CHAPTER 5

THERMODYNAMIC
DIAGRAMS

5.1 General Considerations

The primary function of a thermodynamic diagram is to provide
a graphical display of the lines representing the major kinds of processes
to which air may be subject, namely isobaric, isothermal, dry adiabatic,
and pseudoadiabatic processes. Lines of constant value of saturation
mixing ratio are also needed to permit the various kinds of graphical
operations discussed in Chapter 4. We may plot on such a diagram
the observed state of any set of air parcels and then be in a position to
evaluate graphically the effect of any of these processes. Since energy
changes are of primary importance, the first desirable characteristic of
such a diagram is that the area enclosed by the lines representing any
cyclic process be proportional to the change in energy or the work done
during the process. This is such an important property that the designa-
tion thermodynamic diagram is often reserved for those in which area is
proportional to work or energy.

The second desired characteristic of a diagram is that as many as
possible of the fundamental lines be straight. The more a diagram
satisfies this criterion the easier it will be to use.

The third desideratum is that the angle between the isotherms and
the dry adiabats shall be as large as possible. As we shall see later,
when soundings of the upper atmosphere are plotted on these diagrams
the slope of the sounding is often compared to the slopes of the lines
on the diagram. Thus the greater the difference in slope between an
isotherm and an adiabat the easier it is to detect variations in slope.
An isotherm-to-adiabat angle near 90° is considered very good.

We have already seen that the fundamental expression for an
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element of specific work, dw = pda, suggests that we use p and a as
the coordinates in order to satisfy the first criterion. However, the angle
between the isotherms and adiabats of an a, —p diagram is quite small so
such a diagram does not satisfy the third criterion. We must seck a
means of setting up other suitable diagrams in which the coordinates
are two functions of thermodynamic variables, subject to the restriction
that the area enclosed by any cycle in the new diagram shall be equal
to the area enclosed by the same cycle on a a, —p diagram. Such a
diagram is called an equal-area transformation of the a, —p diagram. We
may then examine these new diagrams to see how well they satisfy the
other two criteria.

Consider two variables 4 and B. Let each be a function of one or
more thermodynamic variables. Since a thermodynamic variable is
determined by the state of a system it suffices to know a and p for a
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Fic. 5.1. Representation of a cycle on an a, —p diagram and
its equal-area transformation to an A4, B diagram

parcel in order to determine 4 and B. Thus each point on an a, —p
diagram corresponds to a point on an 4, B diagram and any closed
cycle in one is a closed cycle (perhaps of different shape) on the other,
as in Fig. 5.1. We shall require that the area enclosed on one diagram
be equal to the area enclosed on the other. This insures that an 4, B plot
will be a thermodynamic diagram. Thus

— $pda = § AdB
for any given cyclic process. Thus

§(pda + AdB) =0
But for this closed lines integral to be zero the integrand must be an
exact differential—for example, ds:

pda + AdB = ds
where we shall look upon s as a function of a and B. But from calculus

ds(a, B) = (;f:-)a da + (‘gia) dB



THE EMAGRAM - 67

Therefore, sufficient conditions for an equal-area transformation are

s - Os
f’—(“a:),, ad, A= (d_B)
If we now differentiate the first term partially with respect to B and
the second with respect to a we get

opy _ % 4 "_") _ O
(aB,_'a-aeaB = (aals* 2adB

(?‘_f)a - (%) (5.1)

Therefore, if

then areas will be equal on the two diagrams. If we now specify the
nature of the thermodynamic variable B, it is possible to determine
what 4 must be in order to have an equal-area transformation from

a, —p to A, B.

5.2 The Emagram

Consider the case where B = T. This is a logical choice for one of
the coordinates of a diagram, since one of the atmospheric properties
we measure is the temperature. From Eq. (5.1),

()= 7).

The right side can be evaluated from the equation of state for air,
pa = RT. We find

(4, £
daly a
. o4 d:
{r3
e
Upon integration we obtain
A=Rlna + F(T) (5.2)

where instead of a constant of integration we obtain an unspecified
function of T because the partial derivative we integrated required T
to be held constant. This F (T is completely at our disposal, just as a
constant of integration may be specified at will. We now take the loga-
rithm of the equation of state:

lna=—Inp+mR+InT
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and substitute into Eq. (5.2) to get
A=—Rhnp+[RInR+RInT + F(T)]

We shall choose F (T') such that the terms in brackets cancel completely.
We are free to do this since the terms in brackets consist of constants
and functions of temperature only. Therefore there is an F (7') which
will reduce the brackets to zero. Finally we obtain

A=—Rlnp

B=T
as the coordinates of a thermodynamic diagram. This plot was called
the emagram by Refsdal as an abbreviation for “energy-per-unit-mass
diagram.” It consists of a linear scale of temperature along the abscissa
and a logarithmic scale of pressure along the ordinate decreasing upward,
as in the atmosphere. Consequently the isobars and isotherms are
straight and perpendicular to each other. This is desirable since pressure
and temperature are the two most commonly measured atmospheric
variables.

Since pressure is on a logarithmic scale, the line p = 0 is at infinity
and the diagram must be terminated at some conveniently low pressure
such as 400 mb. This is not a great obstacle since the spacings of a
logarithmic scale are repetitive. For example, the distance between the
isobars 800 mb and 400 mb on this diagram is proportional to In 800 —
In 400 = In 2, while the separation between isobars 400 mb and 200 mb
is also proportional to In 2. Thus each isobar can be relabeled with
any fraction of its original value. Of course the values of 6 and 6,
attached to the adiabats and pseudoadiabats would have to be changed
appropriately. (See Problem 1.)

The shape of the dry adiabats on an emagram can be deduced by
taking the logarithm of Poisson’s equation considering # constant:

—lnpz—}cln T - constant

Since — In p is one of the coordinates of the diagram but In 7"is not,
the dry adiabats are logarithmic curves. They become steeper with
decreasing temperature but do not depart markedly from straight lines
in the usual meteorological range. A similar repetitive spacing exists
for these logarithmic lines as for the isobars. The pseudoadiabats are
markedly curved but the saturation mixing ratio lines are gently curved.
Thus, considering the second criterion of a diagram, the isobars and
isotherms are exactly straight, the adiabats and w, lines are only slightly
curved in the usual range of values, and the 6, lines are more definitely
curved,
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The adiabat-isotherm angle can be changed by varying one or the
other of the coordinate scales. However, convenience of use and economy
of paper limits one’s freedom here. In practice the angle between adiabats
and isotherms on an emagram is near 45°. This is appreciably better
than the corresponding angle on an a, —p diagram.

In summary, the emagram has (1) area proportional to energy;
(2) four sets of lines which are exactly or nearly straight and one set
which is curved; (3) an adequately good angle between adiabats and
isotherms. Therefore it is a convenient diagram which is in wide use.

5.3 The Tephigram

This diagram may be developed by letting B = T as for the ema-

gram. Thus
A=Rlna+ F(T)

as before. But this time instead of substituting from the equation of
state let us introduce potential temperature from Poisson’s equation

L 2N i BT X
g \1000) — \1000a
By taking logarithms and solving for In a, we get

Ina="1{nf—InT]+InT+InR—In 1000

or
Rlna =¢,Inf + G (T)
where the function G (7') includes the constants 1000 mb and R. There-
fore
A=c,In8 + F(T)+ G(T)
This time we shall choose the arbitrary function & (Ty = — G (1)
so the coordinates become
A=c¢,Inf
B=T
Since ¢, In 8 is equal to entropy, apart from an additive constant,
Sir Napier Shaw, who introduced this diagram, called it the 7-¢ diagram
or tephigram for short.
The equation of the isobars on a tephigram may be obtained by
taking the logarithm of Poisson’s equation. For a constant value of P

Inf =In T + const
Since one coordinate of this diagram is In @ but the other is a linear
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scale of 7, the isobars are logarithmic curves which slope upward to
the right and decrease in slope with increasing temperature. In the
rather restricted range of meteorological conditions the isobars have
only gentle curvature and are nearly straight. It is possible to rotate the
diagram clockwise so the isobars are essentially horizontal with pressure
decreasing upward as it does in the atmosphere. However, this is not
absolutely necessary.

The pseudoadiabats are appreciably curved, but the saturation
mixing ratio lines are nearly straight on a tephigram.

By the very nature of the diagram, the angle between isotherms
and adiabats is exactly 90°. Thus this diagram is one in which changes
of slope of a sounding are easily detected and comparison of slopes is
readily accomplished. This large angle, which is roughly double that
of the emagram, is the greatest advantage of the tephigram.

In summary, the tephigram has (1) area proportional to energy;
(2) four sets of lines which are exactly or nearly straight and only one
set which is quite curved; (3) an isotherm-to-adiabat angle which is large.
This diagram comes very close to satisfying all three criteria perfectly
and consequently it is used widely.

54 'The Skew T-Log p Diagram

This diagram represents an attempt to modify the emagram so as
to make the isotherm-adiabat angle more nearly 90°. It was first suggested
by Herlofson.! We let B = — R In p, so this coordinate is identical with
one coordinate of the emagram. Then Eq. (5.1) becomes

oA I Y
éa)yw, R \elnpl,

When we multiply by da and integrate, holding In p (and therefore p)
constant, we obtain

or

= 30
A=—Z+F(np)

or
A=—T+4 F(lnp)

! N. Herrorson, The T, log p-diagram with Skew Coordinate Axes. Meteor.
Ann., 2, pp. 311-342, 1947.
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We shall choose the arbitrary function to be
F(lnp)=—KlInp,

where K is a constant we may choose at will. We are not concerned with
the sign of an area since this only involves the direction in which a
cycle is carried out. Thus the coordinates may be written

A=T+ Klnp,

B=—RInp
The diagram is constructed with B as the ordinate and A4 as the abscissa.
Consequently the ordinate is identical with that of the emagram.

On this diagram an isotherm has the equation

A =const + Klnp
or

A=const—£—:B

or

R
B=—fﬁ+const

That is, the isotherms are straight parallel lines whose slope depends
upon the value of K selected. When K is chosen to make the isotherm-
adiabat angle close to 90° then the isotherms slope upward to the right
of the diagram at an angle of about 45° with the isobars.

The equation of the dry adiabats is obtained, as before, by taking
the logarithm of Poisson’s equation while holding # constant:

hT:?lnp%—const
]

The quantity R In p is one of the coordinates of the diagram, but
In T"is not. Therefore the adiabats are not straight. In the meteorological
range of conditions the adiabats are visibly but gently curved lines
running from the lower right to the upper left of the diagram. They
are concave upwards. As was pointed out earlier, the constant, K, is
so chosen that the isotherm-adiabat angle is near 90° everywhere in the
meteorological range.

As on all diagrams discussed here, the pseudoadiabats are distinctly
curved. This is a characteristic which can be avoided only be sacrificing
the energy-area proportionality. The saturation mixing ratio lines are
essentially straight on this diagram.

In summary, the skew 7T-log p diagram has (1) area proportional
to energy; (2) three sets of exactly or closely straight lines, one set of
gently curved lines, and one set of markedly curved lines; (3) an adiabat-
isotherm angle which varies with position on the diagram but is about
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90°. This diagram satisfies the three basic criteria almost as well as the
tephigram and is therefore a very good thermodynamic diagram. It has
been adopted for official use by the Air Weather Service of the U.S.
Air Force.

Figure 5.2 gives skeleton versions of the emagram, tephigram, and
skew T-log p diagram.

5.5 The Stiive Diagram

This diagram, which was outlined briefly in Chapter 4, consists of
p* on the ordinate with p increasing downward, and 7" on a linear scale
as the abscissa. This choice of coordinates insures that the dry adiabats
will be straight lines. As usual, the pseudoadiabats are curved but the
saturation mixing ratio lines are essentially straight. The adiabat-
isotherm angle is usually near 45°. As may be demonstrated (see
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Fi16. 5.2. Isobars, isotherms, dry adiabats, saturation mixing ratio line, and
pseudoadiabat on an emagram, a tephigram, a skew 7-log p diagram.
In all cases only the lines for w, = 10 g kg~ and 8, = 40° C are shown.
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Problem 2), the Stiive diagram is not an equal-area transformation of
the a, —p diagram. That is, area is not strictly proportional to energy.

In summary, the Stiive diagram (1) does not have area proportional
to energy; (2) has four sets of lines which are exactly or nearly straight
and only one set which is perceptibly curved; (3) has an adiabat-to-
isotherm angle of 45°. This diagram is clearly not as good as some of
the others, although it was introduced very early in the history of
modern meteorology. It is used enough so that one should know its
properties, but it is gradually being replaced.

5.6 Choice of a Diagram

A number of diagrams other than those described here have been
devised. Despite the objective criteria which have been set up to deter-
mine the desirability of a diagram, it seems true that most meteorologists
have an aversion to diagrams other than the one with which they are
most familiar. This is understandable and even defensible, since there
really is not a great deal of difference in practice among the various
diagrams. Sometimes one diagram is preferred over another because
of the excellence of the printing, the skillful use of color, and minimiza-
tion of eye strain. In other cases the deciding factor may be the presence
or absence of some auxiliary nomogram, such as one for rapid computa-
tion of the distance between pressure levels.

From an over-all point of view, the tephigram and the skew 7-log
p diagram seem to be superior to all the others by a small margin.
However it is likely that all the major diagrams will continue in use
for many years.

PROBLEMS

1. Suppose all the isobars on an emagram were relabeled with one-half
their original pressures. Show that a dry adiabat which was originally labeled
with potential temperature 6, should be relabeled with potential temperature
0 = 20,.

2. Show that the Stiive diagram does not satisfy the sufficient condition
for a thermodynamic diagram,

3. The “Refsdal aerogram” has coordinates — RT' In p and In RT. Show
that this is an equal-area transformation of the a, —p diagram.
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