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A. INTRODUCTORY ELEMENTS 

1. Basic Concepts 

1.1. Mechanics and continuum 

Mechanics is about the law of motion, or equilibrium. It can be divided into three subjects:  

1. statics, that deals about equilibrium of forces in absence of motion;  
2. kinematics, that deals about describing motion irrespective of the applied forces that create 

such motion;  
3. dynamics, the most important and comprehensive part, that regards the relationship between 

forces and motion. 

The term “dynamics” derives from the ancient Greek (δυναμικός) and was renewed in the French 
dynamique by Leibnitz (1646-1716) where it got the meaning of “pertaining with forces producing 
motion”. The concept of mechanics was addressed in mathematical terms by Newton who 
demonstrated that forces are the entities that change the motion, or that produce accelerations. Newton 
laws of classical mechanics were carefully developed for individual point particles of finite mass, 
then extended to rigid bodies and deformable bodies. Here we will have to revise these classical laws 
of mechanics for their applications to fluid materials.  

The course is about classical mechanics, it will ignore modern developments like quantum mechanics 
and theory of relativity whose corrections are largely negligible for objects of size much larger than 
individual sub-atomic constituent of matters moving with velocities well below the speed of light. 
We will also deal with pure mechanics and avoid discussing thermic and chemical phenomena, with 
the exception of a few mentions when appropriate. 

The course is about biological fluids that are mainly air, water and blood. The concept of “fluid” is a 
“model” to describe certain phenomena encountered in reality. Fluids and solids are the main classes 
of the wider model of “continuum”. No material is really a continuum, it is made of individual 
molecules that are made of atoms, that are made of sub-atomic particle; however, the model of 
continuum is used to describe macroscopic phenomena whose modification occurs on scales that are 
much larger than those of individual constituents.  

Air and water have molecules whose size is of the order of nanometers (1 nm=10-9 m); for them, the 
scheme of continuum is appropriate when studying macroscopic phenomena whose size is much 
larger than that; In this case macroscopic scales can range from hundreds of kilometers to small 
fractions of a millimeters. 

Blood is different; blood is a particulate fluid mixture composed by a percentage of about 50% by 
plasma (that is essentially water) and another percentage about 50% of red blood cells (this percentage 
is called hematocrit), plus minor percentages of white cells and other constituents. Red blood cells, 
that transport oxygen in the whole body, and are much larger than water molecules. Red blood cells 
have a discoidal shape of radius about 8 micrometer (1 μm=10-6 m), thicker around the circumference, 
with thickness about 2 μm, and a thin membrane at the center. It can also be seen as a donut whose 
hole is covered by a membrane that extends from the surface of the outside ring to the center (see 
figure 1.1). Thus, the volume of a red blood cell is approximately 10-7 mm3 and, if blood cells covers 
50% of blood volume, there are about 5×106 red blood cells in one mm3 of blood. 

Based on these figures, blood motion should be described with corpuscular or continuous models 
depending on the size of the vessel under analysis. Large vessels have a diameter ranging from 
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centimeter to millimeters, here the continuum model is appropriate; smaller vessels have a size that 
can contain some tens of red blood cells across and. At the smaller end, the diameter of capillaries is 
less than 10 μm; here red blood cells flow one after the other in a row, even squeezing to be able to 
pass through, and the corpuscular nature of blood is fundamental (see figure 1.2). 

However, the physiological sites of greater clinical interest, and where the mechanical phenomena 
take a fundamental relevance, are the heart chambers and the large vessels like Aorta and carotid, for 
example. In the heart and large vessels blood dynamics can be confidently modelled as that of a 
continuous fluid. Nevertheless, some phenomena that may still be influenced by its corpuscular nature 
should be considered separately. This simplified representation of blood allows employing a rich 
theoretical background of continuous mechanics and differential mathematics that represents the 
basic tools of most achievements in fluid dynamics. 

 

The continuous model is appropriate for describing the large scale phenomena of motion, when 
changes in the fluid motion occurs over distances that are orders of magnitudes larger than individual 
constituents. A continuous mean can be described in terms of global properties or local properties. 
Examples of global, or integral, properties are the volume V or the mass M of the portion of material 
under analysis while the density ρ, mass per unit volume, given by the ratio M/V. However, density 
is a local property that can take different values at different position inside the volume; therefore, it 
is more properly defined at every point as 

 𝜌𝜌 = lim
𝑉𝑉→0

𝑀𝑀
𝑉𝑉

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. (1.1) 

The second equality in (1.1) used the differential form of a ratio between infinitesimal quantities that 
implicitly assume the limit V0; here it should be remarked once again that in the continuous model 
the infinitesimal volume is still much larger than the individual constituents of the material. Needless 
to remind that global properties can be evaluated by integration of local ones, like 

 
Figure 1.1. Red Blood Cells. 
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 𝑀𝑀 = ∫ 𝜌𝜌𝜌𝜌𝜌𝜌𝑉𝑉 .  

 

Local properties represent the most comprehensive description of the continuum, they are also called 
“fields” that are quantities that vary in time and space, like temperature T(x,t) or pressure p(x,t) where 
t is the time coordinate and x is the space coordinate; similarly, velocity v(x,t) is a vector field. 

The physical laws that govern the mechanics of a continuum are the conservation of mass and the 
conservation of momentum and of angular momentum (both are expressions of the Newton law). We 
do not consider thermodynamics phenomena here. We also consider that the material does not 
undergo transformations (state, chemical or else) and remains the same material everywhere in the 
space region of interest as time progresses. Therefore, energy is limited to mechanical energy and the 
conservation of momentum can be recast to express conservation of energy that is not an additional 
conservation law. The only forms of energy coming into play are kinetic and potential, we do not 
consider other forms of energy as well as any other non-mechanical properties that are considered 
passive scalars and do not influence the motion.   

The conservation laws must be combined with the equation of state that characterizes the specific 
continuous material under analysis. The equation of state is the law that relates volume, pressure and 
temperature. A well known example is the law pV=RT of ideal gas. In a continuum, it is preferable to 
express the equation of state with local variable, or fields, that reads in general 

 𝜌𝜌 = 𝑓𝑓(𝑝𝑝,𝑇𝑇). (1.2) 

The influence of temperature in (1.2) has a fundamental relevance, among many others, in large 
environmental phenomena because its stratification with the quote, in the atmosphere, in the oceans, 
is responsible for buoyancy effects. Differently, to our present purpose thermodynamics effects will 
be ignored, which means that temperature is considered constant or non-influent such that (1.2) 
reduces to 

 𝜌𝜌 = 𝑓𝑓(𝑝𝑝), (1.3) 

which expresses the intuitive phenomenon that density increases when pressure increases and vice 
versa.   

Let us quantify this point a little more carefully: consider a generic volume V of material (for example, 
a cylinder), that is in equilibrium with the external pressure, and apply a pressure increment Δp on 
the surrounding surface of such volume (for example pushing a piston in the cylinder). The volume 
will undergo to a decrease -ΔV that is larger with larger Δp. The change in volume must be expressed 

 
Figure 1.2. Red Blood Cells flowing in vessels of varying size. 
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relative to the initial volume V, because the actual variation is in percentage to it. We can express to 
modulus of cubic compressibility (or bulk modulus) as 

 𝜀𝜀 = ∆𝑝𝑝
−∆𝑉𝑉

𝑉𝑉�
= 𝜌𝜌 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
; (1.4) 

in the second equality above, differences Δ have been transformed to differential d and the relation 
between volume and density  V=M/ρ, with the mass M being constant, permitted to transform the 
volume variations into density. The velocity of propagation of sound c is related to the modulus of 
cubic compressibility by  

 𝑐𝑐 = �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �
𝜀𝜀
𝜌𝜌

, 𝜀𝜀 = 𝜌𝜌𝑐𝑐2; (1.5). 

In the case of liquid materials, a small reduction of volume requires extremely large increase of 
pressure that are typically not physiological. To state it differently, physiological velocities are much 
lower that the velocity of sound (that in water is about 1500 m/s and in dry air about 345 m/s) and we 
can focus the attention to the limiting case (ε∞) of “incompressible material”. Therefore, the 
equation of state considered here takes the simple form 

 𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1.6) 

where the density takes values about 103  Kg/m3 in water, 1.05×103  Kg/m3 for blood and about 1.2  
Kg/m3 in air at 20°C and atmospheric pressure. 

1.2. Fluids and solids 

The discussion so far applies to a generic continuum, which can be a model for either a solid or a 
fluid material. It is time to clarify the difference between solids and fluid so that we can focus on the 
latter with no ambiguity. 

 

In a solid material, such as biological hard or soft tissue, the constituting elements have a predefined 
shape or a natural geometric structure. When the relative position of these constituent elements is 
changed by a small amount, internal stresses develop in effort to restore the elements to their original, 
stress-free state. For example, with reference to figure 1.3, a rod of elastic material of length L 
stretches under the action of a force F and returns to its original length when the force ceases. This 
distinctive property of solids is called “elasticity”. Elastic (potential) energy is stored in the deformed 
elements composing the material and it is returned when the deformation goes back to zero. Indeed, 
an elastic deformation is normally completely reversible. Elastic deformation, or strain, s=ΔL/L is 

 
Figure 1.3. Elasticity in solids: material deforms under the action of a force. 
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related to the amount of stress τ=F/A, proportional to the force and inversely proportional to the area 
of the cross section. In general, solid materials are characterized by a stress-strain relationship as 
shown in figure 1.4. For small enough deformation the stress-strain relationship can be considered as 
linear  τ=Es where the proportionality coefficients E is the Young modulus. Most biological tissues, 
however, present a hyperelastic behavior as shown in figure 1.4. Hyperelasticity means an increase 
of stiffness at larger deformations, it is therefore a protective property that limits the entity of 
deformation in the event of extreme overloads. 

 

Fluids behave differently and do not present this property. The most distinctive property of fluids, 
which include liquids and gases, is that, a fluid has not a preferred shape. A fluid offers no resistance 
to the shape of its container, irrespective of any geometry it had previously. They have no singly 
preferred geometry; thus they may have infinitely many stress-free states, each of which may uniquely 
exist. Fluids do not develop stresses for a relative displacement of its individual elements, fluids 
develop an internal resistance during their relative motion. Indeed the distinctive property of fluids is 
the development of internal stresses in response to a “rate of deformation”, a differential velocity 
between nearby elements. This property of fluids takes the name of “viscosity”. A fluid thus 
experiences a viscous resistance during the motion caused by the sliding of the individual fluid 
elements one on the other. Viscous stresses represent a frictional phenomenon that appears during 
motion, when the motion ceases also stress cease and there is no mechanism taking the system to its 
original position as it happened in solids. The mechanical energy used to deform the fluid elements 
has not been stored anywhere, it is dissipates by internal viscous friction and irreversibly transformed 
into heat and dispersed away. 

In analogy to what previously shown for elasticity, fluids are characterized by a relationship between 
stress and rate-of-strain. Consider a simple experiment of a thin layer of fluid between two walls 
(infinitely extended to avoid discussing end-effects), the lower wall being fixed and the upper wall 
sliding with constant velocity U. as sketched in figure 1.5. The upper wall is maintained at constant 
velocity under the action of a shear action τ, given by the force per unit area. Such shear increases 
when velocity U increases and when the thickness d decreases, it eventually depends on the ratio U/d. 
If the thickness is small enough such ratio is the velocity derivative 

 𝜏𝜏 = 𝑓𝑓 �𝑈𝑈
𝑑𝑑
� = 𝑓𝑓 �𝑑𝑑𝑣𝑣𝑥𝑥

𝑑𝑑𝑑𝑑
� (1.7) 

 
Figure 1.4. Elasticity in solids: stress-strain relationship. 
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This relationship between shear stress and shear rate is the “constitutive relation” that characterizes 
the viscous fluid properties as shown in figure 1.6 for typical examples. Fluid that follow a simple 
linear relationship are called “Newtonian fluids” for which (1.7) becomes 

 𝜏𝜏 = 𝜇𝜇 𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑

 (1.8) 

and the proportionality coefficient μ is the “dynamic viscosity” or simply “viscosity”. Luckily, most 
common fluids like water and air behave as Newtonian fluids with small viscosity (that takes value 
about 10-3 Kg/m·s for water and 1.8×10-5 Kg/m·s for air).  

 

 

Blood is more a shear thinning fluid where the corpuscular nature influences the value of viscosity, 
which cannot be assumed to be circumstantially constant. In fact, the apparent blood viscosity is not 
an intrinsic material property and thus its value depends on the type of motion the blood is 
experiencing at the different sites. For example, blood behaves as a Newtonian fluid in regions with 
a high shear rate when the blood cells undergo an intense mixing and average friction is not directly 
influenced by the corpuscular structure. Conversely, at low shear rate the interaction between 

 
Figure 1.5. Viscosity in fluids: shear frictions between fluid elements sliding with different velocity. 

 
Figure 1.6. Viscosity in fluids: shear stress depends on shear rate. 
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individual cells gives rise to higher friction and higher apparent viscosity; a behavior that is sometime 
modelled by a static yield stress. Viscosity is also function of the local hematocrit because a higher 
percentage of red blood cells reflects into a higher average friction. 

Such variability is further influenced by several concurring factors and still lacks a complete and 
general description. However, in large vessels, where shear rates are normally high, these variations 
are small and the mathematics would present a significant increase in complexity when accounting 
for a variable viscosity. Therefore, at least for flow in large vessels, blood is normally treated as a 
Newtonian fluid with constant viscosity μ=3.3×10-3 Kg/m·s, about three times greater than the 
viscosity of water.  

Dynamic viscosity is a proportionality coefficient in (1.8) between a dynamic quantity, the shear 
stress that involves the tree dimensional units (mass, length, time) and the shear rate that involves 
only kinematic units (length, time). When dealing with the description of motion, it is sometime 
useful to introduce the “kinematic viscosity” defined as 

 𝜈𝜈 = 𝜇𝜇
𝜌𝜌
 (1.9) 

that is the viscosity coefficient directly involved on the fluid motion, whereas the dynamic viscosity 
enters when motion must be translated into dynamic actions, forces and stresses. Kinematic viscosity 
takes value about 10-6 m2/s for water, 3.3×10-6 m2/s for blood and 1.5×10-5 m2/s for air showing that 
the motion of water is less viscous that air’s although involved shear stresses are larger.  

It must be clear in mind that these are interpretative models and the distinction between fluids and 
solids is not always so immediate. Most materials present both elastic and viscous characteristics. 
Some material can be intrinsically viscoelastic (for example gels). Some materials should be even be 
described as fluids in some conditions and as solids in another. A glacier is a solid if one can walk on 
it, yet it flows like a fluid during its slow motion detectable over the years. It is thus important to 
remind that solids and fluids, elasticity and viscosity, are conceptual models used to describe the 
behavior of specific materials under the specific situation of interest. 

1.3. Overview of Bio-flow Domains 

The eventual objective of this book is that of a rigorous application of fluid dynamics principles to 
blood flow in the cardiovascular system. For completeness, we provide here a quick overview of the 
circulatory system for the inexperienced reader. This is intentionally an extremely superficial 
synthesis and the reader is directed to the numerous other texts for more comprehensive descriptions. 

Circulation is a systems aimed to distribute nutrients (mainly oxygen) transported by blood to every 
cell in the entire body. For this, circulation uses two main mechanisms: transport and diffusion. 
Transport allow covering relatively large distances, from the heart to other body regions up to limbs. 
Blood is transported with the local velocity U along the cardiovascular network and allow travelling 
a distance ℓtransp~Ut in a time interval t. This mechanism is efficient until velocity is high enough and 
becomes progressively less efficient at smaller scales where velocity is low to avoid development of 
excessive shear stresses (that are proportional to U/d, with d the vessel diameter, as shown in 1.2). 
On the opposite end, diffusion is more efficient to cover small distances and permits the local 
distribution from capillary to interstitial space up to individual cells through a diffusive behavior that 
rapidly covers small distances as ℓdiff~(2νt)½. Comparative results, reported in the table below, show 
how transport is best suited to cover large distances with high enough velocity whereas diffusion 
becomes progressively more efficient to cover small distances when velocity decreases.  
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t ℓdiff ℓtransp 
(U=2 mm/s) 

ℓtransp 
(U=20 cm/s) 

10-3 s 60 μm 2 μm 0.2mm 
10-2 s 0.2 mm 20 μm 2mm 
10-1 s 0.6 mm 0.2mm 2cm 

1 s 2 mm 2mm 20cm 
1 min 1.4 cm 12cm 12m 
1 hour 11 cm 7.2m 720m 

 

The entire circulatory system is composed of the systemic and the pulmonary circulation systems that 
are both in parallel and in series; figure 1.7 presents a sketch of the main vessels. Systemic circulation 
starts from the left heart, that receives low pressure oxygenated blood from the pulmonary veins and 
pushes at higher pressure in the Aorta, the main artery. Aorta branches into smaller arteries that 
redirect blood into different regions of the body, these in turn branch into smaller arteries then to 
arterioles and into capillaries that are close enough to any cell of the body to which oxygen is 
delivered and cells’ refuses collected. Capillaries then merge together into venules that merge into 
progressively larger veins up to inferior vena cava and superior vena cava (from the lower and upper 
part of the body, respectively) that eventually enter the right heart. From the right heart blood is 
pushed into the pulmonary arteries and then across the lungs, where red blood cells leave the refuses 
and collect oxygen, and reaches the left heart to restart its cycle. The two circulations are also in 
parallel because the left and right sides of the heart are part of the same organ and work in synergy. 

Mechanical analysis is principally dedicated to the transport mechanism in the larger vessels that are 
also the sites of greater clinical interest; thus across the heart, in the larger arteries and the larger 
veins. There are important differences between arterial and venous networks. Blood flows in arteries 
through an unsteady, pulsatile motion forced by the heartbeat rhythm and fills arteries at high pressure 
(75 to 120 mmHg, that can be expressed as 1.0 to 1.6×10-5 Pa or 1 to 1.6 mH2O, thus blood may jump 
this high when an artery is punched). Differently, blood reaches the venous system after having passed 
though the capillary bed; there blood experienced large frictional resistances, it loses its unsteadiness 
and loses pressure. Thus, venous flow is essentially a steady one and pressure is low (as immediately 
verifiable by pushing the superficial veins). This is also a reason why arteries are protected, deep in 
the body, while veins are closer to the surface. 

The diameter of arteries of higher pato-physiological interest range from few centimeters (Aorta) to 
one centimeter or several millimeters (carotid bifurcation, iliac arteries) where unsteady velocities 
reach peaks about 1 m/s. More details flow in the heart chambers and in main vessels will be provides 
in later chapters. 

This book will focus on blood flow in the cardiovascular system due to its paramount relevance with 
respect to other potential clinical application of fluid dynamics. Nevertheless, there are other aspects 
of biological fluid dynamics that should be mentioned 

‐ Pulmonary circulation deals with the forced oscillatory motion of air across the pulmonary 
airways to the pulmonary alveoli. The main issues are the presence of 
dysfunctional/insufficient alveoli, or the collapse of air vessels under extreme thrusts. In the 
same field, some attention is devoted to the fluid mechanics of main external airways (nasal 
sinuses, turbinate) for the numerous and common pathologies that affect these areas. 

‐ Biomechanics of the eye received particular attention during last years. The dynamics of the 
aqueous humour (a fluid similar to water) in the anterior chamber of the eye regulates the 
intraocular pressure and is involved in the development of glaucoma. The vitreous humour, a 
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water-gel fluid that flows in the vitreous chamber during eye movements. It has important 
roles for eye function while a liquefied vitreous may be connected with retinal detachment. 

‐ Blood perfusion represents the small scale dynamics of blood into the organs. There range 
from the liver, to kidney, to muscles, up to the myocardial muscle. Perfusion analysis can be 
of interest to recognize and assess regions with insufficient blood supply (ischemic areas) 
following injury or a disease, or to assess potential absorption of drugs. Models of these are 
still at early stages for clinical application; more importantly dedicated clinical imaging 
modalities allow direct evaluation of perfusion levels in numerous organs. 

‐ Industrial fluid dynamics is a large part of clinical or biotechnological environments, in either 
laboratories or plants, in either large or microscopic domains. It is therefore important to 
known the fundamental aspects of fluid dynamics to understand their fundamental function. 

 

 

 

Figure 1.7. Overview of the circulatory anatomy. 
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1.4. Dimensional Analysis 

It is worth dedicating some words to the topic of dimensional analysis. Dimensional analysis explores 
the implication of dimensional congruence for physical laws, and it is interesting to notice how this 
apparently trivial consideration can sometime allow simplifying or even uncovering relationships 
between physical variable. 

Any physical property can be expressed in general as the product between a number and dimensional 
measurement unit. Usage of different units brings to a different numerical coefficient, however the 
physical property remain always the same: a property X can be expresses as X=A×UNIT1  or  
X=B×UNIT2. For example, a person height X=1.80m can be expressed as X=180cm or as X=70.87inch 
but the physical property itself, the height of that person, is evidently independent from the unit 
chosen to describe it. 

Similarly, a “physical law” reflects a physical phenomenon that is independent from the units used to 
describe it. As before, this is a trivial affirmation; however, this simple concept is a constraint that 
allows simplification of the physical laws itself. 

Let us use one example to show the power of dimensional analysis. Consider fluid flow in a 
cylindrical vessel, the fluid reduces its pressure (potential energy) while moving downstream due to 
the friction experienced by fluid along its motion. We are willing to express how the loss of pressure 
per unit length depends on the parameters of the vessel and of the stream. Without any knowledge of 
the physical laws governing fluid dynamics, we can state that this phenomenon must be expressed by 
a physical law of the type  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝐷𝐷,𝑉𝑉, 𝜌𝜌, 𝜇𝜇) (1.10) 

that relates the pressure gradient (pressure loss per unit length) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, with all the properties that may 
influence it: the vessel diameter D, the flow velocity V, and the fluid characteristics, density ρ and 
viscosity μ. Assuming a simple configuration (cylindrical vessel with no bend, obstacles etc.), there 
are no other quantities coming into play. Thus a physical law (1.10) must exist although it is unknown. 
This law is complex, it depends on 4 parameters. If you had to find it by experiments, considering (as 
a minimum) 10 values for each parameters, you had to make 104 experiments to fill this 4-dimensional 
parameters space. Requiring multiple experimental apparatuses with different diameters D and 
different fluids to vary ρ and μ.  

Equation (1.10) is a physical law, thus it does not depend on the specific unit of length, L, of time, T, 
and mass, M, chosen to express it. You can choose standard units (L=m, T=second, M=Kg) or Anglo-
Saxon units (L=ft, T=s, M=lb) or any other one; the resulting law would be unaffected by this choice. 
Once the units are decided, the physical law would express a relationship between the numerical 
coefficients expressing the quantities in those units and the law is automatically consistent because a 
physical law is independent from the choice of units: units on the left and the right side of (1.10) must 
be the same in a physical law.  

However, it is not necessary to use units previously defined by some standard in an independent 
context. It is actually smarter to use units that are natural to the specific application. In this case, one 
could use the diameter D as unit of length, the ratio D/V as the unit of time and ρD3 as unit of mass 

 L = 𝐷𝐷 T = 𝐷𝐷
𝑉𝑉

M = 𝜌𝜌𝐷𝐷3. (1.11) 
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Even with this special choice, the physical law will express a relationship between the numerical 
coefficients of every quantity in those units. Thus, let express each quantity in (1.10) as the product 
between the numerical coefficients and its units (1.11) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐷𝐷
𝜌𝜌𝑉𝑉2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ � M
L2T2

� , 𝐷𝐷 = 1 ∙ [L], 𝑉𝑉 = 1 ∙ �L
T
� , 𝜌𝜌 = 1 ∙ �M

L3
� , 𝜇𝜇 = 𝜇𝜇

𝜌𝜌𝜌𝜌𝜌𝜌
∙ �M
LT
�.  

Then insert these into (1.10) to obtain the relationship between the numerical coefficients 

 𝐷𝐷
𝜌𝜌𝑉𝑉2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓 �1,1,1, 𝜇𝜇
𝜌𝜌𝜌𝜌𝜌𝜌

� = 𝑓𝑓 � 𝜇𝜇
𝜌𝜌𝜌𝜌𝜌𝜌

�. (1.12) 

Equation (1.12) represents the same physical law (1.10), but it is now expressed as a relationship 
between dimensionless quantities. Expressed this way it has reduced the number of independent 
variable from 4 to a single one. Thus, you can establish the physical law making just N experiments 
instead of N4 that could even be performed, for example, just with one fluid in one vessel and varying 
the fluid velocity. 

This simplification allowed by dimensional congruence is a general rule: expressing a physical law 
in dimensionless terms allows reducing the number of variables by a number equal to the number of 
independent dimensional units involved in the law. In the previous case, a relationship between 5 
variables involving 3 units has been simplified in a relationship between 2 dimensionless variables. 

It is easy to demonstrate that the resulting law is independent from the specific units selected. In the 
previous example we could use, for example, a different unit time unit  

 L = 𝐷𝐷 T = 𝜌𝜌𝐷𝐷2

𝜇𝜇
M = 𝜌𝜌𝐷𝐷3 

These give 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝐷𝐷3

𝜇𝜇2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ � M
L2T2

� , 𝐷𝐷 = 1 ∙ [L], 𝑈𝑈 = 𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇
∙ �L
T
� , 𝜌𝜌 = 1 ∙ �M

L3
� , 𝜇𝜇 = 1 ∙ �M

LT
�;  

that inserted into (1.10) gives 

 𝜌𝜌𝐷𝐷3

𝜇𝜇2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓 �1, 𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

, 1,1�, 

that can be recast as  

 𝐷𝐷
𝜌𝜌𝑉𝑉2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇
�
−2
𝑓𝑓 �𝜌𝜌𝜌𝜌𝜌𝜌

𝜇𝜇
� = 𝑓𝑓 � 𝜇𝜇

𝜌𝜌𝜌𝜌𝜌𝜌
�,  

to give a result functionally identical to (1.12). 

It is actually a general result for fluid flowing in smooth cylindrical vessels that the pressure loss per 
unit of length is expressed in general as  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑉𝑉2

2𝐷𝐷
𝑓𝑓(𝑅𝑅𝑅𝑅), (1.13) 

Where f is known as the (Darcy) friction factor and 𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉
𝜈𝜈

  is the Reynolds number, a classical 
dimensionless number indicating the relative importance of kinetic energy with viscous frictions that 
we will encounter several times later. 

It should be underlined that it was possible to obtain the general resistance law (1.12) or (1.13) based 
on dimensional consideration only without using any knowledge of fluid dynamics. This 
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demonstrates the power of the simple concept of dimensional analysis. Fluid dynamics theory may 
be then advocated to better specify the function f(Re); however, we will see that this is not immediate 
in most of the cases and (1.12) may become the only theoretical result to be integrated by physical 
experiments.  

It is therefore of fundamental importance to formulate any physical law in dimensionless terms.  

If we extend the example (1.10) to consider a pulsatile flow with period T,   

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝐷𝐷,𝑉𝑉, 𝜌𝜌, 𝜇𝜇,𝑇𝑇) (1.14) 

Selection of the same units (1.11) gives the dimensionless relationship 

 𝐷𝐷
𝜌𝜌𝑉𝑉2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆) (1.15) 

showing that pressure changes as before due to friction (dependence on the Reynolds number, Re) 
and it also depends on the frequency of oscillation that is expressed by the Strouhal number 𝑆𝑆𝑆𝑆 = 𝐷𝐷

𝑉𝑉𝑉𝑉
 

in dimensionless form. 

Dimensional analysis permits to reduce the number of independent variable to their minimum and is 
a powerful tool in complex conditions, for example when mathematical equations do not lead to a 
closed solutions. It will be used in some occasions to progress across critical passages that cannot be 
solved otherwise. 
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2. Fluid Statics 

2.1. Pressure distribution 

Fluid statics deals with the forces exerted by fluids in absence of motion. These are of enormous 
importance in numerous applications, from industrial to biological as they represent the basic stress 
state in every fluid domain. Motion, when occurs, may induce modification on top of this fundamental 
state. 

Statics means that the velocity vector field is identically zero, v(x,t)=0. As we have seen in the 
definition of fluids and of viscosity, shear stresses develop in consequence of differential velocities 
(shear rate, or rate of deformation). Therefore, in static conditions, shear stresses are also absent and 
the stress made by still fluid over any surface has only a normal component 

 𝝉𝝉 = 𝑝𝑝𝒏𝒏, (2.1) 

where n is the normal to the surface (a vector perpendicular to the surface, directed toward the surface 
and of unit modulus) and p(x) is the pressure field. Let me remark that pressure is a scalar quantity 
and transforms into a stress vector only after it acts on a surface. 

Statics obey the law of equilibrium, for a generic volume V  we can state that the sum of volumetric 
forces and of surface forces is zero 

 ∫ 𝒇𝒇𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝑝𝑝𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆 = 0 (2.2) 

where the surface S is that surrounding the volume V. Equation (2.2) is the integral balance equation 
of fluid statics. 

Let’s derive the same equation in differential form. Balance equation (2.2) is valid for an arbitrary 
volume. Consider an infinitesimal cube of size dx×dy×dz,  

 

the balance (2.2) along the x-direction  

 𝑓𝑓𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − �𝑝𝑝 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0  

presents the x-component of the volume force, fx, and the pressure force acts only on the two face, 
with normal n=[1,0,0] and n=[-1,0,0], respectively and becomes 

 𝑓𝑓𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

.  

 
Figure 2.1. Balance applied on infinitesimal cube 

x

z

y
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In general vector form, the differential equation of fluid statics reads  

 𝒇𝒇 = ∇𝑝𝑝; (2.3) 

that expresses the balance on every fluid particle between the volumetric forces and the pressure 
gradient. 

The volumetric force of greatest interest is the gravitational force that can be expresses as  

 𝒇𝒇 = −𝛾𝛾𝒌𝒌 = −∇𝛾𝛾𝛾𝛾;  

where k is the unit vector directed upwards against gravity, and z is the corresponding direction. In 
case of gravitational forces, equation (2.3) becomes 

 ∇(𝑝𝑝 + 𝛾𝛾𝛾𝛾) = 0. (2.4) 

Equation (2.4) states that, in a fluid subjected to gravitational field only, pressure, p(z), is constant on 
xy-planes at constant z and it increases linearly as the quote z decreases. 

Equation (2.4) states the first fundamental concept of fluid statics: the static head 

 ℎ = 𝑧𝑧 + 𝑝𝑝
𝛾𝛾
, (2.5) 

remains constant inside a same fluid. Equation (2.5) allow evaluating the pressure difference between 
two points at different quote z. Consider two points then (2.5) tells 

 𝑝𝑝1 + 𝛾𝛾𝑧𝑧1 = 𝑝𝑝2 + 𝛾𝛾𝑧𝑧2  

thus 

 𝑝𝑝2 = 𝑝𝑝1 + 𝛾𝛾(𝑧𝑧1−𝑧𝑧2)  

Take point “1” at the free surface subjected to atmospheric pressure and “2” at a generic level z    

 𝑝𝑝(𝑧𝑧) = 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛾𝛾(𝑧𝑧surface − 𝑧𝑧)  

if you define the depth ζ=zsurface-z, then the pressure grows linearly with the depth ζ  

 𝑝𝑝(𝜁𝜁) = 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛾𝛾𝛾𝛾. 

It is often useful to use pressure relative to the atmospheric pressure instead of its absolute value, 
because atmospheric pressure is almost everywhere the reference value and disappears when dealing 
with pressure differences. Assuming atmospheric pressure as the zero value of pressure, then one can 
write simply 

 𝑝𝑝(𝜁𝜁) = 𝛾𝛾𝛾𝛾. 

It is also immediately evident from (2.5) that the level of the free surface where pressure is zero 
represents the value of the static head for that fluid.  

The second fundamental concept of fluid statics is based on the equilibrium of the interface between 
two fluids: pressure is the same on the two faces at the interface between two fluids, which is the 
obvious consequence of the equilibrium of the interface itself.  

These two principles make possible to evaluation of pressure difference between all places in fluid 
filled containers. Figure 2.2 shows on the left a simple case where pressure increases linearly with 
depth from the zero value at the surface. Differently, the right side shows pressure profile with a two 
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immiscible fluids with different specific weight, γ1 and γ2>γ1, and non-zero pressure value at the free 
surface. It is easy to show that, with reference to figure symbols, pressure takes the value 
p(ζ1)=p0+γ1ζ1 in the upper fluid and  p(ζ2)=p0+γ1H+γ2ζ2 . 

 

An interesting and technologically important case is the differential manometer shown in figure 2.3.  

 

A tool that allows measuring the difference in static head between two reservoirs filled with a same 
fluid of specific weight γ connected by a small duct partially filled with a heavier fluid (typically 
mercury) of specific weight γm. The static head is constant inside each reservoir, thus we can use the 
points at the edge with the heavier fluid, and write, with reference to figure 2.3 

 ℎ1 − ℎ2 = 𝑧𝑧1 + 𝑝𝑝1
𝛾𝛾
− 𝑧𝑧2 −

𝑝𝑝2
𝛾𝛾

= 𝑝𝑝1−𝑝𝑝2
𝛾𝛾

− ∆.  

                                 
Figure 2.2. Pressure distribution with depth. 
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 Figure 2.3. Differential manometer 
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Now apply the conservation of h inside the heavier fluid to write 

 𝑧𝑧1 + 𝑝𝑝1
𝛾𝛾m

= 𝑧𝑧2 + 𝑝𝑝2
𝛾𝛾m

⇒ 𝑝𝑝1 − 𝑝𝑝2 = 𝛾𝛾m∆  

and substituting back 

 ℎ1 − ℎ2 = �𝛾𝛾m−𝛾𝛾
𝛾𝛾
� ∆. (2.6) 

The reading of the difference of height Δ in the differential manometer permits to compute the 
difference of static head between the two chambers. Often one chamber has a known head and it is 
used as reference to measure directly the head in a second chamber. Once the head is known, pressure 
can be obtained at every point.  

2.2. Forces on Plane Surfaces 

Consider a planar surface with area A and normal n directed towards the surface The force vector 
acting on the surface is 

 𝑭𝑭 = ∫ 𝑝𝑝𝒏𝒏𝑑𝑑𝑑𝑑 = 𝐹𝐹𝒏𝒏𝐴𝐴   

has modulus F and direction given by n. Consider the surface wet by a single fluid whose pressure 
can be expressed in general as p=p0+γ(z0-z) 

 𝐹𝐹 = ∫ 𝑝𝑝(𝑧𝑧)𝑑𝑑𝑑𝑑𝐴𝐴 = 𝑝𝑝0𝐴𝐴 + 𝛾𝛾𝑧𝑧0𝐴𝐴 − 𝛾𝛾 ∫ 𝑧𝑧𝑧𝑧𝑧𝑧𝐴𝐴 = 𝑝𝑝0𝐴𝐴 + 𝛾𝛾(𝑧𝑧0 − 𝑧𝑧𝐺𝐺)𝐴𝐴 = 𝑝𝑝𝐺𝐺𝐴𝐴  

where we have used the definition for the center G of a surface 𝑥𝑥𝐺𝐺 = 1
𝐴𝐴 ∫ 𝑥𝑥𝑥𝑥𝑥𝑥𝐴𝐴 . Thus the force on a 

plane surface has always modulus equal to pressure on the center of the surface multiplied by the area 
of the surface, and is directed towards the surface. 

 𝑭𝑭 = 𝑝𝑝𝐺𝐺𝐴𝐴𝒏𝒏. (2.7) 

Let me remark with emphasis that the force (2.7) is NOT applied on the center of the surface. It is 
applied on the center of pressure distribution that is usually below the center of the surface because 
pressure is higher at higher depth.  

The point of application is needed to compute the torque T of the force about an axis. Consider a 
horizontal axis at depth ζ1 and compute the torque for a vertical surface  

 𝑇𝑇 = ∫ 𝑝𝑝(𝜁𝜁)(𝜁𝜁 − 𝜁𝜁1)𝑑𝑑𝑑𝑑𝐴𝐴 = 𝐹𝐹(𝜁𝜁𝐶𝐶 − 𝜁𝜁1) (2.8) 

where ζC is the depth of the point of application. Choosing the reference ζ=0 at the position where 
p=0, it is immediate to show that  

 𝜁𝜁𝐶𝐶 = ∫ 𝜁𝜁2𝑑𝑑𝑑𝑑𝐴𝐴

∫ 𝜁𝜁𝜁𝜁𝜁𝜁𝐴𝐴

 (2.9) 

and it is also immediate to show that equation (2.8) is valid when the surface is not vertical as well. 
The integrals in equation (2.8) are easy to evaluate when the surface is rectangular contained between 
two depths ζA and ζB >ζA .  

 𝜁𝜁𝐶𝐶 = 2
3
𝜁𝜁𝐵𝐵
3−𝜁𝜁𝐴𝐴

3

𝜁𝜁𝐵𝐵
2−𝜁𝜁𝐴𝐴

2 (2.10) 



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 20 

Moreover, when the surface’s upper edge is on the free surface the distribution of pressure is 
triangular and the center of pressure C is at a depth 2/3 the surface height; while, when the surface is 
horizontal, pressure is constant and application is on the surface center C=G. 

In rectangular surfaces, it is sometime convenient to divide the pressure distribution as the sum of a 
rectangular profile, applied in the surface center, and a triangular profiles applied at two-third the 
depth; then compute the torque as the sum of the two individual ones.   

2.3. Forces on Curved Surfaces 

Given a generic surface S, with arbitrary shape, an infinitesimal force dF=pndS acts at every 
individual infinitesimal element of surface dS and normal n. Therefore, the total force acting on the 
surface S is the integral 

 𝑭𝑭 = ∫ 𝑝𝑝𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆 . (2.11) 

Differently from the case of plane surfaces, the normal n is not a constant and the integral cannot be 
simplified like before. A method to compute (2.11) can be obtained by advocating the global balance 
(2.2). 

Consider first the case of a closed surface, a surface S surrounding a volume V. The force acting on 
the surface is given by the integral (2.11). It is important to notice that the value of the integral is 
independent whether the volume V is occupied by a body (kept static by some mean) or it is a volume 
of fluid, because under static conditions the distribution of pressure depends on the depth of each 
point only. Consider the case of a volume of fluid, we are dealing with fluid statics and the volume is 
in equilibrium; this means that the total forces acting on the volume is zero. Following the integral 
equilibrium (2.2), these forces are the weight of the fluid volume V and the integral of pressure on the 
surface S 

 −𝛾𝛾𝛾𝛾𝒌𝒌+ ∫ 𝑝𝑝𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆 = 0.  

with k the unit vector directed against gravity. Thus horizontal forces are zeros and vertical force is 
directed upward (buoyancy force) 

 𝑭𝑭 = 𝛾𝛾𝛾𝛾𝒌𝒌. (2.12) 

It is evident that when a body, kept in equilibrium by some external force, occupies the volume the 
force made by fluid on the surface of the body is the same. Equation (2.12) states Archimedes' 
principle (dated back to the 3rd century b. c.), which says that “a body immersed in a fluid is buoyed 
up by a force equal to the weight of the displaced fluid”. 

Consider a solid body with its own weight γsV, being γs the solid specific weight; when it is immerged 
in a fluid it is subjected to its weight and the buoyancy force (2.12). As a results, the apparent weight 
of a body immersed in a fluid is reduced and becomes (γs-γ)V. The value (γs-γ) represent the apparent 
specific weight of an immersed body and it is often useful for immediate evaluations. 

Let us now move to generic surface S that can be open. The procedure to compute the force acting on 
the surface S, equation (2.11), is that of considering a volume of fluid partly surrounded by S and 
partly closed by planar surfaces. That volume is in equilibrium and obeys the law (2.2). This can be 
subdivided on volumetric forces, that can be calculated, forces on plane surfaces, that we know how 
to evaluate, and force of the curved surface that remains the only unknown in the balance (2.2).  
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This apparently complex procedure is relatively straightforward in practice. Consider for example a 
surface made of a quarter of a circumference like in figure 2.4. 

 

Select an arbitrary control volume to perform the balance of forces, for example the quarter of 
cylinder of radius R. The forces (per unit width) acting on that volume are:  

‐ the volume weight F1=γV directed downward;  
‐ the force on the horizontal plane boundary F2 where pressure is γh and the normal is directed 

downward,  
‐ the force on the vertical boundary  F3 where pressure ranges from γh to  γ(h+R), 
‐ the unknown force made by the curve surface to the fluid volume, that is equal and opposite 

in direction of the force F made by the fluid on the surface. 

The balance along the horizontal rightward direction, x, and vertical upward direction, z, gives 

  
𝐹𝐹𝑥𝑥 = −𝐹𝐹3 = −𝛾𝛾 �ℎ + 𝑅𝑅

2
�𝑅𝑅

𝐹𝐹𝑧𝑧 = −𝐹𝐹1 − 𝐹𝐹2 = −𝛾𝛾 𝜋𝜋
4
𝑅𝑅2 − 𝛾𝛾ℎ𝑅𝑅

.  

thus showing that the force on the surface is directed leftward and downward. 

The result is always independent from the chosen volume, although some choices permit easier 
calculations. For example, in this case, it is immediate to see that  the same result would have been 
achieved by selecting a volume extending up to the free surface; the force F2 would be equal to the 
volume of fluid above and the horizontal forces on the two sides would be identical and opposite. We 
could also use a smaller volume bounded by the chord connecting the two extremes of the surface; 
calculations are less immediate but results identical. 

It is useful to always keep in mind that the force is the integral of pressure on the surface (2.11), and 
that such calculation must not necessarily be performed on a fluid volume that is present in the current 
configuration. It is therefore always advisable to idealize the problem under investigation: immerse 
the surface under analysis in an unbounded fluid and select a volume bounded by an ideal surface 
where the integral of pressure is identical to that looked for. For example, in figure 2.4, if the fluid 

 

 

Figure 2.4. Calculation of the force on a curved surface 
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was on the other side of the surface we could idealize the problem and consider the volume on the 
other side (a square minus a circle). But we could also consider exactly the same volume (a quarter 
of a circle) noticing that the distribution of pressure on the external face is identical and opposite to 
that on the internal face, because pressure depends on depth only. Thus the module is the same, and 
the direction opposite; the calculation could be the same as before and simply changing sign to the 
resulting force. 

A balance like (2.2) can be rewritten in terms of the moment of forces, or torques, to evaluate the 
torque on a surface. Indeed, (2.8-2.9) permits to compute the moment of the force on planar surfaces 
and the moment of a weight is just a matter of computing center of mass.  

Let us apply this concept to the example in figure 2.4 to evaluate the moment of the force on the 
surface S relative to the center O. The torque balance, assumed positive counterclockwise, is 

 𝑇𝑇𝑂𝑂 = 𝐹𝐹1𝑟𝑟1 + 𝐹𝐹2𝑟𝑟2 − 𝐹𝐹3𝑟𝑟3 = 𝛾𝛾 𝜋𝜋
4
𝑅𝑅2 ∙ 4𝑅𝑅

3𝜋𝜋
+ 𝛾𝛾ℎ𝑅𝑅 ∙ 𝑅𝑅

2
− 𝛾𝛾 �ℎ + 𝑅𝑅

2
�𝑅𝑅 ∙ �2

3
(ℎ+𝑅𝑅)3−ℎ3

(ℎ+𝑅𝑅)2−ℎ2
− ℎ� 

where the definition (2.10) was used to evaluate the center of the force F3. For rectangular surfaces 
is can be easier to divide the trapezoidal force distribution F3 = F3a + F3b  as the sum of the rectangular 
force F3a =γhR whose arm is in this case equal to R/2, plus the triangula force F3b =γR2/2 whose arm 
is in this case equal to 2R/3, from which 

 𝑇𝑇𝑂𝑂 = 𝐹𝐹1𝑟𝑟1 + 𝐹𝐹2𝑟𝑟2 − 𝐹𝐹3𝑎𝑎𝑟𝑟3𝑎𝑎 − 𝐹𝐹3𝑏𝑏𝑟𝑟3𝑏𝑏 = 𝛾𝛾 𝜋𝜋
4
𝑅𝑅2 ∙ 4𝑅𝑅

3𝜋𝜋
+ 𝛾𝛾ℎ𝑅𝑅 ∙ 𝑅𝑅

2
− 𝛾𝛾ℎ𝑅𝑅 ∙ 𝑅𝑅

2
− 𝛾𝛾 𝑅𝑅2

2
∙ 2
3
𝑅𝑅 

Both formulas are equivalent, although the second was easier to formulate, and compute the torque 
in the surface S about the point O. It is immediate to notice that in this specific case the torque is 
exactly zero. This result could be anticipated here because the curve is a portion of a cylinder and 
every individual force acting normally to its surface is directed with the radius and present zero torque 
about the center O of the circumference. 

2.4. Example calculation of static forces 

We present some examples where the static force can be readily computed. When not expressely 
indicated, the subscripts H and V stands for horizontal and vertical, respectively 

 

Example 1.  Compute force and torque, per unit width, on the cylindrical body hinged in A. Consider 
H=2m; h=5m; R=1m; γ=104N/m3. 
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Solution:  

𝐹𝐹𝐻𝐻 = 0, 

𝐹𝐹𝑉𝑉 = 𝛾𝛾𝛾𝛾 + 𝛾𝛾(ℎ − 𝐻𝐻)2𝑅𝑅 = 𝛾𝛾𝛾𝛾 + 𝛾𝛾(ℎ − 𝐻𝐻)2𝑅𝑅 = 𝛾𝛾 �
𝜋𝜋
2
𝑅𝑅2 − 2𝑅𝑅(ℎ − 𝐻𝐻)� = 7.57 104

N
m

, 

𝑇𝑇𝐴𝐴 = 𝐹𝐹𝑉𝑉 ∙ 𝑅𝑅. 

 

Example 2. Compute force and torque, per unit width, for the entire surface, made of half a circle 
plus a straight part, hinged in A. Consider: h=6m; R=2m;  γ=104 N/m3. 

 

Solution:  

𝐹𝐹𝐻𝐻 = 𝛾𝛾
ℎ2

2
= 18 104N, 𝑟𝑟𝐻𝐻 =

ℎ
3

= 2m; 

𝐹𝐹𝑉𝑉 = 𝛾𝛾 �2ℎ𝑅𝑅 +
𝜋𝜋
2
𝑅𝑅2� = 30.3 104 N, 𝑟𝑟𝑉𝑉 = 𝑅𝑅 = 2m; 

𝑇𝑇𝐴𝐴 = −𝐹𝐹𝐻𝐻𝑟𝑟𝐻𝐻 + 𝐹𝐹𝑉𝑉𝑟𝑟𝑉𝑉 = 24.6 104 J. 

 

Example 3. Compute force and torque, per unit width, for the surface made of two semicircles, hinged 
in upper edge A.  
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Solution:  

𝐹𝐹𝐻𝐻 = 𝛾𝛾8𝑟𝑟2, 𝑟𝑟𝐻𝐻 =
2
3

4𝑟𝑟, 𝐹𝐹𝑉𝑉 = 𝛾𝛾
𝜋𝜋
2
𝑟𝑟2 − 𝛾𝛾

𝜋𝜋
2
𝑟𝑟2 = 0; 

notice that FV is a force couple with arm 𝑟𝑟𝑉𝑉 = 4
3𝜋𝜋
𝑟𝑟. 

𝑇𝑇𝐴𝐴 = 𝛾𝛾8𝑟𝑟2 ∙
2
3

4𝑟𝑟 − 𝛾𝛾𝛾𝛾𝑟𝑟2 ∙
4

3𝜋𝜋
𝑟𝑟 = 20 𝛾𝛾𝑟𝑟3. 

 

Example 4. Define the volume V of the sphere, of negligible weight, such that its buoyancy is as 
strong as the downward force on the lower surface of area A.  

 

Solution:  

𝛾𝛾ℎ𝐴𝐴 = 𝛾𝛾𝛾𝛾, 𝑉𝑉 = ℎ𝐴𝐴. 

 

Example 5.  A plane surface, made of homogeneous material of negligible thickness, and hinged in 
point C, separates two reservoirs. Compute the weight W of the surface (per unit of width) to ensure 
that it remains in equilibrium. Consider HA=1.0 m, HB=2.0 m. 

 

HA

HB

HA

C 
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Solution:  

Fluid torque is 

𝐹𝐹 = 𝛾𝛾(HB − HA)HA√2, 𝑟𝑟 = HA
√2
2

, 𝑇𝑇𝑓𝑓 = 𝐹𝐹 ∙ 𝑟𝑟 = 𝛾𝛾(HB− HA)HA2; 

the same result could be found considering separately the left and right sides of the surface 

𝐹𝐹𝐿𝐿 = 𝛾𝛾HA2√2, 𝑟𝑟 =
2√2

3
HA, 𝑀𝑀𝐿𝐿 = 𝛾𝛾

4
3

HA2; 

𝐹𝐹𝑅𝑅1 = 𝛾𝛾(HB − HA)HA√2, 𝑟𝑟 =
√2
2

HA, 𝑀𝑀𝑅𝑅1 = 𝛾𝛾(HB − HA)HA2; 

𝐹𝐹𝑅𝑅2 = 𝛾𝛾HA2
√2
2

, 𝑟𝑟 =
2√2

3
HA, 𝑀𝑀𝑅𝑅2 = 𝛾𝛾

4
3

HA2; 

noticing that Fl and FR2 cancel each other.  

Solid weight torque is 

𝑇𝑇𝑠𝑠 = 𝑊𝑊
HA
2

 . 

Equilibrium 

𝑊𝑊 = 2𝛾𝛾(HB− HA)HA = 20 KN. 

 

Example 6.  Evaluate the weight of the cover such that it equilibrates the force exerted by the fluid 
from below. Consider γwater=104 N/m3 e γoil=6800 N/m3; let heights be h1=2m e h3=36cm, and 
diameters D=5m, d=20cm. 

 

Solution:  

𝐹𝐹 = (𝛾𝛾oilℎ1 − 𝛾𝛾waterℎ3)𝜋𝜋
𝑑𝑑2

4
= 314N. 
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Example 7.  Compute force and torque relative to the hinge in A, per unit width, on the surface of the 
object, made of half a cylinder or radius R=2m with a cylindrical cavity of radius r=R/4. Consider the 
fluid of specific weight γ=104 N/m3. 

 

Solution:  

𝐹𝐹𝑥𝑥 = −𝛾𝛾2𝑅𝑅2, 𝐹𝐹𝑦𝑦 = 𝛾𝛾 �𝜋𝜋
𝑅𝑅2

4
− 𝜋𝜋𝑟𝑟2� . 

Pressure on the outer cylindrical surface acts radially and gives no momentum. Momentum about A 
is only due to the pressure on the inner cylinder surface:  

𝑇𝑇𝐴𝐴 = 𝛾𝛾𝛾𝛾𝑟𝑟2
𝑅𝑅
2

. 

 

Example 8. Compute the torque acting on the rectangular cover of length d=50cm, and unitary width. 
Consider the specific weigh of fluid γ=104 N/m3 and that of mercury γm=130 N/dm3, in the 
differential manometer whose reading is Δ=40 mm. Consider the following dimensions h1=1.12m, 
h2=62cm, a=120cm, b=50dm. 

 



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 27 

Solution:  

ℎ = ℎ1 − �
𝛾𝛾𝑚𝑚 − 𝛾𝛾
𝛾𝛾

�∆= 0.64m, 𝐹𝐹 = 𝛾𝛾ℎ𝑑𝑑 = 3.2KN, 𝑇𝑇 = 𝐹𝐹
𝑑𝑑
2

= 800J. 

 

Example 9.  Compute the tilting moment on the structure. Consider γ=104 N/m3 and measures h=6m, 
b=50 cm, B=2m. 

 

Solution:  

𝑀𝑀 = 𝛾𝛾
ℎ2

2
ℎ
3

= 𝛾𝛾
ℎ3

6
= 3.6 105J. 

 

Example 10.  Compute the torque, relative to the basis, made by the fluid on the oblique septum. 
Geometric measures are a=2m, b=4m, e Δ=20cm.  The fluid specific weight is γ=9810N/m3, pressure 
in the gas chamber is P1=104Pa at height h1=1m. 

 

Solution:  
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ℎ = ℎ1 +
𝑃𝑃1
𝛾𝛾

= 2.02m, 𝐹𝐹 = 𝛾𝛾ℎ +
𝑎𝑎
2
𝑎𝑎√2 = 83.78KN,

𝜁𝜁𝐶𝐶 =
2
3

(ℎ + 𝑎𝑎)3 − ℎ3

(ℎ + 𝑎𝑎)2 − ℎ2
= 3.13m, 𝑟𝑟 = (ℎ + 𝑎𝑎 − 𝜁𝜁𝐶𝐶)√2 = 1.258m, 𝑇𝑇 = 𝐹𝐹 ∙ 𝑟𝑟 = 105KJ.

 

Torque could be evaluated by considering separately the contribution of the square and triangular 
distribution of pressure 

𝐹𝐹𝑠𝑠𝑠𝑠 = 𝛾𝛾ℎ𝑎𝑎√2 = 56KN, 𝑇𝑇𝑠𝑠𝑠𝑠 = 𝐹𝐹𝑠𝑠𝑠𝑠
𝑎𝑎
2√

2 = 79KJ,

𝐹𝐹𝑡𝑡𝑡𝑡 = 𝛾𝛾
𝑎𝑎
2
𝑎𝑎√2 = 28KN, 𝑇𝑇𝑡𝑡𝑡𝑡 = 𝐹𝐹𝑡𝑡𝑡𝑡

𝑎𝑎
3√

2 = 26KJ, 𝑇𝑇 = 𝑇𝑇𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑡𝑡𝑡𝑡 = 105KJ.
 

 

Example 11. Define the width X of the base such that the surface is in equilibrium to rotation with 
respect to the rightmost edge. 

 

Solution:  

𝛾𝛾
ℎ𝐿𝐿
2
𝐿𝐿
3

= 𝛾𝛾ℎ𝑋𝑋
𝑋𝑋
2

, 𝑋𝑋 =
𝐿𝐿
√3

. 

 

Example 12.  Compute the force on the semisphere at the base of bowl. Assume γ=9810 N/m3 and 
pressure on the upper gas P0=9810 Pa; fluid height is h=2.2m and radius at the base R=1m. 
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Solution:  

𝐻𝐻 = ℎ +
𝑃𝑃0
𝛾𝛾

= 3.2m, 𝐹𝐹 = 𝛾𝛾𝛾𝛾𝛾𝛾𝑅𝑅2 + 𝛾𝛾
2
3
𝜋𝜋𝑅𝑅3 = 120KN. 

 

Example 13. Consider the rigid surface, made of a horizontal wall of width L and a vertical wall of 
height h. Compute the value of the former such that it is in equilibrium to ration around the hinge A. 

 

Solution:  

𝛾𝛾
ℎ3

6
= 𝛾𝛾ℎ

𝐿𝐿2

2
, 𝐿𝐿 =

ℎ
√3

 . 

 

Example 14.  Compute the torque about the hinge in A for the surface made of two rectangular walls 
and a central semicircle. Consider D=6m, and γ=104 N/m3. 

 

Solution: 

The circular surface does not generate torque about A. The upper and lower straight walls give, 
respectively  
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𝑇𝑇𝑢𝑢 = 𝛾𝛾
𝐷𝐷2

2
�
𝐷𝐷
3

+
𝐷𝐷
2
� = 9 105J, 

𝑇𝑇𝑙𝑙 = 𝛾𝛾
𝐷𝐷2

2
�

2
3
𝐷𝐷 +

𝐷𝐷
2
� + 𝛾𝛾2𝐷𝐷2 �

𝐷𝐷
2

+
𝐷𝐷
2
� = 55.8 105J, 

𝑇𝑇 = 𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑢𝑢 = 46.8 105J. 

 

Example 15. Compute the ratio between vertical and horizontal components of the force made by 
fluid on the wall made of a rectangular wall above a semi cylindrical surface. Consider H=D/2. 

 

Solution:  

𝐹𝐹𝐻𝐻 = 𝛾𝛾 �𝐻𝐻 +
𝐷𝐷
2
�𝐷𝐷 + 𝛾𝛾

𝐻𝐻2

2
=

9
8
𝛾𝛾𝐷𝐷2, 𝐹𝐹𝑉𝑉 = 𝛾𝛾𝛾𝛾

𝐷𝐷2

8
,
𝐹𝐹𝑉𝑉
𝐹𝐹𝐻𝐻

=
𝜋𝜋
9

 . 

 

Example 16.  Compute the function M(h), of the tilting moment about the hinge A, per unit width, 
of the oblique wall as a function of the height h. Consider the quote a=2h/3 and gas pressure in the 
chamber P0=γh. 

 

Solution: 

The length of the wall is L=h/sin(30°)=2h, and pressure at the top of the wall is equal to that given 
by a depth H below a free surface, where 
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𝐻𝐻 = 𝑎𝑎 +
𝑃𝑃0
𝛾𝛾

=
5
3
ℎ, 

Considering the pressure distribution as the sum of square plus triangular profiles, respectively 

𝐹𝐹𝑠𝑠𝑠𝑠 = 𝛾𝛾𝛾𝛾𝛾𝛾, 𝑀𝑀𝑠𝑠𝑠𝑠 = 𝛾𝛾𝛾𝛾𝛾𝛾 ∙
𝐿𝐿
2

=
10
3
𝛾𝛾ℎ3,

𝐹𝐹𝑡𝑡𝑡𝑡 = 𝛾𝛾ℎ
𝐿𝐿
2

, 𝑀𝑀𝑡𝑡𝑡𝑡 = 𝛾𝛾ℎ
𝐿𝐿
2
∙
𝐿𝐿
3

=
2
3
𝛾𝛾ℎ3;

 

from which the result follows 

𝑀𝑀(ℎ) =
10
3
𝛾𝛾ℎ3 +

2
3
𝛾𝛾ℎ3 = 4𝛾𝛾ℎ3. 

The same result could be found considering the momentum of the entire force acting con the center 
C of pressure distribution  

𝐹𝐹 = 𝛾𝛾 �𝐻𝐻 +
ℎ
2
� 𝐿𝐿 =

13
3
𝛾𝛾ℎ2, 𝜁𝜁𝐶𝐶 =

2
3

(ℎ + 𝐻𝐻)3 − 𝐻𝐻3

(ℎ + 𝐻𝐻)2 − 𝐻𝐻2 =
86
39

ℎ, 𝑟𝑟 = 2(𝐻𝐻 + ℎ − 𝜁𝜁𝐶𝐶) =
12
13

ℎ; 

from which the same result follows 

𝑀𝑀(ℎ) = 𝐹𝐹 ∙ 𝑟𝑟 =
13
3
𝛾𝛾ℎ2 ∙

12
13

ℎ = 4𝛾𝛾ℎ3. 

 

Example 17. Compute force and torque, about the hinge in A, on the vertical surface (per unit width). 
Consider P0=150mmHg, h=5m, a=2m; and the specific weight γ=10KN/m3.  

 

Solution:  

𝑃𝑃0 = 150mmHg = 20KPa = 𝛾𝛾 ∙ 2m, 

Considering the pressure distribution as the sum of square plus triangular pressure profiles, 
respectively 

𝐹𝐹 = 𝐹𝐹𝑠𝑠𝑠𝑠 + 𝐹𝐹𝑡𝑡𝑡𝑡 = (𝑃𝑃0 + 𝛾𝛾𝛾𝛾)ℎ + 𝛾𝛾
ℎ2

2
= 200KN + 125KN = 325KN, 
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𝑇𝑇 = 𝐹𝐹𝑠𝑠𝑠𝑠 ∙
ℎ
2

+ 𝐹𝐹𝑡𝑡𝑡𝑡 ∙
ℎ
3

= 500KJ + 208KJ = 708KJ. 

In alternative, considering the entire force at once 

ℎ1 =
𝑃𝑃0
𝛾𝛾

+ 𝑎𝑎 = 4m, ℎ2 = ℎ1 + ℎ = 9m, ℎ𝐶𝐶 =
2
3
ℎ23 − ℎ13

ℎ22 − ℎ12
= 6.82m, = 2.18m; 

𝐹𝐹 = �𝑃𝑃0 + 𝛾𝛾 �𝑎𝑎 +
ℎ
2
�� ℎ = 325KN, 𝑇𝑇 = 𝐹𝐹 ∙ (ℎ2 − ℎ𝐶𝐶) = 708KJ. 

 

Example 18. Compute the static force acting on the semispherical surface. Consider H=3.6m, 
R=1.6m, γ=9810 N/m3. 

 

Solution:  

𝐹𝐹 = 𝛾𝛾𝛾𝛾 = 𝛾𝛾 �𝜋𝜋R2H −
2
3
𝜋𝜋R3� = 200KN. 

 

Example 19. Compute the horizontal and vertical components of the force made by the fluid on the 
semispherical surface. Assume H=50cm  D=1m and the fluid specific weight  =9810 N/m3. 

 

 

Solution:  

𝐹𝐹𝐻𝐻 = 𝛾𝛾 �𝐻𝐻 +
𝐷𝐷
2
� 𝜋𝜋

𝐷𝐷2

4
= 7705N, 𝐹𝐹𝑉𝑉 = 𝛾𝛾

2
3
𝜋𝜋
𝐷𝐷3

8
= 2568N. 

 

R H 



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 33 

Example 20. Compute the force acting on the semispherical surface at the bottom of the bowl. 
Consider the following relationships γoil=2/3γ, h1=1.8R, h2=0.2R, h3=1.5R, where R=3m and 
γ=9810N/m3. 

 

Solution:  

ℎ = ℎ1 + ℎ2 +
𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜
𝛾𝛾
ℎ3 = 3𝑅𝑅, 𝐹𝐹𝐻𝐻 = 0, 𝐹𝐹𝑉𝑉 = 𝛾𝛾ℎ𝜋𝜋𝑅𝑅2 + 𝛾𝛾

2
3
𝜋𝜋𝑅𝑅3 = 𝛾𝛾

11
3
𝜋𝜋𝑅𝑅3 = 3.06MN . 
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3. Fluid Kinematics 

3.1. Recalls of differential vector calculus 

Let us recall some basic notions of differential vector calculus that are extensively used afterwards.  

The differential vector operator nabla is useful to perform derivatives in three-dimensional (3D) 
fields. In Cartesian coordinates the operator nabla is defined as 

 ∇=

⎣
⎢
⎢
⎢
⎡
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕⎦
⎥
⎥
⎥
⎤
.  

The gradient of a scalar field 𝑓𝑓(𝒙𝒙) is a vector field, ∇𝑓𝑓, obtained by applying the operator Nabla to 
the field. In Cartesian coordinates the gradient is 

 ∇𝑓𝑓 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⎦
⎥
⎥
⎥
⎤
 (3.1) 

and describes how the field f changes in space. For example, if ∇𝑓𝑓 has one component it means that 
the field f changes along that component. In other words, the gradient vector is always perpendicular 
to the lines or surfaces where f is constant. Knowledge of the gradient vector permits the evaluation 
of partial derivatives along an arbitrary direction, say n, by projection 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇𝑓𝑓 ∙ 𝒏𝒏 . (3.2) 

Gradient vector fields are important in physics because any vector field, 𝑭𝑭, that can be expressed as 
the gradient of a scalar field, 𝑭𝑭 = ∇𝑓𝑓, is a conservative field and the scalar field f is called the potential 
of F. Obviously, when 𝑭𝑭 = ∇𝑓𝑓, its integral along a curve is trivially the difference of the potential f 
at the two ends and does not depend from the path itself, which is the definition of conservative field.   

We have seen that the gradient of a scalar field is a vector field; indeed the gradient operation 
increases the dimensionality. Similarly, the gradient of a vector field, 𝒗𝒗(𝒙𝒙), is a tensor field, ∇𝒗𝒗, 
whose component i,j in Cartesian coordinates is 

 (∇𝒗𝒗)𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 . (3.3) 

The divergence of a vector field, 𝒗𝒗(𝒙𝒙), is a scalar field, ∇ ∙ 𝒗𝒗, obtained by performing formally the 
scalar product with nabla. In Cartesian coordinates the divergence is 

 ∇ ∙ 𝒗𝒗 = 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

= ∑ 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

3
𝑖𝑖=1 = 𝜕𝜕𝑣𝑣𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
 (3.4) 

where in the last expression the summation on repeated indices it is implicitly assumed (Einstein 
notation). The name divergence comes because a positive divergence at a point means that the vector  
(relative to the point) is directed radially away from that point, that it diverges. For example consider 
the 2D case, 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
> 0, means that 𝑣𝑣𝑥𝑥 is negative before and positive after and that 𝑣𝑣𝑦𝑦 is negative 

below and positive above.  
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Vector fields with zero divergence are called solenoidal (name coming from electromagnetism) and 
take particular relevance in fluid dynamics as will be shown shortly.  

The divergence reduces the dimensionality; thus, the divergence of a tensor field T is a vector field. 

 (∇ ∙ 𝕋𝕋)𝑖𝑖 = 𝜕𝜕𝕋𝕋𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

. (3.5) 

Last vector operator is the curl that is applied to a vector field and produces another vector field; it 
does not change the dimensionality. The curl or a vector field is ∇ × 𝒗𝒗, obtained by performing 
formally the internal product with nabla. In Cartesian coordinates the curl is 

 ∇ × 𝒗𝒗 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

 . (3.6) 

When the vector 𝒗𝒗(𝒙𝒙) is the velocity, the curl represents twice the angular velocity at a point.  

The curl of velocity takes a special relevance in fluid dynamics and deserved its own name; the 
vorticity vector field 𝝎𝝎(𝒙𝒙)   

 𝝎𝝎(𝒙𝒙) = ∇ × 𝒗𝒗 ; (3.7) 

which will be treated with attention in Chapter 10 to analyze the most advanced phenomena in 
cardiovascular flows. On the opposite end, vector fields with zero curl are called irrotational and are 
particularly simple as in that case the velocity can be expressed as a gradient field. It is immediate to 
verify that the divergence of a curl field is identically zero (vorticity is a solenoidal field) and that the 
curl of a gradient is zero (conservative fields are irrotational fields) 

 ∇ ∙ (∇ × 𝒗𝒗) = 0, ∇ × (∇𝑓𝑓) = 0. 

Let us briefly recall two fundamental theorems involving the integral applications of these operators.  

The Gauss theorem (or divergence theorem) states that the divergence of a vector field 𝒗𝒗(𝒙𝒙) inside a 
volume V is equal to the flux of that vector across the boundary surface S of that volume 

 ∫ ∇ ∙ 𝒗𝒗 𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ 𝒗𝒗 ∙ 𝒏𝒏 𝑑𝑑𝑑𝑑𝑆𝑆  . (3.8) 

where n is unit normal, directed outward. Despite the apparent mathematical complexity, the physical 
interpretation is immediate: if a vector field has some divergence inside a volume, necessarily it has 
to flow outside that volume. 

The Stokes theorem (or circulation theorem) states that the circulation of a vector along a closed curve 
C is equal to the integral of its curl on any surface S bounded by that curve 

 ∮ 𝒗𝒗 ∙ 𝑑𝑑𝒔𝒔𝐶𝐶 = ∫ (∇ × 𝒗𝒗) ∙ 𝒏𝒏 𝑑𝑑𝑑𝑑𝑆𝑆  . (3.9) 

where the curve travel and the normal direction are related by the right-hand rule. The physical 
interpretations is similarly straightforward: the total rotation (circulation) is given by the summation 
of the individual rotations contained within. As a trivial example, take the rigid rotation of a circular 
plate with angular velocity Ω, the rotation velocity at a distance r from the center is v=Ωr, the Stokes 



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 36 

equality states that 2πrv=πr2ω, from which it follows that the vorticity is twice the angular velocity 
ω=2Ω. 

3.2. Breaking down elementary motion 

Consider the velocity v(x) a point x and let’s describe the nearby velocity, at infinitesimal distance 
dx, to define the elementary types of motion. Using Taylor 

 𝒗𝒗(𝒙𝒙 + 𝑑𝑑𝒙𝒙) = 𝒗𝒗(𝒙𝒙) + ∇𝒗𝒗 ∙ 𝑑𝑑𝒙𝒙 + 𝑂𝑂(𝑑𝑑𝑑𝑑2); (3.10) 

the velocity is equal to the velocity at the original point, plus its gradient in the direction of the new 
point, plus second order terms that will be neglected from now on. In index notation (3.10) can be 
rewritten equivalently 

 𝑣𝑣𝑖𝑖(𝒙𝒙 + 𝑑𝑑𝒙𝒙) = 𝑣𝑣𝑖𝑖(𝒙𝒙) + 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝑑𝑑𝑥𝑥𝑗𝑗 ; (3.11) 

where summation on repeated indices (here index j) is implicitly assumed. 

The velocity gradient tensor can be divided as the sum of a symmetric 𝔻𝔻 and an asymmetric part 𝛀𝛀 

 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 1
2
�𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� + 1

2
�𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� , ∇𝒗𝒗 = 𝔻𝔻 + 𝛀𝛀 ; (3.12) 

equation (3.10) can be rewritten 

 𝒗𝒗(𝒙𝒙 + 𝑑𝑑𝒙𝒙) = 𝒗𝒗(𝒙𝒙) + 𝔻𝔻 ∙ 𝑑𝑑𝒙𝒙 + 𝛀𝛀 ∙ 𝑑𝑑𝒙𝒙; (3.13) 

or equivalently from (3.11). 

Let us look at the three terms in (3.13) summing up to describe the velocity about a point. The first 
term describes the rigid translation of the small region where all points share the same velocity. The 
last term is driven by 𝛀𝛀 that is a 3x3 asymmetric tensor, which in Cartesian coordinates reads 

 𝛀𝛀 =

⎣
⎢
⎢
⎢
⎡ 0 + 1

2
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
� + 1

2
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
�

− 1
2
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
� 0 + 1

2
�𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
�

− 1
2
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
� − 1

2
�𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
� 0 ⎦

⎥
⎥
⎥
⎤

= 1
2
�

0 −𝜔𝜔𝑧𝑧 +𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧 0 −𝜔𝜔𝑥𝑥
−𝜔𝜔𝑦𝑦 +𝜔𝜔𝑥𝑥 0

�.  

Being asymmetric, this tensor is described by 3 independent terms only, and these 3 terms are equal 
to the components of the vorticity (3.6-3.7), module a ½ factor. It can be immediately verified that 
the scalar product 𝛀𝛀 ∙ 𝑑𝑑𝒙𝒙 = 1

2
𝝎𝝎 × 𝑑𝑑𝒙𝒙. Rewriting (3.13) this way 

 𝒗𝒗(𝒙𝒙 + 𝑑𝑑𝒙𝒙) = 𝒗𝒗(𝒙𝒙) + 𝔻𝔻 ∙ 𝑑𝑑𝒙𝒙 + 1
2
𝝎𝝎 × 𝑑𝑑𝒙𝒙;  

it is immediate to notice that the last terms is the expression of a rigid rotation with angular velocity 
1
2
𝝎𝝎. Rigid translation and rigid rotation do not produce local deformations; it follows that the 

deformation of the fluid element is only due to the second term. In fact, the symmetric tensor 𝔻𝔻 is the 
rate of deformation tensor, which in Cartesian coordinates reads  



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 37 

 𝔻𝔻 =

⎣
⎢
⎢
⎢
⎡

𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

1
2
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
1
2
�𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
�

1
2
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
� 1

2
�𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
� 𝜕𝜕𝑣𝑣𝑧𝑧

𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

. (3.14) 

The scalar product 𝔻𝔻 ∙ 𝑑𝑑𝒙𝒙 represents the (rate of) deformation of the fluid element. The diagonal 
terms of the tensor are associated with elongation/shortening in the corresponding direction and the 
off-diagonal are shear motion. The change of volume of the fluid element is due to the combination 
of elongations/shortening, that is given by the trace of the rate of deformation tensor (the sum of the 
elements on the diagonal), while a tensor with zero trace does not give change of volume. The trace 
of the deformation tensor is the divergence of the velocity field, therefore it is useful to rewrite (3.13) 
in its final form as  

 𝒗𝒗(𝒙𝒙 + 𝑑𝑑𝒙𝒙) = 𝒗𝒗(𝒙𝒙) + ∇∙𝒗𝒗
3
𝕀𝕀 ∙ 𝑑𝑑𝒙𝒙 + �𝔻𝔻 − ∇∙𝒗𝒗

3
𝕀𝕀� ∙ 𝑑𝑑𝒙𝒙 + 1

2
𝝎𝝎 × 𝑑𝑑𝒙𝒙. (3.15) 

Expression (3.15) allows recognizing the different elementary motions of an infinitesimal fluid 
element. We have seen that the first terms describes rigid translation and the last term is the rigid 
rotation. The second term is pure expansion/compression that is responsible for the local change of 
volume; it will be shown shortly that this terms is zero in an incompressible fluid. The third term is 
the pure deformation, with no change of volume; this terms is the only responsible for internal viscous 
stresses that are due to the relative sliding motion of fluid particles. 

Before concluding this section about the description of fluid motion, let us define and specify 
differences between trajectories and streamlines. Trajectories, as by the normal language, are the 
curves in space occupied by a same particle during its motion; therefore, trajectories are fixed curves 
traveled by particles during time. Differently, streamlines are curves drawn at one instant of time that 
are everywhere tangent to the local velocity; therefore, streamlines change during time. In steady flow 
trajectories and streamlines coincides and can be used interchangeably, whereas in unsteady flow 
these are different and provide different information. 

3.3. Lagrangian and Eulerian description 

The laws of physics are commonly expressed in terms of the conservation of quantities associated 
with material elements. Elementary mechanics was about individual particles with given mass that 
are followed in time while they change their velocity, in thermodynamics their temperature and so 
on. Mechanics of rigid bodies considered the translation and rotation of a given volume of material. 
In general, the mechanics of solid bodies describes the changes in individual material elements that 
are followed during their motion.  

The natural description of dynamics is thus expressed by following the individual elements composing 
the body under analysis. In such a perspective, that is called Lagrangian description, each individual 
material element is identified by its position 𝑿𝑿0 at a certain reference time, say t=0, and is then 
described at subsequent times by its position  𝑿𝑿(𝑡𝑡,𝑿𝑿0) and by the value of properties associated to 
that element 𝐺𝐺(𝑡𝑡,𝑿𝑿0). The Lagrangian approach is well suited for solid mechanics, where the material 
has an internal structure characterized by the relative arrangement of individual elements. 

In fluid mechanics, the individual fluid elements do not have a preferable relative arrangement; they 
undergo to large relative motion and cannot be followed during time. Individual blood cells follow 
independent paths; they separate in arterial bifurcations, some enter in an organ others in another and 
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so forth. Therefore, a Lagrangian description based on following individual elements is generally not 
feasible with fluids. The natural description of fluid dynamics is made in terms of properties measured 
at points fixed in space, which is called Eulerian description, each. The wind velocity is measured at 
the anemometer position, water temperature is measured at the thermometer position, blood velocity 
is measured across a valve; all these are irrespectively of which individual particle passes through 
that point. 

Indicate with lowercase letters the Eulerian properties measures at time t at spatial location x, the 
property 𝑔𝑔(𝑡𝑡,𝒙𝒙) represents the Eulerian counterpart of the Lagrangian property 𝐺𝐺(𝑡𝑡,𝑿𝑿0). However, 
both correspond to different descriptions of the same physical property. The Eulerian is more 
appropriate for measuring and describing fluid properties although conservation laws are more 
naturally expressed in Lagrangian terms. 

The relationship between Lagrangian and Eulerian description is 

 𝐺𝐺(𝑡𝑡,𝑿𝑿0) = 𝑔𝑔�𝑡𝑡,𝑿𝑿(𝑡𝑡,𝑿𝑿0)�. (3.16) 

Relation (3.16) simply states that the properties of the particle 𝑿𝑿0 at time t is the same found at the 
spatial position 𝑿𝑿(𝑡𝑡,𝑿𝑿0) occupied by the particle at time t. Equation (3.16) has an important 
implication. Conservation laws are commonly expressed in terms of the time variation of particle 
properties; for example, acceleration is the time derivative of velocity of a particle. Relation (3.16) 
permits to evaluate the time derivative associated with fluid particles in terms of Eulerian quantities. 
Take the time derivative of (3.16), using the chain rule, 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑣𝑣𝑦𝑦
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑣𝑣𝑧𝑧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

,  

or  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝒗𝒗 ∙ ∇𝑔𝑔. (3.17) 

The right hand side of (3.17) is the Lagrangian time derivative written in Eulerian terms, which is 
sometime called material or substantial time derivative. Equation (3.17) states that the material 
property of a particle passing through a fixed location x can increase either because the property is 
increasing at the location or because the particle is moving in the direction along which the property 
increases in space, i.e. when its gradient is aligned with the velocity vector. 

As a fundamental application, let us apply the (3.17) to the fluid velocity to compute the acceleration 
of a fluid particle at position x 

 𝒂𝒂(𝑡𝑡,𝒙𝒙) = 𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

+ 𝒗𝒗 ∙ ∇𝒗𝒗. (3.18) 

This shows that a particle can accelerate either when velocity increases in time at the position x or, 
even in steady flow, when the particle is moving toward a region with higher velocity. This point is 
sketched in figure 3.1, the first term of (3.18) is the inertial acceleration, because it is associated with 
the increase of fluid inertia, the second term is the convective acceleration, because due to the 
convection of fluid. 

This concept can be extended from individual particles to the integral expressions applied to finite 
volume. Integral conservation laws typically apply to a (Lagrangian) material volume of fluid that 
deforms during its motion, whereas fluid balances are necessarily applied to (Eulerian) spatially 
defined regions, like a portion of a duct between two cross-sections. 
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The Reynolds Transport theorem permits to express the time variation of a property associated to a 
material fluid volume in terms of variations in a spatially fixed volume. Consider a volume of fluid 
VF(t) and a fixed volume V that described the location of the volume of fluid at time t, V=VF(t), 
bounded by a fixed surface S. We can prove that  

 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝐺𝐺(𝑡𝑡)𝑉𝑉𝐹𝐹(𝑡𝑡) = ∫ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝑔𝑔 𝒗𝒗 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆  (3.19) 

where n is the outward normal to the surface S. 

The intuitive demonstration of (3.19) is as follow. Express the time derivative at the incremental ratio 
(dt is infinitesimal and implicitly includes the limit to dt0) 

 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝐺𝐺(𝑡𝑡)𝑉𝑉𝐹𝐹(𝑡𝑡) = 1

𝑑𝑑𝑑𝑑
�∫ 𝑔𝑔(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑𝑉𝑉𝐹𝐹(𝑡𝑡+𝑑𝑑𝑑𝑑) − ∫ 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑𝑉𝑉 � =  

divide the first integral in two parts 

 = 1
𝑑𝑑𝑑𝑑
�∫ 𝑔𝑔(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝑔𝑔(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑𝑉𝑉𝐹𝐹(𝑡𝑡+𝑑𝑑𝑑𝑑)−𝑉𝑉 − ∫ 𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑𝑉𝑉 � =  

the second integral is over the thin space between the volume at time t and t+dt, whose infinitesimal 
volume portion dV is spanned by the infinitesimal surface dS, on the volume V, multiplied by the 
length travelled normally to that surface in the period dt. In formulas 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑(𝒗𝒗 ∙ 𝒏𝒏)𝑑𝑑𝑑𝑑; thus   

 = ∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝑔𝑔(𝒗𝒗 ∙ 𝒏𝒏)𝑑𝑑𝑑𝑑𝑆𝑆   

where the first integral combined the formerly first and last terms, and the higher order infinitesimal 
terms disappeared in the limit of dt approaching 0. This completed the proof of (3.19). 

The transport theorem (3.19) can be rewritten with volume integrals only with the aid of the Gauss 
theorem (3.8),   

 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝐺𝐺(𝑡𝑡)𝑉𝑉𝐹𝐹(𝑡𝑡) = ∫ �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ∙ (𝑔𝑔 𝒗𝒗)� 𝑑𝑑𝑑𝑑𝑉𝑉 . (3.20) 

Equation (3.19) and (3.20) will be fundamental to express the conservation laws in terms of (Eulerian) 
fluid volumes fixed in space.  

 
Figure 3.1. Inertial and convective acceleration 
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B. FLUID DYNAMICS: CONSERVATION LAWS 

4. Conservation of Mass 

4.1. Mass balance in integral form 

The first law of conservation to consider is the conservation of mass. Given a generic volume VF of 
a continuum, the mass of that volume is by definition 

 ∫ 𝜌𝜌𝜌𝜌𝜌𝜌𝑉𝑉𝐹𝐹(𝑡𝑡)   

where ρ is the density. Conservation of mass states that the mass of a volume of material does not 
change during time, which reads 

 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝜌𝜌𝜌𝜌 = 0𝑉𝑉𝐹𝐹(𝑡𝑡)  (4.1) 

The law (4.1) applies to a material volume of fluid (or any continuum) deforming during its motion. 
Application of the transport theorem (3.19) to (4.1) gives the integral law of conservation of mass 

 ∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝜌𝜌 𝒗𝒗 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆 = 0 (4.2) 

where V is a spatial volume fixed in space and S is the surface surrounding that volume. Equations 
expressing mass conservation are also called continuity equation, because mass conservation ensures 
the continuity to the material that cannot disappear from one region to another. 

As mentioned before, we will only deal with fluids whose density is constant in time and uniform in 
space. These fluids are generically referred here as incompressible fluids (although more rigorously, 
fluids can be incompressible even with spatially variable density). For them, conservation of mass 
(4.2) simplifies in  

 ∫ 𝒗𝒗 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆 = 0. (4.3) 

The integral equation of mass conservation for incompressible fluids, equation (4.3), states that given 
a spatially fixed volume, the amount of fluid that enters through a part the boundary of such volume 
is equal to the amount that leaves through the remaining boundary.  

This concept can be expressed in different integral terms. If we have a container of volume V(t) 
bounded by surface S composed of a solid surface S0, moving with boundary velocity vb, and open 
sections of area Sopen allowing the fluid to flow with fluid velocity v, we can rewrite the instantaneous 
balance (4.3) as 

 ∫ 𝒗𝒗𝑏𝑏 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆0
+ ∫ 𝒗𝒗 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆open

= 0; 

where S= S0+ Sopen. Consider now that the open boundary of the varying volume V(t) may present a 
velocity vb that is not physical and just represents its geometric displacement then the previous 
balance can be recast as    

 ∫ 𝒗𝒗𝑏𝑏 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆 − ∫ 𝒗𝒗𝑏𝑏 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆open
+ ∫ 𝒗𝒗 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆open

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ ∫ (𝒗𝒗 − 𝒗𝒗𝑏𝑏) ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆open
= 0; 

that can be written more simply as 
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 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑄𝑄in − 𝑄𝑄out; (4.4) 

where Qin is the total entering discharge, rate of fluid flow relative to the moving boundary, across 
the open section Sin through which flow enters and Qout is the total exiting discharge across Sout 
(Sin+Sout=Sopen) 

 𝑄𝑄in = −∫ (𝒗𝒗 − 𝒗𝒗𝑏𝑏) ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆in
, 𝑄𝑄out = +∫ (𝒗𝒗 − 𝒗𝒗𝑏𝑏) ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆out

; (4.5) 

and we remind that we considered the normal n pointing outward. It is important to remark that when 
writing (4.4) and (4.5) the fluid velocities v are Eulerian quantities: absolute values measured relative 
to a spatially fixed reference. Thus the discharges (4.5) are written using the relative velocity of fluid 
with respect to possibly moving boundaries. 

As an instructive example, consider a left ventricle, whose total volume is VLV(t) increases during 
filling (diastole) while blood enters through the mitral valve of area AMV. Application of (4.4) reads 

 𝑑𝑑𝑉𝑉LV
𝑑𝑑𝑑𝑑

= 𝐴𝐴MV �𝑣𝑣MV − 𝑣𝑣𝑏𝑏MV�; (4.6) 

where vMV is the fluid velocity across the mitral valve (here assumed positive downward, entering the 
chamber); this is the velocity measured by imaging methods, like Doppler echocardiography or 
Phase-Contrast CMR (Cardiac Magnetic Resonance). The value vbMV is the velocity of the mitral 
valve boundary that moves upward (thus with negative sign in front) during ventricular expansion. A 
balance like (4.6) can be applied to ventricular contraction during flow ejection through the aortic 
valve, as well as to other chambers or portions of a vessel. It is particularly useful to properly relate 
measurements of fluid velocity, tissue velocity and chamber dimension. 

4.2. Mass balance for a vessel 

Consider the flow in a vessel, this type of motion is predominantly one-dimensional (1D), along the 
vessel. In these cases, it is often useful to consider properties characteristics over the cross section 
(area, average velocity, discharge, pressure etc,) expresses as a function of the single spatial 
coordinate, say x,  defining the position along the vessel. 

Consider an infinitesimal length dx of such a 1D stream of cross section area 𝐴𝐴(𝑡𝑡, 𝑥𝑥) and discharge 
𝑄𝑄(𝑡𝑡, 𝑥𝑥) = 𝐴𝐴(𝑡𝑡, 𝑥𝑥)𝑈𝑈(𝑥𝑥, 𝑡𝑡) being 𝑈𝑈(𝑥𝑥, 𝑡𝑡) the velocity averaged over the cross-section. And apply the 
conservation of mass (4.4) to this quasi-cylindrical volume using the volume 𝑉𝑉 = 𝐴𝐴(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝑑𝑑, 𝑄𝑄in =
𝑄𝑄(𝑡𝑡, 𝑥𝑥) and 𝑄𝑄out = 𝑄𝑄(𝑡𝑡, 𝑥𝑥) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑄𝑄(𝑡𝑡, 𝑥𝑥) − �𝑄𝑄(𝑡𝑡, 𝑥𝑥) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑�;  

that becomes  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. (4.7) 

Equation (4.7) expresses the law of conservation of mass  for 1D streams and can also be rewritten 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐴𝐴 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0.  
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Equation (4.7) expresses the conservation of mass along a 1D vessel in absence of lateral 
inflow/outflow; it states that discharge decreases downstream when the vessel enlarges, or vice versa, 
as sketched in figure 4.1. 

  

In perfectly rigid ducts conservation of mass says the discharge is constant along the vessel, Therefore 
conservation of mass between two sections of different cross sections permits to evaluate the ratio of 
velocities from  Q1=Q2 follows U1A1=U2A2 and  U1/U2=A2/A1. 

In elastic vessels, the increase of area is a consequence of an increase of pressure. Therefore, equation 
(4.7) says that the fluid rate of blood reduces downstream when accompanied by a pressure increase. 
This is what happens, for example, along the Aorta. Blood enters as a pulse of discharge during 
ventricular systole accompanied by a pressure pulse (systolic pressure), with no flow during diastole 
when aortic valve is closed and pressure decreases (diastolic pressure). During flow propagation the 
vessel enlarges and accommodates part of the incoming fluid; at the end of the flow pulse, when 
pressure decreases, the stored blood is releases and flow increases downstream. The result of this 
phenomenon is the transformation of the sharp flow pulsation into a smoother time profile 
downstream that is non-zero even during diastole. 

4.3. Mass balance in differential form 

The mass conservation applies to every volume of the flow field. Start from equation (4.3), using the 
Gauss theorem (3.8) this equation can be rewritten as 

 ∫ ∇ ∙ 𝒗𝒗 𝑑𝑑𝑑𝑑𝑉𝑉 = 0;   

that is valid for any arbitrary volume V, either large or infinitesimal, therefore, the integrand must be 
identically zero. This leads to the law of conservation of mass in differential form 

 ∇ ∙ 𝒗𝒗 = 0 ; (4.8) 

that is more commonly called the continuity equation. Equation (4.8) implies that the velocity field 
of an incompressible flow has zero divergence at every point (velocity field is solenoidal). 

The same result could be obtained by applying (4.3) to an infinitesimal cube. Figure 4.2 shows the 
balance of flow across the two faces with normal x, performing the same operation on the 6 faces 
−𝑣𝑣𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + �𝑣𝑣𝑥𝑥 + 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑣𝑣𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + �𝑣𝑣𝑦𝑦 + 𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑣𝑣𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + �𝑣𝑣𝑧𝑧 + 𝜕𝜕𝑣𝑣𝑧𝑧

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

= �𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝑧𝑧
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0

 

it ends up with the same result (4.8) in Cartesian coordinates 

 
Figure 4.1. Reduction of discharge along a vessel for mass conservation 
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 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

= 0 . (4.9) 

 

The condition (4.8), or (4.9), is an important constraint to the possible realization of the velocity 
vector field. Looking at the description of flow kinematics in equation (3.15), the velocity field locally 
can only translate and rotate rigidly and deform without change of volume because the flow has zero 
divergence. If velocity field converges at one side of a point it must similarly diverge on another side.  

As a simple example, if a jet is directed toward a wall, velocity present a convergence in that direction 
because it is positive upstream and zero at the wall for impermeability. As a consequence of mass 
conservation, the flow must diverge on the opposite direction, i.e. parallel to the wall velocity must 
be directed away from the impact region to create a splash effect on the wall.  

  

 
Figure 4.2. Balance of mass in an infinitesimal cube 

x

z

y
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5. Conservation of Momentum 

5.1. Momentum balance in integral form 

The second law of conservation to consider is the conservation of momentum. This corresponds to 
the second Newton law (expressed by F=ma for a single particle) that has to be rewritten for a fluid 
continuum. Given a generic volume VF, the momentum of that volume is defined 

 ∫ 𝜌𝜌𝒗𝒗𝑑𝑑𝑑𝑑𝑉𝑉𝐹𝐹(𝑡𝑡) .  

Conservation of momentum states that the momentum of a volume of material can only change in 
time in consequence of the application of forces 

 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝜌𝜌𝒗𝒗𝑑𝑑𝑑𝑑𝑉𝑉𝐹𝐹(𝑡𝑡) = ∫ 𝒇𝒇𝑑𝑑𝑑𝑑𝑉𝑉𝐹𝐹(𝑡𝑡) + ∫ 𝝉𝝉𝑑𝑑𝑑𝑑𝑆𝑆𝐹𝐹(𝑡𝑡) . (5.1) 

The term on the left hand side is the variation of momentum (the equivalent of the product between 
mass and acceleration for a particle). The first term on the right side are volumetric forces and the 
field f(t,x) is the force per unit volume, the second term are the surface forces applied on the boundary 
of the fluid volume. 

Application of the transport theorem (3.19) to (5.1) gives the integral law of conservation of 
momentum 

 ∫ 𝜕𝜕𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝜌𝜌 𝒗𝒗(𝒗𝒗 ∙ 𝒏𝒏)𝑑𝑑𝑑𝑑𝑆𝑆 = ∫ 𝒇𝒇𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝝉𝝉𝑑𝑑𝑑𝑑.𝑆𝑆  (5.2) 

where V is a spatial volume fixed in space and S is the surface surrounding that volume. Symbolically, 
equation (5.2) can expresses as 

 𝐈𝐈 + 𝐌𝐌 = 𝐆𝐆 + 𝚷𝚷; (5.3) 

where 

 𝐈𝐈 = ∫ 𝜕𝜕𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑉𝑉 , 𝐌𝐌 = ∫ 𝜌𝜌 𝒗𝒗(𝒗𝒗 ∙ 𝒏𝒏)𝑑𝑑𝑑𝑑𝑆𝑆 𝐆𝐆 = ∫ 𝒇𝒇𝑑𝑑𝑑𝑑𝑉𝑉 𝚷𝚷 = ∫ 𝝉𝝉𝑑𝑑𝑑𝑑.𝑆𝑆  (5.4) 

The first term is called the local inertia, second term is the flux of momentum across the boundary, 
third term is the volume force and last term is the surface force. The balance (5.2), or (5.3), is useful 
to compute the dynamic forces, extending the calculation of static forces seen before where the first 
two terms, due to the fluid velocity, are absent. 

Let’s see now a few instructive example to show application of the balance (5.3) for the calculation 
of dynamic forces and to better explore the meaning of the terms in (5.4) and the ways of computing 
them. 

Consider a circular duct with constant cross section A, presenting a 90° bent on the horizontal plane 
as sketched in figure 5.1. A steady flow, with velocity U, provokes a thrust on the lateral surface of 
the duct; that is then transferred to the boundaries where the curve is attached to the rest of the system. 
Application of the dynamic balance (5.3) permits to compute the force of the curved duct. First, 𝐈𝐈 =
0, because flow is steady. The flux of momentum at the entrance is given by 

 M𝑥𝑥 = −∫ 𝜌𝜌 𝑣𝑣𝑥𝑥2𝑑𝑑𝑑𝑑𝐴𝐴 = −𝜌𝜌𝜌𝜌𝑈𝑈2𝐴𝐴; (5.5) 
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that is expressed, in the second equality, in terms of global quantities introducing a velocity-correction 
coefficient β embodying the effect of velocity variation over the cross-section. Such a momentum 
velocity-correction factor β  

 𝛽𝛽 =
1
𝐴𝐴∫ 𝑣𝑣2𝑑𝑑𝑑𝑑𝐴𝐴

�1𝐴𝐴∫ 𝑣𝑣𝑣𝑣𝑣𝑣𝐴𝐴 �
2 = ∫ 𝑣𝑣2𝑑𝑑𝑑𝑑𝐴𝐴

𝑈𝑈2𝐴𝐴
; (5.6) 

reflects the difference between the average of velocity square and the square of the average velocity. 
The knowledge of the average of velocity square would require the knowledge of the spatial 
distribution of velocity that is often not available. This coefficient approaches the unit value when the 
velocity approaches a uniform profile. This is increasingly valid in steady turbulent flow or near the 
entrance of a duct. It is commonly assumed equal to 1 but it can be very different from that, especially 
in unsteady flows.  

Using the same approach, the flux of momentum at the exit is written 

 M𝑦𝑦 = ∫ 𝜌𝜌 𝑣𝑣𝑦𝑦2𝑑𝑑𝑑𝑑𝐴𝐴 = 𝜌𝜌𝜌𝜌𝑈𝑈2𝐴𝐴.  

 

The volume force, 𝐆𝐆, assumed due to gravity only, has only the vertical component given by the static 
weight of the volume. The surface force term is composed by pressure acting on the inflow cross-
section, say p1, in the x-direction; pressure acting on the outflow cross-section, say p2, in the negative 
y-direction, and the force made by the lateral duct surface that is equal and opposite to the force made 
by flow on the surface.  

 Π𝑥𝑥 = 𝑝𝑝1𝐴𝐴 − 𝐹𝐹𝑥𝑥, Π𝑦𝑦 = −𝑝𝑝2𝐴𝐴 − 𝐹𝐹𝑦𝑦 Π𝑧𝑧 = −𝐹𝐹𝑧𝑧.  

The overall balance (5.3) in the three directions is as follows  

 −𝜌𝜌𝜌𝜌𝑈𝑈2𝐴𝐴 = 𝑝𝑝1𝐴𝐴 − 𝐹𝐹𝑥𝑥, 𝜌𝜌𝜌𝜌𝑈𝑈2𝐴𝐴 = −𝑝𝑝2𝐴𝐴 − 𝐹𝐹𝑦𝑦 0 = −𝛾𝛾𝛾𝛾 − 𝐹𝐹𝑧𝑧.  

Therefore, the force made by flow on the curved vessel is  

 𝐹𝐹𝑥𝑥 = 𝑝𝑝1𝐴𝐴 + 𝜌𝜌𝜌𝜌𝑈𝑈2𝐴𝐴, 𝐹𝐹𝑦𝑦 = −𝜌𝜌𝜌𝜌𝑈𝑈2𝐴𝐴−𝑝𝑝2𝐴𝐴 𝐹𝐹𝑧𝑧 = −𝛾𝛾𝛾𝛾. (5.8) 

The force along x is made by the static force p1A plus the dynamic force caused by the deviation of 
the entire income momentum, i.e. the impact of the incoming flow to the bent. The force along y is 
made by the static force p2A that pushes in the negative direction plus the recoil due to the generation 
of momentum. The vertical force is simply the weight of the fluid volume. 

 
Figure 5.1. Force on a curved vessel 

x

y

U
A

A
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A second instructive example is the case of a rectilinear rigid vessel presenting a reduction of the 
cross section along its axis, as shown in figure 5.2, from an initial area A1 to a final A2<A1. Let us 
calculate the terms in the balance (5.3).  

For the inertial term, that is non-zero because the flow is unsteady, consider the time-varying 
discharge Q(t) that for mass conservation can be written Q(t)=U1(t)A1=U2(t)A2. The component of the 
inertial term along the vessel axis, indicated with x, becomes  

 I𝑥𝑥 = ∫ 𝜕𝜕𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑𝑉𝑉 = 𝜌𝜌 ∫ ∫ 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝐴𝐴(𝑥𝑥)

2
1 𝑑𝑑𝑑𝑑 = 𝜌𝜌 ∫ 𝑑𝑑

𝑑𝑑𝑑𝑑
�∫ 𝑣𝑣𝑥𝑥𝑑𝑑𝑑𝑑𝐴𝐴(𝑥𝑥) �2

1 𝑑𝑑𝑑𝑑;  

the term in curl brackets is the discharge Q(t), that is constant along the vessel, to eventually give 

 I𝑥𝑥 = 𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝐿𝐿; (5.9) 

where L=x2-x1 is the length of the vessel portion under examination.  

The flux of momentum is written using (5.5), with β=1, for the two sections as 

 M𝑥𝑥 = 𝜌𝜌𝑄𝑄2 � 1
𝐴𝐴2
− 1

𝐴𝐴1
�.  

The pressure terms is due to pressure values at the two sections plus the force made by the lateral 
wall to the fluid, that is equal and opposite to the force F made by the fluid on the walls 

 Π𝑥𝑥 = 𝑝𝑝1𝐴𝐴1 − 𝑝𝑝2𝐴𝐴2 − 𝐹𝐹𝑥𝑥.  

Inserting these terms in the balance (5.3), the force made by flow on the vessel is  

 𝐹𝐹𝑥𝑥 = 𝑝𝑝1𝐴𝐴1 − 𝑝𝑝2𝐴𝐴2 − 𝜌𝜌𝑄𝑄2 � 1
𝐴𝐴1
− 1

𝐴𝐴2
� − 𝜌𝜌 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝐿𝐿. (5.10) 

The first two terms are the difference of the static force acting on the two sections; the flux of 
momentum is negative and represent the reaction of the higher flux of momentum at the exit; last 
inertial term reflects the force associated to the acceleration/deceleration of the whole fluid. 

  

 

 

A final simple example is the force produced by a fluid jet toward a planar surface as in figure 5.3. 
Consider a steady jet with mean velocity U and area A, directed perpendicular to a flat plate. Take the 
volume bounded by the inlet section, the boundary of the flow adjacent to the air at atmospheric 

 
Figure 5.2. Force on a rectilinear vessel with varying section 
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pressure, the plate and the exit sections that are directed transversally to the inflow; and write the 
balance for this volume in the direction of the jet. Inertia is zero because the flow is steady. The flux 
of momentum is M = −𝜌𝜌𝜌𝜌𝑈𝑈2𝐴𝐴, given by the inlet, while the outlet does not contribute to this 
direction (and is zero for symmetry in the transversal direction). Body force (gravity) is also zero in 
this direction. Surface force are not present on the lateral boundaries because pressure is zero (or 
equal to the atmospheric value that is present everywhere); similarly pressure is zero all around the 
jet and remains zero inside the inlet section (this can be demonstrated rigorously later) and the same 
at the outlet sections. Therefore surface pressure is only the force given by the obstacle Π = −𝐹𝐹.  

 

Inserting these findings in the balance (5.3) shows that the force on the plate is only given by the 
deviation of the incoming momentum  

 𝐹𝐹 = 𝜌𝜌𝑈𝑈2𝐴𝐴 = 𝜌𝜌𝜌𝜌𝜌𝜌. (5.11) 

These simple cases were presented to show appropriate simple means of evaluating the terms (5.4) 
under typical conditions. In more general situations, the integrals (5.4) must be evaluated. 

The balance (5.3) can be extended to provide the balance of angular momentum. In which case every 
term must be multiplied with the corresponding arm of the force. The details of this extension are not 
reported here as they are not of primary interest for the topic of this book and do not bring conceptual 
challenges. However, such extension is immediate to draw in most situations using the same approach 
described above. 

5.2. Momentum balance for a vessel 

Following the same approach that we used above for conservation of mass, let us rearrange the 
balance of momentum (5.2) for the special important case of flow in a vessel. This is a predominantly 
1D stream of cross section area 𝐴𝐴(𝑡𝑡, 𝑥𝑥), where the transversal velocities are negligible with respect 
to the longitudinal ones. Indicate with x the longitudinal direction, the average velocity is  

 𝑈𝑈(𝑥𝑥, 𝑡𝑡) = 1
𝐴𝐴 ∫ 𝑣𝑣𝑥𝑥𝑑𝑑𝑑𝑑𝐴𝐴 . (5.12) 

Consider an infinitesimal length dx of such a vessel and let us evaluate the component along the vessel 
of each individual term in (5.4). Remind that the balance is made on a spatial volume (instantaneously 
fixed). This volume is bounded upstream by the cross-surface 𝐴𝐴(𝑡𝑡, 𝑥𝑥), where velocity is 𝑈𝑈(𝑥𝑥, 𝑡𝑡) and 
average pressure is 𝑝𝑝(𝑥𝑥, 𝑡𝑡). It is bounded downstream by the cross-surface 𝐴𝐴(𝑡𝑡, 𝑥𝑥 + 𝑑𝑑𝑑𝑑) = 𝐴𝐴(𝑡𝑡, 𝑥𝑥) +

 
Figure 5.3. Force of a jet impacting on a flat plate 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑, where velocity is 𝑈𝑈(𝑡𝑡, 𝑥𝑥 + 𝑑𝑑𝑑𝑑) = 𝑈𝑈(𝑡𝑡, 𝑥𝑥) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑, and pressure is 𝑝𝑝(𝑡𝑡, 𝑥𝑥 + 𝑑𝑑𝑑𝑑) = 𝑝𝑝(𝑡𝑡, 𝑥𝑥) +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 and it is also bounded laterally by the perimeter curve C(x) over the length dx. 

The inertial term reads 

 I = ∫ 𝜕𝜕𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑𝑉𝑉 = 𝜌𝜌 ∫ 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝐴𝐴 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝜕𝜕

𝜕𝜕𝜕𝜕 ∫ 𝑣𝑣𝑥𝑥𝑑𝑑𝑑𝑑𝐴𝐴 𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑. (5.13) 

The flux of momentum across the two cross-section and the lateral contour 

 M = −∫ 𝜌𝜌𝑣𝑣𝑥𝑥2𝑑𝑑𝑑𝑑𝐴𝐴(𝑥𝑥) + ∫ 𝜌𝜌 �𝑣𝑣𝑥𝑥 + 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑�

2
𝑑𝑑𝑑𝑑𝐴𝐴(𝑥𝑥)+𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑

+ ∫ 𝜌𝜌𝑣𝑣𝑥𝑥𝑣𝑣𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶(𝑥𝑥) =  

is simplified assuming that the velocity is uniform over the cross section, which means  β=1, and 
ignoring all terms of order dx2 

= −𝜌𝜌𝑈𝑈2𝐴𝐴 + 𝜌𝜌 ∫ �𝑣𝑣𝑥𝑥2 + 2𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝐴𝐴 + ∫ 𝜌𝜌 �𝑣𝑣𝑥𝑥2 + 2𝑣𝑣𝑥𝑥

𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑�𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑
+ ∫ 𝜌𝜌𝑣𝑣𝑥𝑥𝑣𝑣𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶 = 

= −𝜌𝜌𝑈𝑈2𝐴𝐴 + 𝜌𝜌𝑈𝑈2𝐴𝐴 + 𝜌𝜌2𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜌𝜌𝑈𝑈2 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + ∫ 𝜌𝜌𝑣𝑣𝑥𝑥𝑣𝑣𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶 =  

last integral above can be rewritten considering that the integral of 𝑣𝑣𝑛𝑛𝑑𝑑𝑑𝑑 is the rate of increase of the 
cross-area, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
. Rearranging all terms 

= 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜌𝜌𝑈𝑈2 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜌𝜌𝜌𝜌 �𝐴𝐴 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑈𝑈 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑  

Notice that the terms in bracket in last term are equal to zero because of mass conservation (4.7) and 
the whole flux of momentum becomes simply 

 M = 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝐴𝐴𝐴𝐴𝐴𝐴 (5.14) 

Surface forces are composed of pressure acting on the two cross-sections, of the wall shear stress of 
acting on the lateral surface and of the pressure acting on the lateral surface, which may presents a 
longitudinal component when the cross-section is not constant. Surface forces are 

 Π = 𝑝𝑝𝑝𝑝 − �𝑝𝑝 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� �𝐴𝐴 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� − 𝜏𝜏𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶 + �𝑝𝑝 + 1

2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑛𝑛𝑥𝑥𝑑𝑑𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 =  

Last but one term is the average wall shear stress exerted by the lateral solid boundary to the fluid. 
Last term is the pressure on the lateral surface (taken as the mean between x and x+dx) and nx is the 
x component of the normal to the lateral surface dSLAT (notice that here we cannot use the 
simplification dSLAT=Cdx because the latter does not include the orientation: C is the average 
perimeter along the length dx). It can be noticed that the terms 𝑛𝑛𝑥𝑥𝑑𝑑𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 is the component of the lateral 
surface facing x, thus it corresponds to the increase of cross-surface 𝑛𝑛𝑥𝑥𝑑𝑑𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑.  

Ignoring the higher order terms in dx and simplifying  

 Π = 𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑝𝑝 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 − 𝜏𝜏𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑝𝑝 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = −𝐴𝐴𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 − 𝜏𝜏𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶 . (5.15) 

Finally, the volume force, assumed imputable to gravity only 𝒇𝒇 = −𝛾𝛾∇𝑧𝑧, gives the component along 
the vessel  

 G = −𝛾𝛾𝛾𝛾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑; (5.16) 
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where z stands for the direction of gravity. Combine all terms (5.13-5.16) in the momentum balance 
(5.3)   

 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 + 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝐴𝐴𝐴𝐴𝐴𝐴 = −𝐴𝐴 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 − 𝜏𝜏𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶 − 𝛾𝛾𝛾𝛾 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑  

divide by ρAdx to obtain 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑝𝑝
𝜌𝜌

+ 𝑔𝑔𝑔𝑔� − 𝜏𝜏𝑤𝑤
𝜌𝜌
𝐶𝐶
𝐴𝐴
 (5.17) 

Equation (5.17) is the law of conservation of momentum for 1D streams. The first term represents the 
(Lagrangian) acceleration of a 1D fluid element moving with velocity U expressed in terms of 
(Eulerian) derivatives in a fixed frame of reference.  

The first term on the right hand side is the driving force that can be due either to a pressure gradient 
(negative, higher upstream and lower downstream) or to a difference of quote. This expression 
underlines again that pressure gradient and gravity play the same role in fluid dynamics. It is common 
habit using a generalized pressure that includes gravity, p+γz and rewrite (5.17) without explicit 
mention to gravity (or another conservative force).  Actually, this is often not even explicitly stated 
and equation (5.17) is simply expressed 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜏𝜏𝑤𝑤

𝜌𝜌
𝐶𝐶
𝐴𝐴
 (5.18) 

Then, if needed, the actual pressure can be recovered simply removing the gravity contribution p-γz.  

Last term is the friction on the lateral walls. This term depends on the velocity profile near the wall, 
as shown for example by equation (1.8) for a Newtonian fluid. The 1D model however deals with the 
mean velocity only, that is usually assumed as uniform over the cross section, and does not provide 
information about transversal velocity gradient. Therefore, the friction terms is often neglected (in 
which case the flow is without viscous resistance) or it must be provided explicitly as a function of 
velocity field U. 

5.3. Momentum balance in differential form for a continuum: Cauchy equation 

The balances of momentum presented above do not allows investigating the spatiotemporal details of 
fluid motion. These require the formulation of the balance at a punctual level or, more precisely, the 
formulation in differential form. To this purpose, we follow here the same procedure previously 
adopted for the conservation of mass and apply it to the conservation of momentum. 

Start from the balance of momentum in global terms (5.2), divided by the constant density   

 ∫ 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝒗𝒗(𝒗𝒗 ∙ 𝒏𝒏)𝑑𝑑𝑑𝑑𝑆𝑆 = 1

𝜌𝜌 ∫ 𝒇𝒇𝑑𝑑𝑑𝑑𝑉𝑉 + 1
𝜌𝜌 ∫ 𝝉𝝉𝑑𝑑𝑑𝑑;𝑆𝑆  (5.19) 

at this point we want to transform the surface integrals, 2nd and 4th terms, as integrals over the volume. 
Take the generic ith component of the second term, which can be transformed as follows 

 ∫ 𝑣𝑣𝑖𝑖𝒗𝒗 ∙ 𝒏𝒏𝑑𝑑𝑑𝑑𝑆𝑆 = ∫ ∇ ∙ (𝑣𝑣𝑖𝑖𝒗𝒗)𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ 𝑣𝑣𝑖𝑖∇ ∙ 𝒗𝒗 + 𝒗𝒗 ∙ ∇𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 = ∫ 𝒗𝒗 ∙ ∇𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑𝑉𝑉 . (5.20) 

The first equality used the Gauss theorem (3.8) applied to the vector field 𝑣𝑣𝑖𝑖𝒗𝒗; the second equality is 
immediate to show using the derivative of a product in vector terms, and last equality follows after 
cancelling the terms ∇ ∙ 𝒗𝒗 that is identically zero for mass conservation (4.8). 
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Last term in (5.12) contains the stress vector 𝝉𝝉 acting on the surface dS. Apparently, at a point there 
are infinite stress vectors depending on the orientation of the surface dS; such an infiniteness is only 
apparent because there is a single stress state about a point and all these individual vectors are 
evidently not independent. Indeed, it can be demonstrated that the stress vector acting on a surface 
with normal n can be expressed in general as 

 𝝉𝝉 = 𝕋𝕋 ∙ 𝒏𝒏 (5.21) 

where 𝕋𝕋 is the stress the tensor. It characterizes the stress state at a point, such that the stress vector 
at that point acting on a surface with normal n is obtained by projecting the stress tensor over the 
direction n, as by (5.21).  

Result (5.21) is immediate to demonstrate using the Cauchy tetrahedron, which is build by the original 
surface dS and its projection on the Cartesian planes as shown in figure 5.4. Indicate τ(x) the stress 
vector acting on the surface dS(x) projection of dS on the y-z plane perpendicular to the x-axis; same 
for the other coordinate axis. First, we want to see whether the stress τ on the original surface can be 
expressed as a combination of the stresses τ(x), τ(y), τ(z) acting on the surfaces normal to the Cartesian 
axes. Balance of the tetrahedron gives the equivalence of the surface forces 

 𝝉𝝉𝑑𝑑𝑑𝑑 = 𝝉𝝉(𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝝉𝝉(𝑦𝑦)𝑑𝑑𝑑𝑑(𝑦𝑦) + 𝝉𝝉(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑧𝑧). (5.22) 

The individual surfaces on the Cartesian planes, dS(i), are the projection of the original surface. It is 
easy to verify by simple geometry that dS(i)=dS ni, where the ni is the ith component of the normal n 
to the surface dS. Introducing this into (5.22) gives 

 𝝉𝝉 = 𝝉𝝉(𝑥𝑥)𝑛𝑛𝑥𝑥 + 𝝉𝝉(𝑦𝑦)𝑛𝑛𝑦𝑦 + 𝝉𝝉(𝑧𝑧)𝑛𝑛𝑧𝑧 (5.23) 

If you define the stress tensor as a tensor made by three stress vectors placed in column 𝜏𝜏𝒊𝒊
(𝒋𝒋) = 𝕋𝕋𝒊𝒊𝒊𝒊  

then equation (5.23) corresponds to (5.21) that is thus proven. 

 

 
Figure 5.4. Cauchy tetrahedron 
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Using expression (5.21) the forth term in (5.19) can be rewritten as a volume integral through the 
Gauss theorem 

 1
𝜌𝜌 ∫ 𝝉𝝉𝑑𝑑𝑑𝑑𝑆𝑆 = 1

𝜌𝜌 ∫ 𝕋𝕋 ∙ 𝒏𝒏 𝑑𝑑𝑑𝑑𝑆𝑆 = 1
𝜌𝜌 ∫ ∇ ∙ 𝕋𝕋𝑑𝑑𝑑𝑑𝑉𝑉 . (5.24) 

Introduction of (5.20) and (5.24) in the momentum balance (5.19) allows rewriting it in terms of 
volume integrals only 

 ∫ 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑉𝑉 + ∫ 𝒗𝒗 ∙ ∇𝒗𝒗𝑑𝑑𝑑𝑑𝑉𝑉 = 1

𝜌𝜌 ∫ 𝒇𝒇𝑑𝑑𝑑𝑑𝑉𝑉 + 1
𝜌𝜌 ∫ ∇ ∙ 𝕋𝕋𝑑𝑑𝑑𝑑𝑉𝑉 .  

This must be valid for any volume, including an infinitesimal volume, therefore the balance must 
apply to the integrands as well 

 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗 = 1
𝜌𝜌
𝒇𝒇 + 1

𝜌𝜌
∇ ∙ 𝕋𝕋. (5.25) 

Equation (5.25) is the Cauchy equation that expresses the law of conservation of momentum for a 
generic continuum. 

The same result could be obtained in Cartesian coordinates by applying the balance of momentum 
(5.19) to an infinitesimal cube of volume as shown in figure 5.5. 

 

Consider, for example, the x-component (then results can be immediately extended to the other 
components). The first term in (5.19) applied to the infinitesimal cube, V=dxdydz, becomes 

 ∫ 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑉𝑉 = 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. (5.26) 

The second term includes the fluxes of momentum on the 6 faces 

 
Figure 5.5. Balance of momentum in an infinitesimal cube  

(values on the faces perpendicular to y are not shown to for clarity)  
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∫ 𝑣𝑣𝑥𝑥(𝒗𝒗 ∙ 𝒏𝒏)𝑑𝑑𝑑𝑑𝑆𝑆 =

  = −𝑣𝑣𝑥𝑥𝑣𝑣𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑣𝑣𝑥𝑥𝑣𝑣𝑧𝑧𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + �𝑣𝑣𝑥𝑥 + 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� �𝑣𝑣𝑥𝑥 + 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

             + �𝑣𝑣𝑥𝑥 + 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� �𝑣𝑣𝑦𝑦 + 𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + �𝑣𝑣𝑥𝑥 + 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� �𝑣𝑣𝑧𝑧 + 𝜕𝜕𝑣𝑣𝑧𝑧

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

  = �𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

  = (𝒗𝒗 ∙ ∇𝑣𝑣𝑥𝑥 + 𝑣𝑣𝑥𝑥∇ ∙ 𝒗𝒗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
  = 𝒗𝒗 ∙ ∇𝑣𝑣𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (5.27) 

The third term 

 ∫ 𝑓𝑓𝑥𝑥𝑑𝑑𝑑𝑑𝑉𝑉 = 𝑓𝑓𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. (5.28) 

Last term combines the stress forces on the six surfaces of the cube 

 

∫ 𝜏𝜏𝑥𝑥𝑑𝑑𝑑𝑑𝑆𝑆 =

  = −𝜏𝜏𝑥𝑥
(𝑥𝑥)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜏𝜏𝑥𝑥

(𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜏𝜏𝑥𝑥
(𝑧𝑧)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + �𝜏𝜏𝑥𝑥

(𝑥𝑥) + 𝜕𝜕𝜏𝜏𝑥𝑥
(𝑥𝑥)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

             + �𝜏𝜏𝑥𝑥
(𝑦𝑦) + 𝜕𝜕𝜏𝜏𝑥𝑥

(𝑦𝑦)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + �𝜏𝜏𝑥𝑥

(𝑧𝑧) + 𝜕𝜕𝜏𝜏𝑥𝑥
(𝑧𝑧)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

  = �𝜕𝜕𝜏𝜏𝑥𝑥
(𝑥𝑥)

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜏𝜏𝑥𝑥

(𝑦𝑦)

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜏𝜏𝑥𝑥

(𝑧𝑧)

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

  = (∇ ∙ 𝕋𝕋)𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

 (5.29) 

Where here we defined, as we did before in the Cauchy tetrahedron, the stress tensor 𝕋𝕋 as made by 
the three stress vectors relative to the three coordinates. 

Insertion of expressions (5.26)-(5.29) into the balance (5.19) gives again the Cauchy equation (5.25). 

The two terms on the left hand side of the Cauchy equation (5.25) represent the acceleration of fluid 
particles that we previously introduced in equation (3.18). The two terms on the right hand side are 
the forces acting on such particles, caused by intrinsic volumetric forces and by the stresses made by 
the neighboring fluid elements. 

The same procedure must now be performed for the conservation of angular momentum by writing 
the same expressions including the arms of the individual terms. The derivation is somehow lengthy 
and is not reported in details here. Nevertheless, the result is remarkably simple and important: the 
conservation of angular momentum implies that the stress tensor 𝕋𝕋 is a symmetric tensor. It does not 
produce further differential equations and simply reduces the complexity of the stress tensor from 9 
components to 6 independent components.  

The complete set of equations describing the mechanics of a continuum (still we have not used any 
argument that this continuum is a fluid) is given by the conservation of mass (continuity equation) 
and the conservation of momentum (Cauchy equation) 

 �
∇ ∙ 𝒗𝒗 = 0,
𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗 = 1
𝜌𝜌
𝒇𝒇 + 1

𝜌𝜌
∇ ∙ 𝕋𝕋; (5.30) 

which is a set of 4 scalar equations. The unknowns are the 3 components of the velocity vector and 
the 6 components of the stress tensor, resulting in a number of 9 total unknowns. Thus this set is not 
complete, in principle not solvable, until some additional information is provided.  
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5.4. Momentum balance for Newtonian fluids: Navier-Stokes equations 

The set of equations (5.30) is valid for a generic continuum, it applies both to solids and fluids. In 
order to be applied to a specific material we must introduce information about such a material. Here 
we will introduce the constitutive law for fluids, specifying how internal stresses depend on the 
motion of the fluid material. 

The first information for specifying the constitutive law comes from the statics of fluids. In chapter 2 
we have seen that under static conditions the stresses on a surface is made by pressure and acts 
normally toward the surface, it is expressed as 𝝉𝝉 = −𝑝𝑝𝒏𝒏 (the minus comes for the convention of the 
outward normal). Comparison with (5.21) immediately shows that the stress tensor must become in 
the limit of static conditions  

 𝕋𝕋 = −𝑝𝑝𝑝𝑝 = −𝑝𝑝 �
1 0 0
0 1 0
0 0 1

�  

where 𝕀𝕀 is the identity matrix.  

The second information comes from the kinematics of fluid. In chapter 3 we have shown that motion 
is composed by rigid translation and rotation plus a pure deformation. The latter is the only elementary 
action which involves the relative motion of fluid elements, thus the only that can be responsible for 
friction. Therefore, we can express in general the constitutive law for a fluid as 

 𝕋𝕋 = −𝑝𝑝𝑝𝑝 + 𝑓𝑓(𝔻𝔻); (5.31) 

where 𝔻𝔻 is the symmetric deformation tensor (3.14). Fluids following the law (5.31), where stress 
forces are due to rate of deformation, and are called Stokes fluids. 

The third information comes from the definition of viscosity for a Newtonian fluid. In chapter 1 we 
showed that the stress due to shear flow along x on a surface with normal y is given by formula (1.8) 
that can be restated with the current formalism as 

 𝕋𝕋𝑥𝑥𝑥𝑥 = 𝜇𝜇 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

;  

This expression is not symmetric and violates conservation of angular momentum; however, it can 
easily be made symmetric as 

 𝕋𝕋𝑥𝑥𝑥𝑥 = 𝜇𝜇 �𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
�;  

without contradicting the experimental result (1.8) because the transversal velocity vy was zero. This 
is an off-diagonal term of a form compatible with (5.31), suggesting that the function f appearing in 
(5.31) is a linear one.  

Combining these information, the constitutive law for Newtonian fluids is written in general as 

 𝕋𝕋 = −𝑝𝑝𝑝𝑝 + 2𝜇𝜇𝜇𝜇; (5.32) 

or in individual Cartesian components  
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 𝕋𝕋 =

⎣
⎢
⎢
⎢
⎡ −𝑝𝑝 + 2𝜇𝜇 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
𝜇𝜇 �𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
� 𝜇𝜇 �𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑣𝑣𝑧𝑧

𝜕𝜕𝜕𝜕
�

𝜇𝜇 �𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
� −𝑝𝑝 + 2𝜇𝜇 𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
𝜇𝜇 �𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑣𝑣𝑧𝑧

𝜕𝜕𝜕𝜕
�

𝜇𝜇 �𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
� 𝜇𝜇 �𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑣𝑣𝑧𝑧

𝜕𝜕𝜕𝜕
� −𝑝𝑝 + 2𝜇𝜇 𝜕𝜕𝑣𝑣𝑧𝑧

𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎤

.  

Let us now look how to the surface force term in the Cauchy equation (5.25) can be written when the 
stress tensor is expressed by the constitutive law (5.32)  

   

∇ ∙ 𝕋𝕋|𝑥𝑥 = 𝜕𝜕𝕋𝕋𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝕋𝕋𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝕋𝕋𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕

=

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 2𝜇𝜇 𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥2

+ 𝜇𝜇 𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

+ 𝜇𝜇 𝜕𝜕2𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜇𝜇 𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑧𝑧2

+ 𝜇𝜇 𝜕𝜕2𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕

=

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇 �𝜕𝜕
2𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑧𝑧2

�+ 𝜇𝜇 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
� =

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇∇2𝑣𝑣𝑥𝑥

. (5.33) 

Insertion of (5.33) into the Cauchy equation (5.25) gives the equations for conservation of momentum 
for Newtonian fluids: the Navier-Stokes equation 

 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗 = 1
𝜌𝜌
𝒇𝒇 − 1

𝜌𝜌
∇𝑝𝑝 + 𝜈𝜈∇2𝒗𝒗. (5.34) 

where 𝜈𝜈 = 𝜇𝜇
𝜌𝜌
 is the kinematic viscosity. This equation is also called the law of motion for an 

incompressible Newtonian fluid, and represents the rearrangement of the 2nd Newton law for this 
special material. The left hand side is the acceleration of a fluid particle, the terms on the right hand 
side are the force, per unit mass. Respectively they are the volumetric force, the thrust due to pressure 
difference and the resistance force due to internal friction.  

As discussed in chapter 1, blood is a complex material for which the assumption of a Newtonian 
constitutive relations is approximate. The reliability of this approximation was discussed therein and 
it is not recalled here. In what follows we will limit our discussion to Newtonian fluids that represent 
the foundation for understanding most flow phenomena.  

When dealing with gravitational volume forces only, we have seen that the force can be rewritten in 
gradient form 𝒇𝒇 = 𝛾𝛾∇𝑧𝑧. Therefore they can be formally included in the pressure term  

 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗 = − 1
𝜌𝜌
∇𝑝𝑝 + 𝜈𝜈∇2𝒗𝒗. (5.35) 

where 𝑝𝑝 is includes gravity and stands for (𝑝𝑝 + 𝛾𝛾𝛾𝛾).  

The set of equations given by continuity equation (4.8) and Navier-Stokes equation (5.34) or (5.35) 
is now a complete set with the same number of equations (4 scalar equations) and unknowns (the 3 
components of the velocity vector and pressure) 

 �
∇ ∙ 𝒗𝒗 = 0,
𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗 = − 1
𝜌𝜌
∇𝑝𝑝 + 𝜈𝜈∇2𝒗𝒗; (5.36) 

This system of equations, continuity and motion, must be completed with the appropriate boundary 
conditions. The Navier-Stokes equation is partial differential equation containing second order 
derivatives for velocity; therefore, roughly speaking, it requires two boundary conditions for velocity. 
The first condition is the impermeability at the boundary between fluid and solid; this means that the 
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normal component of the velocity must be zero (or equal to that of the boundary when it is moving). 
The second condition is the adherence to the wall; this means that the tangential velocity must go to 
zero at the wall. Adherence is a purely viscous phenomenon; this is congruent with the fact that the 
second condition follows from the presence of the viscous terms that is the only one containing 2nd 
order derivatives. 

The viscous, frictional term in the Navier-Stokes equation produces energy dissipation. In a wider 
perspective, total energy is conserved and friction is a mechanism of transformation of kinetic energy 
into heat. Therefore, from the mechanical perspective, friction provokes a dissipation, thus a 
reduction, of mechanical energy.  

The kinematic viscosity is a small coefficient ν=10-6m2/s=10-2cm2/s for water. Therefore, especially 
far from the boundaries, the viscous terms is often negligible and fluid behave mostly like an inviscid 
one. 

Consider now the limiting case when viscosity is zero ν=0 that can be useful as a model in numerous 
applications. In this asymptotic limit, we talk of ideal fluids (also called inviscid or frictionless). The 
equation of motion for ideal fluids is the Euler equation  

 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗 = − 1
𝜌𝜌
∇𝑝𝑝; (5.37) 

that differs from the Navier-Stokes equation (5.35) for the absence of the viscous term only. The 
Euler equation does not present friction and therefore conserves mechanical energy. Thus, it describes 
reversible phenomena. Indeed, if the velocity pressure pair v,p is solution of the Euler equation 
forward in time, then the reversed pair  -v,-p is also a solution backward in time. This was not true 
for the Navier-Stokes equation due to the friction term that does not reverse (reverse flow also has 
friction, it certainly does not transform heat back into kinetic energy). 

Another important difference between Euler and Navier-Stokes is that the former is a 1st order partial 
differential equation, it contains 1st order derivatives only, while the latter is second order. This 
difference reflects into the fact that only one boundary condition can be imposed for the velocity. 
Namely, the adherence condition does not apply to the Euler equation; this is perfectly physically 
consistent because the adherence is a viscous phenomenon; ideal flows have no viscosity and cannot 
have viscous adherence. 

Euler equation is important because it allows some simple solution to specific applications; however, 
care must be taken for applying the approximation of ideal flow. It can be usable over short regions, 
where the small viscosity is effectively negligible, and far from boundaries where viscous adherence 
can influence whenever small viscosity is. 

A last consideration about Navier-Stokes or Euler equation regards the frequent case of flows where 
velocity is predominantly along one direction. Consider a motion that is predominantly along the x-
direction, thus 𝑣𝑣𝑦𝑦 ≈ 0 and 𝑣𝑣𝑧𝑧 ≈ 0, and write the Navier-Stoker equation over one direction transversal 
to the directions of motion, say the y direction, for example, 

   𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

= − 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜈𝜈 �𝜕𝜕
2𝑣𝑣𝑦𝑦
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑣𝑣𝑦𝑦
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑣𝑣𝑦𝑦
𝜕𝜕𝑧𝑧2

�. (5.38) 

If we can neglect the velocity vy and its derivatives; in other words, if streamlines are straight and 
parallel, then the Navier Stokes equation transversal to the direction of motion (5.38) reduces to  

   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0; (5.39) 
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that, in presence of gravity, has the meaning 

   𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑝𝑝 + 𝛾𝛾𝛾𝛾) = 0.  

This is a general and important result. In regions where fluid motion is straight and parallel, the static 
head (2.5), given by pressure plus gravity, if the latter is present, remains constant transversal to the 
direction of motion.  

Put simpler, along the directions without motion (transversal to flow) law of fluid statics holds. This 
simple fact was sometime used in section 5.1 when computing dynamic forces, it tells about the 
average pressure value in the equation for a vessel in 5.2, and will be used several times later in the 
book. 

 

  



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 57 

6. Conservation of Energy (Bernoulli Balance) 

6.1. Equation for conservation of mechanical energy 

In a system where the only form of energy is mechanical energy there are no other physical 
mechanisms, or physical laws, other than conservation of mass and of momentum that can be included 
in the mathematical treatment. The unique transformation is about kinetic energy 1

2
𝜌𝜌𝑣𝑣2 (per unit 

volume) and the potential energy  𝑝𝑝 + 𝛾𝛾𝛾𝛾 (per unit volume). The latter again underlining that pressure 
plays the same role of gravity and is commonly assumed to implicitly include the latter for easier 
writing. The law of conservation of momentum already described the dynamic relationship between 
velocity (for kinetic energy) and pressure (for potential energy); therefore, in absence of other forms 
of energy, the conservation of energy must be in accordance with that. 

In this special case, the law of conservation of energy can be obtained directly from the Cauchy 
equation (5.25), for a generic continuum, or from the Navier-Stokes equation (5.35), for a Newtonian 
fluid. Consider the ith component of equation (5.25) 

 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑗𝑗
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 1
𝜌𝜌
𝑓𝑓𝑖𝑖 + 1

𝜌𝜌
𝜕𝜕𝕋𝕋𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

.  

and make the scalar multiplication with the velocity (in index formalism, multiply the ith component 
of the equation by the same component of velocity and perform summation for i=1,2,3) 

 𝜌𝜌𝑣𝑣𝑖𝑖
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝑣𝑣𝑖𝑖𝑓𝑓𝑖𝑖 + 𝑣𝑣𝑖𝑖
𝜕𝜕𝕋𝕋𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

.  

that can be rewritten 

 𝜌𝜌 1
2
𝜕𝜕𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑣𝑣𝑗𝑗
1
2
𝜕𝜕𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖
𝜕𝜕𝑣𝑣𝑗𝑗

= 𝑣𝑣𝑖𝑖𝑓𝑓𝑖𝑖 + 𝑣𝑣𝑖𝑖
𝜕𝜕𝕋𝕋𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

.  

 𝜕𝜕
𝜕𝜕𝜕𝜕
�1
2
𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖� + 𝑣𝑣𝑗𝑗

𝜕𝜕
𝜕𝜕𝑣𝑣𝑗𝑗

�1
2
𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖� = 𝑣𝑣𝑖𝑖𝑓𝑓𝑖𝑖 + 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�𝑣𝑣𝑖𝑖𝕋𝕋𝑖𝑖𝑖𝑖� − 𝕋𝕋𝑖𝑖𝑖𝑖

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

.  

 𝜕𝜕
𝜕𝜕𝜕𝜕
�1
2
𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖� + 𝑣𝑣𝑗𝑗

𝜕𝜕
𝜕𝜕𝑣𝑣𝑗𝑗

�1
2
𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖� = 𝑣𝑣𝑖𝑖𝑓𝑓𝑖𝑖 + 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�𝑣𝑣𝑖𝑖𝕋𝕋𝑖𝑖𝑖𝑖� − 𝕋𝕋𝑖𝑖𝑖𝑖𝔻𝔻𝑖𝑖𝑖𝑖.  

where we used the rule of product derivative and, for the last term, the fact that the product between 
a symmetric and antisymmetric tensor is zero, thus only the symmetric part of the velocity gradient 
contributes. In final form the equation for the conservation of mechanical energy is 

 𝜕𝜕
𝜕𝜕𝜕𝜕
�1
2
𝜌𝜌𝑣𝑣2� + 𝒗𝒗 ∙ ∇ �1

2
𝜌𝜌𝑣𝑣2� = 𝒗𝒗 ∙ 𝒇𝒇 + ∇(𝒗𝒗 ∙ 𝕋𝕋) − 𝕋𝕋:𝔻𝔻. (6.1) 

where the double scalar products 𝕋𝕋:𝔻𝔻 = 𝕋𝕋𝑖𝑖𝑖𝑖𝔻𝔻𝑖𝑖𝑖𝑖. The two terms on the left hand side are the 
(Lagrangian) time derivative of the kinetic energy on the moving fluid element. This can change for 
the work done by the volume force (first terms on the right hand side) by the surface forces (second 
terms), and for work spent to deform the fluid elements (last term). The last term represents the 
dissipation of mechanical energy.  

In the case of Newtonian incompressible fluid, using (5.2), the rate of dissipation of kinetic energy 
can be expressed 

 𝕋𝕋:𝔻𝔻 = 2𝜇𝜇𝔻𝔻:𝔻𝔻 = 2𝜇𝜇𝔻𝔻𝑖𝑖𝑖𝑖𝔻𝔻𝑖𝑖𝑖𝑖 = 𝜇𝜇 �𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
�. (6.2) 
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This expression evidences that viscous energy dissipation is strictly a positive value because given 
by the sum of squares. 

6.2. Bernoulli energy balance 

An expression for the conservation of energy that is of immediate interpretation in simpler 
circumstances can be obtained directly from the Navier-Stokes equation under some specific 
hypotheses. 

Consider the case of volume forces that are absent or limited to the gravitational forces and included 
into the pressure term without loss of generality. Now make the important hypothesis of considering 
the motion of an ideal fluid with zero viscosity. The equation governing fluid motion is the Euler 
equation (5.37) 

 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗 = − 1
𝜌𝜌
∇𝑝𝑝.  

The second term on the left hand side can be rewritten in an alternate form as follows. Consider the 
x-component of the non linear term in Cartesian coordinates 

 𝒗𝒗 ∙ ∇𝒗𝒗|𝒙𝒙 = 𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

=  

add and remove the same quantity 

 = 𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

− 𝑣𝑣𝑦𝑦
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

− 𝑣𝑣𝑧𝑧
𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

=  

the 1st, 4th and 6th terms can be grouped as the derivative of squares, then evidence vy from 2nd and 5th 
and vz from 3rd and 7th  

 = 1
2
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 + 𝑣𝑣𝑧𝑧2� +  𝑣𝑣𝑦𝑦 �

𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
�+𝑣𝑣𝑧𝑧 �

𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
� =  

the first term is the derivative of the square of the modulus of velocity 𝑣𝑣2 = 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2 + 𝑣𝑣𝑧𝑧2. 
Then notice that the other terms in parenthesis are components of vorticity, thus we get 

 = 𝜕𝜕
𝜕𝜕𝜕𝜕

𝑣𝑣2

2
− 𝑣𝑣𝑦𝑦𝜔𝜔𝑧𝑧+𝑣𝑣𝑧𝑧𝜔𝜔𝑦𝑦 = �∇ 𝑣𝑣2

2
− 𝒗𝒗 × 𝝎𝝎�

𝑥𝑥
.  

As a result, the Euler equation can be rewritten in the alternate form 

 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ ∇ �𝑣𝑣
2

2
+ 𝑝𝑝

𝜌𝜌
� = 𝒗𝒗 × 𝝎𝝎. (6.3) 

Equation (6.3) is a vector equation, and the term on the right hand side is perpendicular to the velocity 
(and to vorticity) for the property of the cross product. Thus, if we project equation (6.3) in the 
direction of a streamline, i.e. if we take the scalar product of every term with the versor  𝒔𝒔 = 𝑣𝑣−1𝒗𝒗, 
last term is zero and we are left with 

 𝜕𝜕𝑣𝑣𝑠𝑠
𝜕𝜕𝜕𝜕

+ ∂
𝜕𝜕𝜕𝜕
�𝑣𝑣

2

2
+ 𝑝𝑝� = 0. (6.4) 

Integration of equation (6.4) between two points, point 1 and point 2, along one streamline gives 

 𝑝𝑝1
𝜌𝜌

+ 𝑣𝑣12

2
= 𝑝𝑝2

𝜌𝜌
+ 𝑣𝑣22

2
+ ∫ 𝜕𝜕𝑣𝑣𝑠𝑠

𝜕𝜕𝜕𝜕
2
1 𝑑𝑑𝑑𝑑 . (6.5) 
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It is common to define the total head 

 𝐻𝐻 = 𝑣𝑣2

2𝑔𝑔
+ 𝑝𝑝

𝛾𝛾
; (6.6) 

or expressing explicitly the presence of gravity  

 𝐻𝐻 = 𝑣𝑣2

2𝑔𝑔
+ 𝑝𝑝

𝛾𝛾
+ 𝑧𝑧.  

The total head is a height that expresses the total mechanical energy per unit weight as the sum of 

kinetic energy 𝑣𝑣
2

2𝑔𝑔
 plus the potential energy 𝑝𝑝

𝛾𝛾
+ 𝑧𝑧. Thus equation (6.5) rewritten as 

 𝐻𝐻1 = 𝐻𝐻2 + 1
𝑔𝑔 ∫

𝜕𝜕𝑣𝑣𝑠𝑠
𝜕𝜕𝜕𝜕

2
1 𝑑𝑑𝑑𝑑 , (6.7) 

expresses the conservation of the mechanical energy, net of the last term that stores energy into inertia. 
Equation (6.5) or (6.7) represent the Bernoulli theorem or Bernoulli balance and states that, in a 
gravitational field, under the hypothesis that viscous energy dissipations are negligible, the total 
energy can vary along a streamline only because of inertia stored by fluid along that path. 

The case of stationary fluid, 𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

= 0, when inertia is zero, takes particular relevance for numerous 
applications. In this case, the total head (6.6), is conserved along a streamline and permits to evidence 
the transformation of kinetic energy into potential energy (pressure) and vice versa. 

Consider the case of a large reservoir with a hole at its bottom as shown in figure 6.1. 

 

Consider a streamline starting from the free surface to the outflow. Pressure is equal to the 
atmospheric pressure at the point 1 on the free surface and at the point 2 that is a unidirectional jet 
surrounded by atmospheric pressure. If the reservoir is large enough we can also neglect the velocity 
(square) in 1 with respect to that in 2, and consider this as a stationary flow. Application of Bernoulli 
balance (6.7) to this case gives 

 𝑧𝑧1 = 𝑧𝑧2 + 𝑣𝑣22

2
 .  

Indicating with h=z1-z2, the total head weighting on the exit the outflow velocity v=v2 can be 
immediately evaluated as  

  𝑣𝑣 = �2𝑔𝑔ℎ . (6.8) 

Velocity (6.8) is called the Torricelli velocity; it is the free-fall velocity of a particle subjected to 
gravity only. Based on (6.8) it is possible to estimate the discharge exiting from the orifice as 

 
Figure 6.1. Flow existing from the bottom of a reservoir 
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  𝑄𝑄 = 𝐶𝐶𝑐𝑐𝐴𝐴�2𝑔𝑔ℎ .  

where A is the orifice area and Cc is the coefficient of contraction that accounts for the contraction of 
the cross-section of the existing jet, which for a sharp edge is about Cc≈0.6.  

In a stationary flow, any the change of fluid kinetic energy is balanced by change in pressure. 
Therefore, for example, the fluid velocity increases in a horizontal converging vessel and pressure 
decreases accordingly to the conservation of the total head; vice versa, in an expanding vessel velocity 
decreases downstream and pressure increases. Similarly, when you have a steady jet, with velocity v, 
that impacts on a solid surface, the stagnation point on the solid surface experiences an overpressure  

 ∆𝑝𝑝 = 1
2
𝜌𝜌𝑣𝑣2;  

because all the kinetic energy transformed into an increase of pressure.  

The Bernoulli balance is at the base of an important velocity measurement instrument called Pitot 
tube that is shown in figure 6.2. The Pitot tube is a small tube with a bullet-like leading edge facing 
the incoming stream. It is made of two concentric chambers: the inner chamber communicates to the 
outside from an opening at the front tip; the outer chamber communicates to the outside through 
openings on the lateral side. Then, the two chambers end internally with a differential manometer that 
reports their pressure difference.  

 

With reference to the sketch in figure 6.2 we can apply the Bernoulli balance under steady conditions 
separately for the two chambers along two streamlines both starting from two points upstream that 
are very close each other, thus have the same velocity v and pressure p (point 0). One ending to the 

 

 
Figure 6.2. Pitot tube: Picture (above); sketch for calculations (below). 
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stagnation point (point 1) in front of the tube and the other passing to the side near the lateral holes 
(point 3). 

Consider first the path starting from the upstream point 0, passing through point 1, and ending to 
point 2 on one side of the differential manometer. Apply the Bernoulli balance between 0 and 1, 

 𝑝𝑝
𝜌𝜌

+ 𝑣𝑣2

2
= 𝑝𝑝1

𝜌𝜌
+ 𝑣𝑣12

2
.  

Velocity is zero at the stagnation point 1 and we obtain that pressure measured in 1 is equal to the 
upstream pressure augmented by the kinetic energy that is transformed into pressure at the stagnation 
point 

 𝑝𝑝1 = 𝑝𝑝 + 𝜌𝜌 𝑣𝑣2

2
.  

Then, inside the tube the fluid is at rest and the laws of fluid statics hold. Ignoring gravity (without 
loss of generality, because it can be included into pressure) we have that  

 𝑝𝑝2 = 𝑝𝑝1 = 𝑝𝑝 + 𝜌𝜌 𝑣𝑣2

2
.  

Now consider the path starting from the upstream point 0, passing through points 3 and 4, and ending 
to point 5 on the other side of the differential manometer. The Pitot tube is small enough that it does 
not disturbs appreciably the fluid flow and we can assume that next to the tube v3=v and p3=p. The 
Bernoulli balance cannot be applied between points 3 and 4 because there is no streamline connecting 
the two. However, the path from point 3 to point 4 moves transversally to the streamlines and we can 
apply the law of statics (5.39) transversal to the direction of flow. Then, once entered into the tube 
the same law of statics apply in the fluid at rest. This gives a constancy of pressure from the outside 
up the manometer  

 𝑝𝑝5 = 𝑝𝑝4 = 𝑝𝑝3 = 𝑝𝑝.  

From these formulas, the pressure values measured at the two sides of the manometer are 

 𝑝𝑝2 = 𝑝𝑝 + 𝜌𝜌 𝑣𝑣2

2
 , 𝑝𝑝5 = 𝑝𝑝;  

the former is often called the dynamic pressure, because it is the ambient pressure increased by the 
kinetic head; the latter is the static ambient pressure. The pressure difference reading from the 
manometer is 

 ∆𝑝𝑝 = 𝑝𝑝2−𝑝𝑝5 = 𝜌𝜌 𝑣𝑣2

2
  

that is immediate to transform into a velocity measurement 

  𝑣𝑣 = �2 ∆𝑝𝑝
𝜌𝜌

 . (6.9) 

The Pitot tube has an important applied relevance because it provides a measurement of velocity 
based on mechanical principles. It works without the need of an external source of energy like 
electricity or digital post processing of data. It thus equips most aircrafts and boats providing an 
independent velocity measurement to rely on under any circumstances up to the case of failure of 
electric support. 
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The Pitot tube represents the archetype of velocity and pressure measurements used in clinical 
practice through catheterization. Typically, clinical hemodynamic catheters are used inside the heart 
chambers or in large vessels and present side opening to measure pressure and possibly front opening 
to measure velocities. 

The simplified form of the Bernoulli balance, where the time derivative term is absent, is used in 
stationary flows. However, it can also be used in unsteady flow at those time instants when the time 
derivative is zero. In cardiovascular pulsatile flows, it is commonly applied at the peak of the pulsation 
to compute the pressure drop across cardiac valves, for example.  

 

With reference to figure 6.3 (left), select a streamline crossing the aortic valve during the maximum 
velocity of systolic contraction with the first point inside the ventricle and the other point at the exit 
of the valve. The Bernoulli balance reads 

 𝑝𝑝1
𝜌𝜌

+ 𝑣𝑣12

2
= 𝑝𝑝2

𝜌𝜌
+ 𝑣𝑣22

2
.  

neglecting the upstream velocity (square) inside the chamber with respect to the velocity at the exit 
of the valvular tips the pressure drop ∆𝑝𝑝 = 𝑝𝑝1−𝑝𝑝2 across the valve can be expressed as a function of 
the valvular velocity  𝑣𝑣 = 𝑣𝑣2 as   

 ∆𝑝𝑝 = 𝜌𝜌 𝑣𝑣2

2
. (6.10) 

The velocity at the exit of the valve can be measured with relative ease, for example with ultrasound 
Doppler, and allows having an estimate of the transvalvular pressure drop. Formula (6.10) is 
dimensionally consistent; when the valve velocity is measured in m/s and density in Kg/m3 then 
pressure is in Pascal. It is very common to express this balance in dimensional form, with pressure 
drop measured in mmHg and velocity in m/s. Transformation from Pascal to mmHg requires a factor 
133Pa/mmHg, and using density ρ=1050Kg/m3 then  

 ∆𝑝𝑝[𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻] = 1050
133 × 2

𝑣𝑣[𝑚𝑚𝑠𝑠 ]
2 ≅ 4 𝑣𝑣[𝑚𝑚𝑠𝑠 ]

2 .  

                    
Figure 6.3. Flow across the aortic valve (left) or mitral valve (right) 
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The simple formula ∆𝑝𝑝 = 4𝑣𝑣2 often called the simplified Bernoulli formula (which we remark is 
valid only when pressure is measured in mmHg and velocity in m/s) is commonly used in clinical 
cardiology to estimate transvalvular pressure gradients. Given its frequent use, it must be kept in mind 
that it was obtained under the hypotheses of the Bernoulli balance, with the additional assumptions 
that the upstream velocity is negligible and it is valid under static conditions, namely at the maximum 
of velocity, on top of the assumption of validity of the Bernoulli balance. 

The pressure drop evaluated at the instant of maximum velocity (6.10) is not necessarily the 
maximum pressure drop during the period of systolic outflow across the aortic valve, or diastolic 
inflow through the mitral valve. At a generic instant the time derivative cannot be neglected and the 
complete Bernoulli balance (6.5) applies 

 ∆𝑝𝑝 = 𝑝𝑝1 − 𝑝𝑝2 = 1
2
𝜌𝜌(𝑣𝑣22 − 𝑣𝑣12) + 𝜌𝜌 ∫ 𝜕𝜕𝑣𝑣𝑠𝑠

𝜕𝜕𝜕𝜕
2
1 𝑑𝑑𝑑𝑑   

which can be rewritten  

 ∆𝑝𝑝 = 1
2
𝜌𝜌(𝑣𝑣22 − 𝑣𝑣12) + 𝜌𝜌 𝜕𝜕𝑣𝑣12

𝜕𝜕𝜕𝜕
𝐿𝐿12   

where 𝐿𝐿12 is the distance traveled between the two points and 𝑣𝑣12 is the velocity averaged along that 
path. Under the assumption that the upstream velocity is negligible, 𝑣𝑣12 ≪ 𝑣𝑣22 = 𝑣𝑣2, and that the 
velocity increase linearly 𝑣𝑣12 ≅

1
2
𝑣𝑣2 = 1

2
𝑣𝑣, then we can approximate the unsteady pressure drop by 

 ∆𝑝𝑝 = 𝜌𝜌
2
𝑣𝑣2 + 𝜌𝜌 𝜕𝜕𝑣𝑣12

𝜕𝜕𝜕𝜕
𝐿𝐿12 ≅

𝜌𝜌
2
𝑣𝑣2 + 𝜌𝜌

2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝐿𝐿12 . (6.11) 

The first term is the pressure drop due to transformation of pressure into kinetic energy, the second 
is the energy stored into inertia. Typically, the two terms are comparable in magnitude and present 
different time phase. The former is in phase with velocity and dominates about the instants of 
maximum velocity; the latter is in quadrature of velocity and dominates during the 
acceleration/deceleration periods. 

6.3. Bernoulli balance with dissipation: localized energy losses. 

Among the hypotheses of the Bernoulli balance, the one that can be unrealistic under several 
conditions is main the assumption of ideal fluid. Fluids are never ideal and some form of viscous 
dissipation is always present.  

For example, when the flow in a vessel passes across a reduction of area (like a valve or a pathologic 
narrowing or stenosis) the flow accelerates at the smaller area and decelerates afterwards where the 
vessel gets to the same size. Thus, potential energy (pressure) transforms into kinetic energy at the 
constriction where pressure reaches smaller values. The kinetic energy transforms back into pressure 
during the enlargement; however, while velocity (and kinetic energy) go back to their initial value, 
pressure does not get back to its initial value and display a net reduction. This reduction is due to the 
energy lost for friction along the short tract presenting narrowing and expansion. We consider these 
as localized energy losses, because they occur for a local disturbance to the flow.  

In general, dealing with friction requires the use of Navier-Stokes equation that introduces several 
complexities in the analysis. However, it is sometimes feasible simply adding an energy dissipation 
term in the Bernoulli balance (6.5) and rewrite it as 

 𝑝𝑝1 + 𝜌𝜌 𝑣𝑣12

2
= 𝑝𝑝2 + 𝜌𝜌 𝑣𝑣22

2
+ 𝜌𝜌 ∫ 𝜕𝜕𝑣𝑣𝑠𝑠

𝜕𝜕𝜕𝜕
2
1 𝑑𝑑𝑑𝑑 + ∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , (6.12) 
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that includes an explicit term accounting for energy dissipation, or pressure loss. Equation (6.12) 
maintains the same form of the Bernoulli balance although it contains an additional term that is in 
principle unknown. However, under some circumstances the pressure loss can be expressed in simple 
form as a percentage of the available kinetic energy and permits to use (6.12) in the same way as the 
normal Bernoulli balance. 

An exemplary case where the energy losses can be evaluated with relative ease is the case of a sudden 
expansion and rigid walls as sketched in figure 6.4. 

 

To this aim, the balance of momentum  

 I𝑥𝑥 + M𝑥𝑥 = Π𝑥𝑥  

should be written for the cylindrical volume of cross-area A2 and length L, indicated with dashed line 
in figure 6.4, starting adjacent to the expansion and ending in a downstream section where the flow 
is back to one dimensional.  

The inertial term is 

 I𝑥𝑥 = ∫ 𝜕𝜕𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑𝑉𝑉 = 𝜌𝜌 ∫ ∫ 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝐴𝐴2𝐿𝐿 𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑈𝑈2

𝑑𝑑𝑑𝑑
𝐴𝐴2𝐿𝐿. 

The flux of momentum occurs across the open part, of area  A1, of the upstream end and across the 
entire downstream section of area A2  

 M𝑥𝑥 = −𝜌𝜌𝑈𝑈12𝐴𝐴1 + 𝜌𝜌𝑈𝑈22𝐴𝐴2  

assuming that the velocity is approximately uniform over the cross section (β=1). 

The pressure term pushes upwards on the downstream surface of area  A2 where pressure is p2; it also 
pushes, downward, on the entire upstream surface of area again equal to  A2, here pressure is equal to 
p1 on the open part and it remains approximately constant on the closed part where flow is about 
stagnating, thus static 

 Π = 𝑝𝑝1𝐴𝐴2 − 𝑝𝑝2𝐴𝐴2. 

Summing up these three terms and dividing by A2 we obtain 

 𝑝𝑝1 − 𝑝𝑝2 = 𝜌𝜌 𝑑𝑑𝑈𝑈2
𝑑𝑑𝑑𝑑
𝐿𝐿 − 𝜌𝜌𝑈𝑈12

𝐴𝐴1
𝐴𝐴2

+ 𝜌𝜌𝑈𝑈22. (6.13) 

 
Figure 6.4. Sketch for evaluating energy loss in a sudden expansion 
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The balance (6.12) can be rewritten making the dissipation term explicit 

 ∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑝𝑝1 − 𝑝𝑝2 + 𝜌𝜌 𝑣𝑣12

2
− 𝜌𝜌 𝑣𝑣22

2
− 𝜌𝜌 ∫ 𝜕𝜕𝑣𝑣𝑠𝑠

𝜕𝜕𝜕𝜕
2
1 𝑑𝑑𝑑𝑑 , (6.14) 

then, assuming the flow sufficiently uniform we can exchange velocity and cross-section average 
velocity and rewrite (6.14) 

 ∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑝𝑝1 − 𝑝𝑝2 + 𝜌𝜌 𝑈𝑈12

2
− 𝜌𝜌 𝑈𝑈22

2
− 𝜌𝜌 𝜕𝜕𝑈𝑈2

𝜕𝜕𝜕𝜕
𝐿𝐿 . (6.15) 

Now substitute the pressure difference (6.13) into (6.15) to get 

 ∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑈𝑈22

2
+ 𝜌𝜌 𝑈𝑈12

2
�1 − 2 𝐴𝐴1

𝐴𝐴2
� .  

that can be rewritten in terms of one velocity only 

 ∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑈𝑈12

2
�1 − 𝐴𝐴1

𝐴𝐴2
�
2

= 𝜌𝜌𝜌𝜌 𝑈𝑈12

2
, 𝜂𝜂 = �1 − 𝐴𝐴1

𝐴𝐴2
�
2

. (6.16) 

Equation (6.16) describes the loss of energy (per unit volume) in a sharp enlargement. It tells that 
energy losses are given by a fraction η of the incoming kinetic energy, while the remainder is 
transformed into potential energy (i.e. pressure). The entity of such fraction depends on the degree of 
the expansion; in the limit case of very large expansion, 𝐴𝐴2 ≫ 𝐴𝐴1, then 𝜂𝜂 ≅ 1 and the entire incoming 
kinetic energy is lost. 

The result (6.16) is very instructive because it teaches that localized energy losses can be in general 
expresses as a fraction of the available kinetic energy 

 ∆𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌 𝑈𝑈12

2
 . (6.17) 

where the dimensionless dissipation coefficient η depends from the degree of disturbance created on 
the streaming flow. The dissipation coefficient cannot be easily expressed by mean of explicit 
formulas like (6.16). However, its value was determined experimentally in most situations of practical 
interests and can be often found in literature. 
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C. FUNDAMENTALS FOR MOSTLY UNIDIRECTIONAL FLOW  

7. Unidirectional Flow in Rectilinear Vessels 

7.1. Boundary layer 

Viscosity is the only, unique mechanism for energy dissipation in fluids governed by the Navier-
Stokes equation. In order to understand the role of viscosity in more depth, look at the flow near a 
flat boundary. Consider the flow along the x-direction of a Cartesian set of coordinates, with the wall 
set at y=0 and neglect the velocity and variations along the transversal z-component (two-dimensional 
flow). The stream-wise component of the Navier-Stokes equation is  

   𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑦𝑦
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

= − 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜈𝜈 �𝜕𝜕
2𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

�. (7.1) 

We have seen that the kinematic viscosity in front of the last term is a small number. Therefore, the 
viscous terms is often negligible locally. However, viscosity has a fundamental influence in the 
proximity of solid boundaries because it is associated to the boundary condition of adherence, which 
applies irrespective of the value of viscosity.  

As a result, viscosity is fundamental near the boundaries and becomes progressively negligible away 
from them. In other terms, there is always a region next to the wall boundary, which is called 
boundary layer, where viscosity is important. More quantitatively, the boundary layer is the region 
next to the boundaries where the viscous term is comparable with the other terms of the Navier-Stokes 
equation.  

Consider a uniform unidirectional flow, of velocity V, that encounters a plane surface of negligible 
thickness. As shown in figure 7.1, when the incoming uniform profile gets in contact with the surface 
the velocity at the surface goes to zero because of adherence. As the fluid travels downstream, the 
slower fluid elements close to the boundary decelerate those immediately above thus extending the 
influence of adherence for a thickness over the surface. This process continues and the thickness of 
fluid influenced by the viscous adherence increases downstream. Roughly, the flow field can be 
divided in an external flow, not reached by the influenced of adherence, and a boundary layer that is 
directly affected by viscosity. 

 

The boundary layer thickness is indicated by δ(x) and it increases downstream. The order of 
magnitude of δ(x) can be obtained using the Navier-Stokes equation (7.1) and estimating the order of 

 
Figure 7.1. Boundary layer development on a flat plate. 
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magnitude of the different terms therein. By definition of boundary layer, the thickness is the region 
where the viscous term is comparable with the others. 

The time derivative can be ignored because the flow is steady. For the first transport term you can 
consider that velocity upstream is V and downstream, say at a distance 2x inside the boundary layer, 
it is a fraction of V, say κV. Here κ is a number smaller than 1, but still a finite fraction of 1 and not 
infinitesimal (in order of magnitude arguments, κ is said to of the order of magnitude of 1). Thus, the 
derivative at x can be roughly estimated by the difference of velocity at 2x and at 0 divided by the 
distance and the velocity by the mean value  

   𝑣𝑣𝑥𝑥
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

~ 𝜅𝜅𝜅𝜅+𝑉𝑉
2

∙ 𝜅𝜅𝜅𝜅−𝑉𝑉
2𝑥𝑥

~ 𝑉𝑉2

𝑥𝑥
. (7.2) 

where the symbol ~ stands for “of the order of magnitude of” and coefficients that are about the order 
of unity are eventually left out.  

The order of magnitude of the transversal velocity, vy, can be obtained by the continuity equation that 
in 2D reads 

  𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

= 0. (7.3) 

The x-derivative can be estimated as above; the y-derivative from the unknown value vy, minus the 
zero value at the wall, divided by the boundary layer thickness. Thus (7.3) suggests 

  𝑉𝑉
𝑥𝑥

~ 𝑣𝑣𝑦𝑦
𝛿𝛿

; (7.4) 

inserting these estimates in the second transport term 

   𝑣𝑣𝑦𝑦
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

~𝑣𝑣𝑦𝑦
𝑉𝑉
𝛿𝛿

~ 𝑉𝑉𝑉𝑉
𝑥𝑥
𝑉𝑉
𝛿𝛿

~ 𝑉𝑉2

𝑥𝑥
 (7.5) 

shows that this is of the same order of the other (7.2). Let us ignore for the moment the pressure term 
in (7.1), as the boundary layer develop even in absence of pressure gradient thus it should not play a 
key role. 

Following the same lines, the viscous terms is 

   𝜈𝜈 �𝜕𝜕
2𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

�~𝜈𝜈 � 𝑉𝑉
𝑥𝑥2

+ 𝑉𝑉
𝛿𝛿2
�~𝜈𝜈 𝑉𝑉

𝛿𝛿2
; (7.6) 

where we ignored the first term in parenthesis with respect to the second because we expect δ to be 
small.  

In the boundary layer, the viscous term is of the same order of magnitude of the other terms. Equating 
(7.6) with (7.2) or (7.5) we obtain 

   𝜈𝜈 𝑉𝑉
𝛿𝛿2

~ 𝑉𝑉2

𝑥𝑥
  

and therefore 

   𝛿𝛿~�𝜈𝜈 𝑥𝑥
𝑉𝑉
 (7.7) 

The estimate (7.7) shows that the thickness of the boundary layer grows like the square root of the 
downstream distance. The boundary layer is thin when viscosity is small and gets thinner when 
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velocity is higher. The exact coefficient that is in front of the square root of (7.7) depends on the 
specific definition of boundary layer thickness. Some texts suggest setting the edge of the boundary 
layer where velocity differs of a small percentage to the external velocity, others use the velocity 
square. In any case, equation (7.7) demonstrated a general validity with the coefficient varying from 
about 3 to 5, depending on the definition of δ and on the specific situation under analysis. 

Let us try to understand further the origin of the boundary layer thickness. The viscous term of the 
Navier Stokes equation represent a diffusion phenomenon. In this case it represents the diffusion of 
a disturbance to velocity (set to zero by adherence) away from the wall. Pure diffusion, in absence of 
velocity, of a whatsoever field f(t,y) along the direction y, is described by the diffusion equation 

   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

. (7.8) 

where D is the diffusion coefficient (in Navier-Stokes corresponding to the kinematic viscosity). 

The connection between diffusion and boundary layer development is immediate considering the dual 
problem of a fluid over an infinite plate that is set abruptly in motion with velocity V. The boundary 
layer is now uniform and grows in time. The Navier-Stokes equation reads 

   𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝜈𝜈 𝜕𝜕
2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

; (7.9) 

that is a diffusion equation like (7.8). This is a linear partial differential equation of parabolic type 
that was largely investigated in the past. The solution to (7.9) with boundary condition vx(0,t)=V is 
the error function 

   𝑣𝑣𝑥𝑥(𝑦𝑦, 𝑡𝑡) = 𝑉𝑉 − 𝑉𝑉
𝜎𝜎(𝑡𝑡)∫ 𝑒𝑒−

1
2�

𝑠𝑠
𝜎𝜎(𝑡𝑡)�

2

𝑑𝑑𝑑𝑑𝑦𝑦
0 , (7.10) 

with width 

 𝜎𝜎 = √2𝜈𝜈𝜈𝜈. (7.11) 

The velocity profile (7.10) is shown in figure 7.2, it starts from V at the wall and decreases away from 
the wall reaching vx≈0.005V at y=2σ.    

 

Thus we can consider the thickness of the boundary layer given by 

 
Figure 7.2. Velocity and shear stress above a moving wall. 
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 𝛿𝛿(𝑡𝑡) = 2𝜎𝜎 = 2√2𝜈𝜈𝜈𝜈. (7.12) 

The same solution (7.10)-(7.11) can be reached by a different perspective. Consider that the wall 
motion creates a jump in velocity equal to V, from V at the wall to zero infinitely above,  

 𝑉𝑉 = ∫ 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦

∞
0 𝑑𝑑𝑑𝑑. (7.13) 

that is produced by a wall shear stress 𝜏𝜏 = 𝜇𝜇 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

 due to adherence. Shear stress is ideally infinite at 
t=0, although with finite integral  (7.13), when the wall sets in motion and progressively decreases to 
ensure the same velocity jump while it diffuses away from the wall. The propagation of shear stress 
is again a diffusion process ruled by the diffusion equation (7.8) for f=τ. The solution to (7.8) with 
the constraint (7.13) is the well known Gauss function  

   𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑉𝑉
𝜎𝜎(𝑡𝑡)

𝑒𝑒−
1
2�

𝑦𝑦
𝜎𝜎(𝑡𝑡)�

2

, (7.14) 

in association with the width σ(t) given by (7.11). Then the solution (7.10) can be recovered by 
integrating (7.14). 

We have shown that the development of the viscous boundary layer is simply a phenomenon of 
diffusion of shear from the wall with thickness given by (7.12). The same concept can be applied to 
the previous case of a steady flow over a plane wall leading to the expression (7.7). In that case, the 
spatial variation under steady conditions can be transformed into the same diffusion problem by 
considering an observed moving with velocity V. This observer start at t=0 from the edge of the plate 
where δ=0 and at time t reaches the position x=Vt where the thickness is given by (7.7) that, by 
comparison with (7.12) can be expressed by 

    𝛿𝛿 = 2�2𝜈𝜈 𝑥𝑥
𝑉𝑉
. (7.15) 

In a closed conduit, the boundary layer cannot grow indefinitely, because it saturates the available 
space. Therefore in a vessel of diameter say D, the boundary layer terminates its growth when 𝛿𝛿 ≈
𝐷𝐷/2. Using formula (7.15) it is possible to estimate the length of the entry region as 

    𝑥𝑥𝐸𝐸 ≈
1
32

𝑉𝑉𝐷𝐷2

𝜈𝜈
= 𝑅𝑅𝑅𝑅

32
𝐷𝐷. (7.16) 

where 𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉
𝜈𝜈

 is the Reynolds number. The boundary layer grows as by (7.15) from the start of the 
duct, at x=0, to reach a steady thickness about xE; afterwards, for x>xE, the flow can be assumed as 
fully developed and not influenced by the distance from the start of the vessel. 

These estimates are obtained under the assumption of steady flow and the unsteady case will be 
considered later. For providing estimates in real arteries, let us consider these estimates as acceptable, 
for the moment, when applied to the time-averaged flow. In the Aorta, mean velocity is about 50 cm/s 
and diameter about 3 cm; the entry flow length is nearly 200 diameters (about 1 meter), therefore the 
flow is never fully developed. Vice versa, in small arteries the boundary layer fills the entire vessel 
after less that one diameter downstream the entrance. 

 
V D xE  

Aorta 50 cm/s 3 cm 142 D Never fully developed 
mid-vessel 10 cm/s 1 cm 10 D  

small-vessel 5 cm/s 2.5 mm 1 D Immediately fully developed 
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7.2. Steady Uniform Planar Flows 

Navier-Stokes equation cannot be solved in general; however, a solution can be found under special 
simple conditions that take applicative relevance. We present here the analytical solution of the 
Navier-Stokes equation for a few simple flows. 

(i)  Flow induced by a moving surface above a fixed wall (Couette flow) 
With reference to figure 7.3, consider two plane surfaces, at a distance d, with the upper surface 
moving with velocity U.   

Make the hypothesis that the flow is unidirectional, vy=vz=0; that flow is two-dimensional, thus 
derivatives along z are neglected; that flow is stationary, thus time derivatives are neglected, and that 
flow is due to the wall motion only without pressure gradient 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0. The continuity equation shows 

that the unidirectional assumption implies that the flow is also uniform 

   𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

= 0.  

The Navier Stokes equation in the direction perpendicular to the direction of motion simply states 
that pressure does not vary with y and z.; thus pressure is constant everywhere. The only unknown is 
the longitudinal component of velocity as a function of the transversal position 𝑣𝑣𝑥𝑥(𝑦𝑦).  The Navier-
Stokes equation in the direction of the flow (taken as the x-direction) simplifies in 

   𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

= 0. (7.17) 

that must be solved with boundary conditions due to adherence 𝑣𝑣𝑥𝑥(0) = 0 and 𝑣𝑣𝑥𝑥(𝑑𝑑) = 𝑈𝑈.  

The solution is immediate to find as 

   𝑣𝑣𝑥𝑥(𝑦𝑦) = 𝑉𝑉 𝑦𝑦
𝑑𝑑
; (7.18) 

the velocity increases linearly from zero at the fixed wall to the value of the moving wall. The shear 
stress is constant equal  

 𝜏𝜏 = 𝜇𝜇 𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝜇𝜇 𝑉𝑉
𝑑𝑑
 (7.19) 

as briefly shown in the first chapter. 

 

(ii)  Flow between parallel walls.  
Consider the flow induced by a pressure gradient between two plane walls, at a distance d.   

 
Figure 7.3. Flow induced by a moving wall. 
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Make the hypothesis that the flow is unidirectional, two-dimensional, and stationary. The continuity 
equation shows that the flow is also uniform. When the flow is uniform and unidirectional, the Navier 
Stokes equation in the transversal tells that pressure does not vary transversal to the direction of 
motion and that the transport term is identically zero in the direction of motion. Thus, Navier-Stokes 
becomes in the direction of motion (taken as the x-direction) is 

   1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜈𝜈 𝜕𝜕
2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

. (7.20) 

that must be solved with boundary conditions due to adherence 𝑣𝑣𝑥𝑥 �± 𝑑𝑑
2
� = 0, where we have taken 

the x-axis as located in the mid-line between the two walls.  

In this case the pressure gradient can be considered as the known quantity that forces the flow, say 
𝜅𝜅 = − 1

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , with the minus sign because pressure is higher upstream than downstream to induce a 

positive velocity. The solution to (7.20) is immediate to find and it gives the parabolic profile 

   𝑣𝑣𝑥𝑥(𝑦𝑦) = 𝜅𝜅
2𝜈𝜈
�𝑑𝑑

2

4
− 𝑦𝑦2�, (7.21) 

with maximum value at the mid-line between the walls, and the shear stress is  

 𝜏𝜏 = 𝜇𝜇 𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑

= −𝜌𝜌𝜌𝜌𝜌𝜌 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑦𝑦 (7.22) 

taking its maximum value 𝜏𝜏 = ±𝜌𝜌𝜌𝜌 𝑑𝑑
2
 with opposite sign on the opposite walls. 

7.3. Steady Uniform Flow in a Circular Vessel (Poiseuille Flow) 

The previous flow field was presented just to introduce the case of high-applied relevance of steady 
uniform flow in a circular rectilinear vessel. This case represents the effective flow that establishes 
under steady conditions in actual vessels of the circulation. It thus applies to veins as well as to some 
arteries as the mean flow in pulsatile flow as well as in slowly varying unsteady flows (as explained 
later in this section). 

With reference to figure 7.4, make the hypothesis that the flow is unidirectional, axially symmetric 
(circular symmetry), and stationary. Thus, as we seen above, the velocity field is also uniform for 
continuity, pressure is constant transversally to the direction of motion and the transport term is 
identically zero in the direction of motion. The unknown is the stream-wise velocity that varies on 
the cross-section with axial symmetry 𝑣𝑣𝑥𝑥(𝑦𝑦, 𝑧𝑧) = 𝑣𝑣𝑥𝑥(𝑟𝑟). 

Under these hypotheses, the Navier-Stokes equations simplifies to 

 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜈𝜈 �𝜕𝜕
2𝑣𝑣𝑥𝑥
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑣𝑣𝑥𝑥
𝜕𝜕𝑧𝑧2

�. (7.23) 

The viscous term can be simplifies further passing to cylindrical coordinates where 𝑟𝑟 = �𝑦𝑦2 + 𝑧𝑧2 
and ignoring the dependence from the angular position θ because of the axial symmetry hypothesis. 
For this simplification, the derivatives in Cartesian coordinates y and z are transformed into derivative 
with respect to the radial coordinate r by 

   

𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕2

𝜕𝜕𝑦𝑦2
= 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝜕𝜕2𝑟𝑟

𝜕𝜕𝑦𝑦2
𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2 𝜕𝜕2

𝜕𝜕𝑟𝑟2

  



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 72 

where 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑦𝑦
𝑟𝑟

, 𝜕𝜕2𝑟𝑟
𝜕𝜕𝑦𝑦2

= 1
𝑟𝑟
− 𝑦𝑦2

𝑟𝑟3
.  

The same can be written by analogy for the z-coordinate to give 

   𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
= �𝜕𝜕

2𝑟𝑟
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑟𝑟
𝜕𝜕𝑧𝑧2

� 𝜕𝜕
𝜕𝜕𝜕𝜕

+ ��𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
� 𝜕𝜕2

𝜕𝜕𝑟𝑟2
= 1

𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2

𝜕𝜕𝑟𝑟2
= 1

𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕

𝜕𝜕𝜕𝜕
�.  

In cylindrical axially symmetric coordinates, equation (7.23) can thus be rewritten as 

   1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜈𝜈 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
�. (7.24) 

The Navier-Stokes equation simplified for this case (7.24) can be solved for the unknown velocity 
profile 𝑣𝑣𝑥𝑥(𝑟𝑟) assuming the pressure gradient is the given forcing = − 1

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , and adherence boundary 

condition 𝑣𝑣𝑥𝑥(𝑅𝑅) = 0.  

 

We notice that, differently from the case between two walls discussed above, there is only one 
boundary condition for the second order differential equation (7.24). This is a common consequence 
of the transformation from Cartesian to cylindrical coordinates because the other boundary at r=0 is 
not a physical boundary, it is rather a singular point for the presence of the factor 1

𝑟𝑟
 arising in the 

coordinate transformation. Here a regularity condition |𝑣𝑣𝑥𝑥(0)| < ∞  must be applied and it takes the 
place of the boundary condition.  

Rewrite (7.24) as 

   −𝜅𝜅
𝜈𝜈
𝑟𝑟 = 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
�,  

and integrate over r  

   − 𝜅𝜅
2𝜈𝜈
𝑟𝑟2 = 𝑟𝑟 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝐴𝐴,  

where A is an integration constant, thus  

   − 𝜅𝜅
2𝜈𝜈
𝑟𝑟 = 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
+ 𝐴𝐴

𝑟𝑟
.  

Integrate again  

   − 𝜅𝜅
4𝜈𝜈
𝑟𝑟2 = 𝑣𝑣𝑥𝑥(𝑟𝑟) + 𝐴𝐴log(𝑟𝑟) + 𝐵𝐵,  

 
Figure 7.4. Flow in a circular vessel. 
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where B is another integration constant. For regularity condition A=0, and using the boundary 
condition at the wall  𝐵𝐵 = − 𝜅𝜅

4𝜈𝜈
𝑅𝑅2. 

The solution eventually is  

   𝑣𝑣𝑥𝑥(𝑟𝑟) = 𝜅𝜅
4𝜈𝜈

(𝑅𝑅2 − 𝑟𝑟2); (7.25) 

which corresponds to a paraboloid solid profile with maximum velocity at the center of the vessel 
decreasing to zero at the wall as shown in figure 7.5.   

 

The corresponding wall shear stress is 

 𝜏𝜏𝑤𝑤 = 𝜏𝜏(𝑅𝑅) = 𝜇𝜇 𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑑𝑑
�
𝑅𝑅

= −𝜌𝜌𝜌𝜌 𝑅𝑅
2

= 𝑅𝑅
2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. (7.26) 

The flowing discharge can be computed by integration of (7.25) 

   𝑄𝑄 = 2𝜋𝜋 ∫ 𝑣𝑣𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅
0 = 𝜋𝜋

8
𝜅𝜅𝑅𝑅4

𝜈𝜈
;  

and the average velocity 

   𝑉𝑉 = 𝑄𝑄
𝜋𝜋𝑅𝑅2

= 1
8
𝜅𝜅𝑅𝑅2

𝜈𝜈
. (7.27) 

Equation (7.27) is also important as it provides a relationship between the forcing pressure gradient 
(the cause) and the resulting mean velocity (the effect). Using (7.27) the solution profile (7.25) can 
be expressed in terms of the mean velocity instead of pressure gradient 

   𝑣𝑣𝑥𝑥(𝑟𝑟) = 2𝑉𝑉 �1 − 𝑟𝑟2

𝑅𝑅2
�; (7.28) 

which also shows that the maximum velocity at the center of the duct, r=0, is equal to 2V, twice the 
mean velocity. 

In this case, where the Navier-Stokes equation could be solved exactly, it is immediate computing 
the momentum velocity-correction factor β that appeared in (5.6) 

   𝛽𝛽 =
2𝜋𝜋 ∫ 𝑣𝑣𝑥𝑥2𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅
0
𝜋𝜋𝑅𝑅2𝑉𝑉2

= 8∫ (1 − 𝑠𝑠2)𝑠𝑠𝑠𝑠𝑠𝑠1
0 = 4

3
. (7.29) 

 
Figure 7.5. Velocity profile in a circular vessel. 
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It is worth to remark that given a flow rate Q, the pressure loss per unit length increases with the 
fourth power of the vessel diameter 

   𝜅𝜅 = − 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 8𝜈𝜈𝜈𝜈
𝜋𝜋𝑅𝑅4

;  

it is therefore natural to recognize that the decrease of the vessel size is accompanied in the vascular 
network by division of the vessel into multiple smaller vessels each bringing small discharges. 

The steady flow solution (7.25) or (7.28) is the result of a balance (7.24) between the pressure 
gradient, that forces the fluid to move, and the viscous friction that resists to the motion. In other 
terms, this flow is associated with continuous pressure loss due to viscous friction. We have seen in 
the previous chapter that local energy dissipation are measured as a fraction of the available kinetic 
energy. Here too, the distributed energy dissipation can be expresses proportional to the available 
kinetic energy. This point was previously introduced by dimensional arguments only by equation 
(1.13) 

 −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑅𝑅𝑅𝑅) 𝜌𝜌𝑉𝑉
2

2𝐷𝐷
,  

where we added the minus sign following physical consideration to ensure a positive friction factor. 

Using the relationship  (7.27) resulting from the complete flow solution, it is immediate to compute 
the friction factor for Poiseuille flow as 

  𝑓𝑓(𝑅𝑅𝑅𝑅) = 64
𝑅𝑅𝑅𝑅

; (7.30) 

where the Reynolds number was previously introduced as  

 𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉
𝜈𝜈

.  

The Reynolds number is of fundamental importance for classifying the type of flow. It represents a 
ratio between the kinetic energy available to the flow and its ability to dissipate energy. The smaller 
the Reynolds number the more the flow is a viscous smooth one. The higher the Reynolds number 
and the more vigorous and energetic the flow. We will see shortly that when the Reynolds number is 
higher than a certain threshold the flow is so vigorous that a simple viscous mechanism is insufficient 
to balance and flow develops turbulence. 

7.4. Oscillatory and Pulsatile Uniform Flow in a Circular Vessel 

(i)  Oscillatory flow 
Consider the case of flow given by an oscillatory pressure gradient 

   1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜅𝜅 sin𝜔𝜔𝜔𝜔, (7.31) 

where the frequency 𝜔𝜔 = 2𝜋𝜋
𝑇𝑇

 and T is the period of the oscillation. Under the identical hypothesis used 
for the Poiseuille flow and only removing the assumption of steady flow, the unknown is the unsteady 
velocity 𝑣𝑣𝑥𝑥(𝑡𝑡, 𝑟𝑟) that obeys the Navier-Stokes equation 

   𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝜅𝜅 sin𝜔𝜔𝜔𝜔 = 𝜈𝜈 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
�, (7.32) 

with no-slip boundary condition at the wall, 𝑣𝑣𝑥𝑥(𝑡𝑡,𝑅𝑅) = 0, and regularity condition at r=0. The 
linearity of equation (7.32) tells that that the solution must be time periodic with the same frequency 
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(ω), like (7.31) although possibly a different phase (not just a sin). The solution of equation (7.32) 
with its boundary conditions can be obtained analytically as 

   𝑣𝑣𝑥𝑥(𝑡𝑡, 𝑟𝑟) = 𝜅𝜅
𝜔𝜔
�1 −

𝐽𝐽0�𝑟𝑟�
−𝑖𝑖𝑖𝑖
𝜈𝜈 �

𝐽𝐽0�𝑅𝑅�
−𝑖𝑖𝑖𝑖
𝜈𝜈 �
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, (7.33) 

where J0(x) is the Bessel function of 1st type of order 0. The denominator in solution (7.33) permits 
to satisfy the boundary condition. The amplitude of the oscillation is given by the ratio 𝜅𝜅

𝜔𝜔
, it is higher 

for high pressure gradient and for slow oscillations. The term in square bracket is a complex number 
that modifies the phase of the flow, along the radial coordinate r. 

To better understand this point, solution (7.33) can be preferably expressed in terms of dimensionless 
parameters as 

   𝑣𝑣𝑥𝑥(𝑡𝑡, 𝑟𝑟) = 𝑉𝑉 �1 −
𝐽𝐽0�

𝑟𝑟
𝑅𝑅𝑊𝑊�−𝑖𝑖𝑖𝑖

2 �

𝐽𝐽0�𝑊𝑊�−𝑖𝑖𝑖𝑖
2 �

� 𝑒𝑒𝑖𝑖2𝜋𝜋
𝑡𝑡
𝑇𝑇, (7.34) 

where 𝑉𝑉 = 𝜅𝜅
𝜔𝜔

  here represents the maximum velocity during the oscillation and  

   𝑊𝑊 = 𝑅𝑅�𝜔𝜔
𝜈𝜈
2
𝜋𝜋

= 𝐷𝐷
√𝜈𝜈𝜈𝜈

, (7.35) 

is the Womersley number that gives a measure of the degree of unsteadiness of the oscillation.  

The Womersley number can be understood as the ratio between the vessel diameter and a measure of 
the thickness of the boundary layer that develops during the period T of the oscillation. Indeed we 
have seen before that the thickness of a boundary layer reaches in a time t a value proportional √𝜈𝜈𝜈𝜈; 
in this case the boundary layer is allowed to grow for a time proportional to T , therefore the 
denominator of (7.35), √𝜈𝜈𝜈𝜈, is a measure of the maximum thickness that the boundary layer can 
reach. Velocity profiles at different values of the Womersley number are shown in figure 7.6. When 
W is small, the oscillation is slow, the boundary layer has the time to fill the entire vessel. The term 
in brackets is close to unity and the flow is a sequence of velocity profiles close to the Poiseuille type 
that is in phase with the pressure gradient because of the linear relationship between velocity and 
pressure gradient in Poiseuille solution. When W is large the oscillation is rapid, the viscous adherence 
has not enough time to affect the internal regions of the wall. The viscous boundary layer is limited 
to a thin region near the wall while the center of the vessel moves nearly as a uniform profile with 
marginal influence of viscosity. The viscous layer near the wall is in phase with the external forcing 
and gets progressively out of phase away from the wall because pressure gradient here balances with 
velocity time derivative. 

A Reynolds number can also be introduced for the oscillatory flows using the peak velocity as 𝑅𝑅𝑅𝑅 =
𝑉𝑉𝑉𝑉
𝜈𝜈

, that tells how intense is the bulk flow with respect to the ability of viscous dissipation.  

In unsteady periodic flows, it is sometime useful to introduce another dimensionless number, the 
Strouhal number (see also equation (1.14)), defined as 

   𝑆𝑆𝑆𝑆 = 𝐷𝐷
𝑉𝑉𝑉𝑉

= 𝑊𝑊2

𝑅𝑅𝑅𝑅
. (7.36) 



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 76 

The Strouhal number represents a dimensionless frequency of the oscillation. It can be appreciated 
that the length travelled by particles during an oscillation is proportional to VT (equal to VT/2π in 
sinusoidal oscillation); therefore the Strouhal number can be seen as the ratio between the diameter 
and a measure of the distance travelled by particles. Thus for high St, the oscillations are rapid and 
fluid particles oscillate for length smaller than the diameter; low St means that particle travel several 
diameters during each oscillation. 

  

(ii)  Pulsatile flows 
Flow in cardiovascular vessels is usually pulsatile: unsteady, periodic in time, with non-zero time-
average velocity. Pulsatile flows is a combination of steady flow with a series of sinusoidal 
oscillations. Under the hypothesis of unidirectional flow, the transport term in the Navier-Stokes 
equation is absent and equations are linear (see (7.24) and (7.32)). Therefore the solution 
corresponding to an arbitrary time-periodic pressure gradient 

   1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜅𝜅0 + ∑ 𝜅𝜅𝑛𝑛𝑒𝑒
𝑖𝑖2𝜋𝜋𝜋𝜋𝑡𝑡𝑇𝑇𝑛𝑛 , (7.37) 

or an arbitrary mean velocity 

   𝑉𝑉(𝑡𝑡) = 𝑉𝑉0 + ∑ 𝑉𝑉𝑛𝑛𝑒𝑒
𝑖𝑖2𝜋𝜋𝜋𝜋𝑡𝑡𝑇𝑇𝑛𝑛 , (7.38) 

can be obtained by appropriate linear combination of solution (7.25) and (7.33), or  (7.28) and (7.34).  

In pulsatile flows, the Womersley number is usually defined with the main period 𝑊𝑊 = 𝐷𝐷
√𝜈𝜈𝜈𝜈

, while 

the Reynolds number 𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉
𝜈𝜈

 is defined using V as either the time-average velocity or, more 
commonly, the peak velocity.  

Examples of pulsatile flows solutions, given by a mean flow and a sinusoidal oscillation of amplitude 
equal to the mean flow, are shown in figure 7.7 for at different values of the Womersley number.  For 
low values of W the velocity profile is a sequence of Poiseuille solutions evaluated with the 
instantaneous values of the mean velocity; on the opposite end, as W increases, it gives rise to an  
inversion of the boundary layer flow in the annulus near the wall. 

To give an idea of the order of magnitude, the following table provide indications of typical values 
for these dimensionless numbers in main vessels 

 
Figure 7.6. Oscillatory velocity profile in a circular vessel at different Womersley number. 
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 V [cm/s] D [cm] Re W St 
Aorta 100 3 10000 20 0.04 

Middle arteries 30 1 1000 5 0.05 
Small arteries 5 0.2 30 1 0.05 

Arterioles 0.1 <0.1 <0.5 <0.5 ~1 
  

 

  

 

Figure 7.7. Pulsatile velocity profile in a circular vessel at different Womersley number (mean velocity 
from 0 to V). 
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8. Elements Turbulent Flow 

8.1. Introduction to Turbulence 

We briefly anticipated before, that the Reynolds number represents the ratio between available kinetic 
energy and ability to dissipate it. When the Reynolds number exceeds a certain threshold the kinetic 
energy can be so high, or ability to dissipate so low, that the regular motion is not able to provide a 
balance between incoming energy and dissipation. This point was clarified in the famous experiment 
performed by Osborne Reynolds (performed back in 1883) describing the transition from laminar to 
turbulent flow in a circular pipe under steady and uniform conditions.  

In this experiment, water was allowed to flow in a glass (transparent) pipe with varying mean velocity 
and a small jet of dye was released at the center of the pipe near the inlet. When velocity was small 
enough, dye trajectory was rectilinear. This type of motion was said to be “laminar”; fluid motion is 
unidirectional and uniform in agreement with the hypothesis used for Poiseuille solution; thus, the 
velocity field was described by that solution (7.25).  

When velocity approached a certain critical threshold, the dye trajectories started to display a slightly 
wavy pattern because the flow is not perfectly laminar. As velocity was further increased above such 
a critical value the dye rapidly mixes and diffuses over the entire pipe. This type of flow was said 
“turbulent”, velocities are irregular in space and in time with an apparently random behavior. 

It is evident that any kinematic flow property (like, for example, the amplitude of turbulent 
fluctuations) must depend on the size of the circular pipe, measured by its diameter D, by the intensity 
of the flow, given by the mean velocity V, and by the properties of the flow, which in Newtonian flow 
are summarized by the kinematic viscosity ν. There were no other parameters that could be varied in 
the experiment. These are 3 dimensional parameters that are based on 2 units (lengths and time); 
dimensional analysis permits to show that any dimensionless property must depend on a single 
dimensionless parameter that can be constructed by the 3 dimensional parameters. The dimensionless 
parameter is the Reynolds number (this is were the name comes from) 𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑉𝑉

𝜈𝜈
. When the Reynolds 

number is below a critical values 𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 the flow is laminar, when it is above the critical value the flow 
is turbulent. The transition from laminar to turbulence occurs over a small interval about 𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 ≈
2500, although the exact figure depends on the degree of disturbance that are present in the 
experiment.  

The same concept applies in other types of flow. For any flow arrangement there is a critical value of 
the Reynolds number build with an appropriate velocity scale V and an appropriate length scale L 
such that flow changes from laminar to turbulence regime when the Reynolds number exceeds the 
critical value for that arrangement. For flow behind a cylindrical obstacle evidently uses the upstream 
velocity and the cylinder diameter. In a steady boundary layer one can use the distance from the origin 
as length scale, thus demonstrating that the laminar boundary layer remains stable only for a certain 
length from its origin. 

For many years it was unclear where turbulence comes from. The laminar Poiseuille flow is a solution 
of the Navier-Stokes equation, this may rise doubts on the validity of those equations for describing 
fluid motion in general. However, this is not the case. The Navier-Stokes equation is a non-linear 
equation; as such, it has not necessarily a unique solution to the problem but can admit multiple 
solutions to the same problem. In the case of pipe flow there is one laminar solutions, that is steady 
uniform unidirectional, and others unsteady and irregular, turbulent solutions. When the Reynolds 
number is small enough, the flow is viscous enough to damp the turbulent solution; thus, those 



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 79 

turbulent solution are unstable as they would decay toward the laminar solution that is the only stable 
and physically realizable. Vice versa, when the Reynolds number is larger, the laminar solution 
becomes unstable and not physically realizable. Any small disturbance to that solution tends to move 
the flow away from it, other turbulent solutions are stable and realizable. The selection of one or 
another of the many possible turbulent solutions depends on the details of the initial and boundary 
conditions. The solution can also jumps from one turbulent solution to another when disturbed by 
small perturbations that are unavoidably present in physical experiments.  

The point that deterministic equations like Navier-Stokes can give rise to apparently random solutions 
has been debated for years in the last decades. However, it was recognized that even much simpler 
deterministic non-linear equations can present analogous behavior. This was described as the concept 
of deterministic “chaos”. Probably the simpler equation is a difference equation (where time-
derivative is replaced by a difference between discrete time instants) with no spatial dependence. 
Thus consider the variable uk, with values in the open interval 0<uk,<1, where k is the discrete time 
variable obeying the following evolution equation 

    𝑢𝑢𝑘𝑘+1 = 𝜆𝜆𝑢𝑢𝑘𝑘(1 − 𝑢𝑢𝑘𝑘); (8.1) 

where and λ is a parameter that plays a role analogous to the Reynolds number for this evolution 
equation. Equation (8.1) has a steady solutions, found by setting 𝑢𝑢𝑘𝑘+1 = 𝑢𝑢𝑘𝑘 , which is 𝑢𝑢𝑘𝑘 = 𝜆𝜆−1

𝜆𝜆
 (the 

other solution 𝑢𝑢𝑘𝑘 = 0 is out of the interval of definition). Until λ<3 this solution is stable, any initial 
condition eventually converges to that. At larger values of λ the steady solutions becomes unstable,  
the system becomes unsteady, initially jumping alternatively between two values, between more 
values as λ increases, until for λ=4 the solution oscillates randomly over the entire interval (0,1). The 
equation is deterministic; therefore, once the initial condition is defined also the specific solution is 
defined, while different realizations are the result of different initial conditions. One can notice, 
however, that extremely close initial conditions eventually give rise (after a transient period) to 
macroscopically different solution; the solution at a certain time k is extremely dependent on the 
specific value of the initial condition. This behavior is known as “Sensitivity to Initial Conditions” 
(SIC). Indeed, the smooth dependence of solution on initial/boundary conditions (that solutions 
relative to nearby conditions produce nearby solutions) is a property that is generally valid for linear 
systems only and does not necessarily applies to non-linear systems. 

This behavior also applies to Navier-Stokes equation, with the additional complexity that irregularity 
occurs over time and over the three-dimensional spatial directions. This means that any small 
inaccuracy on initial or on boundary conditions can give rise to different turbulent solutions. 
Moreover, any small external perturbation is analogous to small changes to the initial condition for 
the following evolution and also may drive the system to different turbulent solutions.  

This means that an experiment about fluid turbulence performed under identical conditions produces 
different solutions because a laboratory cannot reproduce conditions that are exactly identical to 
arbitrary accuracy. This is a fundamental conceptual problem that cannot be solved by advances in 
numerical computations as well, because the boundary or initial conditions can be known with a finite 
accuracy only and such small uncertainty reflects to large differences in the solution. Moreover, 
numerical calculus uses a finite accuracy, that may be even different between different computers, 
and it can happen that numerical solutions of the same determinist equations produce different results. 
As a result, when talking about turbulent flows one cannot focus on an individual realization of that 
field, that is just one solution among many other equally possible, and should rather pay attention to 
the main properties that are common to all turbulent realizations of that flow.    
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Physically, turbulence enhances energy dissipation and therefore it is normally a threat of excessive 
energy consumption in the vascular circulation. Another property is the unpredictability of its chaotic 
fluctuations that makes turbulent flows difficult to control, model, and manage. On the other side, 
turbulence has several positive implications; first of all, it makes life possible by enhancing mixing 
and diffusion. While viscous diffusion is an extremely efficient mechanism to distribute substances 
at very small scales, turbulent dispersion dominates mixing at larger scales. For example, viscous 
diffusion length, that grows proportionally to √νt , in water takes a few hundredth of a second to reach 
one millimeter, a few second for one centimeter, and over one hour for one meter. On the contrary, it 
is in everyone’s experience that accelerated turbulent dispersion dominates the mixing and heat 
propagation at scales larger than, typically, a few millimeters. It is evident how turbulence is 
ubiquitous in nature and how it ensures the mixing that is experienced in everyday life. 

8.2. Reynolds Equations 

Turbulent flow are complex and irreproducible; nevertheless, the different realizations of turbulent 
flows under similar conditions present common characteristic, like the mean velocity or the amplitude 
of fluctuations. These properties are also those that present a practical interest. The most common 
strategy to tackle the problem of turbulence relies of statistical methods, searching for a description 
of the average motion (responsible for transport) and of its fluctuations (responsible for dispersion). 
This is such a common practice that the study of turbulence is often considered that of statistical fluid 
mechanics.  

There are several different ways for defining average properties in turbulence, from spatial filtering 
to time filtering. The most straightforward approach is that of considering the mean velocity as time 
average over a period T that defines the separation between fluctuations due to turbulence and those 
caused by the large scale evolution in time. Indicating with angular brackets the averaging operator, 
we define the mean velocity as 

 〈𝒗𝒗(𝒙𝒙, 𝑡𝑡)〉 = 1
𝑇𝑇 ∫ 𝒗𝒗(𝒙𝒙, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝑇𝑇
2
−𝑇𝑇2

 , (8.2) 

and the fluctuating velocity 

 𝒗𝒗′(𝒙𝒙, 𝑡𝑡) = 𝒗𝒗(𝒙𝒙, 𝑡𝑡) − 〈𝒗𝒗(𝒙𝒙, 𝑡𝑡)〉 ; (8.3) 

such that the actual velocity is the sum of the mean plus the fluctuating components 𝑣𝑣 = 〈𝒗𝒗〉 + 𝒗𝒗′. 

We can now try to write the equations for the mean velocity applying the average operator to the 
continuity and the Navier-Stokes equations. Applying the mean operator to the continuity equation 
gives  

 〈∇ ∙ 𝒗𝒗〉 = ∇ ∙ 〈𝒗𝒗〉 = 0 , (8.4) 

which tells that the mean velocity is also a divergence-free field. By difference, it is immediate to 
verify that also the fluctuating velocity field is divergence-free 

 ∇ ∙ 𝒗𝒗 = ∇ ∙ (〈𝒗𝒗〉 + 𝒗𝒗′) = ∇ ∙ 〈𝒗𝒗〉 + ∇ ∙ 𝒗𝒗′ = ∇ ∙ 𝒗𝒗′ = 0 . (8.5) 

The same approach can be applied to the Navier-Stokes equation. To make it simple, consider the x-
component of the equation written in a Cartesian system of coordinates, see equation (5.35), that is 
averaged to give  
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 〈𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
〉 + 〈𝒗𝒗 ∙ ∇𝑣𝑣𝑥𝑥〉 = − 1

𝜌𝜌
〈𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
〉 + 𝜈𝜈〈∇2𝑣𝑣𝑥𝑥〉,  

and can be rewritten exchanging the derivative and the averaging operator  

 𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+ 〈𝒗𝒗 ∙ ∇𝑣𝑣𝑥𝑥〉 = − 1
𝜌𝜌
𝜕𝜕〈𝑝𝑝〉
𝜕𝜕𝜕𝜕

+ 𝜈𝜈∇2〈𝑣𝑣𝑥𝑥〉. (8.6) 

The second terms is non-linear and does not allow immediate simplification. Let’s us look at this term 
in details 

 

〈𝒗𝒗 ∙ 𝛻𝛻𝑣𝑣𝑥𝑥〉 =
= 〈(〈𝑣𝑣𝑥𝑥〉 + 𝑣𝑣𝑥𝑥′)

𝜕𝜕(〈𝑣𝑣𝑥𝑥〉+𝑣𝑣𝑥𝑥′)
𝜕𝜕𝜕𝜕

+ �〈𝑣𝑣𝑦𝑦〉 + 𝑣𝑣𝑦𝑦′�
𝜕𝜕(〈𝑣𝑣𝑥𝑥〉+𝑣𝑣𝑥𝑥′)

𝜕𝜕𝜕𝜕
+ (〈𝑣𝑣𝑧𝑧〉 + 𝑣𝑣𝑧𝑧′)

𝜕𝜕(〈𝑣𝑣𝑥𝑥〉+𝑣𝑣𝑥𝑥′)
𝜕𝜕𝜕𝜕

〉 =

= 〈〈𝑣𝑣𝑥𝑥〉
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

〉 + 〈〈𝑣𝑣𝑦𝑦〉
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

〉 + 〈〈𝑣𝑣𝑧𝑧〉
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

〉 +

+ 〈〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈〈𝑣𝑣𝑦𝑦〉

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈〈𝑣𝑣𝑧𝑧〉

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 +

+ 〈𝑣𝑣𝑥𝑥′
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

〉 + 〈𝑣𝑣𝑦𝑦′
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

〉 + 〈𝑣𝑣𝑧𝑧′
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

〉 +

+ 〈𝑣𝑣𝑥𝑥′
𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈𝑣𝑣𝑦𝑦′

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈𝑣𝑣𝑧𝑧′

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 .

 

Consider that the already averaged values can be taken out of the average operator, because they 
behave like a constant with respect to the integral in the averaging operation. Therefore, we can 
rewrite the last terms to get 

 

〈𝒗𝒗 ∙ 𝛻𝛻𝑣𝑣𝑥𝑥〉 =
= 〈𝑣𝑣𝑥𝑥〉

𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑦𝑦〉
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑧𝑧〉
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+

+〈𝑣𝑣𝑥𝑥〉
𝜕𝜕〈𝑣𝑣𝑥𝑥′〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑦𝑦〉
𝜕𝜕〈𝑣𝑣𝑥𝑥′〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑧𝑧〉
𝜕𝜕〈𝑣𝑣𝑥𝑥′〉
𝜕𝜕𝜕𝜕

+

+〈𝑣𝑣𝑥𝑥′〉
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑦𝑦′〉
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑧𝑧′〉
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+

+ 〈𝑣𝑣𝑥𝑥′
𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈𝑣𝑣𝑦𝑦′

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈𝑣𝑣𝑧𝑧′

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 .

 

It is immediate to notice that the first term on the right-hand-side is the transport equation written for 
the mean velocity. The second and third terms are both zero because they contain the mean of the 
fluctuating components that are zero by definition. Rewrite the remaining terms and add the average 
of a null terms 𝑣𝑣𝑥𝑥  ∇ ∙ 𝒗𝒗′ that is zero because of (8.5) 

 

〈𝒗𝒗 ∙ 𝛻𝛻𝑣𝑣𝑥𝑥〉 = 〈𝒗𝒗〉 ∙ 𝛻𝛻〈𝑣𝑣𝑥𝑥〉 +
+ 〈𝑣𝑣𝑥𝑥′

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈𝑣𝑣𝑦𝑦′

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈𝑣𝑣𝑧𝑧′

𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 +

+ 〈𝑣𝑣𝑥𝑥′
𝜕𝜕𝑣𝑣𝑥𝑥′
𝜕𝜕𝜕𝜕
〉 + 〈𝑣𝑣𝑥𝑥′

𝜕𝜕𝑣𝑣𝑦𝑦′
𝜕𝜕𝜕𝜕
〉 + 〈𝑣𝑣𝑥𝑥′

𝜕𝜕𝑣𝑣𝑧𝑧′
𝜕𝜕𝜕𝜕
〉

= 𝜕𝜕〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑥𝑥′〉
𝜕𝜕𝜕𝜕

+ 𝜕𝜕〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑦𝑦′〉
𝜕𝜕𝜕𝜕

+ 𝜕𝜕〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑧𝑧′〉
𝜕𝜕𝜕𝜕

;

 

where we used the product of derivatives in the last passage. This result can be reinserted in the 
original equation (8.6) and rewritten in vector terms to better highlight the new structure of the 
equation 

 𝜕𝜕〈𝒗𝒗〉
𝜕𝜕𝜕𝜕

+ 〈𝒗𝒗〉 ∙ ∇〈𝒗𝒗〉 = − 1
𝜌𝜌
∇〈𝑝𝑝〉 + 𝜈𝜈∇2〈𝒗𝒗〉 + 1

𝜌𝜌
∇ ∙ 𝕋𝕋𝑹𝑹. (8.7) 

where the last term is the symmetric Reynolds stress tensor defined by 
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 𝕋𝕋𝑹𝑹𝑖𝑖𝑖𝑖 = −𝜌𝜌〈𝑣𝑣𝑖𝑖′𝑣𝑣𝑗𝑗′〉; (8.8) 

Equation (8.7) is the Reynolds’ equation. It corresponds to the Navier-Stokes equation when 
expressed in terms of mean velocity. The Reynolds equation differs from the Navier-Stokes equation 
for the additional terms that contains the Reynolds stress. The Reynolds stress term has exactrly the 
same form of the stress tensor terms previously found in the Cauchy equation (5.30); however, this 
equation is for the mean velocity, that is not the physical velocity but only a mathematical filter of it. 
The Reynolds stresses therefore are not real stresses experienced by physical fluid elements, they are 
fictitious stresses that represent the influence of the fluctuating velocities on the mean velocities. It 
would represent the energy that is lost the mean flow because it is transferred into the fluctuations 
during the filter period T. 

The Reynolds equation produces simpler, smoother solutions because of the enhanced dissipative 
mechanism introduced by the Reynolds stresses, thus avoiding the contemporary presence of many 
interleaving scales within the flow. This simplification is payed, on the other side, by the fact that the 
Reynolds equation is not closed: it included further unknowns, the Reynolds stresses, that cannot be 
obtained by the equation itself and require a further model or equation. The appearance of novel 
unknowns in the averaged equation is what is known as the closure problem of turbulence. Either 
equations are complicated and unsolvable (Navier-Stokes) o they are not closed (Reynolds, as well 
as many other filtered equation derived from Navier-Stokes) because they present additional 
unknown terms. 

There are numerous models to provide a closure to the Reynolds equation by adding additional 
equations for the terms (8.8). It must be remarked, however, that all these models are not obtained 
from first conservation principles; thus closure models are not rigorous, they are not accurate in 
general and rely on numerous empirical coefficients. They are more reliable in canonical flows of 
practical relevance where extensive experimental and numerical studies permitted to establish reliable 
models. In general the closure problem is still open. 

8.3. Turbulent flow over a wall 

A turbulent flow of paramount applied interest is that flowing near a surface under the hypothesis that 
the mean flow is steady and unidirectional. It cannot be solved exactly as it was done for laminar 
flows; nevertheless, some result can be achieved by properly combining all information available. 

Consider turbulent flow over a flat surface as sketched in figure 8.1. Assume that the flow is steady 
and two-dimensional, on average, thus derivatives of mean quantities along z and t are zero, and that 
the mean flow is unidirectional, <vy>=0 and <vz>=0. By continuity we have the only unknown is the 
x-component of the mean velocity that can vary with the distance y from the wall: <vx(y)>.  

The Reynolds equations along the transversal direction simply state that the mean pressure <p> is 
constant transversal to the mean flow, as can be immediately verified. The x-component of the 
Reynolds equation 

 

𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑥𝑥〉 ∙
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑦𝑦〉 ∙
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

+ 〈𝑣𝑣𝑧𝑧〉 ∙
𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

=

            = − 1
𝜌𝜌
𝜕𝜕〈𝑝𝑝〉
𝜕𝜕𝜕𝜕

+ 𝜈𝜈 �𝜕𝜕
2〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝑧𝑧2

� − 𝜕𝜕〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑥𝑥′〉
𝜕𝜕𝜕𝜕

− 𝜕𝜕〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑦𝑦′〉
𝜕𝜕𝜕𝜕

− 𝜕𝜕〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑧𝑧′〉
𝜕𝜕𝜕𝜕

,
  

simplifies with these assumptions to 
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 𝜈𝜈 𝜕𝜕
2〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝑦𝑦2

− 𝜕𝜕〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑦𝑦′〉
𝜕𝜕𝜕𝜕

= 1
𝜌𝜌
𝜕𝜕〈𝑝𝑝〉
𝜕𝜕𝜕𝜕

.  

Make the additional assumption that the mean pressure gradient is zero; this is justified by the fact 
that pressure gradient does not vary with y, and it is an additional constant (over y) that influences the 
value of the velocity but not its profile. Therefore the Reynolds equation, ignoring the pressure 
gradient, suggests the existence of the following relationship 

 𝜈𝜈 𝜕𝜕
2〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝑦𝑦2

− 𝜕𝜕〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑦𝑦′〉
𝜕𝜕𝜕𝜕

= 0. (8.9) 

Both terms present a derivative along y; after integration we have 

 𝜈𝜈 𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

− 〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑦𝑦′〉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

this constant has the dimension of a velocity square and it is commonly written as 𝑢𝑢∗2 

 𝜈𝜈 𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

− 〈𝑣𝑣𝑥𝑥′𝑣𝑣𝑦𝑦′〉 = 𝑢𝑢∗2 (8.10) 

where 𝑢𝑢∗ is called the friction velocity whose physical meaning will be clear shortly. 

Equation (8.10) tells that there is a property of the turbulent wall flow, that we call the square of the 
friction velocity, that is constant over the entire velocity profile, from the wall to above the wall. 
Looking carefully to the two terms in (8.10) we can recognize that, if multiplied with the density ρ, 
they represent the mean viscous stress <τxy> and the turbulent Reynolds stress 𝕋𝕋𝑹𝑹𝑥𝑥𝑥𝑥. Therefore, 
equation (8.10) tells that the total stress, given by the sum of viscous plus the turbulent stresses, is 
constant over the turbulent profile; the former dominates close to the wall, where turbulence stress is 
low up to being zero at the wall, while the turbulent stress dominates away from the wall as shown in 
figure 8.1. Equation (8.10) is valid also at the wall where turbulent stress is zero because velocity and 
its fluctuations are zero and the viscous stress is τ0=<τxy(0)>  

 𝜈𝜈 𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

�
𝑦𝑦=0

= 𝜏𝜏0
𝜌𝜌

 . (8.11) 

Equation (8.11) tells that the friction velocity is given by 

 𝑢𝑢∗ = �
𝜏𝜏0
𝜌𝜌

 . (8.12) 

Consider now equation (8.10) very close to the wall. Here viscous stress dominates and the equation 
can be approximated by 

 𝜈𝜈 𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

≅ 𝑢𝑢∗2;  

which can be integrated, with boundary condition〈𝑣𝑣𝑥𝑥(0)〉 = 0, to give the velocity profile very close 
to the wall 

 〈𝑣𝑣𝑥𝑥〉
𝑢𝑢∗

≅ 𝑢𝑢∗
𝜈𝜈
𝑦𝑦; (8.13) 

showing that velocity grows linearly from the wall. Expression (8.13) suggests the existence of a 
viscous length scale, given by  𝑦𝑦∗ = 𝜈𝜈

𝑢𝑢∗
, that provided the length scale of velocity variations in the 

region where viscosity is important. 
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Far from the wall, at distances much larger than such length scale, 𝑦𝑦 ≫ 𝜈𝜈
𝑢𝑢∗

, the turbulent stress 
dominates over the viscous one. Equation (8.10) does not allows to solve the velocity profile; 
nevertheless, we can write that the changes in the velocity profile (its y-derivative) should not depend 
explicitly on viscosity. Thus, they can only depend on the turbulent stress, expressed by the friction 
velocity that characterizes the stresses in the entire turbulent layer and by the distance from the wall. 
Functionally we can write 

 𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

= f(𝑢𝑢∗,𝑦𝑦). (8.14) 

Dimensional analysis of (8.14) allows simplifying it in the following form 

 𝜕𝜕〈𝑣𝑣𝑥𝑥〉
𝜕𝜕𝜕𝜕

= 1
𝑘𝑘
𝑢𝑢∗
𝑦𝑦

. (8.15) 

where 𝑘𝑘 is an unknown constant. This constant is known as the Von Karman constant, it was estimated 
experimentally to take the value 𝑘𝑘 ≅ 0.4 in most turbulent wall flows. Integration of (8.15) gives 

 〈𝑣𝑣𝑥𝑥〉 = 𝑢𝑢∗
𝑘𝑘

ln � 𝑦𝑦
𝑦𝑦0
�; (8.16) 

where y0 is the integration constant that is unknown because there is no boundary condition that can 
be enforces given that this profile is not valid at the wall.  The integration constant y0 is a length and 
should be expressed proportional to the only existing length scale, found in (8.13), as 𝑦𝑦0 = 1

𝑎𝑎
𝜈𝜈
𝑢𝑢∗

 where 
now the dimensionless unknown is a. With this substitution, equation (8.16) is rewritten in a form 
analogous to (8.13) as 

 〈𝑣𝑣𝑥𝑥〉
𝑢𝑢∗

= 1
𝑘𝑘

ln �𝑎𝑎 𝑢𝑢∗
𝜈𝜈
𝑦𝑦�; (8.17) 

where the coefficient a is unknown and should be evaluated for the different cases. The solution 
(8.17), although obtained with several approximations and hypotheses, was demonstrated to be a very 
good representation of real wall-bounded turbulent flows under numerous different configurations, 
with or without pressure gradients, and in different geometries. It is valid for wind blowing over the 
sea or over a town, for water flowing in rivers as well as in cylindrical pipes, for example. A general 
feature of the profile (8.17), sketched in figure 8.1, is its slow modulation; it is very slow varying 
after an initial region close to the wall. Therefore, the turbulent profiles are commonly very flat in 
contrast with the laminar parabolic profile. 

The velocity profile in equation (8.17) is not an exact solution; it presents two dimensionless 
coefficients, 𝑘𝑘 and a that must be estimated experimentally, and the friction velocity 𝑢𝑢∗ that provides 
the intensity of the actual flow. Friction velocity was defined by (8.12) and is the only velocity scale 
available in this context of generic flow without reference to conduits discharge or external velocities. 
In a conduit, the friction velocity can be related to the pressure gradient that creates the mean flow. 
To this aim, consider a steady and uniform turbulent flow inside a vessel of constant cross-section, 
the global balance of momentum between two sections has zero inertial and zero flux of momentum 
terms, it simply states a balance between the force due to pressure difference and the resistance due 
to wall shear stress 

 𝜏𝜏0𝐶𝐶 = −𝜕𝜕〈𝑝𝑝〉
𝜕𝜕𝜕𝜕

𝐴𝐴 , (8.18) 

where C and A are the perimeter and the area of the vessel, respectively; equal to πD and πD2/4 in a 
circular vessel. Use (8.12) and (8.18) to obtain the friction velocity in terms of the pressure gradient, 
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 𝑢𝑢∗ = �− 1
𝜌𝜌
𝜕𝜕〈𝑝𝑝〉
𝜕𝜕𝜕𝜕

𝐴𝐴
𝐶𝐶

= �− 1
𝜌𝜌
𝜕𝜕〈𝑝𝑝〉
𝜕𝜕𝜕𝜕

𝐷𝐷
4
 . (8.19) 

with the second equality valid for a circular vessel only. Relation (8.19) shows that the friction 
velocity is not an abstract parameter, it is a velocity scale that can be obtained from macroscopic 
measurable quantities. 

We can also move further and use the previous results to build the relationship between fricition 
velocity, or pressure gradient, and average velocity in a vessel of diameter D as follows. The 
logarithmic profile is valid for a large portion of the duct. Therefore, there must be a certain distance 
from the wall y where the local velocity is equal to the average velocity V in the duct. Express this 
distance as proportional to the duct diameter y=a’D, with a’ an unknown constant; we can write in 
formulas that a value a’ must exist such that 〈𝑣𝑣𝑥𝑥(𝑎𝑎′𝐷𝐷)〉 = 𝑉𝑉. Using (8.17) this condition becomes 

 𝑉𝑉
𝑢𝑢∗

= 1
𝑘𝑘

ln �𝑏𝑏 𝑉𝑉𝑉𝑉
𝜈𝜈
𝑢𝑢∗
𝑉𝑉
�; (8.20) 

where b is the new unknown constant (b=aa’), which was experimentally estimated in circular vessels 
to be 𝑏𝑏 ≅ 1.13. 

 

Equation (8.20) provides a relationship between mean velocity and pressure gradient (or friction 
velocity). It is common habit introducing a friction coefficient, the dimensionless Chezy coefficient, 
as the ratio between mean and friction velocities, 𝐶𝐶 = 𝑉𝑉

𝑢𝑢∗
. Using (8.20) the Chezy friction coefficient 

can be estimated in turbulent flows as 

 𝐶𝐶 = 1
𝑘𝑘

ln �𝑏𝑏 𝑅𝑅𝑅𝑅
𝐶𝐶
�; (8.21) 

which is an implicit expression for C(Re). The Chezy friction coefficient has the identical role of the 
friction coefficient f(Re) previously introduced in (7.27) for the Poiseuille flow; the two are related 
by 

 𝐶𝐶 = �8
𝑓𝑓

, 𝑓𝑓 = 8
𝐶𝐶2

; (8.22) 

 

Figure 8.1. Turbulent flow over a flat surface. 
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thus the Chezy coefficient in Poiseuille flow is 𝐶𝐶 = �𝑅𝑅𝑅𝑅
8

 . The two friction coefficients can be used 

interchangeably, depending on the traditions in different contexts, regions or disciplines. 

In un unsteady and in spatially non-uniform flows, expressions for the wall shear stress and for the 
energy losses are not available in general, few results are in laminar flows (like those in section 7.4) 
and almost none in turbulent flows. The previous evaluations permit to have initial estimates for 
steady uniform turbulent flows.  
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9. Quasi Unidirectional Flow in Large Vessels 

9.1. Mass Balance in Tapering and Branching Arteries 

Tapered geometry, with area decreasing downstream, and branches, extracting flow from the main 
vessel, are characteristic elements in many arteries. Let us verify what mass balance tells about these 
conditions. Consider first a tapered vessel and assume the duct as undeformable. The discharge Q=VA 
is constant along the vessel thus when area decreases velocity must increase following mass balance 
equation   

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑉𝑉 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 , (9.1) 

from which the velocity rate of increase would be 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 𝑄𝑄
𝐴𝐴2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0 . (9.2) 

This result does not realize physiologically because velocity must decrease when the vessel size 
decreases to avoid excessive friction. 

Indeed, in real arteries the discharge decreases downstream 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 in virtue of the side branches. At 

the same time, the velocity must decrease downstream 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 to avoid increase of friction. These 
considerations give a relationship between area reduction and discharge reduction. Extract the 
velocity gradient from mass balance (9.1) and impose that, differently from (9.2) it must be negative  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
− 𝑄𝑄

𝐴𝐴2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 . (9.3) 

Condition (9.3) can be restated as  

 − 1
𝑄𝑄
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> − 1
𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 . (9.4) 

telling that the relative (percentage) reduction of discharge must be larger than the relative reduction 
of area. 

A similar argument can be applied to bifurcations. Consider a vessel with area A0 and discharge 
Q0=V0A0, where V0 is the velocity, that bifurcates into two equal daughter vessels, each of area A1 and 
discharge Q1=V1A1. Mass conservation tells 

 𝑉𝑉0𝐴𝐴0 = 2𝑉𝑉1𝐴𝐴1 ; (9.5) 

where, as discussed before, we want that the condition V1<V0 when A1<A0 . Using (9.5) this implies 
that  

 𝑉𝑉0
𝑉𝑉1

= 2𝐴𝐴1
𝐴𝐴0

> 1 . (9.6) 

Thus, although the individual daughter vessels reduce their size, the sum of their areas must increase. 
The total cross section area increase downstream at every branching. 

To get an ideas of this geometric effect, consider the diameter of the Aorta, the first artery after the 
heart, whose diameter is approximately 3 cm. The total cross section of blood vessel at the root of 
Aorta is approximately AAorta≈7 cm2 where flow has a velocity about VAorta≈1 m/s, thus a 
corresponding discharge Q≈700 cm3/s. A similar discharge must cross the entire cross section of the 
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vasculature at any level of branching. Consider that at the capillary level blood velocity is smaller 
than 1mm/s. This means that the total cross-section of capillary bed is close to 1m2.  

9.2. Flow in Curved Vessels 

The motion of fluid particles in curved vessels, different from the laminar flow in straight vessels 
(Poiseuille flow), cannot proceed by parallel trajectories because particles on the inner side of the 
curve travel a shorter path than those on the external side.  

 

 

From a dynamic perspective, fluid particles are subjected to centrifugal acceleration, proportional to 
the square of their local velocity and inversely proportional to the curvature of the trajectory, v2/R. 
Particles on the internal side have smaller radius of curvature and those near the center of the vessel 
have a higher velocity. Therefore, transversally to the main flow direction there is a pressure gradient 
in the center of the vessel pushing towards the external side. Then, for conservation of mass, flow 
returns from the external side to the internal side along the walls. This gives rise to secondary 
circulation as sketched in figure 9.1.  

Flow in curved vessels always develops secondary circulations. These take the form of two symmetric 
circulating cells when the curvature is planar, thus the system presents a mirror symmetry across the 
transversal plane. Most arteries, however, present a double curvature, mathematically described as 
curvature and torsion like a portion of a helical shape duct. In that case, the two cells symmetry, 
shown in figure 9.1, is altered depending on the degree of torsion, resulting in one cell dominating on 
the other.  

Flow in real, doubly curved, arteries is composed of the main stream wise motion plus a rotation, due 
to the dominance of one cell to the other. The result of such a combination is that fluid particles move 
downstream along helical trajectories. This is remarkably noticeable in the aortic arch like that shows 
in figure 9.2. Helical trajectories develop also in many bifurcations, like the carotid and the iliac 
bifurcations. Helical trajectories are considered to have a physiological significance because they 
permit a higher wash-out of the whose vessel and reduce the development of stagnation regions, 
which give higher chance of aggregation and development of arteriosclerosis. 

 

Figure 9.1. Flow in a curved vessel. 
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9.3. Flow in Elastic Vessels 

Arteries are elastic and deform in virtue of the pressure changes due to the flowing blood inside the 
vessel. In order to analyze the interaction between vessel elasticity and fluid flow let us first analyze 
how the deformation occurs in presence of a change in pressure. 

Consider a vessel or diameter D and thickness s, assumed small, subjected to a pressure increase dp 
of the flow inside its lumen. Vessel deformation obeys the law of motion for the elastic material, that 
is simplified into the equilibrium of forces, and the constitutive equation describing the relation 
between internal stress and deformation. With reference to figure 9.3, internal stresses are indicated 
by τ and are assumed constant over the thickness. Thus, the equilibrium equation is     

 𝜏𝜏2𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑 . (9.7) 

Equilibrium (9.7) is evaluated in the undeformed configuration, thus making the assumption that 
deformations are small (rigorously speaking, infinitesimal); arterial deformation is usually less than 
10% and this approximation is acceptable in this context. The constitutive equation, for small 
unidimensional deformations, gives the following relationship between stress and deformation 

 𝜏𝜏 = 𝐸𝐸 𝑑𝑑𝑑𝑑
𝐷𝐷

 ; (9.8) 

 

Figure 9.2. Helical trajectories in the Aortic arch. 
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where E is the Young modulus of elasticity that describes the elastic behavior of the tissue. 
Combination of (9.7) and (9.8) permits to relate the increase of pressure with the deformation 

 𝑑𝑑𝑑𝑑
𝐷𝐷

= 𝑑𝑑𝑑𝑑 𝐷𝐷
2𝐸𝐸𝐸𝐸

 . (9.9) 

 

Then, mass conservation, permits to evaluate the change of thickness, that for small thickness gives 

 𝑑𝑑𝑑𝑑
𝑠𝑠

= −𝑑𝑑𝑑𝑑
𝐷𝐷

 . (9.10) 

With this small background on solid mechanics we can analyze the phenomenon of wave propagation 
in elastic vessels that applies to small pressure pulsations. 

Consider the equation of continuity (4.7) and of motion (5.18) for a vessel  

 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐴𝐴 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

= 0 ,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 .
 (9.11) 

In writing the second of (9.11) we made the additional assumption that friction is negligible, as it 
does not alter qualitatively the propagation phenomenon and would only produces an attenuation of 
the propagating wave.  

The additional relationship needed here is the coupling between vessel size, A, and fluid pressure, p, 
that we can write in general, assuming uniform properties along the vessel, as a function A(p), one 
simple example being equation (9.9). The existence of a A(p) relationship permits rewriting any 
derivative of the vessel area, in time or space, in term of derivative of pressure  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑,𝑡𝑡

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑,𝑡𝑡

 . (9.12) 

where the function 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 characterizes the vessel elastic response. In the case of infinitesimal 
deformation of the linear elastic vessel discussed above, this function is obtained by the relationship 
(9.9) that can be recast as  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝐴𝐴
𝐸𝐸𝐸𝐸

 . (9.13) 

Let us simplify equations (9.11) for propagation phenomena assuming that the wave propagation 
velocity, the celerity c, is much larger than the physical fluid velocity. This means that the second 
(convective) term in both equations (9.11) can be neglected with respect to the first term. In this 
approximation, and using (9.12), the system (9.11) can be rewritten 

 

Figure 9.3. Deformation of an elastic vessel. 
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 �

1
𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 ,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 .
 (9.14) 

Now take the time derivative of the former and subtract the space derivative of the latter; then make 
the additional assumption that the 1

𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑝𝑝

 is a property of the vessel that is slowly varying (with respect 
to the variation of pressure itself) such that its derivatives are negligible. We obtain the equation for 
pressure     

 1
𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑2𝑝𝑝
𝑑𝑑𝑡𝑡2

− 1
𝜌𝜌
𝑑𝑑2𝑝𝑝
𝑑𝑑𝑥𝑥2

= 0 .  

This can be rewritten in canonical form as  

 𝑑𝑑2𝑝𝑝
𝑑𝑑𝑡𝑡2

− 𝑐𝑐2 𝑑𝑑
2𝑝𝑝

𝑑𝑑𝑥𝑥2
= 0 ; (9.15) 

which is the wave equation and 

 𝑐𝑐 = �𝐴𝐴
𝜌𝜌
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≅ �𝐸𝐸𝐸𝐸

𝜌𝜌𝜌𝜌
 . (9.16) 

is the celerity of the wave; the second equality in (9.16) being valid for the limit case of infinitesimal 
deformation discussed above. 

The general solution of the wave equation (9.15) is 

 𝑝𝑝(𝑡𝑡, 𝑥𝑥) = 𝑝𝑝(𝑥𝑥 ± 𝑐𝑐𝑐𝑐) . (9.17) 

which represents rigid propagation of the initial pressure fields without change of shape. 

For reference, using the second equality (9.16) its is possible to estimate the celerity in Aortic artery, 
where E≈105 N/m2 and s/D≈0.1, between 3 to 5 m/s. Smaller vessels are relatively more rigid and 
celerity increases to about 10 m/s in peripheral arteries. The celerity formula (9.16) is often used to 
estimate the Young modulus of arteries, their rigidity. Celerity is measured by recoding the pressure 
wave at different positions along the vasculature whose time shift divided by the distance between 
the measurement points give celerity. 

The linear analysis of pressure pulse propagation presented here is based on several assumption. A 
general nonlinear treatment is complicated and out of the present scope; however, it is instructive to 
mention how the approximations would affect the general solution (9.17). The tube-law (9.13), and 
thus the celerity (9.16), is not constant and the vessel is more rigid when more deformed; this means 
that celerity is higher in correspondence to higher pressure values. Thus pressure pulse is faster in 
locations where pressure is higher and slower where it is lower; this means that the peaks of the 
pressure wave move faster and give rise to a sharpening of the front side of the pressure wave. The 
transport term, that was neglected assuming velocity much smaller than celerity, would also 
contribute to deform the wave shape. Ultimately, a non-zero friction would produce the attenuation 
of the propagating wave that would be smoothed out downstream.  
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9.4. Impulse Propagation at a Bifurcation 

At bifurcations, the pressure wave is partly transmitted downstream into the daughter vessels and 
partly reflected backwards. Thus, at a bifurcation there is the incident wave (i) moving downward, 
the reflected wave (r) propagating upward and the two transmitted waves (t1 and t2) downward.  

 

In order to quantify, we can express the continuity of pressure at the junction, stating that pressure 
takes the same values when seen from the different vessels  

 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑟𝑟 = 𝑝𝑝𝑡𝑡1 = 𝑝𝑝𝑡𝑡2 ; (9.18) 

and the conservation of mass that gives a relationship among discharges 

 𝑄𝑄𝑖𝑖 − 𝑄𝑄𝑟𝑟 = 𝑄𝑄𝑡𝑡1 + 𝑄𝑄𝑡𝑡2 . (9.19) 

There are 4 unknown pressure and (9.18) provides two equations relating them; in order to move 
forward and use (9.19) let us find a relationship between pressure and discharge.  

Consider a generic sinusoidal pressure wave 𝑝𝑝(𝑥𝑥, 𝑡𝑡) = 𝐹𝐹𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥−𝑐𝑐𝑐𝑐) and the corresponding velocity 
wave  𝑉𝑉(𝑥𝑥, 𝑡𝑡) = 𝐹𝐹𝑉𝑉𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥−𝑐𝑐𝑐𝑐); substituting them into either continuity of motion equation (9.14) we 
obtain that 𝐹𝐹𝑉𝑉 = 𝐹𝐹𝑝𝑝

𝜌𝜌𝜌𝜌
, thus that the discharge can be related to pressure through  

 𝑄𝑄 = 𝐴𝐴
𝜌𝜌𝜌𝜌
𝑝𝑝 . (9.20) 

This relationship between flow and pressure is commonly expressed 

 𝑄𝑄 = 𝑝𝑝
𝑍𝑍

, 𝑍𝑍 = 𝜌𝜌𝜌𝜌
𝐴𝐴 ;  (9.21) 

introducing the concept of impedance, Z, that is a characteristic of a vessel. 

Substituting (9.21) in (9.19), this and (9.18) give a system of 3 equations 

 �
𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑟𝑟 = 𝑝𝑝𝑡𝑡1
𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑟𝑟 = 𝑝𝑝𝑡𝑡2
𝑝𝑝𝑖𝑖−𝑝𝑝𝑟𝑟
𝑍𝑍0

= 𝑝𝑝𝑡𝑡1
𝑍𝑍1

+ 𝑝𝑝𝑡𝑡2
𝑍𝑍2

 ; (9.22) 

where the subscript 0 stands for the parent vessel and the numbers for the two daughters. Substituting 
the first equations into the third we obtain a single equation relating incident and reflected waves 

 𝑝𝑝𝑖𝑖−𝑝𝑝𝑟𝑟
𝑍𝑍0

= 𝑝𝑝𝑖𝑖+𝑝𝑝𝑟𝑟
𝑍𝑍1

+ 𝑝𝑝𝑖𝑖+𝑝𝑝𝑟𝑟
𝑍𝑍2

 .  

 

Figure 9.4. Wave propagation at a bifurcation. 
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This can be rewritten introducing the coefficient of reflection R  

 𝑝𝑝𝑟𝑟
𝑝𝑝𝑖𝑖

= 𝑅𝑅, 𝑅𝑅 =
1
𝑍𝑍0
− 1
𝑍𝑍1
− 1
𝑍𝑍2

1
𝑍𝑍0
+ 1
𝑍𝑍1
+ 1
𝑍𝑍2

 . (9.23) 

and a coefficient of transmission can also be obtained after substituting into the first equations in 
(9.22).   

A perfect bifurcation with no reflection, R=0, is obtained when  𝐴𝐴0
𝑐𝑐0

= 𝐴𝐴1
𝑐𝑐1

+ 𝐴𝐴2
𝑐𝑐2

 . We know (remind 

equation 9,6) that 𝐴𝐴1 + 𝐴𝐴2 > 𝐴𝐴0, and that the celerity in a smaller vessel is usually higher, therefore 
in real bifurcation the reflection is effectively small, although non zero. Thus, most of the pressure 
pulse is transmitted downstream and only in small part reflected. 

An important place where reflected waves can be effective is the pulse propagation along the aorta 
where it encounters the iliac bifurcation. This phenomenon is sketched in figure 9.5. The incident 
pressure wave (i) starts from the aortic root and reaches the bifurcation after a time T (which is 
typically about 0.1 s, given by the ratio between the length of the aorta, say something about 50 cm, 
and the celerity, say about 5 m/s). At this point, the reflected wave (r) travels backwards from the 
bifurcation and reaches the aortic root after a time 2T. Therefore, the pressure pulse that one measures 
at the root is the sum of the incident pressure wave, that is given by ventricular contraction and is 
made of a single impulse, plus the reflected wave that is similar to the incident wave, but it is lower 
and delayed of 2T. The backward travelling waves sustains the pressure at the aortic root after the 
initial impulse has passed and (with multiple reflections) ensures its slower decay during diastole. 
This higher pressure helps maintaining the aortic valve close and it is though to help providing 
allowance to the coronary flow during diastole. There are, however, other mechanism involved and 
it is still unclear whether the role of reflection is fundamental or secondary. In any case, it is important 
to be aware that the time profile of pressure measured at any place does not reflect only the primary 
cause generating pressure (like ventricular contraction at the aortic root), it also included the 
contribution of reflected waves.   

 

 

Figure 9.5. Wave reflection in the Aorta. 
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9.5. Collapsible Vessels 

Arteries present a positive transmural pressure and typically operate under stretched conditions. There 
are, however, some other biological districts where internal pressure can become lower than the 
external value and the vessel be subjected to contraction. A contracted vessel maintains the circular 
geometry for small contractions only, then it undergoes to a bending instability and collapses reducing 
sharply its area as shown in the generic “tube law” sketched in figure 9.6.  A collapsed vessel gives 
high resistance to the flow and increased decrease of pressure.     

 

To exemplify possible implication, consider a vessel where flow starts with a given upstream 
transmural pressure p0 at x=0 that decreases downstream, for example following the Poiseuille law 

 𝑝𝑝(𝑥𝑥) = 𝑝𝑝0 −
128
𝜋𝜋
𝜇𝜇 𝑄𝑄
𝐷𝐷4
𝑥𝑥 . (9.24) 

If the discharge increases, the pressure reduction is more pronounced along the vessels and the 
diameter decreases as well. Under certain conditions, when the upstream pressure is relatively low or 
the vessel is long enough, transmural pressure can become negative and, from the tube law, collapse. 
This further reduces the pressure losses and decreases the pressure up to collapsing the vessel and not 
allowing for the flowing of the discharge Q. 

This is phenomenon is called “flow limitation”: when the system increases the upstream pressure to 
try pushing a higher discharge, it may lead to more pressure losses more than how pressure was 
increased upstream. Thus pressure gets further reduced downstream and lead to the collapse of the 
vessel that does not allow flow passage. Flow limitation typically occurs in airways, where one cannot 
blow more than a limited air rate otherwise the airways collapse and blowing is reduced. It can occurs 
in male urination. It can also occur in long veins and was much studied in the giraffe jugular vein. 

 

  

 

Figure 9.6. Tube law for collapsible vessels. 
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D. ADVANCED ANALYSIS OF SEPARATED FLOW 

10. Vorticity and Boundary Layer Separation 

10.1. Dynamics of Vorticity 

The fluid velocity was assumed as the fundamental quantity for describing fluid motion. However, 
velocity is not able to immediately evidence the underlying dynamical structure of a flow field, like 
stresses, mixing or turbulence, that depend on velocity gradients. The weakness of a description based 
on velocity alone is particularly critical when the fluid motion features the presence of vortex 
structures. In general, vorticity is the preferable fundamental quantity for the analysis of 
incompressible fluid dynamics.  

Vorticity vector was previously introduced through equations (3.6-3.7); it is mathematically defined 
as the curl is of the velocity field  

 𝝎𝝎(𝒙𝒙) = ∇ × 𝒗𝒗 . (10.1) 

It represents the local rotation rate of fluid particles and allows emphasizing the structure that hides 
behind the flow field; it also represents a complete description of the flow and allows recovering the 
whole velocity field once the boundary conditions are imposed. 

The interpretation of vorticity is particularly intuitive in a two-dimensional flow field, when only the 
x and y components of the velocity field exist. In this case, vorticity has only the component z, 
perpendicular to the plane of motion, 𝜔𝜔 = 𝜕𝜕𝑣𝑣𝑦𝑦

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣𝑥𝑥

𝜕𝜕𝜕𝜕
, and physically corresponds to (twice) the local 

angular velocity of a fluid particle. In fact, a positive vorticity corresponds to a vertical velocity, vy, 
increasing horizontally, along x, and a horizontal velocity vx, decreasing vertically. It is easy to 
understand, see figure 10.1 (leftmost sketch), that this type of velocity differences about a point 
represents a rotational motion.  

The relevance of vorticity is not limited to local rotation. The spatial distribution of vorticity 
characterizes the different possible types of fluid motion, that is why vorticity is commonly 
considered the skeleton of the flow field and the fundamental quantity to define the flow structures 
as shown in figure 10.1. A vortex can be loosely described as a motion that possesses circular or 
swirling streamlines; more correctly, a vortex is actually a region of compact vorticity, a circulatory 
motion surrounds a region where vorticity has accumulated. In addition to vortices, the vorticity map 
allows recognition of any basic flow structure. A shear layer, that is an elongated layer of friction 
between streams with different velocities, is actually a layer of vorticity, a vortex layer. The boundary 
layer discussed previously is a vortex layer adjacent to the wall that develops because of the velocity 
difference between the outer flow and the fluid attached to the wall for viscous adherence. The 
intensity of a vortex is normally measured by its circulation, normally indicated with Γ, that is the 
integral of the velocity along a closed circuit surrounding the vortex that, by the Stokes theorem (3.9), 
is equivalent to the integral of all the vorticity over the vortex area contained inside the circuit. The 
intensity of a vortex layer is measured by the difference of velocity, the velocity jump, commonly 
indicated by γ, between the flow above and below the layer; equivalent to the line integral of the 
vorticity across the layer. Vortices and vortex-layers are the fundamental vorticity structure in flow 
fields. Their different three-dimensional arrangements and combinations give rise to the complexities 
of all evolving flows. 
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The significance of vorticity can be best appreciated by the decomposition, due to Helmholtz and 
Stokes, of the complete velocity field as the sum of one irrotational component 𝒗𝒗𝑖𝑖𝑖𝑖𝑖𝑖 = ∇𝜙𝜙 , expressed 
as a gradient of a scalar potential, plus a rotational component 𝒗𝒗𝑟𝑟𝑟𝑟𝑟𝑟 = ∇ × 𝝍𝝍 expressed as the curl of 
a vector streamfunction field.  

 𝒗𝒗 = ∇𝜙𝜙 + ∇ × 𝝍𝝍 . (10.2) 

The rotational component accounts for the whole vorticity in the flow field, while the irrotational 
velocity is independent from the vorticity content. Indeed, if one takes the curl of the velocity (10.2) 
the curl of a gradient is identically zero, and the vorticity is due to the rotational field only. 

The irrotational component of the velocity field is a particularly simple field, in incompressible flows. 
It follows from the conservation of mass only (continuity constraint), and does not involves the 
equation of motion. It is immediate to verify taking the divergence of (10.2) that the divergence of a 
curl is identically zero. The rotational field automatically satisfies the continuity that becomes one 
equation for the potential only 

 ∇ ∙ 𝒗𝒗 = 0 ⟹ ∇2𝜙𝜙 = 0 . (10.3) 

Vice versa, taking the curl of (10.2) we obtain an equation relating vorticity and streamfunction 

 𝝎𝝎 = ∇ × (∇ × 𝝍𝝍) . (10.4) 

The linear second order equation (10.3) for the potential is of the elliptic type that is known as the 
Laplace equation. The Laplace equation has a unique solution and can be solved by numerous means. 
Conceptually, this means that the irrotational flow helps to satisfy the instantaneous balance of mass 
without any evolutionary mechanism, without fluid dynamics, only kinematic congruence due to 

 

Figure 10.1. Vorticity corresponds to the local rotation of a fluid particle. The spatial distribution of 
vorticity gives rise to different flow structures. An accumulation of vorticity in a compact region 
corresponds to a vortex; an elongated distribution of vorticity corresponds to a shear layer that, when it is 
adjacent to the wall, is a boundary layer. 
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mass conservation. A flow without vorticity thus gives rise to an irrotational velocity field only that 
can be specified without involving the balance of momentum. The equation of motion can be then 
employed, when required, to derive the pressure distribution corresponding to the known the velocity 
field. In the case of irrotational flow, this can be performed with the simple Bernoulli equation for an 
ideal flow because energy dissipation is absent in an irrotational flow. In fact, the viscous term of the 
Navier-Stokes equation, ∇2u, which can be written for an incompressible flow as ∇×ω, is identically 
zero for a flow without vorticity. 

The velocity decomposition is the key tool to recognize the role of vortices in a flow because only 
the dynamics of vorticity involves the balance of momentum. A vortex, as said, is a region where 
vorticity has accumulated; a vortex is not necessarily a region exhibiting circulatory motion. It may 
appear as such or the circulatory pattern may remain hidden behind an irrotational contribution that 
covers its rotary features as shown in figure 10.2. The velocity field corresponding to an isolated 
vortex is purely rotational, its streamlines rotate about the vortex and describe a circulatory motion. 
When an irrotational contribution adds on top of the same vortex flow, it may modify the apparent 
vortex signature in terms of streamlines. To explain this point, let us consider the same vortex of 
figure 10.2 (left) with an additional uniform flow, a rigid translational motion from top to bottom that 
is evidently an irrotational component and does not affect the value of vorticity and of shear rate 
anywhere. The resulting flow fields are shown in figure 10.2 for increasing values of the uniform 
motion (central and rightmost panels). The three fields of figure 10.2 presents exactly the same vortex, 
the same gradients of velocity at all points. The rotational velocity field is always the same, 
corresponding to the leftmost picture, only an irrotational flow is added to the others; nevertheless, 
from a superficial qualitative view in term of streamlines the underlying vortex may not be equally 
recognizable. 

 

Fluid dynamics phenomena related to evolutionary dynamics, friction, dissipation, forces, boundary 
layer, vortex formation etc., are dominated by the rotational part of the velocity field, while the 
irrotational contribution may have a role in terms of transport and mass conservation only. Therefore, 
a flow field can be evaluated from the dynamics of the vorticity, plus an irrotational contribution to 
adjust mass conservation according to boundary conditions. This is why, when the flow field is not 
simple or mostly unidirectional, vorticity, and vortices in which vorticity organizes, is the 
fundamental quantity to understand the flow evolution. 

 

Figure 10.2. A vortex is a region where vorticity has accumulated; it is not necessarily a region exhibiting 
circulatory motion. A flow made of a vortex only is made of circular streamlines (left panel). The 
streamlines are modified when a uniform vertical flow of moderate (centre) ad high intensity (right panel) 
is added. In the three panels the vortex is unchanged, and so is shear in the flow. 
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The vorticity is thus the fundamental quantity for describing a fluid flow. From the knowledge of the 
vorticity field only, the entire flow field inside a given geometry can be reconstructed (technically, 
by inversion of equation 10.4). It is therefore tempting to analyze the dynamics of a fluid motion 
following the dynamics of the vorticity itself. This is often useful because vorticity occupies only a 
small fraction of the flow field, and takes standard shapes that allow an immediate characterization 
of the whole flow field.  

The vorticity field has the further simplifying property that it obeys the same zero-divergence 
constraint of the velocity in an incompressible fluid: mathematically, vorticity is a field with zero 
divergence (simply because the divergence of a curl is zero by definition)  

 ∇ ∙ 𝝎𝝎 = 0 . (10.5) 

This means that the vorticity field cannot take arbitrary geometric shapes. Therefore vorticity 
typically develops in terms of vortex tubes (whose associated velocity circulates around the tube) or 
of vortex layers (associated with a difference of velocity, a shear rate, across the layer). Moreover, 
the total vorticity contained inside a vortex tube is conserved like the discharge in a tube of flow: a 
vortex tube cannot terminate abruptly, and must either be a closed ring or terminate by spreading into 
a vortex layer.  

Vorticity is an evolving field that follows deterministic evolutionary laws. Their mathematical 
expression can be immediately derived from the conservation of momentum: namely, the Navier-
Stokes equation (5.35) rewritten in terms of vorticity. Indeed, taking the curl of the Navier-Stokes 
equation (5.35), and reminding that derivatives are linear operators and derivatives  can be exchanged 
with the curl operator, we get 

 𝜕𝜕𝝎𝝎
𝜕𝜕𝜕𝜕

+ ∇ × (𝒗𝒗 ∙ ∇𝒗𝒗) = 𝜈𝜈∇2𝝎𝝎; (10.6) 

where the pressure term, like any other conservative force, disappears because the curl of a gradient 
is identically zero. The second term in (10.6) requires some care. Consider the x-component of this 
term in a system of Cartesian coordinates 
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Recognize now that the terms in bracket are the x vorticity component, and use the continuity equation 
to group 2nd and 3rd terms and 5th and 6th terms in last line as follows 
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where in the last passage we added a terms that equal to zero. Now group the terms properly to give 
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∇ × (𝒗𝒗 ∙ ∇𝒗𝒗)|𝑥𝑥 = 𝒗𝒗 ∙ ∇𝜔𝜔𝑥𝑥 −
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Reinserting this result into (10.6) gives the vorticity equation  

 𝜕𝜕𝝎𝝎
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝝎𝝎 = 𝝎𝝎 ∙ ∇𝒗𝒗 + 𝜈𝜈∇2𝝎𝝎; (10.7) 

which represents the Navier-Stokes equation expressed in terms of vorticity.  

Despite the apparent mathematical complexity, the simple qualitative inspection of this equation 
permits to extract some important concepts regarding vortex dynamics. For example, it can be 
immediately recognized that the vorticity equation does not contain the pressure (or any conservative 
force like gravity). In fact, the distribution of pressure has no direct influence on vortex dynamics; on 
the contrary, however, pressure depends on vorticity that rules friction and energy losses. 

A first property of the vorticity evolution is that if vorticity is zero at one instant it remains zero 
afterwards. This is seen by inspection of equation (10.7) where all terms are identically zero when 
vorticity is zero thus its time derivative is also null. This states that vorticity cannot be created inside 
the fluid, thus it can only be generated at the interface between the fluid and the boundary. This 
apparently simple fact is a fundamental element for the study of vortex dynamics: in incompressible 
flows vorticity does not appear spontaneously within the fluid, the only place where vorticity can be 
created is at the boundary between fluid and tissue. Indeed, the issue of the generation of vorticity, 
and vortex formation in particular, is a key one and it will carefully discussed in the next chapter. 

Equation (10.7) tells that, once vorticity is somehow generated, it is subjected to few possible 
evolutionary phenomena. The primary one is that vorticity is transported with the flow as if it were a 
passive tracer (although not effectively passive, because velocity is related to vorticity itself). This 
phenomenon is provided by the two terms on the left hand side of (10.7) that represent the Lagrangian 
time derivative of vorticity over a particle moving with the flow. The first term is the time variation 
of vorticity at the fixed position crossed by the particle; the second term gives an increase of vorticity 
when a particle points in a direction along which vorticity grows (i.e. when velocity is aligned with a 
positive gradient of vorticity). They take a form analogous to, for example, the first two terms in 
equation Navier-Stokes equation (5.35), describing the acceleration on a moving particle. Therefore, 
vorticity moves with the local fluid velocity, like a tracer, and can further change its value in virtue 
of two additional phenomena. 

The first, corresponding to the first term on the right hand side of (8.2), represents the phenomenon 
of increase of vorticity by vortex stretching. Consider a small cylinder of fluid along whose axis the 
velocity increases, thus velocity is lower at the base and higher at the top of the cylinder; as time 
proceeds the cylinder elongates, it is stretched by the velocity gradient (and shrunk in the transversal 
direction for the conservation of mass). Well, the vorticity vector behaves in the identical manner as 
material fluid, when fluid is stretched the vorticity vector is stretched as well and the vorticity value 
increases. This term represents the stretching and turning of vortex lines as if they were lines of fluid. 
A further important aspect of this term is that it is exactly zero in a two-dimensional flow. In a two-
dimensional flow, the vorticity is perpendicular to the plane of motion and there is no velocity 
gradient out of plane: vorticity stretching is intrinsically a three-dimensional effect. 

Before turning the attention to the last term containing the viscous effects, let us recapitulate the 
dynamics of vorticity in absence of viscous effects. First, an element of fluid that contains no vorticity 
remains without vorticity afterwards. This is the first of the three Helmholtz’s laws for inviscid flow. 
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Then, the vorticity is a vector that behaves like a small string element of fluid. It moves with the flow 
and it is stretched and tilted with it. This is essentially the second Helmholtz’s law. The third law, 
follows from the fact that vorticity is a field with zero divergence and the total vorticity contained 
inside a vortex tube (or a vortex filament, when the tube is thin) is conserved along the filament while 
it moves with the flow. 

The picture becomes extremely simple and intuitive in a two-dimensional flow, or in a motion that is 
locally approximately two-dimensional. In this case, the vorticity vector has a unique nonzero 
component perpendicular to the plane of motion, therefore it loses its vector character and can be 
considered as a scalar. Stretching is absent and vorticity is simply transported with the flow. The 
value of vorticity is stuck onto the individual fluid particles, vorticity simply accumulates into vortex 
patches, redistributes into vortex layer, accordingly to the motion of fluid particles. 

The last, viscous term in the vorticity equation (10.7) introduces the effects of friction and energy 
dissipation in terms of vorticity. The action of viscosity on vorticity is analogous to that of heat 
diffusion or diffusion of a tracer like ink or smoke. The distribution of vorticity is smoothed out by 
viscosity; a sharp vortex reduces progressively its local strength while it widens its size in a way that 
the total vorticity is conserved. In general, the diffusion process is of a simple interpretation. Like in 
any diffusive process, the rate of diffusion is higher in presence of sharp vorticity gradients, therefore 
the magnitude of viscous dissipation become increasingly relevant where vorticity presents changes 
over short distances. This leads to the most important aspect of energy losses in fluid motion: viscous 
dissipation is most effective at small scales. Viscous diffusion, for example, gives rise to the 
annihilation of close patches of opposite sign vorticity. This has a peculiar consequence in three-
dimensions when two opposite-sign vortex filaments get in contact, the opposite-sign vorticity locally 
annihilates and oppositely pointing vortex lines (that cannot terminate into the flow) reconnect. The 
viscous reconnection phenomenon is the underlying mechanism leading to topological changes, 
metamorphoses of three-dimensional vortex structures, and increased dissipation by turbulence. 

In summary, the dynamics of vorticity is made by its transport with the fluid elements, intensification 
by three-dimensional straining of such fluid elements, and smoothing by viscous diffusion. A 
dynamics that see vorticity arranged into tubular and sheet-like structures ensuring a continuity of 
vortex lines. Some exemplary realizations of vorticity dynamics will be discussed later; before then, 
however, it is necessary to address the aspect of the generation of vorticity.  

10.2. Boundary layer separation and vortex formation 

As said above, in incompressible flows vorticity cannot be generated within the fluid. Vorticity can 
only develop from the wall in consequence of viscous adherence between the fluid and the bounding 
tissue. Vorticity is produced because of the no-slip condition at the interface between the fluid and 
the solid surface; it then progressively diffuses away from the wall through the viscous diffusion 
mechanism to produce a layer of vorticity at the boundary. The boundary layer thickness corresponds 
to the length at which the viscous diffusion penetrates into the flow, which is proportional to √νt as 
taught from equation (7.12). The boundary layer was introduced in chapter 7 as the region adjacent 
to the wall where the velocity rises from the zero value that it takes at the boundary to a finite value 
away from it. However, its interpretation as a vorticity layer is more intuitive for addressing vortex 
formation processes.  

The boundary layer has a fundamental importance in fluid mechanics as it represents the unique 
source of vorticity in a flow field. It can be easily verified that the value of vorticity at the wall also 
corresponds to the wall shear rate and, after multiplication with viscosity, to the wall shear stress 
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 WSS = 𝜏𝜏0 = 𝜇𝜇𝜇𝜇; (10.8) 

therefore the wall vorticity is often employed as synonymous of wall shear rate (sometime, given the 
constancy of viscosity, also of wall shear stress). 

In small vessels, the thickness of the boundary layer is comparable to the diameter and fills the entire 
flow field. At such small scales, in arterioles and capillaries, viscous diffusion is the dominant 
phenomenon; vorticity smoothly diffuses into the whole flow and vortices, with rare exceptions, are 
absent. On the contrary, in large blood vessels or inside the cardiac chambers, the boundary layer 
often remains thin and is capable to penetrate for diffusion over a small fraction of the vessel size. 
Indeed, until it remains attached to the wall, it has a relatively minor influence to the flow and only 
represents a viscous slipping cushion for the outside motion.  However, under many circumstances, 
it happens that such a thin boundary layer separates from the wall and enters into the bulk flow. This 
is the process of boundary layer separation, when thin layers of intense vorticity enter into the flow 
and give rise to local accumulation of vorticity and eventually to the formation of compact vortex 
structures. 

Boundary layer separation is normally a consequence of the local deceleration of the flow. The 
process of boundary layer separation is sketched in figure 10.3. When flow decelerates, the upper 
edge of the boundary layer is subjected to deceleration as well and, because of incompressibility, 
produces the growth of the thickness at the same location. This tongue of vorticity is lifted and 
strained by the outside flow while the vorticity value at the wall below decreases. As this process 
progresses, opposite sign wall vorticity appears and a secondary boundary layer develops below the 
separating shear layer. The separation point at the wall, from where the separation streamline departs, 
corresponds to the place where vorticity is zero. The secondary vorticity is itself decelerated in its 
backward motion and is lifted up. Eventually, it cuts the connection between the original boundary 
layer and the separating vorticity that detaches and enters into the flow. This follows because the local 
velocity transports vorticity but the latter is not a passive tracer, it is made of velocity gradients that, 
when transported, alter the underlying structure of the flow itself. Figure 10.3 shows qualitative 
velocity profiles and streamlines that develop in correspondence of the separating vorticity field. 

Boundary layer separation is thus a consequence of the local deceleration of the flow. In other terms, 
separation develops in presence of an adverse pressure gradient (pressure growing downstream) that 
pushes from downstream and decelerates the stream. The most common way to have an adverse 
pressure gradient is that of a geometric change: a positive curvature of the wall, like an enlargement 
in a vessel. In this case, the velocity decreases, for mass conservation, kinetic energy decreases and 
the value of pressure increases for the Bernoulli balance. Therefore, boundary layer separation 
develops behind a stenosis, or at the entrance of an aneurism. An extreme case of geometric change 
is that of a sharp edge, this is often found at the entrance of a side-branching vessel, and certainly on 
the trailing edge of the leaflets of the cardiac valves. In the case of sharp edges, the flow deceleration 
is so local that the position of boundary layer separation is definitely localizable at the edge. The 
vorticity that developed on the upstream side detaches at the sharp edge and leaves the tissue 
tangentially. 
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Figure 10.3. Sketch of the boundary layer separation process. The dark gray indicates layers with 
clockwise vorticity, the light gray is counter-clockwise; streamlines and velocity profiles are drawn. The 
deceleration of the flow produces a local thickening of the boundary layer due to mass conservation 
balance (upper panel). Such emerging vorticity is therefore lifted and transported downstream by the 
external flow (see arrows). A shear layer then extends away from the wall and produces a secondary 
boundary layer, with oppositely rotating vorticity (mid panel). The separated clockwise vorticity tends to 
roll-up while the secondary layer lifts up for the same initial mechanism, because it backward motion is 
decelerating (see arrows). Eventually, the separating vortex layer detaches from the boundary layer and 
becomes an independent vortex structure. 
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Geometric changes are not the unique possible sources for the development of a flow deceleration. 
Immediately downstream of branch sucking fluid away from a main vessel, the velocity reduces and 
an adverse pressure gradient develops. Similarly, boundary layer separation develops for the so-called 
splash effect, when a jet reaches a wall and produces high velocity streamlines that decelerate when 
they are deflected along the wall. Finally, the local flow deceleration is often produced by previously 
separated vortices. A vortex that gets close to a wall gives rise to a localized increase (or reduction, 
depending on its circulation) of the flow velocity at the wall below, and a corresponding deceleration 
immediately downstream (or upstream). The vortex-induced boundary layer separation is a frequent 
phenomenon that may become particularly critical in some applications. In fact, the area of principal 
separation is often localizable and properly protected, whereas a separation induced downstream due 
to a previously separated vortex may occur at unexpected locations. 

 

The separation of the boundary layer represents the starting phase of the vortex formation process. 
The featuring property of any shear layer is the difference of velocity between its two sides: the farther 
side of shear layer that detaches from the wall moves with a speed that is higher than the side closer 
to the wall. Therefore, the separating shear layer curves on itself and eventually rolls-up into a tight 
spiral shape. Now, during the rolling-up process, the distance between two successive turns of the 
vortex layer progressively reduces, with the closest neighboring turns at the center of the spiral. The 
viscous diffusion process smears out this tight spiraling structure into by a compact inner core with a 

Figure 10.4. Vortex formation from a sharp edge obstacle. The shear layer separates from the upstream 
“wetted” wall and rolls-up into a spiral. The tight turns in the inner part of the spiral spread for viscous 
diffusion into the inner core of the formed vortex. 
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smooth distribution of vorticity. The roll-up and the formation of an isolated vortex behind a sharp 
edge obstacle are shown in figure 10.4.  

The vortex formation from a smooth surface is still described by the picture given above, where a few 
additional elements of complexity can be emphasized. First, the actual position of separation depends 
on the local flow structure; it cannot be preliminarily identified and may even change during time. 
Furthermore, the separation from a smooth surface is inevitably accompanied by a more direct 
interaction between the forming vortex and the nearby wall when the viscous dissipation effects 
normally support the formation of smoother vortex structures. 

 

One typical example of the external separation from the smooth surface of a bluff body is shown in 
figure 10.5 featuring the formation of oppositely rotating vortices from the two sides of a circular 
cylinder. In such an example, vortices interact and influence the opposite separation process 
eventually producing a sequence of alternating vortices known as the von Karman street that is usually 
found behind bluff bodies. The development of alternating vortices is quite a common phenomenon 
when previously separated vortices may influence vortex formation in nearby regions. It is also 
present, with some differences, in internal flows when a vortex formed on one side of a vessel creates 
a vortex-induced separation on a facing wall. That, in turn, may induce a weaker further separation 
in a sort of wavy pattern extending and decaying downstream. 

The internal separation, with the following formation of a vortex inside of a vessel is in general a 
smoother phenomenon because the presence of confining walls does not allow vortices to grow into 
large structures, keeps vortices more constrained within smaller scales and is more influenced by 
viscous diffusion. Nevertheless, the presence of a vortex inside a vessel may change the entire flow. 
It has a blocking effect that locally deviates the streamlines modify the wall shear stress distribution, 
possibly producing further separations. It changes the unsteady pressure drop and in a branching duct, 
it may affect the relative flows division in the daughter vessels. An example is given in figure 10.6 
that reports the vortex formation in the bulb of a carotid bifurcation. During the systolic acceleration, 
the boundary layer separates tangentially from the common carotid artery and develops a smooth roll-
up within the bulb close to the nearby wall. During deceleration, the formed vortex locally affects the 

 

Figure 10.5. Formation of vortices behind a circular cylinder. Oppositely rotating vortices separate from 
the two sides of the body in an alternating sequence. The previously separated clockwise vortex detached 
from the upper wall translated downstream, a counter-clockwise vortex has been formed from the lower 
wall, and a novel clockwise vortex is under formation from the wall above. 
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wall shear stress inside the bulb with multiple opposite sign wall vorticity. It has a blocking effect 
that deviates the streamlines at the entrance of the internal carotid artery into a faster jet. It produces 
secondary vortex-induced separation inside the internal carotid; that eventually (not shown in the 
picture) gives a secondary vortex formation and a further small separation little downstream. 

 

A peculiar phenomenon associated with the vortex formation process can be outlined when the flow 
enters from a small vessel into a large chamber forming a jet whose head is the forming vortex. Here, 
after the very initial roll-up phase, a measure of the length of such a jet is given by the product of Vt 
where V is the velocity at the opening and t is the time. In this case it is enlightening to define a 
dimensionless vortex formation time, VFT, as the ratio of the jet length with respect to the diameter 
of the opening D 

 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉
𝐷𝐷

; (10.9) 

The formation time represents a dimensionless number that characterizes the progression of vortex 
growth and allows a unitary description under different conditions. In reality, the definition of 
formation time has a more profound physical meaning. The separating shear layer has a strength given 
by the jump of velocity between its two sides, given approximately by V, and translates downstream 
with a velocity that is again proportional to V, thus it feeds the circulation Γ of the forming vortex at 
a rate  

 

Figure 10.6. Formation of vortices in a model of a carotid bifurcation. The accelerating systolic flow (upper 
panel, at peak systole) leads to a smooth boundary layer separation at the carotid bulb. After the peak 
(lower panel) the vortex just formed at the bulb either interacts with the bulb boundary layer creating 
multiple small vortices, and gives rise to a vortex-induced secondary separation in the oppositely facing 
wall of the internal carotid artery. The same phenomena in a much weaker version are noticeable also on 
the opposite side at the entrance in the external carotid artery. 
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 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≅ 𝑉𝑉2; (10.10) 

The formation time thus also represents the dimensionless measure of the vortex strength, the 
circulation Γ, normalized with VD. The definition (10.9) can be extended to the case when either V 
or D vary during time, by integration of the ratio V/D during the period of vortex formation  

 𝑉𝑉𝑉𝑉𝑉𝑉 = ∫ 𝑉𝑉(𝑡𝑡)
𝐷𝐷(𝑡𝑡)

𝑑𝑑𝑑𝑑.  

10.3. Three-dimensional Vortices and their Interactions 

The vortex formation process described above is given in terms of two-dimensional pictures. It allows 
an immediate and intuitive understanding of the fundamental phenomenon because the initial phase 
of any vortex formation process is, with rare exceptions, locally two-dimensional and the three-
dimensional organization of the vorticity enters into play at some later stages. 

The simplest case of three-dimensional vortex formation is that from a circular orifice, in that case 
vortex formation has a circular symmetry and the forming three-dimensional vortex tube has the 
shape of a ring. Vortex rings are well known objects of fluid dynamics, which are easily generated 
using a piston-cylinder apparatus. A vortex ring is a stable vortex structure, it has an axial symmetric 
and vortices with a shape close to a ring also tend to the axisymmetric shape by an internal 
homogenization. Because of their stability, vortex rings are often encountered in nature, including 
when puffing smoke out of the mouth.  

Figure 10.7 shows one instant during the formation of a vortex ring behind a circular orifice. The 
vorticity distribution on a transversal section (left panel) shows the shear layer separating from the 
orifice that eventually rolls-up into the jet head; however it must be kept in mind that this planar 
picture corresponds to a three-dimensional vortex structure that is more difficult to represent on paper. 
The vortex ring corresponding to the vortex core is shown (right panel) to emphasize the main element 
of the three-dimensional vortex. In general, however, there is some ambiguity on the effective 
delineation of a vortex boundary. This is not a big issue in two-dimensional systems when the entire 
vorticity field can be shown in color scale on the picture plane and the different elements of the vortex 
structure are immediately recognized, from the separating shear layer, to the rolling-up spiral, to the 
vortex core. However, this case is particularly simple because the vorticity has an axial symmetry and 
only the azimuthal component: this flow is conceptually planar. Nevertheless, its three-dimensional 
representation, on the right panel of figure 10.7, certainly contains less complete information, and the 
choice of the vortex core boundary severely influences the three-dimensional structure that is 
eventually visualized.  

A three-dimensional vortex ring present a self-induced velocity that is due to the curvature of the 
vorticity lines (lines everywhere tangent to the vorticity field). This follows from the relation between 
velocity and vorticity, a curved vortex tube corresponds to a velocity field made of a rotation around 
the tube, when the tube is curves this rotation also induces a translation of the tube itself. Thus, once 
formed, a ring continues to translate downstream for its own self-induced velocity field. Such a self-
induced velocity gives rise to a peculiar limiting process of three-dimensional vortex formation: 
during its formation, the vortex ring is continuously fed by the rolling-up shear layer separating from 
the orifice edge, therefore its circulation grows and the self-induced vortex translation velocity of the 
vortex ring rises until it exceeds the velocity of the separating shear layer. At this point, the primary 
vortex detaches from the layer behind with a phenomenon known as pinch-off. At the same time the 
newly separated vorticity cannot reach the escaped vortex and eventually rolls-up in its wake. This 
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limiting process occurs for a critical value of the vortex formation time that is about VFTcr≈4. Above 
this limit, the vortex ring cannot grow as a unique structure and multiple vortices develop in its wake 
developing higher dissipation. It was found that the VFT in the human heart is close to this optimal 
limit and decreases in diseased hearts. 

 

The case of vortex ring formation after a circular opening represents the simplest case of three-
dimensional vortex formation. Let us move forward and consider the flow across sharp edge orifices 
with a slender shape. In this case, the opening has a variable curvature and the separating vortex will 
present a variable curvature as well. Therefore, the self-induced velocity, that is proportional to the 
curvature, will be different along the vortex tube and will progressively further deform it. When this 
deformation becomes high enough, the compact tubular vortex structure becomes unstable and breaks 
down into smaller elements, that in turn deform into even smaller ones, until they are dissipated for 
viscous effects. Commonly, vortex formation from a three-dimensional geometry gives rise to 
irregularly shaped structures, which become unstable and undergo to a rapid energy dissipation. One 
exemplary case of the three-dimensional vortex formation from a slender orifice is shown in figure 
10.8. 

The three-dimensional vortex formation from smooth surfaces, after a constriction like a stenosis or 
in a vessel enlargement, introduces additional elements of complexity that do not allow drawing a 
simple unitary picture of the involved phenomena. The initial instants following boundary layer 
separation and initial roll-up are essentially two-dimensional with a moderate influence from the 

 

Figure 10.7. Formation of a vortex ring from a circular sharp orifice. Left panel: distribution of vorticity 
on a transversal cross-cut; the vortex core is indicated with a dashed line. Right panel: three-dimensional 
view of the vortex ring core. 
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three-dimensional structure. Afterward, the three-dimensional development leads to widely different 
results depending on the separating geometry, the interaction with the nearby walls and with other 
surrounding vortices. 

  

Before moving further, it is important to remark that the vortex formation process is not just a 
kinematic adjustment of the flow but it has dynamical consequences. The generation of a vortex is 

 

Figure 10.8. Three-dimensional vortex formation from a slender orifice at four instants in sequence. One 
quarter of the entire space is shown for graphic clarity (allowed by symmetry); the vorticity contours are 
reported on the side planes to help understating the three-dimensional arrangement of the principal vortex 
filaments. In the initial phase, the formed vortex loop presents a variable curvature and deforms because 
of the different self-induced translation speed; this leads to further deformations until the vortex structure 
loses its individuality and becomes a set of entangled three-dimensional elements that rapidly dissipate for 
viscosity. 
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associated with the development of a force on the walls from where the vortex originates; this “vortex 
force” is given by the rate of growth of the vortex impulse 

 𝑭𝑭 = 𝑑𝑑𝑰𝑰
𝑑𝑑𝑑𝑑

, 𝑰𝑰 = 𝜌𝜌 ∫𝝎𝝎 × 𝒙𝒙 𝑑𝑑𝑑𝑑; (10.11) 

where the integral is non zero only where the vortex (vorticity) is present. To clarify this point, 
consider the case of generating a vortex ring, which represent the roughly early stage of many three-
dimensional vortex formation processes.  The vortex impulse of a vortex ring of circulation Γ and 
radius R has only the component directed along the vessel axis, say x, (perpendicular to the plane 
containing the ring) which is 𝐼𝐼𝑥𝑥 = 𝜌𝜌𝜌𝜌𝜌𝜌𝑅𝑅2; therefore, the force is proportional to the rate of growth of 
the vortex 

 𝐹𝐹𝑥𝑥 ≅ 𝜌𝜌𝜌𝜌𝑅𝑅2 𝑑𝑑Γ
𝑑𝑑𝑑𝑑
≅ 𝜌𝜌𝜌𝜌𝑅𝑅22𝑉𝑉 𝑑𝑑V

𝑑𝑑𝑑𝑑
; (10.12) 

that, using (10.10) turns out to be proportional to the velocity and to its acceleration. This vortex force 
is due to the unsteadiness of the formation process. In a pulsatile flow, the vortex force (10.11), or 
(10.12), produces a continuous hammering onto the tissues where the vortex develops. 

The ideal vortex formation picture described above is complicated when two or more vortices come 
nearby each other, because they likely interact in an intense and irreversible manner. The interaction 
of vortices involves many different and very complicated phenomena. In the simple case of two-
dimensional vortices that come in close encounter, they reciprocally induce such a rotation velocity 
each other. When such vortices have the same sign they rotate together one around the other, winding 
up one over the other to eventually merge into a single larger one made by the sum of them. On the 
contrary, two vortices with opposite circulation, a vortex pair, translate together for the self-induced 
velocity (similarly to what a vortex ring does) along a straight or curved path depending on the relative 
strengths. Again, the differential velocity inside each single vortex produces the winding up of one’s 
vorticity on other, however such vorticity strips are of opposite sign and do not merge rather they 
annihilate each other and reduce the individual vortices’ strength. 

The interaction between three-dimensional vortex structures occurs prevalently between two 
oppositely rotating portions of vortex tubes (because they are more likely driven one toward the other, 
while concordant 3D tubes tend to separate) and begins with the local interaction between the closest 
elements. One example of the interaction between two identical vortex rings is shown in figure 10.9. 
Initially, the local interaction is approximately the two-dimensional: the nearby oppositely rotating 
tubular elements induce the velocity each other and try to translate away. This produces a local 
stretching of the three-dimensional vortex tube, a stretching that accelerates while the tubes become 
closer and would locally wind up one another. The interacting structures develop increasingly small 
scales until viscous diffusion becomes a dominant effect, at this point the reconnection of vortex lines 
occurs: adjacent opposite vorticity is annihilated by dissipation and the vortex tubes tend to fuse one 
onto the other. 

The interaction between two identical vortices, like that shown in figure 10.9, may result into a 
complete vortex reconnection and a relatively simple new vortex tube. More often, however, one 
vortex is stronger than the other is, only part of its tubular structure can reconnect with the other 
weaker vortex and the incomplete reconnection gives rise to new vortices with a complex branched 
geometry (see also figure 10.8 where some vortex reconnection occurs). In general, the vortex 
structure resulting from the fusion of previous interacting vortices, typically presents a very irregular 
geometry. Differential curvatures, that give sharply variable self-induced velocity and local motion, 
and differential vorticity strength, that give axial flow along the tube, tend to rapidly further deform 
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the vortex, produce further reconnections and gives rise to smaller vorticity structures. In other terms, 
an irregular three-dimensional vortex structure is overall unstable, tends to destroy itself, and it is 
short lived. The more a vortex is regular, like a vortex ring, the more it remains coherent and lasts 
longer. 

 

Vortices also interact with the nearby walls; a phenomenon that is particularly relevant in closed 
systems like cardiovascular vessels. The vortex-wall interaction can be divided into two different 
phenomena: the irrotational interaction, that is a consequence of the wall impermeability; and the 
viscous interaction with the vorticity in the boundary layer. Let us consider the two effects separately. 

 

First, an isolated vortex induces a rotary motion where streamlines are circular. When such a vortex 
approaches an impermeable wall, the streamlines must deform to avoid crossing the boundary. With 

 

Figure 10.9. Vortex interaction between two identical impacting vortex rings; the brightness of the 
filament indicates the strength of the corresponding vorticity. When oppositely rotating vortex tubes get 
close, they produce a local vortex stretching due to the self-induced velocity (from left to central panels). 
During stretching, the boundary between the vortices becomes locally sharper until the filaments fuse one 
into the other for viscous effect (from central to right panels). After vortex reconnection a new structure 
is formed, typically its geometry is irregular, the vortex is often unstable and short lived.. 

 

Figure 10.10. The interaction of a vortex with the wall produces two separate effects. First (left panel), the 
condition of impermeability is satisfied by a distortion to the vortex-induced flow that is equivalent to 
having an opposite vortex placed symmetrically below the wall. The presence of such a “image” vortex 
increases the tangential velocity next to the wall, and induces a translation velocity to the otherwise still 
vortex. The second effect (right panel) is due to viscous adherence, the development of a boundary layer 
and eventually a vortex-induced separation.. 
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reference to figure 10.10 (left panel), the modification of the flow field that satisfies the 
impermeability condition can be immediately constructed simply by symmetry considerations. It is 
the irrotational flow that would be induced by an image vortex of opposite circulation placed 
symmetrically below the wall. Such an image vortex gives a velocity perpendicular to the wall that is 
opposite to that of the real vortex, and thus ensures that the fluid does not penetrate into it. On the 
contrary, the tangential velocity has the same sign of that due to the real vortex and therefore the 
velocity adjacent to the wall increases (splash effect). In addition, the image vortex also induces a 
velocity to the real vortex that accelerates or decelerates (depending on the direction of the 
circulation) with respect to the background flow because of this image effect. For example, a 
(clockwise) vortex that just formed from a wall underneath is decelerated by the image below the 
same wall, while it accelerates when it approaches a wall on the opposite side.  

Second, in addition to the image effect, a vortex near a wall also influences the development of the 
boundary layer because of the viscous adherence condition at such a wall. A vortex creates a local 
velocity gradient along the wall, acceleration followed by deceleration. This perturbation, as 
previously discussed, may give rise to a vortex-induced boundary layer separation and to the 
formation of secondary vortices as it is sketched in figure 10.10 (right panel). 

When the vortex-boundary interaction described above applies to a tract of a three-dimensional vortex 
tube, it eventually affects the following three-dimensional dynamics. First, the image effect gives a 
local stretching and deformation of a vortex filament. Second, when the vortex gets closer, it 
eventually interacts directly with the vortex-induced vorticity distribution. This is an interaction 
between oppositely circulating vorticity. That gives rise to the local wind-up of the wall vorticity 
around the approaching vortex and to reconnection with its vortex lines. Eventually, the vortex crops 
by dissipation in the regions closer to the wall, this unbalances the three-dimensional vortex structures 
that tends to rapidly further deform and develop small structures that are eventually dissipated. 

10.4. A Further Account to Turbulence 

Let us enter smoothly into the physics of turbulence by deepening a little further the concept 
introduced in chapter 8. We’ve said there that the interaction between two vortices first deforms the 
overall, large scale geometry of the vortex loops then, after sequences of reconnections, breaking of 
vortices and further deformations, it eventually transforms the original vorticity into several irregular 
small structures. Such small scale elements present sharp velocity gradient, viscous friction, and are 
rapidly dissipated. 

Physically, on average, vortices of the size of the large scales are continuously formed from the 
surrounding boundary; these large vortices are unstable and produce progressively smaller flow 
structures until they are small enough to produce dissipation. The resulting flow witnesses the 
simultaneous presence of these large structures with others of all intermediate sizes from these down 
to the smallest vortices dominated by viscosity. A measure of the complexity of such a flow can be 
provided by from the amount of such contemporary vortices, measured by the ratio between the 
largest scale, say L (given by the diameter of the pipe, or the size of the obstacle, for example), and 
the smallest friction-dominated one, that we indicate with η. When L is comparable to η, the flow is 
a regular one. When L is much larger than η, the flow presents changes over a large number of 
intermediate scales from L to progressively small size up to the smallest scales η.  The order of 
magnitude of this complexity can be estimated in statistically steady turbulence from the 
phenomenological theory due to Kolmogorov in 1941. 
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A flux of energy, indicated with ε, is injected in the flow at a scale close to L, say the energy of a 
vortex formed after an obstacle. when L>>η, the same energy passes to smaller scales with essentially 
no dissipation, and is eventually dissipated when approaching the viscous scale η, such that  ε is also 
the rate of energy dissipation. It can be hypothesized that at small enough scales turbulence becomes 
locally uniform and isotropic, independent on the details of how turbulence was generated. Thus, the 
fluctuations of velocity depend only on the amount of energy that arrives from large scales and is 
transferred to the small scales. From dimensional arguments, the rate of injection of kinetic energy in 
the large scales is proportional to the kinetic energy, proportional to V2, divided by the time to 
transport such energy away, proportional to L/V, 

   𝜀𝜀~ 𝑉𝑉3

𝐿𝐿
. (10.13) 

In such uniform and isotropic conditions, the viscous scale will depend solely on the amount of energy 
flux and by viscosity 

   𝜂𝜂 = 𝑓𝑓(𝜀𝜀, 𝜈𝜈). (10.14) 

This is a dimensional equation involving two units. By dimensional analysis, it is immediate to obtain 
the estimate 

   𝜂𝜂~ 𝜈𝜈
3
4

𝜀𝜀
1
4
 . (10.15) 

The viscous scaled defined by (10.15) is also called the Kolmogorov scale. The degree of complexity 
of turbulent flows is represented by the amount of interleaving scales and can be estimated by the 
ratio 

  𝐿𝐿
𝜂𝜂

~ 𝐿𝐿𝜀𝜀
1
4

𝜈𝜈
3
4

= �𝐿𝐿𝐿𝐿
𝜈𝜈
�
3
4 = 𝑅𝑅𝑅𝑅

3
4 . (10.16) 

that is proportional to the Reynolds number. That again represents the measure of a distance between 
energy flow scales and viscous scales. 

As a further remark, these estimates demonstrate how the Navier-Stokes equations, that do not allow 
general analytical treatments, may be difficult to be tackled even by numerical approaches when 
turbulence develops. Numerical solutions require a spatial accuracy up to about the Kolmogorov scale 
to possibly reproduce the details of turbulent flows. Therefore, the space spanning the entire length 
of interest, of size proportional to L, must be sampled with resolution η. Thus, the number of points 
N along any spatial direction must be not smaller than L/η and the total number of points required in 
three-dimensions is something like  

   𝑁𝑁3 ≈ �𝐿𝐿
𝜂𝜂
�
3

= 𝑅𝑅𝑅𝑅
9
4 . (10.17) 

The estimate (10.17) sets a limit to the actual feasibility of numerical solution of turbulent flows at 
large Reynolds number. Due to this limitation, turbulence literature was mainly based on solution of 
the Reynolds equations (or different version of them based on different averaging/filtering) 
introducing a “closure” model for the unknown terms appearing therein as discussed in section 8.2. 
All such closure methods are however approximate and their reliability limited to relatively simple 
flows. As a result, turbulence remains an open challenge and it is important to build a physical picture 
of possible turbulent phenomena in flows of interest. 
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In general, we may think of turbulence as a system of entangles and interacting vortex elements of 
disparate sizes. Ranging from the large size generated by the boundaries, to the smaller size where 
the flow is smoothed out by viscous effects. Understanding that turbulence is generated by a sequence 
of interacting three-dimensional vortices allows its description in terms of the energy cascade 
described above. An external energy input (like a pressure difference across a valve) pushes a fluid 
across an orifice or along an irregular vessel bend. The flow thus generates energetic vortices whose 
size is comparable with that of the container. These large vortices interact and produce smaller eddies, 
that further interact producing turbulent eddies of progressively smaller size capable to dissipate 
kinetic energy into heat. At the lower end of this energy cascade, energy very small eddies are entirely 
dissipated and do not generate anything smaller. 

An increased friction between fluid elements and enhanced energy dissipation with respect to regular 
fluid motion characterizes turbulence. In fact, the development of turbulence is the strategy used by 
fluids to dissipate the excess energy. When a fluid motion presents a large kinetic energy (high 
velocity), the fluid may be unable in a regular motion to maintain equilibrium between viscous 
dissipation and the external energy source, in that case it increases the particle paths by developing 
swirling motions and small scales with higher shear rate to increases viscous dissipation up to 
equilibrium. The Reynolds number represents, through (10.16), the ratio between the kinetic energy 
introduced in the large scales, proportional to ρV2, and their ability to dissipate with shear stress, 
grossly estimable as proportional to ρνV/L. When the Reynolds number increases above a certain 
threshold, smaller scales develop to enhance dissipation. In other words, regular flow becomes 
unstable and turbulence appears. That’s why every realization of flow motion presents a critical value 
of the Reynolds number above which the motion develops turbulence.  

In the cardiovascular system, turbulent flows are rarely encountered. The largest scales of motion 
achievable in the arterial network cannot exceed the vessel size, of a few centimeters at most. The 
Reynolds number is normally well below one thousand, with the exception of the very largest vessels. 
The flow in the ascending Aortic and, sometime, in the left ventricular cavity can reach values of the 
Reynolds number up to some thousands. When turbulence develops, it is weak turbulence with an 
energetic level that does not influence dramatically the main dynamics. It should be remarked, that 
the highest levels of turbulence, if any, in an unsteady pulsatile flow are recorded during the 
deceleration after the peak of the flow. In fact, although the instantaneous Reynolds number has 
decreased, the flow has been filled with energy during the maximum velocity and has to dissipate 
such energy during deceleration. Deceleration enhances instability phenomena that supports 
turbulence. 

Weak turbulence may develop in the diastolic filling of the left ventricle when the mitral jet impacts 
onto the walls, as it may occur with a large cardiac output. The most frequent appearance of 
turbulence occurs in the aortic artery, particularly in the ascending part. Here the tri-leaflet geometry 
of the aortic valve provokes a rather complex three-dimensional vortex formation that, associated 
with the large Reynolds number (roughly from 3000 to 8000 at peak systole), produces weak 
turbulence.  

Boundary layer separation, vortex dynamics and weak turbulence represent key elements in the 
interaction between fluid flow and surrounding tissues in large vessels. Understanding these 
fundamental phenomena is necessary to allow proper interpretations of fluid dynamics in 
cardiovascular regions of interest.  They are particularly relevant for pathological developments and 
will be discussed in the next chapters. 
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11. Separated Flow in Large Arteries 

11.1. Arteriosclerosis and boundary layer separation 

Arteriosclerosis is the deposition of substances transported with blood on the internal walls of the 
arteries provoking a progressive reduction of their lumen. The initial phase of arteriosclerosis can be 
imputed to multiple causes, like the inflammation of the arterial wall giving a thickening of intima-
media layer, pathologies of the endothelium reducing its protective function, or just the progressive 
deposition of fat material. The individual arteriosclerotic risk level depends on numerous causes 
ranging from the properties of substances transported with blood to the affinity of these with 
endothelium. Besides those biological reasons, certain characteristics of fluid dynamics play a 
fundamental role, possibly for the starting and certainly for the progression of arteriosclerosis, and 
represents a sure risk factor for its development. 

Flow and surrounding tissues can interact only though the exchange of dynamic actions: forces and 
stresses. Blood flow interacts with the endothelial layer of the arteries though the wall shear stress 
(WSS), which is recognized to have a primary role in the development of arteriosclerosis. The 
endothelium is made of elongates cells that are kept aligned with the flow by the normal wall shear 
stress. When the wall shear stress is abnormal and not directed along the vessel, stresses may 
progressively alter this alignment of endothelial cells that get randomly oriented. In that case, the 
endothelium becomes rougher and more prone to deposition of fat material transported with the blood. 

Wall shear stress changes during the heartbeat and several measures were introduced to relate 
anomalous wall shear stress and arteriosclerosis. The most immediate is the value of the wall shear 
stress averaged during the heartbeat, of duration T,  

  AWSS = 1
𝑇𝑇 ∫ WSS𝑑𝑑𝑑𝑑𝑇𝑇

0  ; (11.1) 

low or negative values of AWSS where shown to correlate with atherosclerosis. More modern indices 
were also introduced to better underline the importance of reversal of WSS for pathology; one of 
those is the oscillating shear index (OSI) that is defined 

  OSI = 1 −
�∫ WSS𝑑𝑑𝑑𝑑𝑇𝑇
0 �

∫ |WSS|𝑑𝑑𝑑𝑑𝑇𝑇
0

 ; (11.2) 

that is close to zero when the WSS is always positive and increases when negative WSS develop. 

The WSS quantity contained in (11.1) and (11.2) refers to the stream wise component. In general, the 
wall shear stress is a vector tangent to the endothelium. Vector quantities are more difficult to be 
synthesized into simple indicators accounting to complex physiological phenomena. The general rule 
is that the risk of atherosclerosis is related to the anomalous wall shear stress of the endothelium, high 
fluctuation and spatial gradient, especially when stresses are not aligned with the main flow direction. 

It is evident that boundary layer separation and vortex formation are the key cause to the development 
of flow reversal and anomalous wall shear stress. Additionally, regions with flow reversal are 
associated with higher blood stagnation and material aggregation. Therefore, the location of boundary 
layer separation are considered regions with higher risk of atherosclerosis.  

It is fundamental to be aware of which regions may, at least qualitatively, present higher chances of 
developing boundary layer separation and thus higher risk of atherosclerosis. Boundary layer 
separation typically occurs in those regions where velocity decreases along the wall; figure 11.1 
displays some typical geometric conditions where this is can happen.  
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Separation is largely expected after a vessel narrowing, which can happens in presence of stenosis, 
the outcome of progressive atherosclerosis, or at an enlargement, which is typically due to the 
wakening of arterial wall leading to aneurysms; both cases will be discussed in more details later. 
Boundary layer separation can also occur under physiological condition for example at a bifurcation. 
In particular the carotid bifurcation presents an enlargement (carotid sinus) on the side of the internal 
carotid and is a region at risk. In general, however, any branching leads to local flow decelerations 
that may give rise to boundary layer separation. We have also seen that a vortex, after its formation, 
interacts with the wall and gives rise to secondary boundary layer separation. Therefore, any 
important boundary layer separation may provoke secondary separation and create regions at risk 
even somehow away from those regions considered critical by geometric consideration only. 

 

11.2. Stenosis 

Stenosis is a pathological conditions corresponding to the reduction of arterial lumen due to 
atherosclerosis. From a mechanical, fluid dynamics, perspective it can start from a small disturbance 
in the flow that reduces the wall shear stress and induces further deposition of material. This reduction 
of the vessel size provokes boundary layer separation and further disturbance that in turn reduces the 
wall shear stress downstream and enhances deposition. The narrowing of the vessel reduces the blood 
availability in the organs served by that vessel; eventually the stenosis can even lead to a blockage of 
the vessel and ischemic phenomenon to the downstream area. Stenotic narrowing is a self-sustained 
phenomenon where the growth helps further growth; therefore, it is extremely unlikely to record a 
reduction of stenosis during time. 

Stenosis reduced the flow and causes ischemia to the regions whose blood (oxygen) allowance is 
given by that vessel. Sometimes, secondary circulation can partially overcome this issue although 

 

Figure 11.1. Regions with higher chances of boundary layer separation, which are also higher risk of 
atherosclerosis. 
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secondary allowance is rarely sufficient ensure efficiency when the oxygen request increase, because 
of exercise or stress, above a minimum rate. 

 

Fluid dynamics in presence of a stenosis is characterized by boundary layer separation and generation 
of a deformed vortex ring downstream the stenosis. This gives disturbed flow therein and further risk 
of atherosclerosis development. 

In addition to the partial or total blockage of the vessel, the main risk of a stenosis is its partial 
breaking with the release of a small fragment (a thrombus) that is transported downstream. Along the 
branching arterial network vessels becomes progressively smaller until the transported element is 
unable to pass through and one gets blocked closing a vessel and preventing blood availability to the 
tissues perfused by that. For this reason stenosis are also studied to assess its “vulnerability” to break 
up and release fragments. This depends whether the stenosis is well perfused, it is hard passive 
material or it is composed of different materials. The process of stenosis break can be influenced by 
the entity of vortex formation as we have seen above, in equation (10.11), that it gives rise to dynamic 
hammering that may help to making the stenosis unstable and release material.  

    

 

One typical site at risk of stenosis are the two carotid bifurcations (symmetric on the two sides of the 
neck) as shown in figure 11.3. The right or left common carotid artery divides into the external carotid 
artery, bringing blood to the muscles of the face, and the internal carotid artery bringing blood to the 

 

Figure 11.2. Development of arteriosclerosis and stenosis in an artery. 

 

Figure 11.3. Stenosis in the carotid artery. 
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brain. The latter is the most important and it is the vessel at higher risk of atherosclerosis because it 
starts from the side of the carotid sinus where separation can occur naturally and is particularly 
subjected to stenosis. The consequence of stenosis at the internal carotid is the reduction of blood 
allowance to the brain. Its partial breaking can have consequences like ictus, which can be severe or 
temporary (TIA, transient ischemic attach) or be fatal leading to death.   

Carotid sinus is so prone to development of the atherosclerotic plaque that it is commonly monitored 
as an indicator for the predisposition of individuals to develop stenosis in the other parts of the arterial 
network. Its analysis is also relatively easy because the carotid is a superficial artery on the neck and 
can visualized with good quality by simple ultrasound imaging (Doppler echography).  

Therapeutic strategies for carotid stenosis at the early stage are made of blood thinners to reduce the 
risk of further aggregation and growth. When the stenosis is relevant or at risk of rupture, therapies 
are based on surgery or endovascular surgery. In either cases, the therapeutic procedure and its 
outcome must take into account the alterations they induced on fluid dynamics. 

Carotid endarterectomy is a common surgical approach to remove the arteriosclerotic plaque at or 
near the carotid bifurcation. Its diffusion also follows the relatively simple access to the carotid 
bifurcation. The procedure is schematically sketched in figure 11.4. The carotid lumen, once the blood 
transit is temporarily deviated, is accessed through a longitudinal cut on the arterial wall. The material 
is then removed and the artery is sutured. During the suture, a small patch is commonly added to the 
artery wall to avoid a reduction of the lumen of the sutured artery. Evidently, the shape of such a 
patch influences the geometry of the reconstructed vessel, therefore the distribution of wall shear 
stress, which in turn influences the risk of re-stenosis after surgery. Patches are made large enough to 
ensure a good passage of blood; however, they must not be too large to avoid local enlargements and 
boundary layer separation. Which is a major risk factor, by the fluid dynamics perspective, to the 
therapeutic outcome. Monitoring the flow in the reconstructed artery, for example with color Doppler 
ultrasound, is important to assess the risk associated with fluid dynamics. 

 

Surgery is often substituted by endovascular procedures; shown schematically in figure 11.5. In this 
case, the vessel is accesses by a guided catheter that releases an endovascular prosthesis (stent). A 
balloon is expanded pressing the plaque at the wall, without removing it, and a prosthesis is placed 

 

Figure 11.4. Carotid endarterectomy surgery. 
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on the expanded vessel restoring a sufficient lumen to allow blood passage. This prosthesis alters the 
vessel geometry and creates an elasticity mismatch. These changes affects the fluid dynamics and the 
interaction between flow and tissue, which may in turn alter the distribution of wall shear stress. Cases 
of restenosis are observed and may sometime be imputable to the alteration of blood motion, which 
should be monitored as a measure of the quality of the therapy. 

 

Another major site at risk of stenosis is the coronary tree. Coronaries are the arteries that bring 
oxygenated blood to the myocardium, the heart muscle. The two main coronaries, the right and left 
coronary arteries (RCA and LCA), originate just behind the aortic valve from two of the three sinuses 
of Valsalva (better described in chapter 13). Thus the heart pumps blood from the left ventricle cavity 
into the Aorta and, right after the aortic valve, part of that blood return to the heart to feed its own 
myocardium. As shown in figure 11.6, the RCA feeds the myocardium on the side of the right 
ventricle, the LCA divides into circumflex and in the anterior and posterior interventricular arteries 
to feed the left ventricle and the interventricular septum.  

 

We previously discussed carotid stenosis as a life threatening disease because it reduces blood 
allowance to the brain: Similarly, coronary stenosis is a life threatening disease because reduces blood 
allowance to the heart. The consequence of a coronary stenosis (see figure 11.7) is the ischemia 

 

Figure 11.5. Carotid endovascular prosthesis. 

 

Figure 11.6. Major coronary arteries that supply blood to the myocardium. 
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(reduction of oxygen) to the myocardium that, for this reason, reduces its ability to contract. When 
the stenosis blockage is almost complete, the oxygen allowance is reduces to near zero and the region 
of muscle perfused by that coronary undergoes to myocardial infarction. When the lack of oxygen 
persists for some time that tissue dies and becomes necrotic. 

Myocardial ischemia, or infarction, affects the ability of the heart muscle to contract, thus the ability 
of the heart to pump blood into circulation.  

An extended infarction, due to stenosis in a large upstream artery, leads to the inability for the heart 
to pump enough blood and can lead to death if not recovered rapidly before the infarcted tissue dies. 
A small infarction or ischemia, are primarily detected in terms of reduction of the cardiac function; 
thus their symptoms are those of a cardiac disease, and they are first detected by cardiac dysfunction, 
although they originate from a vascular disease.  

 

The most common approach to recognize the presence of myocardial ischemia is thus that of 
echocardiography to observed whether some region of the wall present reduced contraction. 
Sometime, the blood allowance is sufficient for an approximately normal contraction at rest, while it 
becomes insufficient under stress or exercise. Therefore, it is also common to perform a stress 
echocardiography (by exercise, or using pharmacologic stress in patients who cannot perform 
exercise) to recognize contraction abnormality in presence of a higher demand of oxygen. This occurs 
in presence of small stenosis as well as when some blood is able to reach the region through secondary 
circulation. Suspected coronary stenosis are then verified by coronary angiography that permits to 
visualize the blood flowing into the coronary tree and thus the lumens of the coronary arteries.   

Therapies for coronary stenosis are those of blood thinners to avoid their progression. Surgical 
approach is that of coronary by-pass as shown in figure 11.8. After a by-pass, the blood flow can be 
disturbed at the junctions that can become regions at further risk of stenosis. Much more common, 
however, is now the endovascular procedure. The procedure is shown schematically in figure 11.9: 
the vessel is reached by a guided catheter from the Aorta that expands the endovascular prosthesis 
and a prosthesis (stent) remains in position after the catheter is released. The changes in geometry 
and elasticity about the stent position may sometime disturb the fluid dynamics and alter the 

   

Figure 11.7. Coronary stenosis (left) and myocardial infarction (right). 
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distribution of wall shear stress. However, these are subjects at risk, where cases of restenosis are not 
more frequent than those of new stenosis, and are commonly kept under periodic control. 

 

 

Carotid and coronary stenosis are most common; however, stenosis can develop in numerous other 
arterial positions. Examples are the branches on the aortic root, or the iliac bifurcation. Nowadays, 
most arteries are solved by endovascular procedures, whose technology is continuously advancing. 
Stent are available for about any dimension and shape, and multiple stents can also be combined to 
reconstruct bifurcations and multiple branching. Typically, patients who developed a stenosis are 
subjects with higher predisposition to atherosclerosis. Therefore, alteration of the fluid dynamics in 
such patients must be carefully monitored in those sites where boundary layer separation is likely or 
is observed. 

  

 

 

Figure 11.8. By-pass coronary surgery. 

   

Figure 11.9. Endovascular coronary surgery. 
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11.3. Aneurism 

Aneurism is a local enlargement of the vessel with consequent thinning and weakening of the 
stretched tissue and that presents risk of rupture. Aneurysm are more frequent in the Aorta, at all 
levels, and in the brain arteries. The main issue associated with aneurysm is that in most cases they 
do not give flow impairment and do not produce symptoms. Therefore, they are detected by specific 
searches (for inheritance or other risk factors) or, frequently, by chance. However, when the aneurysm 
undergo to a rupture in many cases it can be fatal.  

Schematically, aneurysms are divided into two main geometric types as shown in figure 11.10. The 
fusiform aneurysm is a dilatation of the entire vessel that is characterized by a diameter large than 
normal; the saccular aneurysm is a side bulging of the vessel tissue that generates a balloon-like 
protrusion. Evidently, the categorization is not necessarily so sharp and all intermediate conditions 
may also exist. 

The fluid dynamics inside an aneurysm depends from details of its specific shape. Fusiform 
geometries usually present a central jet due to boundary layer separation at the expansion and 
recirculating regions at the enlargement. The jet may or may not be aligned with the distal vessel and 
possibly impact on the side wall of the aneurysm. In a saccular geometry, the flow is mainly 
stagnating therein with more or less wash-out of the blood. Therefore, the first fluid dynamics 
phenomenon in aneurysms is the presence of stagnation areas, that may form thrombi when there is 
not enough exchange of blood with the main flow. The second important phenomenon is the impact 
of the jet on the side wall provoking overpressure in the splash area; an impact occurring at every 
heartbeat thus hammering on a wall that is already thin and weak increasing its risk of rupture. 

 

The birth of aneurysms can be imputable to the local weakening of the tissue. This phenomenon is 
sometime related to alteration of the local fluid mechanics that creates overpressure or shear stress at 
the wall. More frequently, however, this follows an alteration of the tissue itself for multiple causes 
and often follows genetic predisposition. The progression and development of the aneurysm is 
primarily due to the continuing presence of the causes that generated it. Progression, however, can 
also be imputable to the specific alteration of the fluid dynamics therein. The major risk is its rupture 
that can bring to ictus (brain aneurysm) and internal hemorrhage, which in turn can lead to sudden 
death. 

  

 

Figure 11.10. Type of aneurysms. 
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A typical sites for the development of aneurysm is the Aorta. In the aortic root, a wall deformation in 
the proximal part of the ascending Aorta can follow from genetic causes or also be a consequence of 
anomalies in the aortic valve. In the latter case, the valve jet may presents high velocity that are 
deviated toward the aortic wall, because the orifice area is small and tilted. The impact of the jet on 
the wall creates high shear that can weaken the epithelium and produces a continuous hammering, 
every heartbeat, on such wall. This type of aneurysm is sometime associated with the presence of bi-
leaflet aortic valves, whose opening may provokes a laterally directed fast jet. In the aortic arch, 
including part of the ascending and descending Aorta, the aneurysm develops mainly because of 
genetic alteration of the wall tissue. The abdominal Aorta above to the iliac bifurcation, as shown in 
figure 11.11, is one of the most frequent for the formation of aneurysms, which deserved an own 
acronym AAA, for Abdominal Aortic Aneurysm.  

 

Fluid dynamics plays a role for the progression of the aneurysm. Consider a saccular aneurysm first. 
The flow may occur mostly along the vessel, without significant exchange with the side expansion; 
for example, when the bulge is very lateral and the opening is small and aligned with the vessel wall. 
In this case, a thrombus can likely develop inside the aneurysm and remains therein to somehow 
protect the bulged wall. This aneurysm is stable, by a fluid dynamic point of view, because flow is 
not expected to induce its growth. On the opposite, when the main flow partly enters into the side 
bulge, as partly shown in the case of figure 11.12, it can provoke additional shear and epithelial 
damage, it does not allow coagulation of blood, thus keeps the bulge camera active. In this case, the 
aneurysm is unstable, by a fluid dynamic perspective, because it is expected to progress and to present 
an increasing risk of rupture. Similar evaluations can be brought forward about fusiform aneurisms. 
In these case the complete coagulation is less common. Here, the deviation of the main flow, as shown 
in figure 11.13, and its potential impact in the wall is more important for assessing stability properties 
to aneurysm progression.  

Fluid dynamics, however, is rarely used clinically to categorize the risk of progression or rupture of 
aneurysm. Currently, this is essentially based on the size of expansion only. However, the progression 
of imaging techniques now allow evaluation of intra-aneurysm blood velocity vector field and novel 
solutions are under development to improve the categorization. 

  

 

Figure 11.11. Abdominal aortic aneurysm (AAA), of fusiform type. Sketch (left), reconstruction from 
CT image (center), picture before surgery (right). 



An Introduction to Fluid Mechanics for Cardiovascular Engineering 
 

Draft Lecture Notes  Page 123 

 

   

 

Once an aneurysm has been detected, there is no specific pharmacological therapeutic treatments 
(beside those for associated risk factors, like high blood pressure). The periodic control is crucial to 
monitor its progression. Therapies are essentially of surgical or of the endo-surgical type as sketched 

   

Figure 11.12. Flow in a saccular aneurysm where the main flow exchanges blood and provokes shear 
inside the aneurysm. 

   

Figure 11.13. Flow in an aortic fusiform aneurysm where the deviated flow impacts on the side wall. 
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in figure 11.14. Surgery is performed through bandage or, more likely, removal of the aneurysm and 
replacement with a prosthesis. Endovascular surgery is performed by inserting a stent in the vessel. 
After the insertion of the endovascular prosthesis, as shown in figure 11.15, the blood flows through 
the prosthesis while stagnating blood is left to coagulate in the lateral expansions that is excluded 
from the circulation. 

We said above that the causes of aneurysm formation are genetic or due to regional alteration of either 
tissue or flow properties. The surgical repair solves the effects but does not removes the causes that 
led to aneurism development. Therefore, frequent controls are important after surgical therapy close 
to the repaired vessel where tissues can have sub-optimal mechanical properties, as well as in other 
sites at risk. Monitoring is mainly performed looking at the vessel geometry; however, it also 
important to verify the presence of anomalies in the flowing blood that witnesses abnormal dynamics 
and possibly induces later deformations.  

 

 

  

  

 

Figure 11.14. Surgical (left) and endovascular surgical (right) treatment of an abdominal aortic aneurism. 

   

Figure 11.15. Changes in the fluid dynamics after endovascular surgery of a saccular aneurysm. 
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12. Cardiac Mechanics I: Fluid dynamics in the cardiac chambers 

12.1. Cardiac electro-mechanical cycle 

The heart is an organ than contains two biological pumping systems, the right heart and the left heart, 
each composed of an atrium that receives low pressure blood and is connected to the respective 
ventricle that pumps higher pressure blood into the circulation. The left and right sides work 
synergistically in the whole heart although they are arranged in series along the circulatory network. 
The left heart pumps oxygenated blood in the primary circulation that, after oxygen release to all 
body, terminates into the right side of the heart. The right heart pumps de-oxygenated blood in the 
pulmonary circulation, where it entrains new oxygen and, that terminates in the left heart. 

The heart anatomy, with indication of the blood flow pattern, is shown in figure 12.1.  

   

On left side, the pulmonary veins bring oxygenated blood in the left atrium. This connects to the left 
ventricle through the mitral valve, a valve with two leaflets (bicuspid valve) that opens into the 
ventricle and avoids backflow, despite the high pressure difference that can develop between left 
ventricle and left atrium, because leaflets cannot open into the atrium as they are connected to the 
inside of the ventricle wall by chordae tendineae. A thick myocardial muscle surrounds the left 
ventricle and permits its contraction to vigorously pump blood into the Aorta, the first artery of the 
primary circulation. The aortic valve is placed at the base of the ventricle, on the right side of the 
mitral valve, and separates the left ventricle from the aortic artery. It is a tricuspid valve (with three 
leaflets) that avoids backflow, for the relatively lower pressure difference from Aorta to the left 
ventricle, by the leaflet geometry that make them close with the tips aligned downstream. On the right 

   

Figure 12.1. Heart anatomy and blood flow paths. 
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side, the right atrium receives poorly oxygenated blood from the inferior and superior venae cavae, 
and connects to the right ventricle through the tricuspid valve. The right ventricle is surrounded by 
thin myocardium and pushes blood into the pulmonary artery through the pulmonary valve. 
Geometrically, the left ventricle has roughly the shape of a prolate spheroid and the right ventricle 
lies around it, for about 45 degrees, in a triangular shape. The two are separated by a part of the 
myocardium called the interventricular septum. 

The left ventricle (LV) is the principal mechanical element of the human heart. It has the function of 
a volumetric pump that receives low pressure blood from the venous system through the left atrium 
and ejects it with higher pressure through the aortic valve into the primary arterial system. The LV 
chamber is surrounded by a muscular tissue, the myocardium, that operates in a sequence of mostly 
passive relaxations, when it receives the blood, and active contractions to push it into the circulation. 
Given the fundamental mechanical function of the heart, the myocardial tissue deformation and the 
blood flow inside the LV represent a central issue of clinical evaluations.     

 

Cardiac activity is stimulated by electrical signal and develops in terms of mechanical contraction. 
For this reason the cardiac cycle is commonly referred as an electro-mechanical cycle. The 
electrocardiogram (ECG) records the polarization and de-polarization of the muscular fibers, due to 
electrical voltage difference, which give rise to fibers contraction and relaxation, respectively. One 
typical ECG trace is reported in figure 12.2. The electrical stimulation starts from the sinoatrial node 
placed about the tip of the atrium (on the right side) and propagates into the myocardium surrounding 
the atria. It produces polarization and consequent shortening of the muscular fibers: the atrial 
contraction; which pushed some blood into the ventricle; this weak polarization is noticeable in the 
ECG by a small peak that is called the P-wave. The electrical conduction converges into the atrio-
ventricular node, placed between the ventricle and the atrium where it slows-down before propagating 
rapidly into the ventricles’ branches. The QRS complex in the ECG indicates the polarization of the 
ventricular myocardial fibers, after which the ventricular contraction develops. The ventricular 
contraction, or systole, pushes blood in the circulation. When contraction is completed the muscular 
fibers depolarize, revealed by the T-wave in the ECG, and relax allowing the blood to fill the ventricle 
during diastole. Diastole is then completed by the following atrial contraction. 

The electric cycle has a parallel mechanical cycle of ventricular filling and ejection. We will keep the 
focus on the LV, unless otherwise specified, that is the most energetic element of the human heart; 
however, the right ventricle follows in parallel an analogous process. With reference to figure 12.3, 
we can correlate the electric cycle with the mechanical activity. During systole the LV contracts, the 

   

Figure 12.2. The electric cycle. 
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mitral valve is closed, its volume decreases and flow is ejected (S-wave) at systolic pressure through 
the Aorta. Then the myocardium relaxes, pressure decreases below that of the left atrium, aortic valve 
closes, mitral valve opens and blood flows into the LV that increases its volume. This is the early 
filling phase, the E-wave terminates when the atrial and ventricular pressure become comparable and 
flow into the ventricle is very small during diastasis. Afterwards, the atrial contraction completes the 
LV filling (A-wave) and the diastolic phase.   

 

The function of the LV is primarily described through parameters as those of a volumetric pump. The 
volume at end-diastole, VED, is the maximum size of the LV chamber that then contracts to reach a 
minimum value at end-systole, VES. Therefore the stroke volume SV=VED-VES is the volume of blood 
ejected by the LV into the circulation, as well as the volume entering during diastole. The SV is the 
volume the passes through each cross-section of the circulatory network during one heartbeat.   

The SV is usually normalized with the VED to provide a dimensionless measure of the entity of the 
contraction relative to the available volume. This measure is defined ejection fraction  

 EF = VED−VES
VED

= SV
VED

 ; (12.1) 

which represents the most common clinical parameter to assess the LV function. Evaluation of EF 
requires the evaluation of LV volumes, which can be performed with numerous methods based on 
imaging, from echocardiography to MRI and others. In normal hearts the EF is usually about 65%, 
and considered abnormal when it falls below 55% (although exact figures depend on the measurement 

   

Figure 12.3. The electro-mechanical cycle. 
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method). The reduction of the EF commonly reveal the presence of a cardiac dysfunction, although 
there are also few pathologies that present a preserved EF.   

12.2. Fluid dynamics inside the left ventricle (with mention to the other chambers) 

Heart function is about creating and sustaining motion of blood. The previously discussed electro-
mechanical cycle is therefore associated with the dynamics of blood flowing through the LV from 
mitral to aortic valve.  

Despite this apparent simplicity of the heart cycle, the fluid dynamics inside the left ventricle is a 
very intense dynamical phenomenon and represents a fundamental element in cardiac function. The 
jet develops impulsively; within a few hundreds of second, it reaches speeds above the meter per 
second to enter a few centimeters long cavity. Then, just as rapidly, flow must reverse the direction 
of motion of 180° to re-direct toward the aorta where it will exit at the same high speed. The diastolic 
jet presents boundary layer separation from the tips of the mitral valve and immediately gives rise to 
a swirling motion within the cavity, as exemplified in figure 12.4. The mitral orifice is slightly offset 
with respect to the ideal ventricular axis for which the jet redirects towards the lateral wall and gives 
rise to an asymmetrical swirling structure. The underlying phenomenon is that of the formation of a 
vortex ring, both during the A-wave and during the E-wave, that then dissipates and stretched toward 
the outflow tract at the beginning of systole.   

 

The length of the jet, the phenomena associated with its impact on the endocardial tissue, as well as 
the development and dynamics of the vortex structure, depend on various physiological and pato-
physiological factors. A fundamental role is given by the geometry of the chamber and its synergistic 
contraction and elastic relaxation, as well as the geometry of the mitral valve orifice. All these 
concurring elements can make the difference that makes the vortex a stable structure maintaining 
kinetic energy or an unstable structure that creates turbulence. It must also be considered that blood 
is an incompressible medium. All myocardial regions must work in harmonic synergy to push blood 
toward the aortic exit and receive blood evenly; an incorrect timing of contraction or relaxation in 

  

 

Figure 12.4. Blood motion inside the left ventricle during diastolic filling. Sketch (left), streamlines on 
the central longitudinal plane reconstructed from echocardiography (center), three-dimensional vorticity 

structure computed by numerical simulations (right). 
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one region of the wall has the result of pushing blood toward the other region, thus creating 
intraventricular pressure gradients that are not appropriate to create blood motion. 

Once we have clear in mind the featuring phenomena of LV fluid dynamics we can briefly mention 
what is known about the other chambers. Blood motion in the left atrium is driven by the pulmonary 
veins that enter the atrium transversally. Very much dependent from the angle of attach of these veins, 
the resulting flow can take a rotary motion or be more irregular and weakly turbulent; when the mitral 
valve opens this possibly rotary motion flows down into the left ventricle in a funnel-like patters. 
These considerations are extracted from few visualization and not much more is known. Similarly, 
little is known about the right atrium, which receives blood from the inferior and superior cavae veins. 

Currently there are only few works performed with respect to characterization of right ventricular 
(RV) fluid dynamics, although RV function has been shown to be a major determinant of clinical 
outcome in numerous cardiac dysfunction. Additionally, it is worth to mention that, because the 
circulation system is a closed one, the volume of blood ejected from the RV must be equal to that 
ejected by the LV.  

Evaluation of RV geometry and blood motion is extremely challenging because of the anatomic and 
functional complexities of this chamber, which is difficult to visualize by two-dimensional imaging. 
The flow inside the RV is expected to form a complex three-dimensional (3D) vortex formation from 
the tricuspid valve as well as redirection of the jet towards the lateral pulmonary outflow. Numerical 
and imaging results revealed a complex flow field. During diastole, a vortex ring develops past the 
tricuspid valve. Given the transversal shape of the RV, one side of the vortex ring is close to the 
interventricular septum where it rapidly dissipates; the remaining portion of the vortex ring gets 
stretched, during systole, toward the converging pulmonary outflow giving rise to a swirling outflow 
(upward on the right side and downward on the left side). However, the flow within the RV can 
becomes highly disturbed mainly due to the complex crescent-shape geometry. This highly vortical 
flow may promote proper mixing of the blood in the RV, thus prevents blood stagnation. 

The fluid dynamics inside the LV has a critical role in two fundamental aspects. The first is a 
kinematic aspect, about the efficiency of the flow transit; the second is a dynamic aspect, about the 
exchange of forces between fluid and surrounding tissues. 

(i)  Kinematic aspects: Flow transit 
The quality of flow transit corresponds to verifying the presence of stagnation regions and the time 
of residence of blood elements inside the chamber. The presence of stagnating regions reduces the 
wash-out of blood in the LV and represents a risk factor for thrombus formation; especially when the 
higher residence time is accompanied by a higher shear stress that can trigger aggregation 
mechanisms.  

Major advanced in this point were achieved by processing 3D phase-contrast MRI acquisitions, 
usually called 4D Flow MRI, that provides the 3D velocity vector field in the entire LV (with the 
limitation of moderate time and space resolution, and of having results for an average heartbeat 
instead of real-time). One approach proposed to subdivide the LV end-diastolic volume, VED, into 4 
sub-volumes depending on whether they reside more or less that one heartbeat in the LV chamber, as 
follows. The direct flow, Vdirect, is the volume of blood that entered during diastole and transits 
directly to the aortic outlet during systole, thus residing less than one heartbeat in the LV. The retained 
volume, Vretained, is the part that entered during diastole that is not ejected during the following systole 
but during the next one. The delayed volume, Vdelayed, was already present in the LV at the beginning 
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of diastole and is then ejected during the following systole. Finally, the residual volume, Vresidual, that 
was present in the LV and yet not ejected in the next systole. In a formula, the VED is divided as 

 VED = Vdirect + Vdelayed + Vretained + Vresidual . (12.2) 

The first two terms on the right hand side are the volumes that are the ejected during systole, thus 
their sum is the stroke volume VED–VES= Vdirect+Vdelayed; the other two terms are those remaining in 
the LV at the end of the systolic ejection, VES=Vdelayed+Vresidual. It can be noticed that the four sub-
volumes are related by three linear relationships (see Eq. (12.2) and lines below). Therefore three of 
them can be recovered from the knowledge of a single one (typically Vdirect, but any other could be 
used) that represents a single independent measure of the LV blood transit. From the knowledge of 
this and of the LV volumes, VED and VES, all other sub-volumes can be computed by their linear 
combinations. It was shown that the direct flow component was reduced in dilated LV with respect 
to normal hearts. 

The analysis of flow transit and residence time is relevant for recognizing stagnating regions and 
helping to stratify the risk of thrombus formation. A more systematic approach to recognize 
stagnation regions can be obtained by resolving a simple pure transport-diffusion equation for the a 
passive scalar that corresponds to individual blood particles “marked”, for example, at the end of 
diastole. Call C(x,t) the concentration of particles, the diffusion-transport equation is 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝐶𝐶 = 𝐷𝐷∇2𝐶𝐶; (12.3) 

that can be solved with relative ease, numerically, once the velocity field v(x,t) is known. This can be 
solved starting from end-diastole with the condition that C=1 everywhere in the LV volume. The 
concentration will decrease after every systole of an amount that depends on the quality of blood 
washo-out. The average value of C is curve that is equal to 1 initially and decreases after every 
heartbeat (typically exponentially). Normally, about 50% of end-diastolic blood is ejected during the 
first systole (the average value of C is about halved after one heartbeat); this one-beat reduction is 
equivalent to the Vdirect previously introduced. This approach, however, produces a curve, instead of 
a single value, which provides a more comprehensive information of the wash-out process. In dilated 
ventricles, the curve decays more slowly and in presence of stagnation regions the tail of the curve is 
sustained for long time because the region with blood stasis is more difficult to wash-out. 

This approach can also provide maps of concentration or, with minor changes, of the residence time. 
It can also be combined with the entity of shear stress, to weight the measure of stagnation with the 
potential degree of biological activation for developing thrombus. Clinical studies along this line are 
still at an early stages; however they are promising for providing quantitative measures of the risk of 
thrombus formation and better modulate the anticoagulation therapy in subjects at risk. 

(ii)  Dynamic aspects: Hemodynamic forces or intraventricular pressure gradients  
Hemodynamic forces are the forces acting on blood to produce acceleration. The field of the 
hemodynamic force per unit volume f(x,t) can be computed from the fluid acceleration, once  the 
intraventricular velocity field v(x,t) is known, as  

 𝒇𝒇 = 𝜌𝜌 �𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗�. (12.4) 

This field is essentially equivalent to the intraventricular pressure gradient field (IVPG), ∇p, which 
is known from literature (with measures made by catheter in animals) to be fundamental in LV 
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function. Indeed, the ∇p field can be obtained after rearrangement of the Navier-Stokes equation as
  

 ∇𝑝𝑝 = −𝜌𝜌 �𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

+ 𝒗𝒗 ∙ ∇𝒗𝒗� + 𝜇𝜇∇2𝒗𝒗, (12.5) 

which differs from (12.4) for the viscous friction (last term) that is usually nearly negligible along the 
short intra-chamber paths.  

 

It is sometime suggested to directly compute the relative pressure field p by solving the Poisson’s 
equation  

 ∇2𝑝𝑝 = −𝜌𝜌∇ ∙ (𝒗𝒗 ∙ ∇𝒗𝒗) (12.6) 

obtained by taking the divergence of Eq. (12.5). When solving (12.6), however, care must be taken 
in imposing appropriate boundary conditions because this is a second order equation on pressure and 
the average pressure gradient (tri-linear terms in pressure) is solution of the homogeneous Laplace 
operator and its value follows from the boundary conditions only.   

Hemodynamic forces, or IVPGs, drive blood motion during both ventricular ejection and ventricular 
filling as shown in figure 12.5. They represent the ultimate result of LV deformation and play a central 
role in cardiac function that governs blood flow. Moreover, flow-mediated forces influence and 
participate to cardiac adaptation in presence of pathologies. Despite their potential relevance, 
hemodynamic forces or IVPGs have never been utilized in clinical cardiology due to the complexity 
of their acquisition.  

The usage of hemodynamic forces has been recently renewed with the introduction of methods able 
to estimate them non-invasively by medical imaging. Clinical results are under way and much 
promising as a natural early indicator of sub-clinical physiological changes and a predictor of 
cardiovascular diseases. 

   

Figure 12.5. Relationship between pressure gradient and flow acceleration in phases of the cardiac cycle. 
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12.3. Fluid dynamics in cardiac pathology 

Pathologies of the left ventricle can be roughly classified, by a mechanical viewpoint, as those due to 
a reduced myocardial contraction (perfusion defect) or to a general inability to properly deliver an 
appropriate contraction/relaxation rhythm that can progressively lead to the syndrome of heart failure. 
Further pathologies are imputable to dysfunctions of electrical conduction; some of these can be 
purely neurological defects, like fibrillations, some others can lead to improper contraction or 
relaxation and, either mechanically or therapeutically, are included in the class of heart failure. Other 
dysfunctions are imputable to pathologies of cardiac valves, which are discussed later in dedicated 
sections. It should altogether keep in mind that many such pathologies are inter-related and the present 
classification is driven by discussion on intraventricular fluid dynamics more than on clinical 
scenarios.    

(i)  Perfusion defects (myocardial ischemia)  
The most known pathology of the left ventricle is ischemia, whose extreme is the myocardial 
infarction, that is a consequence of the reduction of myocardial perfusion due to coronary stenosis. 
This is, therefore, a consequence of vascular disease; when a coronary reduces blood flow, the 
myocardial territory perfused by that vessel receives less oxygen allowance and reduces its contractile 
ability. The ischemic disease is commonly considered a systolic dysfunction because the myocardium 
is unable to properly contract during systole. 

Ischemic diseases present a reduction of the EF; this reduction is mostly due to regional contractile 
defect, in the poorly perfused myocardial region, that can be recognized by cardiac imaging methods 
allowing visualization and quantification of myocardial motion. When this defect is small, it can be 
hidden and may become appreciable only under stress condition, thus requiring imaging performed 
under exercise of pharmacologic stress. In alternative, perfusion defects can be evaluated by perfusion 
imaging techniques, available in nuclear imaging, MRI and, sometime, echocardiography. When 
recognized, they are eventually evaluated by coronary angiography to assess the actual coronary 
stenosis as discussed previously. 

Intraventricular fluid dynamics is also affected by myocardial ischemia. Blood near a segment that 
presents a reduced motility is more stagnant, especially when this is near the LV apex. This gives a 
reduction of wash-out and increased risk of thrombi. It also creates an imbalance in the 
intraventricular forces with over-stresses in some regions, even distant from the infarcted zone. Over-
stresses, or anomalous stresses, can progressively induce a feedback and ventricular adaptation that 
alters the LV geometry with potential further pathological implications.  

Ischemia is typically solved by coronary endovascular surgery. However, when the solution is not 
complete, for example when one or few are treated among multiple stenosis, some ischemia may 
remain and give ventricular imbalances. Similarly, when the ischemia has lasted for too long time, 
some regions of the myocardium may not be able to fully recover its contractile ability. In presence 
of such remaining imbalances may induce ventricular adaptation and progressive dysfunction (up to 
heart failure). 

(ii)  General mechanical dysfunction (heart failure)  
Heart failure (HF) is the principal social threatening cardiac progressive dysfunction. It presents either 
as a primary pathology or as a consequence of numerous (almost all) primary diseases. It can be a 
consequence of partly recovered ischemia; it can follow electrical dysfunctions that do not allow a 
synchronous of contraction; it can simply due to varied stiffness/thickness in the myocardium (for 
example due to hypertension) that does not allow a uniform relaxation, to cite a few examples. On 
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the other hand, it can develop as a primary disease following poor medical conditions. In any case, 
heart failure is the terminal stage of a progressive disease associated with impaired cardiac function.   

The clinical syndrome of heart failure is associated with the development of ventricular remodeling: 
a modification of ventricular geometry that progressively alters its functional parameters whose final 
stage is the LV dilatation, known as dilated cardiomyopathy (DCM). Remodeling represents a 
physiologic adaptation feedback that often does not lead to a stable configuration rather to a 
progressively worsening of the cardiac function and eventually to failure. Despite modern treatments, 
hospitalization and death rate remains high, with nearly 50% of people diagnosed with heart failure 
dying within 5 years.  

 

The physiological causes leading to LV remodeling (as exemplarily sketched in Figure 12.6 for a case 
of ischemia) are mainly ascribed to an increase of stress on the myocardial fibers (around an ischemic 
area, or because of hypertension etc.), which stimulates the growth and multiplication of cells giving 
rise to an increase of muscular thickness (hypertrophy) or extension (local dilatation). However this 
picture is unable to differentiate patients exhibiting differences in LV structure and function, it is not 
consistently predictive of the future risk of cardiac remodeling and does not clarify how a regional 
disease rapidly remodels the LV as whole. The availability of predictive models that can forecast 
progression or reversal of LV remodeling following initiation of therapeutic interventions would be 
invaluable for overall risk stratification, improvement of preventive healthcare, and reduction of the 
perspective social burden. 

Progressive disease and heart failure have numerous possible causes and can also develop in different 
ways, as shown in figure 12.7.  

Heart failure is most commonly associated to ventricular dilatation (DCM). In this case, the 
myocardium is stretched and thinner. The heart muscle contract very little and is able to eject a 
sufficient SV with small contraction because of the large volume. The EF is well reduced, and we 
talk about HF with reduced ejection fraction (HFrEF), also referred to as systolic heart failure. In 
HFrEF, the intraventricular fluid dynamics is very weak; the SV is a small percentage of the chamber 
volume. Typically, blood flow takes either a continuous weak rotary motion, when the inflow is 
aligned to feed the central vortex, or it presents a weak turbulence. In both cases, flow is featured by 
stasis and thrombus risk. Intraventricular hemodynamic forces are reduced and incoherent. 

Another type of HF is associated with thickening and/or stiffening of the myocardium. The ventricular 
volume is about normal and the pumping parameters are also normal but the ventricle does not relax 

   

Figure 12.6. Progression of left ventricular (LV) remodelling after an ischemic event. Left side: a 
ventricle with normal geometry and a regional reduced contractility. Centre: a moderately dilated 

ventricle. Right: a dilated cardiomyopathy at the late stage of heart failure. 
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properly during ventricular filling because of its stiffness. The EF is thus preserved, usually because 
the ventricle is hypertrophic and the inward thickening helps supporting systolic ejection. volume 
reduction. In this case, that is more difficult to recognize, we talk about HF with preserved ejection 
fraction (HFpEF), also referred to as diastolic heart failure. Intraventricular blood flow in this case is 
more similar to normal; however, dynamical difference reflecting the altered filling pattern are 
expected although not studied, yet. 

 

The causes leading to LV remodeling are still largely incomplete. During the progression there are 
changes in the pumping function. These can be noticed by changes in the relative intensity between 
E-wave and A-wave, with an extra-burst by atrial contraction when early filling is insufficient, or 
alteration of timing of acceleration and decays of E-wave. Clinicians use the combination of 
numerous indicators trying to figure out the specific pathological scenario; however a comprehensive 
mechanical picture is still missing. 

It has been recently shown that alteration in the intraventricular fluid dynamics are observable well 
before the tissue has undergone to noticeable often-irreversible changes. Given the incompressible 
nature of blood, in a cardiac chamber that is filled with blood, every segment is somehow in touch 
with the others and, as a result, the blood inertia associated with the rapid acceleration-deceleration 
about one region can instantaneously influence distant regions. The role of flow on cardiac 
remodeling has been considered in the past only through global indicators like volumetric changes, 
the inflow velocity of E- and A-wave, or combinations thereof. The absence of more specific fluid 
dynamics indicators is mainly due to the lack of technologies able to evaluate intraventricular fluid 
dynamics with sufficient ease and reliability.  

Normal intraventricular fluid dynamics is known to be associated to a physiologically stable cardiac 
function that does not lead to remodeling. Vice versa, a progressive disease corresponds to a 
physiologically unstable state that is expected to proceed further away from normality. As shown 
schematically in figure 12.8, an alteration of intraventricular fluid dynamics induces alteration of 
forces and shear stress on the tissue, these can trigger adaptation feedbacks and bring to progressive 
dysfunction. In an initial phase, the alteration of flow-mediated stresses may lead to stiffening of the 

   

Figure 12.7. Types of remodeling and heart failure. 
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myocardial tissue that sometime is associated to the increase of myocardial thickness (hypertrophy). 
This can be a condition going to HFpEF, or a quick passage toward progressive tissue dilatation with 
further reduction of LV function and eventually going to the more common HFrEF. 

 

 
Therapies for heart failure are complicated as they should go to the cause leading to remodeling. Moreover, 
HF often involves dysfunction in physiologically related organs and, therefore, precise guidelines are not 
available, and therapies are varied. 

Multipoint pace makers were shown to be one successful option in many cases, especially when HF is 
associated with a disturbed electrical activity (either as a cause or a consequence of HF), because they permit 
to restore a synchrony in LV contraction and relaxation. This approach, called cardiac resynchronization 
therapy (CRT), requires the definition of stimulation intervals in the pace-maker to ensure optimal therapeutic 
outcome. Typically, they can be chosen by electric conduction optimization or though synchronization of 
myocardial tissue motion. However, the rate of success is still low (nearly 40% patients do not benefit of CRT). 
Fluid dynamics offers a global perspective to define the proper contraction pattern, by ensuring that 
hemodynamic forces are maximized and properly aligned along the base-apex direction. However, studies are 
currently in progress to verify its effective clinical results. This concept can, however, be generalized to 
evaluate the normality of cardiac function after the acute cause that may, or may not, lead to heart failure. 
These include endovascular prosthesis, valvular repair or transplant, and so on.  

Intraventricular fluid dynamics appears as the first mechanical factor modified after, even minor, alteration of 
cardiac function. It appears a promising central element for the prediction of progressive disease or of 
therapeutic outcomes.  

  

   

Figure 12.7. Flow-mediated path toward heart failure. 
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13. Cardiac Mechanics II: Heart Valves  
The heart contains four valves, as sketched in figure 13.1. Two of them are atrioventricular valves, 
the mitral valve on the left side and the tricuspid on the right side; the other two valves are for the 
communication from the ventricle to the circulation, the aortic valve and the pulmonary valve for the 
left and right ventricles, respectively. The main function of the cardiac valve is to allow flow in one 
direction and prevent backflow.  

During systole, the ventricles contract and eject blood through the aortic and pulmonary valves, for 
the LV and RV, respectively, while the other valves remain closed. Ventricular contraction is made 
of an inward motion of the ventricular endocardial surface, combined with a shortening of the base-
apex length. Given that the apex is relatively fixed, shortening is obtained by the motion of the entire 
valvular plane downward. Vice versa, during diastolic ventricular expansion, the ventricles expand 
and the valvular plane moves upwards. This upward-downward motion creates a relative velocity at 
the valve that supports ventricular filling-emptying and helps anticipating valvular opening and 
closure. It must otherwise reminded that the velocity measured just above and below the valves can 
be non-zero when the valves are closed because of the motion of the valve itself.  

Despite their overall common function, cardiac valves present important differences, due to the actual 
anatomical position and to the fluid dynamics operating conditions. The therapeutic solution can also 
be very different. We discuss here the two main valves sited on the left side, as the valves on the right 
side are much less studied and their solutions are mostly borrowed from the left ones. 

 

   

Figure 13.1. Valvular plane containing the 4 cardiac valves (seen from top of ventricles). 
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13.1. Aortic valve 

Aortic valve is situated in the left ventricular outflow tract where the aorta begins. It consists of three 
lunar-shaped flaps of tissue, referred to as cusps. The leaflets of the aortic valve are attached partially 
to the muscular walls of the LV. The aortic valve is crossed by flow ejected from the LV into Aorta 
during systole and its function is of preventing backwards flow into the LV during diastole when the 
aortic remains closed. Once it is closed, the cusps are coapting, aligned and separate the LV from the 
aorta. Artistic representations of the aortic valve are shown in figure 13.2. 

The anatomy and function of the aortic valve have inspired studies for the past 600 years beginning 
with Leonardo da Vinci who studied aortic valve and the role of the sinuses of Valsalva. The Valsalva 
sinuses are dilatations in the aortic wall, just behind the valve, in correspondence of each of the 
semilunar cusps of the aortic valve. Generally, there are three aortic sinuses, the left, the right and the 
posterior, each one in correspondence of a leaflet. The left aortic sinus gives rise to the left coronary 
artery, and the right aortic sinus gives rise to the right coronary artery, while no vessels arise from the 
posterior aortic sinus, which is known as the non-coronary sinus. 

 

The aortic jet presents as a turbulent jet with Reynolds number that can reach about 10,000 (velocity 
near 2 m/s and orifice diameter about 2 cm). It is probably the only fully turbulent flow in the 
circulatory system.  The Strouhal number is about 10-2, thus the jet is well above 10 diameters long.  

Given the enlargement at the Valsalva sinuses, and the close-to-triangular shape of the open valve, 
the systolic flow separated from the nearly straight edge given by each of the open leaflet and detaches 
downstream as a free shear layer that rolls-up forming a vortex structure that develops main 
recirculation in the Valsalva sinuses. The role of vortex formation in the sinuses is not completely 
understood, yet. This backflow was initially considered to help the leaflet closure at the end of systole; 
it is also expected to facilitate the flow into the coronaries. More likely, the coronary flow is 
principally driven by the backflow that develops near the boundary during diastolic deceleration while 
the bulk flow, at the center of Aorta still moves downstream, and by the reflected pressure wave. 
Surely, the presence of the Valsalva sinuses prevents the leaflet to touch the aortic wall and to close 
of the coronary entrance. 

   

Figure 13.2. Aortic valves, close (left) and while opening (right). 
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The aortic jet exists from a rounded triangular orifice into the center of the Aorta thus, despite its 
strength, it does not interferes directly with the aortic walls; the jet then develops into helical 
streamlines when going through the aortic arch as shown in figure 13.3 (left side).  

Normal aortic valve is tricuspid; however, a significant percentage of the population (about 2%) is 
born with a bicuspid aortic valve (BAV) where two leaflets are not fully separated or they are totally 
fused as one. One possible effect of BAV is the reduced orifice size when the valve is open, giving 
rise to even stronger jet and possible higher resistance to the ejection requiring an extra effort to the 
LV with consequences similarly to what happens in valvular stenosis (discussed below). Another 
important possible phenomenon related to a BAV is the asymmetric opening of the unequal leaflets, 
which may deviate the jet towards the aortic wall. This increases the risk of damaging the wall and 
developing aneurisms in the aortic root. An example of flow recorded (by MRI) in normal and BAV 
individuals is shown in figure 13.3. BAV subjects can have a normal life; however, given the 
additional risk factors, they must be monitored to ensure absence of progressive diseases 
development. 

 

 

13.2. Pathologies of the aortic valve 

Major valvular pathologies can be roughly grouped, from a mechanical standpoint, as those due to 
valvular stenosis or to valvular insufficiency. 

Valvular stenosis is a reduction of the valvular orifice due to calcification of the valve leaflets that 
makes them less elastic and more difficult to open as sketched and shown in figure 13.4.  Valvular 
stenosis thus reduces the effective orifice area and provokes a stronger jet entering into the Aorta, 
with velocities that can reach several meters per second, which means higher turbulence and risk of 
damage to the arterial wall when such jet is deviated.  

   

Figure 13.3. Aortic jet under normal valve (left) and for bi-leaflet aortic valve (right). 
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The major consequence imputable to valvular stenosis is the higher energetic resistance to ejection:  
higher pressure drop across the aortic valve that, at peak systole, is proportional to the square of 
velocity, see equation (6.10). This additional pressure loss can be significant (if velocity is in m/s, 
pressure loss in mmHg is given by 4v2) and it is totally in charge of the LV as it occurs immediately 
at its exit. This means that the ventricle requires to build up a higher pressure to get the same output 
pressure in the Aorta. In turns, LV requires an extra effort and the myocardium is subjected to higher 
stresses. Such a condition can likely give rise to tissue stiffening and possibly to LV dilatation setting 
the path toward heart failure as discussed before. 

The other major pathology of aortic valve is valvular insufficiency. In valvular insufficiency, the 
leaflets are looser, or the valve is dilated, and leaflets coaptation is insufficient; as a result the leaflets 
are unable to properly close the valve during diastole giving rise to valvular regurgitation. Valvular 
regurgitation means that, during LV filling, when the LV pressure decreases and blood flows in 
through the Mitral valve, some flow also enters into the LV back from Aorta. This means that part of 
the net LV pumping effort is wasted because a percentage of the ejected blood is returned to LV itself.  

  

  

 

Figure 13.4. Aortic valve stenosis. 

   

Figure 13.5. PISA method to estimate the regurgitant flow from color Doppler echocardiographic image 
proximal to the regurgitant orifice. 
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Measuring the entity of the regurgitant volume is the principal mean to assess the severity of aortic 
insufficiency. This can be performed by MRI, recording the velocity across a plane just above or 
below the valve; this is the most accurate option although a relatively time-consuming procedure. A 
simpler, less accurate, approach is by color Doppler echocardiography that permits to look at the color 
map of the vertical component of blood velocity. The regurgitant downstream jet is not measurable 
because velocities are too high and disturbed; instead the color Doppler image proximally to the 
regurgitation orifice shows a smooth pattern corresponding to converging flow that can be somehow 
analyzed. This method, called Proximal Isosurface Velocity Area (PISA method), hypothesizes that 
the converging upstream velocity is axially symmetric; therefore the value of the Doppler (vertical) 
velocity, 𝑣𝑣Doppler, at a distance R on the axis is assumed to be equal to the radial velocity over a 
hemispherical shell as shown in figure 13.5. Therefore, the regurgitant discharge is obtained, by 
continuity, as that crossing the shell 

 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 2𝜋𝜋𝑅𝑅2𝑣𝑣Doppler. (13.1) 

This gives the regurgitant flow rata at peak diastole; it would require a time integration to be 
transformed in volume. The regurgitant volume, 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, is often estimated by other means; typically, 
recording the time profile of the mitral inflow velocity (by pulsed-wave Doppler) and assuming a 
proportionality between velocity peak value (vpeak) and velocity time integral (VTI) that can be 
performed in most echographs; 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = VTI × 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑣𝑣peak. The entire PISA approach is very 
approximate, some further improvement has been introduced by using 3D color Doppler data and 
corrections for irregular orifices. It has the merit to be a quick procedure feasible routinely; 
nevertheless, it should be repeated to improve reliability of results and used as a preliminary 
information only and not as a rigorous measurement. 

 

   

Figure 13.6. Flow in the LV in presence of Aortic valve regurgitation. 
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The entity of regurgitation is not the only matter responsible for the clinical severity of the 
insufficiency. Aortic regurgitant jet can conflict with the mitral inflow as shown in figure 13.6, giving 
rise to turbulence and disturbed LV filling that may further affect the LV function.  

Because of aortic insufficiency, the LV tends to dilate for the extra volumetric load coming from the 
regurgitant blood volume. At the same time, the reduction of net flow downstream in the Aorta 
induces metabolic feedback to stimulate the LV pumping to allow the necessary blood in the 
circulation. This requirement of an abnormal an extra effort to a LV, that was already increasing its 
volume, sets again the path toward heart failure.  

The therapeutic solutions to aortic stenosis as well to aortic regurgitation are those of surgical valvular 
repair or, most commonly, valvular replacement. Surgical valvular replacement contemplates the 
substitution of the diseased valve with a prosthetic one that is directly sutured in its place. This type 
of surgery may also include the substitution of the aortic root with a prosthetic vessel. Prosthetic 
valves are typically of two types: mechanical valves and biological valves depicted in figure 13.7.  

 

     

Several types of mechanical valves were introduced in the past and are still designed. Currently the 
most common is the bi-leaflet mechanical valve; which ensures life-long duration. However, due to 
the hardness of the material, mechanical valve produce the phenomenon known as hemolysis: they 

  

 

Figure 13.7. Prosthetic valves: bi-leaflet mechanical valve (top-left) and the same with prosthetic vessel 
(top right); tri-leaflet biological valves (bottom) 
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break red blood cells that induce coagulation for repair and higher risk of thrombus formation. For 
this reason, they also require life-long anticoagulant medication. Mechanical valves also largely alter 
the fluid dynamics downstream the valve. The aortic jet presents multiple shear layers with altered 
vortex formation process and higher turbulence. The relationship between the three leaflets and three 
Valsalva sinuses is broken thus other contraindications may accompany such an implant. A more 
natural alternative is that of biological valves that better mimic the original natural geometry and do 
not require anticoagulant. Biological valves, on the other side, are not guaranteed for life-long 
duration although technological improvements give confidence for their reliability.  

A widely used solution that avoids open surgery is the Trans-catheter Aortic Valve Implant (TAVI), 
or equivalently called Trans-catheter Aortic Valve Replacement (TAVR). In TAVI the valve is placed 
inside an endovascular prosthesis that can be positioned by catheter avoiding surgery. TAVI is 
described in figure 13.8. In this procedure, the previous valve is initially squashed at the wall, then 
the new valve is expanded and placed over the previous one. The resulting fluid dynamics is very 
similar to that of a biological valve and does no exhibit critical phenomena.    

 

13.3. Mitral valve 

Mitral valve is the bi-leaflet valve that relates left atrial chamber to the left ventricle. The valve 
consists of two leaflets of unequal size, with a coaptation between the two that takes a D-shape, as 
artistically shown in figure 13.9. The anterior leaflet is the largest, positioned between the mitral 
orifice and the left ventricular outflow tract, while the smaller posterior leaflet is placed to the left of 
the mitral orifice close to the posterior-lateral wall. 

The leaflets edges are connected to the papillary muscles via cord-like tendons, called chordae 
tendineae, that prevent valvular opening toward the atrium. While the aortic valve is inside a tubular 
shape vessel, the Mitral valve is contained in the atrioventricular plane; here, the Mitral valve is 
surrounded by a fibrous annulus, that approximates a hyperbolic paraboloid similar to a riding saddle, 
which modulates its shape during the heartbeat.   

 

  

Figure 13.8. Trans-catheter aortic valve implant (TAVI). 
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The transmitral flow is characterized by two impulses, the early filling wave (E) and the atrial 
contraction (A). Before the early filling, at the end of systole, the ejected flow decelerates and LV 
pressure is lower at the apex than at the LV base. At the passage between systole and diastole, the 
myocardial contractile elements are deactivated and release the stored elastic energy, this results in 
further pressure drop inside the LV whose response is the opening of mitral valve. Both these two 
mechanisms about the transition between systole and diastole are associated with a lower pressure at 
the apex than at the LV base and both actively contribute to early ventricular filling impulse. 
Afterwards, before the end of diastole, the electric stimulation starts with the atrial systole and the A-
wave completes the LV filling. The relative entity of E and A-waves is an indicator of LV function. 
The E and A peaks of mitral velocity are usually assessed by Doppler echocardiography; typically, 
E-wave velocity is some greater than the A-wave; this ratio is reversed when early filling is 
insufficient and additional effort is given by atrial contraction, suggesting diastolic dysfunction. This 
ratio is also reversed in normal fetal hearts before the cardiac maturation. 

The anatomic asymmetry of the Mitral valve has a fundamental influence on the development of LV 
fluid dynamics. The vortex formation process is made of a distorted vortex ring that is stronger on 
the anterior side and weaker on the posterior; that deviates the ring towards the posterior side (because 
the anterior side has a higher self-induced velocity, while the posterior side is slowed down by the 
image vorticity at the wall). As a result, the larger leaflet on the anterior side helps to redirect the 
blood flow along the lateral-posterior wall. The anterior vortex eventually occupies most of the LV 
cavity and ensures the development of a proper circulation inside the LV (as previously shown in 
figure 12.4). Normal transmitral flow is usually laminar and relatively low in velocity (usually less 
than 100 cm/s); nevertheless the vortex formation creates vortical structures that are complex 
although not strictly turbulent.  

13.4. Pathologies of the mitral valve 

Like for the aortic valve, Mitral stenosis, shown in figure 13.10, is due to calcification and reduces 
the orifice size. The mitral jet presents higher velocities and can be deviated inside the LV. This can 

   

Figure 13.9. Mitral valve, close (left) and open (right) showing the chordae tendineae attaching the 
leaflets to the papillary muscles inside the ventricle. 
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create disturbed even turbulent flow with higher energy dissipation and abnormal shear and pressure 
increase on regions of the wall. The narrower valve is also associated with the increase of transmitral 
pressure drop, with consequent impairment of LV filling, higher atrial pressure. The increased atrial 
pressure can influence back pulmonary circulation, produce pulmonary congestion and higher RV 
pressure. These effects can set the path towards diastolic heart failure and RV dilatation.     

 

Mitral insufficiency can present as a secondary effect to LV dilatation; in this case the entire LV 
increases its volume and the mitral annulus also enlarges such that the leaflets are unable to cover the 
entire mitral area allow backflow. Mitral insufficiency, however, frequently develops as a primary 
valvular disease in presence of Mitral valve prolapse. Mitral prolapse is due to the growth of the 
leaflets that become wider, longer and looser. The leaflets of the mitral valve bulge (prolapse) back 
into the left atrium for the LV pressure during systolic contraction, like a parachute held by the 
chordae tendineae at the edges. Prolapse is a frequent phenomenon giving no specific symptoms and 
not requiring treatment. However, it must be monitored because, as shown in figure 13.10, eventually 
the loose leaflets may not properly close the valve and allow blood flowing backward into the left 
atrium producing mitral valve regurgitation.  

The severity of mitral regurgitation can be evaluated by measuring the regurgitant volume with the 
same imaging methods (MRI or echography) previously described for aortic valve regurgitation. 
Mitral regurgitation reduces the effectiveness of LV pumping because part of the stroke volume is 
not ejected into the Aorta and flows backwards into the left atrium. This induces metabolic feedbacks 
to increase LV pumping and stressing the LV, especially under exercise or stress. The most evident 
pathologic consequence of severe regurgitation is the dilatation of the left atrium, which must comply 
with the additional blood volume and is subjected to systolic LV pressure. When the atrial dilatation 
becomes important mitral prolapse requires treatment.  

Pharmacologic treatments to mitral valve diseases can reduce the effects of this pathology but not 
heal the defect. A surgical solution to mitral valve stenosis or, sometime, prolapse is the replacement 
of the diseased valve with a prosthetic valve. As discussed for the aortic valve, prosthesis can be 
either biological or mechanical. A prosthetic valve alters the intraventricular fluid dynamics and can 

   

Figure 13.10. Mitral valve stenosis. 
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give rise to further problems in LV function. It was shown, see figure 13.12, that the symmetry of a 
mechanical bi-leaflet, in contrast with natural asymmetry of the Mitral valve, increase turbulence and 
may even reverse the vortical circulation inside the LV. However, as these observations are difficult 
to perform clinically, there are no indications on the consequences of such LV flow alterations. 

 

 

 

   

Figure 13.11. Mitral valve prolapse and regurgitation. 

   

Figure 13.12. Flow redirection with bi-leaflet mechanical valve in mitral position. 
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Balloon angioplasty is usually the first option for stenosis before other surgical options. To this aim, 
a balloon is inserted trans-catheter and expanded at the valve position to break the stenosis.  

The most common surgical option for the mitral valve is mitral valve repair (MVR). This is the 
primary choice for prolapse, although it is performed in presence of stenosis as well. As shown in 
figure 13.13, MVR aims to recreate the natural valvular geometry removing the exceeding tissue and 
suturing the original tissue into a proper geometry. Often, MVR is performed including a new 
prosthetic mitral ring replacing the older one that can be dilated.  

Trans-catheter mitral valve is another option; however, endovascular solutions are less common than 
they are for aortic valve. Indeed, these present the complexity to anchor the prosthesis in the mitral 
plane, without a surrounding vessel as was available for the aortic valve. Reliable endovascular 
solutions for the Mitral valve are still in progress.  

 

 

One endovascular solution for reducing regurgitation in Mitral valve prolapse has been recently 
introduced. It consists of a “clip” (similar to a paper clip) introduced trans-catheter that sticks together 
the two leaflet thus transforming the wide prolapsed orifice in two small orifices, as shown in figure 
13.14, that do not allow regurgitation when closed. This methods is a trans-catheter version of a 
previous surgical solution called edge-to-edge repair that was then replaced by MVR. After Mitral 
clip, regurgitations is normally reduced or eliminated; however, this treatment dramatically alters the 
intraventricular fluid dynamics, as shown in figure 13.14 (right). The mitral jet transforms into two 
distinct jets diverging from the valve and impacting on the opposite walls, higher turbulence, varied 
shear stress and intraventricular pressure gradients. The long term clinical consequences of this 
alteration are still under analysis. This solution is advised for critical Mitral regurgitations conditions 
and for patients that cannot undergo to open-chest surgery.  

 

  

 

Figure 13.13. Mitral valve repair. 
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13.5. A mention to congenital cardiac disease: Tetralogy of Fallot 

Several diseases are related to congenital malformations of the heart, most of them related to 
pathological alterations of cardiac valves. This is a wide and complex topic that is out of the scope 
this basic text and not discussed here. However, it is worth mentioning the most common (frequency 
of 1 every 2000 children) severe congenital heart defect that is found in new born children: Tetralogy 
of Fallot. 

The Tetralogy of Fallot (TOF) is a combination of four defects, interrelated and concurring, that 
directly influence the blood circulation in the heart. Each defects one can present with different degree 
of severity and in different combinations. The common result is low blood oxygenation, which can 
gives rise to cyanosis; for this reason, this defect is also called the “blue baby syndrome”.  

TOF is characterized by the followings malformations as graphically described in figure 13.15.  

1. A defect in the interventricular septum that is not complete and allows passage of blood between 
RV and LV; this measn that part of the non-oxygenated RV blood can enter the LV and delivered 
into the circulation.  

2. The pulmonary valve, at the RV outlet, is narrower thus reducing the amount of blood delivered 
toward the pulmonary circulation for oxygenation.  

3. The Aorta is displaced towards the right side, because the basal part of the interventricular septum 
is absent, therefore it can receive either the oxygenated blood from the LV and part of the non-
oxygenated blood ejected by the RV.  

4. The communication between LV and RV and the narrower pulmonary valve provoke the 
increases of the RV pressure and hypertrophy of the RV wall that becomes thicker. 

TOF typically requires open-heart surgery in the first years of life. The procedure involves increasing 
the size of the pulmonary valve and pulmonary arteries and repairing the ventricular septal defect. 

  

 

Figure 13.14. Mitral valve edge-to-edge repair with Mitral clip. 
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The exact timing of surgery depends on the symptoms and size. Normally, surgery is delayed as much 
as possible in order to act on more grown heart. When surgery is made early, further surgery may be 
required to adapt the therapeutic repairs along with the increasing size of the heart. 

The big challenge in TOF therapy is therefore to be able to anticipate the evolution of the disease, in 
order to better plan the timing of the various therapeutic activities. The dynamic analysis of intra-
cardiac fluid dynamics was recognized to have a role in cardiac morphogenesis as well in cardiac 
development. Therefore, research is in progress to evaluate fluid dynamics in TOF patients, especially 
by 3D Phase-contrast MRI (4D flow MRI), with more centers under creation in numerous sites. The 
aim is of providing evaluations of the actual status of the cardiac circulation and, possibly, indications 
of the probable evolutions that can be precious for optimization of surgical choices and timing of 
therapy. 

 

 

 

  

 

Figure 13.15. Tetralogy of Fallot. 
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