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Selective encapsulation and isolation of molecules are one
of the most attractive features of cagelike molecules.[1]

Intermolecular chemical reactions of two or more substrates
encapsulated in a molecular cage can be remarkably accel-
erated and suitably controlled as a result of the dramatically
increased concentration and the strictly regulated orientation
of the substrates in the cavity.[2] Such systems provide artificial
mimics of the sophisticated active site of enzymes.[3] Recently
we reported that structurally well-defined coordination cages
(1 and 2), which self-assemble from six metal ions and four
tridentate ligands, selectively encapsulate large organic mol-
ecules at the fixed position of the nanosized cavity.[4, 5] Thus,
they are expected to facilitate intermolecular [2�2] photo-
chemical reactions and control the stereo- and regiochemistry

in stringent geometrical environment. The photodimerization
has been studied extensively in some media such as micelles,
zeolites, organic hosts (for example, cyclodextrins and cucur-
biturils),[6] and crystals.[7] However, a high degree of stereo-
and regiochemical control is still desired. Here we report
remarkably accelerated, highly stereoregulated [2�2] photo-
dimerization of acenaphthylenes (3)[8] and naphthoquinones
(4)[9] within the coordination cages (1 and 2) in an aqueous
medium that give rise to only syn and head-to-tail isomers.

Quantitative formation of a syn dimer of acenaphthylene
(3a) within cage 1 was clearly observed in the following
experiment: An excess amount of 3a was suspended in a
solution of 1 in D2O (2.0 m�) for 10 min at 80 �C. Analysis of
the D2O solution after filtration of free 3a by 1H NMR
spectroscopy showed formation of the encapsulation complex
1 ¥ (3a)2 had occurred (Figure 1a). The signals of 3a were
highly upfield-shifted as a result of the efficient encapsulation
in the cavity. After the clear solution was irradiated (400 W)
for 0.5 h at room temperature, the signals derived from 3a
completely disappeared and one set of new signals appeared
at �� 5.84, 5.61, 3.39, and 2.87 (Figure 1b). The signals of 1

(�� 9.28, 8.52, and 2.99; Figure 1a) remained unchanged,
which suggests that no decomposition of cage 1 occurred
during the irradiation. The product was identified as
syn dimer 5a after extraction with CDCl3, and the yield was
estimated to be �98% based on 3a (Figure 1c).[8, 10]

The following experiments revealed that the cavity of cage
1 dramatically accelerated the reaction and strictly controlled
the stereochemistry of the product. No reaction took place in
benzene (2.0 m�) after 0.5 h in the absence of cage 1.[11] At
higher concentrations (150 m�, 3 h, in benzene), adducts were
formed in low yield with poor stereoselectivity (syn : 19%,
anti : 17%).

The regiochemistry of the [2�2] addition of asymmetrically
substituted 1-methylacenaphthylene (3b) [Eq. (1)] was also
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Figure 1. 1H NMR spectroscopic analysis (500 MHz, D2O, 27 �C) of the
photodimerization of 3a within cage 1: a) before irradiation (1 ¥ (3a)2) in
D2O; b) after irradiation (400 W) for 0.5 h; c) after extraction with CDCl3.

highly controlled by the cage. The irradiation of the 1 ¥ (3b)n
(n� ca. 2) complex for 3 h at 0.5 m� gave head-to-tail
syn isomer 5b in �98% yield without any other regio- and
stereoisomers.[8, 12, 13] The photoirradiation of the sterically
demanding substrate 3b without the cage in benzene no
longer gave the adducts, even at a very high concentration
(150 m�).

The photodimerization of naphthoquinones (4) was most
effectively controlled by the bowl-shaped coordination host
2.[5] Thus, naphthoquinone (4a ; 5.0� 10�2 mmol) was added
to an aqueous solution (3.0 mL) of 2 (15.0� 10�3 mmol,
5.0 m�) and the mixture was stirred for 10 min at 80 �C to give
encapsulation complex 2 ¥ (4a)n (n� ca. 2; Figure 2a). After
filtration of excess 4a, the resulting solution was irradiated for
3 h at room temperature. The 1H NMR spectrum of the
solution showed very broad signals (Figure 2b) which sug-
gested the conformation of the host×s framework was
restricted by strong interactions between the host and the
guest.[2g] The 1H NMR spectrum of the product obtained after
extraction with CDCl3 clearly showed the formation of
syn dimer 6a in �98% yield (Figure 2c).[9, 10] This result
strikingly contrasts to that obtained in benzene where the
anti dimer (21%) was predominantly formed over the
syn dimer (2%) at a high concentration (50 m�).

Figure 2. 1H NMR spectroscopic analysis (500 MHz, D2O, 27 �C) of the
photodimerization of 4a within bowl 2 : a) before reaction (2 ¥ (4a)2) in
D2O; b) after irradiation (400 W) for 3 h; c) after extraction with CDCl3.

The structure of 2 ¥ 6a was confirmed by X-ray crystallo-
graphic analysis. A single crystal suitable for X-ray analysis
was obtained by diffusing acetone into an aqueous solution of
2 ¥ 6a at room temperature for 10 days. As expected, the
crystal structure showed the dimer 6a in the syn configuration
in the cavity (Figure 3). The framework of 2 adopted a box-
shaped conformation to nicely accommodate 6a in the cavity

through aromatic in-
teractions (� ±� and
CH±� interactions of
around 3.5 ä).[2g] Two
aromatic rings of 6a
were pinched by the
host and significantly
distorted to maximize
the host ± guest inter-
actions.

The regioselectivity in the photodimerization of 2-metyl-
naphthoquinone (4b) within the cage 1 was very high (96%
head-to-tail), while moderate within the bowl 2 (78% head-
to-tail).[9b, 13] Interestingly, the regioselectivity was remote-
controlled by a substituent on the naphthalene ring: 5-me-
thoxynaphthoquinone (4c) was photodimerized in the bowl 2
with 79% head-to-tail selectivity. The irradiation of 4b
without the cages (50 m�, 3 h, in benzene) did not afford
any dimerized products, while that of 4c gave the anti dimer in
21% yield.

The present study has shown that the self-assembled
nanocages act as molecular flasks to promote intermolecular
[2�2] photodimerization of large olefins in a surprisingly
efficient fashion. The cages are readily available and their
cavities are extraordinarily large, which makes possible the
creation of new chemistry within the localized microspace of
discrete molecules.
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Figure 3. The crystal structure of 2 ¥ 6a : a) top view; b) side view.

Experimental Section

Photodimerization of 3a within coordination cage 1: Acenaphthylene (3a ;
6.0 mg, 39.5� 10�3 mmol) was suspended in a solution (3.2 mL) of 1
(19.3 mg; 6.5� 10�3 mmol, 2.0 m�) in D2O and the mixture was stirred for
10 min at 80 �C. After any free 3a had been filtered off, the clear solution
was placed in quartz or Pyrex cells and irradiated with 400 W high-pressure
mercury lamp (SEN LIGHTS CORP. HB400X-15) for 0.5 h at room
temperature. The solution was extracted with CDCl3 and the product
identified as syn dimer 5a in a yield of �98% (by 1H NMR spectroscopy).
The crude product was purified by column chromatography (silica gel) to
give 5a as a colorless solid (1.8 mg, 92% yield).[8] Satisfactory spectroscopic
data were obtained for 5a, 1 ¥ 5a, and for all the compounds described in
this paper (see Supporting Information).

X-ray crystal structure of 2 ¥ 6a : Single crystals suitable for X-ray analysis
were obtained by diffusing acetone into an aqueous solution of 2 ¥ 6a
(15.0 m�, 0.5 mL) at room temperature for 10 days. Crystal data for 2 ¥ 6a :
C104H108N48O40Pd6, Mr� 3308.78, crystal dimensions 0.25� 0.20�
0.20 mm3, tetragonal space group P43212 (no. 96), a�b� 25.013(3), c�
25.063(5) ä, V� 15680(4) ä3, Z� 4, �calcd� 1.402 gcm�3, F(000)� 6656,
radiation, �(MoK�)� 0.71073 ä, T� 113(2) K, reflections collected/unique
101179/18140 (Rint� 0.2097). The structure was solved by direct methods
(SHELXL-97) and refined by full-matrix least-squares methods on F 2 with
814 parameters. R1� 0.1061 (I� 2�(I)), wR2� 0.2724, GOF� 1.046; max/
min. residual density 1.652/� 1.694 eä�3. Further refinement was unsuc-
cessful because of the high degree of disorder of the counterions and water
molecules. CCDC-174264 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crys-
tallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax:
(�44)1223-336-033; or deposit@ccdc.cam.ac.uk).
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