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OVERVIEW

We will look at the relationship between the fluid equation and a
Markov population model from the point of view of the average
of the stochastic process.

e We will start from an heuristic argument.

@ We then look at it more carefully and show a method to get
ODE for the moments (mean, variance, and so on) of the
process.

@ Next, we will take the point of view of perturbation theory,
Taylor-expanding the Kolmogorov equation around the
mean (Kramers-Moyal expansion).

o Finally, we will look at another kind of expansion, the linear
noise, that will bring us to the central limit theorem
(Gaussian Process approximation).
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ODE FOR THE AVERAGE
Sometimes we are interested only in the (transient) average
behaviour of the CTMC.
From Kolmogorov equations, we can derive an ODE for the
average state E¢[X] of the CTMC: |, —, - Xt A
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f it holds that@F(X)] = F(E[X))! .6 Ee[£(X)] = £ (Be[X])\for [T-7
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all 7, then the previous equation boils down to the fluid ODE.
But this can be done exactly only if [F(X) is a linear function.

- Otherwise, one can resort to an approximation of the ODE for

the true average.
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ODE FOR THE AVERAGE

SIMPLE SHARED RESOURCE MODEL

dE¢[ Xp1]
at

dE¢[ Xp1]
dat

= KoE¢[Xp2] — E¢[min{ky Xp1, h1 Xpr1}]

~ KoE¢[Xpo] — min{kiE¢[Xp1], Et[XR1]}
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a4 BRYTAL APPROAATIOAS

ODE FOR THE AVERAGE 5( Tar’:o/l v E(E, U > (W>
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SIMPLE SHARED RESOURCE MODEL

dEt([j)t(P1] — koE¢[Xpo] — E¢[min{ki Xp1, h1 Xg1}]
dE: (X |

Zl 0s ST
SYNCHRONIZATION BY RATE PRODUCTO LS

%dEt[XQ KoEt[ Xp2| — K1 @; X D

\ \_,Am(g X0)+6] Jg@j

dEtC[l)t(P1] ~ kR t[X'Z] K1 @t[x@w ,X ’O

In this case, the equation for the true average depends on
higher order moments.
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We obtain the same equation
of the fluid approximation!

:c[ii‘(S] = KsE[XR] — KIE[X|]E[X]
[j((] = KIE|X||E[Xs] — kgE[X]]
AL — KRE[X|] - ksE[XR]
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MOMENT CLOSURE

DINKIN’S FORMULA FOR NON-CENTRED MOMENTS

n

[ 106+ ve)™ = X X

=1

p— '4t

fr(X)

SIR MODEL EXAMPLE

<l @N-/xsx,((xs 1)~ X2)

Bilks - Xa((Xs +1)% — X5)]

ki NE( X5 X1) - 21/ NEAXEX] ) 2ksE([XsXi] + KSEAXe] |
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MOMENT CLOSURE

DINKIN’S FORMULA FOR NON-CENTRED MOMENTS

n

[ 106+ ve)™ =X X0

=1

fr(X)

p— '4t

SIR MODEL EXAMPLE

d"t[Xé]
dt

= Eiki/N - XsXi((Xs — 1)° = X5)] + Et[ks - Xa((Xs + 1)% — X5)]
= ki/NE{[XsX]] - 2k;/ NE{[X5X]] + 2ksE:[XsXRr] + ksE[Xg]

The equation for the variance of Xs depends on third order moments.
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MOMENT CLOSURE

DINKIN'S FORMULA FOR NON-CENTRED MOMENTS

n

[ 106+ ve)™ =X X0

SIR MODEL EXAMPLE

(j‘H{)Qg]
dt

= Eki/N- XsXi((Xs—1)° - X§)] + Ei[ks - Xg((Xs +1)° - X§)]
= K/ "t[XSX/] - 2k/ "t[Xéxl] + 2Ks "‘t[XSXR] + Ks "‘t[XR]

The equation for the variance of Xs depends on third order moments.

For the SIR model, the equation for a moment of order A depend on
moments of order k + 1, due to quadratic non-linearity.

If we have polynomial rates of maximum degree m, then moments of order
depend on moments of order Kk + m— 1.

8/29



MOMENTS 0/29

MOMENT CLOSURE

DINKIN'S FORMULA FOR NON-CENTRED MOMENTS

n

| (X4 vep)™ = X X

4z‘[X1m1 T Xrgnn]
dt

If rate functions £, are polynomial the previous equation depends only
on non-centred moments. However, equations for moments of order
k generally depend on moments of higher order: the system of ODE
is(not closed (infinite dimensional).)

For smooth rate functions, one can approximate the rate with a Taylor
polynomial.
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MOMENT CLOSURE

DINKIN’S FORMULA FOR NON-CENTRED MOMENTS

n

[ TO6+vey)™ = X X

J=1

£.(X)

— '4t

CLOSING THE EQUATIONS
Equations can be closed by replacing higher order moment withjz

non-linear functions of lower order moments.

= One example is. normal moment closure (assume that moments from
third on satisfy ngYafE)n of a normal distribution).

~+Another example isjlog-normal moment closure.)
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' NORMAL MOMENT CLOSURE >

MOMENTS OF MULTIVARIATE NORMAL DISTRIBUTION
The) central moments have a relatively simple form. The k-th centred

moment, k > 3, is: %i s 2'5'; 4.1),[23) —
@ zero, If kK odd. (1, Zc), (l,é) x2

o Let Ill ..., Ik beindices in {1,..., n}, non necessarily distinct, and

let an allocation of /1,..., Ik Into k/2 unordered pairs. Then
e
EI(X; = i) - (Xi — i) [ | cov(x,x,)
EZ p (U.meL \ -
X1 o8 [ - < N
Example: *[(X1 — U )2(X2 — ,uz)(X3 —,[13)] — \/AP(XS” L/CX ‘)-—LC&J

AN

VAR(Xi, X1)COV(Xz, X3) + 2COV (X1, X2) COV(X1, Xa). (o)

To close the equation for the second order moment of Xs, we can

expand the definition of the third centred moment and use
E[X5XI] = 2E[Xs|E[XsX)] + E[XSIE[X] - 2E[Xs]*E[X]]. =_

_*s—ﬂ9>z(‘¢<7~/“1\—] =P, 56?/‘:2?%’]* o TOo D
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