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- correlations

- (small or large) fluctuations 



Correlations 
[a very simple calculation if the array points(n) is stored]

do j = 0, jmax
 
si=0._dp ; si2=0._dp ; sij=0._dp 

  do i = 1,n-j
    si = si + points(i)
    si2 = si2 + points(i)**2
    sij = sij + points(i)*points(i+j)
  end do
    si = si/(n-j)
    si2 = si2/(n-j)
    sij = sij/(n-j) 

write(2,*), j, (sij-si**2)/(si2-si**2)

end do

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that 〈x2〉 ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
〈xi+jxi〉 − 〈xi〉2

〈x2
i 〉 − 〈xi〉2

, (11.57)

where 〈. . .〉 indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j %= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

〈x〉 =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of 〈x〉. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?
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Correlations - Metropolis algorithm
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Correlations - Metropolis algorithm

the first 1000 points histogram over 10000 points

the short-term behavior
of the Markov chain 
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Metropolis algorithm

by construction, Metropolis algorithm has 
short-range correlations. But it is very general!

and particularly useful for applications in the

canonical ensemble : 
fix N, V, T (system in equilibrium with a thermal bath)



Metropolis algorithm in 
the canonical ensemble

-
Microstates & 
macrostates

M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - Unit VII



The canonical ensemble
(N,V,T) fixed.  The probability Ps  for a system to be in the 
microstate s depends only on the energy  Es of the microstate and 
the temperature T (common to the system and the thermal bath):

Chapter 17

Monte Carlo Simulation of the
Canonical Ensemble

c©2002 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
22 April 2002

We discuss Monte Carlo methods for simulating equilibrium systems. Applications are made
to models of magnetism and simple fluids.

17.1 The Canonical Ensemble

Most physical systems are not isolated, but exchange energy with their environment. Because
such systems are usually small in comparison to their environment, we assume that any change
in the energy of the smaller system does not have a significant effect on the temperature of the
environment. We say that the environment acts as a heat reservoir or heat bath at a fixed absolute
temperature T . If a small but macroscopic system is placed in thermal contact with a heat bath,
the system reaches thermal equilibrium by exchanging energy with the heat bath until the system
attains the temperature of the bath.

Imagine an infinitely large number of copies of a system at fixed volume V and number of
particles N in equilibrium at temperature T . In Chapter 16 we verified that Ps, the probability
that the system is in microstate s with energy Es, is given by

Ps =
1
Z

e−βEs , (canonical distribution) (17.1)

where β = 1/kT , and Z is a normalization constant. The ensemble defined by (17.1) is known as
the canonical ensemble. Because

∑
Ps = 1, Z is given by

Z =
M∑

s=1

e−Es/kT . (17.2)

The summation in (17.2) is over all M accessible microstates of the system. The quantity Z is
known as the partition function of the system.
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(in the canonical ensemble the energy is a characteristic of the microstate, not of the macrostate)
The higher is the energy of the state, the lower is the probability of finding the system in that state.

(canonical partition function)
(M: all accessible microstates of the system, 
having the same N, V, T)



The ensemble average of a physical quantity  A  can be 
calculated using the canonical distribution function:
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Averages in the canonical ensemble

In practice, approximating the sums over a finite number
m  of  the total number M	 	 of  accessible microstates:
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We can use (17.1) to obtain the ensemble average of the physical quantities of interest. For
example, the mean energy is given by

〈E〉 =
M∑

s=1

Es Ps =
1
Z

M∑

s=1

Es e−βEs . (17.3)

Note that the energy fluctuates in the canonical ensemble.

17.2 The Metropolis Algorithm

How can we simulate a system of N particles confined in a volume V at a fixed temperature T?
Because we can generate only a finite number m of the total number of M microstates, we might
hope to obtain an estimate for the mean value of the physical quantity A by writing

〈A〉 ≈ Am =

m∑
s=1

As e−βEs

m∑
s=1

e−βEs

. (17.4)

As is the value of the physical quantity A in microstate s. A crude Monte Carlo procedure is to
generate a microstate s at random, calculate Es, As, and e−βEs , and evaluate the corresponding
contribution of the microstate to the sums in (17.4). However, a microstate generated in this
way would likely be very improbable and hence contribute little to the sums. Instead, we use
an importance sampling method and generate microstates according to a probability distribution
function πs.

We follow the same procedure as in Section 11.7 and rewrite (17.4) by multiplying and dividing
by πs:

Am =

m∑
s=1

(As/πs) e−βEs πs

m∑
s=1

(1/πs) e−βEs πs

.(no importance sampling) (17.5)

If we generate microstates with probability πs, then (17.5) becomes

Am =

m∑
s=1

(As/πs) e−βEs

m∑
s=1

(1/πs) e−βEs

.(importance sampling) (17.6)

That is, if we average over a biased sample, we need to weight each microstate by 1/πs to eliminate
the bias. Although any form of πs could be used, the form of (17.6) suggests that a reasonable
choice of πs is the Boltzmann probability itself, that is,

πs =
e−βEs

m∑
s=1

e−βEs

. (17.7)

(Note: m, not M !)

(M: 
total number of 
possible microstates)



Averages in the canonical ensemble
Due to the functional form of            , this formulation is 
highly inefficient (many microstates have very small 
probability):
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This choice of πs implies that the estimate Am of the mean value of A can be written as

Am =
1
m

m∑

s=1

As. (17.8)

The choice (17.7) for πs is due to Metropolis et al.
Although we discussed the Metropolis sampling method in Section 11.8 in the context of

the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
context of the simulation of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

3. Compute ∆E ≡ Etrial −Eold, the change in the energy of the system due to the trial change.

4. If ∆E is less than or equal to zero, accept the new microstate and go to step 8.

5. If ∆E is positive, compute the quantity w = e−β∆E .

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous microstate.

8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)

=> much better to use the importance sampling, i.e.
simple averages of the desired physical quantity over 
microstates s generated according to the proper 
distribution:
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Averages in the canonical ensemble
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How to generate microstates properly distributed ?
=> generate a Markov chain with the transition matrix:

Peculiarities w.r.t. the application of the Metropolis 
algorithm already discussed: 
           is a monotonic decreasing function of Es,  
therefore we accept all the moves decreasing the energy.
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canonical ensemble
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This choice of πs implies that the estimate Am of the mean value of A can be written as
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m
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the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
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1. Establish an initial microstate.
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Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)



Metropolis algorithm in the 
canonical ensemble

2) ERGODICITY implicitly assumed!

To study a model of a thermal system, it is hopeless to imagine investigating each config-
uration, or to average over all of them, unless we can manage the sums analytically. When
the particles don’t interact with one another, we can indeed manage the sums analytically;
this describes spins in an external magnetic field, ideal gases, black body radiation, lattice
vibrations, and a few other simple systems. When the particles do interact to an appreciable
extent, we can almost never perform the sums analytically. We have no choice but to seek
an approximation, either analytically or numerically.

A Numerical Approach

The Metropolis algorithm is based on the notion of detailed balance that describes equi-
librium for systems whose configurations have probability proportional to the Boltzmann
factor. We seek to sample the space of possible configurations in a thermal way; that is,
in a way that agrees with Eq. (2). We accomplish this by exploring possible transitions
between configurations.

Consider two configurations A and B, each of which occurs with probability proportional
to the Boltzmann factor. Then

P (A)
P (B)

=
e−EA/T

e−EB/T
= e−(EA−EB)/T (3)

The nice thing about forming the ratio is that it converts relative probabilities involving
an unknown proportionality constant (called the inverse of the partition function), into a
pure number. In a seminal paper of 1953,1 Metropolis et al. noted that we can achieve the
relative probability of Eq. (3) in a simulation by proceeding as follows:

1. Starting from a configuration A, with known energy EA, make a change in the con-
figuration to obtain a new (nearby) configuration B.

2. Compute EB (typically as a small change from EA.

3. If EB < EA, assume the new configuration, since it has lower energy (a desirable
thing, according to the Boltzmann factor).

4. If EB > EA, accept the new (higher energy) configuration with probability p =
e−(EB−EA)/T . This means that when the temperature is high, we don’t mind taking
steps in the “wrong” direction, but as the temperature is lowered, we are forced to
settle into the lowest configuration we can find in our neighborhood.

If we follow these rules, then we will sample points in the space of all possible configu-
rations with probability proportional to the Boltzmann factor, consistent with the theory
of equilibrium statistical mechanics. We can compute average properties by summing them
along the path we follow through possible configurations.

The hardest part about implementing the Metropolis algorithm is the first step: how
to generate “useful” new configurations. How to do this depends on the problem. As an
illustration, let’s consider that classic of computer science, The Traveling Salesperson.

1 N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21
(1953) 1087-1092.

2

3) TEMPERATURE:

A few remarks:
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as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)
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This choice of πs implies that the estimate Am of the mean value of A can be written as

Am =
1
m

m∑

s=1

As. (17.8)

The choice (17.7) for πs is due to Metropolis et al.
Although we discussed the Metropolis sampling method in Section 11.8 in the context of

the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
context of the simulation of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

3. Compute ∆E ≡ Etrial −Eold, the change in the energy of the system due to the trial change.

4. If ∆E is less than or equal to zero, accept the new microstate and go to step 8.

5. If ∆E is positive, compute the quantity w = e−β∆E .

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous microstate.

8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)

1)

(Pj/Pi = πj/πi)



Don’t confuse Ps with P(Es), since Ω (Es) microstates with the same 
energy Es can exist, in general (unless in particular cases where Es uniquely 
identifies the microstate).  Therefore:

P (Es) =
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where the degeneracy of the energy level is accounted for, whereas:

4)

Metropolis algorithm in the 
canonical ensemble



on 
$/home/peressi/comp-phys/VIII-canonical/  
[do: $cp /home/peressi/.../VIII-canonical/* .]

boltzmann_metropolis.f90

and also (see later):
box.f90
entropy.f90 
simulated_annealing.f90  

Some programs: 



Boltzmann distribution
in the canonical ensemble

The Metropolis algorithm really produces microstates 
with the Boltzmann distribution: 
application to ideal classical 1D gas (ex. n. 4 Lect. VII)

1 free particle:  Energy:
in this case, velocity or energy labels a microstate

(the energy with a factor of 2 , due to +/- sign of v);
we generate different microstates by random variations of the velocity and 
we accept/reject with Metropolis 

E =
1

2
mv

2

Important quantities are the probabilities:
P(v)dv that the system has a velocity between v and v+dv
or P(E)dE that the system has an energy between E and E+dE



A particle moving randomly has in each direction a distribution of the compo-

nent of the velocity:
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In 1D:

f(v)2dv = P (E)dE

that gives:

P (E) =
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In 3D, assuming independent motion along x, y, z, we have:
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The number of particles having velocity in the range dv about v is:

f(v)dv =
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The number of particles having modulus of the velocity between v and v + dv

is:

f(v)dv =

Z

all directions of v
f(v)dv

Since: dv = v

2
dvd⌦, we have:
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ideal classical 1D gas
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(3D)P
In 3D:



Boltzmann distribution
in the canonical ensemble

# T : 1.00000
# <E0> : .000000
# <v0> : .000000
# dvmax : 2.00000
# deltaE : 5.000000E-02
# nbin : 79

==> boltzmann.1K <==
# nMCsteps: 1000
# <E> : .501263
# <v> : 7.456664E-02
# accept. : .692000
# sigma : .713780

==> boltzmann.10K <==
# nMCsteps: 10000
# <E> : .507580
# <v> : 3.366172E-02
# accept. : .707700
# sigma : .726145

==> boltzmann.1M <==
# nMCsteps: 1000000
# <E> : .500138
# <v> : 1.833840E-04
# accept. : .693837
# sigma : .707472

NOTE:
- Accuracy of ~ 1% on <E> and 10% on <v> : NMCS=1000 is enough
- NOT ENOUGH to well reproduce the BOLTZMANN DISTRIBUTION! (1M needed!)
- ACCEPTANCE RATIO: constant, depends only on dvmax
- SIGMA also

1

T = 1 → 〈E〉(expected) = 0.5 (m = 1)

σ/
√

n = 0.022

σ/
√

n = 0.007

σ/
√

n = 0.0007

(σ is the variance of the energy)



Boltzmann distribution
in the canonical ensemble

many particles:  Energy: 
in this case, the energy is NOT a label of a microstate
(there are several microstates with the same total energy)

E =

∑N

i=1

1

2
miv

2
i

Note: the energy histogram is NOT the distribution of microstates!

P (E) =
∑

states s

with Es=E

Ps Ps =
1

Z
e
−βEs

P (E) ∝= e
−(E−〈E〉)2

2σ2 with 〈E〉 average over all the microstates

with

What is P(E)? (exercise n. 4 Lec. VII - many particles)





Statistical averages and 
stochastic fluctuations



Averages
< G >T =

1

T

T∑

t=1

Gt

Thermally equilibrated averages:

But in practice T is finite, and < G >T oscillates:

< G >T =

L

T

∑

I=A,B,C,...

< G >
(I)

∆ < G >T =

[

L

T

∑

I

(

< (G(I))2 > −(< G
(I)

>
2
)

]1/2
−→

T → ∞
∼

1
√

T

divide T into intervals A, B, C . . . of length L and sum:

Note: not always ∆ < G >T is a good indicator of the actual error!
(remind ”ergodicity”)

(varying T):

< G >= limT→∞ < G >T

(block averages):

(σn/
√

n)(σs/
√

s)



A box is divided into two parts communicating through a 
small hole. One particle randomly can pass through the hole 
per unit time, from the left to the right or viceversa.

Nleft(t): number of particles present at time t in  the left side
Given Nleft(0), what is Nleft(t) ? 

Fluctuations are always present, due to the nature 
of the system, also when evolving towards equilibrium.

Figura 5: Quattro fotogrammi che mostrano l’espansione libera del gas. Il primo fotogramma rappresenta
il gas tutto contenuto nella parte sinistra del recipiente, appena dopo che lo sportellino è stato aperto. Il
quarto fotogramma mostra il gas alla fine del processo quando è stata raggiunta una densità uniforme in
entrambe le parti del recipiente.

due zone del contenitore. Le pareti del recipiente schermano il gas da qualunque influenza esterna.
Il gas inizialmente è concentrato tutto in una delle due parti. Una volta aperto lo sportellino, esso
si espande gradualmente nell’altra parte fino a che non è stata raggiunta una distribuzione uniforme
del gas nell’intero contenitore.

Il processo ottenuto per inversione temporale, cioè invertendo l’ordine dei fotogrammi, non si
realizza in natura. Può questo fatto essere spiegato dalla teoria atomica? Più in generale, possiamo
comprendere i fenomeni irreversibili, e il conseguente aumento di entropia dell’universo, in termini
di movimento degli atomi? Questo è il problema dell’irreversibilità: la spiegazione delle leggi ma-
croscopiche irreversibili in termini delle leggi microscopiche reversibili che governano il movimento
degli atomi.
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Approach to equilibrium
with fluctuations

Stochastic fluctuations

A simple example: non-interacting classical particles in a box (gas diffusion)
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initial N(left)=1000

How to reduce fluctuations?
- more particles
- average over many simulation runs
- ...
What can we do with fluctuations?

Stochastic fluctuations



Intrinsic energy fluctuations in 
the canonical ensemble - I
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p∗c(L = 10), the pressure at which the two peaks of N(v) are of equal height. What is the value of
the free energy barrier ∆F? If sufficient computer resources are available, compute ∆F for larger
L (published results are for L = 10, 12, 14, 16, and 20) and determine if ∆F depends on L. Can
you reach any conclusions about the nature of the transition?

Appendix 17A: Fluctuations in the Canonical Ensemble

We first obtain the relation of the constant volume heat capacity CV to the energy fluctuations in
the canonical ensemble. We adopt the notation U = 〈E〉 and write CV as

CV =
∂U

∂T
= − 1

kT 2

∂U

∂β
. (17.72)

From (17.3) we have

U = − ∂
∂β lnZ (17.73)

and

∂U

∂β
= − 1

Z2
∂Z
∂β

∑
s Es e−βEs − 1

Z

∑
s E2

s e−βEs (17.74)

= 〈E〉2 − 〈E2〉. (17.75)

The relation (17.12) follows from (17.72) and (17.75). Note that the heat capacity is at constant
volume because the partial derivatives were performed with the energy levels Es kept constant. The
corresponding quantity for a magnetic system is the heat capacity at constant external magnetic
field.

The relation of the magnetic susceptibility χ to the fluctuations of the magnetization M can
be obtained in a similar way. We assume that the energy can be written as

Es = E0,s − HMs, (17.76)

where E0,s is the energy in the absence of a magnetic field, H is the external applied field, and Ms

is the magnetization in the s state. The mean magnetization is given by

〈M〉 =
1
Z

∑
Ms e−βEs . (17.77)

Because ∂Es/∂H = −Ms, we have

∂Z

∂H
=

∑

s

βMs e−βEs . (17.78)

Hence we obtain

〈M〉 =
1
β

∂

∂H
lnZ. (17.79)

Remind: and 〈E〉 = −
∂

∂β
lnZ

∂〈E〉
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= −

1
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s

E2

se−βEs = 〈E〉2 − 〈E2〉 = 〈(δE)2〉

Cv =
〈(δE)2〉

kBT 2
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e
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Result:

Cv =
∂〈E〉

∂T
= . . . = −

1

kT 2

∂〈E〉

∂β

-

Consider the thermal capacity:

The thermal capacity (or specific heat if considered for each 
particle) is related to the intrinsic stochastic energy fluctuations
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Intrinsic energy fluctuations in 
the canonical ensemble - II

Cv =
〈(δE)2〉

kBT 2

√

〈(δE)2〉
〈E〉

=

√
kBT 2Cv

〈E〉
∝

√
N

N
∼

1√
N

(correct; in the thermodynamic limit: E → const., macro ∼ micro)

Since:

if N is the number of particles, we have:

i.e., the relative energy fluctuations reduce when N is large



Macrostates, microstates and 
entropy at equilibrium



Macroscopic systems 
towards equilibrium

A box is divided into two parts communicating through a 
small hole. One particle randomly can pass through the hole 
per unit time, from the left to the right or viceversa.

Nleft(t): number of particles present at time t in  the left side
Given Nleft(0), what is Nleft(t) ? 

Again the simple example of non-interacting classical 
particles in a box
(gas diffusion)

Figura 5: Quattro fotogrammi che mostrano l’espansione libera del gas. Il primo fotogramma rappresenta
il gas tutto contenuto nella parte sinistra del recipiente, appena dopo che lo sportellino è stato aperto. Il
quarto fotogramma mostra il gas alla fine del processo quando è stata raggiunta una densità uniforme in
entrambe le parti del recipiente.

due zone del contenitore. Le pareti del recipiente schermano il gas da qualunque influenza esterna.
Il gas inizialmente è concentrato tutto in una delle due parti. Una volta aperto lo sportellino, esso
si espande gradualmente nell’altra parte fino a che non è stata raggiunta una distribuzione uniforme
del gas nell’intero contenitore.

Il processo ottenuto per inversione temporale, cioè invertendo l’ordine dei fotogrammi, non si
realizza in natura. Può questo fatto essere spiegato dalla teoria atomica? Più in generale, possiamo
comprendere i fenomeni irreversibili, e il conseguente aumento di entropia dell’universo, in termini
di movimento degli atomi? Questo è il problema dell’irreversibilità: la spiegazione delle leggi ma-
croscopiche irreversibili in termini delle leggi microscopiche reversibili che governano il movimento
degli atomi.

30

microcanonical ensemble : 
fix E, N, V (isolated closed system)
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by the values of E, V , and N . At the microscopic level there are a large number of different ways
or configurations in which the macrostate (E, V, N) can be realized. A particular configuration or
microstate is accessible if its properties are consistent with the specified macrostate.

All we know about the accessible microstates is that their properties are consistent with the
known physical quantities of the system. Because we have no reason to prefer one microstate
over another, it is reasonable to postulate that the system is equally likely to be in any one of its
accessible microstates. To make this postulate of equal a priori probabilities more precise, imagine
an isolated system with Ω accessible states. The probability Ps of finding the system in microstate
s is

Ps =

{
1/Ω, if s is accessible
0, otherwise.

(16.1)

The sum of Ps over all Ω states is equal to unity.
The averages of physical quantities can be determined in two ways. In the usual laboratory

experiment, physical quantities are measured over a time interval sufficiently long to allow the
system to sample a large number of its accessible microstates. We already performed such time
averages in Chapter 6, where we used the method of molecular dynamics to compute the time-
averaged values of quantities such as the temperature and pressure. An interpretation of the
probabilities in (16.1) that is consistent with such a time average is that during a sequence of
observations, Ps yields the fraction of times that a single system is found in a given microscopic
state.

Although time averages are conceptually simple, it is convenient to formulate statistical aver-
ages at a given instant of time. Instead of performing measurements on a single system, imagine
a collection or ensemble of systems that are identical mental replicas characterized by the same
macrostate. The number of systems in the ensemble equals the number of possible microstates.
In this interpretation, the probabilities in (16.1) describe an ensemble of identical systems. An
ensemble of systems specified by E, N , V is called a microcanonical ensemble. Suppose that a
physical quantity A has the value As when the system is in the state s. Then the ensemble average
of A is given by

〈A〉 =
Ω∑

s=1

AsPs, (16.2)

where Ps is given by (16.1).
To illustrate these ideas, consider a one-dimensional model of an ideal gas in which the particles

are distinguishable, noninteracting, and have only two possible velocities v0 and −v0. Because the
particles are noninteracting, the size of the system and the positions of the particles are irrelevant.
In Table 16.1 we show the ensemble of systems consistent with N = 4 and E = 2v0

2. The mass of
the particles is assumed to be unity.

The enumeration of the sixteen systems in the ensemble allows us to calculate ensemble av-
erages for the physical quantities of the system. For example, inspection of Table 16.1 shows that
Pn, the probability that the number of particles moving to the right is n, is given by 1/16, 4/16,
6/16, 4/16, and 1/16 for n = 0, 1, 2, 3, and 4, respectively. Hence, the mean number of particles

Given an isolated system in equilibrium, it will assume 
with equal probability each of its accessible microstates
(i.e., a system in equilibrium does not have any preference for any of its available microstates)

Example: suppose a macrostate defined by (N,V,E);
if             is the # of microstates with energy           ,
for the microstate s the probability of occurrence is:
       

Ω(N,V,E) E ÷ dE

Consequence: for a system at equilibrium, the thermodynamic state 
(macrostate) which could result from the largest number of 
microstates is also the most probable macrostate of the system.

Microcanonical ensemble 

-a fundamental postulate-



Macroscopic systems 
towards equilibrium

Another version: particles blue/red in both sides 
(interdiffusion of two gases): 
per unit time, one from each side is picked at random and put in the 
other side: Nleftblue(t)+Nleftred(t)=constant; Nleftred(t)=? 

Urne, palline e diffusione

In molti problemi di tipo probabilistico si incontrano urne contenenti palline di diversi

colori. Tale semplice situazione infatti può servire a realizzare semplici modelli di

situazioni fisiche estremamente complesse. Come esempio consideriamo il caso della

diffusione di un gas (Il modello di diffusione basato sul processo di estrazione e scambio

da due urne è dovuto al fisico austriaco Paul Ehrenfest (1880-1933)).

Si considerino due urne, indichiamole con A e B, ognuna contenete n palline. Al tempo

t = 0 nell’urna A abbiamo solo palline nere, mentre nell’urna B abbiamo solo palline

bianche (possiamo immaginare che le diverse palline rappresentino molecole di gas di

tipo diverso separate all’istante iniziale da una membrana). Al tempo t = 1 (inteso

arbitrariamente come numero di iterazioni) una pallina è estratta a caso da ogni urna e

posta nell’altra (in pratica corrisponde alla rottura della membrana iniziale). Il

procedimento viene ripetuto ai tempi successivi t = 2, 3, . . .. Ad ogni istante in ogni urna

avremo sempre n palline. Il problema può essere affrontato analiticamente ma conduce

a calcoli estremamente lunghi e laboriosi. In questo caso conviene utilizzare una

simulazione di tipo Monte Carlo.

Corso eccellenza studenti 4
o
anno scuole superiori, Ferrara, 22 giugno 2006 – p. 26/31



Figura 5: Quattro fotogrammi che mostrano l’espansione libera del gas. Il primo fotogramma rappresenta
il gas tutto contenuto nella parte sinistra del recipiente, appena dopo che lo sportellino è stato aperto. Il
quarto fotogramma mostra il gas alla fine del processo quando è stata raggiunta una densità uniforme in
entrambe le parti del recipiente.

due zone del contenitore. Le pareti del recipiente schermano il gas da qualunque influenza esterna.
Il gas inizialmente è concentrato tutto in una delle due parti. Una volta aperto lo sportellino, esso
si espande gradualmente nell’altra parte fino a che non è stata raggiunta una distribuzione uniforme
del gas nell’intero contenitore.

Il processo ottenuto per inversione temporale, cioè invertendo l’ordine dei fotogrammi, non si
realizza in natura. Può questo fatto essere spiegato dalla teoria atomica? Più in generale, possiamo
comprendere i fenomeni irreversibili, e il conseguente aumento di entropia dell’universo, in termini
di movimento degli atomi? Questo è il problema dell’irreversibilità: la spiegazione delle leggi ma-
croscopiche irreversibili in termini delle leggi microscopiche reversibili che governano il movimento
degli atomi.

30

Approach to equilibrium

macrostate: specified by the number of particles n on the left side;
microstate: specified by the specific list of the n particles on the left side

A box divided into left/right; total number N of non-interacting particles. 



 The macrostate is specified by the number of particles on the left side, n, 
and the corresponding microstates are:

 The total number of microstates for N=10 is 210=1024

Equilibrium and entropy

number of microstates =
N !

n!(N − n)!
=

(

N

n

)

=

(

N

N − n

)

n # of microstates log(# of micr.)

0 1 0.00
1 10 2.30
2 45 3.81
3 120 4.79
4 210 5.35
5 252 5.53
6 210 5.35
7 120 4.79
8 45 3.81
9 10 2.30
10 1 0.00

number of microstates =
N !

n!(N − n)!
=

(

N

n

)

=

(

N

N − n

)

the most “random”!
Equilibrium = 
Maximum number of 
possible microstates =
Maximum entropy 

n=5 is the macrostate with the 
largest number of microstates!

(n=5 is the most probable 
macrostate)



Equilibrium and entropy

We could simply generate microstates and count them...

but also some smart algorithm (more suitable for computer 
simulations) are possible....



Entropy: Coincidence method 
(S.K. Ma, J. Stat. Phys. 26, 221 (1981))

Equilibrium = Maximum entropy = Maximum number of possible microstates

Too much effort to enumerate all of them!

Alternative procedure (good for computing):
A system evolving in time will duplicate a microstate, before or later...
The longer it takes for duplication, the fewer are  the microstates in the 
corresponding macrostate.  Hence, the lower is the entropy.
Idea: measure the ratio of the number of pairs of duplicated microstates to 
the total number of possible pairs; entropy is the log of the inverse ratio.

E.g.: suppose as in the previous slide N=10, and the macrostate n=1; 
consider 20 different microstates labelled with the “name” of the particle:

8  7  5  10  7  2  4  6  2  10  3  4  3  9  6  5  2  9  2  4
Possible pairs: 20*(20-1)/2=190. Here: 6 pairs for particle “2”; 1 pair with 
particle “10” etc etc... Sum all of them: get 15. 

Ratio = 15/190    ,    Entropy:   S∝log(190/15)~2.5

http://dx.doi.org/10.1007/BF01013169
http://dx.doi.org/10.1007/BF01013169
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in the canonical ensemble

in the microcanonical ensemble, 
where all the microstates 
corresponding to a macrostate have 
the same energy 
(Ω is the number of microstates)

Remind the definition of entropy:



Metropolis method in the 
canonical ensemble and the

simulated annealing



Metropolis and
simulated annealing - I

•Stochastic search for global minimum. Monte 
Carlo optimization.

•The concept is based on the manner in which 
liquids freeze or metals recrystallize. Sufficiently 
high starting temperature and slow cooling are 
important to avoid freezing out in metastable 
states.



Metropolis and
simulated annealing - II

•Thermodynamic system at temperature T, energy E. 

•Perturb configuration (generate a new one).
•Compute change in energy dE. If dE is negative the new 

configuration is accepted. If dE is positive it is accepted 
with a probability given by the Boltzmann factor :     
exp(-dE/kT). 

•The process is repeated many times for good sampling 
of configuration space.

•then the temperature is slightly lowered and the entire 
procedure repeated, and so on, until a frozen state is 
achieved at T = 0.

{
usual 

Metropolis 
procedure 

in the 
canonical 
ensemble



Example
minimization of 

f(x)=(x+0.2)*x+cos(14.5*x-0.3)
considered as an energy function and

using a fictitious temperature 

in simulated_annealing.f90:



DO WHILE (temp > 1E-5) ! anneal cycle

  DO istep = 1, nsteps
    CALL RANDOM_NUMBER(rand) ! generate 2 random numbers; dimension(2) :: rand
    x_new = x + scale*SQRT(temp)*(rand(1) - 0.5) ! stochastic move
    fx_new = func(x_new) ! new object function value
    IF (EXP(-(fx_new - fx)/temp) > rand(2)) THEN ! success, save
      fx = fx_new
      x = x_new
    END IF 
    IF (fx < fx_min) THEN
      fx_min = fx
      x_min = x
      PRINT '(3ES13.5)', temp, x_min, fx_min
    END IF
  END DO

  temp = temp * tfactor ! decrease temperature
END DO

Function to be minimized:  f(x) ;   Starting point:   x, fx=f(x)

	
 	
 	
 	
 	
 	
 initial (high) temperature:    	
 	
 	
 	
 temp
Annealing schedule:	
	
 	
 annealing temperature reduction factor: 	
 tfactor (<1)
	
 	
 	
 	
 	
 	
 number of steps per block: 	
 	
 	
 	
 nsteps 
	
 	
 	
 	
 	
 	
 ‘ad hoc’ parameter for trial move: 	
	
 	
 scale



final T:    2.50315E-01 
final x:   -1.95067E-01 
final f(x):-1.00088E+00

initial T:  10 (KB units) 
initial x:      1.000000
initial f(x):   1.137208 


