Geothermics

Course Outline:

- 1. Thermal conditions of the early Earth and present-day Earth's structure
- 2. Thermal parameters of the rocks
- 3. Thermal structure of the lithospheric continental areas (steady state)
- 4. Thermal structure of the lithospheric oceanic areas
- 5. Thermal structure of the lithosphere for transient conditions in various tectonic settings
- 6. Heat balance of the Earth
- 7. Thermal structure of the sedimentary basins
- 8. Thermal maturity of sediments
- 9. Mantle convection and hot spots
- 10. Magmatic processes and volcanoes
- 11. Heat transfer in hydrogeological settings

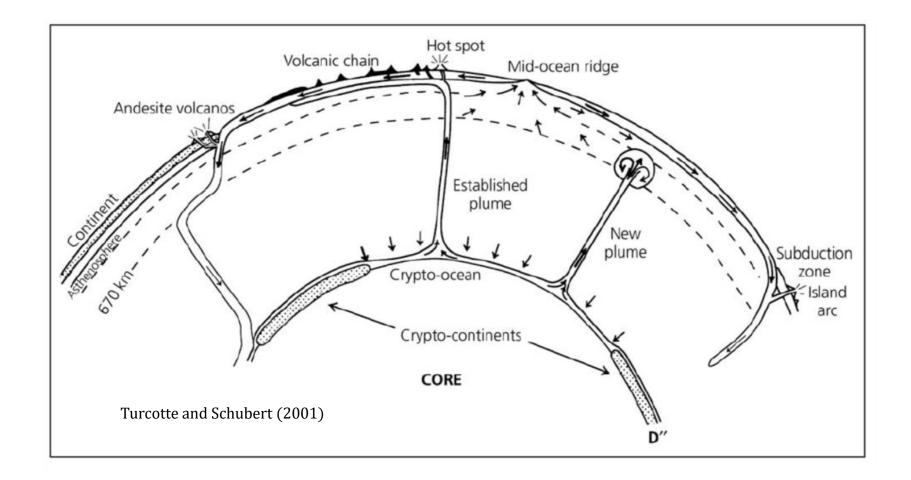
Source of heat in the Earth

Two sources

- Earth's interior
- o Sun
- Most of the heat fom the Sun is radiated back into space
 - o surface water cycle
 - o rainfall
 - o erosion
- Heat from the Earth's interior governed its geological and geodynamical evolution
 - Plate tectonic
 - Igneous activity
 - \circ Core evolution
 - Magnetic field of the Earth

Thermal state of the lithosphere (why do we want to know it?)

- Knowledge of the present thermal state of the Earth is crucial for models of crustal and mantle evolution, mantle dynamics, and processes of deep interior.
- Physical properties of crustal and mantle rocks are temperature dependant (density, seismic velocity, seismic attenuation, electrical conductivity, viscosity).


Temperature of the Earth is controlled by internal heat:

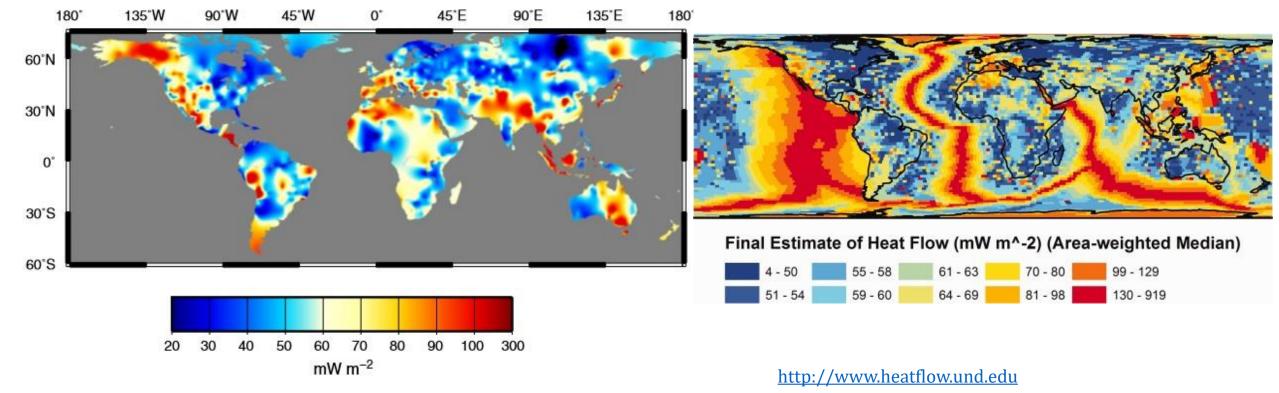
80% from the radiogenic heat production and 20 % comes from secular cooling of the Earth.

Heat is transferred to the surface of the Earth through three mechanisms: conduction (in the lithosphere), convection (below the lithosphere), and advection (hydrothermal circluation in sediments).

Knowledge of the thermal state of the lithosphere from more than 20000 heat flux measurements at the Earth's surface

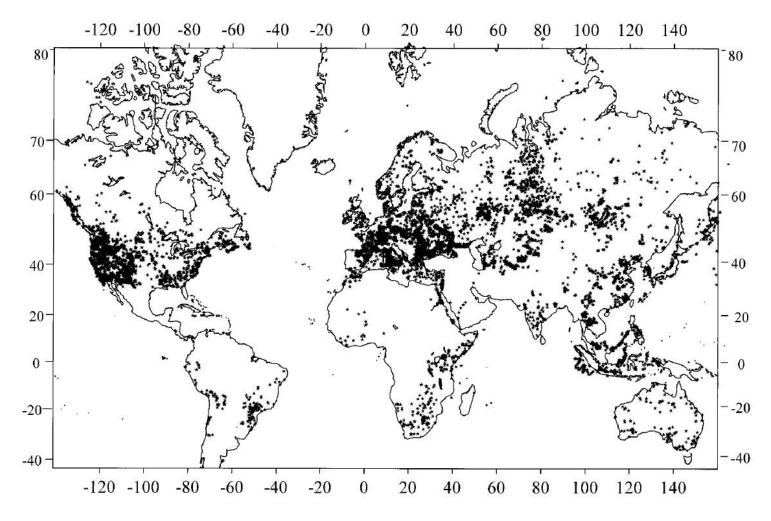
Heat flow and tectonic setting

Heat Flow


Heat flow density (HFD) determines the amount of heat per unit of area and per unit of time which is transmitted by heat conduction from the Earth's interior.

Fourier Law states that the rate of flow of heat is proportional to the temperature gradient:

$$\mathbf{q} = -\lambda \operatorname{grad} T = -\lambda \nabla T$$
. For 1D: $q = -\lambda \frac{\partial T}{\partial x}$

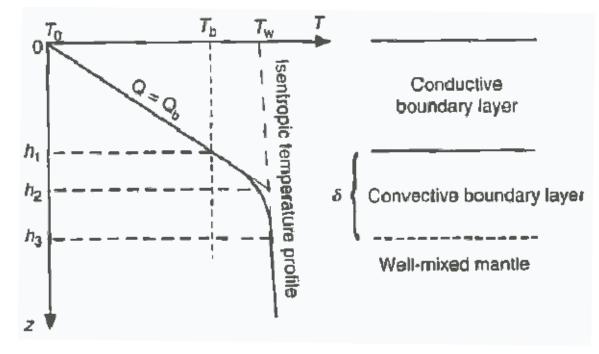

aT

- minus sign shows that heat flows from points with high T to points with lower T
- λ or K= thermal conductivity (rocks dependent), for an isotropic and homogeneous layer has only one value

Mareschal and Jaupart, 2013, Tectonophysics 609

Heat Flow data

Artemieva and Mooney, 2001, JGR, 106


Country or region	HFD range (mW m ⁻²)	References
Austria	43-127	Čermák (1984)
Bulgaria	8-132	Čermák (1984)
Cyprus	41-185	Čermák (1984)
France	45-176	Čermák (1984)
Eastern Germany	26-172	Čermák (1984)
Western Germany	21-168	Čermák (1984)
Greece	30-105	Čermák (1984)
Hungary	52-139	Čermák (1984)
Iceland	63-281	Čermák (1984)
Israel	7–93	Čermák (1984)
Italy	17-143	Čermák (1984)
Romania	19–118	Čermák (1984)
Spain	29-189	Čermák (1984)
USSR (European part)	19-142	Čermák (1984)
Greenland and Norwegian Seas	14-268	Čermák (1984)
Reykyjanes range	2-343	Čermák (1984)
Ranges of the Atlantics	0-282	Čermák (1984)
Other regions of the Atlantics	11-90	Čermák (1984)
Mediterranean near Spain	55-155	Čermák (1984)
Mediterranean West of Sardinia	33-132	Čermák (1984)
Tyrrhenian Sea, Mediterranean	30-173	Čermák (1984)
Adriatic Sea, Mediterranean	36-104	Čermák (1984)
Aegean Sea, Mediterranean	47-114	Čermák (1984)
Ionic and Eastern Mediterranean Seas	10-74	Čermák (1984)
Black Sea	8-91	Čermák (1984)
Caspian Sea	40-99	Čermák (1984)
Alaskan interior	42-130	Williams et al. (2006)
Egypt	42-175	Morgan and Swanberg (1978)
Marmara Sea	35-115	Pfister et al. (1998)
Baltic Shield	25-70	Kukkonen et al. (1998)
Kura Depression, Azerbaijan	12-105	Pilchin (1983)
Cordillera, South America	25 to >160	Hamza and Muñoz (1996)
Brazilian platform	30 to >100	Hamza and Muñoz (1996)
Altiplano, Cordillera	50-180	Springer and Förster (1998)
Oregon Cascade Range, USA	40-100	Blackwell et al. (1980)
Pannonian basin	50-130	Lenkey et al. (2002)
Deccan basalt province, India	33–73	Kumar et al. (2007a)
Mesozoic Luangwa and Zambezi rifts	44-110	Nyblade et al. (1990)

Heat Flow data

Abnormally low HFD values for some areas

Region	Values of HFD as low as (mW m ⁻²)	References			
Coastal Cordillera, South America	25	Hamza and Muñoz (1996)			
Mesozoic Espirito Santos Basin, Brazil	26	Hamza and Muñoz (1996)			
Continental part of Barents Sea region	20	Shwartsman (2001)			
Drill holes, Kamennye Lakes, Eastern Karelia	2.4-11.6	Kukkonen et al. (1998)			
Black Sea Basin	<20	Kutas et al. (1998)		c	
Coastal Cordillera	20	Springer and Förster (1998)	Abnormally high HFD val	ues for some areas	
Sierra Nevada Mountains, USA	<20	Blackwell et al. (1991)	Region	Values of HFD as high as ^a (mW m^{-2})	References
Middle Rocky Mountains Canadian Shield	30 22	Blackwell et al. (1991) Mareschal et al. (2000b)	Central Valley, Cordillera	158	Hamza and Muñoz (1996)
	47.5	Louden et al. (1997)	Patagonian Cordillera	160	Hamza and Muñoz (1996)
Mesozoic of Iberia abyssal plain, Galicia	~20	Nagihara and Jones (2005)	Altiplano, Cordillera	180	Springer and Förster (1998)
Pleistocene deposits, Gulf of Mexico The Urals		Kukkonen et al. (1997)			
	<20		Yellowstone, USA	>120	Blackwell et al. (1991)
East Ural Uplift	18	Kukkonen et al. (1997)	Salton Trough, USA	>120	Blackwell et al. (1991)
Transylvanian Depression	30	Şerban et al. (2001)	Northeast German Basin	91	Norden et al. (2009)
Outer Dinarides	<30	Lenkey et al. (2002)	North Caucasus, Russia	205	Suyetnov (1963)
Magadi, Late Archean Closepet Granite, India	25	Roy et al. (2008)	Saratov province, Russia	267.5	Pilchin (1983)
Ushachi, Belorussia	5	Zuy (2007)	Astrakhan Province,	193	Suyetnov et al. (1980)
Sudilovochi, Belorussia	4-10	Zuy (2007)	Russia	155	Suyculov et al. (1960)
Kosari, Belorussia	3-7	Zuy (2007)		> 200	Level and Shamman (2002)
Kozlovka, Belorussia	3-6	Zuy (2007)	Baikal rift zone, Russia	≥200	Lysak and Sherman (2002)
Senno, Belorussia	2-4	Zuy (2007)			
Deccan basalt province, India	33	Kumar et al. (2007a)			
Middle Kura Depression, Azerbaijan	11-12	Pilchin (1983)			
Lower Kura Depression, Azerbaijan	12-16	Pilchin (1983)			
Krivoy Rog, Ukrainian Shield	9.2-14.6	Lubimova et al. (1964)			
Staraya Mazesta, Russia	15.9	Lubimova et al. (1964)			
Sukhokumskaya, North Caucasus	8-12	Amirkhanov et al. (1975)			
Dchevskaya, Saratov Province, Russia	1.3	Pilchin (1983)			
Astrakhan Province	8.3	Suyetnov et al. (1980)			

Thermal Boundary layer at the top of the Earth's convective mantle

 h_1 = lower boundary of the conductive part (bottom of the thermal lithosphere).

 h_2 = intersection between the downward extrapolation of the conductive geotherm and the temperature profile for the convective mantle.

 h_3 = lower limit of the thermal boundary layer (transition between lithospheric regime and fully convective mantle regime).

- T₀=temperature at the surface
- T_b =temperature at the base of the lithosphere
- T_w=temperature of well-mixed convective interior

 $Q_0 = Q_{\rm crust} + Q_{\rm lith} + Q_b$

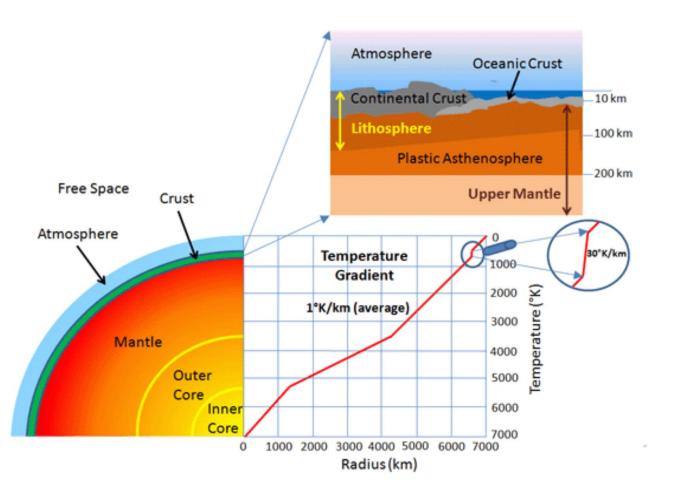
 Q_{crust} = heat flux due to the contribution of heat sources in the crust Q_{lith} = heat flux due to contribution of heat sources in the lithosphere Q_{b} = heat flux at the base of the lithosphere

In the absence of heat sources:

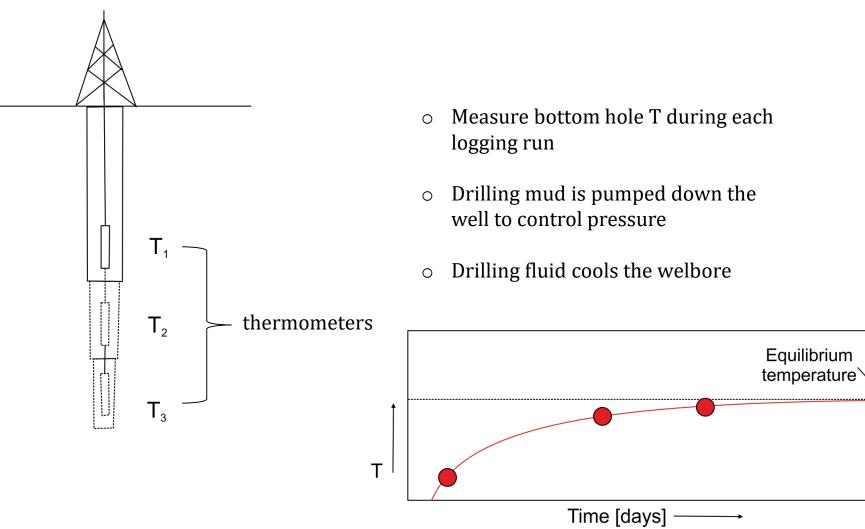
$$Q_0 = Q_b = \lambda \frac{T_b - T_0}{h_1}$$

 $Q_b = B\left(T_w - T_b\right)$

Similarly, across the convective boundary layer:


B=heat transfer coefficient

For perfectly efficient heat transfer B $\longrightarrow \infty$ then $T_B \longrightarrow T_W$


If convective mantle can mantain a fixed heat flux, Q_B is set to a constant

Geothermal gradient (∇T)

- Change of temperature with depth
- $\nabla T \propto [25 45] \circ C/km$ (continental average)
- Varies with tectonic setting

Measuring Temperature

Thermal Gradient

Thermal gradient is a vector quantity dependent on the distribution of temperature in 3D, magnitude and orientation of the max thermal gradient are given by:

$$\nabla T = \frac{\partial T}{\partial x}\mathbf{i} + \frac{\partial T}{\partial y}\mathbf{j} + \frac{\partial T}{\partial z}\mathbf{k}$$
$$grad(T(x, y, z)) = \left(\frac{\partial T(x, y, z)}{\partial x}\mathbf{i} + \frac{\partial T(x, y, z)}{\partial y}\mathbf{j} + \frac{\partial T(x, y, z)}{\partial z}\mathbf{k}\right)$$

T=temperature distribution function in 3D and I, j, and k are the unit vectors along the x, y, and z axes.

Thermal Gradient

If lateral temperature variation at depth are negligible in comparison with the vertical ones, all thermal gradient problems reduce to 1D and magnitude of the temperature gradient is the derivative of T with respect to depth:

$$\nabla T = (\partial T / \partial z) \times \mathbf{k}$$
 which can be written as:

$$G_z = \lim_{\Delta h \to 0} \frac{T(x, y, z + \Delta h) - T(x, y, z)}{\Delta h}$$

Since it is impossible to obtain two accurate measurements of T at zero distance ($\Delta h \rightarrow 0$), we can use finite difference methods: We must find the value of the function in two different points:

$$\Delta_h(T(z)) = T(z + \Delta h) - T(z)$$
Forward difference
$$\Delta_h(T(z)) = T(z) - T(z - \Delta h)$$
Backward difference
$$\Delta_h(T(z)) = T(z + \Delta h) - T(z - \Delta h)$$
Central difference

Using the central difference form, the value of the vertical and horizontal geothermal gradient at an arbitrary depth h_i in a borehole is: Vertical direction

$$\left(\frac{dT(z)}{dz}\right)_{h_i} = \frac{T(h_i + \Delta h) - T(h_i - \Delta h)}{2 \cdot \Delta h}$$

Horizontal direction

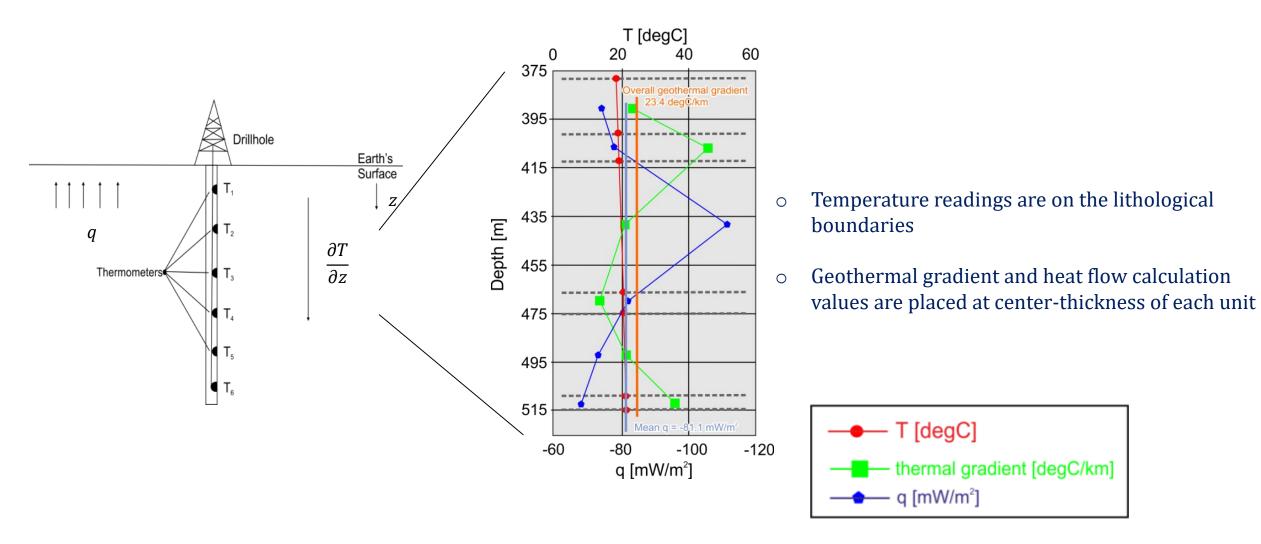
$$\left(\frac{dT(x)}{dz}\right)_{l_i} = \frac{T(l_i + \Delta l) - T(l_i - \Delta l)}{2 \cdot \Delta l}$$

Vertical Thermal Gradient

The value of the geothermal gradient declines with depth with the sharpest drop usually at depths less than 2 km, possibly because of water content and its circulation in the sedimentary cover.

Region	Depth interval (m)	Average geothermal gradient (K/km)	Percentage of geothermal gradient near the surface
Krasnodar region, Russia	0-2,000	30-40	70
	2,000-4,000	30-35	65
	4,000-6,000	25-32	57
Stavropol region, Russia	0-2,000	35-50	71
	2,000-4,000	35-45	67
	4,000-6,000	30-35	54
Middle-Kura Depression,	0-2,000	25-43	76
Azerbaijan	2,000-4,000	20-35	61
	4,000-6,000	20-30	42
Northern Israel	2,300	18-20	46-54
Dead Sea region, Israel	2,350-2,750	16-22	20-61
Utah, USA	440-619	48	83
Salton Sea, USA	762-884	178.9	73
Central Ventura Basin, USA	1,900-3,600	23-27	70-86
Williston Basin, Canada	2,000-3,000	20-Oct	30-80
Michigan Basin, USA	Phanerozoic	17.5	41

Changes in the vertical geothermal gradient with depth for some regions (after Eppelbaum and Pilchin 2006)


Horizontal and Vertical Thermal Gradient

- Horizontal geothermal gradients are generally low (<10% of the vertical geothermal gradient) their values do not usually exceed 1 K/km.
- Horizontal geothermal gradients of one order less than vertical geothermal gradient are related to the presence of fractures and hydrothermal water activity.

Region	At a depth of	4,000 m	At a depth of	At a depth of 6,000 m		
	Vertical geothermal gradient	Horizontal geothermal gradient	Vertical geothermal gradient	Horizontal geothermal gradient		
Low Kura Depression	15-20	0.2-0.6	15-20	0.4-0.8		
Middle Kura Depression	20-30	0.4-1.0	20-30	0.8-1.6		
Kolkhida Depression	25-30	0.4-1.4	20-30	0.8 - 2.0		
Dagestan	25-30	0.4-0.8	25	0.6-0.8		
Stavropol province	35-40	0.4-0.8	25-30	0.2 - 1.0		
Krasnodar province	30-35	0.2-0.8	30	0.2 - 1.0		
Chechnya	30-35	0.4-0.8	25-30	0.4-0.8		
South Caspian Depression	15	0.2-0.4	15	0.4-0.6		

Average values of vertical and horizontal geothermal gradients for some regions of the Caucasus

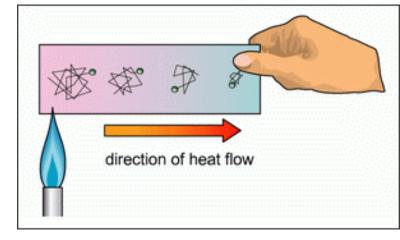
Measuring q

Measuring heat flow (q) is simply a matter of dropping a thermometer down a drill hole and logging the change in temperature with depth

Conductive Heat Flow

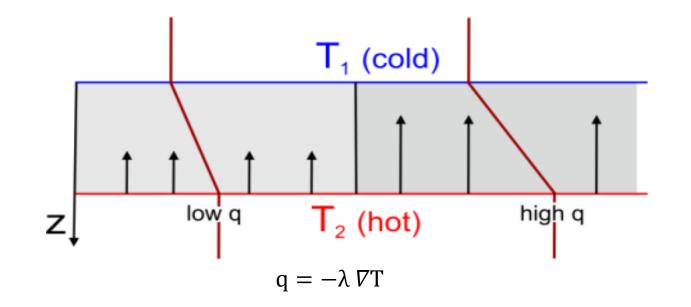
Transfer of heat by microscopic (molecular and/or atomic) diffusion and collisions of particles within a body due to an existing temperature gradient

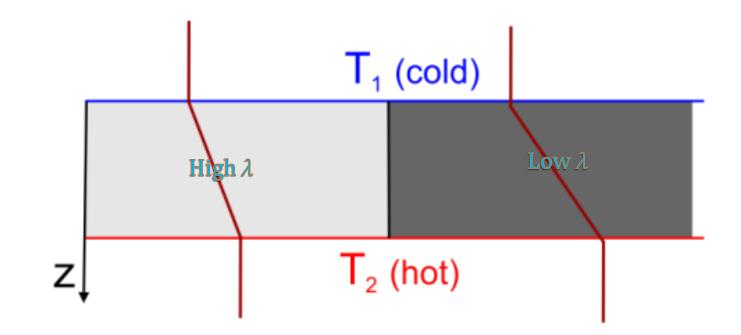
J. B. Fourier 1822 "Theorie analytique de la chaleur"



 λ = heat conductivity [$W \cdot m^{-1} \cdot K^{-1}$]

 $q = -\lambda \nabla T$


 ∇T = Thermal gradient [$K \cdot m^{-1}$]


Heat flow and thermal conductivities

- Rate of heat conduction through a solid \propto temperature gradient (∇T)
- High heat flow (q) \propto high temperature gradient (∇T)
- Heat flows from a **hot** body to a **cold** body
- Conductive heat flow is related to a particular property of the material (λ)

Heat flow and thermal conductivities

- $\circ \quad \text{High } \lambda \ \rightarrow \text{Rapid Heat Transfer} \rightarrow \text{Low thermal Gradient}$
- $\circ \quad Low \, \lambda \ \rightarrow Slow \, Heat \, Transfer \ \rightarrow \ High \ thermal \ Gradient$

Thermal Conductivity

Thermal conductivity or the thermal conductivity coefficient (λ) of a material defines its ability to transfer heat

There are three mechanisms which contribute to thermal conductivity: (i) the diffusion of heat by phonon propagation (**lattice conductivity** k_i), (ii) the transfer of heat through emission and absorption of photons (**radiative conductivity** k_r) and (iii) the transport of energy by quasiparticles composed of electrons and positive holes (negligible in the lithosphere).

 λ (m⁻¹ s⁻¹ K⁻¹ or W m⁻¹ K⁻¹) of rocks is dependent on *T*, *P*, porosity (ϕ), composition, and properties of pore-filling fluids and gases.

Material	$Wm^{-1}K^{-1}$	Source
Earth's crust	2.0-2.5	Mean value, Kappelmeyer and Hänel (1974)
Rocks	1.2-5.9	Sass et al. (1971)
Sandstone	2.5	Clark (1966)
Shale	1.1-2.1	Clark (1966), Blackwell and Steele (1989)
Limestone	2.5-3	Clark (1966), Robertson (1979)
Water	0.6 at 20 °C	Birch et al. (1942)
Oil	0.15 at 20 °C	Birch et al. (1942)
Ice	2.1	Gretener (1981)
Air	0.025	CRC (1974) Handbook
Methane	0.033	CRC (1974) Handbook

Rock	From published	l data ^a	After Sharma (2002)	
	No. of samples	Average heat conductivity	Average heat conductivity	
Sand	1,149	1.79	1.1-2.1	
Siltstone	476	1.58	-	
Argillite, clay schist	783	1.67	2.09	
Clay	660	1.43	0.8-1.5	
Marl	217	1.78	100	
Limestone	781	2.37	3.44	
Chock	21	1.63		
Granite	383	2.68	3.07	
Granodiorite	83	2.79	2.63	
Porphyrite	137	1.74	-	
Diorite	78	2.10	2.5	
Andesites, andesite- basalt	81	1.87	2.26	
Basalt	98	2.11	1.69	
Diabase	67	2.50	2.2	
Gabbro	116	2.47	2.57	
Schist	181	2.55	-	
Gneiss	88	2.41	2.7-3.1	
Amphibolite	47	2.39	3.33	
Gneiss-granite	35	2.04	_	
Quartzite	-	5.00	5.03	
Anhydrite		177	5.43	
Harzburgite	106	2.69	-	
Dunites	23	2.77	-	
Olivine gabbro	55	2.65	-	
Gabbro-norite	36	2.22	-	

Thermal Conductivity of Rocks (sedimentary rocks)

Rock		Lithotype	n	$k (W m^{-1} K^{-1})$		Porosity (%)		Density (kg m^{-3})	
				Range	Mean	Range	Mean	Range	Mean
Clastic		Marl	19	2.15-3.08	2.77 (0.23)	6.0-37.0	15.1 (8.4)	1787-2530	2278 (240)
		Silty marl	18	2.85-3.66	3.16 (0.26)	2.0-20.0	12.8 (5.5)	2150-2670	2359 (156)
		Calcareous marl	6	1.99-2.37	2.17 (0.13)	22.0-35.0	30.8 (5.0)	1693-2008	1801 (123)
		Argillaceous limestone	3	3.58-3.63	3.60 (0.03)	7.5-12.0	9.3 (2.4)	2477-2588	2520 (80)
		Argillaceous sandstone	6	2.60-3.40	3.00 (0.29)	8.0-25.0	15.1 (6.2)	1990-2560	2330 (222)
		Calcarenite	3	2.18-2.50	2.34 (0.16)	25.0-32.0	29.0 (3.6)	1834-1997	1917 (82)
Chemical-	Carbonate	Mudstone	5	3.04-3.48	3.30 (0.16)	0.5-6.0	2.7 (2.1)	2550-2695	2630 (59)
biochemical		Wackestone	5	3.10-3.20	3.16 (0.04)	3.0-10.0	6.0 (3.0)	2500-2670	2590 (75)
		Packstone	4	3.00-3.45	3.23 (0.18)	3.0-6.0	4.3 (1.3)	2550-2655	2620 (59)
		Grainstone	5	2.95-3.36	3.12 (0.16)	6.5-12.0	8.8 (2.5)	2400-2540	2480 (73)
		Dolostone	5	4.25-5.45	4.60 (0.49)	1.5-7.5	3.8 (2.4)	2630-2800	2735 (73)
	Siliceous	Radiolarite	4	3.16-3.46	3.37 (0.14)	0.5-5.5	2.4 (2.2)	2550-2650	2600 (48)
	Evaporitic	Anhydrite	5	3.15-3.65	3.39 (0.22)	0.5-5.0	2.7 (1.8)	2680-2780	2730 (52)
		Gypsum	5	1.40-1.64	1.54 (0.09)	0.5-7.0	2.4 (2.6)	2260-2400	2350 (61)

Thermal conductivity k (water-saturated), porosity and density of isotropic sedimentary rocks (Pasquale et al. 2011)

The mean thermal conductivity (*k*) ranges from **1.5** to **4.6** W m⁻¹ K⁻¹ (gypsum and dolostone)

High conductivity: anhydrites, low conductivity: calcareous marls.

Porosity varies from about 3 % (radiolarite, gypsum, mudstone and anhydrite) to 30 % (calcarenite and calcareous marl) and influences k.

Thermal Conductivity of Rocks (Igneous and Metamorphic rocks)

K of homogeneous and macroscopically isotropic rocks ranges between 1.8 to 4.1 W m⁻¹ K⁻¹.

Lithotype	n	$k (W m^{-1} K)$	-1)	Density (kg m^{-3})		
		Range	Mean	Range	Mean	
Granite	22	2.44-3.49	2.88 (0.26)	2590-2760	2620 (20)	
Granodiorite	16	2.24-3.03	2.52 (0.24)	2640-2820	2690 (40)	
Tonalite	10	2.06-2.25	2.16 (0.07)	2700-2760	2720 (20)	
Syenite	3	2.19-2.34	2.25 (0.08)	2680-2750	2720 (40)	
Diorite	14	1.73-2.07	1.89 (0.11)	2740-2940	2840 (60)	
Gabbro	12	1.65-2.29	1.94 (0.19)	2800-3060	2940 (80)	
Dacite	4	3.56-3.91	3.73 (0.18)	2500-2690	2610 (102)	
Anorthosite	4	1.67-1.83	1.76 (0.07)	2660-2810	2730 (60)	
Hornblendite	5	2.57-2.79	2.71 (0.08)	3020-3180	3130 (70)	
Lherzolite	11	3.31-4.00	3.70 (0.25)	3010-3210	3110 (50)	
Harzburgite	3	3.52-3.66	3.60 (0.07)	3070-3110	3090 (20)	
Dunite	3	4.04-4.16	4.11 (0.06)	3320-3360	3340 (20)	

Thermal conductivity k and density of igneous and metamorphic rocks (Pasquale et al. 1988)

Rocks' thermal conductivities

Thermal conductivity $\lambda [W(m \cdot K)^{-1}]$ heat [W] transported over a distance [m] with a drop in Temperature [°C or K]

Bulk thermal conductivity

- Porosity and fluid content (commonly water)
- Function of Temperature
- Function of depth (porosity loss with burial compaction)
- Mineralogy of the framework grains
- Type and amount of material in the matrix (clay minerals)

Thermal Conductivity (Lattice Conductivity)

Phonon or lattice conduction is visualized as vibrations propagating along interatomic bonds

From elementary kinematic theory:

 $\lambda_{ph} = (v c I)/3$ v is the mean phonon velocity, c is the specific heat, and I is the mean free path in the lattice

$$\lambda_{Ph} = (D \times a \times \theta^3) / (T \times \gamma^2)$$

(Abeles, 1963)

D = a numerical constant a = the lattice spacing (m) $\theta = \text{the Debye temperature (K)}$ T = temperature (K) $\gamma = \alpha/(\rho c \beta) = \text{the Gruneisen parameter}$ $(\alpha = \text{thermal expansivity, } \rho = \text{density, } c = \text{specific heat, } \beta = \text{compressibility})$

For an isotropic crystal and at temperatures above the Debye temperature ϑ_D (for silicates > 600 K):

 $k_l = \frac{a_i K^{3/2}}{3 \gamma^2 T \rho^{1/2}}$

 a_i is the interatomic distance, K is the bulk modulus, T is the absolute temperature, ρ is the density and γ is the Grüneisen parameter (dimensionless)

Lawson, 1957

Debye Temperature and Grüneisen parameter

Debye temperature ϑ_D is directly related to the maximum frequency of vibration of the solid v_{m}

$$\vartheta_D = \frac{h \, v_m}{k_B} \qquad \qquad \vartheta_D = 61.2 \, k_l + 385$$

For silicate minerals (Horai and Simmons, 1970)

h = Planck constant (6.626 x 10⁻³⁴ J s) and $k_B = Boltzmann$ constant (1.381 x 10⁻²³ J K⁻¹)

Grüneisen parameter γ describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice.

$$\gamma = \frac{\alpha \ K_S}{\rho \ c_P} = \frac{\alpha \ K_T}{\rho \ c_V} \qquad \qquad \frac{1}{\kappa_T} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P}\right)_T \qquad \qquad \frac{1}{\kappa_S} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P}\right)_S$$

 c_p and c_V are the specific heat at constant pressure *P* and volume *V*, K_s and K_T are bulk moduli at constant entropy S and temperature *T*, and α is the thermal expansion coefficient.

Thermal Conductivity (Radiative Conductivity)

The governing function of the radiative conductivity derives from Stefan's law: in a black body the total energy radiated per unit time, E_R , is expressed as: $E_R = ST^4$ S= σA A=surface σ = Stefan constant (5.6705 x 10⁻⁸ W m⁻² K⁻⁴)

At the depth of the lower crust and upper mantle the contribution of radiative conductivity (k_r) must be considered.

 k_r depends on the mineral opacity ϵ :

$$\varepsilon = \frac{\ln\left(I_{\rm o}/I\right)}{x}$$

where I_o is the intensity of the incident radiation and I the intensity of the radiation transmitted by a medium of thickness x. If opacity is independent from wavelength, the radiative conductivity k_r is:

(Grey body law)
$$k_r = \frac{16 n^2 \sigma T^3}{3 \epsilon}$$
 $n = refractive index$

with n = 1.74 (a typical value of ferromagnesian silicates):

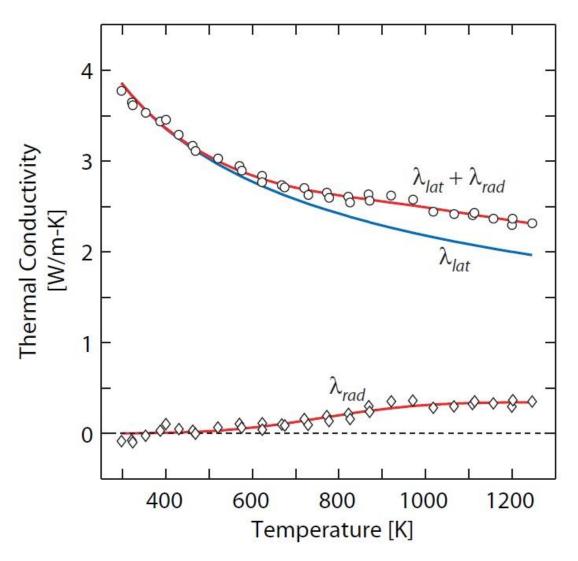
$$k_r = 9.2 \times 10^{-7} \, \frac{T^3}{\varepsilon}$$

• Since ε is not negligeble, k_l remains dominant to at least 800 K

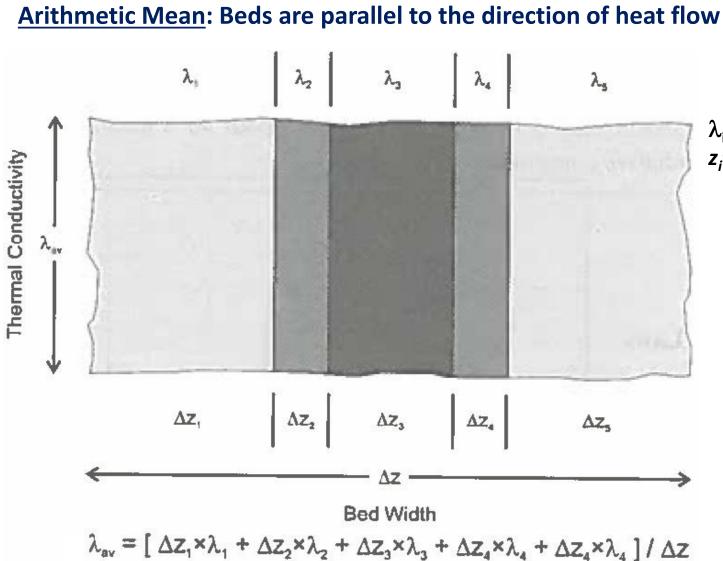
In the lithospheric mantle:
$$k_r = 0.56 \left[1 + \operatorname{erf} \left(\frac{T - 1150}{370} \right) \right]$$

At temperature 1600 K, k_r is 1.1 W m⁻¹ K⁻¹

Hasterock, 2010


Thermal Conductivity (Lattice+Radiative Conductivity)

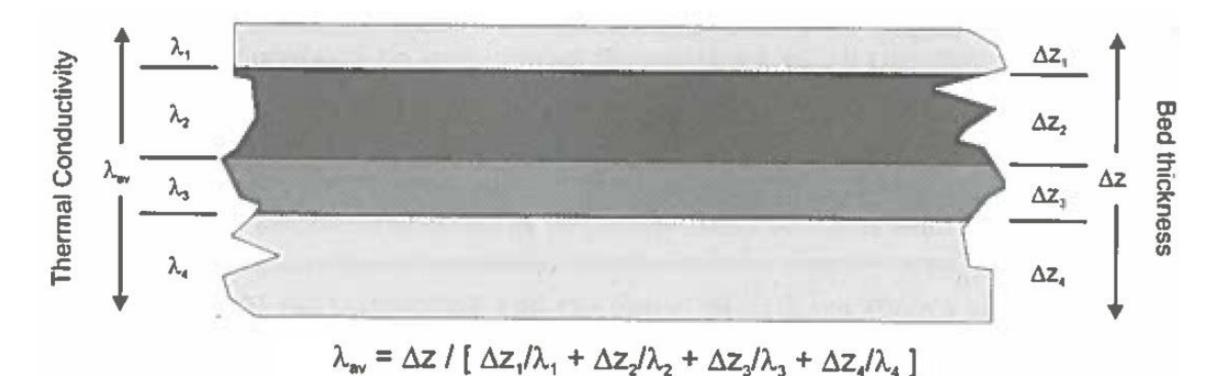
$$\lambda_L(P,T) = \lambda^{\circ} \left(\frac{298}{T}\right)^n \left(1 + \frac{K_T'}{K_T}P\right)$$


 λ_0 = conductivity at 0 GPa and 298 K K_T and K'_T = isothermal bulk modulus and its first pressure derivative n = an empirically derived fitting constant.

$$\lambda_{R}(T) = \frac{1}{2} \lambda_{R_{\max}} \left[1 + erf\left(\frac{T - T_{R}}{\omega}\right) \right]$$

 λ_{Rmax} = maximum radiative conductivity, ω = scaling factor T_R = temperature at $0.5\lambda_{Rmax}$

Mean thermal conductivity of rocks (mixing models)

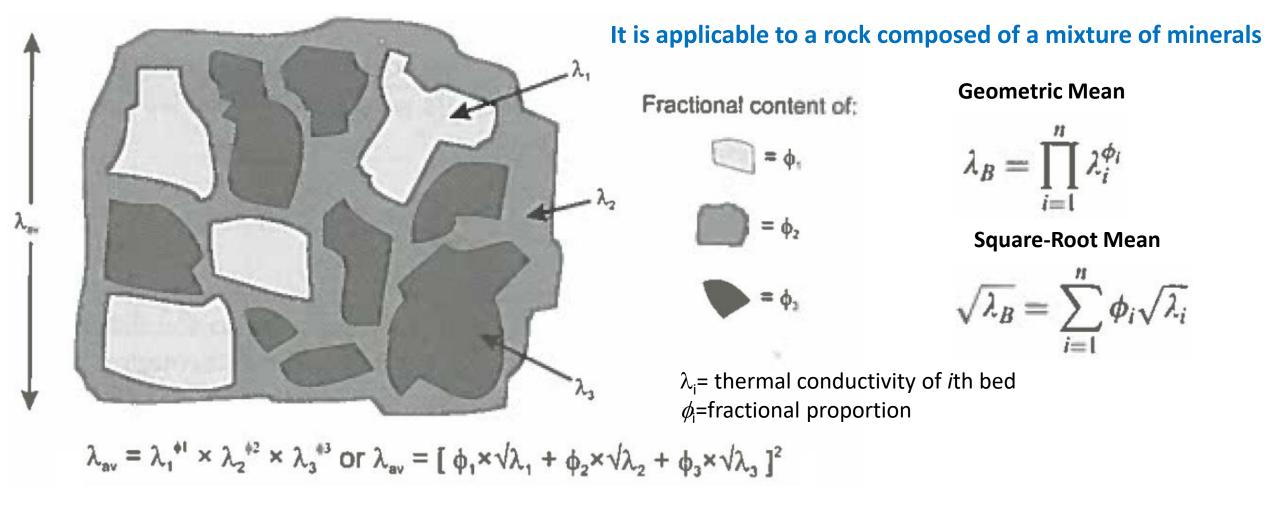

$$\lambda_B = \sum_{i=1}^n \phi_i \lambda_i$$

 λ_i = thermal conductivity of *i*th bed z_i =thickness of the *i*th bed

It is applicable in presence of faults, igneous intrusions, and salt domes.

Mean thermal conductivity of rocks (mixing models)

Harmonic Mean: Beds are perpendicular to the direction of heat flow



$$= \sum_{i=1}^{n} \frac{\phi_i}{\lambda_i} \quad \text{or} \quad \frac{1}{\lambda_B} = \frac{1}{Z} \sum_{i=1}^{n} \frac{z_i}{\lambda_i} \qquad \begin{array}{l} \lambda_i = \text{th} \\ \phi_i = \text{fraction} \\ z_i = \text{th} \end{array}$$

 λ_i = thermal conductivity of *i*th bed ϕ_i = fractional proportion z_i = thickness of the *i*th bed Z=total thickness of sequence

Mean thermal conductivity of rocks (mixing models)

<u>Geometric or Square-Root Mean</u>: several components of known conductivity are randomly oriented and distributed within a mixture

Difference between computed and estimated value of λ is ± 5-10%

Estimates of Thermal Conductivity (Hashin and Shtrikman)

Matrix thermal conductivity

$$k_{mo} = \frac{(k_U + k_L)}{2} \qquad k_U = k_{max} + \frac{A_{max}}{1 - a_{max}A_{max}} \qquad k_{mo} = \text{Thermal conductivity upper bound} \\ k_{mo} = \frac{(k_U + k_L)}{2} \qquad k_U = k_{max} + \frac{A_{max}}{1 - a_{max}A_{max}} \qquad k_{mo} = \text{Thermal conductivity upper bound} \\ k_U = \text{Thermal conductivity Lower bound} \\ k_U = \text{Thermal conductivity Lower bound} \\ k_{max} = \max \min k \text{ of the mineral phases} \\ a_{max} = (3k_{max})^{-1} \\ v_j = \text{volume fraction} \\ \textbf{Bulk thermal conductivity} \\ (\text{considering porosity}) \\ k_{HZ} = k_{mo} \frac{\left[(1 - \phi)(1 - r) + r\beta \phi\right]}{\left[(1 - \phi)(1 - r) + \beta \phi\right]} \qquad \text{where for } a < 1 \qquad M = \frac{2}{2} \frac{\theta - \sin 2\theta}{2 \tan \theta \sin^2 \theta} \\ \beta = \frac{(1 - r)}{3} \left[\frac{4}{2 + M(r - 1)} + \frac{1}{1 + (r - 1)(1 - M)}\right] \qquad \text{and for } a > 1 \qquad M = \frac{1}{\sin^2 \theta} - \frac{\cos^2 \theta}{2\sin^3 \theta} \ln \left(\frac{1 + \sin \theta}{1 - \sin \theta}\right) \\ \text{with } \theta = \cos^{-1}(1/a). \text{ For } a = 1, M = 3(1 - r)/(2 + r) \end{cases}$$

 K_{HZ} = computed thermal conductivity

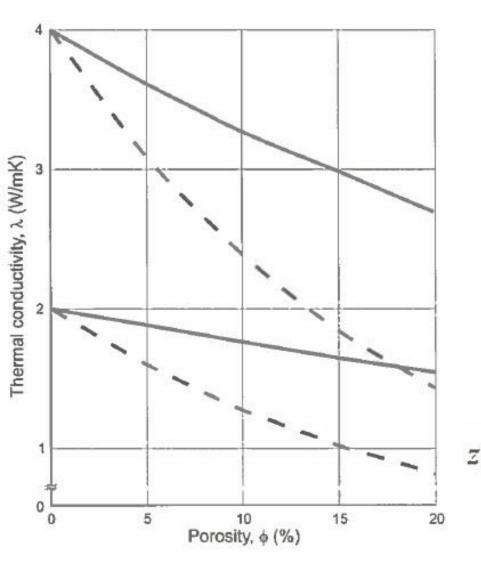
r = ratio of thermal conductivity of the pore-filling water (k_w) and the matrix thermal conductivity (k_m)

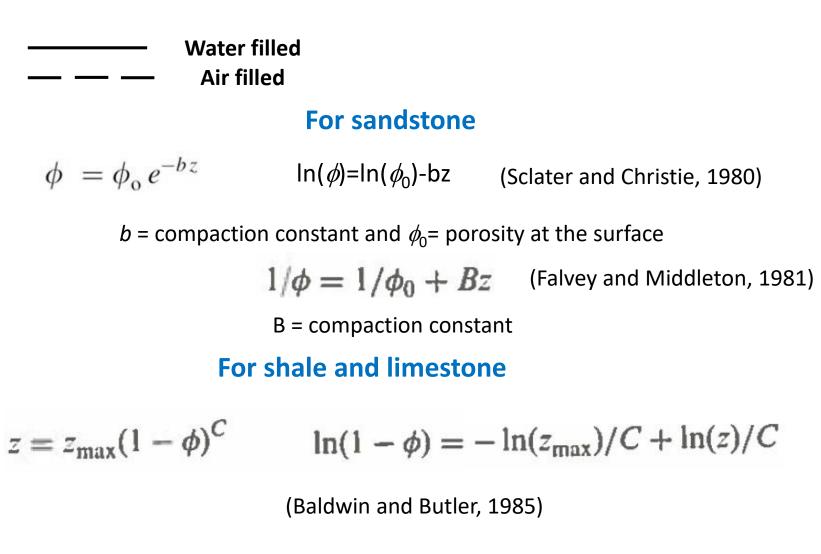
a = aspect ratio (the ratio of the length of the unequal axis to the length of one of the equal axes): pores have spherical, oblate, and prolate shape for a = 1, a > 1 and a<1.

Thermal Conductivity and Porosity

$$\lambda(z) = \lambda_m^{1-\phi(z)} \lambda_f^{\phi(z)} \qquad \lambda(z) = [(1-\phi(z)) \times \lambda_m^{1/2} + \phi(z) \times \lambda_f^{1/2}]^2 \qquad \phi = \phi_0 e^{-bz} \qquad \ln(\phi) = \ln(\phi_0) - bz$$

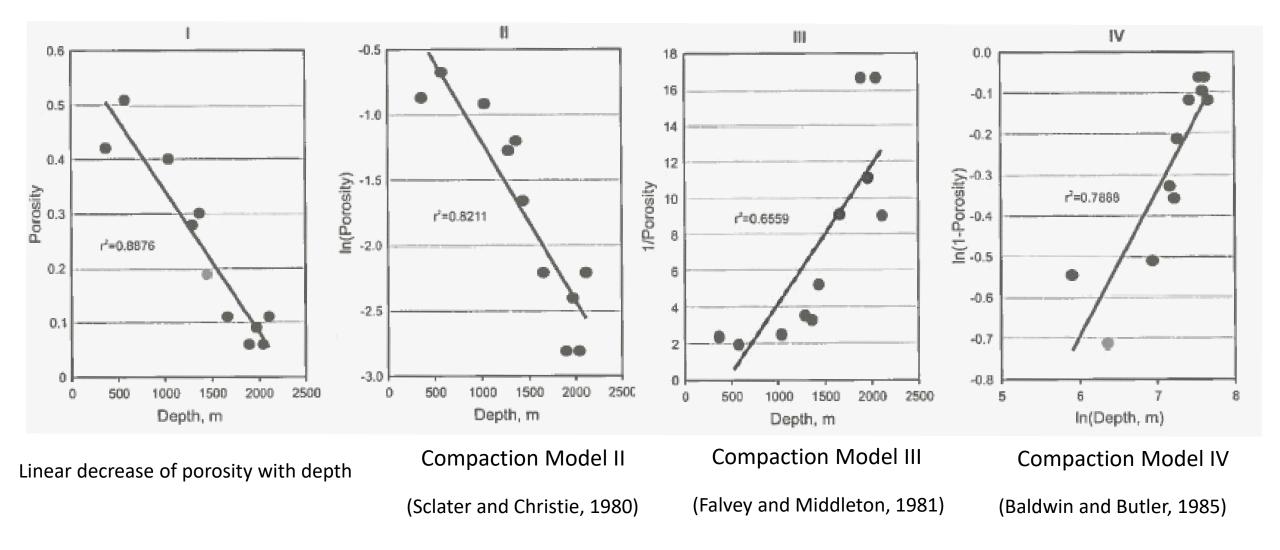
Geometric Mean


Square-Root Mean


where λ_m and λ_w are the matrix and water thermal conductivity, ϕ is the porosity, *b* is the compaction factor and ϕ_0 is the surface porosity.

For z in km, b is 0.180 and 0.396 km⁻¹ in carbonate rocks, 0.298 and 0.461 km⁻¹ in marls and silty marls, 0.284 and 0.216 km⁻¹ in sandstones and calcarenites, and 0.293 and 0.379 km⁻¹ in shales and siltstones.

Thermal Conductivity and Porosity (Compaction Model)



 Z_{max} = depth at which all fluid is expelled C = compaction constant

Thermal Conductivity and Porosity (Compaction Model)

Different lithologies compact at different rates, then the graph producing the most linear plot is the most realistic

Bulk Thermal Conductivity

$$k_{in} = k_m^{(1-\phi)} k_w^{\phi} \qquad \phi = \phi_0 e^{-bz}$$

 k_m and k_w are the matrix and water thermal conductivity, ϕ is the porosity, b is the compaction factor and ϕ_0 is the surface porosity.

$$k_m = 1.8418 + (k_0 - 1.8418) \left(\frac{1}{0.002732 \ T + 0.7463} - 0.2485 \right) \quad k_0 = k_m \text{ at } 20^{\circ}\text{C}$$
 (Sekiguchi, 1984)

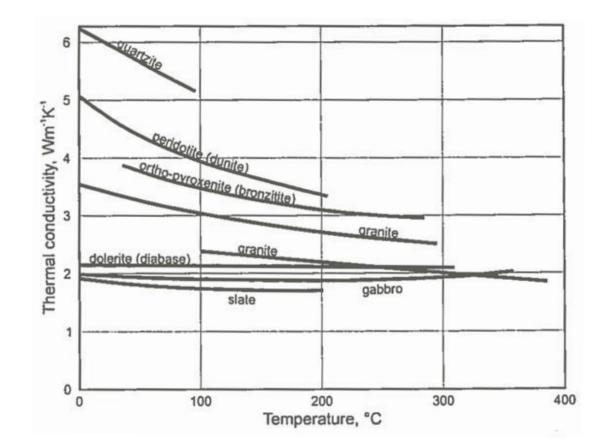
 $k_w = 0.5648 + 1.878 \times 10^{-3} T - 7.231 \times 10^{-6} T^2$ for T ≤ 137°C $K_w = 0.6020 + 1.309 \times 10^{-3} T - 5.140 \times 10^{-6} T^2$ for T > 137°C

(Deming and Chapman, 1988)

Thermal Conductivity of pore fluids

Fluid	Conductivity (W m ⁻¹ K ⁻¹)	Source
Water		
Fresh	$-7.42 \times 10^{-6} \times T^{2} + 5.99 \times 10^{-3} \times T - 0.522$	1
Saline	$-7.42 \times 10^{-6} \times T^{2} + 5.99 \times 10^{-3} \times T - 0.5$	
Hydrocarbon		
Oil	0.1	I
Gas	$0.000143 \times T - 0.0159$	1
Air	0.023	2

Note: T = absolute temperature in the range 295-450 K.


Source: 1 = Touloukian et al. (1970a), 2 = Giancoli (1984).

Thermal Conductivity and Temperature

$$k_l = \frac{1}{a+b T} \qquad \text{Up to T<=700 °C}$$

a = 0.33 m K W⁻¹ and b = 0.33 x 10^{-3} m W⁻¹ for the upper crust a = 0.42 m K W⁻¹ and b = 0.29 x 10^{-3} m W⁻¹ for the lower crust

 K_l is between 1 and 7 W m⁻¹ K⁻¹ (in most of rocks). It decreases from 3.0 W m⁻¹ K⁻¹ at the surface to about 2.0 W m⁻¹ K⁻¹ at 400 °C, and then decreases only very slightly at higher temperatures. In the lithospheric mantle, k_l is 2.0–2.5 W m⁻¹K⁻¹.

Thermal Conductivity and Temperature

$$\lambda = \frac{\lambda_0}{1 + cT} \circ \mathsf{C}$$
 $\lambda(T) = A + \frac{B}{350 + T} \circ \mathsf{C}$

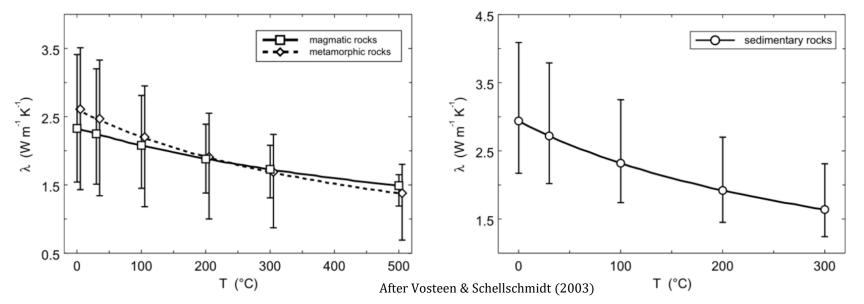
where λ_0 is the thermal conductivity at 0°C and near-surface pressure

conditions, and c is a material constant (in the range of 0–0.003°C⁻¹).

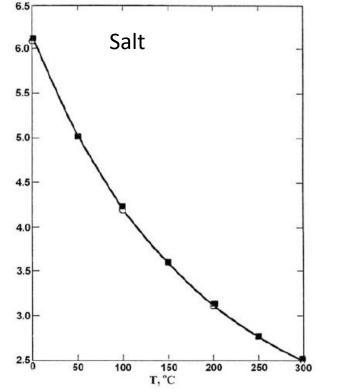
Empirical constants A and B are determined from a least-squares

(Cermak and Rybach, 1982)

plot of measured data for different rock types.


(Zoth and Hanel, 1988)

$$\lambda(T) = \frac{\lambda(0)}{0.99 + T\left(\frac{a-b}{\lambda(0)}\right)}$$


 $\lambda(0)$ = thermal conductivity at 0°C

a = 0.0030 ± 0.0015 , b = 0.0042 ± 0.0006 for crystalline rocks a = 0.0034 ± 0.0006 , b = 0.0039 ± 0.0014 for sedimentary rocks.

- For sedimentary rocks at T of up to 573 K, there is a reduction of λ of a factor of 2
- For vulcanic rocks λ decreases to ~1173 K, at which point is ~50% of its value at ambient T (above this T the radiative component of λ starts to rise)

Thermal Conductivity and Temperature

Temperature effect on thermal conductivity in 10^{-3} cal s⁻¹ cm⁻¹ °C

Formation	$\rho (g/cm^3)$	0 °C	50 °C	100 °C	200 °C	300 °C	400 °C	500 °C
Dolomite	2.83	11.9	10.30	9.30	7.95			
Limestone	2.60	7.20	6.14	5.53	4.77			
Limestone, parallel	2.60	8.24	7.55	7.04	6.54			
Limestone, perpend.	2.69	6.09	5.68	5.41				
Quartz-sandstone, parallel	2.64	13.6	11.80	10.60	9.00			
Quartz-sandstone, perpend.	2.65	13.1	11.40	10.30	8.65			
Shale			2.17	2.25	2.38	2.54	2.68	2.83
Slate, parallel	2.70	6.35	6.05	5.85	5.50	5.20	4.95	4.80
Slate, perpend.	2.76	4.83	4.40	4.23	4.08			
Calcite, parallel		27.3	22.40	19.00	15.1	12.30	10.30	
Calcite, perpend.		16.3	13.50	11.80	9.70	8.40	7.40	
Halite	2.16	14.6	12.00	10.05	7.45	5.95	4.98	

The reciprocal of thermal conductivity is a linear function of *T*:

 $\lambda^{-1} = a_0 + a_1 T$ For T<= 300 °C

Rock	<i>a</i> ₀ (m °C/W)	$a_1 \times 10^4 \text{ (m/W)}$
Salt	0.1605	7.955
Granite	0.3514	3.795
Basalt	0.8684	-6.146
Shalevert	0.5297	2.215
Shale _{hor}	0.7167	2.949

$$\lambda_T = \lambda_{20} - (\lambda_{20} - 3.3) \left[\exp\left(0.725 \frac{T - 20}{T + 130}\right) - 1 \right]$$

where λ_{20} is λ at 20 °C in 10 $^{\text{-3}}$ cal s $^{\text{-1}}$ cm $^{\text{-1}}$ °C

Thermal Conductivity and Temperature

 $\lambda = (\mathsf{T}_0\mathsf{T}_m/(\mathsf{T}_m\mathsf{-}\mathsf{T}_0))(\lambda_0\mathsf{-}\lambda_m)((1/\mathsf{T})\mathsf{-}(1/\mathsf{T}_m)) + \lambda_m$

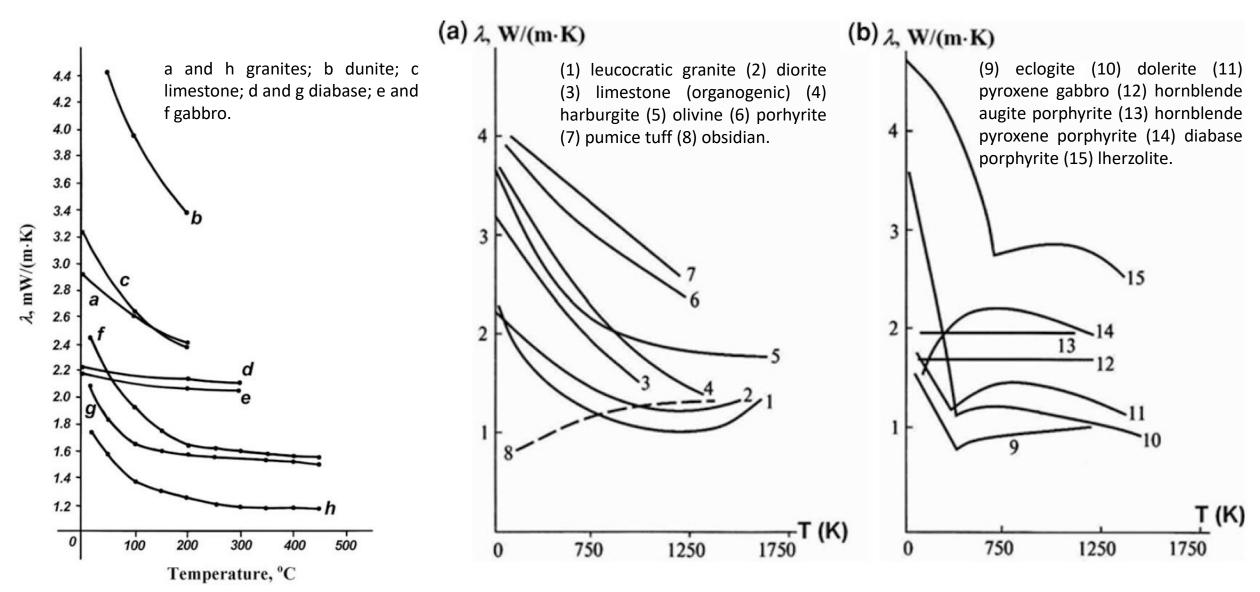
(Sekiguchi et al., 1984)

 λ_{m} =1.05Wm⁻¹K⁻¹ (calibration coefficient) λ_{m} =thermal conductivity at T_{0} T_{0} =lab temperature (K) T_{m} = 1473 K (calibration coefficient)

Correction applicable for a T range 0-300°C, independent on mineralogy, porosity and pore fluid

For individual lithology a different correction can be applied: $\ln(\lambda) = \ln(\lambda_0) + \ln(T/T_0)M$ with *M*=constant(lithology)

Correction applicable for a T range 300-500 K (depths 6-8 km)


Lithology	М	Lithology	M	
Sandstone	Variable	Coal	0.714	
Limestone	-0.185	Dolomite	0.0	
Clay	0.0	Halite	-1.37	
Granite	0.0	Loose sand	0.0	
Basalt	0.5	Tuff	0.25	

Coefficient, M for Different Lithologies

Source: Touloukian et al. (1970b). For some lithologies (basalts, coal, and tuff) λ increases

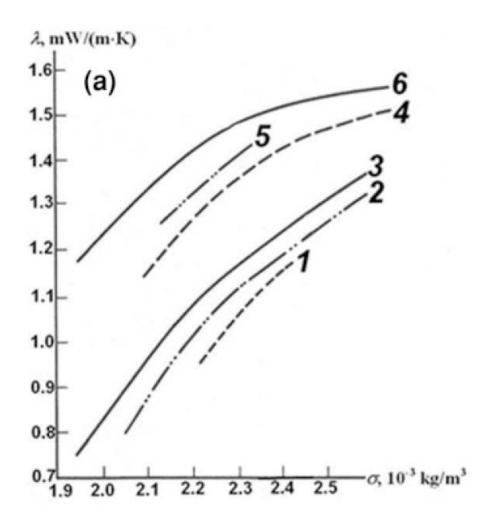
Thermal Conductivity of Rocks

There is not always a clear correlation between thermal conductivity and temperature

(after Dortman, 1976 and Yerofeyev et al., 2009).

Thermal Conductivity and Pressure

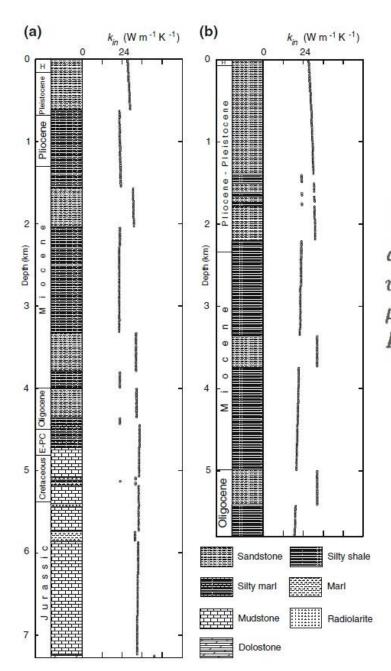
$$\lambda = \lambda_0 (1 + \delta p)$$


 λ_0 = thermal conductivity coefficient at normal pressure and δ = pressure coefficient of the thermal conductivity

- From experiments at pressures up to 10,000–12,000 kg cm⁻² the calculated values of δ are small: for rocksalt 3.6 x 10⁻⁵; for dry and wet limestone with a density of 2.31 g/cm³, 9.5x9 10⁻⁵ and 1.35 x 10⁻⁵ kg⁻¹ cm², and for dry and wet sandstone with a density of 2.64 g/cm³, 2.5 x 10⁻⁴ and 5.7 x 10⁻⁵ kg⁻¹ cm².
- The correction on λ for igneous and metamorphic rocks at a pressure up to 100 MPa is positive (on average about 10 %). Under a higher pressure, there is a slight increase of λ, on average by 0.002 W m⁻¹K⁻¹per 100 MPa, due to the crystal lattice deformation up to the elastic limit.
- For granite and metamorphic rocks, there is about a 10 % increase in λ over the entire range of P from 0 to 500 MPa, but the increase is the greatest over the first 50 MPa.

77			192	Mineral
Sample	λ at 0.4 kg/cm ² (10 ⁻³ cal/cm s °C)	Pressure (kg/cm ²)	$\delta (10^{-3} \text{ kg/cm}^2)$	Mg ₂ SiO ₄
Sandstone	(10 00000000)	(19.011)		$Mg_{1.8}Fe_{0.8}$
No. 172	6.84	0.4-164	0.434	$Mg_{1.8}Fe_{0.8}$
No. 224	5.51	0.4-164	0.612	$Mg_{1.8}Fe_{0.1}$
No. 234	6.69	0.4-164	0.626	Mg _{1.8} Fe _{0.}
No. 286	7.50	0.4-164	0.931	Mg _{1.8} Fe _{0.}
No. 313	9.44	0.4-164	0.905	Mg _{1.8} Fe _{0.}
No. 343	8.51	0.4-41	3.43	Mg _{1.8} Fe _{0.}
Limestone				Mg _{1.8} Fe ₀
No. 19	5.06	0.4-164	0.599	Mg _{0.85} Fe
No. 34	4.22	0.4-164	0.185	MgO
No. 102	7.67	0.4-164	0.406	-
No. 260	4.33	0.4-123	0.808	MgO
No. 270	3.53	0.4-164	0.579	Coesite
Dolomite				Coesite
No 103	7.62	0.4-123	1.71	Py25Al74
No. 365	6.18	0.4-123	0.928	NaAlSi2C

Mineral	P _{max} (MPa)	$\lambda^{-1}\partial\lambda/\partial P (10^{-4} \text{ MPa}^{-1})$
Mg ₂ SiO ₄	500	16.0
Mg _{1.8} Fe _{0.2} SiO ₄	200	12.0
Mg _{1.8} Fe _{0.2} SiO ₄	1,000	9.0-12.0
Mg _{1.8} Fe _{0.2} SiO ₄	4,800	~ 4.8
Mg _{1.8} Fe _{0.2} SiO ₄	5,600	6.0-7.0
Mg _{1.8} Fe _{0.2} SiO ₄	5,600	5.0-6.0
Mg _{1.8} Fe _{0.2} SiO ₄	8,300	3.2-3.8
Mg _{1.8} Fe _{0.2} SiO ₄	9,000	5.5
Mg _{1.8} Fe _{0.2} SiO ₄	10,000	4.4
Mg _{0.85} Fe _{0.15} O ₃	5,600	7.0
MgO	5,000	2.0-4.0
MgO	1,200	5.0
Coesite	4,000	3.9
Coesite	5,600	1.4-4.4
Py ₂₅ Al ₇₄ Gr ₁ (garnet)	8,300	4.6
NaAlSi2O6	3,000	4.6


Thermal Conductivity and Density

$$\lg \lambda_{(T=293\text{K})} = 0.36\sigma - 0.20$$

 σ =density with a correlation coefficient of 0.74

(1) dry siltstone (2) dry argillite (3) dry sandstone(4) water-saturated siltstone (5) water-saturated argillite (6) water-saturated sandstone.

Thermal Conductivity of Rocks (empirical relationships)

Thermal conductivity can be derived for crystalline rocks from other well-log parameters: Density(RHOB, g/cm³), photoelectric capture cross section (PEF, barns/electron, b/e), full-waveform sonic (v_p and v_s , m/s) and temperature (T,K).

 $\lambda = 0.7531 + 0.1005 \times (av_m \mu^2 / 3K_S T) \quad \text{Williams and Anderson, 1990}$ $a = \text{mean interatomic distance} \approx 10^{-9} \times ((5.32 \times \text{PEF}^{0.2778} + 13.8) / (1000 \times \text{RHOB}))^{1/3} \text{m}$ $v_m = \text{mean phonon velocity} = 3^{1/3} (1/v_p^3 + 2/v_s^3)^{-1/3} \text{m s}^{-1}$ $\mu = \text{shear modulus} = 1000 \times \text{RHOB} \times v_s^2$ $K_S = \text{bulk modulus} = 1000 \times \text{RHOB}(v_p^2 - \frac{4}{3}v_s^2)$

For siliciclastic rocks with water-filles pores

 $\lambda = 77 \times V/(a \times (c + T)) \text{ W m}^{-1} \text{ K}^{-1}$ a = 1.039, c = 80.031

V=acustic velocity (km/s) T=temperature (°C)

Houbolt and Wells, 1980

Thermal Conductivity of Anisotropic Rocks

Thermal conductivity parallel to the mineral sheets >> Thermal conductivity perpendicular to the sheets

	Average Conductivity (Wm ⁻¹ K ⁻¹)				
Mineral	Parallel	Perpendicular	Aggregate		
Muscovite	3.89	0.52	2.35		
Phlogopite	4.01	0.48			
Biotite	3.14	0.52	2.02		
Lepidolite		0.48	2.30		
Phyrophyllite	6.17	1.15	4.50		
Tale	11.5		2.97		
Chlorite			2.52		
Clinochlore	10.3	1.97			

Average Thermal Conductivity for Sheet Silicates

Sources: Diment and Pratt (1988) and Williams and Anderson (1990).

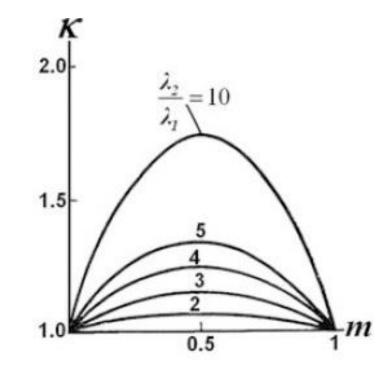
- Thermal conductivity remains constant or decreases with depth in anisotropic rocks, since during compaction there is:
- Water expulsion (e.g., porosity decreases from 75% to 60% in 50 m), then λ >>
- Progressive rotation of clay sheets to a preferred horizontal orientation, then matrix thermal conductivity, $\lambda_m \ll$

Verical matrix thermal conductivity of the clay and mica during burial is: λ_m =2.899-0.251z

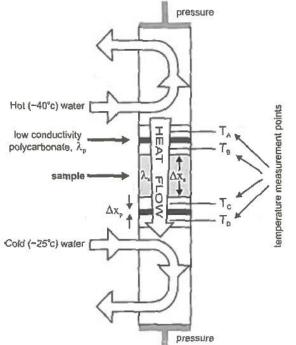
For a shale (anisotropic rock):

 $\lambda_{\rm av} = \lambda_{\rm max}^{2/3} \times \lambda_{\rm min}^{1/3}$

Since anisotropy decreases with increasing conductivity: $\lambda_z = \exp[(\ln(\lambda_{ag})-0.6267/0.5480)]$


 λ_z = Thermal conductivity perpendicular to the sheet λ_{ag} = Thermal conductivity of the aggregate

Effect of thermal anisotropy


In case of two-component medium consisting of interbedding of alternation with a thickness h_1 and h_2 and thermal conductivity λ_1 and λ_2 .

 λ_{τ} =longitudinal thermal conductivity λ_n =trasversal thermal conductivity

 $k=k_{max}$ when m=0.5

$$\kappa = \sqrt{\frac{\lambda_{\tau}}{\lambda_n}} = \sqrt{1 + \frac{m(1-m)(\lambda_1 - \lambda_2)^2}{\lambda_1 \lambda_2}}, \quad m = \frac{h_1}{h_1 + h_2}$$

Measurements of Rock Thermal Conductivity Steady-State Method Divided-Bar

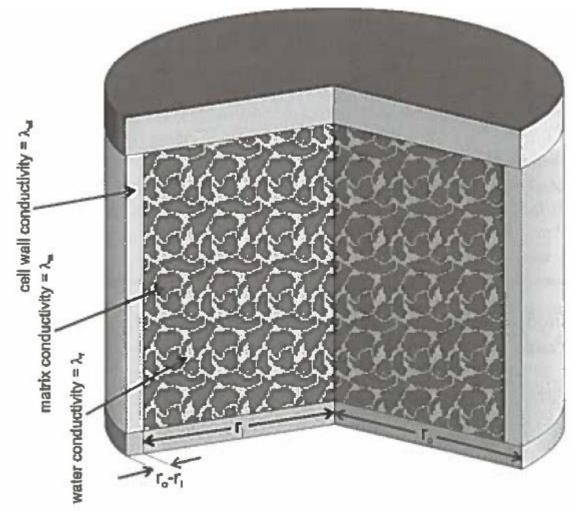
- 1. Heat Conduction along the bar is assumed to be 100% efficient (no heat loss).
- 2. Total temperature drop across the brass sections of the instrument is negligible compared with the temperature drop across the polycarbonate and core sample.
- 3. The two standard conductivity discs must be identical in thickness and thermal conductivity.

 $\Delta T_s = T_B - T_C$ = temperature drop across the sample $\Delta T_1 = T_A - T_B$ = temperature drop across the top polycarbonate $\Delta T_2 = T_C - T_D$ = temperature drop across the bottom polycarbonate $\Delta x_s, \lambda_s$ = thickness (m), thermal conductivity (W m⁻¹ K⁻¹) of sample $\Delta x_p, \lambda_p$ = thickness (m), thermal conductivity (W m⁻¹ K⁻¹) of polycarbonate The contact resistance, *R*, increases the apparent resistance of the sample, $\Delta x_s / \lambda_{s(measured)}$

$$C = [\lambda_p / (2\Delta x_p)]$$

$$\lambda_{s(corrected)} = \Delta x_s / [(\Delta x_s / \lambda_{s(measured)}) - R]$$

$$\lambda_{s(measured)} = [(\Delta T_1 + \Delta T_2) / \Delta T_s] \Delta x_s C$$


$$\frac{\Delta x_s}{\lambda_{s(corrected)}} = \frac{\Delta T_s}{(\Delta T_1 + \Delta T_2)} \times \frac{1}{C} - R$$

Q = heat flow along bar **Q** = **Q**_{top polycarbonate} = **Q**_{sample} = **Q**_{bottom polycarbonate} **Q** = $\lambda_p \times \Delta T_1 / \Delta x_p = \lambda_s \times \Delta T_s / \Delta x_s = \lambda_p \times \Delta T_2 / \Delta x_p$

$$0.5 \times \lambda_p \times (\Delta T_1 + \Delta T_2) / \Delta x_p = \lambda_s \times \Delta T_s / \Delta x_s$$
$$\lambda_s = \left[(\Delta T_1 + \Delta T_2) / \Delta T_s \right] \times \Delta x_s \times \left[\lambda_p / (2 \Delta x_p) \right]$$

Measurements of Rock Thermal Conductivity Steady-State Method Hollow cell

For unconsolidated material a hollow cell is used

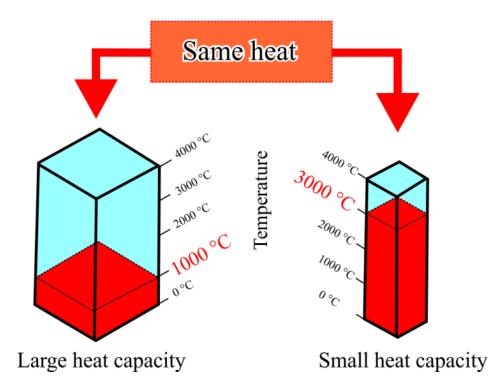
$$\lambda_{\text{total}} = \lambda_{ag} \times \frac{\pi r_i^2}{\pi r_o^2} + \lambda_{\text{cell}} \times \frac{\pi r_o^2 - \pi r_i^2}{\pi r_o^2}$$
$$\lambda_m = \left[(\sqrt{\lambda_{ag}} - \phi \sqrt{\lambda_w}) / (1 - \phi) \right]^2$$
Square-Root mean
$$\ln(\lambda_m) = \left[\ln(\lambda_{ag}) - \phi \times \ln(\lambda_w) \right] / (1 - \phi)$$
Geometric mean

Specific Heat Capacity

- The specific heat defines the amount of energy required to raise the temperature of a unit of the mass of a substance by 1°C.
- The thermal (heat) capacity (c) indicates the capability of the formations to store heat (J/K).
- For a reversible transformation the change in internal energy *U* is the sum of the heat stored in the system **Q** and of the work done by the system:

dU = dQ - PdV = TdS - PdV S=entropy

 The specific heat at constant volume C_v relates the internal energy U to changes in T and is:


$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = T\left(\frac{\partial S}{\partial T}\right)_V$$

 The specific heat at constant pressure C_p relates the enthalpy (H=U+PV) to changes in T and is :

$$C_P = \left(\frac{\partial H}{\partial T}\right)_P = T\left(\frac{\partial S}{\partial T}\right)_P$$

Under high P and T: $C_P/C_V = 1 + \alpha \gamma T$

In an object with a large c_p , the temperature rise is smaller than in one with a smaller c_p

Specific Heat Capacity

The average specific heat capacity at constant pressure (C_p) for magmatic, metamorphic, and sedimentary rocks depends on T and increases from ~760, 770 and 810 J kg⁻¹ K⁻¹ at 273 K, to ~970, 970 and 1,010 J kg⁻¹ K⁻¹ at 573 K

$$c_p = 0.75(1 + 6.14 \times 10^{-4} T - 1.928 \times 10^{4} T^{-2})$$

 $C_p = c_0 + c_1 T^{-1/2} + c_3 T^{-3}$

For Fosterite

$$c_0 = 233.18, c_1 = -1801.6 \text{ and } c_3 = -26.794 \times 10^7$$

 $c_0 = 252, c_1 = -2013.7 \text{ and } c_3 = -6.219 \times 10^7$

C_p is in KJmol⁻¹ and T in Kelvin

For Fayalite

Rock	Ν	c	Rock, mineral	Specific heat capacity	[kJ/(kg K)]	Material	Thermal conductivity	Density	Specific heat
Sand	130	0.96	Augite	0.8			$(W m^{-1} K^{-1})$	$({\rm kg} {\rm m}^{-3})$	$(J kg^{-1} K^{-1})$
Siltstone	42	0.87	Basalt rock	0.84		Quartz-a	7.69 ^a	2647 ^a	740 ^b
Argillite, clay schist	18	0.86	Dolomite rock	0.92		Quartz microcrystalline	3.71 ^a	2618 ^a	735 ^b
Clay	116	1.10	Garnet	0.75		Plagioclase	1.97 ^a	2642 ^a	837 ^b
Marl	19	1.55	Granite	0.79		K-feldspar	2.40^{a}	2562 ^a	700 ^b
Limestone	108	0.89	Hornblende	0.84		Calcite	3.59 ^a	2721 ^a	815 ^b
Chock	13	1.86	Hypersthene	0.8		Dolomite	5.51 ^a	2857 ^a	870 ^b
Granite	87	0.95	Labradorite	0.8		Sheet silicates	1.88 ^c	2630 ^c	832 ^d
Granodiorite	11	1.02	Lava	0.84		Anhydrite	4.76 ^a	2978 ^a	585 ^b
Porpyrite	11	0.91	Limestone	0.84		Gypsum	1.30 ^e	2320 ^b	1070 ^b
Diorite	4	1.00	Sand	0.8		Air	0.026	1.225	1005
Basalt	12	1.23	Sandstone	0.92		Water	0.60	1000	4186
Diabas	12	0.87	Serpentine	1.09					
Gabbro	13	0.98	-		10				
Schist	95	1.10							
Gneiss	14	1.02							
Amphibolite	7	1.13							

Volumetric heat capacity

Volumetric heat capacity (ρc)= product between density and specific heat

Volumetric heat capacity of a dry rock $(\rho c)_r$ can be computed as the weighted average of the volumetric heat capacity of the matrix $(\rho c)_m$ and of the air $(\rho c)_a$ in the voids.

$$(\rho c)_r = (1 - \phi)(\rho c)_m + \phi (\rho c)_a \qquad (\rho c)_m = \sum_{j=1}^n v_j \rho_j c_j \quad \sum_{j=1}^n v_j = 1$$

Where ϕ is porosity, v_j , ρ_j and c_j are the volume fraction, density and specific heat of the jth mineral and n is the number of mineral components.

Specific Heat of matrix and water depends on temperature:

$$c_w = \frac{(4245 - 1.841 \ T) \times 10^3}{\rho_w} \qquad \rho_w = \frac{\rho_{w20}}{1 + (T - 20) \ \alpha_w}$$

where $(\rho_w)_{20}$ the water density at 20 ° C, and α_w thermal expansion coefficient of water.

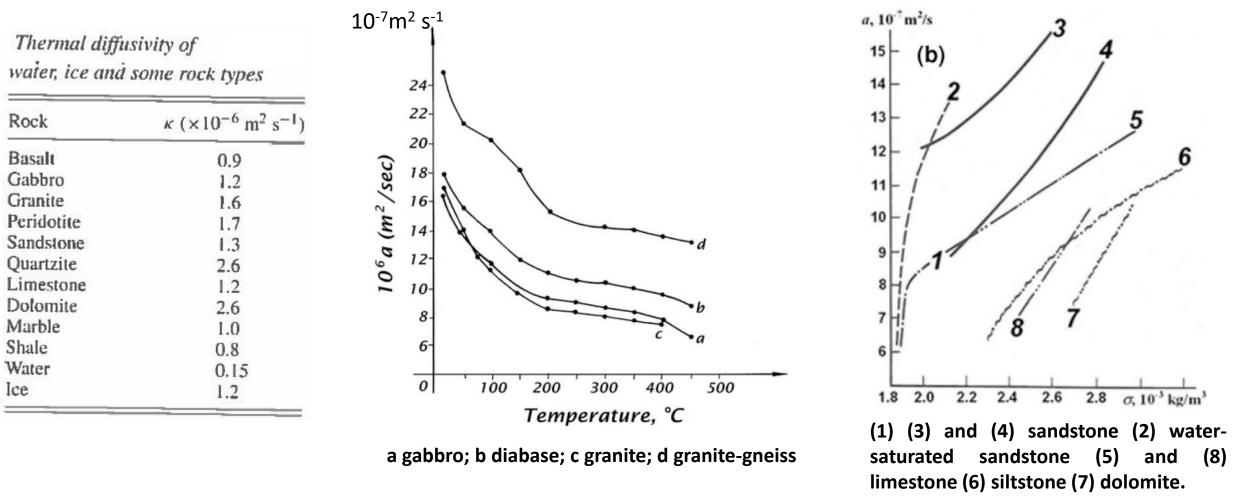
$$\alpha_w = 0.0002115 + 1.32 \times 10^{-6} T + 1.09 \times 10^{-8} T^2$$

$$(\rho c)_m = (\rho c)_{m20} (0.953 + 2.29 \times 10^{-3} T - 2.835 \times 10^{-6} T^2 + 1.191 \times 10^{-9} T^3)$$

where $(\rho c)_{m20}$ is the volumetric heat capacity of the rock matrix at 20 °C

Thermal Diffusivity

Thermal diffusivity (*a* or *k*) is a physical property that controls the rate at which heat dissipates through a material


Thermal Diffusivity (*a* or κ): how fast the temperature field of a solid changes with time $a = \frac{\lambda}{\rho c}$ or $\kappa = \frac{k}{\rho c}$

Material	n	ρ , $\rho_{\rm aver}$ (g/cm ³)	λ , λ_{aver} (10 ⁻³ cal/cm s °C)	n	c, c _{aver} (cal/g ℃)	a, a_{aver} (10 ⁻³ cm ² /s)
Anhydrite	7	2.65-2.91	9.80-14.50	7	()	17.00-25.7
		2.80	12.61		3 <u>00</u> 2	22.41
Clay	3	2.49-2.54	5.20-5.40	3	0.213-0.240	8.53-10.18
		2.52	5.30		0.223	9.50
Clay marl	7	2.43-2.64	4.14-6.15	7	0.186-0.234	8.01-11.66
		2.54	4.87		0.205	9.34
Claystone	15	2.36-2.83	4.17-8.18	9	0.197-0.223	8.24-15.80
		2.60	5.68		0.211	12.18
Dolomite	6	2.53-2.72	6.01-9.06	6	0.220-0.239	10.75-14.97
		2.63	7.98		0.228	11.17
Schistose clay	3	2.42-2.57	4.60-5.50	3	0.218-0.222	8.10-10.24
		2.49	5.13		0.220	9.37
Limestone	11	2.41-2.67	4.05-6.40		0.197-0.227	8.24-12.15
		2.55	5.28		0.204	10.54
Limestone	6	2.58-2.66	5.58-8.38	6	0.197-0.220	10.78-15.21
		2.62	6.75		0.210	12.18
Lime marl	2	2.43-2.62	4.40-5.74	2	0.200-0.227	9.04-9.64
		2.53	5.07		0.214	9.34
Marl	3	2.59-2.67	5.55-7.71	3	0.217-0.221	9.89-13.82
		2.63	6.44		0.219	11.18
Marly clay	2	2.46-2.49	4.21-4.82	3	0.183-0.236	7.17-10.72
		2.47	4.52		0.210	8.94
Clay slate		2.62-2.83	3.45-8.79	5	0.205-0.205	6.42-15.15
1999. • Verster 200	5	2.68	5.13		0.205	9.26
Salt		2.08-2.28	10.7-13.7	14		25.20-33.80
	14	2.16	13.19			30.60
Salt slate		2.13-2.57	3.00-10.00	7	-	6.38-21.70
	7	2.37	6.59		<u></u>	13.90
Sandstone		2.35-2.97	5.20-12.18	31	0.182-0.256	10.94-23.62
	54	2.65	7.75		0.197	16.45

For many rocks *a* ranges between 0.8 and 2.5 \sim 10⁻⁶ m²/s

Rock	N	$a \text{ cm}^2/$
Sand	154	9.57
Siltstone	45	10.28
Argillite, clay schist	23	9.76
Clay	126	7.30
Marl	26	7.53
Limestone	115	10.92
Chock	13	4.77
Granite	92	9.13
Granodiorite	16	5.15
Porpyrite	23	9.54
Diorite	10	6.38
Basalt	13	5.34
Diabas	13	9.93
Gabbro	21	9.70
Schist	106	9.60
Gneiss	15	7.98
Amphibolite	9	6.84
Gneiss-granite	18	7.24

Thermal Diffusivity

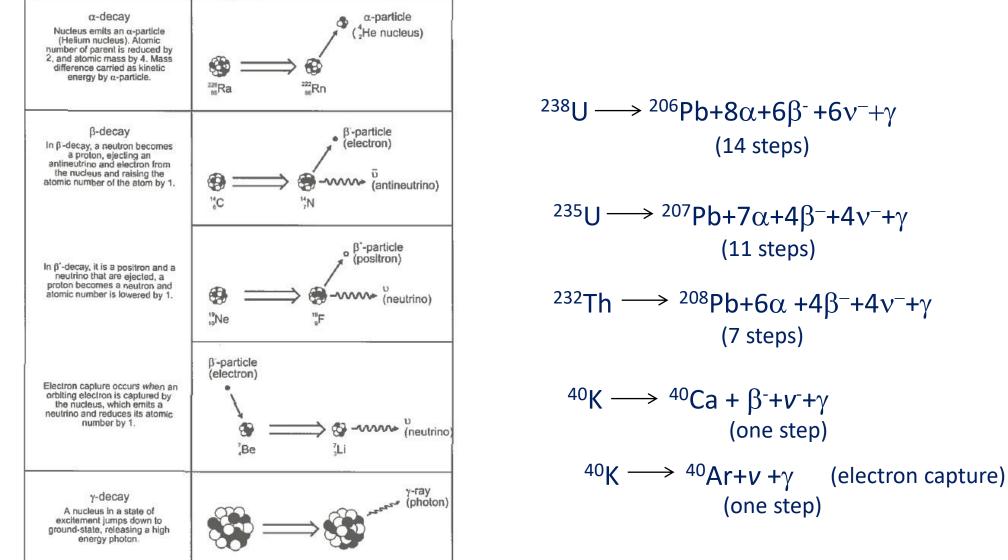
- For magmatic, metamorphic, and sedimentary rocks within a *T* interval of 273–573 K, the thermal conductivity, λ, decreases by 25–44 % and thermal diffusivity, *a*, decreases by 42–54 %.
- Thermal diffusivity for all the rocks drops from 1.8–2.2 mm²/s at 298 K to 0.3–0.5 mm²/s at 1,200–1,250 K and from 1.5–2.5 mm²/s at ambient conditions to about 0.5 mm²/s at mid-crustal temperatures (middle-lower crust is a very effective thermal insulator).
- Results showing that the substitution of ~10 % *Fe* for *Mg* in forsterite lowers the thermal diffusivity by ~ 50 %.
- At ambient temperature rocks saturated with water have their thermal diffusivity increased by as much as 24 %.

Melting Point

- The melting point of a substance is the *T* at which the solid and liquid phases exist in equilibrium and the substance can be transformed from solidus to liquidus and viceversa.
- The amount of energy absorbed (released) by a substance during a change of state from a solid (liquid) to a liquid (solid) is named *latent heat of fusion (crystallization)*.
- The melting point of rocks and minerals drops significantly with increases in H₂O, CO₂, and Fe content.

			Rock	Melting point (K)	References
Mineral	Melting point (K)	References	Basalts	~1,473	Adylov and Mansurova (1999)
an ann an Anna	ON CONTRACTOR		Basic rocks with $Fe# = 0.35$	~1723	Yoder (1976)
Fayalite	1,490	Hewins et al. (1996)	Basic rocks with $Fe# = 0.50$	~1,503	Yoder (1976)
Fayalite	1,478	Yoder (1976)	Basic rocks with $Fe# = 1.00$	1,273	Yoder (1976)
Forsterite	2,163	Hewins et al. (1996)	Basalt (beginning of melting at 0.1 MPa)	1,273	Yoder (1976)
Forsterite	2,163	Yoder (1976)	Basalt	1,343	Hall (1995)
Forsterite	2,171	Speight (2005)	Basalt	1,413	Hall (1995)
Enstatite	1,830	Speight (2005)	Basalts	1,473	Faure (2000)
Clinoenstatite	1,830	Hewins et al. (1996)	Basalt, gabbro	1,473	Bayly (1968)
Ferrosilite	1,413	Speight (2005)	Rhyolite, granite	1,073	Bayly (1968)
Albite	1,391	Hewins et al. (1996)	Granites	973-1,123	Attrill and Gibb (2003)
Albite	1,393		Granite	1,173	Hall (1995)
		Hall (1995)	Granite	1,223	Hall (1995)
Anorthite	1,830	Hewins et al. (1996)	Komatiites	2,063	Grove and Parman (2004)
Christobalite	1,996	Hewins et al. (1996)	Andesite	1,373	Tamura et al. (2003)
Diopside	1,664	Hewins et al. (1996)	Andesite	1,343	Hall (1995)
Diopside	1,665	Wenk and Bulakh (2004)	Eclogite	1,573	Anderson (2007)
Fe metal	1,889	Hewins et al. (1996)	Tonalite	1,173	Hall (1995)
Wollastonite	1,813	Nikonova et al. (2003)	Tholeiitic basalt ^a	1,423–1,498	Hall (1995)
Augite	1,440-1,455	Thy et al. (1999)	Basaltic andesite ^a	1,293-1,383	Hall (1995)
Low-Ca pyroxene	1,386–1,426	Thy et al. (1999)	Leucite basalt ^a	1,368	Hall (1995)
Olivine (Fo82)	1,955	Del Gaudio et al. (2009)	Rhyolite ^a	1,008–1,163	Hall (1995)
Olivine (Fo85)	1,993	Del Gaudio et al. (2009)	Rhyodacite ^a	1,173-1,198	Hall (1995)
			Andesite pamice ^a	1,213-1,263	Hall (1995)
Pyrope	1,575–1,609	Van Westrenen et al. (2001)	Dacite ^a	1,198	Hall (1995)
Pyrope	1,570	Téqui et al. (1991)	Peridotite	1,363	Faure and Mensing (2007)
K-feldspar	1,423	Best (2002)	MORB ^a	1,516–1,624	Falloon et al. (2007)
Pure leucite	1,958	Best (2002)	OIB^{a}	1,559–1,645	Falloon et al. (2007)

^a Extrusion temperatures of lavas


Melting Point and Pressure

- At a standard pressure, peridotites melt at temperatures of ~1,400 K in the absence of water and other volatiles, and their solidus increases with pressure to around 1,700 K at ~ 3 GPa.
- Concentrations of H₂O of only 0.1 % reduce the standard pressure melting point to ~ 1,340 K and decreases with pressure, reaching a minimum near 1,270 K at ~ 3 GPa.
- At higher pressures and greater water content, the melting point of peridotite can drop by about 300–400 K.
- In the presence of CO₂, the peridotite solidus *T* decreases by ~ 200 *K* at a depth of about 70 km, while at larger depths the CO₂ can reduce the initial melting temperatures of a carbonated peridotite ~ 450–600 *K*.

Peridotite	Pressure (GPa)	Melting point (K)	References
	0	1,363	Faure and Mensing (2007)
Dry peridotite	~ 3	1,613	Faure and Mensing (2007)
	~13.2	1,973	Faure and Mensing (2007)
	1	1,483	Lee et al. (2009)
Dry lherzolite solidus	~ 3	1,713	Lee et al. (2009)
	~6	1,973	Lee et al. (2009)
Dry peridotite	0	1,400	Schubert et al. (2001)
	~3	1,700	Schubert et al. (2001)

Radioactive Decay

- Radioactive decay generally results in releasing of energy through the emission of alpha (α), beta (β) particles from the nucleus, and by the emission of gamma (γ) rays.
- On a geological time scale, more than 98 % of the heat now being produced in rocks is yielded by the radioactive decay of unstable isotopes ²³⁸U, ²³⁵U, ²³⁵U, ²³²Th, and ⁴⁰K

Radiogenic Heat Generation (Heat Producing Elements)

- Heat generation by radioactive decay may significantly affect the heat flow in sedimentary basins (up to 60% of surface heat flow).
- The energy radiated during the decay process is converted into heat by absorption. The radiogenic heat, *A*, can be calculated from the concentration of uranium, thorium and potassium.

Element	Heat Generation, A' (µW/kg element)	Average Crustal Abundance, n (weight/weight)	$A' \times n$ (μ W/kg rock)
Uranium	96.7	2.3 ppm	2.22×10^{-4}
Thorium	26.3	8.1 ppm	2.13×10^{-4}
Potassium	0.0035	1.84%	6.44×10^{-5}

Sources: Emsley (1989) and Jessop (1990).

		Half life	Power
Element	Isotope	(Ga)	$(\mu W/kg \text{ of element})$
Uranium	238 U	4.468	94.35
	235 U	0.7038	4.05
Thorium	²³² Th	14.01	26.6
Potassium	40 K	1.250	0.0035

Isotope / element	Natural abundance (%)	Half-life (y)	Energy per atom $(\times 10^{-12} \text{ J})$	Heat production per unit mass of isotope/element (W kg ⁻¹)
²³⁸ U	99.27	4.46×10^{9}	7.41	9.17×10^{-5}
²³⁵ U	0.72	7.04×10^{8}	7.24	5.75×10^{-4}
U				9.52×10^{-5}
²³² Th	100	1.40×10^{10}	6.24	2.56×10^{-5}
Th				2.56×10^{-5}
⁴⁰ K	0.0117	1.26×10^{9}	0.114	2.97×10^{-5}
K				3.48×10^{-9}

From Rybach (1988)

Radiogenic Heat Generation

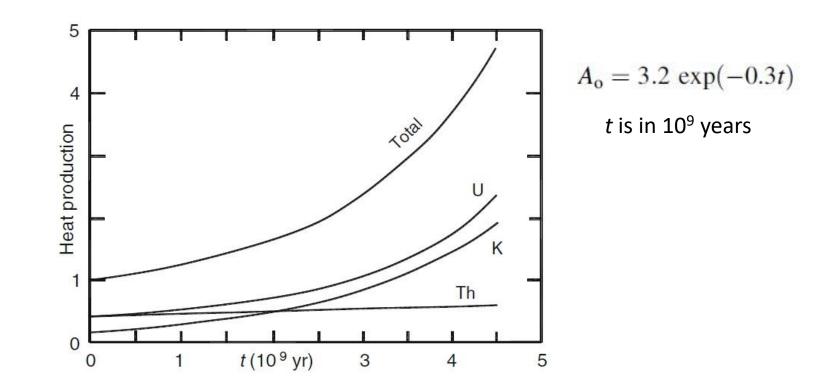
Radiogenic heat production A $[mWm^{-3}]$ is the product of:

- Isotopic abundance in a rock of HPEs [ppm or %]
- \circ Energy release per unit mass of HPEs [mW/kg]
- $\,\circ\,\,$ Density of the rock [kg/m^3]

$$A = \rho \sum P A_s c$$

 ρ is the rock density, P the abundance and A_s the rate of heat generation per kg of isotope and c the concentration.

Originally, A was measured in HGU: 1HGU = 10^{-13} cal/cm³s = 0.4184 μ Wm⁻³


A is in μ W m⁻³, ρ in kg m⁻³, the U and Th concentrations (c_U and $c_{\tau h}$) in ppm (or mg kg⁻¹) and K (c_K) in %

Radiogenic Heat Generation

$$A = \rho \sum P A_s c$$

 $c_t = c \, \exp(t \ln 2/\tau)$

$$A = \rho \begin{bmatrix} 0.993 c_U A_{U^{238}} \exp(t \ln 2/\tau_{U^{238}}) + 0.0071 c_U A_{U^{235}} \exp(t \ln 2/\tau_{U^{235}}) \\ + c_{Th} A_{Th^{232}} \exp(t \ln 2/\tau_{Th^{232}}) + 0.00012 c_K A_{K^{40}} \exp(\ln 2/\tau_{K^{40}}) \end{bmatrix} \quad c_t = \text{concentration of an isotope at time } t \\ \tau = \ln 2/\lambda = \text{half life with } \lambda \text{ decay costant}$$

Radiogenic Heat Generation of rocks

U, Th and K average concentrations, Th/U ratio and radiogenic heat A in rocks of the Ligurian Alps

Tectonic/ sedimentary environment	Age	Rock type	n	U ppm	Th ppm	K %	Th/U	$A \ \mu W \ m^{-3}$
Ophiolitic	Middle-late Jurassic	Metagabbro	31	0.3	0.3	0.29	1.00	0.14
complex		Metabasalt	23	0.4	0.3	0.52	0.75	0.19
		Serpentinite schist	41	0.5	< 0.3	0.08	0.60	0.16
	Jurassic	Lherzolite	10	< 0.2	< 0.3	< 0.03	1.50	0.08
		Prasinite	12	0.4	< 0.3	0.51	0.75	0.18
	Middle Jurassic	Ophicalcite	10	0.4	< 0.3	0.24	0.75	0.15
		Metaophiolite	12	0.6	1.3	0.37	2.17	0.27
Pelagic siliceous	Late Jurassic	Chert	10	3.2	15.2	5.14	4.75	2.20
sediments	Jurassic	Quartz-schist	16	1.2	6.5	1.79	5.42	0.93
Shelf sediments	Middle-late Triassic	Dolomite	15	5.6	0.5	0.17	0.09	1.49
Pelagic	Early Cretaceous	Limestone	14	2.2	5.2	1.25	2.36	1.04
sediments	Lias	Limestone	13	2.6	3.8	1.11	1.42	1.04
Pelitic-pelagic sediments	Early-middle Cretaceous	Phyllitic schist	10	3.0	13.3	3.07	4.43	2.00
	Early Cretaceous	Phyllite	20	2.9	10.6	2.52	3.36	1.73
	Jurassic	Calc-schist	20	3.0	13.3	3.18	4.43	2.01
	Pliocene	Marl	10	2.7	5.5	1.37	2.04	1.21
	Dogger	Calcareous shale	10	2.8	10.1	2.41	3.61	1.66
Flysch	Late Cretaceous	Shale	15	4.1	16.7	3.60	4.07	2.57
	Early Eccene	Marly limestone	10	1.8	4.2	1.15	2.33	0.87
	Middle Cretaceous	Shale	15	2.6	8.5	1.61	3.27	1.42
Molassic deposit	Oligocene	Arenaceous marl	10	2.4	8.8	2.19	3.65	1.45
		Conglomerate	10	1.1	1.6	0.43	1.45	0.42
	Eocene	Breccia	10	0.4	0.3	0.14	0.75	0.14
Metamorphic	Pre-Carboniferous	Orthogneiss	94	4.1	17.6	4.23	4.29	2.65
		Paragneiss	38	3.1	16.8	3.47	5.42	2.30
		Migmatite	6	6.1	16.8	3.83	2.75	3.13
		Amphibolite	31	0.5	1.2	0.69	2.40	0.30
		Micaschist	30	4.1	17.5	3.92	4.27	2.66

n is the number of measurements

Rock type	U [ppm]	Th [ppm]	К [[%]				
Granite	4.7	20	4.2					
Shale	3.7	12	2	.7				
Average continental crust	1.42	3.6	1.43					
Reference mantle	0.031	0.124	0.0)31				
Heat gene	eration (A) in rocks	of the crust and upper	mantle		-			
Rock types	Heat generation	Heat generation A (μ W m ⁻³)						
	After Vinograd (1962)	dov After Tilton and Reec (1963)		After Po (1982)	llacl			
Granites	2.5100	2.3900		2.500				
Intermediate magmatic rocks	2 1.2600	1.2600		1.100–1.	500			
Basalts	0.5000	0.5400		0.300				
Peridotites	_	0.0040						
Dunites	0.0050	0.0008	0.002					
Sedimentary	1.7000	—						
Chondrites	0.0190	0.0170		प्रतन्त्र				
Layer		Heat generation A (µ	$W m^{-3}$)					
Sedimentary		1.39	62					
Granite-metan	norphic	2.57						
Diorite-trachia	andesite	1.31						
Basalt		0.47						
Upper mantle		0.13						

Basalts and andesites have typically low radiogenic heat values (0.6–1.3 μ W m⁻³) Trachytic and Rhyolitic rocks have larger values (6.6–7.1 μ W m⁻³) Basaltic trachyandesites are characterized by an intermediate value (4.2 μ W m⁻³)

Radiogenic Heat Generation of rocks

Rock type	A_{U} %	A_{Th} %	$A_{ m K}$ %	$A \mu W m^{-3}$
Basalt	43.7 (4.4)	38.4 (7.5)	17.9 (3.0)	0.6 (0.1)
Basaltic andesite	44.9 (4.2)	39.0 (5.7)	16.1 (2.7)	1.1 (0.6)
Andesite	45.7 (4.8)	39.4 (6.6)	14.9 (2.7)	1.3 (0.8)
Basaltic trachyandesite	48.1 (0.3)	43.2 (1.5)	8.6 (1.9)	4.3 (0.8)
Trachyte	52.0 (2.1)	43.0 (3.4)	5.0 (3.5)	7.1 (0.7)
Rhyolite	50.2 (0.7)	44.3 (1.2)	5.4 (0.6)	6.6 (0.9)

Radiogenic heat A of volcanic rocks of the Aeolian arc (Tyrrhenian Sea) and the contribution supplied by each radioelement (after Verdoya et al. 1998a; Chiozzi et al. 2002)

Standard deviation in parentheses

Element conce	entration a	nd heat prod	uction for som	e common	rocks in ppm
<u> </u>					

U	Th	к	K/U	p₩ kg ⁻¹	μW m ⁻²
4.6 0.75 0.11	18 2.5 0.4	33,000 12,000 1,500	7,000 16,000 13,600	1,050 180 27	3 0.5 0.08 0.005
	0.75 0.11	4.6 18 0.75 2.5 0.11 0.4	4.6 18 33,000 0.75 2.5 12,000	4.6 18 33,000 7,000 0.75 2.5 12,000 16,000 0.11 0.4 1,500 13,600	4.6 18 33,000 7,000 1,050 0.75 2.5 12,000 16,000 180 0.11 0.4 1,500 13,600 27

Radiogenic Heat Generation (correlation with age)

Values of the relative concentration of the radioisotopes are normalized to the abundance of total U: U:Th:K = 1:4:(1.27 x 10^4), where ${}^{238}U/U = 0.9927$, ${}^{235}U/U = 0.0072$, and ${}^{40}K/K = 1.28 x 10^{-4}$, and ${}^{232}Th/Th=1$.

Relative abundance of long-lived radioisotopes and their radiogenic heat production throughout the Earth's evolution

Isotope Half-life, Ga Heat production (µW/kg)	Half-life, Ga	-life, Ga Heat production (µW/kg)	Relative abundances of radioisotopes in:						
	0 Ga	1 Ga	2 Ga	3 Ga	4 Ga	4.6 Ga			
²³⁸ U	4.47	94	0.9927	1.159	1.354	1.581	1.846	2.026	
²³⁵ U	0.704	570	0.0072	0.019	0.052	0.138	0.370	0.667	
²³² Th	14.00	26.6	4.0	4.203	4.416	4.641	4.876	5.023	
⁴⁰ K	1.25	27.9	1.6256	2.830	4.928	8.580	14.939	20.836	

 Relative content of long-lived radioactive isotopes was ~4 times > at the time of accretion than it is currently and the energy released by them was ~5 times > than it is now.

Relative heat production by different long-lived radioisotopes

Age (Ga)	Relative content of radioisotopes	radioisot	heat prod tope (relat ation · he	ive		Relative total heat produced per unit	No. of times present value of heat was produced
		²³⁸ U	²³⁵ U	²³² Th	⁴⁰ K		
0	6.6255	93.314	4.104	106.400	45.354	249.172	1.00
1	8.204	108.946	10.830	111.780	78.957	310.509	1.25
2	10.750	127.276	29.640	117.466	137.491	411.873	1.65
3	14.940	148.614	78.660	123.451	239.382	590.106	2.37
4	22.031	173.524	210.900	129.702	416.798	930.924	3.74
4.6	28.552	190.444	380.190	133.612	581.324	1,285.570	5.16

Radiogenic Heat Generation (correlation with age)

Geothermal flow versus geological age (after Pasquale 2012)

Age (10^6 yr)	160-120	120-80	80-40	40-20	20-10	10-0
$\rm mW~m^{-2}$	50-55	55-60	60-75	75-120	120-150	>150
Age (10^6 yr)	>1700	1700-800	800-250	250-50	50-0	
$\rm mW~m^{-2}$	30-40	40-50	50-60	60-65	65-100	
	$mW m^{-2}$ Age (10 ⁶ yr)	$mW m^{-2} 50-55$	Age $(10^6 \text{ yr}) > 1700 = 1700 = 800$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Estimates of the bulk continental crust heat production from heat flux data (after Jaupart and Mareschal 2003, 2007; Jaupart et al. 2007)

Geological age	Heat generation (A) (μ W m ⁻³)
Archaean	0.56-0.73
Proterozoic	0.73-0.90
Phanerozoic	0.95-1.21

Why do the Archean rocks have a lower heat generation than Proterozoic and Paleozoic rocks?

(1) The depth of the magma is increased with time and the magma passing through several lithospheric layers would be more highly enriched in radioactive elements, and could deliver them to the surface.

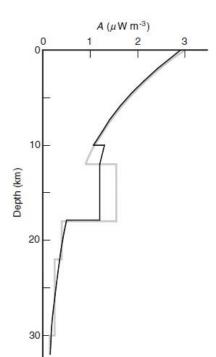
(2) The heat generation age-trend is related to differences not in the heat generation within the crust of these areas, but to mantle heat flow which is greater in younger regions.

(3) An unusual heat generation age-trend may be related to the formation of sediments (the second highest source of heat generation after granitic rocks).

Radiogenic Heat Generation in Depth

 $A(z) = A_0 \exp\left(-\frac{z}{D}\right)$ $q_0 = q_a + A_0 D$ The linear relationship supposes an exponential variation of A

 A_0 (in μ W m⁻³) = radiogenic heat at the surface and D (km) = rate of heat decrease (5-15 km), q_0 = heat flowing out from the Earth' surface, and q_a is a constant component of heat flow from the mantle (the HF if there are no radiogenic heat sources)


If the thickness of *D*-layer is much smaller than the scale of horizontal fluctuation in radioactivity, the effect of lateral heat production variation on *Q* is negligible.

A = 2.5 mW/m³ through a depth of 10 km produce a surface heat flux of 25 mWm⁻² (about half of typical continetnal heat fluxes)

For magmatic and metamorphic rocks A=2.5–3.5 μW m $^{-3}$

Measurements in boreholes have shown that A does not systematically decrease with depth, since tectonics can modify the distribution

Depth range (km)	Lithotype	Percentage of rock type	$A (\mu W m^{-3})$
Upper crust			
0-12	Granite-granodiorite	100	3.0
12-18	Granitic gneiss	55	
	Granite-granodiorite	20	1.6
	Tonalitic gneiss	25	
Lower crust			
18-22	Amphibolite	60	0.4
	Mafic granulite	40	
22–30	Mafic garnet granulite	65	0.3
	Amphibolite	35	
30-32	Mafic garnet granulite	100	0.2

For the lower crust, xenolith lead to a global average of 0.28 mWm⁻³

Thermal Inertia and Thermal Resistance

Thermal Inertia

It is a measure of the rock responsiveness to temperature variations:

$$\frac{k}{\sqrt{\kappa}} = \sqrt{k \,\rho \,c}$$

If k = 2.3 W m⁻¹ K⁻¹ and $\kappa = 0.8 \times 10^{-6}$ m² s⁻¹, the thermal inertia is: ~2.6 kJ m⁻² K⁻¹ s^{-1/2}

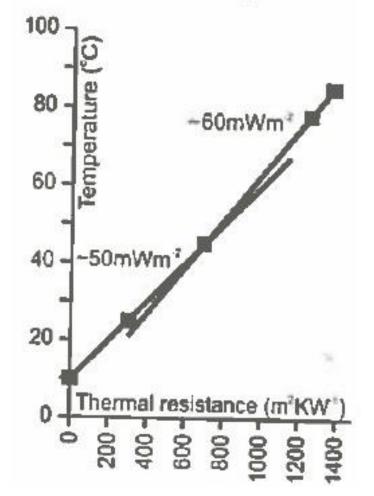
Thermal Resistance (R)

R= it measures how effectively it retards the flow of heat (m²KW⁻¹)

$$R = \int (1/\lambda)\partial z \qquad \mathbf{Q}_d = \lambda_d \times (\partial T/\partial z)_d \qquad \mathbf{Q}_0 = \mathbf{Q}_d + \int A(z)\partial z = \lambda_d \left[\frac{\partial T}{\partial z}\right]_d + \int A(z)\partial z$$
$$\mathbf{Q}_d = (\lambda/\partial z)_d \partial T = (1/\partial R)_d \partial T = (\partial T/\partial R)_d \qquad \mathbf{Q}_0 = \mathbf{Q}_d + \int A(z)\partial z \qquad (\partial T/\partial R)_d = \mathbf{Q}_0 - \int_0^d A(z)\partial z$$

At any depth *d* heat flow is equal to the gradient of temperature with respect to the thermal resistance

For individual formation of layers:


$$R = \sum_{i} \left(\frac{\Delta z_i}{\lambda_i} \right) \qquad \qquad R = \Delta z \cdot \sum_{i} \left(\frac{1}{\lambda_i} \right)$$

If thermal conductivity is derived from well logs Δz is constant

Bullard Plot

- Points on a Bullard plot should lie on a straight line for a section supporting a constant heat flow.
- Errors in thermal conductivity and temperature data cause points on a Bullard plot to be scattered (linear regression required).

Bullard plot : linear relationship between temperature and thermal resistance with depth

Non-linear Bullard plots are related to:

- Systematic errors in estimating thermal conductivity (e.g., sediment compaction is under/overestimated) produce convex-up or converse shape of the curve.
- High heat generation results in a decrease in heat flow with depth.
- Introduction/removal of heat from the system cause variation of heat flow from the depth (e.g., fluid migration, diagenetic/metamorphic processes).