Acids and Bases Electrophiles and Nucleophiles Organic Reaction Mechanisms

Chapters 2 & 6 Organic Chemistry, 8th Edition John McMurry

Brønsted-Lowry Acids and Bases

Acids donate protons to an acceptor

All Brønsted-Lowry acids contain a ionizable proton.

Bases accept protons from a donor

All Brønsted-Lowry bases contain a lone pair or a π bond.

Brønst	ed-Lowry acids HA	Brønsted-Lowry bases B:			
Inorganic	Organic	Inorganic		Organic	
HCI H ₂ SO ₄ HSO ₄ [−] H ₂ O H ₃ O ⁺	$CH_{3}CO_{2}H$ acetic acid OH $HO_{2}CCH_{2}-C-CH_{2}CO_{2}H$ $COOH$ citric acid	H₂Ö:	:NH3	$\begin{array}{c} CH_{3}\ddot{N}H_{2}\\ \textbf{methylamine}\\ CH_{3}\\ C=\ddot{O}\\ CH_{3}\\ \textbf{aceton} \end{array}$	CH ₃ Ö: methoxide ion
		÷ö́H	∹NH₂		CH ₂ =CH ₂ ethylene

Brønsted-Lowry Acids and Bases

Certain molecules can behave both as acids and bases.

Some Reference pKa Values: Polarization and Electronegativity Effects

Table 8.1 The pKa value of some compounds

Acid HI	р К_а ca. –10	Conjugate ba I⊤	se			
HCI	ca. –7	CI-	The strongest base in aqueous solution is OH ⁻ and the strongest acid in aqueous			
H ₂ SO ₄	ca. –3	HSO₫	solution is H ₃ O ⁺ . Remember that:			
HSO₄	2.0	so <u></u> 4⁻	 Addition of stronger bases than OH⁻ just gives more OH⁻ by the deprotona- tion of water 			
сн ₃ соон	4.8	CH3C00-	• Addition of strengthe reside then ΠO^+ is stations are set ΠO^+ by motion			
H ₂ S	7.0	HS ⁻	• Addition of stronger acids than H ₃ O just gives more H ₃ O by protonation of water			
NHŻ	9.2	NH ₃	Also remember that:			
C ₆ H ₅ OH	10.0	C ₆ H ₅ O ⁻	• The pH of pure water at 25°C is 7.00 (not the pK_a)			
сн ₃ он	15.5	CH ₃ 0 [−]	• The p K_a of H ₂ O is 15.74			
сна сна	20.0	CH3 CH2	• The p K_a of H ₃ O+ is -1.74 H ₃ O ^{\oplus} \Longrightarrow H ₂ O \Longrightarrow HO ^{\ominus}			
сн==сн	25	сн≕с ⊝	<u>حــــــــــــــــــــــــــــــــــــ</u>			
NH3	33	NH2	pH <-1.74 pH -1.74 pH 7 pH 15.74 pH >15.74			
C ₆ H ₆	ca. 43	C6H5	strongly acidic neutral strongly basic			
CH4	ca. 48	снз				

Lewis Acids and Bases

- A Lewis acid accepts an electron pair from a donor. Lewis acids have a low energy empty orbital.
- A Lewis base donates an electron pair to an acceptor. Lewis bases have a high energy full orbital (lone pair or π bonds).

Lewis Acids and Bases

- All Brønsted-Lowry acids are Lewis acids. Not all Lewis acids are Brønsted-Lowry acids.
- Only species with ionizable protons are Brønsted-Lowry acids. Any electron acceptor is a L.A.

• All Brønsted-Lowry bases are also Lewis bases. They must have either a lone pair or a π bond.

н

Reactions Between Lewis Acids and Bases

- Organic reactions can in most cases be described as reactions between electron poor species (Lewis acids) and electron rich species (Lewis bases).
- The electron poor species (Lewis acid) is called electrophile.
- The electron rich species (Lewis base) is called nucleophile.
- The movement of electrons is indicated with curved arrows.

Electrophiles and Nucleophiles

Electrophiles and Nucleophiles

• Nucleophiles and electrophiles may also contain polarized bonds

How to Write an Organic Reaction

How to Write an Organic Reaction

In a sequence, the individual steps are numbered.

Organic Reactions

- Type of reaction (bond breaking/bond formation):
 - substitution
 - addition
 - elimination
 - rearrangement/transposition
- Mechanism = movement of electrons:
 - ionic (polar)
 - radicalic
 - pericyclic

Substitutions

- In a general substitution reaction, an atom or group Y replaces an atom or group Z at carbon.
- > Substitutions involve breaking and forming σ bonds.

Eliminations

In an elimination reaction two σ bonds are broken and one π bond is formed.

Additions

In an addition reaction a π bond is broken and two new σ bond are formed.

Additions and Eliminations

+ Eliminations are the inverse of additions. A π bond is formed in eliminations and a π bond is broken in additions.

Addition

Rearrangements or Transpositions

In a rearrangement or transposition the bonding pattern of a single reagent changes giving a constitutional isomer.

1-butene

2-butene

Bond Breaking and Forming

Bond Formation

→ A new bond can be formed in two ways:

> From two radicals each contributing a single electron.

$$A \cdot + B \cdot \longrightarrow A - B$$

From a nucleophile contributing an electron pair and an electrophile accepting the electron pair. Nu and E may be ions or neutral molecules

Energy is released in the formation of a bond

Bond Dissociation Energy

Bond dissociation energy is the energy necessary to break a bond omolytically.

$$A - B \longrightarrow A^{\bullet} + B^{\bullet}$$
Breaking a bond requires energy
$$\Delta H^{\circ} = \text{bond dissociation energy}$$

Bond Dissociation Energy

- > The bond dissociation energy is a measure of the strength of the bond.
- > The stronger the bond, the higher its dissociation energy.
- In general, shorter bonds are stronger.
- Bond dissociation energies decrease along a group.

A Reaction Mechanism.....

- > Accounts for all reagents and products and their ratios.
- Describes in which order bonds are broken and formed and the rates of individual steps.
- In a concerted reaction reagents are directly converted into products in a single step.

A multistep reaction involves the formation of one or more reactive intermediates.

Carbocations, Carbanions, Radicals

Carbocations, Carbanions, Radicals

- Radicals and carbocations are electrophiles because the carbon atom does not have a full octet.
- > Carbanions are nucleophiles because the carbon atom has a lone pair.

Transition State Theory - Energy Diagrams

- > The activation energy ΔG^* is the energy required for a reaction to take place.
- $\succ \Delta G^{\neq} = \Delta H^{\neq} T \Delta S^{\#}$
- > ΔG^{\pm} is correlated with the reaction's rate constant.

Eyring equation:
$$k = \frac{k_B T}{h} e^{-\frac{\Delta G^{\#}}{RT}}$$

- The transition state structure is intermediate between the structures of reagents and products. In the transition state there are partial bonds and partial charges (if the mechanism is ionic).
- > Transition states are represented in brackets with the [#] symbol.

Energy Diagrams

Energy Diagrams

Energy Diagrams

Complete energy diagram for the two-step reaction:

