Atomic Structure and Bonding

Chapter 1 Organic Chemistry, 8th Edition John McMurry

Common Elements

Lewis' Model

- In Lewis structures electrons are represented as dots.
- Three general rules.
 - Include only valence electrons.
 - If possible, every 2nd raw element should have 8 electrons.
 - Every H atom has 2 electrons.

Molecular Shape

- The molecular structure is defined by:
 - bond lengths
 - bond angles

Bond lengths *decrease* along a period.

$$-C -H > -N -H > -O -H$$

bond length

Bond lengths *increase* along a group

Bond Lengths

Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
H-H	0.74	H-F	0.92	C-F	1.33
C-H	1.09	H-CI	1.27	C-CI	1.77
N-H	1.01	H–Br	1.41	C-Br	1.94
O-H	0.96	H-I	1.61	C-I	2.13

Geometry – VSEPR Theory

- The number of *Valence Shell Electron Pairs* (groups) around an atom defines the geometry of that atom.
- A group is an atom or a non bonding pair of electrons.
- Groups will tend to be as far apart as possible.

Number of groups	Geometry	Angle
2	linear	180°
3	trigonal planar	120°
4	tetrahedral	109.5°

4 groups: CH₄

3 groups: BF₃ and C₂H₄

2 trigonal molecules

3 atoms around B

All 3 atoms are in the plane

3 atoms around each C All 6 atoms are in the

plane

ball-and-stick model

space-filling model

2 groups: BeH₂ and C₂H₂

2 linear molecules

Ξ

2 atoms around Be

2 atoms around each C

Energies of Multiple Bonds

Bond	Bond Dissociation Energy (kJ/M)	
c—c	360	
c==c	700	
c≡c	950	
c—o	400	
c==o	750	
C—_N	360	
CN	700	
c≡∎N	950	
The Lewis model is not adequate!		

Models for the Chemical Bond

• Valence Orbital theory.

- Covalent bonds are formed by the overlap of two atomic orbitals and the electron pair is shared by both atoms.
- A valence bond is localized between two atoms.
- Molecular Orbital theory.
 - n atomic orbitals are combined to give a new set of n molecular orbitals (bonding and antibonding).
 - Molecular orbitals are delocalized on the whole molecule.

Valence Orbitals

- Bonds are formed by the in-phase overlap of two atomic orbitals each contributing one electron.
- The electron pair is localized between two atoms and is shared by both atoms.
- Hydrogen uses the 1s orbital to form σ bonds.
- 2^{nd} row atoms use hybrid orbitals (*sp*³, *sp*², *sp*) to form σ bonds.
- 2^{nd} row atoms use p orbitals to form π bonds that have a nodal plane.
- Atomic orbitals overlap better in σ bonds (co-linear) than in π bonds (parallel).

Weak Bonding Interactions: Lateral Overlap

2pz(C)2pz(C) π bond of ethylene

2pz(C)2pz(C) σ bond of cyclopropane

Inexistent Bonding Interactions (0 Overlap)

2pz(C)**2pz**(C) Bond in tetra-*t*Bu-ethylene

Molecular Orbitals

- Valence electrons occupy molecular orbitals delocalized on the whole molecule.
- The combination of *n* atomic orbitals gives *n* new molecular orbitals.
- Bonding orbitals have lower energies and antibonding orbitals have higher energies than the starting atomic orbitals

The H₂ molecule:

Robert Mulliken (1896-1986)

Atomic Orbitals of Carbon

sp³ Hybrids

 The mixing of a spherical 2s orbital and three 2p orbitals generates four sp³ orbitals, each with a small and a large lobe.

sp³ Hybrids

Methane

The overlap of a half-full 1s orbital of hydrogen with a half-full sp^3 orbital of carbon bond gives a σ orbital.

Ethane

Sp² Hybrids

Ethylene C₂H₄

C-C double bond

Sp Hybrids

Acetylene C₂H₂

C-C triple bond

Structures of C₂H₆, C₂H₄, C₂H₂

Energy Levels and Orbital Size

Ibridization of O, S, N

Polar Bonds Intermolecular Interactions Delocalised Bonds

Chapter 2 Organic Chemistry, 8th Edition John E. McMurry

Polar Covalent Bonds

• The higher the electronegativy difference, the higher the polar character of a covalent bond.

- In polar bonds, bonding electrons are attracted towards the more electronegative atom.
- Generally:
 - > ΔX > 1.9 ionic bond
 - > $\Delta X < 0.5$ covalent bond
 - > $\Delta X = 0.5 1.9$ polar covalent bond

Pauling's Electronegativities

Intermolecular Interactions

- Intermolecular interactions are also called non-covalent and nonbonded interactions.
- Intermolecular interactions depend on the type and number of functional groups.

strenth

- In neutral molecules there are three main types of intermolecular interactions.
 - Vand der Waals interactions (London dispersion forces) VDW
 - Dipole-dipole interactions DD
 - Hydrogen bonds– HB

Dipole Moments

• Polar molecules have one or more polar bonds.

 Apolar molecules either do not have polar bonds or have polar bonds whose dipoles cancell each other. E.g. CO₂

The Hydrogen Bond

The hydrogen bond is an electrostatic interaction between a O-H or N-H group and a lone pair on O or N.

Dipole-Dipole Interactions

Dipole-dipole interactions are attraction forces between the permanent dipoles of two molecules.

Van der Waals (London) Forces

- VdW forces are weak interactions originating from temporary variations of the molecule's electron density distribution.
- > They are the only attractive forces in apolar molecules.

Dipoles generated by a temporay asymmetry in the electron density

Van der Waals (London) Forces

- > Van der Waals interactions are present in all molecules.
- The larger the surface area, the larger the attractive force between two molecules, and the stronger the intermolecular forces.

Van der Waals (London) Forces

- VdW forces depend on polarizability.
- Larger atoms, like iodine, which have more loosely held valence electrons, are more polarizable than smaller atoms like fluorine, which have more tightly held electrons

Summary

Interaction	Relative strength	Present in	Examples
Van der Waals VDW	Very weak	All molecules	$CH_3CH_2CH_2CH_2CH_3$ $CH_3CH_2CH_2CHO$ $CH_3CH_2CH_2CH_2OH$
Dipole-dipole DD	weak	Permanent dipoles	CH3CH2CH2CHO CH3CH2CH2CH2OH
Hydrogen bond HB	strong	Molecules with OH, NH, FH funct. groups	CH3CH2CH2CH2OH
ionic	Very strong	Ionic compounds	NaCl, LiF

Polar molecules interact strongly than apolar ones.

Boiling Point

- The boiling point is the temperature at which the vapor pressure of a liquid is equal to the external pressure.
- Energy is required to break intermolecular interactions.
- > The higher the intermolecular interactions, the higher the b.p..
- Compounds with similar M.W.:

Van der Waals	Dipole-dipole	Hydrogen bond
	Boiling point	
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ CH ₂ CHO	CH ₃ CH ₂ CH ₂ CH ₂ OH
pentane (m.w. 72)	butanal (m.w. 72)	1-butanol (m.w. 74)
bp = 36 °C	bp = 76 °C	bp = 118 °C

Boiling Point

-

b.p. = 42 °C I is more polarizable

b.p. = -78 °C Smaller F has a low polarizability

b.p. = 102 °C Larger surface area

b.p. = 56 °C Smaller surface area

Melting Point

> M.p. and b.p. follow the same trend.

$$\begin{array}{lll} \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}0 & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH}\\ \hline \mathsf{pentane} & \mathsf{butanal} & \mathsf{1-butanol}\\ \mathsf{mp} = -130\ ^\circ\mathsf{C} & \mathsf{mp} = -96\ ^\circ\mathsf{C} & \mathsf{mp} = -90\ ^\circ\mathsf{C}\\ \hline & \mathsf{Melting\ point} \end{array}$$

Delocalized Electrons and Bonds. Resonance

- The structure and properties of certain molecules can not be explained by the simple valence orbital model with localized electrons.
- In this case, a single Lewis structure is replaced by a set of Lewis structures: the molecule is said to resonate between these structures and this phenomenon is called resonance.

CH₃CH₂OH: pK_a 16

CH₃COOH: pK_a 4.75

Resonance structures

Resonance hybrid

Localized charge less stabile Delocalized charge more stabile

 Resonance structures have the same disposition of atoms but a different arrangement of electrons (π electrons and lone pairs).

Bond lengths and angles do not change in resonance structures.

 Resonance is a simple theory to adapt conventional Lewis structures to the representation of molecules with delocalized electrons and bonds.

- Resonance structures are not real. No single resonance structure can adequately represent the real structure of a species with delocalized electrons.
- 2. Resonance structures are not isomers. They only differ in the distribution of electrons not in the disposition of the nuclei.
- 3. Resonance structures are not in equilibrium.