The Ising model in the canonical ensemble

- Introduction to the Ising model
- The Ising model in the canonical ensemble: application of Metropolis Monte Carlo Method
 - Implementation in a code

M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit IX

stochastic simulations of an interacting spin ensemble

We need a model for:

- energy

evolution
 (to build the trajectory / the Markov chain)

stochastic simulations of an interacting spin ensemble

We need a model for:

- energy => Ising model

evolution
 (to build the trajectory / the Markov chain)

Ising model

the simplest model of interacting spin on a lattice

$$\mathcal{H}^{spin} = -J \sum_{i,j=1}^{N} s_i s_j$$

$$s_i = \pm 1$$

$$\downarrow \quad \downarrow \quad \uparrow$$

$$\downarrow \quad \downarrow \quad \downarrow$$

$$\downarrow \quad \downarrow \quad \downarrow$$

(next: where does it come from ? ...)

2 interacting spins

Consider two spins 1/2, $\vec{s_1}$, $\vec{s_2}$ (e.g. electrons in He), their sum \vec{S} , the basis $|S,S_z>$ of the Hilbert space in the coupled representation, and a hamiltonian $\mathcal{H}=h_1+h_2+V_{12}$:

The Pauli principle => the energy is affected by spin even if ${\cal H}$ does not depend explicitly on it:

$$< S = 0 | \mathcal{H} | S = 0 >= E_s$$
 singlet $< S = 1 | \mathcal{H} | S = 1 >= E_t$ triplet

We have:

$$< S = 0 | \mathcal{H} | S = 0 > - < S = 1 | \mathcal{H} | S = 1 > = E_s - E_t$$

2 interacting spins

Idea: write a model hamiltonian explicitly dependent on the spin giving the same energy difference between the eigenvalues of its eigenstates as the original one.

Consider the operator:

$$\sum_{12} = \vec{s_1} \cdot \vec{s_2} = \frac{1}{2}S^2 - \frac{3}{4}$$

which is diagonal on the coupled basis, with eigenvalues:

$$\langle S = 0 | \Sigma_{12} | S = 0 \rangle = -\frac{3}{4}, \quad \langle S = 1 | \Sigma_{12} | S = 1 \rangle = \frac{1}{4}$$

Consider then:

$$\mathcal{H}^{spin} = -(E_s - E_t)\Sigma_{12}$$

We have:

$$|\langle S = 0|\mathcal{H}^{spin}|S = 0 \rangle - \langle S = 1|\mathcal{H}^{spin}|S = 1 \rangle = E_s - E_t$$

Heisemberg hamiltonian

$$\mathcal{H}^{spin} = -(E_s - E_t)\Sigma_{12}$$

is therefore OK! Defining: $J \equiv E_s - E_t$, we have:

$$\mathcal{H}^{spin} = -J\vec{s_1} \cdot \vec{s_2}$$

- J<0 (Es < Et) ↑ spins favored => antiferromagnetic case

Heisemberg hamiltonian

Extension to the case of several spins:

$$\mathcal{H}^{spin} = -\sum_{\substack{i,j=1\i
eq j}}^{N} J_{ij} \; ec{s_i} \cdot ec{s_j}$$

Ising model

Consider only the possibility : $s_i=\pm 1$ and nearest neighbor interaction only, with the same interaction constant J

$$\mathcal{H}^{spin} = -J \sum_{i,j=1}^{N} s_i s_j$$

(choosing the kind of interaction, we specify the energy model)

Ising model on a lattice

lattice containing N sites

lattice site *i* has associated with it a number s_i , where $s_i = +1$ for an "up" (\uparrow) spin and $s_i = -1$ for a "down" (\downarrow) spin. A particular configuration or microstate of the lattice is specified by the set of variables $\{s_1, s_2, \ldots s_N\}$ for all lattice sites.

Lowest energy states of the 2D Ising model on a square lattice with ferromagnetic (J>0) and antiferromagnetic (J<0) interactions. Solid and open circles correspond to +1 and -1 spins, respectively.

Ising model: interesting quantities

Ising model: energy

lattice containing N sites No external magnetic field:

$$E = -J \sum_{i,j=\text{nn}(i)}^{N} s_i s_j$$

(nn=nearest neighbor)

Energy in presence of an external magnetic field:

$$E = -J \sum_{i,j=\text{nn}(i)}^{N} s_i s_j - H \sum_{i=1}^{N} s_i,$$

or, better, define an average energy per spin: E/N

Ising model: magnetization

$$M = \sum_{i=1}^{N} s_i$$

"Order parameter": total magnetization, or -better-average magnetization per spin:

$$m = \frac{M}{N} = \frac{1}{N} \sum_{i=1}^{N} s_i$$

$$-1 \le m \le +1$$

Ising model: configurations and energy

 2^n different configurations for n spins.

For J > 0 the state of lowest energy is when all the spins are aligned. The state has macroscopic magnetization (**ferromagnetic**).

The **ground state energy** per spin (ferromagnetic case, thermodynamic limit (N large), no ext. field) is: $E_0/N = -2J$

Ising model: dynamics?

Beside an energy model, we must define a dynamics in order to simulate the evolution of the system (i.e. to generate the trajectory in the phase space, to generate the configurations of the Markov chain)

Ising model: spin flip dynamics

Consider *nn*interactions, choose
a random spin and
flip it: it's **a new configuration** (a
microstate)

Apply **Metropolis Monte Carlo** method for evolution in the **canonical ensemble** (fix T). Evolution is driven by the **energy change** between the old and the new configuration, ΔE . Remark: Is it sufficient to calculate only ΔE , not E at each new configuration!

Ising model: spin flip dynamics

The five possible transitions of the Ising model on the square lattice with spin flip

Ising model: boundary conditions

Of course we cannot simulate an infinite system (the thermodynamic limit).

We have two choices for the simulation cell:

- free (open) boundary conditions
- periodic boundary conditions (PBC)

Ising model: free boundary conditions

in a N=LxL spin lattice there are 2L(L-1) nn interactions; for the ferromagnetic g.s. configuration, for instance, the energy is:

Energy per spin in the ground state converges to the value $E_0/N = -2J$ in the thermodynamic limit with behavior ~1/L in case of free boundaries

Ising model: PBC

The energy is a 2N-term sum: each spin interacts with its NN within the simulation cell or with the NN images

One of the 2^N possible configurations of a system of N=16 Ising spins on a square lattice. with periodic boundary conditions.

Ising model: PBC

We have always:

 $2^4 = 16$ spin configurations for $2x^2$ lattice_N

but the energy for each configuration in case of free boundary conditions and PBC is different:

♯ of spins UP	Degeneracy	Energy	Magnetisation
4	1	-8J	4
3	4	0	2
2	4	0	0
2	2	8J	0
1	4	0	-2
0	1	-8J	-4

Energy and magnetization of 16 configurations of the 2×2 Ising model with PBC

Energy per spin in the ground state is always equal to the value $E_0/N = -2J$ in the thermodynamic limit

Ising model: phase transition

Low T: spin configuration minimizes energy

(if J>0: spins tend to align => high (absolute) magnetization)

High T: spin configuration maximizes entropy

(=disorder) (spins tend to disalign => low magnetization)

Apply **Metropolis Monte Carlo** method for evolution in the **canonical ensemble** (fix T):

Magnetization (System: 10*10)

Magnetization as a function of time for $T < T_c$ (solid) and $T > T_c$ (dashed curve)

Fluctuations! do, as usual, temporal averages: $\langle M \rangle / N$, $\langle E \rangle / N$

Magnetisation as a function of the temperature for the 2D Ising model.

Magnetization distribution for $T < T_c$ (solid) and $T > T_c$ (dashed curve)

(data collected during time evolution, at equilibrium)

Ising model: phase transition

T_c also for energy, not only for magnetization:

and also the energy fluctuates during time evolution...

Ising model: fluctuations

Fluctuations are intrinsic to the system evolution and are important!

Linear response functions are related to equilibrium fluctuations:

(already proved):
$$C=\frac{\partial\langle E\rangle}{\partial T}$$
 , $C=\frac{1}{kT^2}\left(\langle E^2\rangle-\langle E\rangle^2\right)$

but also:
$$\chi = \lim_{H \to 0} \frac{\partial \langle M \rangle}{\partial H}$$
 , $\chi = \frac{1}{kT} (\langle M^2 \rangle - \langle M \rangle^2)$

where $\langle M \rangle$ and $\langle M^2 \rangle$ are evaluated in zero magnetic fields.

Ising model:

fluctuations and phase transition

Rapid change in <E> and <M> => singularities in C and χ

(Large fluctuations near the phase transition: Second Order phase transition)

specific heat:

$$C = \frac{\partial \langle E \rangle}{\partial T}$$

magnetic susceptibility:

$$\chi = \lim_{H \to 0} \frac{\partial \langle M \rangle}{\partial H}$$

Implementing the Ising model in the code

Implementing the Ising model

on a 2D square lattice in the canonical ensemble zero-field, nearest neighbor interactions only

$$\mathcal{H}^{spin} = -J \sum_{i,j=1}^{N} s_i s_j \qquad s_i = \pm 1$$

Input parameters are:

- L (linear lattice dimension, which gives the number of spins: N=L*L)
- nmcs (number of total MC steps per spin)
- nequil (number of equilibration MC steps per spin)
- T (temperature of the thermal bath).

Implementing the Ising model

```
program ising
    metropolis algorithm for the ising model on a square lattice
  use common
  integer :: imcs,ispin,jspin
  real (kind = double), dimension(5) :: cum
 call initial(nequil,cum)
  ! equilibrate system
  do imcs = 1,nequil
     call metropolis()
  end do
     accumulate data while updating spins
  do imcs = 1,nmcs
     call metropolis()
     call data(cum)
  end do
  call output(cum)
end program ising
```

Ising model on a lattice

```
L: linear lattice dimension
N = LxL : number of spins
a configuration (a microstate) is the whole
sequence of spins, i.e. the LxL array spin(x,y)
module common
 integer, public, dimension(:,:), allocatable :: spin
subroutine initial(nequil, cum)
  allocate(spin(L,L))
     spin(x,y) = 1
                            s_i = \pm 1
  else
     spin(x,y) = -1
```

Ising model: magnetization

Total magnetization, or define an average magnetization per spin:

```
! compute initial magnetization  M = 0.0\_double \\ do y = 1,L \\ do x = 1,L \\ \vdots \\ m = \frac{M}{N} = \frac{1}{N} \sum_{i=1}^{N} s_i \\ \vdots \\ m = m + spin(x,y) \\ end do \\ end do   -1 \le m \le +1
```

(Instead of the loop over x,y, do also simply: M=sum(spin))

Ising model: energy

```
E = -J \quad \sum_{i=1}^{n} s_i s_j \quad \uparrow \quad \downarrow \quad \uparrow
                                  i,j=nn(i)
  compute initial energy
E = 0.0_double
do y = 1,L
    do x = 1,L
    sums = spin(x,up) + spin(right,y)
! calculate the initial energy summing all over pairs
! (for a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once
           E = E - spin(x,y)*sums
       end do
    end do
```

Ising model: energy with PBC

do y = 1,L

```
! periodic boundary conditions
      if (y == L) then
         up = 1
      else
         up = y + 1
      end if
      do x = 1,L
          if (x == L) then
            right = 1
         else
            right = x + 1
          end if
          sums = spin(x,up) + spin(right,y)
! calculate the initial energy summing all over pairs
 (gor a given spin, consider only the up NN and the right NN
! - NOT the down and the left NN - : each interaction is counted once
         E = E - spin(x,y)*sums
      end do
   end do
```

Ising model: spin flip dynamics

Choose a random spin and flip it: it's a new configuration (a microstate)

```
do ispin = 1,N
! random x and y coordinates for trial spin call random_number(rnd)
x = \text{int}(L*\text{rnd}) + 1 \qquad \qquad 1 \leq x \leq L
\text{call random_number(rnd)}
y = \text{int}(L*\text{rnd}) + 1 \qquad \qquad 1 \leq y \leq L
.....
```

Flip is:
$$spin(x,y) = -spin(x,y)$$

but do it later, only if you decide to accept the flip (according to Metropolis)

Ising model: energy variations per spin flip

Evolution is driven by the **energy change** between the old and the new configuration (Metropolis MC)

```
dE = DeltaE(x,y) ← energy variation for spin(x,y) flip
call random_number(rnd)
if (rnd <= w(dE)) then ← w(dE) is e<sup>-ΔE/k<sub>B</sub>T</sup>
    spin(x,y) = -spin(x,y)
    accept = accept + 1
    ....

function DeltaE(x,y) result (DeltaE_result)
DeltaE_result = 2*spin(x,y)*(left + right + up + down)
```

Energy variations per spin flip with PBC

```
function DeltaE(x,y) result (DeltaE_result)
  ! periodic boundary conditions
if (x == 1) then
    left = spin(L,y)
    right = spin(2,y)
else if (x == L) then
    left = spin(L-1, y)
   right = spin(1,y)
 else
    left = spin(x-1,y)
    right = spin(x+1,y)
 end if
 if (y == 1) then
   up = spin(x,2)
    down = spin(x,L)
 else if (y == L) then
    up = spin(x,1)
    down = spin(x,L-1)
 else
    up = spin(x,y+1)
    down = spin(x,y-1)
 end if
 DeltaE_result = 2*spin(x,y)*(left + right + up + down)
```

Ising model: storage of Boltzmann's coeff.

```
! Choosing the interaction parameter J=1,
! possible energy variations per spin flip are -8,-4,0,+4,+8:

do dE = -8,8,4

w(dE) = exp(-dE/T)

end do

accept = 0

do i = 1,5

cum(i) = 0.0_double

end do
```

Convenient to store the Boltzmann's coefficient for these discrete values of energy variations

The five possible transitions of the Ising model on the square lattice with spin flip

Ising model: updating energy and magnetization

```
subroutine metropolis()
     one Monte Carlo step per spin
  do ispin = 1,N
                                           DO NOT CALCULATE
  . . . . .
                                          EVERYTHING FROM THE
     dE = DeltaE(x,y)
                                                 SCRATCH!!
     call random_number(rnd)
     if (rnd <= w(dE)) then
        spin(x,y) = -spin(x,y)
        accept = accept + 1
       M = M + 2*spin(x,y)! factor 2 is to account for the variation:
       E = E + dE
                             ! (-(-)+(+))
     end if
                               \Delta E is already a variation
  end do
```

end subroutine metropolis

Spin flip dynamics: how to choose spin to flip?

Random ...

or ordered (sequential) ...

```
do x = 1,L
do y = 1,L
```

. . .

$$spin(x,y) = -spin(x,y)$$

Spin flip dynamics: how to choose spin to flip?

- ORDERED: in some cases, it could go more slowly towards equilibrium (see later: correlation time), but it depends...
- NO appreciable differences in the statistics at equilibrium

Measuring physical quantities: how to accumulate data?

```
subroutine data(cum)
! accumulate data after every Monte Carlo step per spin
real (kind = double), dimension(5), intent (inout) :: cum
cum(1) = cum(1) + E
cum(2) = cum(2) + E*E
cum(3) = cum(3) + M
cum(4) = cum(4) + M*M
cum(5) = cum(5) + abs(M)
end subroutine data
```

After one MC step per spin for all spins:

Alternatively, do it after each MC step per individual spin...

Measuring physical quantities: how to accumulate data? Further remarks...

- Use statistically INDEPENDENT configurations
- Calculate therefore the CORRELATION TIME by considering the autocorrelation functions:

$$C_M(t) = \langle M(t)M(0) \rangle - \langle M \rangle^2, \quad C_E(t) = \langle E(t)E(0) \rangle - \langle E \rangle^2$$

 $(C_M(0) \propto \chi, \quad C_E(0) \propto C_V)$

 $C_M(t) \to 0$ and $C_E(t) \to 0$ exponentially for $t \to \infty$ with a certain decay time τ : consider intervals longer than τ for statistical averages

(NOTE: "critical slowling down" for $T \to T_C$)

Measuring physical quantities: how to accumulate data? Further remarks...

- ullet see also CORRELATION LENGTH between magnetic domains, $\zeta(T)$
- close to T_c, also the correlation length increases (spin alignments are more correlated), up to divergence

Measuring physical quantities: which errors?

- necessary to give the ERROR ESTIMATE corresponding to the measured physical quantity !!!
- (see Tab. I of D.P. Landau, PRB 13, 2997 (1976), "Finite size behavior of the Ising square lattice")
- do also BLOCKING (called "coarse grained technique" in that paper)

How to do efficiently simulations as a function of T?

- Sometimes EQUILIBRATION time is long...
- IDEA: for T' close to T, choose as starting point the equilibrated output of T

Ising model: size problems

We cannot simulate an INFINITE system!

The temperature dependence of the specific heat C (per spin) of the Ising model

Ising model: size problems

SURFACE EFFECTS:

example of energy for HALF UP/HALF DOWN configurations:

$$L=2$$
 $E=0$

$$L=4$$
 $E=-1$

$$L=16$$
 $E=-1.75$

··· for an infinite system: E=-2

We have a ("surface") term proportional to I/L

Ising model: alternative dynamics

- in the SPIN FLIP dynamics the order parameter is not conserved (M changes during evolution)
- alternative: NN spin exchange (Kawasaki dyn.)
 (exchange two NN spins picked at random;
 M is conserved; this is equivalent to LATTICE
 GAS MODELS with fixed number of particles)

Ising model: Kawasaki dynamics

Fixed magnetization : change of thermodynamical ensemble

No modification of the equilibrium properties

except phase separation

T=10, starting from random configuration

By HeMath - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37327967

Ising model: other generalizations

- SPINS: XY, Heisenberg, Potts...
- LATTICES: Square, Triangle, Cubic, Honeycomb, Kagome....
- INTERACTIONS: Magn. Field, Antiferrom., Next Nearest Neighbor (NNN)....

Universality and critical exponents

Reduced temperature : $\Delta T = (T - T_c)/T_c$

$$C \sim |\Delta T|^{-\alpha}$$
 $\langle M \rangle \sim |\Delta T|^{\beta} \text{ for } \Delta T < 0$
 $\chi \sim |\Delta T|^{-\gamma}$
 $\xi \sim |\Delta T|^{-\nu}$

Program:

```
$\footnote{\text{home/peressi/comp-phys/IX-ising/}}
[do: $cp /home/peressi/.../IX-ising/* .]
```

ising.f90

Exercise

(a) Choose L=30, T=2, and initially spin=±1 randomly. Calculating and plotting the energy < E >/N and the magnetization < M >/N per particle as a function of Metropolis-MC steps, how much time (i.e. how many *nequil* MC steps) is it necessary to equilibrate the system?

Hint:

- Since initially spin=±1 randomly, E/N and M/N initially will be far from the expected equilibrium average value.

First, set nequil=0 and plot instantaneous values of E/N and M/N.

Estimate nequil from that plot!!! Visualization is important!!!!

nequil of course depends on T and on the initial situation

Then, set *nequil* not zero and calculate the time average < E > /N and < M > /N; increasing the total *nmcs*, the two quantities should converge...

Exercise

(a) Choose L=30,T=2, and initially spin=±1 randomly....

Plot a snapshot of the spin pattern: does the system appear ordered or disordered?

it should appear ordered...

p 'ising-up.dat' ps 3 pt 7, 'ising-down.dat' ps 3 pt 7

Plotting "ising-up.dat" and "ising-down.dat" which contain the coordinates of spin up and down respectively, one should get something like that:

Calculate also c and χ .

Exercise

(a) Choose L=30,T=2, and initially spin=±1 randomly....

Calculate also c and χ .

(b) Choose T=I and repeat (a)...

Raw data: traces, covariance and autocorrelation time

Trace: magnetization for $T=2.27J/k_B\approx T_C$ (10^5 sweeps)

Magnetization (10^5 sweeps)

Energy (10^5 sweeps)

Magnetic susceptibility (10^5 sweeps)

Magnetic susceptibility near T_c (10⁶ sweeps)

Specific heat (10^5 sweeps)

Specific heat near T_c (10⁶ sweeps)

