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Mycobacterium with 600 genes.
Scaling to Eucaryotes is highly non-trivial.



Biological systems

A cell is made of many subsystems, performing
different tasks and interacting among them.

We have several classes of subsystems

sensor networks
signalling networks
gene networks
transport networks o
metabolic networks | . -
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Bio-chemical networks

Most biological systems can be described as a set of bio-chemical
reactions, to be intended as a modelling language.
(warning: not suited for systems involving large protein complexes)
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Bio-chemical networks

Most biological systems can be described as a set of bio-chemical
reactions, to be intended as a modelling language.

(warning: not suited for systems involving large protein complexes)
gene —>kp gene + mrna dimer I P k ‘ protein
mrna —>xt mrna + protein

protein + protein —>k1 dimer
dimer —>ko protein + protein “mma
dimer + gene —>p gene_repr L T

gene_repr —>ky dimer + gene (I N |

promoter gene




Bio-chemical networks

Most biological systems can be described as a set of bio-chemical
reactions, to be intended as a modelling language.

(warning: not suited for systems involving large protein complexes)
gene —>kp gene + mrna dimer I P k ‘ protein
mrna —>xt mrna + protein

protein + protein —>k1 dimer
wmrna

dimer —>xo protein + protein

dimer + gene —>w» gene_repr L T
gene_repr —>ku dimer + gene N N |
promoter gene

We are typically interested in the dynamic behaviour.
Kinetic constants are crucial for this, but are hard to measure or infer.



Bio-chemical networks

Most biological systems can be described as a set of bio-chemical
reactions, to be intended as a modelling language.
(warning: not suited for systems involving large protein complexes)

gene —>kp gene + mrna T H \ Y B
mrna —>k mrna + protein l,’%ﬂ
protein + protein —>1 dimer | \b ) W’“ \
dimer —>o protein + protein ’}gg" \\;“\ ﬁl\// \vj !
dimer + gene —>wp gene_repr f W\m'ﬂ
gene_repr —>u dimer + gene RS
promoter gene

We are typically interested in the dynamic behaviour.
Kinetic constants are crucial for this, but are hard to measure or infer.



Dynamic Modelling
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Dynamic Modelling

d[S]/dt
S E ES d[E]/dt
A+ - — d[ES)/dt
e

d[P]/dt
E ) K=10
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n=2

S+ Ekxk<—>k1ES n=a
ES —>k P+E

_K1[S][E] + KO[ES]
K1[S][E] + KO[ES] +k[ES]
K[ES] - KO[ES] + k1[S][E]
K[ES]
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Concentration




Dynamic Modelling

/

N d[S)/dt = -k1[S][E] + KO[ES]
s e s d[E)/dt =-k1[S][E] + kO[ES] +k[ES]
A+ - — d[ES)/dt = K[ES] - kO[ES] + K1[S][E
V4 d[P]/dt =

E ) K=1
+ ‘ n=0.5
n=

1
'S+ E vo<—>ki ES ::i
ES —>« P+E

Concentration

Under time-scale separation, we can Tme . _ - - — — ~ - -
assume d[ES]/dt = 0, getting the [;d[P]/dt — Vimax [SI/(K + [S])
classic Michaelis Menten kinetics: -

Cooperation/competition between enzyme ~ e
and substrate results in the Hill kinetics: L/ At=Vmax [SIART +{S]7)



Dynamic Modelling

d[S]/dt
L0 — ——— d[E]/dt
osl | d[ES]/dt
B | d[P]/dt
"l K=10 |
o4 n=0.5 | c
= 2
n=4 8
0 10 20 30 40 50 60 70 80 8 \“

Under time-scale separation, we can
assume d[ES]/dt = 0, getting the
classic Michaelis Menten kinetics:

Cooperation/competition between enzyme

= -K1[S]]
-k1[S]
S]
S]

] + kO[ES]
[E]

E

E] + kO[ES] +K[ES]
-K[ES] - KO[ES] + k1[S][E]
k[E

and substrate results in the Hill kinetics:

d[P]/dtZVmax [S]n/(Kn + [S]n)



Signal transduction networks

Chemoknes,
Honnans,
Swvival Faclons frarsmters Crowth Faclors -
{ty.. IGF1) {eq., nedeuking, (2.0, G FGE "“NT;:::'W
l serotonn, etc.) l 1

| IS dpch IS | —.M!!"'IS
il - RTK _ ooz ="~

Wt

[ l‘//PLC - J G250, FYMShe l '
T~ -
PI3K J G-Protein REs < FAK Dishevaliey —
-——t ¢ sre
T n.‘kr \ e M * at " GS'K-35
/ ' PKC Acamylate '
] ( Arke “ cyclase NEK N Hadgehoe
a ' MNF-KD ‘ < e ARG /
- Y o
P a » v o
Cylukimns _é‘; JAKS IKE l Plf' ) MEKK  MAPK MKK F-catenin
(2. FPC) b4 T T STAT3S \
= R ) ‘ \ 3
Iy 4N \ N\ Ay Mac: =
Bl xL A\ Mux - Max ERK  INKs 1]
\,
Fos  Jun 7]
Cylozhrome C . \\ E
. . &
v e
Caspass € S
Caspasa & —» @
[
FADD e _1
\\ Belkz \
| Bac"~~‘\;Ml‘— Bax <
Avnurmally 3

Fask — Bim—="

f

Death factors
(e.g.rasL, Trf)

Sersm




Signal transduction networks
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Signal transduction networks

Proc. Nat. Acad. Sci. USA
Vol. 93, pp. 10078-10083, September 1996
Biochemistry

MA P
Ultrasensitivity in the mitogen-activated protein kinase cascade

CuI-YING F. HUANG AND JAMES E. FERRELL, JR.T
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Signal transduction networks

Proc. Nat. Acad. Sci. USA
Vol. 9 pp- 10078-10083, September 1996
Biocl hmstr)

Ultrasensitivity in the mitogen-activated protein kinase cascade

CuI-YING F. HUANG AND JAMES E. FERRELL, JR.T
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Signal transduction networks

Negative feedback and ultrasensitivity can bring about oscillations in the

mitogen-activated protein kinase cascades

Boris N. Kholodenko

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA

Ras/MKKKK




Signal transduction networks

Negative feedback and ultrasensitivity can bring about oscillations in the

mitogen-activated protein kinase cascades Ras/MKKKK

Boris N. Kholodenko N

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA 1 \\
MKKK MKKK-P

MAPK MAPK-P MAPK-PP

I (N T B

Table 1. Kinetic equations comprising the computational model of the
MAPK cascade.

d[MKKK]}/dt = v,-v,

d[MKKK-PJ/dt = v;-v,

d[MKK]/dt = vg-v3

d[MKK-P)/dt = v3 + vs — v4 — Vg

d[MKK-PP)/dt = v4 — Vs

d[MAPK]/dt = v4-v;

d[MAPK-P)/dt = v; + vg — Vg — Vyq

d[MAPK-PP]/dt = vg — Vg

Moiety conservation relations:
[MKKK] o1 = [MKKK] + [MKKK-P]
[MKK]ora1 = [MKK] + [MKK-P] + [MKK-PP]
[MAPK] o1 = [MAPK] + [MAPK-P] + [MAPK-PP]




Signal transduction networks

Negative feedback and ultrasensitivity can bring about oscillations in the

mitogen-activated protein kinase cascades Ras/MKKKK
Boris N. Kholodenko N
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d[MKK-PJ/dt = v3 + vs — v4 — Vg

d[MKK-PP)/dt = v4 — Vs

d[MAPK]/dt = v4-v;

d[MAPK-P)/dt = v; + vg — Vg — Vyq
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Moiety conservation relations:
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[MAPK]oia1 = [MAPK] + [MAPK-P] + [MAPK-PP]
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Signal transduction networks

Negative feedback and ultrasensitivity can bring about oscillations in the

mitogen-activated protein kinase cascades

Ras/MKKKK
< ~
Boris N. Kholodenko .
A\,
Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA 1 \\
MKKK MKKK-P )
A 30 xR 5 A :
Reecs o ramber Rate \\Tuﬂliﬂn Pargnetsr veloes

MAPK concentrations (nM

oy}

MAPK concentrations (nM)

N

o

o
N

200 -

50

—~
—
—

I
| /
L/ l\_x/

A

W]

60 80
TIME (min)

100

120

140

TIME (min)

- PR

0

Vo MKRKINGL | (OMAPR-PPIR &, [MEKRTD
Vo MEKK-PIES | MERK-)

A MKKK-#CIMKKPX. + MKK])

do MKICCL IMKICI PR, | [MKKF])

¥y MKK- Gl IMKK-P

Ve MEK-FINK, | [MEK-T)

e MKE-PPLMAPKIE, — [MAPKD

ke MKE-PPMAPK PR, [MAPK-T]

Y, MAPK-PIVIK, | [MATK-EP))
Vy[MAPK-PUE, | MAPK-F])

Tetal concentrations. MK, — 100, MXK],,, = 300; MAPK' . — 300

Vi=25a—-Lk-Gk -
V=025 =R
13,

ke = 0.025: K. = 15
¥, = 05 Ky — 15;
Vi = 0.5 Ky = 15

Table 1. Kinetic equations comprising the computational model of the

MAPK cascade.

d[MKKK]}/dt = v,-v,

d[MKKK-PJ/dt = v;-v,

d[MKK]/dt = vg-v3

d[MKK-P)/dt = v3 + vs — v4 — Vg

d[MKK-PP)/dt = v4 — Vs

d[MAPK]/dt = v4-v;

d[MAPK-P)/dt = v; + vg — Vg — Vyq

d[MAPK-PP]/dt = vg — Vg

Moiety conservation relations:
[MKKK] o1 = [MKKK] + [MKKK-P]
[MKK]ora1 = [MKK] + [MKK-P] + [MKK-PP]
[MAPK] o1 = [MAPK] + [MAPK-P] + [MAPK-PP]
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Genetic Networks
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Genetic Networks

A typical example of genetic
regulatory network is the circadian
clock (here in cyanobacteria,
peculiar), an oscillatory module

regulated by alternation of light
and dark.

Hertel et a 2013
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A Noisy Life



A Noisy Life

Michael B. Elowitz, et al.
Science 297, 1183 (2002);

AYAAAS

Molecular interactions and gene
expression in single cells are
random events, the fewer the
molecules involved, the more the
effect of noise.

Models have to account for this.

DQI: 10.1126/science.107C

Stochastic Gene Expression in a Single Cell

A rpP22 C RP22AreCAL PTG
- -

-

T

Fig. 2. Noisc in £. coli. CFP and YFP fluorescence images were combined in the green and red channels,
respectively. (A) In strain RP22, with promoters repressed by the wild type lacf gere, red and green
indicate significant amounts of intrinsic noise. (B) RP22 grown in the presence of lac inducer, 2mM IPTG.
Both fluorescent proteins are expressed at higher levels and the cells exhibit less noise. (€) As in (B).
except the recA gene has been deleted, 'naeasing intrinsic noise. (D) Another wild-type strain, MG22,
shows nolse characteristics similar to those of RP22. (E) Expression levels and no'se 'n unrepressed fact
strain M22 are similar ta those in fae/  strains 'nduced vith IPTG (B). (F) M22 cells regulated by the
Repressilator (16), an oscillatory network that amplifies intrinsic noise.



A Noisy Life

Michael B. Elowitz, et al.
Science 297, 1183 (2002);

AYAAAS

Molecular interactions and gene
expression in single cells are
random events, the fewer the
molecules involved, the more the
effect of noise.

Models have to account for this.

What are the sources of noise in
cells?

DQI: 10.1126/science.107C

Stochastic Gene Expression in a Single Cell

C FP22ArecA PTG

F Mzz+Repressilator

Fig. 2. Noisc in £. coli. CFP and YFP fluorescence images were combined in the green and red channels,
respectively. (A) In strain RP22, with promoters repressed by the wild type lacf gere, red and green
indicate significant amounts of intrinsic noise. (B) RP22 grown in the presence of lac inducer, 2mM IPTG.
Both fluorescent proteins are expressed at higher lcvci and the cells exhibit less noise. (C) As in (B),
except the recA gene has been deleted, 'naeasing intrinsic noise. (D) Another wild-type strain, MG22,
shows nolse characteristics similar to those of RP22. (E) Expression levels and no'se 'n unrﬂ)msscd faet
strain M22 are similar ta those in fae/  strains 'nduced vith IPTG (B). (F) M22 cells regulated by the
Repressilator (16), an oscillatory network that amplifies intrinsic noise.

Intrinsic and extrinsic contributions to stochasticity in

gene expression

Peter S. Swain*!!, Michael B. Elowitz*$, and Eric D. Siggia*



Is Noise Always Detrimental?

What is the role of noise in cells?
|s it a nuisance to cope with, or it
has also been exploited by Nature?



Is Noise Always Detrimental?

What is the role of noise in cells?”
. . . . Stochasticity and Cell Fate
|s it a nuisance to cope with, or it Richard Losick and Claude Desplan

. Sci 320, 65 (2008);
has also been exploited by Nature? DO 10,1185 fasise. 1147888

RAYAAAS

Fig. 1. Stochastic distributicn of cell fates in bacteria and in insect
photoreceptars. (A) Fluorescence micragraph of 8. subtilis cells containing the
coding sequence for GFP fused to the promoter for a gene under the control of
the competence regulator ComK. The cells were visualized with a red stain;
the green fluorescence reveals the subpopulation of cells that are ON for
ComK. The cells are 1 to 2 um in length. (B) Photograph of a whole adult
Drosophilo retina whose R8 photoreceptors were stained with antibodies to
the green-sensitive photopigment Rhé6 (green) and the blue-sensitive phote-
pigment Rh5 (blue). The harizontal distance between photoreceptors is about
10 um.



Is Noise Always Detrimental?

What is the role of noise in cells?
|s it a nuisance to cope with, or it
has also been exploited by Nature?

Stochasticity and Cell Fate

Richard Losick and Claude Desplan

Science 320, 65 (2008);

DOI: 10.1126/science.1147888
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Fig. 1. Stochastic distributicn of cell fates in bacteria and in insect
photoreceptars. (A) Fluorescence micragraph of 8. subtilis cells containing the
coding sequence for GFP fused to the promoter for a gene under the control of
the competence regulator ComK. The cells were visualized with a red stain;
the green fluorescence reveals the subpopulation of cells that are ON for
ComK. The cells are 1 to 2 um in length. (B) Photograph of a whole adult
Drosophila retina whose 238 photoreceptors were stained with antibodies o
the green-sensitive photopigment Rhé6 (green) and the blue-sensitive phote-
pigment Rh5 (blue). The harizontal distance between photoreceptors is about
10 um.



Is Noise Always Detrimental?

What is the role of noise in cells?
Stochasticity and Cell Fate

|s it a nuisance to cope with, or it Richard Losick and Claude Desplan
. Science 320, 65 (2008);
has also been exploited by Nature”? DOI: 10.1126/science. 1147888
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|eve| . N A Fig. 1. Stochastic distribution of cell fates in bacteria and in insect
photoreceptars. (A) Fluorescence micragraph of 8. subtilis cells containing the
cI - coding sequence for GFP fused to the promoter for a gene under the control of

the competence regulator ComK. The cells were visualized with a red stain;
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Strategies for cellular decision-making

Theodore J Perkins' and Peter S Swain®* extracellular envir
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Noise-induced oscillations

Sa
5 “T\) ‘ Mechanisms of noise-resistance in genetic oscillators

8,
+ ® José M. G. vilar**, Hao Yuan Kueh*, Naama Barkal*, and Stanislas Lelbler*S
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Noise-induced oscillations

bMA

\

W ®

@ d,
&Yﬁw;%

®+®

N HBMR

dD 4/dt =
dDg/dt =
dD/dt =
dDRg/dt =
dM 4/dt =

dA/dt =

dMR/dt =
dR/dt =
dC/dt =

MR
/ &Rl
D

A R R

04D — y4D4A

0rD R — yrDRA
YaD4A — 04D 4
YrDrA — 0rDg

ayD)y + asDy — Sy My

BaM4 + 04D + 0rDk
—A(yaD4 + yrDgr + yeR + 84)
arDg + agDr — 8y Mg
BrMgr — ycAR + 8,4C —
YeAR — 8,4C,

5xR

2000

1500

= 1000

50

S

2000

1500 |
x 1000 |

500 H| ||

2000

1500

= 1000

501

=3

2000

1500

ac 1000

500 H

=]

o

Mechanisms of noise-resistance in genetic oscillators
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Noise-induced oscillations

[——b

_®|_’

Ty
Yc
8,

®+®

EN HOMR

\/\

dD 4/dt =
dDg/dt =
dD/dt =
dDRg/dt =
dM 4/dt =

dA/dt =

dMR/dt =
dR/dt =
dC/dt =

DA R R

04D — yaD4A
0rDk — yrDrA
YaD4A — 04D
YrDrA — 0rD%
ayD)y + asDy — Sy My

BaM4 + 04D + 0rDk
—A(yaD4 + yrDgr + yeR + 84)

arDyg + agDg — BMRMR
BrMy — y¢AR + 8,C — xR
YcAR — 6,C,

2000

1500

~ 1000

50

S

o

ilM ii
ol‘li

i 1

Il

l;i
iii

I

2000

10 200

300

1500 |
x 1000 |

500 |

2000

1500

< 1000 ff

501

o

S
O r——x

2000

1500
& 1000

50

=]

“MHi

iii

v i

i

IR

i

time (hr)

400

Mechanisms of noise-resistance in genetic oscillators

José M. G. vilar**, Hao Yuan Kueh*, Naama Barkal*, and Stanislas Lelbler*S

3000

[%2]

2 |

3 2000 H\ 1

ko) 1\

o 1

€ 1000 ’ \ 1

—

5 X -

17} : =

» 0 : : :

] 100 200 300 400

S 3000 . = .

o I

o . A \ )

O 2000 | A \ i\‘ N A 4

C Voo \ \ [\ i

g ‘ \ } \ \ \ [

€ 1000 { \ X \ \ \ ‘ \ 4

> A \ \, ) \K

c \w b kY i W |
ol Al T ¥ B h\ii L 1 L "V'\\i. |

0 100 200 300 400
time (hr)

Noise can have a
stabilising effect:

' it makes oscillations
persistent

near critical points.



Stochastic Modelling

Chemical Reaction Networks can be modelled as Markov Population Processes.
Variables count the amount of molecules per each species. Update vectors are
defined by reactions. Rates depend on the total population (mass action, Hill).



Stochastic Modelling

Chemical Reaction Networks can be modelled as Markov Population Processes.
Variables count the amount of molecules per each species. Update vectors are
defined by reactions. Rates depend on the total population (;rrla’é/s_agtio_r}], Hill).
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gene —>kp gene + mrna
mrna —>k mrna + protein
protein + protein —>k1 dimer
dimer —>ko protein + protein

dimer + gene —>kp gene_repr
gene_repr —>xu dimer + gene



Stochastic Modelling

Chemical Reaction Networks can be modelled as Markov Population Processes.
Variables count the amount of molecules per each species. Update vectors are
defined by reactions. Rates depend on the total population (mass action, Hill).

gene —>kp gene + mrna
mrna —>k mrna + protein

protein + protein —>k1 dimer
dimer —>ko protein + protein

dimer + gene —>kp gene_repr
gene_repr —>xu dimer + gene

Counting variables:

Xgene, Xgene_repr, Xmrna, Xprotein, Xdimer

Propensity of a reaction (expected frequency)
follows the mass action law:

a1(Xx) = Kp Xgene; as(X) = Ko Xdimer Xgene;

as(X) = K1 Xprotein (Xprotein -1)/2;

Update of a reaction: net variation of each species
vi = (0,0,1,0,0), v3 = (0,0,0,-2,1), vs = (-1,1,0,0,-1)



Stochastic Modelling -

Chemical Reaction Networks can be modelled as Markov Population Processes.
Variables count the amount of molecules per each species. Update vectors are
defined by reactions. Rates depend on the total population (mass action, Hill).

)

< Z \55 ° Counting variables:
gene —>kp gene + mrn + Xgene, Xgene_repr, Xmrma, Xprotein, Xdimer

MM& —>k mrna + protein Propensity of a reaction (expected frequency) <
follows the mass action law:

1(X) = Kp Xgene; @s(X) = Ko Xdimer Xgene; 4
as(X) = K1 Xprotein (Xprotein -1)/2;<~
dimer + gene|—>ko g\%ﬂ;ﬁ:/f@r Update of a reaction: net variation of each species
gene_tepr —zip dimer + gene X"‘ =(0,0,1,0,0), va = (0,0,0,-2,1), vs = (-1,1,0,0,-1)

protein + protein/—>k1 dimer
T ~——
dimer —>ko protein + protein

B N Typical rate functions

_ WL - Mass Action: rate proportional to

50| \ Y fﬁ concentration/ numbers. The only one having
' M \ a physical interpretation. J NG

| /ﬂ\ (\ / \ ' Fethe— - = Ko Oh

/ | M \j/ - Hill Kinetics. Typically used for enzymatic

V réactions or to imFIicitIy model gene
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Rates and Scaling - @y N 2107
X

BIOChemIC§| reactions happen in a volume V. We can convert molecule numbers into

concentrations (often micro or(nano-moldr) dividing by V.

ot cguu‘—\\hk pmolr ool s
Molecule numbers: variables X count the number of molecules. Updates are integers.
Concentrations: variable x are concentrations. Updates are multiple of 1

How do rates change while passing from numbers to concentrations?
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_Example dimerisation P monomer, P2 dimer)




Rates and Scaling

If we express the model in terms of concentrations, by multiplying rate and update

vector of each transition and adding them up, we obtain the standard deterministic
model of chemical kinetic, as a set of ODEs, the reaction rate equations
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