
Exercises Lecture VIII
Macrostates and microstates: equilibrium and entropy.

Metropolis algorithm in the canonical ensemble:
verifying Boltzmann’s distribution

1. MC simulation of a simple N-particles model
Consider an ideal gas of N non interacting, distinguishable particles, confined in a box
(fixed V) and isolated (fixed E), divided into left/right with the possibility for one particle
at a time to pass through the separation wall, with equal probability from the left to the
right or viceversa.

A macrostate is specified for instance by the number of particles on the left side, say n, that
can correspond to different microstates depending on the list of the specific particles there.
A Monte Carlo approach consists in generating a certain number of movements, randomly,
and consider them as representative of all the possible movements. The program box.f90

is a possible implementation of the algorithm describing the time evolution of the system in
terms of macrostates, i.e. –given an initial number of particles on the left, n– the approach
to equilibrium and what the equilibrium macrostate is.

(a) Choose N=4, 10, 20, 40, 80, and n=N initially. Make a plot of n (or, better, of n/N)
with respect to time. What is the equilibration time τeq (=how many MC steps)?

(b) Modify the program so that at each time step t it calculates the number of particles
< n(t) > averaged over different runs (e.g. 5 runs). Make a plot to compare n(t) over
the individual runs and averaged < n(t) >.

(c) (Optional; do it at home!) Compare the numerical value of < n(t) > with the exact
analytic results for a simple case, for instance N=4.

(d) (Optional) Consider only one run. Modify the program to calculate numerically the
probability Pn of having at equilibrium a macrostate with n particles on the left, by
simply counting the number of occurring microstates that correspond to the macrostate
n and dividing for the total number of microstates generated in the time evolution. Plot
the histogram Pn for N=20, 40, 80 and a “sufficiently” long run. Comment.

(e) Modify the program to measure the statistical fluctuations at the equilibrium, by cal-
culating the variance σ2 =< n2 > − < n >2, where the average is done over a time
interval after reaching the equilibrium.

(f) Determine < n > and σ/ < n > at equilibrium for N=20, 40, 80. Which is the
dependence of these quantities on N?

(g) An alternative method to find the equilibrium macrostate is the calculation of the en-
tropy Sn of the different possible macrostates, by looking at the one with maximum
entropy. An efficient numerical implementation is feasible by evaluating the ratio Rn=
sum of possible coincidences for each microstate/maximum number of possible coinci-
dences for each microstate, then calculating Sn ∝ − logRn. The code entropy.f90

calculates Rn and Sn. Use it with N=10. Compare the numerically calculated Sn with
the analytical value.
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2. Verification of the Boltzmann distribution (see Lecture VII)

We can verify directly that the Metropolis algorithm yields the Boltzmann distribution.
We consider a single classical particle in one dimension in equilibrium with a heath bath
(canonical ensemble). We fix therefore the temperature T , which labels a macrostate. The
energy E can vary according to the particular microstate (in this particular case, it is enough
to label a microstate, a part from the sign of the velocity).

(a) Write a code (see e.g. boltzmann metropolis.f90) to determine the form of the prob-
ability distribution P(E) that is generated by the Metropolis algorithm. Let for instance
T=1, the initial velocity vinitial=0, the number of Monte Carlo steps nmcs=1000, and
the maximum variation of the velocity dvmax=2. Calculate the mean energy, the mean
velocity, and the probability density P(E).

(b) Consider ln P(E) as a function of E. Can you recognize the expected behavior ? (see
slides for the analytic derivation of P(E)) You should recognise that the asymptotic
behavior is a straight line whose slope is −1/T .

(c) How many nmcs do you need to have a reasonable estimate of the mean energy and
mean velocity ?

(d) Verify that your results do not depend from the initial conditions by changing vinitial.
What does it change? What does it changes by changing instead dvmax ?

(e) Modify the program to simulate an ideal gas of N particles in one dimension. [Hint:
modify the subroutine Metropolis inserting a loop over the particles] Consider for in-
stance N=20, T=100, nmcs=200. Assume all particles to have the same initial velocity
vinitial=10. Determine the value of dvmax so that the acceptance ratio is about 50% ?
What are the mean energy and mean velocity ?

(f) Calculate P(E), make a plot and describe its behaviour. Is it similar to the case N=1 ?
Comment on that.

(g) Calculate the mean energy for T=10, 20, 30, 90, 100, and 110, and estimate the heat
capacity as the numerical derivative of the energy with respect to the temperature, C =
∂ < E > /∂T .

(h) Calculate the mean square energy fluctuation < ∆E2 >=< E2 > − < E >2 for
T=10 and T=40. Compare the magnitude of the ratio C =< ∆E2 > /T 2 numerically
estimated from the mean square energy fluctuation with that obtained in (f).

3. Simulated annealing
Simulated annealing is a stochastic method for global energy minimization, considering the
system starting from a sufficiently high temperature; at each temperature it goes towards
equilibrium according to the Boltzmann factor (see the application of the Metropolis algo-
rithm in the canonical ensemble); then the temperature is slightly reduced and the equili-
bration procedure is repeated, and so on, until a global equilibrium state is reached at T=0.
The method can be efficiently used for function minimization, even if the function is not
representing an energy. In program simulated annealing.f90 it is implemented for the
minimization of f(x) = (x+ 0.2) ∗x+ cos(14.5 ∗x− 0.3). Initial temperature, initial position
and scaling factor for the temperature are input quantities. Test the program by choosing
different initial parameters and scaling factor for the temperature.
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! box.f90

!

! simulation of the evolution of a physical system towards equilibrium:

! non interacting particles in a box divided into two parts;

! at each time step, one and only one particle (randomly choosen)

! goes from one side to the other one

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

module moduli_box

implicit none

public :: initial, move

integer, public :: N,tmax

contains

subroutine initial()

print*," total number of particles N >"

read*,N

tmax = 10*N ! we choose the evolution time proportional to N

subroutine move()

integer :: nl,itime

real :: r, prob

nl = N ! we start with all the particles on the left side

open(unit=2,file="box.out",action="write",status="replace")

do itime = 1,tmax

prob = real(nl)/N ! fraction of particles on the left

call random_number(r)

if (r <= prob) then

nl = nl - 1

else

nl = nl + 1

end if

write(unit=2,fmt=*)nl

end do

close(unit=2)

end subroutine move

end module moduli_box

program box

use moduli_box

! compare a random number with the fraction of particles on the left, nl/N:

! if r.le.nl/N we move one particle from the left to the right;

! elsewhere from the right to the left

call initial()

call move()

end program box
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! entropy.f90

!

! calculates the entropy for each macrostate

! using the "coincidence method" of Ma

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

module ma

implicit none

public :: start

integer, public :: nl,nr,nexch,N

integer, dimension(10), public :: mleft=0, mright=0

integer, dimension(:), public, allocatable :: micro

contains

subroutine start()

! initialize parameters

integer :: il,ir

print*, " total number of particles N (<=10)>"

read*, N

print*, " number of particles 0<nl<N initially on the left (MACROstate)>"

read*,nl

if(nl<=0.or.nl>=N)then

print*,’ not acceptable, wrong nl’

stop

end if

nr = N - nl ! number of particles on the right

print*, " number of exchanges >" ! no. of evolution steps of the macrostate

read*, nexch

allocate(micro(0:nexch))

micro(0) = 0

write(*,fmt=*)’nleft =’,nl

write(*,fmt=*)’nright=’,nr

do il = 1,nl

! list left particles

mleft(il) = il

! quantity characterizing the initial macrostate

micro(0) = micro(0)*2 + 2

end do

do ir = 1,nr

! list right particles

mright(ir) = ir + nl

end do

! print*,’microstate(0)=’,micro(0)

! write(*,fmt="(a,i2,a,10(1x,i2))")’nleft =’,nl,’ labels=’,mleft
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! write(*,fmt="(a,i2,a,10(1x,i2))")’nright=’,nr,’ labels=’,mright

end subroutine start

subroutine exch()

! exchange one particle on the left (ileft)

! with one particle on the right (iright)

real, dimension(2) :: r

integer :: iexch,ileft,jleft,iright,jright

do iexch = 1,nexch

! choose randomly the labels of the two particles

call random_number(r)

ileft = int (r(1)*nl + 1) ! 1 =< ileft =< nl

iright = int (r(2)*nr + 1) ! 1 =< iright =< nr

jleft = mleft (ileft)

jright = mright(iright)

mleft (ileft) = jright ! new particle on the left

mright(iright) = jleft ! new particle on the right

! characterizing the microstate:

micro(iexch) = micro(iexch-1) + 2**jright - 2**jleft

! print*,’microstate(’,iexch,’)=’,micro(iexch)

! write(*,fmt="(a,i2,a,10(1x,i2))")’nleft =’,nl,’ labels=’,mleft

! write(*,fmt="(a,i2,a,10(1x,i2))")’nright=’,nr,’ labels=’,mright

end do

end subroutine exch

subroutine output()

! calculate the ratio of coincidences with respect to the total number

! of possible pairs, and consequently entropy

!

integer :: ncoin, ncomp, iexch, jexch

real :: rate,S

ncoin = 0

ncomp = nexch*(nexch-1)/2

! compare microstates: if coincident, count + 1;

! upgrade counter

do iexch = 1,nexch-1

do jexch = iexch+1, nexch

if (micro(iexch) == micro(jexch)) ncoin = ncoin + 1

end do

end do

! coincidence ratio

rate = real(ncoin)/real(ncomp)

if (rate > 0) then

S = log(1.0/rate)

print*, " numerically estimated entropy: S=",S

else
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print*, " no coincidences! estimated entroty infinite! "

end subroutine output

end module ma

program entropy

use ma

! N: total number of particles

! nl: number of left particles (i.e. the MACROstate)

! mleft(),mright(): labels of left and right particles

! micro: a "global" label for a microstate, here defined through

! mleft() : micro=sum_{il=1,nl} 2**(mleft(il))

! nexch: total number of exchanges (evolution steps of the macrostate)

! microst.)

call start()

! the macrostates evolves (exchanging particles, the microstate changes)

call exch()

! calculate the fraction of coincidence of microstates over all

! the possible coincidences with the microstates and the entropy

call output()

deallocate(micro)

end program entropy
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!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! simulated_annealing.f90

! for function minimization; adapted from U. Schmitt, 2003-01-15

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

PROGRAM anneal

IMPLICIT NONE

INTEGER :: istep, nsteps

REAL, PARAMETER :: scale=0.5 ! should be chosen for specific function

REAL :: func, fx, fx_min, fx_new, temp, tfactor, x, x_min, x_new

REAL, DIMENSION(2) :: rand ! random numbers

x = 1.0; fx = func(x); fx_min = fx ! starting point for search

PRINT *, ’Starting from x = ’, x, ’, f(x) = ’, fx

PRINT *, ’initial (high) temperature (e.g., 10)?’ ! annealing schedule

READ *, temp

PRINT *, ’annealing temperature reduction factor (e.g., 0.9)?’

READ *, tfactor

PRINT *, ’number of steps per block (equilibration, e.g., 1000)?’

READ *, nsteps

Do WHILE (temp > 1E-5) ! anneal cycle

DO istep = 1, nsteps

CALL RANDOM_NUMBER(rand) ! 2 random numbers

x_new = x + scale*SQRT(temp)*(rand(1) - 0.5) ! stochastic move

fx_new = func(x_new) ! new object function value

IF (EXP(-(fx_new - fx)/temp) > rand(2)) THEN ! success, save

fx = fx_new

x = x_new

END IF

write(1,fmt=*)temp,x,fx

IF (fx < fx_min) THEN

fx_min = fx

x_min = x

PRINT ’(3ES13.5)’, temp, x_min, fx_min

END IF

END DO

temp = temp * tfactor ! decrease temperature

END DO

End PROGRAM anneal

REAL FUNCTION func(x) ! Function to minimize

Implicit NONE

REAL :: x

func = (x + 0.2)*x + cos(14.5*x - 0.3)

END FUNCTION
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