An introduction to topological chemistry

Bibliography

Strategies and Tactics for the Metal-Directed Synthesis of Rotaxanes, Knots, Catenanes, and Higher Order Links

Jonathon E. Beves, Barry A. Blight, Christopher J. Campbell, David A. Leigh,* and Roy T. McBurney Angew. Chem. Int. Ed., 2011, 50, 9260-9327

Bibliography

Chem Soc Rev 2013, 42, 1700 TUTORIAL REVIEW		RSC Publishing View Article Online View Journal (View Issue
Angewandte Reviews	Angew. Chem. Int. Ed., 2015 , 54, 6110	D. A. Leigh et al.

Catenanes

International Edition: DOI: 10.1002/anie.201411619 German Edition: DOI: 10.1002/ange.201411619

Catenanes: Fifty Years of Molecular Links

Guzmán Gil-Ramírez, David A. Leigh,* and Alexander J. Stephens

Many illustrations present in the slides are taken from these reviews

Contents

- 1- Molecular graph and topological chemistry
- 2- Synthesis of [2]catenanes
 - a) Historical background
 - b) Sauvage's template synthesis
- 3- Sauvage's strategy for more complex structuresa) Molecular knotsb) Limits and contributions from other groups
- 4-Borromean rings
- 5- (Very) short introduction to topological stereochemistry
- 6- Molecular machines and motors

Topology

In topology, angles, distances or shapes have no meaning But the object cannot be cut

Molecular graph

Representation of the bonds between atoms with no interest in their chemical nature

C₆₀ has a planar graph:

topologically equivalent

Molecular graph

non-planar graph

No possible conformation with no crossing in 2D representation

topological chemistry is the chemistry of molecules having a non planar graph

Topology in art

Aquilea, Italy

Book of Kells

Topology in art

Snakes M.C. Escher

Topology in art

Topology in nature

Topological chemistry

- If two molecules are different only for their graphs, they are topological isomers

a is an isomer of b and c.b and c are topological enantiomers.

- Most popular classes of topological molecules are catenanes and rotaxanes

catenane:

Topological chemistry

rotaxane:

rotaxane is not strictly speaking a topological object but, in chemistry, there is a good reason to say so:

Topological chemistry

Loss of the structure by breaking a covalent bond = interaction is strong: not supramolecular chemistry?

BUT: no covalent bond between the two rings! = interaction is weak

How can this kind of molecules be made?

Catenane by statistical method

15

Catenane by template synthesis

- Template synthesis:

- First work by Schill and Lüttringhaus

Schill and Lüttringhaus, Angew. Chem. Int. Ed. Engl. 1964, 3, 546

Catenane: copper-template reaction

Sauvage's contribution: 1983

Origin of the strategy

Water splitting project with McMillin Copper photocatalyst instead of expensive Ruthenium

Catenane: copper-template reaction

Sauvage's contribution: 1983, copper template synthesis.

Figure 1.

Catenane: X-ray structure

Template synthesis: importance of the closing reaction

a) Williamson ether synthesis: R-OH + X-R' -> R-O-R'

b) Ring closing metathesis (RCM): $2 \times R^{4} \rightarrow R^{4} R^{4}$

Catenane: other template syntheses

Hydrophobic effect, Fujita, 1994

Catenane: other template syntheses

Sauvage's strategy transposed to an anion template:

Fig. 2 Structure of the catenane precursor.

Fig. 3 Structure of the [2]catenane 2²⁺(Cl⁻)(PF₆⁻).

Beer et al. Chem. Commun., 2006, 3676

Rotaxane: active template synthesis

A new template reaction under kinetic control: *active template synthesis*. The template is not only used for thermodynamic stabilization of a <u>transient species</u> but also for its role in <u>bond formation</u>.

Leigh et al. J. Am. Chem. Soc., 2006, 128, 2186

- Many other metal-catalyzed reactions have been employed (Pd(II), Ni(II)...)
- This strategy can also be used for the synthesis of catenane

Beyond the simplest catenane

X = minimum crossing points; y = number of components; z = order of the knot

Molecular knots

Sauvage's strategy

Molecular trefoil knot

Sauvage et al. Angew. Chem. Int. Ed., 1989, 28, 189

Molecular Knot

Hunter et al. Nature. Chem., 2010, 2, 218

H-bonding template synthesis of a molecular trefoil knot

Vögtle et al., Angew. Chem., Int. Ed., 2000, 39, 1616

Doubly interlocked [2]catenane – Solomon link

Sauvage et al. Chem Commun., 1999, 615.

Limit to the strategy based on linear double helices

Sauvage et al. Chem. Eur. J. 2005, 11, 4374

Inspiration from Lehn's work

Leigh's triply interlocked [2]catenane - star of David

Leigh's 8₁₉ knot

Leigh et al., Science, 2017, 355, 159

Dynamic covalent bond-metal template and anion template

Leigh et al., Nature Chem, 2012, 4, 15

One of the most impressive achievement in topological chemistry

Three identical rings. Each ring is inside a second one and outside the third one. No catenation.

Ring-by-ring synthesis :

- long synthesis
- Borromean rings were not obtained...

Siegel et al. Angew. Chem. Int. Ed., 2003, 42, 5702

- One-step synthesis!!!

Stoddart et al. Science, 2004, 304, 1308

Stoddart et al. Science, 2004, 304, 1308

Catenanes with oriented rings are chiral

Sauvage et al., Angew. Chem. Int. Ed., 1998, 27, 930

Sauvage, von Zelewsky et al., Angew. Chem. Int. Ed., 2004, 43, 4482

Leigh et al., J. Am. Chem. Soc., 2016, 138, 13158

The Nobel Prize in Chemistry 2016

Ill: N. Elmehed. © Nobel Media 2016 Jean-Pierre Sauvage Prize share: 1/3

Photo: Northwestern University Sir J. Fraser Stoddart Prize share: 1/3

Ill: N. Elmehed. © Nobel Media 2016 Bernard L. Feringa Prize share: 1/3

Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa The Nobel Prize in Chemistry 2016 was awarded jointly to "for the design and synthesis of molecular machines".

Molecular machine powered by an electrochemical fuel

Sauvage et al. J. Am. Chem. Soc., 1994, 116, 9399

Molecular machine powered by a chemical fuel

Acid-base powered molecular translation of a ring along a thread :

- rotaxane based molecular shuttle
- intramolecular process
- bistable molecule (1 or 0)
- possibility for high density information storage

High complexity of the molecule:

- interlocked system
- two orthogonal binding sites on the thread

Balzani et al. Acc. Chem. Res., 2001, 34, 445

From switches to motors: toward dissipative systems

Credi et al., Nature Nanotech., 2015, 10, 70