The Ising model
in the canonical ensemble

- Introduction to the Ising model
- The Ising model in the canonical
ensemble: application of
Metropolis Monte Carlo Method
- Implementation in a code

M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - Unit [X



stochastic simulations of an
interacting spin ensemble

We need a model for:
- energy

- evolution
(to build the trajectory / the Markov chain)
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Ising model

the simplest model of interacting spin on a lattice

N
HP = —J Z SiS;
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s;, = =1
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(next: where does it come from ! ...)



2 interacting spins

Consider two spins 1/2, 51, s; (e.g. electrons in He), their
sum S, the basis | S, S, > of the Hilbert space in the
coupled representation, and a hamiltonian H = k1 + ha + V32 :

The Pauli principle => the energy is affected by spin
even if H does not depend explicitly on it:

<S=0/H|S=0>=E; singlet
<S=1H|S=1>=E; triplet
We have:
<S=0H|S=0>—-—<S=1H|S=1>=F, — F;



2 interacting spins

Idea: write a model hamiltonian explicitly dependent on
the spin giving the same energy difference between the
eigenvalues of its eigenstates as the original one.

Consider the operator:
- . l ) L §
22 = S1°82 =557 — 1
which is diagonal on the coupled basis, with eigenvalues:

<S:O‘212‘S:O>: —%, <S:1‘212‘S:1>:i

Consider then: HSP'" = —(Fs — Ey)Yq0
Ve have:
<S=0HP"S=0>—<S=1HP"S=1>=FE, — E



Heisemberg hamiltonian

HP'" = —(Ey — E}y) Y19

is therefore OK! Defining: 7 = E, — E;, , we have:

HEPIn =~ Jsi - 55

|>0 (Es>Et) 1 s
j<O(Es<Et) f| s

pins favored => ferromagnetic case

vins favored => antiferromagnetic case



Heisemberg hamiltonian

Extension to the case of several spins:



Ising model

Consider only the possibility : s; = =1 and nearest neighbor
interaction only, with the same interaction constant J

N
Hspzn = —J E SZ'Sj

2,7=1

J>0 (Es > Et) TT spins favored => ferromagnetic case

J<O (Es < Et) N spins favored => antiferromagnetic case

SRR R

E:—J E=+J

(choosing the kind of interaction, we specify the energy model)



Ising model on a lattice

lattice containing NV sites

lattice site ¢ has associated with it a number s;, where s; = +1 for an “up” (1) spin and s; = —1
for a “down” (|) spin. A particular configuration or microstate of the lattice is specified by the
set of variables {s1,ss,...sx} for all lattice sites.
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Lowest energy states of the 2D Ising model on a square
lattice with ferromagnetic (J>0) and antiferromagnetic (J<0)
interactions. Solid and open circles correspond to +1 and
-1 spins, respectively.




Ising model:
Interesting quantities



Ising model: energy

lattice containing NV sites
No external magnetic field:

N
E=—J Z 5454

1,7=nn ( 1 ) (nn=nearest neighbor)

Energy in presence of an extemal magnetic field:

E=—-J Z SiS; — HZSZa

t,j=nn(7)

or, better, define an average energy per spin: E/N



Ising model: magnetization

M:ZSi

1=1

“Order parameter”: total magnetization, or -better-
average magnetization per spin:

M 1S

1—=1

—1<m< +1

™ S;



Ising model:
configurations and energy

2" different configurations for » spins.

e.g. 27 =16 spin configurations for 2x2 lattice

L + - -+
++ - - -+ o+ -

-+ o+ - 4+ 4+ o+ + + - -+ - - - - - -+ - 4+ 4+ -+
++  ++ o+ + - -+  + - ++ o+ +

For J > 0 the state of lowest energy is when all the spins are aligned.
The state has macroscopic magnetization (ferromagnetic).

The ground state energy per spin
(ferromagnetic case, thermodynamic limit (N large), no ext. field) is:

EoN=- 2J



Ising model: dynamics?

Beside an energy model, we must define a dynamics
in order to simulate the evolution of the system
(i.e. to generate the trajectory in the phase space,
to generate the configurations of the Markov chain)



Ising model:
spin flip dynamics

Consider nn

. A
interactions, choose ‘ ‘_
a random spin and (9O
ﬂIP it: it’'s @ new —@—@—
configuration (a 1
microstate) AR &

Apply Metropolis Monte Carlo method for
evolution in the canonical ensemble (fixT).
Evolution is driven by the energy change between
the old and the new configuration, A F .

Remark: Is it sufficient to calculate only AE' ,not E
at each new configuration!



Ising model:
spin flip dynamics

} }
L N AE = 8]
} }
} }
y Vb AE=4]
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The five possible transitions of the Ising model on the square lattice with spin flip



Ising model:
boundary conditions

Of course we cannot simulate an infinite system
(the thermodynamic limit).
We have two choices for the simulation cell:

- free (open) boundary conditions
- periodic boundary conditions (PBC)



Ising model:
free boundary conditions

in a N=LxL spin lattice there are 2L(L-1) nn interactions;
for the ferromagnetic g.s. configuration, for instance, the energy 1is:

+ + + +
+ + + + + + +
+ + + + + + + + +
+ + + + + + + + +
Eo/N=-J  Eo/N=-(12/9)] Eo/N=-(24/16)] .. Eo/N=-Jx 2L(L-1)/L2
= 2T x(1-1/L)
7N
(volume term) (surface term)

Energy per spin 1n the ground state converges to the value
Eo/N = - 2J in the thermodynamic limit
with behavior ~1/L in case of free boundaries



Ising model: PBC

The energy 1s a 2N-term sum:
cach spin interacts with 1ts NN
within the stmulation cell or
with the NN 1mages
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One of the 2% possible configurations of a system of N = 16 Ising spins on a square lattice.

with periodic boundary conditions.



Ising model: PBC

We have always:
2% = ]6 spin configurations for 2x2 lattice

but the energy for each configuration in case of free boundary conditions
and PBC 1s different:

b b

H of spins UP | Degeneracy | Energy | Magnetisation
4 1 -8J 4
A O S O ' I A T 3 3 0 2
2 4 0 0
N R B N A S B I 2 N 0
1 4 0 -2
T T T ¢ 0 1 -8J -4
E O E 8J Energy and magnetization of 16 configurations of the 2x2 Ising model
= —_— with PBC

Two different configurations with 2 spins up

Energy per spin 1n the ground state 1s always equal to the value
Eo/N = - 2J 1n the thermodynamic limit



Ising model: phase transition

Low T: spin configuration minimizes energy
(if |>0: spins tend to align => high (absolute) magnetization)

High T: spin configuration maximizes entropy
(=disorder) (spins tend to disalign => low magnetization)
A

existence of a
Critical temperature Tc
<IMP> in 2D the model has an
analytical solution:

Tc = 2.269 J/ke




Apply Metropolis Monte Carlo method for evolution
in the canonical ensemble (fix T):

Magnetization (System : 10%10)
Magnetization as a function of time for T<T. (solid) and T>T. (dashed curve)
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Monte Carlo steps per spins

Fluctuations! do, as usual, temporal averages: <M>/N, <E>/N



2D Ising model

. T=0.9 Tc T=2*Tc
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Magnetisation as a function of the temperature for the 2D Ising model.



Magnetization distribution for T<T. (solid) and T>T. (dashed curve)
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(data collected during time evolution, at equilibrium)



Ising model: phase transition

T. also for energy, not only for magnetization

<E>/Eo A E=-J Z

| ﬁ i,J=nn(1)

T T

C

-

and also the energy fluctuates during time evolution...



Ising model: fluctuations

Fluctuations are intrinsic to the system evolution
and are important!
Linear response functions are related to
equilibrium fluctuations:

(already proved): C = % O= % ((E%) = (E)?)
1
but also: x = Ig@o% , X = k_T(<M2> — <M>2)

where (M) and (M?) are evaluated in zero magnetic fields.



Ising model:

fluctuations and phase transition

Rapid change in <E> and <M> => singularities in C and X

(Large fluctuations near
the phase transition:
Second Order phase transition)

specific heat:

_ 0(E)
C= oT

magnetic susceptibility:

. O(M)
X_I?LHO OH




Implementing
the Ising model
in the code



Implementing the Ising model

on a 2D square lattice in the canonical ensemble

zero-field, nearest neighbor interactions only

N
SpPiT
HP = —J E S¢S S; =

2,J=1

Input parameters are:

-1

e L (linear lattice dimension, which gives the number of spins: N=L*L)

e nmcs (number of total MC steps per spin)
e nequil (number of equilibration MC steps per spin)
e T (temperature of the thermal bath).



Implementing the Ising model

program ising
| metropolis algorithm for the ising model on a square lattice
use common
integer :: imcs,ispin, jspin
real (kind = double), dimension(5) :: cum
call initial(nequil,cum)
| equilibrate system
do imcs = 1,nequil
call metropolis()
end do
I accumulate data while updating spins
do imcs = 1,nmcs
call metropolis()
call data(cum)
end do
call output(cum)

end program ising



Ising model on a lattice

L : linear lattice dimension

N = LxL : number of spins

a configuration (a microstate) is the whole
sequence of spins, i.e. the LxL array spin(x,y)

module common

integer, public, dimension(:,:), allocatable :: spin

subroutine initial(nequil,cum)

spin(x,y) = 1 1

else SZ —_—
spin(x,y) = -1




Ising model: magnetization

Total magnetization, or define an average
magnetization per spin:

N
M = E S;
I compute initial magnetization _
M = 0.0_double s
do y = 1,L M 1 N
do x = 1,L m —_ _ S
— — 1
..... N N«
..... 1=1
M =M+ spin(x,y)
end do —1 <m< +1

(Instead of the loop over x,y, do also simply: M=sum(spin) )



Ising model: energy

E=—J Z S¢S * * f

}

i,j=nn(z) + UP+ * *

I compute initial energy % % + *
E = 0.0_double " right

doy =1,L * * * *

sums = spin(x,up) + spin(right,y)

I calculate the initial energy summing all over pairs
I (for a given spin, consider only the up NN and the right NN
I = NOT the down and the left NN - : each interaction is counted once
E = E - spin(x,y)*sums
end do
end do




Ising model: energy with PBC

IR
| periodic boundary conditions
if (y == L) th
Y $f|+ff$
else
up =y + 1 * * *-——-* * *
end if
do x = 1,1 bly v v by
if (x == L) then I
I T T W
else
right = x + 1
end if * * * *

sums = spin(x,up) + spin(right,y)
I calculate the initial energy summing all over pairs
I (gor a given spin, consider only the up NN and the right NN
! = NOT the down and the left NN - : each interaction is counted once
E = E - spin(x,y)*sunms
end do
end do



Ising model:
spin flip dynamics

Choose a random spin and flip it:
it's @ new configuration (a microstate)
do ispin = 1,N
! random x and y coordinates for trial spin
call random_number (rnd)

x = int(L*rnd) + 1 < 1 < </
call random_number (rnd) o o
y = int(L*rnd) + 1 < 1 < Y < L

Flip is: spin(x,y) = -spin(x,y)

but do it later, only if you decide to accept the flip (according to Metropolis)



Ising model:
energy variations per spin flip

Evolution is driven by the energy change between
the old and the new configuration (Metropolis MC)

dE = DeltaE(x,y) < energy variation for spin(x,y) flip
call random_number (rnd)
if (rnd <= w(dE)) then < w(dE) is e AE/kBT

spin(x,y) = -spin(x,y)
accept = accept + 1




Energy variations per spin flip with PBC

function DeltaE(x,y) result (DeltaE_result)
| periodic boundary conditions

if (x == 1) then
left = spin(L,y) Y = L > *
right = spin(2,y)

else if (x == L) then

left = spin(L-1,y) *
right = spin(1l,y)

else
left = spin(x-1,y) *

right = spin(x+1,y)
end if . i *
if (y == 1) then Y= 1
up = spin(x,2)
down = spin(x,L)
else if (y == L) then
up = spin(x,1)
down = spin(x,L-1)
else
up = spin(x,y+1)
down = spin(x,y-1)
end if
DeltaE_result = 2*spin(x,y)*(left + right + up + down)

- - - —»

- - - - - -
— - - — — -

|| — > | - - - @ | -
h

&
—_
&



Ising model:
storage of Boltzmann’s coeff.

I Choosing the interaction parameter
| possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4

w(dE) = exp(-dE/T)
end do
accept = 0
do i =1,5

cum(i) = 0.0_double
end do

Convenient to store the
Boltzmann’s coefficient for
these discrete values of

energy variations

A e A AE=8J

| e R A AE=4]
AE=0
' A —> A AE =-4)

| g, ——» ! AE =-8]

——

- > - - > - - > —— ——
—
-

- - - - - - - - —- - —— -
—

The five possible transitions of the Ising model on the square latt

ice with spin flip



Ising model:
updating energy and magnetization

subroutine metropolis()
I one Monte Carlo step per spin

cicf"ispin = 1,N DO NOT CALCULATE
EVERYTHING FROM THE
dE = DeltaE(X,y) SCRATCHM!

call random_number (rnd)

if (rnd <= w(dE)) then
spin(x,y) = -spin(x,y)
accept = accept + 1

M =M+ 2xspin(x,y) ! factor 2 is to account for the variation:
E=E+ dE b (=(=)+(+))
end if 1k\~\\~\\~\~ : .
end do AF is already a variation

end subroutine metropolis



Spin flip dynamics: how
to choose spin to flip?

Random ...
do ispin = 1,N
! random x and y coordinates for trial spin
call random_number (rnd)
x = int (L*rnd) + 1 < 1 < T < L
call random_number (rnd) o o

y = int(L*rnd) + 1 < 1 < Y < L

or ordered (sequential) ...
do x = 1,L
doy =1,L

spin(x,y) = -spin(x,y)



Spin flip dynamics: how
to choose spin to flip?

e ORDERED: in some cases, it could go more
slowly towards equilibrium (see later:
correlation time), but it depends...

® NO appreciable differences in the statistics
at equilibrium



Measuring physical quantities:
how to accumulate data?’

subroutine data(cum)
! accumulate data after every Monte Carlo step per spin

real (kind = double), dimension(5), intent (inout) :: cum
cum(1l) = cum(1) + E

cum(2) = cum(2) + Ex*E

cum(3) = cum(3) + M

cum(4) = cum(4) + Mx*M

cum(5) = cum(5) + abs(M)

end subroutine data

After one MC step per spin for all spins:

do imcs = 1,nmcs

call metropolis() contains the loop over all the spins
call data(cum)

end do

Alternatively, do it after each MC step per individual spin...



Measuring physical quantities: how to
accumulate data?
Further remarks...

® Use statistically INDEPENDENT configurations

® Calculate therefore the CORRELATION TIME
by considering the autocorrelation functions:

Crv(t) =< M@H)M(0) > — < M >*, Cg(t) =< Et)E(0) > — < E >*
(Crm(0) < x;,  Cg(0) o< Cv)

Cr(t) — 0 and Cg(t) — 0 exponentially for ¢t — oo

with a certain decay time 7: consider intervals longer than 7
for statistical averages

(NOTE: ”critical slowling down” for T" — T¢)



Measuring physical quantities: how to
accumulate data?
Further remarks...

® see also CORRELATION LENGTH between
magnetic domains, ((7)

® close to T, also the correlation length increases
(spin alignhments are more correlated), up to
divergence



Measuring physical quantities:
which errors?

® necessary to give the ERROR ESTIMATE
corresponding to the measured physical
quantity !!!

® (see Tab. | of D.P.Landau, PRB 13,2997 (1976),
“Finite size behavior of the Ising square lattice”)

® do also BLOCKING (called “coarse grained
technique” in that paper)



How to do efficiently
simulations as
a function of T!

® Sometimes EQUILIBRATION time is long...

® |IDEA:for T’ close to T, choose as starting
point the equilibrated output of T



Ising model: size problems

We cannot simulate an INFINITE system!

4.0
Cy

30

L =8 and L = 16|

20

1.0

0.0 ] ] ] ] ]
1.5 2.0 2.5 3.0 3.5

The temperature dependence of the specific heat C' (per spin) of the Ising model



Ising model: size problems

SURFACE EFFECTS:
example of energy for HALF UP/HALF DOWN

configurations:

L=2 E=0 by 4
=4 E=-1 * * * *
L=8 E=-1.5 oy
L=16 E=-1.75

=20 E=-1.8 AL
=32 E=-1.875

for an infinite system: E=-2
We have a (“surface”) term proportional to |/L



Ising model: alternative dynamics

® in the SPIN FLIP dynamics the order parameter
is not conserved (M changes during evolution)

® alternative: NN spin exchange (Kawasaki dyn.)
(exchange two NN spins picked at random;
M is conserved; this is equivalent to LATTICE
GAS MODELS with fixed number of particles)



Ising model: Kawasaki dynamics

Fixed magnetization : change of thermodynamical en-

semble

No modification of the equilibrium properties

except phase separation




T=10, starting from random configuration

By HeMath - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37327967



Ising model:
other generalizations

® SPINS: XY, Heisenberg, Potts...

e | ATTICES: Square, Triangle, Cubic,
Honeycomb, Kagome....

® INTERACTIONS: Magn. Field, Antiferrom.,
Next Nearest Neighbor (NNN)....



Universality and critical exponents
Reduced temperature : AT = (T — T.)/T.

C ~ |AT|®
(M) ~ |AT|? for AT <0
~ |AT|™?

X
& ~ |AT|TV



Program:

on
$/home/peressi/comp-phys/IX-ising/
[do: $cp /home/peressil.../IX-ising/* ]

ising.f90



EXxercise

(@) Choose L=30,T=2, and initially spin=x1 randomly. Calculating and plotting
the energy < E >/N and the magnetization < M >/N per particle as a function
of Metropolis-MC steps, how much time (i.e. how many nequil MC steps) is it
necessary to equilibrate the system?

Hint:
- Since initially spin=%| randomly, E/N and M/N initially will be far from the
expected equilibrium average value.

First, set nequil=0 and plot instantaneous values of E/N and M/N.

Estimate nequil from that plot!!! Visualization is important!!!!

Magnetization (System : 10%10)
Thick : T = T, Dashed :T=2T,

nequil of course depends on T and on the initial situation .« .

0 100
Monte Carlo steps per spins

Then, set nequil not zero and calculate the time average < E >/N and <M >/N;
increasing the total nmcs, the two quantities should converge...



EXxercise

+| randomly. ...

2, and initially spin=

=30,T=

(@) Choose L

Plot a snapshot of the spin pattern: does the system appear ordered or

disordered?

it should appear ordered...

p ‘ising-up.dat’ ps 3 pt 7,'ising-down.dat’ ps 3 pt 7

b B

Plotting “ising-up.dat” and “ising-down.dat” which contain the coordinates of

spin up and down respectively, one should get something like that:

&
000000000000000000
I 0000000000000000000 ¢

0000000000000000000 ¢
0000000000000000000
0000000000000000000 ¢
0000000000000000000
0000000000 000000000 -

55555555555
111111

Calculate also c and X.



EXxercise

(@) Choose L=30,T=2,and initially spin=%1 randomly. ...

Calculate also ¢ and X.

(b) Choose T=1I and repeat (a). ..




Raw data: traces, covariance and autocorrelation time

Trace: magnetization for T' = 2.27.J/kp ~ Tc (10° sweeps)
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Magnetization (10° sweeps)
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Energy (10° sweeps)
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Magnetic susceptibility (10° sweeps)
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Magnetic susceptibility near T, (10° sweeps)
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Specific heat (10° sweeps)

oy kg/J? = L2 (<E®>-<E>%)/ (kg T*)
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Specific heat near T, (10° sweeps)

oy kg/dJ? = L? (<E®>-<E>?)/ (kg T9)
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