Exercise Lecture XII
Variational Monte Carlo (VMC)

1. Quantum oscillator in 1D: variational approach (see Fig. 1 )
Consider the hamiltonian of the quantum harmonic oscillator H = p?/2 + 22/2 (having
choosen m = k = h = 1). We want to solve it numerically with VMC. To this purpose
consider two different choices for the trial wavefunction:
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with @ and 8 variational parameters, A and B proper normalization constants.
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and with the z; distributed according v(x)?. Using the trial wavefunction (1.b), remind

the exercise concerning the Metropolis sampling of a gaussian function, Lecture VII; see

the code metropolis_gaussian.f90. See metropolis_parabola.f90 for (1.a).
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(b) Verify numerically and analytically that the variational solution gives in the two cases:
(l.a): a = (35/2)'/* =~ 2.0453; < E >= 0.6
(1.0): p= %; <E>=05
(In this case the exact analytic solution is known, Ey = 0.5; however, in case (1.a)
the minimum of < E > as a function of a is rather flat: use steps of 0.01 for a and
n = 100000 Metropolis accumulation steps to appreciate the minimum,)

(c) Instead of solving the problem by minimizing < Er, >, solve it minimizing the variance:
0’ =< E? > — < Ep, >%

you should observe that in the case (1.a) the minimum of the variance is positive,
whereas in the case (1.b) is zero.

(Important: note the usefulness of the “zero variance property”; the EXACT minimum
of 02 is 0 is the class of the trial wavefunctions contains the exact result, whereas in
general the minimium of < E > is not known!)

2. Anharmonic quantum oscillator 1D (see Fig. 2)

(a) Consider also an anharmonic part in the potential, i.e. V(z) = 22/2 + ba*. Set for
instance b = 1/8, make a plot of V(z). Use the first order perturbation theory to
calculate the changes at the lowest order in energy of the ground state due to the
anharmonic term. Choose a reasonable form for the trial wavefunction, e.g. (1.b), and
calculate < E > with VMC. Compare the result obtained with the one obtained using
the perturbation theory.



3. Hydrogen atom. (Optional)

(a) We want to find numerically the ground state of the H atom. We want to find numerically

the ground state. The hamiltonian is: H = p*/(2m)—e?/r; It is convenient to use atomic
units (b = 1, me = 1/2, e=2, and therefore to measure all length in terms of Bohr
radius, ag = h?/(me?), the energies in Rydberg, Ry = me*/(2h?). Consider the trial
wavefunction 1 (r) = ¢(r) = e~"/%, where a is a variational parameter. calulate the
optimal value of ak and the corresponding energy.

NOTE no.1: you may reduce the problem (sperical part) in a 1D problem. Pay attention
that
S (r)EL(r)de [ (r)EL(r)4xridr
2(r)dr  [2(r)4mr2dr
and therefore the probability for the sampling is r21?(r) and not ¥?(r).

< Ep >=

NOTE no.2: Pay attention close to the origin!

(b) Do the same in 3D, considering the isotropy of the trial move (The displacement is a

vector!)
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! metropolis_gaussian.f90

METROPOLIS sampling of several physical observables for the
hamiltonian: h = -1/2 \nabla"2 + 1/2 x"2),
comparison exact expected results with numerical results

\sigma=1 => psi”“2(x) = costant * standard gaussian
P(x) = exp(-x*x*2/(2*sigma**2))/sqrt(2*pi*sigma**2)
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I
|
|

ccccceceececececececcecececccececccecececceccececcececcecececceccecceccecececcecceccceccececcceccecccececcceccecccecccccccccccccccccce

program metropolis_gaussian
implicit none
integer, parameter :: dp=selected_real_kind(13)
integer :: i,n
real (kind=dp) :: sigma,etot,ekin,epot,rnd,ekinl,epotlL,etot2

real

(kind=dp) :: pigr,pi2b,var,beta,var_th

real (kind=dp):: x,x1,x2,xp,delta,expx,expxp,p,acc
character(len=13), save :: formatl = "(a7,2x,2f9.5)"
open(unit=7,file=’e_var_gauss.dat’,position=’append’)
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etot2= 0.0_dp
print*, "n, sigma (remember: beta = 1 / (4*sigma*%*2)), x0, delta"
readx, n,sigma,x,delta
beta = 1 / (4*sigma**2)
! call random_seed(put=seed)

do i=1,n
ekinl = - 0.5_dp * ((x/(2*sigmax**2))**2 - 1/(2xsigma*x2))
epotL = 0.5_dp * x*x2
ekin = ekin + ekinL
epot = epot + epotL
etot ekin + epot
etot2 = etot2 + (ekinL + epotL)**2
x1 =x1 + x
X2 = X2 + x**2
lccececcecececceccecceccceccecccceeee
expx = - x**2 /(2xsigmax*2)
call random_number (rnd)
xp = x + delta * (rnd-0.5_dp)
expxp = - xp**2 /(2xsigma**2)
p = exp (expxp-expx)
call random_number (rnd)
if (p > rnd) then
X = Xp
lccecececcecececceccecceccceccecceceeeee
acc=acc+1.0_dp
endif
enddo

metropolis

!
!
!
!
! algorithm
!
!
]

var_th = 1._dp/(32xbetax*2)+betax*2/2-1._dp/4

write(unit=*,fmt=+)"acceptance ratio = ",acc/n
write(unit=*,fmt=*)"# Results (simulation vs. exact results):"
write(unit=*,fmt=formatl)"etot = ",etot/n,1.0_dp/(8.0_dp*sigma**2)&
+0.5_dp*sigma**2
write(unit=*,fmt=formatl)"ekin = ",ekin/n,1.0_dp/(8.0_dp*sigma**2)
write(unit=*,fmt=formatl)"epot = ",epot/n,0.5_dp*sigma**2
write(unit=*,fmt=formatl)"evar = ",etot2/n-(etot/n)**2,var_th
write(unit=*,fmt=formatl)"<x> = ",x1/n,0.0_dp
write(unit=*,fmt=formatl)"<x"2>= " ,x2/n,sigma**2

write(7,*)sigma,etot/n,sqrt(abs(etot2/n-(etot/n)**2)) ,etot2/n-(etot/n)**2
close(7)

end program metropolis_gaussian
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Figure 1: Harmonic oscillator in 1D with VMC (es. 2): Ground state Eigenvalue and
Eigenstate with two different trial wavefunctions.

10(0)(x)=.72
pert. th. El
0.8 1-0.09375'(2')("2:?; e
C)=..
5+{0(VMC)(x)=.7958"€ p(-.EJB‘x“ZJ -

4 -0.5 05 1
0SC. anarm. conx™*4: cir. soluz.:(0), perturb.(1), variaz.

Figure 2: Harmonic oscillator in 1D with VMC (es. 3): Ground state Eigenstate and eigen-
value with two different trial wavefunctions, and comparison with the analytic solution obtained
within the first order perturbation theory.



