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EXAMPLE: SIR EPIDEMICS
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OVERVIEW

We will consider Markov models of population processes:
systems composed of populations of interacting agents, whose
behaviour is a collective emergent property.

MEAN FIELD/ FLUID APPROXIMATION

Approximation by a deterministic system (differential/ difference
equations).

MEAN FIELD (ORIGINALLY)/ FAST SIMULATION
Approximation by another, simpler, stochastic model.
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OVERVIEW: FLUID APPROXIMATION

[.IMIT THEOREM POINT OF VIEW

Considers the deterministic model as the limit of the stochastic
process for large populations/ system size:

o CTMC to ODE

o DTMC to Difference Equations

o DTMC to ODE

@ CTMC to Gaussian processes (central limit)
@ CTMC to hybrid system

e CTMC to SDE (diffusion limit)

MOMENT CLOSURE POINT OF VIEW

Considers the deterministic model as an approximation of the
mean of the stochastic process.

Equations for higher order moments can be given as well.
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OVERVIEW: MEAN FIELD

Approximation by another, simpler, stochastic model.

FAST SIMULATION

Approximate the behaviour of one or few agents by another
stochastic process depending on the mean of the rest of the
system.

HARTREE APPROXIMATION (MEAN FIELD)

Approximates the process (at transient/ steady state) by
assuming a product form (w.r.t. variables). The decoupling is
obtained by averaging the rates of transitions acting on a
variable X with respect to the other variables.
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MENU A LA CARTE

@ Fluid approximation (CTMC + ODE)

e Steady state limits

e Fluid equation and moments, system-size expansion
e Central Limit and linear noise approximation

e Hybrid mean field

And potentially in addition
@ Product form approximation (Hartree, variational)
@ Error bounds
e Fluid model checking
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POPULATION CTMC

If we want to describe population processes, with many agents,
representing the CTMC by its Q-matrix is unfeasible, as the
state space blows up.

A population CTMC model is a tuple X = (X, D, 7, Xq), Where:

Q@ X — vector of variables counting how many individuals in
each state.

Q D =1]];D;— (countable) state space.

Q Xo € D —initial state.
Q n; € 7 — global transitions, n; = (v, r(X))

@ Vv € R" — update vector (from X to X + v)
Q@ r: D - R.o— rate function.
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MASTER EQUATION

The Kolmogorov equation in the context of Population
Processes Is often know as master equation.

There i1s one equation per state x € D, for the probability mass
P(x, t), which considers the inflow and outflow of probability at
time t.

dPXt Zrnx V,)P(X —v,, 1) Z:r,7

nevs nes
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POISSON REPRESENTATION

Population CTMC admit a simple description in terms of Poisson

processes (random time change).
Essentially, we introduce variables R, (t) counting how many times

each transition n has fired up to time t. Hence we can write:

X(t) = X(0)+ > v,R,(1).

nev

It turns out that R, (t) is a time-inhomogeneous Poisson process with

cumulative rate fot r,(X(s))ds, independent from the other R, .
Hence, let N, be independent Poisson processes. For each t > 0:

X(t) = X(0) + Y VuN, ( fo | rn(X(s))ds).

nev
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FLUID APPROXIMATION

BASICS

o It applies to CTMC models of population dynamics with
large population size N (studies the limitas N — o)

@ It works on scaled variables, to treat uniformly different
population levels.

@ Requires proper scaling and regularity assumptions on
rates.

@ The method works by constructing an ODE from the
sequence of population dependent CTMC.

@ It can be proved that, in any finite time horizon, the
trajectories of the CTMC become indistinguishable from
the solution of the ODE.
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AN INTUITION

time



FLUID 15/57

AN INTUITION
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EXAMPLE CONTINUED
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EXAMPLE CONTINUED
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EXAMPLE CONTINUED
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SCALING CONDITIONS

BASICS

e We have a sequence XM of models, for increasing system
size (e.g. total population N).

@ We normalize such models in order to bring them to the
same scale (divide variables by size N).

o XN)(t) is the Markov process (in continuous time) defined
by X(N).
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NORMALIZATION

The normalized model X(N) = (X, DN) 7 (N) X(N)) associated
with X(N) = (X, Z)(N),T(N),Xg’v)) is defined by:

o Variables: X = %

e Domain: DIN) = (N x| x € D).

E

o Initial conditions: )"(g _ X

ZO

o Normalized transition ¥ = (7, I
re TN

o Update: ¥; R
(N
o Rates./@ N

)) associated with
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EXAMPLE: SIR EPIDEMICS
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EXAMPLE: SIR EPIDEMICS

o r'™(X) = kpX; = Nkp = NkgX
PN (X)) = NkgX), fee(X) = kpX|

rec

r(X) = B Xs X = Nk,

PW(X) = Nk XsXi, fi

="

N = Nk XsX
— K Xs X

>

)
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SCALING ASSUMPTIONS: STATE SPACE

o Consider the normalised state space DN of X(N)(1).

@ We need to find a sethE C R”ﬁopen /or@) which

contains DN for each N. This will be the set in which the
fluid limit will live.

EXAMPLE: SIR EPIDEMICS
In this case, the normalised variables take values in a discrete

grid between 0 and 1:
M :li1 ... N},

Hence, we can take E to be the unit cube [0,1]3.

However, the total population is conserved, so we can restrict to
the unit simplex E = {x € [0,1]% |3, x; = 1}. |

y

22157
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SCALING ASSUMPTIONS

s required to converge uniformly to a locally Lipschitz continuous
and Iocally,bounded functlor(f ) -

Cpuf(m( ) — ()] @ =

oes not depend on N, the rate satisfies th@J

ep‘e\ndence condition.

f locally Lipschitz iff Vx, HB(@W e B(x) ||f(x fm L||x -yl |
)

f locally bounded iff ¥Yx, 3B(x 0, ||If(X)]| < Mux Vil

The following theorem works also under less restrictive assumptions
(e.g. random increments with bounded variance and average).
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DRIFT AND LIMIT VECTOR FIELD

DRIFT
The drift or mean mcrement at level N Is

By the scaling assumptions, FN) converges uniformly to F, the

limit vector field:
C 3 @: Z vaT(x).f
 FLUID ODE -

The fluid ODE is
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DETERMINISTIC APPROXIMATION THEOREM

HYPOTHESIS

o X(N)(1): sequence of Markov processes that satisfy the
conditions above. X

@ F Lipschitz continuous in E. &

o Ixg € S such that X(M(0) - ngin probability (or almost
surely) — X

-
X(1): solution of X = F(x), X(0) = Xo, living in E for all t > 0.
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DETERMINISTIC APPROXIMATION THEOREM

THEOREM (KURTZ) //\\ K‘/
For any finite time horizot; 't holds that:

A

o ‘i:i:zggy

1) ¥ X)) O i probabil
Ssu t '— O In probabllity, c~—

ZMﬁ OstspT‘&//f() (S g 4

\f&a , ?{é,om >§3

7 O

N =550

meaning, for each ¢ > 0, that

—

_—

im P{ sup IXN)(t) — x(t)|| > 5} —0 a
N— oo {OS tng ( ) ( ) ) >

——

REMARK
Convergence holds also almost surely:

P{ im sup XM (#) - x(8)|| = O} = 1
N—oco<t<T

26/57
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EPIDEMICS EXAMPLE CONTINUED

973 —

The CTMC XWN)(¢) of the epidemics model satisfies all the
hypothesis of fluid limit theorem, so it converges in probabillity
to the solution of the folloyving set of ODEs:

p—

t
X
7 = KiX|Xs — KpX; ,,

oxs :}SXR/_ ks \ e
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EPIDEMICS EXAMPLE CONTINUED
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EPIDEMICS EXAMPLE CONTINUED
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EPIDEMICS EXAMPLE CONTINUED
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EPIDEMICS EXAMPLE CONTINUED
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REMINDER: CONVERGENCE OF RANDOM VARIABLES

ALMOST SURE CONVERGENCE

Let X, X1, Xo,...: (2,S) —» (E,8B). Then X, —» X almost surely
iff X, converges to X in a set of probability 1:

P{Iim [|Xp — X|| = 0} = 1

CONVERGENCE IN PROBABILITY

Let X, X1, Xo,...:(2,S8) — (E,B). Then X, — X in probability
iff for each 6 > 0

Iim P{l| Xy — X > 6} = O
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REMINDER: CONVERGENCE OF RANDOM VARIABLES

CONVERGENCE IN DISTRIBUTION (WEAK CONVERGENCE)

Let X, X1, Xo, ... be random variables with values in (E, 8),
where E Is a Polish space. Then X, = X (X, converges weakly
to X) Iff, for each bounded continuous function f : E — R, It

holds that
E[f(Xn)] — E[f(X)].

WHY CONVERGENCE IN DISTRIBUTION?

Notice that, If u, uq, uo, ... are the probability distributions in
(E, B) associated with X, Xj, X5, ..., then the weak
convergence of X, to X Is equivalent to u, — u w.r.t the weak
topology in the space of probability measures on E.

33757
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PROOF OF KURTZ THEOREM: BLACKBOARD!

POISSON REPRESENTATION

@_ XN (0) + Z an (N ‘[: fn()"((N)(s))dgi
neg J’

ODE SOLUTION, INTEGRAL FORM

( / x(s))ds

GENERAL IDEA: CTMC AS A PERTURBED DYNAMICAL
SYSTEM
XN () =

\/ ww‘&"‘f’f’/ (N)
— HE, F(x (8))ds

DN (¢t) - \XIéUV)(t) XN (0) - j: F(X(N)(s))dsj
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PROOF OF KURTZ THEOREM: BLACKBOARD!

CENTERED POISSON PROCESS

Consider a Poisson process N ( fot /l(s)ds) with time-varying rate A(t).
Its centred version is

N( fo | /l(s)ds) _ N( fo t/l(s)ds) _ fo A(s)dsds

[LAW OF LARGE NUMBERS FOR CENTERED POISSON
PROCESS

Law of large numbers for constant rate: for each T > 0

sup lN(N/lz‘) -0 as. <
t<T N

GRONWALL’S INEQUALITY
, Z/
If for a,b> 0, f(t) < a+ bfo f(s)ds, then f(t) < ae 8

35757
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KURTZ THEOREM FOR EXIT TIMES S C%V

EXIT TIMES

FixasetScE (the safe set) and suppose we want to estimate
the time in which X(N)(t) leaves S. We can use Kurtz theorem
for this! \

@ SC E,openin E. F Lipschitz continuous in S.
o ((S): exittime of x(t) from S.

@ Assume Xx(t) leaves S by crossing transversally the
boundary 9S.

o /(N)(S): exit time of X(N)(t) from S.

THEOREM (KURTZ FOR EXIT TIMES)
If £(S) < oo, it holds that:

1cN)(8) = £(S)|| — 0 in probability (a.s.).
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DEFINITION OF SEMIGROUP AND INFINITESIMAL
GENERATORS

SEMIGROUP H; OF A STOCHASTIC PROCESS X(t) ON E

Let Co(E) be the space of continuous functions on E vanishing
at infinity, and let f € Co(E).

Hif(x) = E[f(X(?)) | X(0) = X]

INFINITESIMAL GENERATOR A OF A STOCHASTIC PROCESS
X(t)

It is an operator A: D(A) C Co(E) — Co(E) defined by

Af = im ~(Hf—f) uniformly.

t—0+ [
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[LIMIT THEOREM FOR INFINITESIMAL GENERATORS

THEOREM (EITHER AND KURTZ, 1986)

Let X, X1, X() . be Feller processes in the state space E,
with semigroups H;, Hf”, Hfz), ... and generators A, Ay, Ao, .. ..

Let D be a core for A. The following statements are equivalent:

Q if f € D, there exists some f, iIn Dy with f, — f and
A,f, — Af;

@ H\"'f — Hf for each f € Co(S) and t > 0;

8 Ht(”)f — H;f for each f € Co(S), uniformly on bounded
Intervals.

Q if X\” = Xp, then X(" = X (convergence in distribution).

39757
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INFINITESIMAL GENERATORS OF CTMC AND ODE

INFINITESIMAL GENERATOR OF THE CTMC

Consider a population CTMC X = (X, D, 7, Xp), then its
Infinitesimal generator Is

Z r(X)(f(x 4+ v,) — (X))

nes

For a CTMC specified by a Q-matrix, the infinitesimal generator
is Af = Qf (f is a vector if Sis countable).

y

INFINITESIMAL GENERATOR OF AN ODE

Consider a vector field F : E - R" and the associated ODE

T = F(x(1).

A is the directional derivative of f along the flow of F. For
f e Cy(E):

Af(X) = (VF(X), F(X))
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ONE SLIDE PROOF OF KURTZ THEOREM!!

We just need to prove that Ayg — Ag for each g € C}(E).

where Ay is the generator of a sequence X(N) of normalized
population CTMC and A is the generator of the limit ODE.
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ONE SLIDE PROOF OF KURTZ THEOREM!!

We just need to prove that Ayg — Ag for each g € C}(E).

where Ay is the generator of a sequence X(N) of normalized
population CTMC and A is the generator of the limit ODE.

ang() = 300 (glx+ gvi) - g00)

nes
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ONE SLIDE PROOF OF KURTZ THEOREM!!

We just need to prove that Ayg — Ag for each g € C}(E).

where Ay is the generator of a sequence X(N) of normalized
population CTMC and A is the generator of the limit ODE.

Mgl = 37" [gx+ ) - 9(x)
_ an(N)(x) (9(x + gV,) - g(x))

41/57
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ONE SLIDE PROOF OF KURTZ THEOREM'!

We just need to prove that Ayg — Ag for each g € C}(E).

where Ay is the generator of a sequence X(N) of normalized
population CTMC and A is the generator of the limit ODE.

Mgl = 37" [gx+ ) - 9(x)
I P RICLES DARC)
neyl N

41/57



GENERATORS

ONE SLIDE PROOF OF KURTZ THEOREM'!

We just need to prove that Ayg — Ag for each g € C}(E).

where Ay is the generator of a sequence X(N) of normalized
population CTMC and A is the generator of the limit ODE.

ang() = 300 (glx+ gvi) - g00)
neys
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neyl N
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neys
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ONE SLIDE PROOF OF KURTZ THEOREM'!

We just need to prove that Ayg — Ag for each g € C}(E).

where Ay is the generator of a sequence X(N) of normalized
population CTMC and A is the generator of the limit ODE.

ang() = 300 (glx+ gvi) - g00)
neys
1 _
— an(N)(X) (9(X - N\in) a(x))
neyl N
= F(X)(YG(X). V)
neys

= (Vg(x), F(x)) = Ag(x)
where F is the fluid limit of the sequence of CTMC:

F(x) = ) vyfy(X)

ney

41/57
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STATIONARY REGIME

e The fluid approximation and mean field theorems provide
conditions for the convergence up to any finite time
horizon.

@ They do not predict convergence of the stationary regime.

@ Thisis because they hold for any possible trajectory of the
ODE, including unstable ones.

@ In order to provide some result for the stationary behaviour,
one has to look at the Phase Space Properties of the
system of ODEs.
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SOME DEFINITIONS

DEFINITIONS
o Flow of the ODE: &(t, x)
Orbit of the flow, starting from x: y(x)
Forward orbit of the flow, starting from x: y™(x)
Invariant set Aiff y(x) c A, forx € A

Attractor: invariant set A such that there is a neighborhooad
U of A with lim;_ . dy(£(t, x),A) = 0 uniformly for x € U

@ Basin of attraction of A:
B(A) = {x € E | lim{_o dy(&(E, x), A) = 0}
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BIRKHOFF CENTRE AND INVARIANT MEASURES

BIRKHOFF CENTRE OF A FLOW

The Birkhoff centre B(¢) of a flow ¢ is, informally, the set of limit
points of the flow (steady states, limit circles, etc.).

INVARIANT MEASURE OF A FLOW

A probability measure u on (E B) is invariant for the flow ¢ iff for
eachAeBandt>0

u(€' (L A)) = u(A).

INVARIANT MEASURES AND BIRKHOFF CENTRE

Any invariant probability measure u for the flow & has support
contained in B(¢).
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CONVERGENCE OF INVARIANT MEASURES

THEOREM

Let ‘M) be an invariant measure for X(V)(t). Any limit point u (w.r.t.
the weak topology) of the sequence uV) is an invariant measure of
the flow &.

In other words: X(V)(t) spends most of its time close to the Birkhoff
centre B(¢) of the flow.

QOROLL@Y

If X(’Vizj are irreducible and the ODE have a unique globally

attracting stable fixed point X, thMere u concentrates
the mass on x.»

FIXED POINT METHOD

The fixed point method for mean field analysis approximates the
stationary distribution with the value of the occupancy measure of the
ODE fixed, if it is unique.

However, global attractiveness has to be proved.
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EXAMPLE: SIR EPIDEMICS

Global attractiveness is a crucial property. Consider again the
SIR model and the set of fluid equations. \

cL 1

—
—

dxs N
ts kSXR k/X/Xs \\\
IN{ CC/# — k/X/XS kRX/ /
X
=t = KX — ksX R

\
‘l
\
\\
\\
\~\
\‘\\‘

s(k/ kR) (k/ kR)

ODEs have two fixed pomts? k/(ks+kR)’ /(ks-l-kR) R <1
ane A‘&z

DV

No matter how large is N, all trajectories of the CTMC will
eventually reach the state in which the epidemics is extinct: the
steady state measure of XN) is the Dirac delta on (1,0, 0).
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REWARDS

Reward measures are a very useful companion of CTMC
population models. They allow us to capture useful measures,
like the throughput of a system, or the energy consumption.

We consider here two classes of reward measures, all
state-based. )

REWARD FUNCTION

p: E - Ry Is the reward associated to a state x € E.
We assume p Is continuous in E.

We assume rewards depend on the normalised state. |
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INSTANTANEOUS AND CUMULATIVE REWARDS

INSTANTANEOUS REWARD
The expected value of p at time ¢

RM(t) = B [p(XM(t))]

CUMULATIVE REWARDS
The expected reward accumulated up to time t

A0 2| [ px™(s))as]
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EXAMPLE: QUEUE MODEL WITH SERVER VACATION

Consider a model of a closed queue network, with a (M/M/m)
service station and a delay station, and assume servers can
take a vacation, to save energy.

reply Four variables: Cs, C4. Sy, S,.
e.@ Q (I’ep/y, T9 (_19_'_1’0? O)9kr mln{CS’ SW})
think o (think,T,(+1,-1,0,0), k:Cy)

sleep @ (sleep, T,(0,0,-1,+1),k,Sy)
reply @.e @ (wake _up, 1,(0,0,+1,-1),k,S))

wake up
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EXAMPLE: QUEUE MODEL WITH SERVER VACATION

Four variables: Cs, Cy, Sy, Sy.
aN clients, BN servers

reply
e.@ @ (reply, T,(-1,4+1,0,0), kK min{Cs, Sy })
Q (thlnk (—|—1 -1, 0, O) kth)
think
sleep @ (sleep,1,(0,0,-1,4+1),k,Sy)
. o (wake_up,T,(0,0,+1,-1),k,S,)
reply
wake up
(CSa Cd, Cw, Cv) — (Cs, Cd, Sw, Sv)/N
REWARDS

THROUGHPUT: pt(Cs, Cq, Cw, Cv) — kr min{Cs, Sw})
ENERGY CONSUMPTION: p,(Cs, Cq, Cw,Cy) = Us * Sw

52/357
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CONVERGENCE OF INSTANTANEOUS REWARDS

p: E - Ris a (bounded) continuous function |

CONTINUOUS MAPPING THEOREM

If XIN) — X (a.s./in prob.) and f is X-a.s. continuous (i.e. f(X)
is continuous with probability one), then f(X(V)) — f(X).

BOUNDED CONVERGENCE

If X(IN) - X (a.s./ in prob.) and E[X] < c and || XV)|| < M for
each N, then E[|X(N) — X|]] - 0 (convergence in mean).

COROLLARY (OF KURTZ THEOREM)
E[p(XM(1))] = Elp(x(t))] = p(x(1)) I
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CONVERGENCE OF CUMULATIVE REWARDS

f p(X(s))ds, for fixed t, can be seen as a functionals of a

trajectory X of the CTMC, which is a cadlag function with values in E.
Call & this set, then fo : E - R

WEAK CONVERGENCE

Let X(N), X have values in & X(N) = X (weakly) if and only if, for each
continuous and bounded functional f : & — R, it holds that

E[f(X™M)] — E[f(X)]

COROLLARY (OF KURTZ THEOREM)

By Kurtz theorem X(V) = x (weakly), and (if E is compact) f; is a
continuous and bounded functional, so that:

| [k ()as| 8| [ pixtsas| = [ pix(s)as
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EXAMPLE: QUEUE MODEL WITH SERVER VACATION

Throughput Energy consumption
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