PROVA SCRITTA DI GEOMETRIA - A.A. 2016/17 CORSI DI LAUREA IN INGEGNERIA NAVALE ED INDUSTRIALE

Prof. Dario Portelli

Trieste, 10/2/2017

Tutte le risposte vanno adeguatamente motivate

1.— Sia $W:=\{(x,y,z)\in\mathbb{R}^3\,|\,x\geq 0\ \mathrm{e}\ y\geq 0\}$. Si determini se W è un sottospazio vettoriale di \mathbb{R}^3 o meno.

2.— Dati gli spazi vettoriali \mathbb{R}^3 ed \mathbb{R}^2 , verificare che le relazioni

$$F(1,0,1) = (1,1)$$
 $F(0,0,1) = (1,0)$ $F(1,1,0) = (0,1)$

definiscono un'unica applicazione lineare $F: \mathbb{R}^3 \to \mathbb{R}^2$. Determinare una base di Im(F) e una di Ker(F). Stabilire se F è iniettiva, suriettiva o biiettiva.

Esiste un endomorfismo $F: \mathbb{R}^3 \to \mathbb{R}^3$ tale che

$$F(2,0,1) = (0,1,1)$$
 $F(1,1,1) = (5,2,1)$ $F(0,-2,-1) = (0,1,2)$?

3.— Calcolare il determinante delle matrici

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 4 & 0 \\ 0 & -1 & 1 & 9 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

4.— Si trovi una base ortonormale si \mathbb{R}^3 (rispetto al prodotto scalare standard) formata da autovettori della matrice:

$$A = \begin{pmatrix} 2 & 0 & 3 \\ 0 & -1 & 0 \\ 3 & 0 & 2 \end{pmatrix}$$

Si trovi poi una matrice ortogonale S tale che $S^{-1}AS$ sia una matrice diagonale.

5.— Nel piano affine euclideo \mathbb{R}^2 si considerino i punti P(2,1) Q(7,0) ed R(0,3). Si trovi un' equazione cartesiana per la retta r passante per P e Q, e per le rette per R che formano con r un angolo di $\pi/3$.