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Random Walks

Dependence of (R*(t)) on t :

e normal behavior: (R*(t)) ~ t
for the brownian motion

o superdiffusive behavior: (R*(t)) ~ t* with v > 1/2
in models where self-intersections are unfavored

e subdiffusive behavior  (R?(t)) ~ t*¥ with v < 1/2
in models where self-intersections are favored

t (time) «=> N (number of steps); t = N At



RVWV and diffusion

® Consid

er the normal behaviour: (R*(t)) ~ ¢

We d
for large ¢,

where
for large ¢, D

For d=1:

efine the autodiffusion coefficient:

D(t) = o (AR(t))

d is the dimensionality of the system;
should go asymptotically to a constant value

(R%) = N2

D=1 (ARt)?) =22 = L2

2t 2At
(constant, in this case)



RWV and diffusion in ID

The probability that a RW of N steps (N large) ends at position x is given by:

2 2

62
Considering that ¢ = NAt, defining D = AL and measuring x in units of ¢, we get:

[ 1 2
P(Cﬁ,t) = —7'('Dt exp (_4—1)]';)

which is the fundamental solution of the diffusion equation, a part from a factor of 2 in the
normalization due to the spatial discretization. The continuum solution is:

1 2
P(@,t) =\ ®P\~1p;

i.e., a Gaussian distribution with ¢? = 2Dt which describes a pulse gradually decreasing in
height and broadening in width in such a manner that its area is conserved.




RWV and diffusion on a 3D lattice

Discretized model:
if 1 step = move by 1 bond lenght,
we expect:

RMS = /(R2%) = VN dyn
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(=> D depends on the structure of the lattice)



Example of diffusion in solids
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Vacancies diffusion in solids
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vacancies themselves can diffuse!



... but typically:
more than one single interstitial,
more than one single impurity,
or more than one single vacancy....

A SIMPLE RW MODEL
IS NOT ENOUGH:!



Lattice Gas model

interaction !

Consider a finite lattice with some density p of N, particles. The particlesytan move on the lattice
by jumps to the nearest sites, but two particles can not occupy the same site. This is a simple
example of a restricted random walk (see above). The physical interpretation is e.g. vacancies
moving in a lattice.

To simulate this kind of system, we need a bit more of an advanced approach than before. First of

all, we need to simulate the motion of all the particles at the same time, not taking the average

over many independent single-particle motions as was done before.



2D Lattice Gas model

1° Choose number of particles N, number of steps Ngieps, Side length L. Set At and

lattice size a. (our old /)
2° Set all positions in the L X L grid to be empty

3 a° Generate N, particle coordinates randomly on the grid, checking that no two particles
p P y g g

end up on the same points.
3 b° Mark the points with the particles in the L X L grid as filled.

4° Loop over MC steps of time At
5° Loop from 1 to N,
6° Pick one particle ¢ at random
7° Find which positions it can jump to. If none, return to step 6° (*)

8° Let the particle jump to one of the allowed directions j by a displacement
x; = x; + 0x;,Yy; = Yi + 0y;, enforce periodic boundaries on x and y
9° Set dx; = dx; + dx, dy; = dy; + dx (where periodic boundaries do not play

a rolel!)

10° End loop from 1 to N,
11° Update time t = t + At
12° End loop over MC steps |
13° Output (AR®) = (dx: + dy.) and calculate diffusion coefficient.D(t) = 2—dt<AR(t)2>

average over the particles




Lattice Gas model

(*) Different dynamics can be implemented, for instance:

® find which nearest neighbor sites are free
and jump in one of them randomly chosen
(if any) (this is actually mentioned in the
previous slide and implemented in the code
we are going to discuss)

® choose randomly one nearest neighbor site
and jump only if it is free

Different dynamics => different behavior with concentration



Lattice Gas model

The crucial difference here to the previous random walk algorithms is that the outer loop goes
over MC steps, the inner one over particles. When the walkers are independent of each other

(“non-interacting” ) we can deal with one walker at a time, saving memory since storage of all
particles is not needed.

But here the walkers (the particles) are “interacting”




Programs:

on

$/home/peressi/comp-phys/X-latticegas-fract/
[do: $cp /home/peressil.../X-latticegas-fract/* .]
or on moodle2

latticegas.f90
dla2d.f90
eden.f90



Implementation of the model (latticegas.f90)

logical,allocatable::lattice(:,:) ! (occ./non occ.=.true./.false.)
integer,allocatable::x(:),y(:) ! istantaneous positions

double precision, allocatable :: dx(:),dy(:) !displ. from beginning
integer :: free(4),nfree ! occupation of nearest neighbors
integer :: dxtrial(4),dytrial(4) ! trial move on the square latt.
integer :: xnew(4),ynew(4) ! 4 new possible pos. in SQ latt.

allocate(lattice(0:L-1,0:L-1))
allocate(x(Np),y(Np))
allocate(dx(Np),dy(Np))

lattice = .false. ! Mark all positions as empty

! Enumerate directions: 1l=right; 2=left; 3=up; 4=down
dxtrial(l)=+1; dytrial(l)= 0;
dxtrial(2)=-1; dytrial(2)= 0;
dxtrial(3)= 0; dytrial(3)=+1;
dxtrial(4)= 0; dytrial(4)=-1;



INIZIALIZE THE LATTICE : Generate Np particles on LxL lattice
do i=1,Np

do ! Loop until empty position found, UNBOUNDED LOOP!
call random number(rnd) !which has dimension(2)
X(1)=int(rnd(1l)*L)
y(1i)=int(rnd(2)*L)

if (lattice(x(i),y(1i))) then
! Position already filled, loop to find new trial
cycle !REMEMBER: JUMP AT THE END OF THIS LOOP (NOT EXIT)
else
lattice(x(1),y(1))=.true.
! Successful, place next particle
exit
endif
enddo

dx(i)=0.0d0; dy(i)=0.0d0;

enddo



! MONTE CARLO LOOP

do istep=0,Nsteps-1 ! Loop over MC steps

do isubstep=1,Np ! Move all particles on ave. once every MC step
! Pick one particle at random
call random number (rndl)

i=int(rndl*Np)+1 ! 1 =< i =< Np;
! Find possible directions (j=1,...,4) for moving, store them
in| free() ... (NOTE: different possible recipes !!!)

! If no free positions, get a new particle ; otherwise choose
! one possible direction (Jj) and update (x,y) with (xnew,ynew):

!Empty o0ld position and fill new

lattice(x(1),y(1))=.false.
lattice(xnew(j),ynew(]j))=.true.
enddo
t=t+deltat

enddo



Another fundamental part (look at it!):
calculation of distance from initial pos. for each particle
(do not use PBC for that, remember!),
accumulation of data...

! Get total displacement from dx,dy
dxsum=0.0d0; dysum=0.0dO0;

dxsgsum=0.0d0; dysqgsum=0.0d0;

do i=1,Np

dxsum=dxsum+dx(i); dysum=dysum+dy(i);
dxsgsum=dxsgsum+dx (1) *dx(1);
dysgsum=dysqgsum+dy (1) *dy(1);

enddo

print *,’dxsum’,dxsum,’ dysum’,dysum

print *,’dxsgsum’,dxsgsum,’ dysgsum’,dysgsum



Concentration dependent diffusion coefficient

And here is a series of results:

concentration

Np L Np/L"2
10 100 0.001
10 100 0.001
100 100 0.01
100 100 0.01
10000 1000 0.01
1000 100 0.1
1000 100 0.1
100000 1000 0.1
3000 100 0.3
3000 100 0.3
6000 100 0.6
6000 100 0.6
9000 100 0.9
9000 100 0.9
900000 1000 0.9
9900 100 0.99
9900 100 0.99

(cm~2/s)

P P, P, = 0101 N0 O O O OO = = ©

.769973881166823E-008
.127346430730184E-007
.028685543050629E-007

.469519884885580E-008
.899003879678247E-008

.111043889255736E-008
.427090885414200E-008
.403952985695557E-008
.284148565973272E-008
.915751903784448E-008
.895798261670045E-008
.913229928124830E-008
.771291645136659E-008
.786338311620434E-008
.824779088931029E-008
.831247452488705E-009
.860272704661156E-009

Here: 2d example

1 MC step = 1 ns
unit step length = 2 A

What does this mean? At small concentrations, the system behaves essentially as an unconstrained
random walk. For that one, we know that (A R?) should be equal to a® N, where N is the number

of steps, and a is the jump distance, and the result for the diffusion coefficient should be

4t ANAt 4 X 1ns

_(AR) _QAPN _ 2A? _pom’

S



Discussing Ex. |

(1.a) Study D(t) for a fixed value of p, for instance 0.2. Although D is
defined as the limit t = o0, it is instructive to follow D(t) as a function of
time: for this model, it fluctuates after a short equilibration time and no
appreciable improvements in the statistics are achieved by increasing t.
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this is D(t);
calculate it for t — o0



conteggi

A usually, we can estimate the statistical error
associated to the estimate of D
(here: histogram done collecting data in the time evolution of D(t))
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size effect in the determination of D (concentration p fixed)!

(more later)



(I.1) ... Better statistics for D can be obtained by averaging D over as many

articles as possible (i.e., for a given p)... Here p=0.03

R%(t)

and
expected
behavior
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we expect the limit of the simple 2D RW on a square lattice, with D=0.25)



Ex. 1 (...) Verify that deviations of D(t) from its mean value are proportional to the
inverse square root of the total number of particles.

log{var) vs log{Np); rho=6.0883 with Np=13,58,200

- *vard’ u (log($1)):(log($2)) @
a

-5.9

. |
-6.5

i

-7
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-8 A .

2.5 3 3.5 4 a9 5 29

0%p proportional to I/Np



Concentration dependent
diffusion coefficient
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example on web (interactive Java applet)
based on a code with the same algorithm:

http://www.physics.buffalo.edu/gonsalves/phy41 1-506_spring01/Chapter|5/apr20.html

(visited May 2017)


http://www.physics.buffalo.edu/gonsalves/phy411-506_spring01/Chapter15/apr20.html
http://www.physics.buffalo.edu/gonsalves/phy411-506_spring01/Chapter15/apr20.html

Addition of further interactions

@ Attractive (J>0) nearest-neighbor (NN) interaction only:
total energy of the system:

=> Trend to aggregation (diffusive behavior is limited to a
transient)

@ Add a repulsive (J<0) next-nearest-neighbor (NNN)
interaction: total energy of the system:

1
E = —5 Z Jijnmj
(27)
=> The behavior depends on the ratio R = Jynn/JNN

@ With finite NN and/or NNN interactions, temperature plays a role



Other models related
to random walks

- diffusion limited aggregated (DLA)
- percolation



Diffusion Limited Aggregation

Several examples of formation of natural patterns showing common features:

Electrodeposition:

§ cluster grown from a copper sulfate solution in an
~ = electrodeposition cell

Dielectric breakdown:

High voltage dielectric breakdown within a block of
plexiglas

These common features that can be captured by very simple models:



D|foS|on Limited Aggregation

simple model of FRACTALS GROWTH, initially proposed for
irreversible colloidal aggregation, although it was quickly realized that the
model is very widely applicable.

® by I.LA.Witten and L.M. Sander, 198

REAL IMAGE (Atomic Field
Microscopy) of a gold colloid
of about |5 nm over a gel
substrate

o | SIMULATION




DLA: algorithm

* Start with an immobile seed on

the plane a walker
S
* A walker is then launched from a ™~
random position far away and is <
allowed to diffuse 0
seed

*If it touches the seed, it is
immobilized instantly and becomes
part of the aggregate -
*We then launch similar walkers - %;3‘:'{;” Yie
one-by-one and each of them Jhg TTEe Eer g
stops upon hitting the cluster S sk <“ B

N
* After launching a few hundred f ’“ * |
particles, a cluster with intricate BN

branch structures results



DLA: algorithm - details

® We launch walkers from a “launching circle” which
inscribes the cluster

® They are discarded if they wander too far and go
beyond a “killing circle”

® The diffusion is simulated by successive displacements in
independent random directions

® After every step, all particles on the cluster are checked
to detect any overlapping with the walker which would
aggregate



Mass

DLA: results
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DLA: interesting quantities

® ina“normal” 2D object: /N X 72

e FRACTAL DIMENSION: the number of

particles /V with respect to the maximum
distance 7 of a particle of thle) cluster from
its center of mass is [V o< 7/, with

1<Df<2

10°

l() 15
25

10

H)-:‘.'l
A
10

0




DLA: algorithm - details Il

® the simplest DLA models: diffusion on a
lattice. On a square lattice, 4 adjacent

sites are available for the diffusing particle to
stick

® |t will stick with certain probability (the
“sticking coefficient”) - to simulate
somehow the surface tension

® (a bit more complicate models: with a sort
of Brownian diffusion in a continuous way)



DLA: results

Sticking Coefficient £ = 1.

1<Df=16<2




DLA: results

Sticking Coefficient £ = 0.5

Sticking Coefficient £ = 0.1

Sticking Coefficient £ = 0.01

Sticking Coefficient £ = 0.001

D¢ — 2

as the sticking coeff. — 0



Models of surface growth

¥ Superfici Frattali
File  Frattal
i =B #| Al

{Supeificie | Grafici |

Lunghezza base
10

0
durata
=

della
simul

8000
seme:

1423

File Frattali o altemarza
olori agni

0 olm| | # & L S TR < ]
TEBIERY Grafic | T I ¥ 7 "I’| mOdeIIo dl

= deposizione
o balistica

max
zione

A Superfici Frattali

modello
~ di Eden

TN NePewi T e TN (e 4 - pee o owerdlivgs 1

colori ogni -
I II DI = hi 86,89 60%  |NSizeSurf: 100 step: 462 [speed: 1721
- - Giafici-

eposiziotie _— _—

I

@
Y 1 A ! 1
Ccasualie .. ! .

______________

see e.g. Barabasi & Stanley, Fractal concepts in surface growth, Cambridge University Press



Percolation

geometric connectivity in a stochastic system;
modeling threshold and transition phenomena

C

i—

 CURRENT

: I
c 0.5 i
' FRACTION OF LUNCUT BONDS (p)

existence of a critical occupation fraction P above which spanning
clusters occur (in nature: mixtures of conducting/insulating
spheres...; resistor networks..)



Percolation

. %

L=8 p=025 L=8 p=0.50 L=8 p=0.60

The (non trivial) part of the model:
choose a smart algorithm to identify and label the clusters
made of adjacent occupied sites



