in an orthog-
onal design, with data from the pairs 23, 78
used for the split of 1, omitting data from
12, 89, F(l, 12) = 8.2, p < .025. The mins
in the experiment were 1, 2, 7, and 8; mean
RTs for these were 531, 565, 613, and 616
msec, respectively. The min effect, by a lin-
ear contrast, is reliable, F(l, 60) = 23.46,
p < .01. The best-fitting linear regression of
min on RT (r2 = .84) has a slope of 12
msec/digit, with an intercept of 528 msec.

Experiment 2

Figure 2 shows RT plotted as a function
of min for larger and smaller instructions.

Figure 2A shows this plot for a split of 1,
Figure 2B for a split of 2, and Figure 2C for
a split of 3. The semantic congruity interac-
tion between the size of the pair and the
instructions is apparent for all three splits.
It is reliable overall, F(20, 340) = 6.8, p
< .01, and is also reliable at the .01 level for
each of the splits taken separately: F(7,
119) = 8.4 for a split of 1, F(6, 102) = 6.4
for a split of 2, and F(S, 85) = 5.8 for a
split of 3.

The pairs of digits used in this experi-
ment, as in Experiment 1, create a confound-
ing between the effects of min and split that
cannot be teased apart by orthogonal com-
parisons. Some of the statistical tests of min
and split effects will therefore not be orthog-
onal, Min and split can, however, be made
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FIGURE 2. Reaction time to select the larger or the smaller digit of a digit pair, plotted as a
function of the smaller member of the pair (min). (Data are separately plotted for the three
splits used in Experiment 2.)
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independent if all data from the pairs 78, 89,
and 79 are excluded from the analysis, since
dropping these pairs leaves an orthogonal
3 x 6 design with splits of 1, 2, and 3 crossed
with mins of 1 through 6. Because this pro-
cedure loses 1/7 of the data and still leaves
max confounded with split, it will be used
only as an adjunct to the analysis of all the
data.

In the full set of data, the mean RTs for
mins of 1 through 8, inclusively, were 545,
561, 571, 574, 60S, 595, 641, and 642 msec,
respectively. The min effect is fairly linear
(r2 = .60), with a slope of 13.5 msec/digit
and an intercept of 530 msec, and the linear
component of the min effect was F(l, 340)
= 14.3, p < .01. The effect of split is also
strong with mean RTs of 613 (±14.7), 577
(±12.7), and 566 (±12.4) msec for splits
of 1, 2, and 3, respectively. The linear con-
trast testing the split effect was F(l, 340)
= 9.9, p < .01. These contrasts testing split
and min are, of course, not orthogonal, but
there is still a split effect over and above the
min effect and vice versa.

The model predicts a decrease in the se-
mantic congruity effect as split increases,
and the size of the congruity effect, ex-
pressed in the same terms as previously, was
14.6 (±2.3), 9.42 (±1.9), and 11.26 (±2.6)
msec for splits of 1, 2, and 3, respectively.
The decrease in the effect from the split of
1 to 2 replicates the same comparison in Ex-
periment 1, but the increase in the congruity
effect as the split goes to 3 is surprising. The
variation in the congruity effect with split in
Experiment 2 is, however, not reliable, with
F < 1.0 by a linear contrast.

The analysis of Experiment 2 that dropped
the pairs 78, 89, and 79 showed significant
effects of both split and min, F(2, 45) = 45.6
and F(5, 85) = 24.6, respectively. The se-
mantic congruity effect was also reliable,
F(5, 85) = 4.8, p < .01. An interaction be-
tween min and split was observed, F(10,
170) = 5.5, p < .01, in which the effect of
min decreased as split increased, and the ef-
fect of split increased with min. The changes
in the semantic congruity effect with split
barely reached significance, F(10, 170) =
2.0, p < .05.

The RTs in Experiment 2 were overall a

bit slower than those in Experiment 1, but
the semantic congruity effect was about the
same for the sets of pairs common to the two
experiments. The pairs 12, 89 gave a con-
gruity effect of 22.5 msec in Experiment 1
and 21.8 msec in Experiment 2. For the
pairs 23, 78 the congruity effect was 18.2
msec in Experiment 1 and 22.5 in Experi-
ment 2. The pairs 13, 79 gave congruity
effects of 12.5 msec in both experiments.

Other Variables

As noted, information relevant to practice
effects was not saved for subjects in Experi-
ment 1, but in Experiment 2 it was, and
practice did not have a reliable effect, F(4,
68) = 2.25, p > .10. The practice effect in
Experiment 2 yielded mean RTs of 569, 593,
589, 584, and 598 msec for Blocks 1-5, re-
spectively. There were no significant interac-
tions between blocks and any other variables.

The effect of order (whether the left or
right digit was the correct one) was not re-
liable in Experiment 1 (F < 1.0), but it was
in Experiment 2, F(l, 17) = 7.6, p < .025,
with the right side being about 20 msec faster
than the left. The only reliable interaction
involving order in either experiment was in
Experiment 1, where order was involved in
an uninterpretable three-way interaction with
instructions and size of digits, F(l, 12) =
5.7, p < .05.

The instruction "choose smaller" led to
RTs 20 msec slower than the instruction
"choose larger" in Experiment 1 and 26
msec slower in Experiment 2. This differ-
ence is reliable both in Experiment 1, F(l,
12) = 9.6, and in Experiment 2, F(l, 17)
= 64.6 (both />.?<.01). The only reliable
interactions involving instructions are the se-
mantic congruity effects and the uninterpre-
table three-way interaction mentioned above.

Errors

In Experiment 1 subjects made a mean of
2.9% errors, with a range from \% to
4.2%; in Experiment 2, 1.2% errors rang-
ing from .1% to 2.9%. In both experiments
the number of errors in each condition
(summed over subjects, blocks, and order)
was correlated with the correct RT: r = .78
in Experiment 1 and .56 in Experiment 2.
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The RTs for error responses averaged 621
msec in Experiment 1 and 564 msec in Ex-
periment 2. The error RTs were longer than
the mean correct RT (578 msec) in Experi-
ment 1, but in Experiment 2 they were
shorter than the mean correct RT (585
msec). This curious reversal continues to
hold up when only the correct RTs that were
the make-up trials for the errorful responses
are considered. In Experiment 1 the mean
of these RTs was 505 msec, and in Experi-
ment 2 it was 643 msec (/> < .01 for the
difference between error and correct RTs in
both cases by binomial test). The error RTs
in both experiments had zero correlations
(range was —.016 to +.005) with correct
RTs in those conditions as well as with the
appropriate make-up RTs.

DISCUSSION

The plots in Figures 1 and 2 confirm all
but one of the qualitative predictions of the
model. The semantic congruity effect is
strong in each plot, and the difference be-
tween L+ and S+ instructions tends, as
predicted, to increase with wan. The size of
the congruity effect decreases reliably with
split in Experiment 1, as predicted, but in
Experiment 2 it has a small variation with
split and shows the predicted mean change
only for splits of 1 and 2, with a reversal for
the split of 3. This single qualitative devia-
tion from the model is, at best, marginally
reliable and, as will be seen, does not repre-
sent a large quantitative deviation from it,
anyway. The other predictions of the model
regarding the effects of min and split are, of
course, also supported, but they are of some-
what less importance here than the congruity
effects, since other models are able to predict
them.

Quantitative Predictions oj the
Congruity Model

A least squares fit of the congruity model
was made with the following equation:

RT = K + A[P(X/Y)0-\
+ B [ P ( X / Y ) W ] , (1)

where P(X/Y)C is the probability both dig-
its will be coded congruently with the instruc-

tions (i.e., L+/L+ under "choose larger"
and S+/S+ under "choose smaller"), and
P(X/Y)]0 is the probability they will be in-
congruent (S+/S+ under larger instruc-
tions and L+/L+ under smaller). The
P(X/Y)'s give the proportion of the A and
B latencies in the RT for a given digit pair.

The A component thus equals the time re-
quired to recede S+/S+ to S/S+ or L+/
L+ to L/L+, where the instructions are
congruent with the coding and no further
recocling is needed. The B component should
be longer than A, since it includes the same
operations as the processing that requires A
msec plus a congruity-creating transforma-
tion. There is also at least the logical possi-
bility of a third latency component, C, which
holds in those cases when the coding is
S+/L+ or L+/S + , and no transformation
of the perceptual codes is needed at all. Un-
fortunately, of the three possible components,
A, B, and C, only two can be estimated be-
cause the associated P(X/Y) values must
sum to 1.0 and are therefore interdependent.
Estimates of A, B, and C are thus also inter-
dependent. Unique predictions for A, B, and
C cannot be obtained in this case, but rather
only an expression showing the trading re-
lations among these factors. It was decided
that, of the three components, C is most
reasonably considered a part of K, the con-
stant processing latency, and so C was
omitted from the equation.

Several compressive functions were tried
out for generating the P(X/Yys. Two of
these, the power function with exponent less
than 1.0 and the logarithmic function, were
chosen because they have been proposed as
the psychophysical function relating size of
number to subjective magnitude (power
function: e.g., Banks & Hill, 1974; log func-
tion : e.g., Rule, 1969). The exponential
function was also tried, as well as a step
function. These functions generated the
P(X/Yy$ as follows. If the instructions
were, for example, "choose larger," then
P(X/Y)C is the probability of both X and
Y being above the cutoff, and P(X/Y)W is
the probability of both being below it. Thus,
P(X/Y)C in this case is the probability of
the smaller of the two digits being coded
L+, and P(X/Y}I(! is the probability of the
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larger one being coded S + . The larger or
the smaller digit was selected in each case
and put through the formula PL = f ( D ) for
L+ coding and P$ = 1 - /(£>) for S+ cod-
ing, where /(£>) is one of the compressive
functions, and the Pg or PL was entered in
the equation as the appropriate P(X/Y).
The computation of the F(Z/F)'s for
"choose smaller" instructions was done the
same way, but with P(X/Y)0 being S +
coding and P(X/Y~)IC being L+.

Log, power, and exponential functions for
coding the digits fit the data almost equally
well in both qualitative and quantitative
terms. Table 2 gives the r* goodness-of-fit
measure for the model with each of these
coding functions. The equations shown in
Table 2 contain the parameters that gave the
best fit of the model in each case. Counting
the three latency components (K, A, and B),
the total number of free parameters required
are six with a power function for the coding
stage and four with either a log or expo-
nential function.

The three coding functions resulted in pre-
dictions of split and congruity effects that
were usually identical to the nearest milli-
second. It seems, therefore, impossible to dis-
tinguish between the various psychophysical
functions for digit encoding on the basis of
the present experiments. The processing as-
sumptions are apparently powerful enough
to fit the data with a variety of different
assumed underlying structures for the psy-
chological number continuum (see Shepard
et al., 1975, where the distinction between
structure and processing assumptions is dis-
cussed).

The following predictions of effects in the
experiments usually give the common predic-
tion of the models, but are the mean of the
three in the several cases where one of the
predictions differed by 2 or 3 msec from the
others. In each case the parenthetical quan-
tity is the experimentally obtained value, and
in only one case (Experiment 2, the congru-
ity effect for a split of 2) do the predicted
and obtained differ by more than 1 standard
error. In Experiment 1 the functions pre-
dicted RTs of 590 (589) msec and 554
(556) msec for splits of 1 and 2, respec-
tively; predicted congruity effects were 19

(20.4) msec and 17 (12.5) msec for these
splits. For Experiment 2 predicted RTs were
604 (613), 582 (577), and 562 (566) msec,
respectively, for splits of 1, 2, and 3; pre-
dicted congruity effects were 16.3 (14.6),
14.7 (9.42), and 13.4 (11.26) msec, respec-
tively.

Table 2 also shows the latency components
K, A, and B of the comparison stage, as ex-
pressed in Equation 1. Note that A gives the
theoretical latency for a L+/L+ to L/L+
(or S+/S+ to S/S+) transformation,
while B includes this time plus the time for
a congruity-ensuring transformation. Thus
the congruity transformation time equals the
difference between A and B. The latency
components with a step function for the en-
coding stage are not given, but the best point
for the step was between 3 and 4, as ex-
pected, although the fit was still quite bad
(rz = .46 and .31 for Experiments 1 and 2,
respectively).

The Other Models

As mentioned in the introduction, none of
the other models of processing in the task is
able to account for the semantic congruity
effect in digit inequality judgments. Here
we consider some additional facets of the
data that are troublesome for these models
and try, where possible, to sketch ways in
which the other models might be changed to
account for the various effects they cannot
otherwise account for.

Parkman's (1971) counting model might
account for the congruity effect by assuming
subjects sometimes count down from 10 and
sometimes count up from 0. If, for example,
subjects always count up when given "choose
smaller" instructions and always count down
under "choose larger" instructions, a seman-
tic congruity interaction will be observed.
However, such a process would have RT de-
creasing with min under larger instructions,
in clear contradiction of the data. A more
palatable assumption might be that subjects
nearly always count up under smaller in-
structions but only sometimes (less than half
the time) count down under larger instruc-
tions. A congruity effect would then be ob-
served and RTs for both larger and smaller
choices would increase with min. While this



TABLE 2
GoODNESS-OF-FlT FOR FOUR MODELS OF DlGIT INEQUALITY JUDGMENTS AND PARAMETERS FOR THE SEMANTIC CODING MODEL

Model

Two-stage semantic coding model with digits
coded according to :

Power function
Logarithmic function
Exponential function

Parkman's (1971) counting model
Counting model with separate up and down

probability :
Smaller
Larger

Mover and Landauer (1973)

Equation*

Encoding stage Comparison stageb

P(L+) = C(D - .9)-"~) RT = K +
P(L+) = C(log.D) \ A[_P(X/Y)C1 +
P(L+) = 1 - e-*» j B[P(X/Y),c1

Equation

RT = K + R(min)

RT = K + R(min)
RT = (K + lOpR) + (1 - 2p)R(miri)
RT ec \og(max -5- split)

Experiment lc

Comparison stage

K A B r*

344 254 312 .84
392 208 260 .85
283 306 372 .86

Experiment 1 r2

.65

.69

.75

Experiment 2C

Comparison stage

K A B r2

379 220 281 .67
428 171 230 .67
350 245 308 .69

Experiment 2 r2

.45

.51

.66

a In these equations RT is reaction time, P(L+) is the probability of coding a digit (D) as L+. C is an arbitrary scaling constant to put the maximum P(L+) at 1.0, and R is the counting
rate in Parkman's model.b This is the same as Equation 1 in the text, with parameters defined there. Obtained values of K, A, and B for this equation are seen in the columns to the right.

c Semantic coding model is fit with the same encoding function but different comparison stage latency components for the two experiments ; the last three models are allowed to have en-
tirely independent parameters to fit the two experiments.
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version of the model appears to give a qual-
itative fit to the data, it runs into serious
quantitative problems, as we can see from
the following considerations.

We assume that the RT under smaller in-
structions is RTS = K + R(min), where K
is a constant latency and R the counting rate.
The RT under larger instructions, with a
probability p of counting down, is RTL = K
+ (1 — p)R(min) + pR(W — min}, assum-
ing counting down starts at 10 (just as
counting up starts at 0) and goes at the same
rate as counting up. The RTt, function can
be rearranged to RTL = (K + WpR) + (1
— 2p)R(min}. The predicted slope for the
larger function is thus (\ — 2p)R, while it
is R for the smaller function. Given these
theoretical slopes, p can be estimated from
the data as p = (Sm — Lg)/2Sm, where Sm
is the slope of the RT function for smaller
judgments, and Lg is the slope under larger
judgments, and it is assumed Sm = R.

The first problem for this revised counting
model is that p varies with split. It should
not so vary, since the subject identifies the
digits by counting and therefore cannot ad-
just his counting strategy on the basis of the
identity of the digits. In Experiment 1, p
varies only slightly, being .35 for a split of
1 and .26 for a split of 2, but in Experiment
2 p is .14, .28, and .47 for splits of 1, 2, and
3, respectively.

A more difficult problem for the revised
counting model is the zero intercept of the
larger function. This should be at the point
(K + WpR), according to the model, but it
is much smaller than this in all six functions
reported here. To put the problem in more
intuitive terms, the smaller and larger func-
tions should cross according to the counting
model, and the point of crossing should be
at a min of 5. This will be the crossing point
whatever the size of p, and in fact, it is the
point about which the larger function should
swivel as p varies. However, the crossing
point seems to be somewhere around 2 or 3
in all the present empirical functions.

The counting model might take care of the
problem with the crossover point by having
a smaller value of K in the RTi, function
than the RTg function. There are two prob-
lems with this modification. First, it seems

intuitively reasonable that K should be
larger, not smaller, for the cases where
counting down from some arbitrary point
takes place. Second, K must vary with p to
maintain the crossover point at about a min
of 2, and such fiddling with K constitutes a
clearly ad hoc modification of the model,
since K would have to be arbitrarily ad-
justed to compensate for changes in p.

The counting model, in a least squares fit
to the present data, gives an r2 of .65 for
Experiment 1 and .45 for Experiment 2. The
fit is so poor in part because it puts a com-
mon regression line through the larger and
smaller functions; it also, therefore, misses
the important qualitative aspects of the data.
When the probability of counting up and
down is allowed to be an additional param-
eter (along with separate Ks for each func-
tion) in a least squares fit, r2 increases to .69
and .51 for Experiments 1 and 2, respec-
tively; but the number of free parameters
increases from two to five, counting the point
(10) at which counting down starts as a
parameter. These fits are still fairly poor be-
cause they put linear functions through the
evidently nonlinear min functions.

The random walk model of Buckley and
Gillman (1974) has its greatest problem
with the error latencies. A simple random
walk model predicts that RTs for errors and
correct responses in the same experimental
condition will be equal (Pachella, 1974).
Here we have unequivocal evidence that they
are not, since errors are significantly longer
than their correct counterparts in Experi-
ment 1 and shorter in Experiment 2. It is
odd that the errors in the two experiments
should go in different directions, and per-
haps the difference comes from different im-
plicit speed-accuracy instructions. But what-
ever the reason for the differences between
the error latencies, it is clear that a random
walk model is disconfirmed by the error la-
tencies in both experiments.

The Buckley-Gillman model would prob-
ably account for the semantic congruity ef-
fect by having different boundaries for ter-
minal states of the random walk arrived at
under larger and smaller choices, with the
smaller boundary further from the starting
point than the larger boundary. The com-
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pressive transformation of the numbers onto
the internal scale would then cause the
smaller RT to increase more with min than
the larger RT and thus to produce the effect
here termed a semantic congruity effect.
However, the errors come back again to
plague this model. Such a difference in
boundaries for the two end states would nec-
essarily cause there to be more errors under
larger instructions than smaller, since the
boundary has to be closer to the starting
point under larger than smaller instructions
and thus will be at a lower likelihood cri-
terion. But the errors go in the opposite di-
rection: 3.0% and 2.1% for smaller and
larger, respectively, in Experiment 1 and
1.5% and 1.0% in Experiment 2.

The quantitative fits of the Buckley-Gill-
man (1974) model to the present RT data
depends on how the necessary additional as-
sumptions are worked into it. Presumably, it
could do a good job qualitatively, but it is
difficult to know even what to expect in
terms of a quantitative fit, since they do not
present quantitative fits of their own data.

The original Moyer and Landauer (1967)
model simply makes an analogy between
digit comparisons and psychophysical com-
parisons of simultaneously presented physi-
cal magnitudes, and it is not really explicit
enough to compare with the other models.
Congruity effects are sometimes found, and
sometimes not found, in psychophysical judg-
ments (vide Banks et al., 1975), and there
is no way of knowing whether the Moyer
and Landauer model would predict congruity
effects in the present case. However, their
model does give a good fit to the data, as is
seen in Table 2. This fit does not include a
provision for modeling the congruity effects,
but it is still fairly good because the equation
does capture the nonlinear shape of the func-
tions. However, the equation was fit sepa-
rately to the two experiments. The fit of the
coding model would have been somewhat
better if the same freedom had been allowed it.

Some General Comments

The present results show that the internal
processing in digit inequality judgments need
not be done with analog quantities. That is

to say, there is no need to assume that the
computation of the correct response operates
on an analog image, even though some of the
results (split effect, etc.) are similar to re-
sults obtained with comparative judgments
among continuous quantities in perceptual
tasks. The nonlinear perception of number
does play an important role in the present
model, but digital codes (categorical codes
as opposed to continuous, analog quantities)
form the proximal stimulus to the choice
stage.

The observed congruity effects make it
necessary to assume the codes generated by
the encoding stage have semantic properties
similar to the properties of the bipolar ad-
jectives used for the instructions. This
should not be surprising, since at some point
in processing the stimulus-as-coded must be
in the same format as the instructions for a
match to be made. In some situations (e.g.,
Cooper & Shepard, 1975) the instructions
could be internally recoded to be stimulus-
like and therefore to give evidence for ana-
log, image-based processing. But in the pres-
ent case, the instructions "choose larger" or
"choose smaller" do not specify a particular
digit or internal magnitude. It therefore
seems by far the most efficient strategy to
recode the digits to the format of the in-
structions (as the present model has done)
rather than the reverse, or rather than re-
coding both to a third medium (imagery).

The various split-related effects, which
have previously been used to argue for clis-
criminability effects in processing (and thus
to argue for an analog model), are seen here
as the result of the way the coding process
works. The larger the split, the more likely
the cutoff is to fall between the digits, and
therefore the more likely is a match with
the instructions without further (time-con-
suming) receding. In a sense, this is still a
discriminability effect, but it is discrimina-
bility among the codes that determines pro-
cessing, not discriminability among analog
quantities. The model also accounts for the
min effect and the Min X Split interaction
by the same sort of discriminability of codes,
since the decelerated function mapping digit
size to coding probability places the cutoff
more often among the small than the large
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digits and thus allows faster processing for
smaller digit pairs.

One question unresolved in this article is
that of the mechanism by which the trans-
formation of perceptual codes from L+/L+
to L/L+ and S+/S+ to S/S+ takes place.
There are quite a number of ways to model
this transformation, and the present experi-
ments do not contain the sort of operations
that would be needed to decide among them.
It was, for example, possible to obtain very
good fits to the data under the assumption
that this transformation always takes a con-
stant amount of time (about 200 msec, as it
turned out) no matter what the experimen-
tal conditions. However, it seems likely that
this transformation might vary with split, in
particular, and few plausible models of the
transformation process are immune to a split
effect. But, unfortunately, it is impossible to
test whether there is a split effect at this
stage, because split is adequately accounted
for by the model already. Introducing a split
effect in this stage might improve the fit
slightly, but the chief consequence would be
simply to shift part of the explanation of the
split effect from perceptual coding probabili-
ties to differential durations of this reced-
ing stage.

Finally, two points bear emphasizing: (a)
The present model shows that digit inequal-
ity judgments can be included in the same
theoretical context with other comparative
judgment tasks, and (b) the present model
gives a simple way to account for min and
split effects with an approach that assumes
prepositional or categorical encoding. Pre-
viously, these effects have seemed to require
explanation either in terms of scanning or in
terms of internal comparison of self-gen-
erated perceptlike quantities (images). We
feel that the present approach to modeling
makes prepositional encoding at least as in-
tuitively reasonable as the other approaches
to explaining these effects. Of course, the
present model does make use of an analog
representation, but this representation is not
itself the medium in which the computation
of the response is performed, as is the case
with pure imagery models.
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