Writing Down Tables of Characters for Cyclic Point Groups

François Theobald

University of Besançon, 25030 Besançon, France
In textbooks on point groups the usefulness of cyclic point groups is often neglected. Nevertheless, these groups have a very interesting property: the characters of their representations may be written readily, almost automatically. Applications to S_{n} groups are given as examples.

$\boldsymbol{C}_{\boldsymbol{n}}$ Groups

It is well known by students that C_{n} groups are abelian and cyclic. Let us now choose an arrangement in writing down the elements which is slightly different from the usual one. Rather than starting with the identity, we will begin with the element generating the groups and its powers; all elements of a given C_{n} group are generated by a given element and its powers. Since the group is abelian there are as many irreducible representations as elements (the order of the group: n). The table of characters arranged in such a way will have characters for the identity element in the last column. An element in the p column is the p power of the element in the first column. Corresponding characters have the same relationship.

$$
\chi\left(C_{n}^{p}\right)=\left[\chi\left(C_{n}\right)\right]^{p}
$$

For the last column (identity element)

$$
1=\chi\left(C_{n}^{n}\right)=\left[\chi\left(C_{n}\right)\right]^{n}
$$

It appears that possible characters for the generating elements are the nth roots of unity (1). There are n such values (including 1) in group C_{n}. Thus, the tables of characters can be written out straightforwardly by using the "complex circle" representation.

C_{2}	C_{2}	$C_{2}^{2}=E$	(Fig. 1a)		
A	1	1			
B	-1	1			
C_{3}	C_{3}	C_{3}^{2}	$C_{3}^{3}=E$	$(\epsilon=\exp 2 \pi \mathrm{i} / 3)$	(Fig. 1b)
A	1	1	1		
$E\{$	ϵ^{*}	ϵ^{*}	1		
	ϵ^{*}	ϵ	1		

a

b

c

d

e

Small circles indicate possible characters in complex representation when there are $2,3,4,5$, or 6 elements in the cyclic group.

C_{4}	C_{4}	C_{4}^{2}	$C_{4}^{3}=E$	$C_{4}^{4}=E$	(Fig. 1c)
A	1	1	1	1	
(E)	i	-1	$-i$	1	
B	-1	1	-1	1	
(E)	$-i$	-1	i	1	

In this last example, the usual arrangement of representations is lost. for the sake of representation symbols, it is useful to keep the conjugated roots in pairs. This merely means that the "complex circle" should be followed by 2 symmetrical ways: clockwise and counterclockwise. For example, if one wishes to write the table of characters for C_{5} in a way that is not too different from the usual one, the roots may be classified as follows:

$$
1, e^{i 2 \pi / 5}=\epsilon, e^{(-i 2 \pi / 5)}=\epsilon^{*}, e^{2 i 2 \pi / 5}=\epsilon^{2}, e^{-2 i 2 \pi / 5}=\epsilon^{2 *}
$$

This gives the following table for C_{5}

[^0]| | C_{5} | C_{5}^{2} | C_{5}^{3} | C_{5}^{4} | $C_{5}^{5}=E$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1 | 1 | 1 | 1 | 1 |
| | $\int \epsilon$ | ϵ^{2} | ϵ^{2} | ϵ^{*} | 1 |
| E_{1} | $\left\{\epsilon^{*}\right.$ | ϵ^{2} * | ϵ^{2} | ϵ | 1 |
| | $\left\{\epsilon^{2}\right.$ | ϵ^{*} | ϵ | $\epsilon^{2 *}$ | 1 |
| E_{2} | $\left\{\epsilon^{2 *}\right.$ | ϵ | ϵ^{*} | ϵ^{2} | 1 |

S_{n} Groups

The S_{n} groups are cyclic abelian groups, too. A detailed study is very useful for tutorial purposes.
Group S_{1} appears to be identical to C_{s} and isomorphic to C_{2} group (Table 1a and Fig. 1a).
Group $S_{2}\left(\equiv C_{i}\right)$ is isomorphic to S_{1} and C_{2} (Table 1b and Fig. 1a). Group S_{3} ($\equiv C_{3 h}$ group) has 6 elements and is isomorphic to C_{6} (Table 1c and Fig. 1e).
Group S_{4} is isomorphic to C_{4} (Table 1d and Fig. 1c).
Group $S_{5}\left(\equiv C_{5 h}\right)$ is isomorphic to C_{10} (Table 1e).
Group S_{6} has 6 elements and is isomorphic to C_{6} (and S_{3} !) (Table 1f and Fig. 1e).

$S_{3}=C_{3 h}$	S_{3}	$S_{3}^{2}=C_{3}^{2}$	$S_{3}^{3}=\sigma_{h}$	$S_{3}^{4}=C_{3}$	S_{3}^{5}	$S_{3}^{6}=E$
A^{\prime}	1	1	1	1	1	1
$E^{\prime \prime}$	$\left\{\begin{array}{c}\text { (}\end{array}\right.$					
	$-\epsilon^{*}$	ϵ	-1	ϵ^{*}	$-\epsilon$	1
$-\epsilon$	ϵ^{*}	-1	ϵ	$-\epsilon^{*}$	1	

| S_{4} | S_{4} | $S_{4}^{2}=C_{2}$ | S_{4}^{3} | $S_{4}^{4}=E$ |
| :---: | ---: | :---: | :---: | :---: | :---: |
| (d) | | | | |
| A | 1 | 1 | 1 | 1 |
| E | i | -1 | $-i$ | 1 |
| B | $-i$ | -1 | -1 | 1 |
| -1 | 1 | -1 | 1 | |

$C_{n h}$ groups with odd values of n appear to be cyclic. Writing S_{n} tables of characters in such a way is almost automatic. For students it has other advantages. They understand more clearly what exactly an S_{n} operation is, there is no longer any need to calculate multiplication table for S_{n} groups, and isomorphism is well demonstrated. There is a drawback: direct product features of some groups disappear from the resulting tables; but this aspect can be recovered easily as explained below.

More Tutorial Applications

(1) Multiplying together different cyclic groups such as C_{n}, S_{n}, C_{i} and C_{s} with their axes and planes parallel or perpendicular to each other, it is possible to generate readily character tables for many more point groups.
(2) A quick examination of the S_{n}^{p} operations shows that if p is even $S_{n}^{p}=C_{n}^{p}$ and if p is odd S_{n}^{p} equals the product of C_{n}^{p} by σ_{h}. So if one picks from list $\left\{S_{n}^{p}\right\}$ all the elements having p even (and this is very quickly done by picking one in every second operation), one gets a set of proper operations which is a group, the order of which is n if n is odd and $n / 2$ is n is even. The remaining elements obviously form a coset.
If σ_{h} exists in the coset, the whole S_{n} group appears as the product of group C_{n} by group C_{s}. This enables another more traditional way of writing the table. It happens if n is odd, i.e., for all $C_{n h}$ groups having n odd. If $n=4 k+2$ (k integer) (for example $n=2,6,10$) the same procedure picking one in every second operation yields the $C_{2 k+1}$ proper group. Inversion remains in the coset which may be obtained by multiplying $C_{2 k+1}$ by i. The table is obtained from it. But S_{n} groups having $n=4 k$ cannot be decomposed in a similar way. Usually they are dealt with in a lengthy and awkward manner. Considering them as cyclic is much easier and unifying.
(3) The method is a good introduction to 1-, 2-, or 3-dimensional translational groups and Born cyclic conditions.

Summary

Cyclic properties give a unified view of C_{n}, S_{n}, and onedimensional translational groups and an efficient way to write down corresponding tables of characters.

[^0]: ${ }^{1}$ See Mc Weeny. "Symmetry," Pergamon, 1963, p. 92.

