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Editor’s Preface to the Third Edition

In the four years that have elapsed since the highly successful second edition of the
Handbook of Statistical Genetics, the field has moved on, in some areas dramatically. This
is reflected in the present thorough revision and comprehensive updating: 17 chapters
are entirely new, 6 providing a fresh approach to topics that had been covered in the
second edition, while 11 new chapters cover areas of recent growth, or important topics
not previously addressed. These new topics include microarray data analysis (two new
chapters to complement the existing one), eQTL analyses and metabonomics. There are
also new chapters on graphical models and on pedigrees and genealogies, admixture
mapping and genome-wide association studies, cancer genetics, epigenetics, and genetical
aspects of insurance. Of the 26 chapters carried over from the second edition, 21 have
been revised, among which 5 very substantial revisions are close to being new chapters.

It will be clear from the topics listed above that we continue to define statistical genetics
very broadly. Statistics for us goes beyond mathematical models and techniques, and
includes the management and presentation of data, as well as its analysis and interpretation.
Genetics includes the search for and study of genes implicated in human health and the
economic value of plants and animals, the evolution of genes within natural populations,
the evolution of genomes and of species, and the analysis of DNA, RNA, gene expression,
protein sequence and structure, and now metabonomics. The latter topics probably fall
outside even a liberal definition of ‘genetics’, but we believe they will be of interest to
our readers because of their relevance to studies of gene function and because of the
statistical methods being used.

We regard more recent terms, such as ‘genomics’ and ‘transcriptomics’ as designating
new avenues within genetics, rather than as entirely new fields, and we include their statis-
tical aspects as part of statistical genetics. Similarly, we include much of ‘bioinformatics’,
but we do not systematically survey the available genetic databases or computer software,
nor methods and protocols for archiving and annotating genetic data. Some pointers to
computer software and other Internet resources are given at the end of relevant chapters.

The 43 chapters are intended to be largely independent, so that to benefit from the
handbook it is not necessary to read every chapter, nor read chapters sequentially. This
structure necessitates some duplication of material, which we have tried to minimise but
could not always eliminate. Alternative approaches to the same topic by different authors
can convey benefits. The extensive subject and author indexes allow easy reference to
topics covered in different chapters.

For those with minimal genetics background, the glossary of genetic terms (newly
updated) should be of assistance, while Wiley’s Biostatistical Genetics and Genetic
Epidemiology, edited by Elston, Olson, and Palmer (2002) provides a more substantial
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resource of definitions and explanations of key terms from both genetics and statistics.
For those seeking a more substantial introduction to the foundations of modern statistical
methods applied in genetics, we suggest Likelihood, Bayesian, and MCMC methods in
Quantitative Genetics by Sorenson and Gianola (2003).

We thank the many commentators of the first two editions who were generous in their
praise. We have tried to take on board many of the constructive criticisms and suggestions.
No doubt many more improvements will be possible for future editions and we welcome
comments e-mailed to any of the editors. We are grateful to all of our outstanding set of
authors for taking the time to write and update their chapters with care, and for meeting
their deadlines (and sometimes ours as well). Finally, we would like to express our
appreciation to the staff of John Wiley & Sons for initially proposing the project to us,
and for their friendly professionalism in the preparation of both editions. In particular,
we thank Martine Bernardes-Silva, Layla Harden, and Kathryn Sharples.

DAVID BALDING

MARTIN BISHOP

CHRIS CANNINGS

August 2007



Glossary of Terms

GLOSSARY OF GENETIC TERMS:
(prepared by Gurdeep Sagoo, University of Sheffield, UK)

N.B. Some of the definitions below assume that the organism of interest is diploid.

Adenine (A): purine base that forms a pair with thymine in DNA and uracil in RNA.

Admixture: arises when two previously isolated populations begin interbreeding.

Allele: one of the possible forms of a gene at a given locus. Depending on the
technology used to type the gene, it may be that not all DNA sequence variants are
recognised as distinct alleles.

Allele frequency: often used to mean the relative frequency (i.e. proportion) of an
allele in a sample or population.

Allelic association: the non-independence, within a given population, of a gamete’s
alleles at different loci. Also commonly (and misleadingly) referred to as linkage
disequilibrium.

Alpha helix: a helical (usually right-handed) arrangement that can be adopted by a
polypeptide chain; a common type of protein secondary structure.

Amino acid: the basic building block of proteins. There are 20 naturally occurring
amino acids in animals which when linked by peptide bonds form polypeptide chains.

Aneuploid cells: do not have the normal number of chromosomes.

Antisense strand: the DNA strand complementary to the coding strand, determined by
the covalent bonding of A with T and C with G.

Ascertainment: the strategy by which individuals are identified, selected, and recruited
for participation in a study.

Autosome: A chromosome other than the sex chromosomes. Humans have 22 pairs of
autosomes plus 2 sex chromosomes.
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Backcross: A linkage study design in which the progeny (F1s) of a cross between two
inbred lines are crossed back to one of the inbred parental strains.

Bacterial Artificial Chromosome (BAC): a vector used to clone a large segment of
DNA (100–200 Kb) in bacteria resulting in many copies.

Base: (abbreviated term for a purine or pyrimidine in the context of nucleic acids), a
cyclic chemical compound containing nitrogen that is linked to either a deoxyribose
(DNA) or a ribose (RNA).

Base pair (bp): a pair of bases that occur opposite each other (one in each strand) in
double stranded DNA/RNA. In DNA adenine base pairs with thymine and cytosine with
guanine. RNA is the same except that uracil takes the place of thymine.

Bayesian: A statistical school of thought that, in contrast with the frequentist school,
holds that inferences about any unknown parameter or hypothesis should be
encapsulated in a probability distribution, given the observed data. Bayes Theorem
allows one to compute the posterior distribution for an unknown from the observed data
and its assumed prior distribution.

Beta-sheet: is a (hydrogen-bonded) sheet arrangement which can be adopted by a
polypeptide chain; a common type of protein secondary structure.

centiMorgan (cM): measure of genetic distance. Two loci separated by 1 cM have an
average of 1 recombination between them every 100 meioses. Because of the variability
in recombination rates, genetic distance differs from physical distance, measured in base
pairs. Genetic distance differs between male and female meioses; an average over the
sexes is usually used.

Centromere: the region where the two sister chromatids join, separating the short (p)
arm of the chromosome from the long (q) arm.

Chiasma: the visible structure formed between paired homologous chromosomes
(non-sister chromatids) in meiosis.

Chromatid: a single strand of the (duplicated) chromosome, containing a
double-stranded DNA molecule.

Chromatin: the material composed of DNA and chromosomal proteins that makes up
chromosomes. Comes in two types, euchromatin and heterochromatin.

Chromosome: the self-replicating threadlike structure found in cells. Chromosomes,
which at certain stages of meiosis and mitosis consist of two identical sister chromatids,
joined at the centromere, and carry the genetic information encoded in the
DNA sequence.
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cis-Acting: regulatory elements and eQTL whose DNA sequence directly influences
transcription. The physical location for cis-acting elements will be in or near the gene or
genes they regulate.

Clones: genetically engineered identical cells/sequences.

Co-dominance: both alleles contribute to the phenotype, in contrast with recessive or
dominant alleles.

Codon: a nucleotide triplet that encodes an amino acid or a termination signal.

Common disease common variant (CDCV) hypothesis: The hypothesis that many
genetic variants underlying complex diseases are common, and hence susceptible to
detection using current population association study designs. An alternative possibility is
that genetic contributions to the causation of complex diseases arise from many variants,
all of which are rare.

complementary DNA (cDNA): DNA that is synthesised from a messenger RNA
template using the reverse transcriptase enzyme.

Contig: a group of contiguous overlapping cloned DNA sequences.

Cytosine (C): pyrimidine base that forms a pair with guanosine in DNA.

Degrees of freedom (df): This term is used in different senses both within statistics
and in other fields. It can often be interpreted as the number of values that can be
defined arbitrarily in the specification of a system; for example, the number of
coefficients in a regression model. Frequently it suffices to regard df as a parameter used
to define certain probability distributions.

Deoxyribonucleic acid (DNA): polymer made up of deoxyribonucleotides linked
together by phosphodiester bonds.

Deoxyribose: the sugar compound found in DNA.

Diploid: has two versions of each autosome, one inherited from the father and one
from the mother. Compare with haploid.

Dizygotic twins: twins derived from two separate eggs and sperm. These individuals
are genetically equivalent to full sibs.

DNA methylation: the addition of a methyl group to DNA. In mammals this occurs at
the C-5 position of cytosine, almost exclusively at CpG dinucleotides.

DNA microarray: small slide or ‘chip’ used to simultaneously measure the quantity of
large numbers of different mRNA gene transcripts present in cell or tissue samples.
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Depending on the technology used, measurements may either be absolute or relative to
the quantities in a second sample.

Dominant allele: results in the same phenotype irrespective of the other allele at
the locus.

Effective population size: The size of a theoretical population that best approximates a
given natural population under an assumed model. The criterion for assessing the ‘best’
approximation can vary, but is often some measure of total genetic variation.

Enzyme: a protein that controls the rate of a biochemical reaction.

Epigenetics: the transmission of information on gene expression to daughter cells at
cell division.

Epistasis: the physiological interaction between different genes such that one gene
alters the effects of other genes.

Epitope: the part of an antigen that the antibody interacts with.

Eukaryote: organism whose cells include a membrane-bound nucleus. Compare
with prokaryote.

Exons: parts of a gene that are transcribed into RNA and remain in the mature RNA
product after splicing. An exon may code for a specific part of the final protein.

Expression Quantitative Trait Locus (eQTL): a locus influencing the expression of
one or more genes.

Fixation: occurs when a locus which was previously polymorphic in a population
becomes monomorphic because all but one allele has been lost through genetic drift.

Frequentist: the name for the school of statistical thought in which support for a
hypothesis or parameter value is assessed using the probability of the observed data (or
more ‘extreme’ datasets) given the hypothesis or value. Usually contrasted with
Bayesian.

Gamete: a sex cell, sperm in males, egg in females. Two haploid gametes fuse to form
a diploid zygote.

Gene: a segment (not necessarily contiguous) of DNA that codes for a protein or
functional RNA.

Gene expression: the process by which coding DNA sequences are converted into
functional elements in a cell.

Genealogy: the ancestral relationships among a sample of homologous genes drawn
from different individuals, which can be represented by a tree. Also sometimes used in
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place of pedigree, the ancestral relationships among a set of individuals, which can be
represented by a graph.

Genetic drift: the changes in allele frequencies that occur over time due to the
randomness inherent in reproductive success.

Genome: all the genetic material of an organism.

Genotype: the (unordered) allele pair(s) carried by an individual at one or more loci. A
multilocus genotype is equivalent to the individual’s two haplotypes without the phase
information.

Guanine (G): purine base that forms a pair with cytosine in DNA.

Haemoglobin: is the red oxygen-carrying pigment of the blood, made up of two pairs
of polypeptide chains called globins (2α and 2β subunits).

Haploid: has a single version of each chromosome.

Haplotype: the alleles at different loci on a chromosome. An individual’s two
haplotypes imply the genotype; the converse is not true, but in the presence of strong
linkage disequilibrium haplotypes may be inferred from genotype with few errors.

Hardy-Weinberg disequilibrium: the non-independence within a population of an
individual’s two alleles at a locus; can arise due to inbreeding or selection for example.
Compare with linkage disequilibrium.

Heritability: the proportion of the phenotypic variation in the population that can be
attributed to underlying genetic variation.

Heterozygosity: the proportion of individuals in a population that are heterozygotes at
a locus. Also sometimes used as short for expected heterozygosity under random
mating, which equals the probability that two homologous genes drawn at random from
a population are not the same allele.

Heterozygote: a single-locus genotype consisting of two different alleles.

HIV (Human Immunodeficiency Virus): a virus that causes acquired immune
deficiency syndrome (AIDS) which destroys the body’s ability to fight infection.

Homology: similarities between sequences that arise because of shared evolutionary
history (descent from a common ancestral sequence). Homology of different genes
within a genome is called paralogous while that between the genomes of different
species is called orthologous.

Homozygote: a single-locus genotype consisting of two versions of the same allele.
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Hybrid: the offspring of a cross between parents of different genetic types or
different species.

Hybridization: the base pairing of a single stranded DNA or RNA sequence, usually
labelled, to its complementary sequence.

ibd: identity by descent; two genes are ibd if they have descended without mutation
from an ancestral gene.

Inbred lines: derived and maintained by repeated selfing or brother–sister mating,
these individuals are homozygous at essentially every locus.

Inbreeding: either the mating of related individuals (e.g. cousins) or a system of mate
selection in which mates from the same geographic area or social group for example are
preferred. Inbreeding results in an increase in homozygosity and hence an increase in
the prevalence of recessive traits.

Intercross: A linkage study design in which the progeny (F1s) of a cross between two
inbred lines are crossed or selfed. This design is also sometimes referred to as an F2
design because the resulting individuals are known as F2s.

Intron: non-coding DNA sequence separating the exons of a gene. Introns are initially
transcribed into messenger RNA but are subsequently spliced out.

Karyotype: the number and structure of an individual’s chromosomes.

Kilobase (Kb): 1000 base pairs.

Linkage: two genes are said to be linked if they are located close together on the same
chromosome. The alleles at linked genes tend to be co-inherited more often than those
at unlinked genes because of the reduced opportunity for an intervening recombination.

Linkage disequilibrium (LD): the non-independence within a population of a gamete’s
alleles at different loci; can arise due to linkage, population stratification, or selection.
The term is misleading and ‘gametic phase disequilibrium’ is sometimes preferred.
Various measures of linkage disequilibrium exist.

Locus (pl. Loci): the position of a gene on a chromosome.

LOD score: a likelihood ratio statistic used to infer whether two loci reside close to
one another on a chromosome and are therefore inherited together. A LOD score of 3 or
more is generally thought to indicate that the two loci are close together and
therefore linked.

Marker gene: a polymorphic gene of known location which can be readily typed; used
for example in genetic mapping.
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Megabase (Mb): 1000 kilobases = 1,000,000 base pairs.

Meiosis: the process by which (haploid) gametes are formed from (diploid)
somatic cells.

messenger RNA (mRNA): the RNA sequence that acts as the template for
protein synthesis.

Microarray: see DNA microarray above.

Microsatellite DNA: small stretches of DNA (usually 1–4 bp) tandemly repeated.
Microsatellite loci are often highly polymorphic, and alleles can be distinguished by
length, making them useful as marker loci.

Mitosis: the process by which a somatic cell is replaced by two daughter somatic cells.

Monomorphic: a locus at which only one allele arises in the sample or population.

Monozygotic twins: genetically identical individuals derived from a single fertilized
egg.

Morgan: 100 centiMorgans.

mtDNA: the genetic material of the mitochondria which consists of a circular DNA
duplex inherited maternally.

Mutation: a process that changes an allele.

Negative selection: removal of deleterious mutations by natural selection. Also known
as purifying selection.

Neutral: not subject to selection.

Neutral evolution: evolution of alleles with nearly zero selective coefficient. When
|Ns| << 1, where N is the population size and s is the selective coefficient, the fate of
the allele is mainly determined by random genetic drift rather than natural selection.

Non-Coding RNA (ncRNA): RNA segments that are coded for in the genome, but not
translated into protein product. Composed of many classes, the complete range of
functions of these molecules has yet to be characterised, but they have been shown to
affect the rate of transcription and transcript degradation.

Nonsynonymous substitution: Nucleotide substitution in a protein-coding gene that
alters the encoded amino acid.

Nucleoside: a base attached to a sugar, either ribose or deoxyribose.
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Nucleotide: the structural units with which DNA and RNA are formed. Nucleotides
consist of a base attached to a five-carbon sugar and mono-, di-, or tri-phosphate.

Nucleotide substitution: the replacement of one nucleotide by another during evolution.
Substitution is generally considered to be the product of both mutation and selection.

Oligonucleotide: a short sequence of single-stranded DNA or RNA, often used as a
probe for detecting the complementary DNA or RNA.

Open Reading Frame (ORF): a long sequence of DNA with an initiation codon at the
5′-end and no termination codon except for one at the 3′-end.

PCR (polymerase chain reaction): a laboratory process by which a specific, short,
DNA sequence is amplified many times.

Pedigree: a diagram showing the relationship of each family member and the heredity
of a particular trait through several generations of a family.

Penetrance: the probability that a particular phenotype is observed in individuals with
a given genotype. Penetrance can vary with environment and the alleles at other loci for
example.

Peptide bond: linkages between amino acids occur through a covalent peptide bond
joining the C terminal of one amino acid to the N terminal of the next (with loss of a
water molecule).

Phase (of linked markers): the relationship (either coupling or repulsion) between
alleles at two linked loci. The two alleles at the linked loci are said to be in coupling if
they are present on the same physical chromosome or in repulsion if they are present on
different parental homologs.

Phenotype: the observed characteristic under study, may be quantitative (i.e.
continuous) such as height, or binary (e.g. disease/no disease), or ordered categorical
(e.g. mild/moderate/severe).

Pleiotropy: is the effect of a gene on several different traits.

Polygenic: influenced by more than one gene.

Polymorphic: a locus that is not monomorphic. Usually a stricter criterion is imposed:
a locus is polymorphic only if no allele has frequency over 99 %.

Polynucleotide: a polymer of either DNA or RNA nucleotides.

Polypeptide: is a long chain of amino acids joined together by peptide bonds.

Polypeptide chain: A series of amino acids linked by peptide bonds. Short chains are
sometimes referred to as oligopeptides or simply peptides.
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Polytene: refers to the giant chromosomes that are generated by the successive
replication of chromosome pairs without the nuclear division, thus several chromosome
sets are joined together.

Population stratification (or population structure): Refers to a situation in which the
population of interest can be divided into strata such that an individual tends to be more
closely related to others within the same stratum than to other individuals.

Positive selection: fixation, by natural selection, of an advantageous allele with a
positive selective coefficient. Also known as Darwinian selection.

Proband: an individual through whom a family is ascertained, typically by their
phenotype.

Prokaryote: organism whose cells have no nucleus.

Promoter: located upstream of the gene, the promoter allows the binding of RNA
polymerase which initiates transcription of the gene.

Protein: a large, complex, molecule made up of one or more chains of amino acids.

Pseudogene: a DNA sequence that is either an imperfect, non-functioning, copy of a
gene, or a former gene which no longer functions due to mutations.

Purine and Pyrimidine: are particular kinds of nitrogen containing heterocyclic rings.

Purine: adenine or guanine.

Pyrimidine: cytosine, thymine, or uracil.

QTL (Quantitative Trait Locus): a locus influencing a continuously varying
phenotype.

Radiation hybrid: a cell line, usually rodent, that has incorporated fragments of foreign
chromosomes that have been broken by irradiation. They are used in physical mapping.

Recessive allele: has no effect on phenotype except when present in homozygote form.

Recombination: the formation of new haplotypes by physical exchange between two
homologous chromosomes during meiosis.

Restriction enzyme: recognises specific nucleotide sequences in double-stranded DNA
and cuts at a specified position with respect to the sequence.

Restriction fragment: a DNA fragment produced by a restriction enzyme.

Restriction site: a 4–8 bp DNA sequence (usually palindromic) that is recognised by a
restriction enzyme.
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Retrovirus: an RNA virus whose replication depends on a reverse transcriptase
function, allowing the formation of a cDNA copy that can be stably inserted into the
host chromosome.

Ribonucleic acid (RNA): polymer made up of ribonucleotides that are linked together
by phosphodiester bonds.

Ribosome: a cytoplasmic organelle, consisting of RNA and protein, that is involved in
the translation of messenger RNA into proteins.

Ribosomal RNA (rRNA): the RNA molecules contained in ribosomes.

Selection: a process such that expected allele frequencies do not remain constant, in
contrast with genetic drift. Alleles that convey an advantage to the organism in its
current environment tend to become more frequent in the population (positive, or
adaptive, selection), while deleterious alleles become less frequent. Under stabilising (or
balancing) selection, allele frequencies tend towards a stable, intermediate value.

Sense strand: the DNA strand in the direction of coding.

Sex-linked: a trait influenced by a gene located on a sex (X or Y) chromosome.

Single nucleotide polymorphism (SNP): a polymorphism consisting of a
single nucleotide.

Sister chromatids: two chromatids that are copies of the same chromosome. Non-sister
chromatids are different but homologous.

Somatic cell: a non-sex cell.

Synonymous substitution: Nucleotide substitution in a protein-coding gene that does
not alter the encoded amino acid.

TATA box: a conserved sequence (TATAAAA) found about 25–30 bp upstream from
the start of transcription site in most but not all genes.

Thymine (T): pyrimidine base that forms a pair with adenine in DNA.

trans-Acting: eQTL whose DNA sequence influences gene expression through its gene
product. These regulatory elements are often coded for at loci far from or unlinked to
the genes they regulate.

Transcription: the synthesis of a single-stranded RNA version of a DNA sequence.

Transition: a mutation that changes either one purine base to the other, or one
pyrimidine base to the other.
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Translation: the process whereby messenger RNA is ‘read’ by transfer RNA and its
corresponding polypeptide chain synthesized.

Transposon: a genetic element that can move over generations from one genomic
location to another.

Transversion: a mutation that changes a purine base to a pyrimidine, or vice-versa.

Uracil (U): pyrimidine base in RNA that takes the place of thymine in DNA, also
forming a pair with adenine.

Wild-type: the common, or standard, allele/genotype/phenotype in a population.

Yeast artificial chromosome (YAC): a cloning vector able to carry large (e.g. one
megabase) inserts of DNA and replicate in yeast cells.

Zygote: an egg cell that has been fertilized by a sperm cell.
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Chromosome maps are a natural way of organizing genetic data about chromosomes. Existing
chromosome maps can be broadly divided into four categories: genetic maps, physical maps,
radiation hybrid maps, and gene maps. Although they all make reference to the same biological
entity, namely chromosomes, these maps differ substantially in the types of genetic experiments
conducted and the types of genetic data collected. They further differ in the metrics employed
to define distances and the resolution achievable. Collectively, these maps provide essential tools
to further our understanding of the organization and function of the genome. In this review, we
first describe the biological principles behind each type of chromosome map and then outline the
statistical models and methods that have been developed to construct it. The current state of each
chromosome map is summarized, and links to mapping software are provided for readers interested
in getting hands-on experience with chromosome mapping.

1.1 INTRODUCTION

Chromosome maps are a natural way of organizing genetic data about chromosomes, in
very much the same way that ordinary (cartographic) maps organize geographic data about
continents, countries or cities. Geneticists have long constructed different types of maps
to order genes or markers, breakpoints, deletions, and other features in relation to one
another and to landmarks along chromosomes such as centromeres and telomeres. Genetic
maps were the first type of map constructed to position genes along chromosomes, with
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the distances between pairs of genes being defined in terms of recombination fractions.
Thus genetic maps were unusual for at least two reasons. First, the objects being mapped –
genes, later polymorphic markers, collectively described as loci – were frequently abstract,
in the sense that data concerning them was only indirectly observed; the genes themselves
were never seen. And secondly, the distance was only relative, and defined statistically.
Since the rate of recombination varies along chromosomes, genetic map distance is not
proportional to actual physical distance, although there are useful average relationships
for different organisms.

Physical maps take a number of forms, but common to all is the fact that the
objects being mapped are concrete, usually assayable, and the distances are physical,
most recently thousands (kb) or millions (Mb) of base pairs, reflecting the fact that
chromosomes are long DNA molecules. However, the first physical maps were not exactly
of this type. Early examples of physical maps are those based on the salivary gland
polytene chromosomes of insects belonging to the order Diptera, such as Drosophila
melanogaster. In these maps, the positioning is provided by the visible bands. The
familiar cytogenetic maps of human (see Figure 1.1) and other mammalian chromosomes
created by staining metaphase chromosomes all have a similar character, again with bands
providing positioning information.

A slightly confusing aspect is that physical maps refer not only to maps of loci
along chromosomes, but also to organized collections of chromosomal segments, such as
restriction fragments and more general ordered sets of cloned fragments of a chromosome.

When recombination is used to define distances, the genes or markers must be
polymorphic in order to be mappable. By contrast, the physical mapping of loci only
requires probes for recognizing specific chromosomal sites or for detecting fragment
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21q22.3 Figure 1.1 Ideogram of human chromosome 21. [Source: www.gdb.
org/hugo/chr21/integratedMaps.html.]
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overlap. The most useful probe in this context is the sequence-tagged site (STS), which
is defined by a pair of 20–30 base pairs polymerase chain reaction (PCR) primers that
reliably amplify a unique segment in a genome.

Maps of human (and other) chromosomes intermediate in resolution between the genetic
and physical maps are the radiation hybrid (RH) maps. These are based on assay data from
human–rodent somatic cell hybrids containing small fragments of human chromosomes.
They have their own metric, namely the average number of breaks per unit physical
distance, reflecting the radiation dose used to fragment the chromosomes.

Next in resolution, although different in character, are gene maps. These maps are
currently constructed by clustering expressed sequence tags (ESTs), more specifically
short DNA sequences in the 3′-untranslated regions of complementary DNAs (cDNAs),
and then locating the clusters on chromosomes using STSs in these regions. Ideally, each
point on such a map corresponds to a unique gene, and so gene maps should locate genes
on physical maps. Until a genome is completely sequenced, these maps provide the best
usable description of the locations of the genes of an organism.

With the exception of the polytene chromosome and cytological maps, all of the kinds
of maps we have mentioned make use of statistical methods in their definition, in their
construction, or in the assignment of the corresponding map distance. In this chapter, we
give a review of some of the statistical models and methods used in chromosome mapping.
It will be partial in the sense that we discuss genetic mapping much more fully, in part
because it is the most thoroughly developed mapping method, going back nearly a century.

1.2 GENETIC MAPS

1.2.1 Mendel’s Two Laws

Modern genetics began with the work of Mendel on garden peas in the 1860s (Mendel,
1866). In his experiments, Mendel studied a number of heritable traits in peas, including
seed color. He interpreted his experiments with this trait by postulating the existence
of things that we now call genes. He said that two gene variants controlled color
in his two lines, y (for yellow) and g (for green), and that the color gene-pair
in the seed determines what color the seed will be. His experiments led him to
believe that all cells in the mature plant contain the seed’s color gene-pair, with
the exception of sex cells, which contain only one of the pair. If the seed’s gene-
pair is y/g, then half the pollen cells get y and half get g; similar observations
hold for egg cells. Mendel was able to explain his observations with this theory,
and it is largely what we believe today. It is often called Mendel’s first law, the
law of segregation. Mendel’s first law says that each adult pea plant has a gene-pair
(say, y and g) for each character studied, and that the pair y and g segregate from
each other into gametes, so half the gametes will carry y, and the other half will
carry g.

Mendel also considered two or more heritable traits together, for example, seed color
and seed shape. Denoting the two variants of seed shape by s (for smooth) and w (for
wrinkled), he first established that, when considered on its own, seed shape inheritance
was also explained by supposing that each cell had one gene-pair, in this case one of the
pairs s/s, s/w or w/w, and that sex cells had just one of s or w, effectively chosen at
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random from the pair generally present. Mendel then carried out experiments to determine
how the two traits, seed shape and seed color, were inherited together. He concluded that
each sex cell received one gene from each gene-pair, chosen at random from the available
pair, independently for the two gene-pairs. For example, if the mature organism’s cells
generally possessed gene-pairs y/g and s/w, then its sex cells received ys, yw, gs, or gw
with equal frequency 1

4 . Let us see the sense in which this last statement is true. Consider
an organism P whose gene-pairs for two traits are y/g and s/w, that is descended from
a parent GF that was y/y and s/s, and a parent GM that was g/g and w/w. Then P
is ys/gw, getting y and s from GF, and g and w from GM. In a natural sense, y and
s were combined together in GF, as were g and w in GM, while y and g (and s and
w) were separated at that generation, being present in different individuals. With peas,
when y, g, s, and w corresponded to seed color and shape as above, Mendel saw that this
togetherness or separateness in the G-generation had no impact on the choice of genes
that P passed on to its offspring C: ys, yw, gs, and gw were found to be passed on with
equal frequency. Mendel’s second law says that during gamete formation, the segregation
of one gene-pair is independent of other gene-pairs. When two gene-pairs, say (y, g) and
(s, w), segregate, each (haploid) gamete will be equally likely to have genotypes (y, s),
(y, w), (g, s), and (g, w).

The above observation, sometimes known as Mendel’s law of independent segregation,
turns out to hold for some, but not all, pairs of genes. The exceptions are the biological
basis for genetic mapping. In the early 1900s, deviations from Mendel’s second law were
observed by Bateson et al. (1905) in the sweet pea, and by Morgan (1911) in Drosophila:
some genotypes appeared more often than other genotypes, indicating that the gene-pairs
were not segregating independently. There are many pairs of traits whose genes do not
recombine freely, but tend to stay together, in the sense that the parent P above with
composition ys/gw would be more likely to pass on the pairs ys and gw to its offspring
C, than the pairs yw and gs. This phenomenon is known as linkage: genes that came
to P together from the G-generation are preferentially passed on together to offspring
in the C-generation. In the most extreme case, C would receive each of P’s parental
combinations ys and gw with frequency 1

2 , and never receive yw or gs. We would
then say that the genes are completely linked; no recombining takes place. For a given
pair of traits such as seed color and seed shape, with heritable variants (alleles) such as
y, g, and s, w, we define their recombination fraction to be the frequency with which
P’s nonparental combinations yw and gs are passed on; with Mendel’s examples this
fraction was always 1

2 . In the early part of the twentieth century, examples were found
where this fraction was noticeably smaller than 1

2 , and to this day, pairs of genes for
traits separate into those that freely recombine, and those for which the recombination
fraction is less than 1

2 . Using the then much-debated chromosome theory of Mendelian
heredity, Morgan explained this nonindependent segregation by supposing the two pairs
of genes lie on the same chromosome. A chromosomal exchange between these two
genes will result in a recombination between them. Morgan inferred that genes on the
same chromosome tend to remain together much more often than if they are on different
chromosomes, and called this principle the third law of heredity. He also hypothesized that
the cross-shaped structure (called chiasma) seen during the diplotene phase of meiosis is
a manifestation of crossing-over. It is now known that crossovers are precise breakage-
and-reunion events that are essential for proper segregation, and can promote genetic
variation.



CHROMOSOME MAPS 7

1.2.2 Basic Principles in Genetic Mapping

In the following discussion, we make no distinction between gene, marker, and locus, all
of which refer to some region on the chromosome. Consider two genes A (with alleles A
and a) and B (with alleles B and b) and a diploid cell with AB and ab on homologous
chromosomes. There are four possible meiotic products, namely, AB, ab, Ab, and aB.
The first two are called parental types or nonrecombinants, because both AB and ab
retain the configuration of one of the homologous chromosomes. The other two types, Ab
and aB, are called recombinants. If two markers are recombined in a meiotic product, then
during meiosis an odd number of crossovers must have occurred between the two markers
on the strand carrying them. The recombination fraction, rAB, is defined as the proportion
of recombinants. It was Sturtevant (1913) who first used the variations in the strength of
linkage to determine the sequence in the linear dimension of the chromosome. He argued
that if the arrangement of the genes in the chromosome is linear and the recombination
frequencies depend on the physical distance between them, then genes can be arranged
like dots in a straight line at distances apart proportional to the recombination fraction.
For example, for three genes, y (yellow gene), w (white gene), and mi (miniature gene)
on the sex chromosome of Drosophila, the observed recombination fraction between y
and w was ry,w = 1.3 %, that between w and mi was rw,mi = 32.6 %, and that between y
and mi was ry,mi = 33.8 %. Because ry,mi ≈ ry,w + rw,mi , the white gene can be inferred
to lie between the yellow and miniature genes.

For three genes A, B, and C on the same chromosome in the order A–B–C, the
additivity among the three recombination fractions, i.e. rAC = rAB + rBC, generally holds
when the recombination fractions are small (less than 10 %). However, as noted by
Sturtevant (1913), the additivity in general does not hold when larger recombination
fraction values are involved, and usually rAC < rAB + rBC. Deviations from additivity
are due to the existence of double crossovers. The next major development in genetic
mapping was Haldane’s definition Haldane (1919) of the genetic distance between two
loci as the average number of crossovers between the loci per meiosis. This gave
geneticists an additive distance along chromosomes, albeit one that was rapidly found not
to correlate precisely with any apparent physical distance. The unit of genetic distance is
the centimorgan (cM). Two markers are 1 cM apart if on average there is one crossover
occurring between these two markers on a single strand for every 100 meioses.

Therefore, we have two basic concepts in genetic mapping: the recombination fraction,
which can be estimated from data on the offspring of suitable parents; and map distance,
which will be based upon the same data, but can only be estimated using a probabilistic
model for recombination. With experimental organisms such as the fruit fly, maize,
mice, fungi and yeast, establishing linkage and estimating recombination fractions was
generally straightforward, because crosses could be planned, and large numbers of
offspring examined. With humans, even establishing linkage between a pair of genes
was a major achievement in the classical era, and estimating recombination fractions was
a challenging statistical problem. Part of the reason for this lies in the longer generation
times, and hence the difficulty in obtaining large sets of data, and part lies in the fact that
matings are not subject to experimental control, forcing the human geneticist to make use
of nonrandomly sampled family or pedigree data. One further complication with human
data was the existence of genes with only an indirect relationship between genotype and
phenotype, the issue of penetrance. Dominant and recessive traits are instances of what
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are termed incompletely penetrant traits, and there are many human genetic diseases with
quite complex patterns of penetrance, including age and sex dependence.

1.2.3 Meiosis, Chromatid Interference, Chiasma Interference, and Crossover Interference

Before describing statistical methods for genetic mapping in detail, we briefly review the
process of meiosis and the genetic concepts relevant to genetic mapping. At the start of
meiosis two chromosome sets are present, one coming from each parent in the previous
generation. Each chromosome thus has a partner called a homolog. During the pachytene
and diplotene phases of meiosis, homologous chromosomes pair and each of the paired
chromosomes duplicates, resulting in a bundle of four homologous chromatids. Chro-
matids that are copies of the same chromosome are called sister chromatids, and those
originating from homologous chromosomes are called nonsister chromatids. Crossovers
take place after the formation of this four-strand structure, with each crossover involving
two nonsister chromatids. The number and locations of crossovers vary from chromo-
some to chromosome for the same meiosis, and from meiosis to meiosis for the same
chromosome.

Most genetic mapping efforts have focused on the case where data from only one of the
four products of any given meiosis can be observed. Extending terminology from fungal
genetics, we call this single-spore data in recognition of the fact that in organisms such
as Saccharomyces cerevisiae (baker’s yeast) and Neurospora crassa (red bread mold)
all four products of a single meiosis can be recovered together in what are known as
tetrads or octads. Genetic studies on these organisms have contributed greatly to our
knowledge of many biological mechanisms. Some interesting statistical models that have
been developed using tetrad and octad data will be discussed in later sections.

Mather (1933) distinguished two aspects of crossing-over that are relevant to the
observed recombination outcome: the distribution of crossover events along the bundle of
four chromatids; and the pairs of nonsister chromatids to be involved in crossovers. To
distinguish crossover events occurring on the four-strand bundle and crossover events
on single strands in the following, we describe crossover events on the four-strand
bundle as chiasmata, and those on single strands as crossovers. Chiasma interference
refers to nonrandom distribution of chiasmata on the four-strand bundle, whereas
crossover interference refers to nonrandom distribution of crossover locations along single
strands. Muller (1916) first noted that simultaneous recombinations are not independent,
e.g. double recombinations take place at a frequency below that expected under the
independence assumption. For example, for the three genes discussed above – yellow,
white, and miniature – the expected double recombination frequency is 1.3 %× 32.6 % =
0.43 %. However, the observed frequency was only 0.045 %. This suggests that the
occurrence of one recombination reduces the chance of other recombinations in the nearby
region. Crossover interference is seen in almost all organisms, including humans, and the
presence of one crossover usually inhibits the formation of crossovers in a nearby region.
The biological nature of crossover interference is still not well understood.

With respect to the pairs of nonsister chromatids involved in crossovers, we say there is
no chromatid interference (NCI) if any pair of nonsister chromatids are equally likely to
be involved in any chiasma, independent of which pairs were involved in other chiasmata.

The observation of crossover interference on the meiotic products (single strands) can
be the result of chiasma interference alone, of chromatid interference alone, or of both
types of interference. Zhao and Speed (1996) noted that the operation of two types of
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interference can lead to no apparent crossover interference, and therefore these two types
of interference cannot be separated on the basis of single-strand recombination data. In
contrast, tetrad data carries information to distinguish these two types of interference.

1.2.4 Genetic Map Functions

Until the mid-1980s, most linkage mapping was two-point, that is, involved the estimation
or testing of a single recombination fraction. For two-point data, we can infer the
unobservable genetic distance between two markers from the observable recombination
fraction through genetic map functions. Under the assumption of NCI, Mather (1935)
showed that, given k (≥1) chiasmata between two markers on the four-strand bundle,
the probability of observing recombination between these two markers is 1

2 . Therefore,
the overall recombination fraction between two markers is 1

2 (1− p0), where p0 is the
probability of having zero chiasmata between these two markers. This is called Mather’s
formula. Assuming chiasmata occurring independently of each other, Haldane derived the
now well-known Haldane map function relating recombination fraction and map distance:
r = 1

2 (1− e−2d) with inverse d = − 1
2 log(1− 2r). Nearly 90 years later, this approach

has proved to be very satisfactory for a wide variety of organisms. Note that Haldane
derived his map function under the two-strand model, i.e. assuming only two strands
(the two homologous chromosomes) are involved in the crossover process. Although this
assumption is incorrect, we would arrive at the same map function under the four-strand
model with no chromatid interference.

In addition to deriving the Haldane map function in his seminal 1919 paper, Haldane
also proposed the empirical inverse map function d = 0.7r + 0.3(− 1

2 log(1− 2r)) to
account for crossover interference in the data then available, and introduced a differential
equation method that permitted the construction of a variety of map functions. A variety
of other genetic map functions embodying different degrees of crossover interference have
been proposed, including by Ludwig (1934); Kosambi (1944); Carter and Falconer (1951);
Sturt (1976); Rao et al. (1977); Felsenstein (1979); and Karlin and Liberman (1978).

For all these map functions, genetic distance is very close to recombination fraction
when the latter is small, and map distances can be (and in the fly group were) estimated
without a model – provided the pair of genes were connected by a sequence of closely
linked genes – by adding small recombination fractions.

1.2.5 Genetic Mapping for Three Markers

Historically, the first formal linkage analysis involving more than two loci was given by
Fisher (1922). He showed how to combine data from a number of two-point analyses in
order to obtain efficient estimates of a set of recombination fractions. For three markers
A, B, and C in an arbitrary but fixed order, the joint recombination probabilities may
be denoted by p = (pi1i2), where the subscript ik = 1 corresponds to recombination
across the kth interval, and ik = 0 corresponds to no recombination across the same
interval. Therefore, we have four probabilities p = (p00, p01, p10, p11) for three markers,
corresponding to the four patterns of recombination or no recombination across A–B and
B–C. Although the data were all two-point, Fisher needed to express the recombination
fraction across the union A–C of two adjacent intervals A–B and B–C in terms of their
individual recombination fractions. He did so by making the assumption of complete
interference, that is, by assuming that at most one recombination could occur across any
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pair of adjacent intervals. This is equivalent to the following joint distribution:

p00 = 1− r1 − r2; p01 = r2; p10 = r1; p11 = 0,

where r1 and r2 are the recombination fractions across A–B and B–C, respectively.
This model would not be appropriate for the analysis of three-point data in which double
recombinants are observed, but it has been used in modern times with very short intervals.
In human linkage analysis one finds almost exclusive use of the extremely tractable
Poisson or no-interference model, whose joint probabilities for three loci take the form

pi1i2 = ri11 (1− r1)1−i1ri22 (1− r2)1−i2 ,
where, for i = 1, 2, the recombination fractions ri may be expressed in terms of genetic
distances di by

ri = 1
2 (1− e−2di ).

It seems that although this model and its extension to more than three loci fail to fit
most data sets of any size, the recombination fractions and locus orderings obtained are
generally satisfactory; see Speed et al. (1992). Any map function, r = M(d), can be used
to analyze three-point data. This is because r1 = p10 + p11 = M(d1), r2 = p01 + p11 =
M(d2), and p11 = 1

2 [M(d1)+M(d2)−M(d1 + d2)], and we can derive all the pi1i2
from a given map function. Therefore, likelihood functions for the observed data can
be constructed and maximum likelihood estimates of genetic distances can be obtained.

For an arbitrary crossover process model, under the assumption of NCI, Speed et al.
(1992) derived a set of inequality constraints and showed the robustness of the ordering.
The order with respect to which these probabilities are defined does not need to be the
true one, and if we change it, the probabilities need only be relabeled. For example, if
we go from the order O : A–B–C with probabilities p, to O ′ : A–C–B with probabilities
p′, then p′ is related to p as follows:

p′00 = p00, p′10 = p10, p′01 = p11, p′11 = p01.

Three-point phase known crosses (in which allelic combinations across loci are present
together on the same chromosome) have been used for decades to order loci in exper-
imental organisms, without any explicit model assumptions. This works because, under
very general conditions, the smallest of the four probabilities (pi1i2) corresponds to the
event of double recombination across two consecutive intervals when the loci are correctly
ordered. For example, if the correct order is O : A–B–C, then (assuming no chromatid
interference)

p11 ≤ p10, p01 ≤ p00.

If, on the other hand, O ′ : A–C–B is the correct order, but we have written our proba-
bilities relative to O, then p′11 = p01 will be the smallest probability. It follows that, with
sufficiently large samples of data, any set of loci can be ordered by inspection, with only
a small chance of error. Naturally this is also possible using only the pairwise recombi-
nation fractions, but that would take more data to achieve the same level of confidence
in the ordering. More generally, it is possible to show that, under the assumption of NCI,
a multipoint recombination probability decreases, or at least does not increase, when any
nonrecombinant interval is changed to recombinant status; see Speed et al. (1992).
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1.2.6 Genetic Mapping for Multiple Markers

Although inefficient from the statistical viewpoint, three or more loci can be mapped
using only two-point data, since linear maps are determined by pairwise distances. When
there are plenty of data, such as with Drosophila, multipoint analyses may be unnecessary.
However, in most contexts, data are scarce. In such cases, multipoint linkage analysis can
be viewed as an attempt to make more efficient use of recombination data to further the
aims of linkage analysis; see Lathrop et al. (1984) and Thompson (1984).

Multipoint linkage analyses make fuller use of available data, and can achieve greater
precision or power. They are more complex than two-point analyses in several important
ways. First, they require the specification of an order for the loci. Second, they require
the specification of a joint distribution for all possible recombination patterns: for n loci,
there are 2n−1 such patterns (including the parental one). Third, from the perspective
of parametric statistical inference, joint distributions over recombination patterns corre-
sponding to distinct orderings of the loci define noncomparable statistical models. Most of
the difficulties of multipoint linkage analysis stem from these facts, particularly the rate of
increase of the number of orders or patterns with the number of loci. When linkage anal-
ysis is being done using pedigree data, the size (number of individuals) and complexity
(presence of one or more loops) of the pedigrees are additional limiting factors.

At the initial stage of genetic mapping, linkage groups have to be defined. Two markers
are in linkage if the recombination fraction between them is less than 1

2 . A linkage group
is defined as a set of markers where each marker is linked to at least one other marker
in the same set. With enough markers covering the genome, each linkage group will
correspond to a chromosome. However, for three markers A, B, and C, it is possible that
A and B are genetically linked, B and C are genetically linked, and yet the recombination
fraction between A and C may be approaching 1

2 if they are sufficiently far apart from each
other on a chromosome. Although linkage groups have been well defined for humans and
some experimental organisms, linkage group construction remains the critical first step
for many organisms at the early stage of genetic mapping.

To define whether two markers are in linkage is to test whether the recombination
fraction between these two markers is less than 1

2 . This hypothesis testing problem can
be carried out using the likelihood ratio test; see Ott (1999). The LOD (log-odds) score
is often used to assess the evidence for linkage. It differs from the usual likelihood ratio
statistic by a constant factor and is defined as

LOD = log10
L(data |r)

L
(
data|r = 1

2

) .
A LOD score of 3 has been used as the threshold for linkage testing. The justification of
this threshold is discussed by Ott (1999) and Risch (1991).

After linkage groups are defined, the next task is to order genetic markers within
each group. The locus ordering problem resembles the traveling salesman problem (TSP)
widely discussed in the field of combinatorial optimization, (see Johnson, 1990), in which
there are a large number of discrete states, each of which can be assigned a numerical
value by a cost or objective function. The calculation of the objective function can depend
either on information from pairwise data (e.g. pairwise LOD scores) or on joint genetic
information (e.g. multipoint LOD scores, discussed later). For example, Speed et al. (1992)
showed that, under the assumption of NCI, a given order imposes linear constraints among



12 T.P. SPEED AND H. ZHAO

multilocus recombination probabilities. Maximum likelihood under these constraints for
each order can be used as the objective function.

With n markers, the ideal ordering approach would be to compute the objective function
for each of the 1

2n! orders, and then to rank the orders, choosing the one with the largest
objective function as the best order. With a few markers, all possible orderings can be
considered. However, this quickly becomes impossible with many genetic markers. There
is no evidence to suggest that a method exists that is generally better than choosing that
order which maximizes the likelihood of the data using a suitable recombination model,
at least not when the calculation of the likelihoods corresponding to each of the 1

2n!
distinct orders is possible. The Poisson or no-interference model is the one typically used
in this context. Although there does not appear to be a systematic study of this issue, the
available evidence suggests that only small gains in the efficiency of ordering loci are
to be found by using a more suitable model when interference exists; see Lathrop et al.
(1984); Bishop and Thompson (1988); Goldgar and Fain (1988); Speed et al. (1992);
and Goldstein et al. (1995) for related results. Different heuristic ordering strategies were
reviewed in Weeks (1991), and more recent development can be found in Mester et al.
(2003); York et al. (2005); and Tan and Fu (2006), among others.

In our previous discussion on genetic distance estimation from two-point or three-
point genetic data, we described how map functions can be used to estimate genetic
distances. However, when there are more than three markers, the multilocus recombination
probabilities cannot be uniquely determined from the map function. A crossover process
model is needed to derive joint multilocus recombination probabilities. Several point
process models (Fisher et al., 1947; Karlin and Liberman, 1979; Risch and Lange, 1979;
King and Mortimer, 1990; Fujitani et al., 2002) have been proposed to incorporate
crossover interference in modeling the crossover process. The first satisfactory class of
recombination models were the chi-square renewal process models discussed by Fisher
and his students and colleagues (Fisher et al., 1947). Bailey (1961) gave a good overview
of this research. The simplest of these joint probabilities is too complex to be given here,
and this is probably the reason why this class of models has not been used with human
data until recently (Lin and Speed, 1996; Broman and Weber 2000; Browning, 2003). The
chi-square model has been extended to the Poisson-skip model, which has the chi-square
model as its special cases and can also incorporate negative crossover interference; see
Lange et al. (1997). More recently, Stahl and colleagues have proposed that there exist two
separate recombinational pathways, one with independent crossovers and one imposing
crossover interference. Empirical data seem to be in favor of this two-pathway model
for Arabidopsis (Copenhaver et al., 2002) and humans (Housworth and Stahl, 2003). The
major alternatives to the chi-square renewal models are due (independently) to Karlin
and Liberman (1979) and Risch and Lange (1979), called count-location or generalized
no-interference models, and the model of Goldgar and Fain (1988). For a review and
comparison of different stochastic models for recombination, see McPeek and Speed
(1995). One approach that does not depend on specific models for recombination was
developed by Weinstein (1936) and was recently used to study human meiosis by Lamb
et al. (1997); Zhao et al. (2000); and Li et al. (2001). The only assumption employed by
this approach is that there is at most one chiasma in each marker interval, which is likely
to be satisfied when many markers are studied on a chromosome. Although substantial
number of additional parameters are involved, the results from Weinstein’s approach
can be used to assess the goodness of fit of different crossover process models and to
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identify anomalous features of these models. Despite great efforts made to understand the
molecular mechanisms leading to crossover interference, surprisingly little are known to
date (e.g. Jones and Franklin, 2006).

Liberman and Karlin (1984) proposed to extend genetic map functions to four or more
marker cases by embodying the assumption that, for a pair of noncontiguous intervals,
the probabilities for joint recombination patterns across these intervals do not depend on
the distance between the intervals, something which is not consistent with observations.
Those map functions that can be extended to multilocus data through this approach have
been (inappropriately) called multilocus feasible by Liberman and Karlin (1984). This
criterion excludes many functions that were found to fit well to recombination data, such
as the Kosambi map function proposed by Kosambi (1944). However, Zhao and Speed
(1996) showed that there exist stationary renewal processes that give rise to most map
functions in the literature (including the Kosambi map function). Therefore, these map
functions are compatible with the analysis of multilocus data via this approach. Moreover,
the interevent distributions of the stationary renewal processes corresponding to most map
functions can be closely approximated by γ distributions.

We have discussed the cases where recombination or nonrecombination can be
unambiguously scored. For human pedigrees, matters are more complicated at many
levels. As with two-point linkage analyses, a major complication in multipoint linkage
analyses can be the incompleteness of data. For example, there may be missing data due
to some individuals not being typed. All data may be available, but phenotype may not
determine genotype, as with dominant traits and other types of incomplete penetrance.
Genotypes may be known, but haplotypes may not, that is, phase may be unknown. With
known genotypes at n loci, there are 2n−1 possible haplotypes. While these incompleteness
problems can slow down two-point analyses, they can quickly make exact multipoint
analyses impossible. On the other hand, multipoint analyses can make use of data that
cannot be used in two-point analyses, for example, when only uninformative data are
available at a locus intermediate between two fully informative loci; see Lathrop et al.
(1985) and Ott (1999). In multipoint linkage analysis using pedigree data, the feasibility
of an exact analysis will depend on the number of loci, the size and complexity of the
pedigrees involved, and the nature and extent of incompleteness in the data.

For pedigrees with simple structures or with a few genetic markers, the likelihood
for a pedigree can be calculated exactly. The exact calculations can be divided into
two types of algorithms: the Elston–Stewart algorithm (Elston and Stewart, 1971) and
the Lander–Green algorithm (Lander and Green, 1987). Consider a pedigree with m
individuals, where x = (x1, x2, . . . , xm) is the set of observed phenotypes for the pedigree.
If Gi is the set of genotypes gi compatible with the phenotype of person i, then the
likelihood of the pedigree can be written as a sum of products:∑

g1∈G1

· · ·
∑
gm∈Gm

∏
i

P (xi |gi)
∏

k founders

P(gk)
∏

{i1,i2,i3}
P(gi1 |gi2, gi3),

where {i1, i2, i3} is an offspring–parent triad and i refers to the individuals with observed
phenotypes. The probability P(xi |gi) is the probability of an individual with genotype gi
having phenotype xi . For codominant genetic markers, the probability is either 1 or 0.
The founder probability P(gk) is a function of population gene allele frequencies. The
Elston–Stewart algorithm can be viewed as a method for choosing an order to perform the
iterated sum to minimize the total number of additions and multiplications. The number of
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calculations in the Elston–Stewart algorithm scales linearly with the number of individuals
in the pedigrees but exponentially with the number of markers.

The Lander–Green algorithm works as follows. Let xL = (xL1
, xL2

, . . . , xLN ) denote
the collection of phenotypes at locus i, and gL = (gL1

, gL2
, . . . , gLN ) denote the collection

of ordered genotypes at these loci for the individuals. Then the likelihood for the pedigree
can be written as

∑
gL1∈L1

· · ·
∑

gLN ∈LN

[∏
i

P (xLi |gLi )
]
P(gLN |gLN−1

, gLN−2
, . . . , gL1

) . . . P (gL2
|gL1

)P (gL1
).

Assuming no crossover interference, then the likelihood is

∑
gL1∈L1

· · ·
∑

gLN ∈LN

[∏
i

P (xLi |gLi )
]
P(gLN |gLN−1

) . . . P (gL2
|gL1

)P (gL1
).

The Lander–Green algorithm can be extended to incorporate the chi-square model
in linkage analysis. The Elston–Stewart algorithm is mostly useful for large pedigrees
but only a limited number of markers, whereas the Lander–Green algorithm is useful
for multiple markers but is limited in the number individuals in each pedigree. This
likelihood can be efficiently evaluated using the forward–backward algorithm of the
hidden Markov model methodology. In addition, parameter estimates can be obtained
using the expectation maximization (EM) algorithm. The number of operations scales
linearly with the number of markers but exponentially with the number of individuals in
the pedigree.

Both algorithms will fail if we have large pedigrees with many markers typed, and
simulation methods to approximate the likelihood have been proposed by Thompson
(1994) and Sobel and Lange (1996). In a recent review, Lin (1996) discussed both the
sequential imputation approach of Irwin et al. (1994) and Markov chain Monte Carlo
methods of Lin and Wijsman (1994).

1.2.7 Tetrads

Recall that tetrads and octads refer to the case where all four products of a single meiosis
can be recovered together, such as in yeast and bread mold. Octads are generated from
tetrads following one mitosis, and octads can usually be represented by tetrads, except
when gene conversions occur. If we ignore the possibility of gene conversions, we
need make no distinction between tetrads and octads in the following discussion, and
refer to both as tetrads. Genetic studies using tetrad data are very valuable in studying
the crossovers during meiosis. Compared to single-spore data, tetrad data have several
advantages. First, with tetrad data chromatid interference and chiasma interference can
be distinguished. Second, when chromatid interference is absent, chiasma interference
can be detected with only two markers, whereas at least three markers are needed for
single-spore data. Chiasma interference can even be detected with one marker in some
studies. Third, the position of the centromere can be inferred. In some organisms, such as
Neurospora crassa, the tetrads are produced in a linear order corresponding to the meiotic
divisions; these are called ordered tetrads. In others, such as Saccharomyces cerevisiae,
the tetrads are produced as a group without order, and are called unordered tetrads.
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If a cross involves two strains differing with respect to two genes, geneticists distinguish
three possible tetrad types: parental ditype with two representatives of each of the two
parental types; nonparental ditype, where all four strands show recombined types; and
tetratype, where two of the four strands show parental types and the other two strands
show recombined types. For tetrad data involving two genetic markers, let P , T , and N
denote the proportion of tetrads having parental ditype, tetratype, and nonparental ditype,
respectively. The recombination fraction between the two markers can then be estimated
by N + 1

2T . Although the genetic distance can be estimated from this recombination
fraction through a genetic map function, there is more information in the raw tetrad
data. Under the assumption of NCI, given two chiasmata between two markers, the
probabilities of observing parental ditype, tetratype, and nonparental ditype are 1

4 , 1
2 , and

1
4 , respectively. If there is a single chiasma between two markers, the resulting tetrads
always have tetratype. Therefore, we can estimate the probability of having two chiasmata
by 4N , and the probability of having one chiasma by T − 2N . This leads to an estimated
distance of 1

2 (T + 6N) if we assume there are no more than two chiasmata between the
two markers. This formula was first proposed by Perkins (1949).

Under the assumption of NCI, Mather (1935) showed that if k ≥ 1 chiasmata occur
between a pair of markers, then the conditional probabilities pk0, pk1, and pk2 of observing
a tetrad with parental ditype, tetratype, and nonparental ditype, respectively, are

pk0 = 1
3

( 1
2 + (− 1

2 )
k
)
,

pk1 = 2
3

(
1− (− 1

2

)k)
,

pk2 = 1
3

(
1
2 +

(− 1
2

)k)
.

For a given crossover process model, the above relations can be used to relate the
probabilities of three tetrad patterns to the genetic distance between two markers. For
example, under the Poisson model, p0 = 1

6 (1+ 2e−3d + 3e−2d), p1 = 2
3 (1− e−3d), and

p2 = 1
6 (1+ 2e−3d − 3e−2d), where p0, p1, and p2 are the probabilities of parental ditype,

tetratype, and nonparental ditype between two markers, respectively, and d is the genetic
distance; see Haldane (1931).

One unique feature of ordered tetrad analysis is that there is information on centromeres.
The distance between a single marker and its centromere can be estimated using data from
a single marker. For marker A with alleles A and a inherited from two parents, there are
six distinguishable configurations, as illustrated in Table 1.1. Because spindle–centromere
attachment during meiosis is random (see Griffiths et al., 1996), types 1 and 6 have equal

Table 1.1 Six distinguishable patterns for marker A.
Strands 1 and 2 are attached to one centromere and strands
3 and 4 are attached to the other.

Strand S1 S2 S3 S4 S5 S6

1 A A A a a a

2 A a a A A a

3 a A a A a A

4 a a A a A A
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probability because of random spindle–centromere attachment at the first meiotic division,
whereas types 2–5 have the same probability because of random spindle–centromere
attachment at the second meiotic division. Types 1 and 6 are called first-division
segregation (FDS) pattern and types 2–5 are called second-division segregation (SDS)
pattern (Griffiths et al., 1996).

The probabilities of FDS and SDS can be related to the genetic distance between
A and its centromere if a chiasma process model is specified. Let SA = P(SDS); then
SA = c1 = 2d under the complete interference model, where c1 denotes the probability of
having one chiasma. For the Poisson model, SA(d) = 1− FA(d) = 2

3 (1− e−3d). Several
chiasma models and various map functions derived from these models were studied by
Zhao and Speed (1998a). It was found that most map functions proposed in the literature
can be well approximated by the map functions under the chi-square model. Centromeres
can also be mapped with three markers on three different chromosomes using unordered
tetrads, as shown by Whitehouse (1957). For three markers A, B, and C, denote the
frequencies of SDS for these three loci by x, y, and z. Then the probability of tetratype
between A and B is TAB = x + y − 3

2xy when A and B are on different chromosomes.
Similarly, TAC = x + z− 3

2xz and TBC = y + z− 3
2yz. These three equations can be used

to solve for three unknown parameters. For example,

x = 2

3

{
1±

√
4− 6TAB − 6TAC + 9TABTAC

4− 6TBC

}
.

However, this method only has reasonable precision when at least two of the three loci
are fairly close to their respective centromeres.

For a cross involving three markers A, B, and C on the same chromosome, if both
marker intervals (A–B and B–C) show tetratypes, there are three types that can be
distinguished according to the pattern between A and C: parental ditype, tetratype, and
nonparental ditype (often called two-strand, three-strand, and four-strand doubles). Under
the assumption of NCI, the ratio of these three types is 1 : 2 : 1. A significant deviation from
the expected ratio can be attributed to the presence of chromatid interference. Geneticists
have examined this ratio in different organisms and, overall, found no consistent evidence
against the NCI assumption; see Fincham et al. (1979). Although most studies on
ordered tetrads and unordered tetrads used only three loci for the detection of chromatid
interference, some information is lost when only the 1 : 2 : 1 ratio is examined for each
pair of marker intervals. Zhao et al. (1995b) derived a set of linear equality and inequality
constraints on the probabilities of unordered tetrad patterns with an arbitrary number of
loci under the assumption of NCI. For example, for two markers, NCI imposes that
p0 ≥ p2 and p1 ≥ 2p2. Similar constraints were derived for ordered tetrads by Zhao and
Speed (1998a). These constraints can be used to test the presence of chromatid interference
without assuming any model for the chiasma process.

To perform genetic mapping using multiple markers simultaneously, we need to be
able to evaluate the probability for any multilocus tetrad pattern under a given model
for the chiasma process. Both the count-location model (Risch and Lange, 1983) and
the chi-square model (Zhao et al., 1995a; Zhao and Speed, 1998a) have been applied to
analyze tetrad data. Detailed procedures can be found in these papers.
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1.2.8 Half-tetrads

Half-tetrads can arise either from meiosis I or meiosis II nondisjunctions. The first
well-studied half-tetrad data were attached-X chromosomes in Drosophila (Beadle and
Emerson, 1935). Half-tetrads were also constructed using autosomes in Drosophila
(Baldmin and Chovnick, 1967), and have been used in the study of many other
organisms, including maize, potatoes, leopard frog, rainbow trout, salmonid fish, catfish,
and zebrafish. In mammals, half-tetrads can be studied in the form of uniparental disomy
(Robinson et al., 1993), autosomal trisomies (Morton et al., 1990), nondisjunction in
ovarian teratomas (Eppig and Eicher, 1983), and PCR analysis of meiosis I products
in individual secondary oocytes (Cui et al., 1992).

Genetic mapping using genetic marker data from human nondisjunction data was
discussed by Shahar and Morton (1986); Chakravarti and Slaugenhaupt (1987);
Chakravarti et al. (1989); and Feingold et al. (2000). Map distances, as well as LOD
scores for these distances, can be calculated from the observed patterns of nonreduction
(heterozygous genotype) and reduction (homozygous genotype) of markers along the
nondisjoined chromosome pair. Zhao and Speed (1998b) derived the general relationship
between multilocus half-tetrad probabilities and multilocus ordered tetrad probabilities.
These relationships can be used for likelihood analysis of half-tetrads, and the same
methods have been extended to study uniparental disomy and trisomy.

1.2.9 Other Types of Data

Genetic maps can also be constructed using other types of data, including organisms
with more than two copies of chromosomes (Bailey, 1961; Wu et al., 2001; Wu and Ma,
2005; Luo et al., 2006), bacterial and bacteriophage (Stahl, 1979), and recombinant inbred
strains (Green, 1981). Genetic background and statistical methods for these types of data
can be found in these references.

1.2.10 Current State of Genetic Maps

Statistical methods for establishing linkage and estimating recombination fractions in
humans were pioneered by Bernstein (1931), and developed intensively by the British
school centered around Fisher and Haldane during the 1930s and 1940s. The first human
linkage to be established was between the X-linked genes for hemophilia and red-green
color blindness by Bell and Haldane (1937); two decades later, Mohr (1954) found linkage
between two blood groups on an autosome. Early ways of establishing linkage were based
upon what are now known as score tests, and a method using sib-pairs, while likelihood
methods quickly came into use for estimation. Several methods of correcting for sampling
biases were also developed. All of these ideas continue to be important today.

A major limitation in human genetic mapping before the 1980s was the shortage of
genetic markers. Markers are Mendelian factors, often but not necessarily genes in the
modern sense, which segregate in human populations. For many years, human genetic
markers were mainly blood cell antigens and proteins. They provided the basis of human
genetic maps, and were a framework within which new genes could be mapped. Despite
there being a fair number of known genetic diseases and Mendelian markers such as those
just mentioned, the human genetic map was still very sparse in the 1970s. However, it
was during this period that the first good algorithms for calculating probabilities over
pedigrees were developed, motivated initially by problems in genetic counseling, and
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later by the desire to carry out segregation analyses on large pedigrees. Programs based
upon these algorithms continue to play a very important role in modern genetic mapping.

Around 1980, the idea of treating DNA sequence differences as genetic markers arose.
It was quickly developed, and the present wide availability of what are collectively
known as molecular markers has revolutionized human genetic mapping, and that of many
other organisms. Development of the centre-d’Étude-du-polymorphisme-humain (CEPH)
reference families (Dausset et al., 1990) was a critical step in genetic map construction.
The first fairly complete human map was published in 1987, and consisted of about 400
restriction fragment length polymorphisms (RFLPs), mapped using DNA from a panel
of 21 three-generation families from the CEPH consortium (Donis-Keller et al., 1987).
In order to build this map, new multilocus methods for mapping were developed. The
mapping of many loci simultaneously was first carried out by Fisher (1922), but it was
only following the availability of cheap, fast computers and suitable algorithms that this
idea became widely adopted.

At the time the 1987 map was being developed, the PCR was beginning to revolutionize
molecular genetics. Several new types of genetic markers have been developed using
PCR, with acronyms such as RAPD (random amplified polymorphic DNAs), STRP (short
tandem repeat polymorphism), and SSCP (single-strand conformation polymorphism), and
the latest genetic maps include several thousand readily assayed markers. It is now possible
to carry out genome-wide scans, effectively searching the entire genome for linkage
between a trait and markers. Searches of this kind have been remarkably successful
in locating genes contributing to a wide range of disease and other phenotypes. They
also raise many new statistical questions, especially as interest now focuses on complex
and quantitative traits. Such traits are believed to be influenced by a number of genes,
as well as the environment, and mapping these genes with available data remains a
challenging task.

In recent genetic maps constructed from CEPH pedigrees, more than 8000 STRPs
were mapped to the human genome by Broman et al. (1998). This map not only
provides guidelines for disease gene mapping, but also allows a very detailed comparison
between male and female genetic maps (Broman et al., 1998) and the study of crossover
interference (Broman and Weber, 2000). More recently, Kong et al. (2002) estimated
recombination rates across the human genome through 5136 microsatellite markers typed
for 146 Icelandic families, with a total of 1257 meiotic events. They detected ‘systematic
differences in recombination rates between mothers and between gametes from the same
mother, suggesting that there is some underlying component determined by both genetic
and environmental factors that affects maternal recombination rates’. In Figure 1.2 we
show some features of portions of several genetic maps for human chromosome 21.
Most recently, there have been extensive studies of single nucleotide polymorphisms
(SNPs) in the human genome. The current map contains more than 10 million SNPs
(www.ncbi.nlm.nih.gov/SNP) and maps for other types of polymorphisms are also
being developed, e.g. the INDEL map (Mills et al., 2006).

Genetic maps for pigs, cows, tomatoes, rice, pine trees and many other species of
commercial or scientific interest have followed quickly behind the human maps.

1.2.11 Programs for Genetic Mapping

All the programs described here can be found in the website maintained by the Ott group
at Rockefeller University, at http://linkage.rockefeller.edu/soft/list.
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html. As discussed above, algorithms for carrying out multipoint linkage analysis with
human (and other) pedigree data are of two kinds: those based upon the Elston and
Stewart (1971) approach, using what is known as peeling; and those based upon the
Lander and Green (1987) hidden Markov model formulation. Each of these classes
of algorithms has its strengths and weaknesses, and there are problems that cannot
be solved exactly with either of them. The Elston–Stewart approach underlies most
of the algorithms discussed in Terwilliger and Ott (1994). For a recent improvement
of the implementation of these algorithms, see O’Connell and Weeks (1995). A suite of
genetic mapping programs that have gained much popularity uses the basic Lander–Green
algorithm in a number of different human linkage problems. These include MAPMAKER
for crosses among inbred strains (Lander et al., 1987), analyses with sib-pairs (Kruglyak
and Lander, 1995), the analysis of recessive traits with nuclear families (Kruglyak et al.,
1995), and multipoint linkage with many markers for general pedigrees of moderate
size (Kruglyak et al., 1996). Similar statistical methods underlie the program CRI-
MAP, which is most suitable for CEPH-type pedigrees (Green, 1988). MultiMap is
another program that assists with map construction (Matise et al., 1994). It consists
of framework construction and comprehensive map construction. MultiMap recently
incorporated the Gene Mapping System algorithm (Lathrop et al., 1988; Marinov et al.,
1999), which is based on identifying and permuting linkage groups within an initial
order of all loci. Other programs include Map/Map+ for map integration (Morton et al.,
1992), JoinMap for plants (Stam, 1993), and OUTMAP for outbred populations (Ling,
2000).

When exact linkage analysis methods fail because of time or space constraints, Monte
Carlo methods may be used. At present these are more research tools than approaches
suitable for routine use, but they are developing rapidly, and should become more widely
used in the near future. Some of these simulation methods have been implemented in
SIMWALK (Sobel and Lange, 1996) and Morgan (Thompson, 1994).

1.3 PHYSICAL MAPS

Physical mapping is the process of determining the locations of ‘sites’ such as restriction
sites (4–8 bp), STSs (20–30 bp), and cloned fragments (kilobase to megabase) on a larger
DNA molecule or a chromosome. Among other things, maps of such sites are helpful,
if not essential, for cloning genes and for sequencing large stretches of DNA, and have
been very widely used in recent years. To quote from an early successful paper in the
area, Olson et al. (1986, p. 7830):

a strong case can be made for the value of constructing physical maps of the genomes of
intensively studied organisms. We expect the main value of these maps to lie in facilitating
the organization of molecular genetic information. Just as conventional cartography provides
an indispensable framework for organizing data in fields as disparate as demography and
geophysics, it is reasonable to suppose that ‘DNA cartography’ will prove equally useful in
organizing the vast quantities of molecular genetic data that may be expected to accumulate
in the coming decades. Furthermore, the principal by-product of these projects – global clone
collections that are cross-indexed to the physical maps – could be expected to improve the
efficiency of subsequent structural and functional studies of local regions.
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The two most common approaches to physical mapping are termed top-down, producing
a macrorestriction map, and bottom-up, resulting in a contig map. With either strategy,
the maps represent ordered sets of DNA fragments that are generated by cutting
genomic DNA.

However, the first physical maps were made from microscope images, and although
their construction and interpretation involve no statistics, we discuss them briefly for
completeness.

1.3.1 Polytene Chromosomes

Polytene chromosomes are many-stranded chromosomes resulting from repeated chro-
mosomal replication, without the subsequent separation of sister chromatids. Up to 1024
chromatids can be present, giving giant chromosomes visible under a microscope in nondi-
viding cells. Most widely known are those of the salivary glands of insects of the order
Diptera, and a classic reference to the polytene chromosomes in the salivary glands of
Drosophila melanogaster is Bridges (1935).

After appropriate staining, the Drosophila polytene chromosomes have distinctive
banding patterns, which have been cataloged, and have proved invaluable for localizing
structural alterations such as deletions, and for use with more recent in situ hybridization
techniques. For further details, please refer to Saura et al. (1997) and FlyBase (http://
flybase.bio.indiana.edu).

1.3.2 Cytogenetic Maps

A closely related class of physical maps are the familiar cytological maps whose human
versions are frequently represented in ideogrammatic form (see Figure 1.1). Such maps
were originally derived in a variety of organisms by associating mutant phenotypes with
chromosomal defects visible by direct microscopic examination. In this way, genes can
be physically located on chromosomes, at least to a low level of resolution.

In the late 1960s, staining techniques were discovered, which led quickly to the adoption
of banding patterns of human chromosomes now widely used; see, for example, Vogel and
Motulsky (1997). This field has evolved greatly in recent years with the advent of fluores-
cent in situ hybridization (FISH) and multiple coloring of chromosomes; see Trask (1998).

1.3.3 Restriction Maps

A restriction site is the location of a sequence, typically 4–6 bp long, where a particular
restriction enzyme will cut DNA. Isolated from various bacteria, restriction enzymes
recognize short DNA sequences and cut DNA molecules at specific sites in the sequence.
Ignoring, for the moment, variations from uniform base composition, restriction enzymes
with 4 bp recognition sites will yield pieces – termed restriction fragments – on average
about 256 bp long, while those with 6 or 8 bp recognition sites will yield pieces of
average length 4 or 64 kb, respectively. Since hundreds of different restriction enzymes
have been characterized, and they can be used together, DNA can now be cut with them
into fragments of many different sizes in many different ways. A restriction map describes
the order and distance between restriction sites.

In top-down mapping, a chromosome is cut into large DNA fragments using restriction
enzymes having rare restriction sites. The fragments are separated by size and assigned to
regions by hybridization with genetically or cytogenetically mapped DNA probes. Then
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the fragments are assembled into contiguous blocks, resulting in a macrorestriction map.
Such fragments may average 1 Mb in size. For a finer map, the ordered fragments may
be taken one at a time and dissected with more frequently cutting restriction enzymes.

The simplest way to construct a restriction map is to compare the fragment sizes
produced when a DNA molecule is digested with two different restriction enzymes; see
Waterman (1995, Chapters 2–4) for a discussion of some of the computational issues
here. Restriction maps are easy to generate if there are relatively few cut sites with the
enzymes being used, but most enzymes cut frequently, generating a large number of small
fragments (from less than 100 bp to 1 kb). Therefore, such mapping is more applicable
to small molecules, such as viral and organelle genomes, or to genomic DNA that has
already been cloned.

A major advantage of a restriction map (like that in Figure 1.3) is that accurate lengths
are known between sets of reference points. We can preserve an overview of the target
and we can reach a nearly complete map relatively quickly. The disadvantage of most
restriction mapping efforts is that they do not produce the DNA in a convenient form.
This approach yields maps with more continuity and fewer gaps between fragments than
contig maps, but map resolution is lower and may not be useful in finding particular
genes. Currently, this approach allows DNA pieces to be located in regions measuring
from about 0.1 Mb to 1 Mb.

1.3.4 Restriction Mapping via Optical Mapping

Optical mapping is a single-molecule approach for the construction of ordered restriction
maps developed by Schwartz et al. (1993). It uses light microscopy to directly image
individual DNA molecules, which are bound to specially derivatized surfaces and
then cleaved by restriction enzymes. Cleaved fragments retain their original order, and
restriction sites are flagged by small, visible gaps. Optical mapping solves the problem
of determining fragment order.

The statistical analysis of optical mapping data is relatively new and quite complex, so
we do not attempt to summarize it here. A first solution to the problem can be found in
Anantharaman et al. (1997). These authors take a Bayesian approach, constructing a prior
model for an ordered restriction map and a probability model for restriction map data
from single molecules. They then approximate the mode of the posterior distribution of
the parameters. Orientation, false cuts, and sizing errors are among the issues to be dealt
with. A second, hierarchical Bayes approach to the same problem using reversible-jump
Markov chain Monte Carlo can be found in Lee et al. (1998). Most recently, sequence
assembly methods have been adapted to optical mapping (Valouev et al., 2006). Finally,
there have been several successful applications of the method to a whole genome; for
example, see Lai et al. (1999) and Reslewic et al. (2005).

1.3.5 Ordered Clone Maps

Clones – more fully, cloned DNA fragments – are generated by first breaking a large
number of identical chromosomes into fragments, either by physical means such as
sonication, compression, or irradiation, or by chemical means, typically complete or
partial digestion with one or more restriction enzymes. Individual fragments (inserts)
of appropriate sizes are then joined to another DNA molecule (the vector) and the result
is incorporated into a (host) organism such as Escherichia coli or yeast. The average
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Figure 1.3 Restriction map of cosmid clones. [Source: Lawrence Livermore National Laboratory.]

size of the insert varies widely among different hosts and incorporation methods. Yeast
artificial chromosomes (YACs) in yeast may have DNA fragments ranging from 100 kb
to 1 Mb. Cosmids in E. coli may have fragments ranging from 35 to 45 kb, while
the now widely used bacterial artificial chromosomes (BACs) have inserts of sizes in
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the range 100–200 kb. The hosts are separated from each other and allowed to grow
into colonies, with the fragment in each host being replicated along with the host’s
DNA during cell divisions. After enough divisions, each host colony can be harvested,
resulting in a library of cloned DNA fragments, where each fragment is present in
large enough quantities to permit isolation and purification for subsequent biochemical
analyses.

The bottom-up approach to physical mapping is usually carried out by breaking up the
DNA molecule of interest, cloning selected fragments, and subjecting each clone to one
more experiments – restriction digestions, hybridizations or PCR assays with unique or
repetitive probes, or sequencing – to obtain what is called a fingerprint of the clone. These
fingerprints are then used to solve the combinatorial puzzle of inferring the arrangement
of clones along the molecule with the help of these data. The ordered fragments form
contiguous DNA blocks, which are called contigs. Clone ordering usually begins by
comparing clones to each other, in order to determine the strength of evidence that any
pair of clones overlap, and it is here that statistical ideas enter.

Currently, clone libraries ordered in this way have inserts that vary in size from a
few thousand base pairs up to 1 Mb. Contig maps thus consist of a linked library of
overlapping clones representing a complete chromosomal segment. An advantage of this
approach is the accessibility of these clones to other researchers. While useful for finding
genes localized to a small region (under 2 Mb), contig maps can be difficult to extend
over large stretches of a chromosome because not all regions are clonable.

The statistical analysis of overlap and the estimation of distances will differ somewhat
with different fingerprinting techniques. In a hybridization experiment, the fingerprint will
be the list of probes that hybridize to the clone; with restriction digestion the fingerprint is
a list of observed fragment sizes resulting from the digestion of the clone, while with STS
content mapping (see below) the fingerprint consists of an enumeration of the STSs found
to be located on that clone. An example of an STS-based clone map is given in Figure 1.4.

1.3.6 Contig Mapping Using Restriction Fragments

One approach, due by Coulson et al. (1986), begins with the calculation, for each pair
of clones, of the probability of the observed level of matching of fragment sizes, up to a
prescribed tolerance, arising by chance, i.e. when the clones do not in fact overlap. This
probability – essentially a p-value, but called the probability of coincidence – is used for
selecting possibly overlapping clone pairs. Clones are then assembled into contigs using
a variety of ad hoc rules based on these probabilities. For details, we refer to Sulston
et al. (1988). A modified version of this procedure is embodied in the program FPC
(Soderlund et al., 1997), which was widely used in preparing physical maps for human
genome sequencing.

An alternative approach involving a likelihood ratio or Bayes posterior odds was
initiated by Michiels et al. (1987), and then more fully developed by Branscomb et al.
(1990). We sketch it now, referring the reader to Nelson and Speed (1994a) and Nelson
et al. (1997) and the references cited there for fuller details of the trinomial model.

For each clone in a library of N clones, we create DNA fingerprint data by restriction
digestion, electrophoresis, and sizing. This consists of a list of fragment lengths. For
a particular length l, there are four patterns when we compare two clones: (1,1) if a
fragment of length l is observed in both clones; (1,0) if a fragment of length l is observed
in the first clone but not the second one; (0,1) if a fragment of length l is observed in
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Figure 1.4 STS map of portion of human chromosome 21. [Source: Mapview at www.gdb.org/
hugo/chr21/.]
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the second clone but not the first one; and (0,0) if a fragment of length l is observed in
neither clone. The probability of each outcome under a simple randomness model can be
approximated by

p00 = qL1+L2−θ ,

p01 = qL1(1− qL2−θ ),

p10 = qL2(1− qL1−θ ),

p11 = 1− qL1 − qL2 + qL1+L2−θ ,

where L1 and L2 are the lengths of the two clones, θ is the overlapping amount, q = e−λl ,
and λl is the intensity for fragments of size l. When all the clones are of the same size,
p01 = p10 and the data can be reduced to a trinomial variable (n00, n01 + n10, n11). To
decide whether two clones overlap, the likelihood ratio test value L(θ)/L(θ = 0) can be
calculated. Alternatively, with prior information on the θ , posterior odds can be calcu-
lated to decide if two clones overlap. The above simple assumptions can be loosened to
allow different intensities and errors in fragment size detections. With pairwise similarity
measures such as the log posterior odds for overlap, clustering algorithms can be used to
build contigs.

1.3.7 Sequence-tagged Site Maps

An STS is defined by two short sequences, each typically 20–25 bp in length, that have
been designed from a region of sequence that appears as a single copy in the human
genome. These sequences can act as primers in a PCR assay to score for presence or
absence of the site in any DNA sample. One of the aims of the human genome project
was to build a high-resolution RH map using STSs as landmarks throughout the human
genome. Geneticists would then be able to use the map to isolate genes through nearby
landmarks. Sequencers would be able to decide where to prepare clones for the actual
sequencing. In addition, the STSs would become part of a common set of markers that can
be screened against maps created using different mapping techniques, helping to integrate
the efforts of mapping teams worldwide.

For STS content mapping, the data can be summarized as an incidence matrix with N
rows corresponding to N clones and M columns corresponding to M STSs. The (i, j )th
entry is 1 if the j th STS hits the ith clone, and is 0 otherwise. If there are no errors, the
problem can be solved by testing whether this incidence matrix has the consecutive 1s
property. An incidence matrix has the consecutive 1s property for rows if its columns can
be permuted so as to make all the 1s in each row appear consecutively. Booth and Lueker
(1976) described linear-time algorithms for determining if a matrix has the consecutive 1s
property, and they provided a compact description of all possible consistent permutations
in the form of a PQ-tree. Therefore, the problem is completely solvable in linear time if
the data are error-free.

However, real data sets are never error-free, and the consecutive 1s property no
longer holds. Before we discuss various algorithms in the literature, most of which use
combinatorial approaches to optimize an objective function of orderings, we consider a
likelihood-based approach for STS ordering following Yeh (1999). For a pair of STSs
(si, sj ), distance D apart, we can count the number of clones retaining both STSs (n11),
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the first STS but not the second STS (n10), the second STS but not the first STS
(n01), and neither STS (n00). Define the set of coretention probabilities for (si, sj ) as
p = (p11, p10, p01, p00), where p11 is the probability that a clone contains both si and sj ,
p10 is the probability that it retains si only, p01 is the probability that it retains sj only, and
p00 is the probability that is retains neither. Assuming clones are random line segments
of length L on the chromosome (genome) of size G, the coretention probabilities are

p11 = l − d,
p10 = d,
p01 = d,
p00 = 1− l − d,

when d < l, and

p11 = 0,

p10 = l,
p01 = l,
p00 = 1− 2l,

when d ≥ l, where l is the normalized clone length L/G and d is the normalized STS
distance D/G. These probabilities allow us to evaluate the likelihood for each ordering
of the STSs. The estimated order is the one that maximizes the overall likelihood. Thus
the STS ordering problem is equivalent to a TSP with the STSs as vertices and the pair-
wise likelihoods as the distances. Using arguments similar to those in marker ordering
in genetic mapping (Speed et al., 1992); Yeh (1999) showed that this procedure will
recover the true order with probability 1 when the number of clones is large. The objec-
tive function here is the same as that discussed by Green and Green (1991), which is the
first major paper on this topic, and which describes in outline the widely used program
SEGMAP. However, that program goes considerably further, including the solution of a
linear programming problem to find bounds on the distance between any pair of points
in the map (STSs or clone ends).

In addition to obtaining distance estimates among the STSs, this likelihood approach is
robust when the error rates are not too high. Mott et al. (1993) used simulated annealing
to minimize the total discrepancy among adjacent STSs, where the discrepancy between
two STSs a and b is defined as

d(a, b) = 1− #(clones positive for a and b)

#(clones positive for a or b)
.

Alizadeh et al. (1995) used the TSP algorithms to minimize the total Hamming distance
of the clone-probe incidence matrix, which corresponds to the number of gaps of the
probe ordering. They also proposed an alternative objective function based on a weighted
sum of the number of chimeric clones, the number of false positives, and the number
of negatives. Christof et al. (1997) formulated the problem as a weighted betweenness
problem, assuming the probes are from both ends of all clones. Alizadeh et al. (1995)
and Nelson et al. (1997) described statistical procedures for evaluating overlapping
configurations involving more than two clones.
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Once STSs are ordered, clones are ordered with respect to the probes by maximizing a
measure of fit between the probe data for that clone and the list of ordered probes. Unlike
physical maps constructed from restriction maps, the map constructed using STS content
mapping would not be tied to a particular set of clones, and thus could be used to order
any subsequently generated library.

In the early 1990s, considerable effort was put into the generation of clone contig
maps, using STS screening. The major achievement of this phase of physical mapping
was the publication of a clone contig map of the entire genome, consisting of 33 000
YACs containing fragments with an average size of 0.9 Mb (Cohen et al., 1993).

The combined STS maps now include positions for almost 7000 simple sequence length
polymorphisms that have already been mapped onto the genome by genetic means. As a
result, the physical and genetic maps can be directly compared, and the clone contig maps
that include STS data can be anchored on to both maps.

1.4 RADIATION HYBRID MAPPING

A radiation hybrid is a rodent cell that contains fragments of chromosomes from a second
organism. The technology was first developed in the 1970s by Goss and Harris (1975;
1977) and reintroduced by Cox et al. (1990) based on the observation that exposure of
human cells to X-rays causes the chromosomes to break up randomly into fragments, and
these chromosome fragments can then be propagated if the irradiated cells are fused with
nonirradiated hamster or other rodent cells. A routine selection process is used to screen
out hamster cells without human chromosome fragments. In its simplest form, a single
human chromosome is exposed to a radiation source. For the whole-genome radiation
mapping whole genome radiation hybrid (WG-RH), a normal diploid human cell is used
as the donor by Walter et al. (1994). The WG-RH mapping has the advantage that pieces
of many different human chromosomes may be contained in the same hybrid and so a
single panel of WG-RHs can be used to map any region of the human genome. Detailed
mapping of the entire human genome can be accomplished with fewer than 100 WG-
RHs. The resulting panels can be screened for human-specific markers. Data for RH
mapping also can be summarized in an incidence matrix like the one for STS content
mapping.

Like STS content mapping, the basic premise of RH mapping is that the closer
two loci are on the human chromosome, the less likely it is that they will be broken
by irradiation. The retention patterns from the various hybrid clones give clues for
determining locus order and for estimating the distance between adjacent loci for a given
order.

One criterion that quantifies this heuristic is the minimum obligate breaks criterion. For
a given order of the loci, we can count the number of changes from 1 to 0 and from 0 to 1.
If we sum these changes over all the clones, we get the total number of obligate breaks.
The objective is to find the order that minimizes the total number of obligate breaks across
all clones. The advantage of the minimum breaks criterion is that it does not depend on
any assumptions about how breaks occur and how fragments are retained. Assuming the
same retention rate, one can again use arguments similar to those in marker ordering for
genetic mapping and show that this criterion is strongly statistically consistent (Lange,
1997, Chapter 11).
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1.4.1 Haploid Data

We now turn to probabilistic models for RH mapping. In RH mapping, the distance
between sites can be expressed in units (centirays) representing the percentage probability
of separation by breakage with a given irradiation dosage. This gives a better measure of
physical distance than genetic distance, because the vulnerability to breakage seems to
be fairly constant along the whole length of the chromosome. Therefore, in models for
RH mapping, the breakage process along the chromosome can be modeled as a Poisson
process (Cox et al., 1990). For any two loci, the probability of at least one break θ and
the physical distance δ are related by

1− θ = e−λδ,

where the value of λ depends on the irradiation dose. This function is similar to the
Haldane map function used in genetic mapping. Note that the parameters δ and λ cannot
be separated from the estimation. For RH mapping, in addition to considering breakage,
we also need to take retention into account. It is normally assumed that different segments
are retained independently; however, different fragments may be allowed to have different
retention probabilities.

For two markers, there are four possibilities for a haploid RH: (1,1) when both markers
are present; (1,0) when the first marker is present but not the second marker; (0,1) when
the second marker is present but not the first one; and (0,0) when neither marker is present.
The probabilities for these four patterns are as follows:

p11 = θPAPB + (1− θ)PAB,
p10 = θPA(1− PB),
p01 = θPB(1− PA),
p00 = θ(1− PA)(1− PB)+ (1− θ)(1− PAB),

where PA, PB , and PAB are the probabilities of a hybrid retaining a fragment with marker
A only, with marker B only, and with both markers A and B, respectively (Cox et al.,
1990). In the general case of many markers, Boehnke et al. (1991) derived the probability
for a hybrid with any retention pattern.

Note that when PA = PB = PAB = r in the above equations, the probabilities reduce to

p11 = θr2 + (1− θ)r,
p10 = θr(1− r),
p01 = θr(1− r),
p00 = θ(1− r)2 + (1− θ)(1− r).

Therefore, the probabilities are simply a reparametrization of those we derived when we
discussed ordering STSs: simply put l = 1− r and d = θr(1− r).

1.4.2 Diploid Data

For the WG-RH mapping, two chromosomes instead of one, are involved. For a pair of
markers, we have the same four possibilities for an RH. Assuming the same retention rate
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r for all fragments, the probabilities for the four possibilities are

p11 = 1− 2(1− r)2 + [(1− r)(1− θr)]2,

p10 = (1− r)2 − [(1− r)(1− θr)]2,

p01 = (1− r)2 − [(1− r)(1− θr)]2,

p00 = [(1− r)(1− θr)]2.

For an arbitrary number of markers, hidden Markov models were used by Lange et al.
(1995) to calculate the probability of any retention pattern.

When the retention probabilities are allowed to vary for different fragments, the number
of parameters involved increases quadratically with the number of markers examined.
Although a number of computational methods can be used for such problems (see Boehnke
et al., 1991; Leach and O’Connell, 1995), this raises a serious optimization problem. If
the retention rate is assumed to be constant, the calculation can be simplified. Jones (1997)
found that adopting simple models generally does not affect the ability to recover the true
locus order, but affects the estimation of distances among the loci.

Bayesian methods have also been developed for RH mapping by Lange and Boehnke
(1992) and Guerra et al. (1992). Tibshirani et al. (1999) proposed to maximize a pseudo-
likelihood based on information from all marker pairs and then to use multidimensional
scaling to provide starting positions for the markers. Lange (1997) has an excellent chapter
on RH mapping, and also recommended is the review by Jones (2000). Other methods
include Agarwala et al. (2000); Ben-Dor et al. (2000); and Ivansson and Lagergren (2004).
Hitte et al. (2003) compared the performance of two methods for RH map constructions.

There are three human radiation hybrid panels available: Genebridge4 (93 hybrids),
Stanford G3 (83 hybrids), and Stanford TNG4 (90 hybrids). These panels differ in
radiation dose and retention probabilities. RH panels have also been made for mouse,
rat, cow, pig, zebrafish, dog, cat, baboon, and horse. More detailed information can be
found at http://compgen.rutgers.edu/rhmap/. An example of the RH maps
are given in Figure 1.5.

1.5 OTHER PHYSICAL MAPPING APPROACHES

In directed mapping (see Palazzolo et al., 1991; Mizukami et al., 1993), random seed
clones are selected first, and contigs are extended by anchors generated from contig
ends. Then an unmapped clone is selected, and STSs from its ends are constructed
and used to find the set of overlapping clones, usually by a PCR assay. The process
continues until all clones have been either selected or identified as overlapping some
selected clones. Nelson and Speed (1994b) found that a project using a directed strategy
makes slower progress in the beginning, but closes the gaps much faster in later
stages.

A double end-sequencing strategy combines sequencing and mapping by sequencing
both ends of subclones and inferring clone overlaps from end-sequence comparisons; see
Chen et al. (1993) and Roach (1995). A double end-sequencing strategy combined with
directed finishing provides an efficient approach to sequencing a large piece of DNA (Yeh,
1999).
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High-resolution mapping using FISH uses two or more fluorescent probes to hybridize
to chromosomes at a particular stage in the cell cycle. The distance between the fluorescent
dots in each cell is measured. The data from FISH experiments consist of a series of
distance measurements between two or more probes. Such mapping data are now being
linked to more traditional physical mapping data; see Kirsch et al. (2000).

1.6 GENE MAPS

Because of the possibilities of having two or more noncontiguous DNA fragments in a
single clone, in 1994 the International Radiation Hybrid Mapping Consortium was formed
to construct a human gene map in which cDNA-based STS markers from 3′-untranslated
regions of cDNAs were physically mapped and then integrated with the genetic map of
polymorphic microsatellite markers. The consortium initially reported a map with about
16 000 genes by Schuler et al. (1996); a later map constructed by Deloukas et al. (1998)
contains 30 181 gene-based markers. The resulting map density approached the target of
one marker per 100 kb set as the objective for physical mapping at the outset of the
human genome project. The GeneMap ’98 or Human Transcript Map STSs are derived
from transcribed sequences. Finally, we would like to mention the Integrated Molecular
Analysis of Genomes and their Expression (IMAGE) Consortium, ‘the world’s largest
public collection of genes’.
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Ludwig, W. (1934). Über numerische Beziehungen der Crossover-Werte untereinander. Zeitschrift
für Induktive Abstammungs- und Vererbungslehre 67, 58–95.

Luo, Z.W., Zhang, Z., Leach, L., Zhang, R.M., Bradshaw, J.E. and Kearsey, M.J. (2006).
Constructing genetic linkage maps under a tetrasomic model. Genetics 172, 2635–2645.

Marinov, M., Matise, T.C., Lathrop, G.M. and Weeks, D.E. (1999). A comparison of two algorithms,
MultiMap and gene mapping system, for automated construction of genetic linkage maps. Genetic
Epidemiology 17, S649–S654.

Mather, K. (1933). The relationship between chiasmata and crossing-over in diploid and triploid
Drosophila melanogaster . Journal of Genetics 27, 243–259.

Mather, K. (1935). Reductional and equational separation of the chromosomes in bivalents and
multivalents. Journal of Genetics 30, 53–78.

Matise, T.C., Perlin, M. and Chakravarti, A. (1994). Automated construction of genetic linkage
maps using an expert system (MultiMap): a human genome map. Nature Genetics 6, 384–390.



CHROMOSOME MAPS 37

McPeek, M.S. and Speed, T.P. (1995). Modeling interference in genetic recombination. Genetics
139, 1031–1044.

Mendel, G. (1866). Versuche über Pflanzen-Hybriden. Verhandlungen des Naturforschenden
Vereines in Brünn 4, 3–47.
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The chapter reviews the role of statistical significance estimates in biological sequence comparison,
focusing on local similarity searches. A brief history of the concept of ‘homology’ is presented,
and the relationship between ‘statistical significance’ and ‘biological significance’, is discussed,
addressing the question: ‘What biological inferences can be drawn from statistically significant
sequence similarity?’ Algorithms and scoring matrices used to quantify local sequence similarity
are summarized, and the statistical basis for the use of the extreme-value distribution to describe
local similarity scores, both without and with gaps, is presented in outline. Particular attention is
given to λ and K , the two parameters of the extreme-value distribution used by Karlin and Altschul,
and to the use of bit-scores, and other scale-independent measures of similarity. Strategies that
have been used to estimate the significance of local sequence similarity scores are compared using
several distant evolutionary relationships. The reliability of statistical estimates for local sequence
similarity scores is discussed in detail; it is shown that, with the exception of highly biased protein
sequences and sequences with low-complexity regions, real, unrelated protein sequences behave
very similarly to sequences generated randomly, so that the assumptions underlying the statistical
models are widely applicable and statistical significance estimates are generally reliable.

2.1 INTRODUCTION

The availability of comprehensive sequence databases, rapid sequence comparison
methods, and accurate statistical estimates for sequence similarity has fundamentally
changed the practice of biochemistry and molecular biology. With the possible excep-
tions of Escherichia coli and Saccharomyces, the vast majority of the genes in newly
sequenced genomes are characterized by sequence similarity searching. BLAST, FASTA,
and Smith–Waterman similarity searches provide the most informative and reliable
method for inferring the biological function of an anonymous gene (or the protein that it
encodes). Typically, 60–80 % of eubacterial (and yeast) genes share statistically significant
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sequence similarity with sequences from another organism. Significant sequence similarity
can be used to infer common ancestors and similar three-dimensional structures, and is
routinely used to assign functions in metabolic pathways. Even for the first archebacterial
genome sequenced (Methanococcus jannaschii; Bult et al., 1996), similarity-based func-
tional gene assignments could be made for about 50 % of the genes (Andrade et al., 1997)
and subsequent sequence analyses (Koonin, 1997) suggested functions for another 20 %
of the genes.

Unfortunately, some investigators are uncomfortable inferring the relationship between
two sequences from a probability or expectation value; they prefer to think in terms of
percent identity (sometimes misstated as percent homology). When current versions of
the BLAST and FASTA similarity searching programs are used, this concern is rarely
justified. It is very unusual for a statistically significant sequence similarity not to reflect
common ancestry, and thus common structure, for the two sequences.

This chapter will provide an overview of the role of statistical significance estimates in
biological sequence comparison, focusing on local similarity searches. We will begin by
discussing the relationship between ‘statistical significance’ and ‘biological significance’,
addressing the question: ‘What biological inferences can be drawn from statistically
significant sequence similarity?’ Next, we will survey strategies that have been used
to estimate the significance of local sequence similarity scores. Finally, we will discuss
the reliability of statistical estimates for local sequence similarity scores.

2.2 STATISTICAL SIGNIFICANCE AND BIOLOGICAL SIGNIFICANCE

BLAST, FASTA, and other sequence similarity searching programs are designed to
identify distantly related – homologous – sequences based on sequence similarity. When
we say that two sequences are homologous, we are stating our belief that the two sequences
diverged from a common ancestor in the past. A remarkable result of microbial genome
sequencing projects has been that a large fraction of proteins, typically 50–80 % of each
newly sequenced genome, share statistically significant similarity with proteins in other
organisms that diverged hundreds to thousands of millions of years ago. Thus, it is
common to observe very strong sequence similarity between prokaryotic and eukaryotic
proteins that diverged more than 2 billion years ago.

The inference of homology, at least as the term is commonly used in sequence analysis,
implies that the homologous proteins have similar structures. Indeed, structural similarity
is the gold standard for homology. Almost without exception, if two sequences share
statistically significant sequence similarity, they will share significant structural similarity.
However, the converse is not true; there are many examples of similar structures that do
not share significant sequence similarity (though perhaps not as many examples as are
presented in the literature).

The concept of homology was given wide exposure and common usage by Richard
Owen, the first curator of the British Museum. Owen defined a homolog as simply ‘the
same organ in different animals’ (Owen, 1843). He further divided homology into two
types: special and serial. Special homology is essentially the definition of homology we
use today, ‘the same organ in different animals’. In contrast, serial homology specifically
refers to similarity between structures in different body segments, such as the legs of a
millipede. Darwin’s theory of evolution by natural selection conferred upon homology
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the specialized meaning of structures or organs that share a common ancestor. Although
he regarded Darwin’s theory as little more than speculation, Owen did admit that special
homology was the result of common ancestry (Owen, 1866).

Implicit in all definitions of anatomical homology is some kind of recognizable
similarity, e.g. similarity of form or ontogeny. The classic example of anatomical
homology is the similarity of forelimbs in the higher vertebrates. Whether adapted for
grasping, running, swimming, or flying, the same basic skeletal pattern can be readily
observed. Although forelimbs are detectably similar in their adult forms, some homologous
structures are only similar in embryonic stages.

Closely related concepts describe biological similarity that is not the result of a common
evolutionary ancestry. Originally, Owen defined analogy as similarity of function, without
regard to structure (Owen, 1843), and that definition was repeated by Neurath et al. (1967).
The current definition of analogy adds the qualification that the similarity is not due to
homology, that is, the similarity is primarily due to chance and is typically superficial
(Kent, 1992). The horns of cows and rhinoceroses, and the limbs of insects and vertebrates
are analogous.

Convergence is often invoked as a possible explanation of biological similarity,
particularly when discussing protein sequence motifs. Properly understood, convergence
refers to the process of evolution: two distantly related species developing a similar trait
that was not present in their common ancestor. If convergence is observed over numerous
stages of the evolution of two separate groups, it is termed parallel evolution. Examples of
similarity from convergence include the body plans of sharks, dolphins, and ichthyosaurs.
As each organism adapted to existence in the water, they developed a similar body plan
by convergent evolution.

2.2.1 ‘Molecular’ Homology

In the 1950s and 1960s, as protein sequences and three-dimensional structures were deter-
mined, researchers began to recognize surprising similarity between protein molecules.
Though rigorous methods of understanding and detecting protein similarity were years
away, the term ‘homology’ was quickly applied to similarities observed among the trypsin-
like proteases and the globins, implying that members of protein families shared their
remarkable similarity because of divergence from a common ancestor.

Just as the term homology has been misused and misunderstood among anatomists,
among biochemists the usage of homology as a synonym for similarity has unfortunately
remained common. One often reads of ‘low homology’ or even a quantified ‘percent
homology’ in papers reporting new sequences. Since homology is qualitative (having a
common ancestor), it cannot be quantified as similarity can. Any two sequences have
some measurable similarity, but a statement of homology implies that the similarity has
some special meaning, specifically common ancestry.

2.2.2 Examples of Similarity in Proteins

Modern biochemical studies have revealed numerous examples of homology and analogy.
In general, it is widely accepted that the three-dimensional structures of homologous
proteins are more highly conserved than their sequences. Practically speaking, this means
that homologous proteins with very low sequence similarity can and do have very similar
structures. It is also believed that orthologous proteins – sequences that differ as a
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result of speciation events, in contrast to paralogous sequences, which result from gene
duplication – share the same cellular function, and that new biological functions have
arisen through the generation of paralogs by gene duplication.

Although mentioned frequently, convergent evolution as an explanation of protein simi-
larity is not well defined. To avoid confusion, Doolittle (1994) proposed three categories
of convergent evolution in proteins: mechanistic convergence, structural convergence, and
functional convergence. The actual mechanisms that produce convergence are subjects of
ongoing research (Sanderson and Hufford, 1996). Here we will qualify convergence as
similarity that arises by some kind of common selection. We will reserve the term analogy
for similarity by chance, when no common selection is apparent.

Mechanistic convergence refers to similar active sites and residues in otherwise
unrelated proteins. The classic example given is the mechanistic similarity between
the trypsins and subtilisins. Although these proteins are entirely structurally dissimilar
and thus almost certainly unrelated, they have geometrically and chemically equivalent
catalytic triads. In mechanistic convergence, one can conclude that the need to accomplish
a particular biochemical reaction is the selection producing the convergence. From
principles of chemistry, it is reasonable to conclude that there are a limited number of
enzymatic mechanisms available to accomplish particular reactions; thus, the occurrence
of proteins with similar catalytic sites but distinct evolutionary histories is not surprising.

Structural convergence refers to structural similarity that is not the result of common
ancestry. The adaptive selection applied to the structure is not the protein’s cellular
or biochemical function as in mechanistic convergence, but rather the thermodynamic
stability of the particular fold. Doolittle mentions the ubiquitous TIM barrels (named
for their well-known example, triosephosphate isomerase) as examples of structural
convergence. The structural similarity in convergent TIM barrels is typically both
topological and geometric; that is, both the ordering of the secondary structural elements in
the peptide chain and the atomic positions in space are similar. A second type of structural
convergence is restricted to geometry only, proteins that have a similar three-dimensional
arrangement of secondary structural elements but a different ordering of those elements
in the peptide. Examples of geometric structural convergence include the pleckstrin
homology domain (PHd) and verotoxin (Orengo et al., 1995), and the N-terminal β-
barrels of E. coli transcription termination factor rho and the F1 ATPase subunits. In each
case, the arrangement of atoms in space is very similar, but the tracing of the peptide
chain through those atoms is different. In the case of the rho/F1 similarity, the rho barrel
is actually traced in reverse order with respect to the F1 barrel (Allison et al., 1998).

A third category of protein convergence defined by Doolittle is functional convergence.
Multiple examples of independent origins of the same or similar enzymatic activities are
known. For example, Rawlings and Barrett (1993) used a sequence analysis and manual
structural evaluation to assign peptidases to 64 different ‘clans’, each with an independent
evolutionary origin. Although Doolittle calls this similarity ‘functional convergence’, no
adaptive advantage or selection pressure is known or given for why so many different
kinds of peptidases would exist. Analogy, or similarity by chance, seems a better descrip-
tion for this type of gross functional similarity.

2.2.3 Inferences from Protein Homology

The inference of protein homology from similarity is routinely used to assign biochemical
and cellular functions of newly sequenced proteins when a protein of known function is
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available for comparison. This is of critical importance for initial analysis of genomic
sequences. For example, the vast majority of function assignments of the open reading
frames (ORFs) of the M. jannaschii genome were made based on protein homologs
detected by sequence similarity (Bult et al., 1996). By properly using computational tools
for sequence comparison, inferring homology from sequence similarity is the single most
powerful tool we have today for understanding the function and origin of a protein without
actually performing biochemical experiments.

Since protein structure is conserved in divergent evolution, identifying homologous
proteins of known structure can give a general insight into the fold of the protein of
interest as well as a detailed molecular model if the sequence similarity is high enough.
Although a remarkable amount of information about the function of a protein or protein
complex can be gained from traditional biochemical and genetic methods, nothing brings
these data into such clear focus as an atomic-resolution protein structure. Unfortunately,
solving a protein structure by nuclear magnetic resonance or crystallographic methods
can be very time-consuming, much more so than determining the sequence. Deriving
structural and mechanistic information from closely related proteins of known structure
will remain an attractive means of understanding most proteins.

2.3 ESTIMATING STATISTICAL SIGNIFICANCE FOR LOCAL
SIMILARITY SEARCHES

The inference of homology from statistically significant sequence similarity is an applica-
tion of Occam’s razor: given two competing hypotheses – first, that a particular sequence
ordering arose twice independently by chance; and second, that the similarity reflects
divergence from a common ancestor – it seems simpler to conclude that a particular struc-
ture arose only once in evolutionary history. Thus, in biological sequence analysis, we
infer homology from statistically significant sequence similarity. The inference depends
on two parts: our ability to measure sequence similarity; and accurate estimates for the
statistical significance of the similarity measure to reduce the likelihood that the similarity
could be expected by chance.

2.3.1 Measuring Sequence Similarity

2.3.1.1 Sequence comparison algorithms

Effective algorithms for comparing protein and DNA sequences have been available for
more than 30 years, since the publication of a global sequence comparison algorithm by
Needleman and Wunsch (1970). Global sequence comparison algorithms seek to align
every residue in one sequence with every residue in a second, in contrast to the more
commonly used local sequence alignment algorithms, which seek only the strongest region
of similarity between two sequences. Global alignment algorithms are used for aligning
families of sequences with similar lengths in preparation for phylogenetic analysis; global
alignment scores can be transformed to the distance measures used for building evolu-
tionary trees. Global similarity scores are rarely used to infer homology, however, because
the distribution of global similarity scores is not well understood and thus it is difficult to
assign a statistical significance to a global similarity score. Moreover, many proteins are
made up of domains that are homologous only over a portion of the protein sequence.
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The most widely used programs for searching protein and DNA sequence databases,
including BLAST, FASTA, and implementations of the Smith–Waterman algorithm,
measure local sequence similarity. First described by Smith and Waterman (1981), local
sequence alignment algorithms seek to align the most similar regions of two sequences.
Local alignment algorithms have two dramatic advantages over global alignment methods
when searching sequence databases for statistically significant matches: first, the statistics
of local similarity scores are well understood; and second, local alignments allow one to
identify conserved domains in proteins, which may not extend over the entire sequence.
BLAST and FASTA use heuristic methods that attempt to approximate the optimal local
similarity shared by two sequences. BLAST is particularly efficient in identifying distantly
related sequences because it spends very little time calculating similarity scores for
sequences that are unlikely to share significant similarity. FASTA is considerably slower
than BLAST, because it calculates an approximate similarity score for every sequence
in the database. FASTA uses these approximate scores to estimate the parameters of the
extreme-value distribution, λ and K , which describes the expected distribution of local
similarity scores between random sequences.

2.3.1.2 Similarity scores for sequence comparison

All algorithms that calculate sequence similarity, global or local, optimal or heuristic,
seek to maximize a measure of similarity. The earliest (and unfortunately most commonly
cited even today) similarity measure was based on percent identical residues (Watson and
Kendrew, 1961). Initially, the low percent identity of the myoglobin and hemoglobin
sequences (typically less than 30 %) was a surprising feature of two proteins with such
similar structures. Later, researchers began to develop means to describe the similarity
of different amino acid residues; the first such efforts were based on the redundancy of
the genetic code, e.g. the minimal number of nucleotide substitutions required to convert
one amino acid in the protein sequence to another (Fitch, 1966). In the 1970s, Margaret
Dayhoff developed the notion of an accepted point mutation or PAM (Dayhoff et al.,
1978). The PAM concept centered around the natural selection against certain amino
acid substitutions (thus an accepted point mutation) rather than simply the probability
of mutations in the underlying DNA sequence. More recently the BLOSUM series
of matrices, which tabulate the frequency with which different substitutions occur in
conserved blocks of protein sequences, has been shown to be very effective in identifying
distant relationships (Henikoff and Henikoff, 1992).

Dayhoff’s PAM matrices are based on a well-defined evolutionary model for protein
sequences (Dayhoff et al., 1978). Given an estimate for the probability that any amino
acid will change to each of the other amino acids, or remain the same, after 1 % change
(1 accepted mutation per 100 residues), one can estimate the probability that any amino
acid will change into each of the others after 2 %, 10 %,. . ., 40 %,. . ., 200 % change
by multiplying the transition probability matrix by itself 2, 10,. . ., 40, 200 times. After
incorporating the probability pi of seeing a particular residue, the resulting matrix gives the
probability qi,j of residue i aligning with residue j after a specified amount of evolutionary
change. These probabilities are converted to log-odds scores by normalizing the alignment
probabilities by the probability of seeing two residues align by chance, pipj , yielding a
scoring matrix si,j = log(qi,j /pipj ).
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(a) (b)

A R N D E I L

A 8

R −9 12

N −4 −7 11

D −4 −13 3 11

E −3 −11 −2 4 11

I −6 −7 −7 −10 −7 12

L −8 −11 −9 −16 −12 −1 10

A R N D E I L

A 2

R −2 6

N 0 0 2

D 0 −1 2 4

E 0 −1 1 3 4

I −1 −2 −2 −2 −2 5

L −2 −3 −3 −4 −3 2 6

Figure 2.1 Similarity scoring matrices. (a) PAM40 and (b) PAM250 similarity scoring matrices
for six amino acid residues. The substitution matrices are symmetric. Diagonal elements are the
scores given to amino acid identities; off-diagonal elements are the scores used for amino acid
substitutions. Both the PAM40 and PAM250 matrices are scaled to 0.33 bits per unit raw score.
Thus, if log2(qij )/(pipj ) = 2, the entry in the matrix would be 6.

Figure 2.1 shows parts of two PAM scoring matrices, PAM40, which incorporates tran-
sition probabilities between residues in sequences that have had 40 accepted mutations per
100 residues, and PAM250, which is ‘targeted’ for sequences that have had 250 accepted
mutations per 100 residues.1 The PAM40 and PAM250 matrices differ dramatically in the
relative scores of identities and substitutions; replacements that are considered unlikely at
PAM40, e.g. R to N with sN,R = −7, are considered neutral, sN,R = 0, at PAM250. Like-
wise, replacements that are expected less frequently than chance (sI,L = −1) after 40 %
change are more likely than chance substitutions (sI,L = 2) after 250 % change. Although
the Dayhoff PAM matrices are based on the relatively small number of transitions avail-
able in 1978, a modern equivalent is available (Jones et al., 1992), which performs well
when appropriate gap penalties are used (Pearson, 1995).

An alternative strategy for calculating scoring matrices was developed by Henikoff and
Henikoff (1992). Rather than extrapolate transition probabilities for a very large amount of
change from the frequencies obtained after a very small amount of change, they sought
to measure transition probabilities directly, by building a very large set of conserved
blocks of aligned amino acid residues and then tabulating the amino acid substitution
frequencies by examining columns in the aligned blocks with different degrees of identity
(Henikoff and Henikoff, 1992). These calculations were used to generate the BLOSUM
series of scoring matrices; BLOSUM50, the default scoring matrix used by the FASTA
family of sequence comparison programs, reports substitution frequencies for residues in
conserved blocks of sequences that show 50 % identity or less; BLOSUM62, which is the
default for the BLAST programs, is derived from blocks that are up to 62 % identical, and
BLOSUM80 reflects a very high degree of sequence conservation by including sequences
up to 80 % identical. The BLOSUM matrices are now more widely used than either the
original or modern versions of the PAM matrices because they appear to perform better
with many alignment algorithms (Henikoff and Henikoff, 1992) and over a broad range
of gap penalties (Pearson, 1995).

1 Because different amino acids have different mutation probabilities, and an amino acid can mutate to a
different residue, which can then mutate again back to the original amino acid, sequences that have changed
by 250 % are expected to remain about 20 % identical, on average (Dayhoff et al., 1978).
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Both the PAM and BLOSUM series of matrices provide similarity scores that are
targeted for different levels of sequence identity (Altschul, 1991; Henikoff and Henikoff,
1992); PAM matrices range from low values PAM10–PAM40 for high identity to
PAM200–PAM250 for low (25–20 %) identity. BLOSUM matrices range from high
(BLOSUM80) values for high identity to low values BLOSUM50–45 for distant
relationships. However, despite this apparent similarity, the meaning of a ‘shallow’
PAM20 matrix is quite different from that of very conservative BLOSUM80 substitution
values. The PAM20 provides scores for sequences that have changed by only 20 %; the
amount expected for a comparison of mouse and human proteins, for example. In contrast,
BLOSUM80 is targeted towards the most highly conserved regions in proteins, blocks
that remain up to 80 % identical within two sequences that may share less than 30 %
identity overall. Thus, low PAM matrices, but not BLOSUM80, are appropriate for short
divergence times.

Although the PAM and BLOSUM matrices were built to target specific models of evolu-
tion and conservation, Altschul has shown (Altschul, 1991; States et al., 1991) that any
scoring matrix can be written in the form si,j = log(qi,j /pipj ) reflecting an implied target
substitution frequency, which can be calculated using the formula λsi,j = log(qi,j /pipj ).
In particular, the BLASTN2.0 program for DNA substitutions, which uses +1 for a
match and −3 for a mismatch, has λ = 1.374. Rearranging the equation above, the target
frequency for any nucleotide match, assuming pA,C,G,T = 0.25, is qA,A = qC,C = qG,G =
qT,T = pApAeλ(+1) = 0.2469 and the overall target identity is

∑
b=A,C,G,T pb,b = 0.988.

Thus, BLASTN2.0 is optimally efficient at identifying homologous sequences that are
98.8 % identical, and considerably less efficient at identifying sequences that share 80 %
identity or less. In contrast, the DNA match/mismatch values for BLAST1.4 and FASTA
are +5/−4, which, with λ = 0.1915, are targeted for alignments averaging 65 % identity.

2.3.2 Statistical Significance of Local Similarity Scores

A major breakthrough in biological sequence comparison occurred when Karlin and
Altschul (1990) published their statistical analysis of local sequence similarity scores
without gaps, and the BLAST program incorporated those statistics (Altschul et al., 1990).
Although a method for evaluating the statistical significance of sequence similarity scores,
the RDF program, was included with the FASTP program (Lipman and Pearson, 1985),
along with the advice that sequence similarity scores that were 6 standard deviations
above the mean of the distribution of shuffled sequence scores (z > 6) were ‘probably’
significant, there was no statistical basis for this observation. Work by Arratia et al. (1986)
and by Karlin and Altschul (1990) demonstrated that local similarity scores, at least for
alignments without gaps, were accurately described by the extreme-value distribution,
which can be written as

P(S ≥ x) = 1− exp(−Kmne−λx) (2.1)

where λ and K can be calculated from the similarity scoring matrix si,j and the amino
acid compositions of the aligned sequences pi , pj , and m and n are the lengths of the
two sequences.

Accurate similarity statistics allow us to discriminate reliably between statistically
significant similarities, which reflect homology, and similarities that could have arisen
by chance, analogous sequences. The availability of Karlin–Altschul statistics in the
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BLAST program (Altschul et al., 1990) separated ‘first-generation’ score-only programs
from ‘second-generation’ methods. Without accurate statistics, it is impossible to do large-
scale sequence interpretation.

2.3.2.1 Statistics of alignments without gaps

The first statistical models for local and global alignment scores applied to runs of
similar amino acid or nucleotide residues, which are equivalent to alignments without
gaps. Arratia et al. (1986; 1990); Karlin and Altschul (1990); and Karlin et al. (1991)
demonstrated that local similarity scores are expected to follow the extreme-value
distribution. Waterman (1995) presents an intuitive argument when, referring to Erdös and
Rényi, he points out that the expected number of runs of heads of length l in n coin tosses
is E(l) ∼= npl , where p is the probability of heads (Figure 2.2). This relationship follows
from the logic that the expected number of heads is the product of the probability of heads
at each toss, times the number of tosses. If the longest run Rl is expected once, 1 = npRl
and thus Rl = log1/p(n). The longest run of heads coin-toss example is equivalent to
finding the highest scoring region (e.g. a hydrophobic patch) in a single protein sequence
using a scoring matrix that assigns a positive value to some of the residues, and −∞ to all
of the others. The probability of a positive score, which corresponds to the probability of
heads in the coin-toss example, is

∑
pi for each of the residues pi that obtain a positive

score si .
The simple example of head runs, or scores with −∞ mismatch penalties, shows that

local similarity scores for single sequences are expected to increase with the logarithm
of the sequence length n. In sequence comparison, we consider possible alignments of

(a)

H I K T Q S N A I  L

H
E
S
R
A
I
Q
V

(b)

Figure 2.2 Sequence comparison as coin tosses. (a) Results from tossing a coin 14 times; black
circles indicate heads. The probability of 5 heads in a row is p(5) = 1/25 = 1/32, but since there
were 10 places that one could have obtained 5 heads in a row, the expected number of times that 5
heads occurs by chance is E(5H) = 10× 1/32 = 0.31. (b) Comparison of two protein sequences,
with identities indicated as black circles. Assuming the residues were drawn from a population
of 20, each with the same probability, the probability of an identical match is p = 0.05. In this
example, there are m = 10× n = 8 boxes, so E() = mnp = 80× 0.05 = 4 matches are expected
by chance. The probability of two successive matches is p2 = 1/202 so a run of two matches is
expected about nmp2 = 8× 10× 1/202 = 0.2 times by chance.
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two sequences, a1..m and b1..n, but the probability calculation is quite similar. Rather than
calculate the probability of obtaining the k heads, where pk = ppk−1, we consider the
case of matching at m positions, or equivalently giving a head score if ai = bj . If the
sequences are placed as in Figure 2.2(b), the head-run problem corresponds to the longest
run of matches along any of the diagonals. If the letters (residues) in the two sequences
have equal probabilities p, then the probability of a match of residue ai with bj is p
and the probability of a match of length l from ai, bj to ai+l−1, bj+l−1 is again pl . In
this case, however, there are m− l + 1× n− l + 1 places where that match could start,
so E(l) ∼= mnpl . Thus, the expected length of the longest match between two random
sequences of length m and n when the match score is positive and the mismatch score is
−∞ is Mmn = log1/p(mn) or 2 log1/p(n) when m = n (Waterman, 1995). The shift from
log1/p(n) for one sequence to log1/p(n

2) for two sequences of length n, reflects the larger
number of positions where a run of length Ml with probability P(Ml) = pMl could start.
As in the single-sequence case, we can transform the problem from the probability of
the longest match run to the probability of score Sl ≥ x by considering the probability
P(S ≥ x) when a pair of residues aibj is matched with positive score si,j and all negative
scores are −∞. For local pairwise alignment scores with a mismatch score of −∞ and no
gaps, the expected number of runs of score S ≥ x has the general form: E(S ≥ x) ∝ mnpx ,
or equivalently E(S ≥ x) ∝ mnex ln p or mne−λx where λ = − ln p.

Karlin and Altschul provided a natural extension of the problem of head runs, or match
runs, or positive similarity scores bounded by−∞mismatch scores, to the more general case
of local sequence patches or local similarity scores for nonintersecting alignments without
gaps. To ensure the scores are local, the requirement that E(si,j ) =

∑
i,j pipj si,j < 0 must

first be met. If so, the expected number of alignments with score S is

E(S ≥ x) = Kmne−λx. (2.2)

Karlin and Altschul (1990) derived analytical expressions for K and λ. K < 1 is a
proportionality constant that corrects the mn ‘space factor’ for the fact that there are
not really mn independent places that could have produced score S ≥ x. Compared to λ,
K has a modest effect on the statistical significance of a similarity score.

The λ parameter provides the scale factor by which a score must be multiplied to
determine its probability. For ungapped alignments, λ is the unique positive solution to
the equation ∑

i,j

pipje
λsi,j = 1. (2.3)

λ thus depends both on the scoring matrix (esi,j ) and the residue compositions of the two
sequences (pipj ). In some sense, λ can be interpreted as a factor that converts pairwise
match scores to probabilities, so that e−λx is similar to pl in the coin-tossing example.
Thus, just as in the coin-tossing case, the expectation of a run of heads (or an alignment
run that produces score S) is the product of a space-factor term, Kmn, and a probability
term e−λS .

The need for a scale factor to convert raw similarity scores into probabilities follows
intuitively from the observation that multiplying or dividing every value in a similarity
scoring matrix by a constant has no effect on the local alignments that would be produced
by that matrix, or on the relative distribution of similarity scores in a library search – the
highest scoring sequence will still be the highest, second highest second, etc. Thus it is
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impossible, without some previous knowledge of the scoring matrix used and the particular
scaling of the scoring matrix, to evaluate the statistical significance of a raw similarity
score. However, by using a scaled similarity score λSraw, one can readily compare align-
ments done with any scoring matrix. BLAST2.0 (Altschul et al., 1997) and the current
FASTA3 comparison program (Pearson, 1999) report the scaled score in terms of a bit-
score that incorporates the space correction factor K : Sbit = (λSraw − ln K)/ ln 2. Thus,
substituting in equation (2.2),

E(Sbit) = mn2−Sbit = mn

2Sbit
(2.4)

Equations (2.2) and (2.4) describe the number of times a score greater than or equal
to Sbit would be expected by chance when two random sequences are compared.2 This
expectation can range from a very small value for very high scores (e.g. Sbit = 1000), to
a value that approaches mn when S = 0. In a comparison of two average length protein
sequences n = m = 400, Sbit = 10 would be expected E(Sbit ≥ 10) = mn2−Sbit = 156
times. To estimate the probability P(Sbit ≥ 10), which must range from 0 to 1, of obtaining
at least one score S ≥ x, we use the Poisson approximation.

The Poisson formula describes the probability of an event occuring a specified number
of times, based on the average number of times µ it is expected to occur.3 The
Poisson probability of seeing n events when an event is expected µ times on average
is P(n) = e−µµn/n!. In general, we are interested in the probability of seeing the event
at least n times, and in the case of sequence comparisons, we ask for the probability
of seeing a high score one or more times (n ≥ 1). In this case, one can calculate the
probability of not seeing the event zero times: P(n ≥ 1) = 1− P(0), so P(S ≥ x) =
1− P(n = 0) = 1− e−µµ0/0!. Since µ = E(S ≥ x) = Kmne−λx and µ0 = 0! = 1, the
probability of seeing a raw similarity score S ≥ x is

P(S ≥ x) = 1− exp(−µ) = 1− exp(−Kmne−λx),

as seen earlier in equation (2.1).
Equation (2.1) describes the probability of obtaining a similarity score S ≥ x in a

single pairwise comparison of a query sequence of length m against a library sequence of
length n. This equation has the same form as the extreme-value distribution or Gumbel
distribution, which is often presented as

P(S ≥ x) = 1− exp(−e−(x−a)/b), (2.5)

with a providing the ‘location’ of the mode, and b determining the scale, or width, of
the distribution. For local similarity scores without gaps, b = 1/λ and a = ln Kmn/λ.
The mean of the extreme-value distribution is a − b�′(1), where �′(1) = −0.577 216
is the first derivative of the gamma function �(n = 1) with respect to n. The variance
is b2π2/6 (Evans et al., 1993). Thus, one can express the probability that an alignment

2 More accurately, the statistical model assumes that the two sequences are made up of residues that are
independent and identically distributed (i.i.d.). The identical distribution assumption can be violated by low-
complexity regions in proteins and DNA or by strongly biased amino acid or nucleotide composition.

3 λ is generally used to denote the characteristic parameter of a Poisson distribution, but we use µ here to
avoid confusion with the λ scaling factor and to reinforce the fact that µ is the mean of the Poisson distribution.



STATISTICAL SIGNIFICANCE IN BIOLOGICAL SEQUENCE COMPARISON 51

obtains a score z standard deviations above the mean of the distribution of unrelated (or
random) sequence scores as

P(Z ≥ z) = 1− exp(−e−((π/
√

6)z−�′(1))). (2.6)

These equations describe the probability that two sequences would obtain a similarity
score by chance in a single comparison. However, in a sequence database search, the
highest-scoring alignments are identified after a query sequence has been compared with
each of the tens or hundreds of thousands of sequences in the database. Thus, in the context
of a database search afterD = 100 000–500 000 or more alignments have been scored, the
number of times a score is expected to occur, the expectation value, is considerably higher:

E(S ≥ x) = DP(S ≥ x). (2.7)

Thus, a similarity score 6 standard deviations above the mean (z = 6) has a proba-
bility P(Z ≥ 6) < 2.6× 10−4 in a single pairwise comparison. However, in 1985, with
3000 entries in the protein sequence database, E(Z ≥ 6) = 3000× 2.6× 10−4 = 0.77.
Therefore, a score 6 standard deviations above the mean should be seen by chance very
frequently, and the advice provided with the description of the FASTP program overesti-
mated statistical significance. Today, with protein sequence databases ranging in size from
100 000 to 500 000 sequences, a z = 6 score would be expected 25 times by chance when
searching a 100 000 sequence database (equations 2.6 and 2.7), and z ≥ 12.1 is required to
achieve statistical significance of E(100 000) ≤ 0.01. (For E(500 000) ≤ 0.01, z ≥ 13.4.)

2.3.2.2 Alignments with Gaps

The statistical analysis of local similarity scores summarized above was derived for
alignments without gaps. Although searches that report only the best local alignment
without gaps can perform very well, they do not perform as well as a Smith–Waterman
search with modern scoring matrices and appropriate gap penalties (Pearson, 1995). Thus,
there is considerable interest in the statistical parameters that describe the distribution of
local similarity scores with gaps.

The first implementation of Smith and Waterman’s (1981) algorithm that provided
statistical estimates for similarity scores was developed by Collins et al. (1988). Although
they did not use the extreme-value distribution, they recognized that the number of
sequences Sx obtaining a score of x ≥ x̄, where x̄ is the mean similarity score, decreases
exponentially. A line fit to log(Sx), the declining number of scores excluding the top
3 %, can be used to extrapolate the expectation of obtaining a high score. This strategy
works reasonably well because the number of sequences that obtain a score predicted
from the probability density function (PDF) of the extreme-value distribution (Figure 2.3)
has the form: PDF (S = x) = λKmne−λxe−Kmne−λx . The second exponential term does
not contribute significantly to the PDF when x > x̄, so for high scores, the regression
becomes log(PDF (S = x)) = log(λKmn)− λx. Collins et al. (1988) recognized that the
highest expected score by chance increased with the length of the query sequence, but
they did not incorporate a length correction into their expectation calculation. The lack
of a log nl library sequence length correction significantly reduces the sensitivity of the
search, as long unrelated sequences can have higher scores, by chance, than shorter related
sequences (Pearson, 1995; 1998).
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Figure 2.3 The extreme-value distribution. The observed distribution (squares) of similarity scores
from a comparison of the human glucose transporter sequence gtr1−human against each of the
∼84 000 sequences in SwissProt, and the expected (solid line) distribution of scores, based on the
extreme-value distribution, are shown. Similarity scores were calculated with the Smith–Waterman
algorithm, with the BLOSUM62 scoring matrix and a penalty of −12 for the first residue in a gap
and −1 for each additional residue. The y-axis shows the number of SwissProt sequences obtaining
the score shown on the x-axis. Three different scales for the similarity scores are shown: from top
to bottom, these are the scores in terms of standard deviations (σ ) above the mean (equation 2.6);
the scale in terms of λS − log(Kmn) (equation 2.1); and the bit score (equation 2.4).

Mott (1992) provided the first empirical evidence that the distribution of optimal local
similarity scores with gaps could be well approximated by an extreme-value distribution.
He considered an equation of the form F(y,m, n, c) = exp(−e−(y−A)/B) where A =
a0 + ca1 + ca2 log(mn), B = cb1 and c = 1/λungapped, defined as in equation (2.3). In
this case, the c = 1/λ parameter was calculated for sets of sequence pairs with identical
compositions. In addition to correcting for the scaling of the si,j scoring matrix, c
reflects the amino acid composition of the two sequences being compared. Unfortunately,
estimating λ or c using equation (2.3) is time-consuming. This approach may improve
searches when query sequences have a biased amino acid composition, but it is not
generally available in sequence comparison programs.

The most widely used estimates for λ and K for searches with gapped alignments
are those provided for in the BLAST2 and PSI-BLAST comparison programs (Altschul
et al., 1997). These values are based on maximum likelihood estimates of λ, K , and H
from simulations of random protein sequences of average composition (Altschul and Gish,
1996). H describes the relative entropy, or information content, of a scoring matrix and
can be thought of as the average score per aligned residue (Altschul and Gish, 1996). In
this case, the parameters of the extreme-value distribution are slightly different:

P(S ≥ x) = 1− exp(−Km′n′e−λx), (2.8)
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where for m, n, the query and library sequence lengths, m′ = m− log(Kmn)/H and
n′ = n− log(Kmn)/H . By correcting m and n for the expected length of an alignment
between two random sequences log(Kmn)/H , the search space term Km′n′ is estimated
more accurately (Altschul and Gish, 1996).

The FASTA package of programs estimates the extreme-value parameters from the
distribution of similarity scores calculated during the search (Pearson, 1996; 1998). This
approach is efficient when scores are available for every sequence in the database, as
is the case for a FASTA or Smith–Waterman search; no additional similarity scores
must be calculated and the statistical parameters reflect the true distribution of similarity
scores produced with the specific query sequence and the specific sequence database.
However, a method that estimates statistical parameters from the actual distribution of
similarity scores must avoid including scores from ‘related’ sequences in the estimation
sample. This is straightforward in the typical case where a query sequence is compared to
50 000–500 000 sequences in a comprehensive database and fewer than 1000 sequences
could be related in the worst case. However, these empirical statistical estimates cannot
be used when a search is done against a special-purpose database that may contain only
sequences from a single protein family. For this case, the FASTA programs provide an
option to calculate a similarity score from a shuffled version of each sequence in the
database; the distribution of these shuffled scores is then used for parameter estimation
(Pearson, 1999).

By default, the FASTA programs estimate the location and scale parameters of the
extreme-value distribution by fitting a line to the relationship between similarity score and
log(nl), the library sequence length, by calculating the mean and variance of similarity
scores in bins of length log(nl) of the library sequence (sequences in each bin differ
in length by ∼10 %: Figure 2.4). This line provides the location parameter, related to
log(Knl)/λ, and the residual variance (σ̂ 2) of the log(nl)-normalized similarity scores,

which can be used to calculate λ = π/
√

6σ̂ 2. Binning similarity scores by log(nl) provides
a simple strategy for excluding related (high-scoring) sequences from the estimation
process. log(nl) length bins are initially weighted by the inverse variance of their similarity
scores; length bins with very high scores have a high variance. After the initial log(nl)
regression is performed, bins that continue to have very high score variance are excluded
and the number of bins and scores excluded is reported. Typically, this process excludes
0–2 of 50 length bins with about 5 % of the library sequences. Once the log(nl) regression
line and σ̂ 2, the average residual variance, have been determined, the probability of a
single pairwise similarity score can be calculated using equation (2.6).

Alternatively, FASTA provides an option to estimate λ and K by maximum likelihood,
using equation (2.1). This estimation is similar to that of Mott (1992), but omits the
‘composition’ data c and estimates the λ parameter directly. To avoid the scores from
related sequences, the likelihood model implements a censored estimation strategy that
excludes the lowest and highest 2.5 % of the scores. This approach has the advantage
that both K and λ are estimated directly and that there is no assumption that related
sequences have well-defined lengths. (Families that are globally similar, e.g. globins and
cytochrome ‘c’s, have characteristic lengths, but homologous domains, e.g. the EF-hand
calcium binding domain, zinc-fingers, or protein kinase domains, may be in proteins with
very different lengths.)

The major difference between the FASTA programs and the BLAST programs (aside
from speed) is the strategy used for estimating statistical significance of similarity
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Figure 2.4 Empirical estimation of extreme-value parameters: sequence similarity scores plotted
as a function of library sequence length. All the similarity scores calculated in the comparison of
gtr1−human with an annotated subset of SwissProt (∼24 000 sequences) are summarized. Scores
from unrelated sequences are shown as averages (squares) with standard errors indicated; each score
from a related sequence is plotted (diamonds). The unrelated sequence scores are plotted linearly
against the left ordinate, the related scores are plotted on a logarithmic scale on the right ordinate.

scores. While BLAST pre-calculates λ and K from randomly shuffled sequences, FASTA
calculates the extreme-value parameters from the actual distribution of similarity scores
obtained in a search. Thus, FASTA must calculate at least an approximate similarity score
for every sequence in a database. BLAST is fast because it calculates scores only for
sequences that are likely to be homologous. While this strategy works well for protein
sequences, it is more problematic for translated-DNA : protein comparisons, where the
appropriate statistical model is more difficult to specify.

2.3.2.3 Pairwise Statistical Significance

The strategies outlined above can be used to estimate the statistical significance of a high
similarity score obtained during a database search. If the BLAST2.0 (Altschul et al., 1997)
λ and K parameters are used as calculated in Altschul and Gish (1996), the statistical
significance measurement reports the likelihood that a similarity score as good or better
would be obtained by two random sequences with ‘average’ amino acid composition, and
lengths similar to the lengths of the sequences that produced the score. However, if either
of the two sequences have amino acid compositions significantly different from ‘average’,
the statistical significance may be an over- or underestimate.

The empirical statistical estimates provided by programs in the FASTA package
(Pearson, 1996; 1998) report a slightly different value: the expectation that a sequence with
the length and composition of the query sequence would obtain a similarity score against
an unrelated sequence drawn at random from the sequence database that was searched.
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Again, if the query sequence has a slightly biased amino acid composition, e.g. because
it is a membrane-spanning protein with several hydrophobic regions, then while the
significance of the similarity with respect to ‘average’ composition proteins is accurate, the
more biologically important question, the significance of the similarity when compared to
unrelated membrane-spanning proteins, may be an overestimate. To address this problem
one could use Mott’s strategy to include the c = 1/λungapped composition/scaling parameter
in the maximum likelihood fit, with c calculated using equation (2.3) for every pairwise
comparison in the database. Although the composition calculation can be time-consuming,
this option is available in the FASTA3 package.

The significance of a specific pairwise similarity score, in the context of the residue
distributions in each of the two sequences, the query and library sequence, can also be
estimated using a Monte Carlo approach. The two sequences are compared, and then one
or both of the sequences will be shuffled hundreds of times to generate a sample of random
sequences with the same length and residue composition. Similarity scores are calculated
for alignments between the query sequence and each of the shuffled sequences. λ and
K parameters can then be calculated from this distribution of scores using maximum
likelihood, as is done by the PRSS program in the FASTA package (Pearson, 1996).
The FASTA programs offer two shuffling options: (a) a uniform shuffle, in which each
residue is randomly repositioned anywhere in the sequence; and (b) a window shuffle,
in which the sequence is broken into n/w windows (n is the length of the sequence
and w is the length of the window, typically 10–20 residues) and the sequence in each
window is randomly shuffled. For ‘average’ composition query sequences, both uniform
and window-shuffle estimates should be similar to those obtained from a database search.
However, for scores of alignments between sequences of biased composition, significance
estimates derived from the similarity scores of uniformly shuffled sequences should be
more conservative than estimates based on the distribution of unrelated sequences from a
comprehensive sequence database (Table 2.1). Window-shuffle estimates should be even
more conservative, particularly if the similarity reflects a local patch of biased amino acid
composition that would be homogenized by the uniform shuffling strategy.

Shuffling strategies rely on the assumption that the similarity scores of real unrelated
protein sequences behave like the similarity scores of randomly generated sequences.
While this is almost always true, some query sequences may have properties that are
present in unrelated sequences but not in shuffled sequences. An alternative strategy for
estimating λ and K from a comparison of two sequences has been proposed by Waterman
and Vingron (1994),4 based on a strategy they refer to as ‘Poisson de-clumping’. They
note that not only are the highest-scoring similarity scores from a sequence similarity
search extreme-value distributed, but the highest H(1), second highest H(2), H(3), . . . , H(n)
alignment scores from a single pairwise comparison can be used to estimate λ and K ,
as long as the alignments do not overlap or intersect. An algorithm for calculating
the n best nonintersecting local alignments between two sequences was described by
Waterman and Eggert (1987); a space-efficient version is available as the SIM algorithm
(Huang et al., 1990). This approach has the advantage that it does not require the use of
shuffled sequences, which may have different statistical properties than ‘natural’ protein
sequences in some cases, and it calculates λ and K for the pair of sequences, with their
specific lengths and residue compositions, rather than for an average distribution of library

4 p and γ in Waterman and Vingron (1994) correspond to e−λ and K , respectively, in equation (2.1).
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Table 2.1 Statistical significance estimates. Expectation values are shown for similarity scores
between human glucose transporter type 1 (gtr1−human); three members of the glucose
transporter family, quinate permease (qutd−emeni), maltose permease (cit1−ecoli), and
α-ketoglutarate permease (kgtp−ecoli); and a probable nonmember, a hypothetical yeast protein
(yb8g−yeast). The BLASTP2.0 search was done with the default scoring matrix (BLOSUM62)
and gap penalties −12 for the first residue in a gap (−11 gap-open) and −1 for each additional
residue (gap-extend). SSEARCH (Smith and Waterman, 1981; Pearson, 1996) searches used either
the default matrix (BLOSUM50, BL50) and gap penalties (−12/−2) or the same scoring matrix and
gap penalties as the BLASTP2.0 search (BL62). SSEARCH statistical estimates were calculated
using the default linear regression method (BL50, BL62) or the maximum likelihood method
(BL62∗). Both BLASTP2.0 and SSEARCH searches examined alignments between sequences with
low-complexity regions removed by the SEG program (Wootton, 1994). Expectation values are
reported in the context of a search of the SwissProt (Bairoch and Apweiler, 1996) database (∼84 000
entries). The λ scaling/composition-factor for each search is shown in the right column. Statistical
significance was also estimated by a Monte Carlo approach (PRSS) in which the second sequence
was shuffled 1000 times using either a uniform or ‘window’ (-w 20) shuffle. Expectations reported
by PRSS have been multiplied by 84 to reflect the expectation from a search of the 84 000 entry
SwissProt database.

qutd−emeni cit1−ecoli kgtp−ecoli yb8g−yeast λ

gtr1−human: moderate distant very weak unrelated

BLASTP2.0 2.0e-25 1e-05 0.077 2.0 0.2700
SSEARCH BL50 1.6e-28 6.1e-05 0.014 0.72 0.1544

raw-score 536 199 148 123 –
bit-score 127 48 40 35 –

% identity 27.1 22.1 24.1 22.1 –
SSEARCH BL62 4.7e-32 1.2e-4 1.3 3.1 0.2584

raw-score 356 120 75 72 –
bit-score 138 47 34 33 –

% identity 26.9 21.0 27.9 24.1 –
SSEARCH BL62∗ 2.8e-30 3.2e-4 2.3 5.2 0.2459

bit-score 356 46 33 32 –

PRSS BL50 7.2e-25 6.5e-03 0.0039 92 –
λ 0.1375 0.1237 0.1317 0.1263 –

window 20 3.9e-09 0.097 0.21 361 –
λ 0.0653 0.1064 0.1206 0.1110 –

BL62 6.6e-30 8.5e-4 0.36 49 –
λ 0.2405 0.2282 0.2343 0.2265 –

window 20 2.0e-25 9.8e-03 0.72 92 –
λ 0.2108 0.2011 0.2256 0.2172 –

sequences. However, the approach also assumes that, for some i, H(i) reflects the score
of an alignment that occurs by chance, rather than because of homology. This is true for
single-domain proteins that do not contain internal repeats, but it is not true for proteins
containing internal duplications. For example, a comparison of calmodulin with troponin
‘C’ would produce H(1), . . . , H(4) which reflect the homology of the four EF-hand calcium
binding domains in each sequence, and H(5), . . . , H(n), which could be used to estimate
λ and K . A protein with a dozen copies of a duplicated domain would have more than
100 local alignments with scores that reflect homology.
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2.3.2.4 Accuracy of λ and K

Reliable statistical estimates for similarity scores can dramatically improve the sensitivity
of a similarity search, because they provide an accurate quantitative model for the behavior
of scores from unrelated sequences. Thus, it is far more informative to state that a pair of
distantly related sequences has a similarity score that is expected by chance only once in
10 000 database searches (E() < 10−4) than it is to state that two sequences share 30 %
identity. Unfortunately, percent identity remains the most commonly published measure
of sequence similarity, despite the fact that identity measures are far less effective than
similarity scores that reflect conservative replacements (Schwartz and Dayhoff, 1978;
Pearson, 1995; Levitt and Gerstein, 1998). High levels of identity are frequently seen
between unrelated sequences over short regions (Kabsch and Sander, 1984) and sequence
alignments with less than 25 % identity may either be clearly statistically significant
(Table 2.1), (gtr1−human versus cit1−ecoli, BL62, E() < 10−9) or not significant
(gtr1−human versus yb8g−yeast, BL62, E() < 0.25).

Before accurate statistical estimates for local similarity scores were available, it was
routine to consider the tradeoffs between a search strategy’s ‘sensitivity’, the ability
to identify distantly related sequences (to avoid false negatives), and its ‘selectivity’,
not assigning high scores to unrelated sequences (false positives). With an accurate
model for the distribution of similarity scores from unrelated sequences, the threshold
for statistical significance (typically 0.02–0.001) sets the selectivity or false positive
rate; a threshold E() < 0.001 predicts a false positive every 1000 searches. Thus, a
significance threshold of E() < 0.001 is expected to produce several false positives
when characterizing all the proteins in E. coli or yeast (4000 and 6000 proteins), and
18 false positives are expected with E() < 0.001 when each of the 18 000 proteins
in Caenorhabditis elegans is compared to the SwissProt database. However, the
conservative strategy of reducing the significance threshold to 0.001/4000 for E. coli,
or 0.001/18 000 for C. elegans, ensures that many homologous proteins will be missed
(false negatives).

Of the λ and K parameters for the extreme-value distribution, the scale parameter λ has
the largest effect on the statistical significance estimate. In searches using the BLOSUM62
scoring matrix and gap penalties of −12/−2 of a subset of the SwissProt with database
50 unrelated protein sequences with lengths ranging from 98 to 2252 (mean 432± 57),
maximum likelihood estimates of λ ranged from 0.204 to 0.304 (mean 0.275) while K
ranged from 0.0039 to 0.062 (mean 0.012). K and λ are strongly correlated; low values
of K are found with low values of λ. Around the average values, however, reducing K by
a factor of 2 reduces the E() value only twofold (1 bit), but a similar change in statistical
significance would occur by reducing λ from 0.275 to 0.268, or about 2.5 %. Reducing λ
by 20 %, which is well within the range of λs seen after shuffling with PRSS in Table 2.1,
would reduce the statistical significance of a raw score of 100 by 250-fold, or by 8 bits.

Table 2.1 illustrates the importance of λ on significance estimates for three related
and one unrelated sequence. The differences in expectation values reflect differences in
estimates for λ and K ; for a given scoring matrix (BLOSUM50 or BLOSUM62) the
raw similarity scores for each pairwise comparison (e.g. gtr1−human:cit1−ecoli)
do not change. The significant differences between the λ values for BLOSUM50 and
BLOSUM62 reflect the different scaling of the two matrices. BLOSUM50 is scaled at
0.33 bits per unit raw score, so that a raw score of 148 produces a bit score of ∼148/3
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(the actual value for these gap penalties is 0.27 bits/raw-score). BLOSUM62 is scaled at
0.5 bits/raw-score, with a raw score of 75 giving a bit score of 34.5

Two trends are apparent: λ estimates from PRSS shuffled comparisons tend to be smaller
than λ estimates from database searches; and λ estimates for local (window) shuffles are
somewhat lower, reducing the significance even further. These decreases in λ are expected
because the query and library sequences used in this example have a somewhat biased
amino acid composition; the proteins have multiple transmembrane domains with a bias
towards hydrophobic amino acid residues (Kyte and Doolittle, 1982). Thus, the λs from
SSEARCH are lower than the BLAST2.0 λ, because the simulations used to assign λ in
BLAST2.0 assume an ‘average’ amino acid composition for both the query and library
sequence; the empirical SSEARCH estimates correct for the composition bias of the query
sequence, but still reflect the ‘average’ composition of the library sequences. λs determined
by PRSS shuffling are lower still, because PRSS estimates account for the composition
bias in both the query and library sequences. Window shuffling in PRSS reduces λ even
further, presumably because the highest-scoring regions in each pairwise comparison are
restricted to sequence patches with the most biased composition. However, despite these
differences in λs, the SSEARCH and PRSS uniform-shuffle significance estimates for
the intermediate and distantly related sequence pairs usually agree within a factor of 4.
Window-shuffled estimates reduce statistical significance much more dramatically, about
2–4 orders of magnitude for moderately and weakly significant similarities.

The statistical estimates provided by the BLAST2.0 and FASTA sequence comparison
programs are generally robust and reliable. To illustrate the factors affecting significance
estimates, we have emphasized the modest differences in λ and E() in Table 2.1. However,
Table 2.1 illustrates even for sequences with biased amino acid composition that share
20–25 % sequence identity, the significance estimates reported by either BLAST2.0
or programs in the FASTA package are very similar, and consistent with statistical
estimates produced by uniform shuffling. Window-based shuffling produces a much more
conservative statistical estimate.

2.3.3 Evaluating Statistical Estimates

The inference of homology (common ancestry) from statistically significant similarity
rests on two assertions: that similarity scores, calculated with optimal (Smith–Waterman)
or heuristic (BLAST or FASTA) algorithms using common scoring matrices (PAM250,
BLOSUM62) and gap penalties, follow the extreme-value distribution; and that the
behavior of similarity scores for random sequences holds as well for real, unrelated,
protein sequences. This second assertion is critical – an accurate statistical theory for
similarity scores of random sequences is of little value if real sequences have properties
that distinguish their scores from those of random sequences. It seems reasonable that
real protein sequences might have statistical properties that distinguish them from random
sequences; of the 20400 = 2.6× 10520 potential sequences of length 400 that could be
generated at random from 20 amino acids, fewer than 105 –108 unrelated sequences
are thought to exist in nature, and many structural biologists would argue that there
are fewer than 103 distinct protein folds (Brenner et al., 1997). Real protein sequences
are constrained to fold into a compact three-dimensional structure with a physiological

5 Because of this different scaling, a gap penalty of −12/−2 for BLOSUM50, the default with SSEARCH, is
equivalent to a gap penalty of −8/−1 for BLOSUM62.
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function; the fact that such a large fraction (typically 50–80 %) of the sequences in most
organisms can be found in other distantly related organisms suggests that the folding
constraint substantially restricts the universe of protein sequences; it is far easier to
produce a new protein sequence by duplicating an old one than by producing a sequence
de novo. Thus, it would not be surprising to learn that the folding/function constraint
produced real protein sequences whose similarity scores behave differently from those of
random protein sequences.

The reliability of statistical estimates can be evaluated both by comparing the observed
distribution of sequence similarity scores obtained in a search with the expected
extreme-value distribution, and by examining the expectation value for the highest-
scoring nonhomologous sequence. Figure 2.5 shows the distribution of sequence similarity
scores for two query sequences, an ‘average’ protein sequence, pyre−colgr, orotate
phosphoribosyltransferase, and a protein sequence with a biased amino acid composition,
prio−atepa, major prion precursor. Two sets of similarity scores are shown for each
sequence. One set shows the scores obtained when all the amino acid residues in the library
are examined; the second shows the scores when low-complexity sequences, or regions
of sequence with a reduced or biased amino acid composition, are removed (Wootton,
1994). With the ‘average’ protein, the distributions of the ‘complete’ database scores and
‘high-complexity’ scores are indistinguishable. With the prion protein (Figure 2.5b), there
is some difference in the central portion of the distribution, but the greatest differences
are seen for the highest-scoring sequences, where there are typically 2–3 times as many
‘raw’ scores as expected between 4 and 5 standard deviations above the mean, and 5–10
times as many scores as expected from 5 to 7 standard deviations above the mean. This
effect of biased composition is largely removed by searching against a SEGed database
that has had low-complexity regions removed.

The effect of biased composition is seen more dramatically by looking at the number
of very high-scoring sequences and the expectation value of the highest-scoring unrelated
sequence. When prio−atepa is used as a query, 198 library ‘raw’ sequence scores have
z ≥ 7.0;6 this is reduced to 28, 26 of which are related to the query, when the SEGed
database is used. Likewise, when the ‘raw’ sequences are examined, the highest-scoring
unrelated sequence is a glycine-rich cell wall protein that obtains an expectation value
of E() < 10−8 and there are 90 unrelated sequences with 10−8 ≤ E() ≤ 0.01. In contrast,
with the SEGed database the highest-scoring unrelated sequence has an expectation value
of E() = 0.012 and the second highest unrelated sequence has E() = 0.99.

Reliable statistical estimates – statistics that estimate E() < 0.02 about 2 % of the
time – allow much more sensitive searches. If an investigator can have confidence that
an unrelated sequence will obtain a score of E() < 0.001 about once in 1000 searches,
E() < 0.001 can be used to reliably infer homology. However, if unrelated sequences
sometimes obtain E() < 0.001 by chance, a more conservative threshold may be adopted,
e.g. E() < 10−6 or even E() < 10−10. While using a very stringent threshold for statistical
significance ensures that one will rarely infer homology when the proteins are unrelated,
it also ensures that moderately distant evolutionary relationships will be missed. Thus,
both the FASTA and BLAST developers have given high priority to the accuracy of

6 Similarity scores 7 standard deviations above the mean have an expectation value E() < 1.7 for this database
of 23 981 sequences.
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Figure 2.5 Distribution of library sequence similarity scores in searches with (a) an ‘average’
protein sequence, pyre−colgr, and (b) a sequence with biased amino acid composition,
prio−atepa. Filled diamonds show the distribution of similarity scores that include all the
residues in every sequence; open squares show the distribution of scores when low-complexity
regions are removed with the PSEG program (Wootton, 1994). The solid line shows the expected
distribution of scores predicted from the size of the database and the extreme-value distribution
(2.6). The x-axis reports similarity scores scaled in standard deviations above the mean. Searches
were done with the SSEARCH33 program (Smith–Waterman) using the BLOSUM62 scoring matrix
with gap penalties of −12 for the first residue in a gap and −2 for each additional residue. λ and
K were estimated by maximum likelihood (-z 2) option: (Pearson, 1999).

the statistical estimates, particularly for the highest-scoring unrelated sequences (Brenner
et al., 1998).

When evaluating the quality of statistical estimates for high-scoring unrelated
sequences, it is important to examine real protein sequences, whose properties may differ
from randomly generated sequences. Figure 2.6 summarizes the highest-scoring unrelated
sequence similarity scores obtained when query sequences from 50 randomly selected
Pfam protein families were used to search a database of sequences with carefully annotated
evolutionary relationships. Searches were done with either random sequences generated
from the 50 Pfam family queries, or with the queries themselves, against either a ‘raw’
protein sequence database, or one with low-complexity regions removed. Figure 2.6(a)
shows that even when random sequences are used to search the database, similarity scores
can be much higher than expected (and E() values much lower than expected) if low-
complexity regions are present in the sequence database. Thus, when 50 random sequences
were used, the lowest E() value was 0.006 from a match between a randomly shuffled
human histone H1 (h10−human) and other histone H1 sequences. This may simply reflect
the fact that it is difficult to randomly shuffle a sequence that is 30 % lysine. However,
when low-complexity regions are removed, the observed and expected distributions of
E() values agree extremely well.

When real sequences are used as the query, the statistical estimates are not as accurate,
even when low-complexity regions are removed. Most of the time, however, the estimates
are not far off. The log/log plot in Figure 2.6 emphasizes the searches that obtained
the lowest E() values for unrelated sequences, but 80 % of the real query sequences
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Figure 2.6 Quantile–quantile plot of expectation values for searches with (a) 50 random
sequences and (b) 50 real protein sequences for which the highest scoring unrelated sequence
is known. Searches were performed against a ‘raw’ annotated protein sequence database (filled
diamonds) and the same database with low-complexity regions removed (open squares). For
each search, the highest score (a) or highest scoring unrelated (b) sequence was recorded, and
converted from an expectation (E()) to a probability of obtaining that E() using the Poisson formula
p(E) = 1− e−E. Each set of 50 probabilities was sorted from lowest to highest and plotted. The
50 query sequences were chosen from 50 randomly selected PFAM families (Sonnhammer et al.,
1997) with 25 or more members. The random sequences were obtained by shuffling the 50 real
PFAM derived sequences. Searches were done using the Smith–Waterman algorithm (SSEARCH33)
using the default scoring matrix (BLOSUM50) and gap penalties (−12/−2) with regression-scaled
(binned) statistical estimates.

had expectation values E() > 0.1 (low by a factor of 2), and 90 % had E() > 0.02 (low
by a factor of 5) when low-complexity sequences were removed from the database.
In the search of the SEGed database, again the most ‘significant’ unrelated similarity
score was involved alignments with h10−human. In the search against the raw database,
this alignment had an E() < 0.002 (low by factor of 10); against a SEGed database
the score was even lower, E() < 0.0006. Histone H1 has an exceptionally biased
amino acid composition, which cannot be completely corrected for by removing low-
complexity regions from the database. However, for the vast majority of query sequences
(80–90 %), unrelated sequences will have expectation values within a factor of 2–5 of
their true frequency in database searches. Thus, thresholds of statistical significance in the
range 0.001 < E() < 0.01 against SEGed sequence databases will be reliable with rare
exceptions.

The observation that the statistical significance estimates (E() values) from similarity
searches with real, unrelated sequences are 2–5 times less conservative than those obtained
for genuinely random sequences suggests that to a large extent, real, unrelated protein
sequences have many of the same statistical properties as random sequences. The major
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difference between real protein sequences and random sequences seems to be the i.i.d.
assumption for amino acid residue positions. In real, unrelated sequences, unusual amino
acid compositions are distributed in low-complexity clumps. The SEG program, which
masks out these regions, removing them from the similarity score calculation, can reduce
the effect of clumps with biased composition, but not eliminate it. Fortunately, the
deviation from being i.i.d. is modest in 80 % of protein sequences. Other than the biased
composition effect, no other property of ‘real’ protein sequences has been identified that
distinguishes them from sequences built from picking amino acids from a probability
distribution at random.

2.4 SUMMARY: EXPLOITING STATISTICAL ESTIMATES

The inference of homology from statistically significant sequence similarity is one of the
most reliable conclusions a scientist can draw. Indeed, the vast majority of bacterial,
C. elegans, and Drosophila genes are annotated largely on the basis of statistically
significant sequence similarity shared by other proteins with known structures or functions.
This trend is certain to continue as sequence databases become more comprehensive.

While the inference of homology from significant sequence similarity is reliable –
sequences that share much more similarity than expected by chance share a common
ancestor – the inference tells us much more about structure than function. Without excep-
tion, sequences that share statistically significant similarity share significant structural
similarity. However, homologous proteins need not perform the same or even similar func-
tions. Functional inferences are most reliable when based on assignments of orthology.
Orthologous sequences are sequences that differ because of species differences. This
contrasts with paralogous sequences, which are produced by gene duplication events.
While homology can be demonstrated by sequence similarity, an inference of orthology is
best supported by phylogenetic analysis, which is considerably more challenging compu-
tationally. In addition, many proteins are built from evolutionarily independent domains
with different structures and functions. The inference of homology is transitive – if protein
A is homologous to B and B is homologous to C, even if A and C do not share significant
similarity – but it is critical that such inferences be limited to the domain to which they
apply. There is great concern that incorrect functional assignments are greatly reducing
the value of sequence database annotations because functional assignments are inappropri-
ately extended to new family members based on a correct, but functionally uninformative,
inference of homology.

Statistical significance estimates, whether as expectation values or bit scores, are
far more informative than the most commonly used measure of sequence similarity,
percent identity. It has been known for more that 20 years (Dayhoff et al., 1978)
that percent identity is much less effective than measures of similarity that distinguish
biochemically similar and dissimilar amino acids, and that recognize that some amino
acids mutate far more rapidly than others. Moreover, high sequence identity is expected
over very short regions by chance in unrelated sequences that share no structural similarity
(Kabsch and Sander, 1984). Thus, the inference of homology should always be based on
statistically significant sequence similarity using an appropriate scoring matrix (Altschul,
1991).



STATISTICAL SIGNIFICANCE IN BIOLOGICAL SEQUENCE COMPARISON 63

However, once homology has been established, measures of statistical significance are
not good measures of evolutionary distance. Two sequences that have diverged by the
same amount, and thus share the same average levels of sequence similarity, can have very
different similarity scores, with very different levels of statistical significance, depending
on their lengths. For example, two members of the orotate phosphoribosyltransferase
family, pyre−colgr and pyre−klula, that share 48.5 % identity over 223 amino
acid residues, have similarity scores Sbit = 161 with E() < 10−39, while two members
of the twice as long glucose transporter family with slightly lower identity (47.4 %
over 502 amino acids) obtain a similarity score of 308 bits with E() < 10−82. Thus,
similarity scores and expectation values must be adjusted when comparing among
different length protein sequences if they are used as surrogates for evolutionary
divergence.

This review of sequence similarity statistics has focused on protein sequence compar-
ison for two reasons. First, protein sequence comparison is far more sensitive than
DNA sequence comparison – the evolutionary lookback time for protein sequences is
typically 5–10 times greater than that for DNA sequences (Pearson, 1997). Moreover,
protein databases are more compact, so that more rigorous algorithms can be used for
similarity searching. Secondly, DNA sequences are well known to have higher-order
sequence dependence due to codon bias and simple-sequence repeat regions. Because of
the small nucleotide alphabet and the possible translation of normal-complexity DNA
sequences into low-complexity protein sequences, it is much more difficult to detect and
correct for deviations from i.i.d. in DNA sequences. Thus, in general, statistical esti-
mates from protein sequence comparisons are more reliable than the similar comparisons
with DNA.

Our understanding of the statistical properties of biological sequences has improved
dramatically over the past decade, so that most sequence similarity searching methods
now include reliable statistical estimates. However, there is still room for improvement, as
more searches are done with more complex queries, e.g. profiles, position-specific scoring
matrices (Altschul et al., 1997), and three-dimensional sequence-structure alignments,
whose statistical properties on real sequences are not well understood. Fortunately, there
is no shortage of data that can be used to develop and validate new statistical approaches.
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Hidden Markov models, the expectation-maximization algorithm, and the Gibbs sampler were
introduced for biological sequence analysis in early 1990s. Since then the use of formal statistical
models and inference procedures has revolutionized the field of computational biology. This chapter
reviews the hidden Markov and related models, as well as their Bayesian inference procedures and
algorithms, for sequence alignments and gene regulatory binding motif discoveries. We emphasize
that the combination of Markov chain Monte Carlo and dynamic-programming techniques often
results in effective algorithms for nondeterministic polynomial (NP)-hard problems in sequence
analysis. We will also discuss some recent approaches to infer regulatory modules and to combine
expression data with sequence data.

3.1 INTRODUCTION

In the past two decades, we have witnessed the development of the likelihood approach to
pairwise sequence alignments (Bishop and Thompson, 1986; Thorne et al., 1991); prob-
abilistic models for RNA secondary structure predictions (Zuker, 1989; Lowe and Eddy,
1997; Ding and Lawrence, 2001; Pedersen et al., 2004); the expectation-maximization
(EM) algorithm for finding regulatory binding motifs (Lawrence and Reilly, 1990; Cardon
and Stormo, 1992), the Gibbs sampling strategies for detecting subtle sequence similari-
ties (Lawrence et al., 1993; Liu, 1994; Neuwald et al., 1997); the hidden Markov models
(HMMs) for DNA composition analysis, multiple sequence alignments, gene prediction,
and protein secondary structure prediction (Churchill, 1989; Krogh et al., 1994a; Baldi
et al., 1994; Burge and Karlin, 1997; Schmidler et al., 2000; Chapters 4 and 5); regres-
sion and Bayesian network approaches to gene regulation networks (Bussemaker et al.,
2001; Segal et al., 2003; Conlon et al., 2003; Beer and Tavazoie, 2004; Zhong et al.,
2005); and many statistical-model based approaches to gene expression microarray anal-
yses (Li and Wong, 2001; Lu et al., 2004; Speed, 2003). All these developments show
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that algorithms resulting from statistical modeling efforts constitute a significant portion
of today’s bioinformatics toolbox. This chapter aims at introducing the readers to these
modeling techniques and related Bayesian methodologies.

Section 3.2 gives an overview of the Bayesian inference procedure, including model
building, prior specification, model selection, and Bayesian computation. Section 3.3
introduces the general HMM framework with an example on DNA compositional
heterogeneity. Section 3.4 reviews Bayesian pairwise alignment methods. Section 3.5
demonstrates how HMMs are used in multiple sequence alignment (MSA) and how
Bayesian inferences can be made on model parameters. Section 3.6 outlines some Bayesian
methods for finding subtle repetitive motifs, which often correspond to transcription factor
(TF) binding sites and binding modules, in DNA sequences. Section 3.7 provides a brief
overview of recent activities in combining gene expression microarray information with
promoter sequence analysis. Section 3.8 concludes the chapter with a brief summary.
In this chapter, we emphasize the usefulness of dynamic-programming-like recursive
algorithms in Bayesian and likelihood-based inferences and the importance of combining
these efficient computational techniques with more flexible Markov chain Monte Carlo
MCMC tools for bioinformatics problems.

3.2 OVERVIEW OF THE BAYESIAN METHODOLOGY

In Bayesian analysis, a joint probability distribution f (y, θ, τ) is employed to describe
relationships among all variables under consideration: those that we observe (data and
knowledge, y), those about which we wish to learn (scientific hypotheses, θ), and those
that are needed in order to construct the model (missing data or nuisance parameters, τ).
The basic probability theory then leads us to an efficient use of the available information
and to a precise quantification of uncertainties in estimation and prediction (Gelman et al.,
1995). The Bayesian approach has following advantages: (1) its explicit use of probability
models to formulate scientific problems (i.e. a quantitative story-telling); (2) its coherent
way of incorporating all sources of information and treating nuisance parameters and
missing data; and (3) its ability to quantify uncertainties in all estimates. Some other
aspects of the Bayesian method are discussed in Chapters 8, 15, 19, 20, and 26.

3.2.1 The Procedure

Bayesian analysis treats parameters θ and τ as realized values of random variables
that follow a prior distribution, f0(θ, τ), typically regarded as known to the researcher
independently of the data under analysis. The joint probability distribution can then be
represented as Joint = likelihood × prior, that is,

p(y, θ, τ) = f (y | θ, τ)f0(θ, τ).

The theorem that combines the prior and the data to form the conditional distribution
p(θ, τ | y), also called the posterior distribution of θ, is a simple mathematical result first
given by Thomas Bayes in his famous article “Essay Towards Solving a Problem in the
Doctrine of Chances” (1763), published posthumously in the Philosophical Transactions
of the Royal Society of London. As per Bayes theorem,

p(θ, τ | y) = p(y, θ, τ)
p(y)

= f (y | θ, τ)f0(θ, τ)∫
f (y | θ, τ)f0(θ, τ)dθ dτ

. (3.1)
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The denominator p(y), which is a normalizing constant for the function, is sometimes
called the marginal likelihood and can be used for model selection. If we are interested
in only θ, we can obtain its marginal posterior distribution as

p(θ | y) =
∫
p(θ, τ | y)dτ. (3.2)

Formula (3.2) can give us not only a point estimate of θ (e.g. posterior mean), but also an
explicit measure of uncertainty (e.g. a 95 % probability interval). In contrast, frequentist
approaches often face conceptual difficulties in dealing with nuisance parameters and in
quantifying uncertainties.

Statistical procedures based on the systematic use of this theorem to manipulate
subjective probabilities are often termed Bayesian, although they were first developed
by Laplace in the early 1800s, after Bayes’ death. Despite the deceptively simple-
looking form of (3.1) and (3.2), the challenging aspects of Bayesian statistics are (i) the
development of a model, f (y | θ, τ)f0(θ, τ), that must effectively capture the key features
of the underlying scientific problem; and (ii) the necessary computation for deriving the
posterior distribution.

3.2.2 Model Building and Prior

It is often a useful model building strategy to distinguish two kinds of unknowns:
population parameters and missing data. Although there is no absolute distinction between
the two types, missing data are usually directly related to individual observations. They
can be ‘imputed’ either conceptually or computationally so as to ease the statistical
analysis. On the other hand, the parameters usually characterize the entire population
under study and are fixed in number. For example, in a multiple alignment problem,
alignment variables that must be specified for each observed sequence can be viewed
as missing data. Residue frequencies for the aligned positions or the choice of scoring
matrices, which apply to all the sequences, are population parameters.

The main controversial aspect of the Bayesian method is the need for prior distributions
for unknown parameters. Since the choice of priors injects subjective judgments into
the analyses, Bayesian methods have long been regarded as less ‘objective’ than their
frequentist counterpart and disfavored. However, the emotive words ‘subjective’ and
‘objective’ should not be taken too seriously since there are considerable subjective
elements and personal judgments in all phases of scientific investigations. These subjective
elements, if made explicit and treated with care, should not undermine the results of the
investigation. More importantly, it should be regarded as a good scientific practice for
investigators to make their subjective inputs explicit. A truly objective evaluation of any
procedure is based on how well it attains the goals of the original scientific problem.

Although it is worthwhile to think of prescribing ‘objective’ priors (usually with the
adjective ‘noninformative’), such choices are usually unattainable in practice. We advocate
the use of sensitivity analysis, that is, an analysis of how the inferential statements vary for
a reasonable range of prior distributions, to validate the conclusion of a Bayesian analysis.

3.2.3 Model Selection and Bayes Evidence

Classical hypothesis testing can be seen as a model selection procedure in which one
chooses between the null and the alternative hypotheses based on the degree of ‘surprise’
of the observed data. In contrast, Bayesian model selection can be achieved in a coherent
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probabilistic framework. First, all the candidate models are embedded into an aggregate
model. Second, the posterior probability of each candidate model is computed and used
to discriminate or combine the models (Kass and Raftery, 1995).

Consider the situation where there are K competing models. Let M = m indicate the
mth model, where m = 1, . . . K . We first write down the full joint distribution with all
the models: P(y, θ,M) = P(y | θ,M)P (θ,M). Since each model may have its own set
of parameters, we rewrite the earlier equation as

P(y, θ,M) = P(y | θm)P (θm | M = m)P (M = m),
where P(θm | M = m) is the prior distribution for the parameters in model m, and
P(M = m) is the prior probability of model m. Note that the dimensionality of θm can
be different for different m. The posterior probability of model m is simply

P(M = m | y) ∝ P(y | M = m)P (M = m)
=
{∫

P(y | θm)P (θm | M = m) dθm

}
P(M = m).

Sometimes one may not want to select and use a single model. Then the foregoing
Bayesian formulation can be used to conduct ‘model averaging’ (Kass and Raftery, 1995).
The model prior P(M = m) is determined independently of the data in study. A frequent
choice is P(M = m) = 1/K , implying that all models are equally likely a priori. In many
cases, however, we may want to set smaller prior probabilities for models with higher
complexities.

The classic hypothesis testing problem (i.e. null versus alternative models) can be easily
fitted into the foregoing framework by letting M take on two possible values. The only
caveat is that, in accordance with classical conventions, a small prior probability (e.g.
0.05) for the alternative model is preferable.

3.2.4 Bayesian Computation

In many applications, computation is the main obstacle in applying either the Bayesian
or other sophisticated statistical methods. In fact, until recently these computations have
often been so difficult that sophisticated statistical modeling and Bayesian methods were
largely used by theoreticians and philosophers. The introduction of the bootstrap method
(Efron, 1979), the EM algorithm (Dempster et al., 1977), and the (MCMC) methods
(Gilks et al., 1998; Liu, 2001) has brought many powerful models into the mainstream
of statistical analysis. As illustrated in later sections, by appealing to the rich history of
computation in bioinformatics, many required optimizations and integrations can be done
exactly, which gives rise to either the exact maximum likelihood estimation (MLE) or
the exact posterior distribution, or a better approximation to both.

MCMC refers to a class of algorithms for simulating random variables from a
distribution, π(x), known up to a normalizing constant. These algorithms are well
suited for Bayesian analyses since Bayesian inference can be trivially constructed if
we can draw random samples from the posterior distribution (3.1) without computing
its denominator. The basic idea behind all MCMC algorithms is the simulation of a
Markov chain whose equilibrium distribution is the target distribution π(x). Two main
strategies for constructing such chains are the Metropolis–Hastings (M-H) algorithm and



BAYESIAN METHODS IN BIOLOGICAL SEQUENCE ANALYSIS 71

the Gibbs sampler (Liu, 2001), both being widely used in diverse fields and reviewed in
the Appendix. More discussions on MCMC and its fascinating applications can be found
in Chapters 15 and 26 by Huelsenbeck & Bollback, and Stephens respectively.

3.3 HIDDEN MARKOV MODEL: A GENERAL INTRODUCTION

A sequence of random variables h1, h2, . . . , is said to follow a lth order Markov chain if

P(hi | h1, . . . , hi−1) = P(hi | hi−1, . . . hi−l).

For example, one may assume that an observed sequence of nucleotide bases forms a first-
order Markov chain with transition probabilities P(hi+1 | hi) = θhi,hi+1

. With an observed
realization of the chain (e.g. a segment of DNA sequence), we can obtain the MLEs of
the θ by counting the frequencies of dimer occurrences.

It has long been known that the simple independent model is insufficient to describe
genomic sequences. In coding regions, every nonoverlapping triplet of nucleotides codes
for one of the 20 amino acid residues or a stop signal. Thus, a second-order Markov chain
is perhaps desirable. However, correlation between the neighboring bases is still highly
significant in noncoding regions. Some recent studies (Liu et al., 2001; 2002; Huang
et al., 2004) show that using a second-order or a third-order Markov chain to model the
promoter regions (hundreds to thousands bases upstream of the starting codon of the gene)
can significantly improve the accuracy of gene regulatory binding motif discovery. It is
clear that the genome is much more complex than a third-order Markov chain. Although
it is desirable to model the genome sequences by even higher-order Markov chains, the
number of unknown parameters increases so fast that a large amount of sequence data
is required. Additionally, even high-order Markov models cannot capture certain local
structures, regularities, and inhomogeneities of DNA sequences. Researchers found that
it is often more suitable to use HMMs to capture various sequence features.

The HMM was initially introduced in the late 1960s and has been widely used in signal
processing, speech recognition, and time series analysis (Rabiner, 1989). The method was
first applied to model DNA sequences by Churchill (1989) and has become very popular
in early 1990s owing to the pioneering work of Krogh et al. (1994a) and Baldi et al.
(1994) on MSAs. The basic form of an HMM can be written as

ri ∼ fi(r | hi, θ); hi ∼ gi(h | hi−1, τ ),

where fi and gi are probability distributions, θ and τ are parameters, and the ri are
observations. The hi form a Markov chain and are often unobservable (i.e. hidden). What
is of interest is the inference of θ , τ , and perhaps the hi .

To be specific, let us examine an HMM that can accommodate compositional hetero-
geneity in DNA sequences. In particular, consider a sequence R consisting of two types
of segments, each represented by a nucleotide frequency vector. We can only observe R
and are interested in making inference on the locations of the segment change points and
the composition parameters for each type of segment. A simple HMM first proposed by
Churchill (1989) is shown in Figure 3.1.

In this model, we assume that the hidden layer h = (h0, h1, . . . , hn) is a Markov chain.
Each hi takes on only two possible values: hi = 0 implies that residue ri ∼ Multinom(θ0);
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Figure 3.1 A graphical illustration of the hidden Markov model.

and hi = 1 indicates that ri ∼ Multinom(θ1). Here θk = (θka, θkc, θkg, θkt ). A 2× 2
transition matrix, τ = (τkl), where τkl = P(hi = k→ hi+1 = l), dictates the generation
of h. A similar model has been developed by Krogh et al. (1994b) to predict protein
coding regions in the E. Coli genome.

Let 
 = (θ0, θ1, τ). The likelihood function of 
 can be written as

L(
 | R) =
∑

h

P(R | h, θ0, θ1)P (h | τ),=
∑

h

p0(h0)

n∏
i=1

(θhi ri τhi−1hi
),

where h0 is assumed to follow a known distribution p0(h0). This function can be evaluated
using a recursive summation method shown later in (3.3). With a prior distribution f0(
),
which may be a product of three independent Dirichlet distributions, we can write down
the joint posterior distribution of all unknowns:

P(
, h | R) ∝ P(R | h,
)P (h | 
)f0(
).

In order to sample from this distribution, we can implement a data augmentation method
(Tanner and Wong, 1987, a special Gibbs sampler), which iterates the following steps:

• Path imputation. Draw h(t+1) ∼ P(h | R,
(t));
• Posterior sampling. Draw 
(t+1) ∼ P(
 | R, h(t+1)).

The path imputation step samples a hidden chain, or path, h, from its posterior
distribution with given parameter value, and this task can be achieved by a recursive
method. More precisely, we note that

P(h | R,
) = c P (h, R | 
) = c P (R | h,
)p(h | 
)

= c p0(h0)

n∏
i=1

{
P(ri |hi)P (hi |hi−1)

} = c p0(h0)

n∏
i=1

(
θhiri τhi−1hi

)
,

where c−1 =∑
h

{
p0(h0)

∏n
i=1

(
θhiri τhi−1hi

)}
. Define F0(h) = p0(h) and then, recur-

sively, let

Fk+1(h) =
1∑

hi=0

{Fk(hi)τhihθhri+1
}, for i = 1, . . . , n. (3.3)

At the end of the recursion, we have c−1 = Fn(0)+ Fn(1) and

P(hn | R,
) =
Fn(hn)

Fn(0)+ Fn(1)
. (3.4)
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In order to sample h from P(h | R,
), we first draw hn from distribution (3.4) and then
draw hi recursively backward from distribution

P(hi | hi+1, R,
) =
Fk(hi)τhihi+1

Fk(0)τ0hk+1
+ Fk(1)τ1hi+1

. (3.5)

The posterior sampling step in data augmentation involves only the sampling from
appropriate Dirichlet distributions. For example, θ0 should be drawn from Dirichlet
(n0a + αa, . . . , n0t + αt ), where, n0a , say, is the counts of the ri whose type is A and
whose hidden state hi is zero. It is straightforward to extend this model to a k-state HMM
so as to analyze a sequence with regions of k different compositional types.

3.4 PAIRWISE ALIGNMENT OF BIOLOGICAL SEQUENCES

Ever since the creation of GenBank, which grew from 680 338 base pairs in 1982 to 22
billion base pairs in 2002 (Benson et al., 2002), and other related databases, sequence
comparisons and sequence database search have played a pivotal role in contemporary
biological research. By observing sequence similarities between a new target gene (or a
segment of it) and some well-studied ones, biologists can gain important insights into
its function and structure (see Chapter 2 for more biological importance). The two most
well-known ‘rigorous’ pairwise alignment methods are the method of Needleman and
Wunsch (1970) for global alignment and that of Smith and Waterman (1981) for local
alignment. They are based on dynamic programming and are guaranteed to find the global
optimum of certain alignment scoring functions. Two most popular ‘heuristic’ pairwise
alignment algorithms are BLAST (Altschul et al., 1990) and FASTA (Pearson and Lipman,
1988), and both are an order of magnitude faster than the rigorous ones. Chapter 2
provides some detailed discussions on these algorithms and issues related to the statistical
significance of the resulting scores. This section discusses a Bayesian version of the
Needleman–Wunsch algorithm and a motif-based Bayesian pairwise alignment method.
Throughout the section, the observed data consist of two DNA or protein sequences,
R(1) = (r(1)1 , r

(1)
2 , . . . , r

(1)
n1
) and R(2) = (r(2)1 , r

(2)
2 , . . . , r

(2)
n2
).

3.4.1 Bayesian Pairwise Alignment

Since traditional pairwise alignment methods are not based on any statistical models, it is
difficult to judge whether they have incorporated all the relevant information, and, more
importantly, whether the parameters have been tuned optimally. The use of statistical
models and Bayesian methodology can help in these aspects. A Bayesian pairwise
alignment method starts with a model, P(R(1), R(2) | 
, τ) that describes the relationship
between two sequences. To be concrete, we let 
 be a 20× 20 joint symmetric probability
matrix analogous to a scoring matrix such as the PAM and BLOSUM, describing the joint
distribution of a pair of aligned amino acids. For example, according to BLOSUM62, the
joint probability θr1r2 of r1 = I (isoleucine) occurring in sequence 1 and r2 = L (leucine)
in the same position of sequence 2 is about 4 times the product of their respective marginal
frequencies, θr1 × θr2 , where θr1 is the sum of the entries in the row for r1 (or the column
for r1, due to symmetry) of 
. Generally, the (i, j )th entry of a BLOSUMx matrix stores
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2 log2
θi,j
θiθj

for amino acid pair (i, j). The number ‘x’ reflects that these joint frequencies
are estimated from the set of protein sequences among which no pair has more than x%
alignment positions with identical residues (for more details, see Chapter 2).

Conceptually, the alignment of R(1) and R(2) is characterized by an alignment matrix
A, where element ai,j are set to 1 if residue i of sequence 1 ‘aligns’ with residue j of
sequence 2 and 0 otherwise. A restriction is that the aligned residues have to be ‘collinear’,
that is, if r(1)i1 is aligned with r(2)j1

and r(1)i2 with r(2)j2
, then (i1 − i2)(j1 − j2) > 0.

3.4.1.1 Gap-based Global Alignment

Let � = (λo, λe) be probabilities of gap opening and gap extension, respectively, which
govern the formation of the alignment matrix A. Here we show how the global alignment
problem may be treated in a Bayesian way by using the statistical models pioneered by
Thorne et al. (1991). First, the joint distribution is defined as

P(R(1), R(2), A,
,�) = P(R(1), R(2) | A,
)P (
) P (A | �)P (�).
Traditional alignment procedures can be seen as optimizing an objective function that is
analogous to a log-likelihood (Holmes and Durbin, 1998). More precisely, for a set of
fixed values 
 = 
0 and � = �0, one finds A∗ so that

logP(R(1), R(2), A∗ | 
0,�0) = max
A
{logP(R(1), R(2) | A,
0)+ logP(A | �0)}.

(3.6)

The need for setting parameter values 
0 and �0 has been the subject of much discussion
in the field of bioinformatics. A distinctive advantage of the Bayesian procedure is its
added modeling flexibility in the specification of parameters.

Let A be the alignment indicator matrix, which can also be seen as a ‘path’ in a
dynamic-programming setting. With given � = (λo, λe), the probability of any allowable
path, prior to seeing the content of the two sequences to be aligned, but conditional on
their lengths n1 and n2, is

P(A | λo, λe) =
λ
kg(A)
o λ

lg(A)−kg(A)
e∑

A′ λ
kg(A′)
o λ

lg(A′)−kg(A′)
e

(3.7)

where kg(A) and lg(A) are the total number and the total length of the gaps in A,
respectively. The summation in the denominator is over all possible alignments of the
two sequences. In the derivation given in subsequent text, we condition on the length
information, n1 and n2.

If we let 
 take values in a series of BLOSUMx matrices (after log-odds transforma-
tions), then we can compute the marginal likelihood of � as

P(R(1), R(2) | �) =
∑



∑
A

P (R(1), R(2) | A,
)P (A | �)P (
),

=
∑



∑
A P (R

(1), R(2) | A,
)P (
)λkg(A)o λ
lg(A)−kg(A)
e∑

A′ λ
kg(A′)
o λ

lg(A′)−kg(A′)
e

(3.8)
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In the numerator, 
 is marginalized out by summing over all the scoring matrices in
a given set, each with a prior ‘weight’ P(
). Both the numerator and the denominator
of (3.7) can be computed via a recursive algorithm similar to the Needleman–Wunsch
algorithm (Liu and Lawrence, 1999).

As with traditional dynamic-programming alignment algorithms (see Figure 3.3(b), for
example), we can describe a path as consecutive moves of three types: → (deletion), ↓
(insertion), and ↘ (match). To ensure uniqueness, one often adds the restriction that an
insertion cannot follow a deletion. For example, to obtain the numerator of (3.7), we start
with p(0, 0) = pm(0, 0) = 1, pi(0, 0) = pd(0, 0) = 0, and compute recursively:

pm(k, l) = p(k − 1, l − 1)θ
r
(1)
k
r
(2)
l

,

pi(k, l) = {λepi(k − 1, l)+ λopm(k − 1, l)}θ
r
(1)
k

,

pd(k, l) = {λepd(k, l − 1)+ λopm(k, l − 1)+ λopi(k, l − 1)}θ
r
(2)
l

,

p(k, l) = pm(k, l)+ pi(k, l)+ pd(k, l).

In the equations, pm(k, l) is the score of entry (k, l) when the last move is a ‘match’;
pi(k, l) is the score when the last move is an ‘insertion’ for sequence 1; and pd(k, l) is
the score when the last move is a ‘deletion’ for sequence 1. Thus, P(R(1), R(2) | �,
) =
p(n1, n2), and the posterior distribution of � is

P(� | R(1), R(2)) ∝ P(R(1), R(2) | �)f0(�).

This Bayesian approach provides us with not only the maximum a posteriori alignment
of the two sequences, but also a distribution of the pairwise alignments, which can be
represented by a random sample from the posterior alignment distribution and used to
measure uncertainty in the alignment result. A Bayesian version of the Smith–Waterman
algorithm is given in Webb et al. (2002). They showed that the new method outper-
formed the optimally tuned Smith–Waterman algorithm in detecting distantly related
proteins.

3.4.1.2 Motif-based Local Alignment

While the gap-based approaches have dominated alignment methods for many years,
Bayesian statistics opens up new directions in dealing with insertions and deletions
in alignments. Zhu et al. (1998) attacked the Bayesian alignment problem by directly
specifying a prior alignment distribution: all alignments with k gaps are equally likely,
and all k in the given range are equally likely. This prior penalizes an alignment with
many gaps by a factor inversely proportional to the number of that type of alignment.
The summation over all alignments is carried out by the dynamic-programming method
of Sankoff (1972). Input requirements for the scoring matrices are more flexible in the
Bayesian setting than in traditional methods. For example, Zhu et al. (1998) examine
the use of a series of either the PAM or the BLOSUM matrices as prior input in
which all the matrices are assigned equal probability a priori. They report that the
posterior distribution of the scoring matrices is often flat and sometimes multimodal,
indicating that no one matrix is clearly more preferable to others when aligning two
sequences.
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Consider the expression for the posterior distribution of the scoring matrix:

P(
 | R(1), R(2)) = 1

P(R)

∑
k

∑
A

P (R(1), R(2) | A,
)P (
)P (A | � = k)P (� = k),

where 
 indicates one of the series of scoring matrices (PAM or BLOSUM), reflecting
to a certain extent the distance between the two sequences, and � denotes the number
of gaps allowed in the alignment. Since this posterior is obtained by averaging over all
alignments, a ‘good’ alignment is not required for assessing the distance between the two
sequences. This feature may be of value in distance-based methods employed in molecular
evolutionary studies because the requirement that a pair of sequences must be sufficiently
close to permit a good alignment is removed.

3.5 MULTIPLE SEQUENCE ALIGNMENT

Although pairwise alignment methods have been tremendously successful in modern
biological researches, these methods treat all the positions of the query sequence as equally
important, whereas in biological reality many ‘unimportant’ regions of a protein can
tolerate severe distortions and are not well conserved even for those within a specialized
protein family. A more attractive approach for detecting remotely related proteins is to use
features common to a set of related proteins to perform the search. These common features
can be most effectively represented by a position-specific consensus ‘profile’ extracted by
a comparative study of all the protein sequences in consideration, that is, by the MSA.

Currently, the most widely used MSA method is ClustalW (Thompson et al., 1994a).
At first, the algorithm compares all pairs of sequences in the set using a dynamic-
programming algorithm (similar to Smith–Waterman). The resulting pairwise comparison
scores are transformed into evolutionary distances (Kimura, 1985). Then, a phylogenetic
tree is constructed using the neighbor-joining method (Saitou and Nei, 1987). Following
the branching order of the built phylogenetic tree, ClustalW progressively performs
pairwise alignments of sequences or the consensus profile matrix at each node. To
improve the quality of the alignments, ClustalW uses a sequence weighting strategy to
avoid overrepresentation of closely related homologs (Thompson et al., 1994b). At the
alignment stage, a variety of substitution matrices (chosen depending on the closeness of
the relationship between sequences/profiles to be aligned) is used and position-specific
gap penalties are incorporated.

Another widely used method for constructing MSA is PSI-BLAST (Altschul et al.,
1997). It first uses BLAST (Altschul et al., 1990) to collect all the sequences in the
searched database that are significantly related to the query sequence. Then an MSA
is created by ‘anchoring’ selected pairwise alignments to the query sequence (to avoid
overrepresentation of closely related proteins, sequences with more than 98 % identity are
thrown out). On the basis of the weighted counts of the residues in columns of the MSA
(the weighting procedure of Henikoff and Henikoff (1992) is used), a position-specific
profile is constructed. Using a modification of BLAST, another iteration of database search
is performed using the constructed profile and the next order relatives are collected. They
are, in turn, anchored to the current MSA, and used to update the profile. The procedure
is repeated until no more relatives can be found from the database.
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3.5.1 The Rationale of Using HMM for Sequence Alignment

The heuristics used in both PSI-BLAST and ClustalW incorporate a significant amount
of biological knowledge. However, both methods lack principled ways to synthesize
more delicate biological information and to tune parameters. In addition, the MSAs
resulting from these methods tend to be heavily influenced by either the query sequence
or the sequence order. The introduction of the profile HMM for the sequence alignment
problem in early 1990s (Krogh et al., 1994a; Baldi et al., 1994) revolutionized the field
and provided the scientist fresh ways of looking at many biological problems including
MSA.

In the evolution of protein sequences, segment transpositions are rare, so we can safely
assume in most cases that the discrepancy between two homologous sequences is caused
by insertions/deletions (indels) and point mutations. Thus, although the sequences are
misaligned via indels, conserved residues remain in order. By capturing this characteristic,
the HMM not only captures an important feature of protein evolution, but also results in
an effective algorithm.

As shown in Figure 3.2, in the HMM framework, one treats the sequences to be
aligned as iid observations from a probabilistic mechanism (i.e. ‘insert’, ‘delete’, and
‘match’) that perturbs a hypothetical common ‘ancestral’ model sequence (called model),
denoted as M = (m1, . . . ,mL). The ‘match’ state implies that the current residue at this
position has evolved from (i.e. corresponds to) the ‘ancestral’ residue via mutations, not
indels. Note that it does not mean that the residue matches with the ancestral ones. Two
major distinctions between this HMM framework and the standard evolutionary model
are noteworthy: (a) since the observed sequences are iid given the ancestral model, this
HMM does not capture the important tree structure of a realistic evolutionary process,
which is often essential to reflect correlations among the observed sequences; (b) the
ancestral model is not meant to be an ancestral sequence. In other words, each model
position mj is not meant to recover what the ancestral residue most likely is, but is used
to model this position’s residue preference, which results from both the evolutionary force
and functional constraints (selection). With principled statistical inference methods, one
can estimate optimally all the parameters in this model, and consequently in the ancestral
profile model, based on the observed sequences.

The diagram in Figure 3.3(a) describes the generative procedure for the underlying
(hidden) Markov chain. In this model, each ml is regarded as an abstract residue and is
associated with an ‘emission’ probability vector θl of length p (p = 4 for DNA sequences,
and p = 20 for proteins). For simplicity, we assume that all ‘insert’ states are associated
with a common ‘emission’ probability θ0. When generating biological sequences, the

. . .

. . .

Sequences

HMM MODEL

Figure 3.2 Independent generation of protein sequences from an HMM.
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types of perturbations allowed are point mutations, insertions, and deletions. A residue
in an observed sequence is generated either by a ‘match’ state, mj say, or by an ‘insert’
state, ik , say. Another set of transition probabilities, one associated with each arrow in
Figure 3.3(a), for example, τmjmj+1

, τdjmj+1
, τij ij , and so on, are needed to describe the

underlying Markov chain. Note that probabilities coming out of a node have to sum up
to 1, and they can be either given in advance or estimated (‘trained’) from many unaligned
sequences.

Starting from the ‘Begin’ state, a protein sequence is ‘produced’ from the profile HMM
as follows. According to the transition probabilities, a series of hidden states is generated
until the ‘End’ state is reached. In turn, each of the ‘match’ and ‘insert’ states generates
an amino acid based on its state specific ‘emission’ probability distribution. Figure 3.4
shows how the sequence R = (r1, r2, . . . , r6) ≡ VLSFFD is generated by a profile HMM
with three match states.

End

dj

ij

mj

Begin

(a)

m0

r5

r3

r2

r1

r0

r4

m1 m2 m3

r6

END

END

(b)

Figure 3.3 (a) A profile HMM model for sequence alignment. ‘Match’, ‘insert’, and ‘delete’
states are represented by squares, diamonds, and circles, respectively. (b) A ‘Path’ representing the
alignment of a sequence to a profile HMM.

i0 i0 i0 d1 m3m2 i3Begin End

V L S FF D

Figure 3.4 A toy sequence of length 6 generated by a profile HMM with 3 match states. Note
that m1 is replaced by state d1, implying that first match state is deleted in generating the observed
sequence.
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One can also think of the process of generating sequence R from the profile HMM
as that of choosing a path through an (n+ 1)× (L+ 1) table starting from the upper
left corner and ending with the lower right corner (Figure 3.3b), very much similar to
the diagram used to illustrate the Smith–Waterman and Needleman–Wunsch algorithms.
The columns for this table are denoted by m0, . . . ,mL, which correspond to a void start
position and L model positions. The rows, r0, . . . , rn, correspond to a void starting residue
and the n observed sequence residues. At any position (k, j) of this table, the next step
allowed is (a) position (k, j + 1), implying that a deletion of model position mj+1 has
occurred (→); (b) position (k + 1, j), implying that rk+1 has occurred (↓); or, lastly, (c)
position (k + 1, j + 1), implying that rk+1 is generated by model position mj+1 (↘).
Thus the path depicted by the solid arrows in Figure 3.3(b) corresponds to the following
probabilistic transitions:

m0 → i0 → i0 → i0 → d1 → m2 → m3 → i3 → END,

which is exactly the same as in Figure 3.4.
It is worthwhile to note that the hidden states for this HMM are NOT the ml’s,

but the allowable ‘paths’ that traverse the (n+ 1)× (L+ 1) table. Liu et al. (1999)
provided a slightly different formulation of this model so as to make it conform with the
conventional HMM shown in Figure 3.1. In other words, they constructed a hidden chain,
h0 → h1 → · · · → hn, that generates the observed sequence R, where each hi records
the number of deletions that have occurred till residue ri and whether ri is generated by
an insert or a match state.

3.5.2 Bayesian Estimation of HMM Parameters

Let R = (R1, . . . , Rm) be the set of sequences to be aligned, let � denote the collection
of all parameters including the transition probabilities τ and the emission probabilities
θj , and let A = (A1, . . . , Am) denote the unobserved alignment variable (i.e. for each of
the sequences an alignment path as shown in Figure 3.3(b)). For simplicity, we assume
that the emission probabilities from the ‘insert’ state are the same for all positions
and denoted as θ0. It is observed that, once the sequences are aligned (i.e. given A),
the transition probabilities, τk,l = P(sk → sl) (from any state sk to any state sl), model
emission probabilities, θj (r) = P(residue r|sk = mj ), and insertion emission probabilities
θ0 are easy to estimate:

τk,l =
Tk,l∑

states l′ Tk,l′
,

θj (r) =
Ej(r)∑

residues r ′ Ej(r
′
)
,

where Tk,l is the number of transitions from state sk to sl , and Ej(r) is the number of
residues of type r emitted from match state mj in the sequence alignment. With Dirichlet
priors (or Dirichlet Mixture priors, Sjolander et al., 1996), a Bayesian estimate of these
parameters are also easy. On the other hand, once the parameters of the HMM are given, it
is also feasible to find either the optimal or the average alignment of each sequence to the
model by using a dynamic-programming technique shown earlier (i.e. finding the optimal
path in Figure 3.3(b)). On the basis of these insights, Krogh et al. (1994a) modified a
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Baum–Welch algorithm (an earlier version of the EM algorithm, Baum, 1972) for training
the profile HMM. Baldi et al. (1994) developed a gradient descent method (Baldi et al.,
1994) for finding the MLE of �.

The foregoing heuristics that it is ‘easy’ to estimate � given A and to handle A given �

also facilitate a Bayesian MCMC approach (Churchill and Lazareva, 1999). The general
procedure is outlined in subsequent text.

• Initialization. Choose model length L (the number of ‘match’ states) and set initial
parameter values. In the absence of prior knowledge, one may let L be the average
length of all the sequences.

• Data Augmentation. Starting with �(0), we proceed for t = 1, . . . , N :

– Alignment imputation. Sample A(t+1) from P(A | R,�(t)).

– Parameter simulation. Draw �(t+1) from P(� | R,A(t+1)).

The number of iterations N may be determined dynamically on the basis of certain
convergence criteria (Liu, 2001).

• The final alignment model can be estimated in one of the following ways.

– Use the average of the �(t) in the last K iterations (K = 500, say).

– Estimate � by its posterior mode.

– One can also find an optimal alignment A∗, and then estimate � as E(� | R,A∗).

Figure 3.5 shows a simple alignment of three sequences, from which the HMM parameters
can be estimated.

In most applications, the number of match states L is not known and it is desirable
to let the data speak for itself. In some available packages for HMM-based MSA, L is
updated iteratively using heuristic rules. For example, once an alignment such as the one
shown in Figure 3.5 is produced, one can either remove certain ‘match’ positions if the
corresponding column contains more than x% deletions or add a new ‘match’ position
if more than y% of the sequences have insertions of similar types at the same place. It
is also possible to treat L as a new parameter and infer the size of HMM in a coherent
Bayesian framework. Operationally, one can insert between the alignment imputation and

m1 m2 m3 m4 m5 i6

i0 m1 m2 m3 d4 m5
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Figure 3.5 The alignment of three sequences to the profile HMM.
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parameter simulation steps of data augmentation a ‘match’ state updating step to either
add or delete a match column using the M-H rule (see the Appendix).

A key step in implementing the data augmentation procedure is the computation of the
likelihood:

P(R | �) =
∑
A
P(R | �,A)P (A | �),

because this is needed in imputing A from P(A | R,�) = P(A,R | �)/P (R | �).
Dynamic-programming recursions can be applied to complete the task with complexity
O(nmL), where m is the number of sequences, n is their average length, and L is the
number of match states. Since all the sequences in consideration are mutually independent
conditional on �, we may focus only on one sequence, that is, the computation of
P(R | �). The imputation of A for this sequence can be achieved by the following two-
stage algorithm, which is analogous to the forward–backward algorithm in Section 3.3.

Forward summation

• Initialization with fm(0, 0) = 1 and fi(0, 0) = fd(0, 0) = 0.

• Recursion:

fm(j + 1, k + 1) = θk(j + 1)[fm(j, k)τmkmk+1
+ fi(j, k)τikmk+1

+ fd(j, k)τdkmk+1
];

fi(j + 1, k + 1) = θ0(j + 1)[fm(j, k + 1)τmk+1 ik+1
+ fi(j, k + 1)τ ik+1ik+1];

fd(j + 1, k + 1) = fm(j + 1, k)τmkdk+1
+ fi(j + 1, k)τikdk+1

+ fd(i + 1, k)τdkdk+1
.

• The algorithm terminates when the (L, n)th entry is reached.

At the end, we have P(R | �) = fm(n, L)+ fi(n, L)+ fd(n, L). After the forward
summation, one can carry out the backward-sampling step to impute the alignment path
A. For a simple description, we let v() be a backward-tracing function of the three types
of states: v(m) = (−1,−1), v(i) = (−1, 0), and v(d) = (0,−1).

Backward sampling

• Start from position (n, L) and proceed as follows.

• Suppose we are at a position (x, y). Sample B from one of the three symbols ‘m’, ‘i’
and ‘d’ with probabilities proportional to fm(x, y), fi(x, y), and fd(x, y) respectively;
set an arrow from (x, y) to (x, y)+ v(B).

• Terminate when the (0, 0)th entry is reached. The path indicated by the collection of
arrows is a sample of A from distribution P(A | R,�).

Several HMM-based software packages for producing multiple protein sequence align-
ments are available, although none of them are Bayesian. HMMER was developed
by Eddy (1998) and is available at http://hmmer.wustl.edu/. SAM was devel-
oped by the UC Santa Cruz group and is available at http://www.soe.ucsc.edu/
projects/compbio/HMM-apps/HMM-applications.html. It uses Dirichlet
Mixture prior on amino acid emission probabilities.
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3.5.3 PROBE and Beyond: Motif-based MSA Methods

Aligning distantly related sequences presents unique algorithmic and statistical challenges
because often such proteins only share a minimal structural core with sizable insertions
occurring between, and even within, core elements. Classical dynamic programming-based
multiple alignment procedures typically have considerable difficulty spanning these insert
regions because the log-odds scores associated with weakly conserved core elements are
often too low to offset the substantial gap penalties that such insert regions incur. This
problem is further exacerbated when core elements contain short insertions or deletions
within them.

Although the standard HMM is flexible enough to model multiple related sequences,
a large number (over 100) of unaligned sequences is usually required in order to train
an HMM with flexible gap penalties due to the large number of parameters present in
the model. In order to detect and align more distantly related proteins, one has to further
constrain the profile HMM model in a biologically meaningful way. The block-motif
propagation model utilized in PROBE (Neuwald et al., 1997; Liu et al., 1999) achieves
this type of parameter reduction by focusing on the alignment composed of block motifs.

A block motif is a special HMM that allows no insertions or deletions among the
match states. The propagation model consists of a number of block motifs, as shown in
Figure 3.6. The gaps between blocks, corresponding to gaps in an HMM, can be modeled
by a probability distribution other than the geometric one implied by the standard HMM.
PROBE also uses a Bayesian procedure for selecting the sizes of the blocks and the
number of blocks.

The propagation model assumes that there are L conserved ‘blocks’ for each sequence
to be aligned, and the lth block of residues is of length wl . We can imagine that L
motif elements propagate along a sequence. Insertions are reflected by gaps between
adjacent blocks. No deletions are allowed, but it is possible to relax this constraint by
treating each block as a mini-HMM. Again, let � be the collection of all parameters
needed in the propagation model (e.g. the motif profile matrices, background frequencies,
and parameters characterizing the distribution of gaps between motif blocks) and let the
alignment variable A = (A1, . . . , AL) = (ak,l)K×L be a matrix with ak,l indicating the
starting position of the lth motif element in sequence k (Figure 3.6). Note that both �

and A in this model are of much smaller dimensions compared to their counterparts in
the HMM because of the block-motif constraint.

The alignment variable A as represented by the locations of the motif elements is not
observable. But once it is known, we can write down the likelihood P(R | A,�) (details
can be found in Liu et al. 1999), from which we can make Bayesian inference on � easily.
On the other hand, once � were given, we could impute A by a draw from P(A | R,�),
which can be achieved using a forward–backward method similar to that in Section 3.3.
Thus, we can again implement a data augmentation strategy to iterate between sampling
of A and �. In PROBE, a ‘collapsing’ technique (Liu, 1994) is employed to further
improve the efficiency of the computation.

ak,1 ak,2 ak,L
Sequence k ......

Figure 3.6 An illustration of the propagation model in Liu et al. (1999).



BAYESIAN METHODS IN BIOLOGICAL SEQUENCE ANALYSIS 83

The number of motifs L and the total number of motif columns W = w1 + · · · + wL
are treated as random variables and selected according to an approximate Bayesian
criterion. PROBE is also one of the earliest algorithms implementing the iterative
database search process. Similar to PSI-BLAST, PROBE first uses BLAST to get the
first-order relatives of the query sequence and aligns them to produce a block-motif
profile. Then, it uses the constructed profile to find more relatives and further refine the
alignment. It stops when no new relatives are found. It has been shown that PROBE is
a very sensitive method for detecting distantly related proteins and capturing very weak
similarities (Hudak and McClure, 1999; Neuwald et al., 1997). The program is available
at ftp://ftp.ncbi.nih.gov/pub/neuwald/probe1.0/.

A serious limitation of PROBE is that it does not allow gaps within conserved blocks.
Neuwald and Liu (2004) recently extended the method to allow indels in conserved
blocks–previous ungapped blocks are replaced by local HMMs. They have also described
a few MCMC strategies for optimizing the alignment and for adjusting position-specific
amino acid frequencies and gap penalties, and implemented them in the software package
‘GISMO’. The new alignment method was applied to a statistically based approach called
contrast hierarchical alignment and interaction network (CHAIN) analysis, which infers
the strengths of various categories of selective constraints from co-conserved patterns in a
multiple alignment (Neuwald et al., 2003). The power of this approach strongly depends
on the quality of the multiple alignments.

The programs MUSCLE (Edgar, 2004a; 2004b) and MAFFT (Katoh et al., 2002) are
also designed to avoid alignment of nonhomologous regions, and in other respects they are
generally superior to more widely used multiple alignment programs, such as ClustalW
and T-coffee (Notredame et al., 2000). Because MUSCLE and MAFFT can handle large
data sets, Neuwald explored the use of these programs for CHAIN analysis (personal
communication). Somewhat surprisingly, these failed to achieve the degree of accuracy
needed to detect subtle, co-conserved patterns, such as those recently identified and
structurally confirmed within P loop GTPases (Neuwald et al., 2003). We found that,
although these programs align regions globally conserved in the sequences well, for
several large test sets they failed to accurately align regions conserved only within more
closely related subsets. This is, of course, a major drawback to their general application
for CHAIN analysis. By contrast, PSI-BLAST (Altschul et al., 1997), which seems less
likely to produce high-quality global alignments given its simple alignment procedure,
nevertheless, in many cases, does a better job of aligning database sequences relative to
the query.

MUSCLE and MAFFT perform well on small sets of relatively diverse representative
sequences, such as the BALIBASE benchmark sets (Bahr et al., 2001), because they
incorporate heuristics that unfortunately can also compromise statistical rigor and, as
a result, confuse random noise with biologically valid homology. Statistically, the best
alignment for random sequences is the ‘null alignment’, that is, the procedure should
leave such sequences unaligned.

3.5.4 Bayesian Progressive Alignment

Owing to its use of MCMC in profile estimation, PROBE (and its later extension) is very
slow. Another limitation of PROBE is its inflexibility in introducing gaps within block
motifs. As mentioned earlier, the HMM-based model can allow for flexible gaps, but it
needs many sequences in order to estimate the excessive number of parameters well. In
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contrast, PSI-BLAST produces multiple alignment progressively without having to iterate
and can accommodate gaps in motif in a biologically meaningful fashion because of its use
of BLAST (a motif-based approach). To combine the attractive features of PSI-BLAST
and PROBE, Logvinenko (2002) proposed a Bayesian progressive alignment procedure
based on a sequential Monte Carlo principle (Liu, 2001).

The algorithm starts by aligning the query sequence R(1) to each of the other sequences
in a set, R(2), · · · , R(n), by a gap-based Bayesian local alignment method (similar to the
one described in Section 3.4.1.1). The set of sequences can be either given in advance or
obtained by an iterative BLAST search as in PSI-BLAST. The sequences are then sorted
according to their distances from R(1) derived on the basis of the pairwise alignments. A
position-specific profile matrix � = (θ̂dl)20,l1 is constructed on the basis of the alignment
of R(1) to its closest relative, R(2), and then to R(3), and so on. Each time a new sequence
is introduced, the profile is updated on the basis of the new alignment. As in PSI-
BLAST, sequence-weighing strategy of Henikoff and Henikoff (1994) is used in profile
computation to avoid overrepresentation of closely related sequences.

In producing the progressive alignment, a Dirichlet Mixture prior distribution (Sjolander
et al., 1996) is used for amino acid emission probabilities:

P(θ) ∼
K∑
k=1

pk
�(α

(k)
1 + · · · + α(k)20 )

�(α
(k)
1 ) · · ·�(α(k)20 )

θ
α
(k)

1 −1
1 · · · θα

(k)

20 −1
20

For every column l of the alignment, residue counts m(l) = (m(l)1 , · · · , m(l)20) follow
Multinom (θl) distribution. Profile entries are set to be predictive probabilities of the
residues:

θ̂d,l =
∫

θl

θd,lP (θl | ml)dθl ∝
∫

θl

θd,lP (m | θl)P (θl)dθl .

As in Section 3.4.1.1 a dynamic-programming type recursion is used to compute
P(R, � | �) = p(n, L):

pm(k, l) = p(k − 1, l − 1)θ̂rkl ,

pi(k, l) = {λepi(k − 1, l)+ λopm(k − 1, l)},
pd(k, l) = {λepd(k, l − 1)+ λopm(k, l − 1)+ λopi(k, l − 1)},
p(k, l) = pm(k, l)+ pi(k, l)+ pd(k, l);

where � = (λo, λe) are the gap opening and extension probabilities; L is the number of
positions in the profile; and θ̂rk l is a profile entry corresponding to residue rk in lth column
of the alignment. A backward-tracing procedure analogous to that in Chapter 2 is used
to obtain an alignment.

After all the sequences are incorporated into an alignment, a Gibbs Sampling step is
used to improve on its quality. Each sequence R(i) is removed in turn and realigned to
the others. The profile is updated accordingly. Although this additional step makes the
procedure relatively slow, the resulting alignment is less prone to be only locally optimal.
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3.6 FINDING RECURRING PATTERNS IN BIOLOGICAL SEQUENCES

Our focus here is on the discovery of repetitive patterns (often termed as motif elements)
in a given set of biopolymer sequences. The main motivation for this task is that these
motif elements often correspond to the functionally or structurally important part of these
molecules. For instance, repetitive patterns in the upstream regions of coregulated genes
may correspond to a ‘regulatory motif’ to which certain regulatory protein binds so as
to control gene expressions (Stormo and Hartzell, 1989; Lawrence and Reilly, 1990).
Without loss of generality, we concatenate all the sequences in the dataset to form one
‘supersequence’ R. The multiple occurrences of a motif element in R is thus analogous
to the multiple occurrences of a word in a long sentence. It is of interest to find out what
this motif is and where it has occurred. What makes this problem challenging is that the
motif occurrences are not necessarily identical to each other. In other words, there are
often some ‘typos’ in each occurrence of the word. It is therefore rather natural for us to
employ probabilistic models to handle this problem.

3.6.1 Block-motif Model with iid Background

A simple model conveying the basic idea of a motif that repeats itself with random
variations is the block-motif model as shown in Figure 3.7. It was first developed by Liu
et al. (1995) and has been employed to find subtle repetitive patterns, such as helix-turn-
helix structural motifs (Neuwald et al., 1995) in protein sequences and gene regulation
motifs (Roth et al., 1998; Liu et al., 2001; 2002) in DNA sequences.

The model assumes that at unknown locations A = (a1, . . . , aK) there are realized
instances of a motif so that the sequence segments at these locations look similar to each
other. In other parts of the sequence, the residues (or base pairs) follow a ‘background
model’ represented as iid observations from a multinomial distribution. Since the motif
region is a very small fraction of the whole sequence, it is not unreasonable to assume
that the background frequency θ0 = (θ0,a, . . . , θ0,t ) is known in advance. For the motif of
width w, we let 
 = [θ1, . . . , θw], where each θj describes the base frequency at position
j of the motif. The matrix 
 is simply the profile matrix for the motif.

To facilitate analysis, we introduce an indicator vector I = (I1, . . . , In), where n is the
length of R. We let I[−i] be the vector of I ’s without Ii . Here, Ii = 1 means that position
i is the start of a motif pattern, and Ii = 0 means otherwise. We assume a priori each Ii
has a small probability p0 to be equal to 1. With this setup, we can write down the joint
posterior distribution:

P(
, I | R) ∝ P(R | I,
)P (I | 
), f0(θ), (3.9)

where P(I | 
) ∝ ∏n
i=1 p

Ii
0 (1− p0)

1−Ii . If we do not allow overlapping motifs, we need
to restrict that in I there is no pair Ii = 1 and Ij = 1 with |i − j | < w.

a1 aka2

w

Figure 3.7 A graphical illustration of the repetitive motif model.
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With a prior Dirichlet (α) for each θj , we can easily obtain the posterior distribution
of the θj if we know the positions of the motif (Liu et al., 1995). Thus, a simple Gibbs
sampling algorithm can be designed to draw 
 and I from (3.9):

• For a current realization of 
, we update each Ii , i = 1, . . . , n, by a random draw
from its conditional distribution, P(Ii | I[−i], R,
), where

P(Ii = 1 | I[−i], R,
)
P (Ii = 0 | I[−i], R,
)

= p0

1− p0

w∏
k=1

(
θk,ri+k−1

θ0,ri+k−1

)
. (3.10)

Intuitively, this odds ratio is simply the ‘signal-to-noise’ ratio.

• On the basis of the current value of I, we update the profile matrix 
 column by
column. In other words, each θj , j = 1, . . . , w, is drawn from an appropriate posterior
Dirichlet distribution determined by I and R.

After a burn-in period (until the sampler stabilizes), we continue to run the sampler for
m iterations and use the average of the sampled 
’s to estimate the profile matrix. The
estimated 
 can then be used to scan the sequence to find the locations of the motif.

3.6.2 Block-motif Model with a Markovian Background

It is well known that the iid multinomial distribution cannot model a DNA or protein
sequence (background) well. In particular, Liu et al. (2001; 2002) showed that use of a
second- or third-order Markov model for the background can significantly improve the
motif-finding capability of the method. For simplicity, here we describe only the first-
order Markov background model, where a 4× 4 transition matrix, B0 = (βjj ′), needs to
be estimated. Since the total number of base pairs occupied by motif sites is a very small
fraction of all the base pairs in R, we may estimate B0 from the raw data directly, assuming
that the whole sequence of R is homogeneous. With this approximation, the transition
probabilities can be estimated as β̂j1j2

= nj1j2
/nj1·, similar to that in Section 3.3. We may

then treat B0 as a known parameter.
The joint posterior distribution of (
, I) in this case differs from (3.9) only in the

description of the residues in the background. The Gibbs sampler can also be similarly
implemented with a slight modification in P(Ii | I[−i], R,
). In other words, conditional
on R, we slide 
 through the whole sequence position by position to update Ii according
to a random draw from P(Ii | I[−i], R,
), which satisfies

P(Ii = 1 | I[−i], R,
)
P (Ii = 0 | I[−i], R,
)

= p0

1− p0

w∏
k=1

(
θk,ri+k−1

β̂ri+k−2ri+k−1

)
.

For given I, we update the profile matrix 
 in the same way as in Section 3.6.1.

3.6.3 Block-motif Model with Inhomogeneous Background

It has long been noticed that DNA sequences contain regions of distinctive compositions.
As discussed in Section 3.3, an HMM can be employed to delineate a sequence with k
types of regions. Suppose we decide to use an HMM to model sequence inhomogeneity.
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As mentioned earlier, we may estimate the background model parameters using all the
sequences by the methods in Section 3.3, assuming that R does not contain any motifs.
Then, we can treat these parameters as known at the estimated values and use one of the
following two strategies to modify the odds ratio formula (3.10).

In the first strategy, we treat each position in the sequence as a ‘probabilistic base pair’
(i.e. having probabilities to be one of the four letters) and derive its frequency. In other
words, we need to find θ∗ij = p(r∗i = j | R) for a future r∗i and then treat residue ri in the
background as an independent observation from Multinom (θ∗i ), with θ∗i = (θ∗ia, . . . , θ∗it ).
But this computation is nontrivial because

θ∗ij = P(r∗i = j |R) = θ0jP (hi = 0|R)+ θ1jP (hi = 1|R), (3.11)

where P(hi) can be computed via a recursive procedure similar to (3.3). More precisely,
in addition to the series of forward functions Fi , we can define the backward functions
Bi . Let Bn(h) =

∑
hn
τhhnθhnrn , and let

Bk(h) =
∑
hi

{
τhhi θhi riBk+1(hi)

}
, for k = n− 1, . . . , 1. (3.12)

Then, we have

P(hi = 1 | R) = Fi(1)Bi+1(1)

Fi(1)Bi+1(1)+ Fi(0)Bi+1(0)
. (3.13)

This is the marginal posterior distribution of hi and can be used to predict whether
position i is in state 1 or 0. Thus, in the Gibbs sampling algorithm we only need to
modify the denominator of the right-hand side of (3.10) as

∏i+w−1
k=i θ∗k,ri .

In the second strategy, we seek to obtain the joint probability of a whole segment,
R[i:i+w−1] ≡ (ri, . . . , ri+w−1), conditional on the remaining part of the sequence. Then we
modify (3.10) accordingly. Clearly, compared with the first strategy, the second one is
more faithful to the compositional HMM assumption. The required probability evaluation
can be achieved as follows:

P(R[i:i+w−1] | R[1:i−1], R[i+w:n]) =
P(R)

P (R[1:i−1], R[i+w:n])
= P(R)∑

h P(R[1:i−1], R[i+w:n],h)

= Fn(0)+ Fn(1)∑
h1,...,hw

Fi(h1)τh1h2
· · · τhw−1hw

Bi+w(hw)
, (3.14)

where the denominator can also be obtained via recursions.

3.6.4 Extension to Multiple Motifs

Earlier, we have assumed that there is only one kind of motif in the sequence and the
prior probability for each Ii = 1 is known as p0. Both of these assumptions can be
relaxed. Suppose we want to detect and align m different types of motifs of lengths
w1, . . . , wm, respectively, with each occurring unknown number of times in R. We can
similarly introduce the indicator vector I, where Ii = j indicates that an element from
motif j starts at position i, and Ii = 0 means that no element starts from position i. For
simplicity, we consider only the independent background model.
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Let P(Ii = j) = εj , where ε0 + · · · + εm = 1, is an unknown probability vector. Given
what is known about the biology of the sequences being analyzed, a crude guess kj for
the number of elements for motif j is usually possible. Let k0 = n− k1 − · · · − km. We
can represent this prior opinion about the number of occurrences of each type of elements
by a Dirichlet distribution on ε = (ε0, . . . , εm), which has the form Dirichlet (b0, . . . , bm)

with bj = J0
kj
n

, where J0 represents the ‘weight’ (or ‘pseudo-counts’) to be put on this
prior belief. Then the same predictive updating approach as illustrated in Section 3.6.1
can be applied. Precisely, the update formula (3.10) for I is changed to

P(Ii = j | I[−i], R)
P (Ii = 0 | I[−i], R)

= εj
ε0

wj∏
k=1

(
θ
(j)

k,ri+k−1

θ0,ri+k−1

)
,

where 
(j) = [θ(j)1 , . . . , θ
(j)
wj ] is the profile matrix for the j th motif. Conditional on I, we

can then update ε by a random sample from Dirichlet(b0 + n0, . . . , bm + nm), where nj
(j > 0) is the number of motif type j found in the sequence, that is, the total number of
is such that Ii = j , and n0 = n−

∑
nj .

3.6.5 HMM for cis Regulatory Module Discovery

Motif predictions in high eukaryotes such as human and mouse are more challenging
than that for simpler organisms, partly owing to the weak motif signals, larger sizes of
promoter regions, and difficulties in identifying transcription start sites. In these higher
organisms, regulatory proteins often work in combination to regulate target genes, and
their binding sites have often been observed to occur in spatial clusters, or cis-regulatory
modules (CRMs). One approach to locating CRMs is by predicting novel motifs and
looking for co-occurrences (Sinha and Tompa, 2002). However, since individual motifs
in the cluster may not be well conserved, such an approach often leads to a large number
of false negatives. To cope with these difficulties, one can use HMMs to capture both the
spatial and contextual dependencies of the motifs in a CRM and use MCMC sampling
to infer the CRM models and locations (Thompson et al., 2004; Zhou and Wong, 2004).
Gupta and Liu (2005) introduced a competing strategy, which first uses existing de novo
motif-finding algorithms and/or TF databases to compose a list of putative binding motifs,
D = {
1, . . . ,
D}, whereD is in the range of 50 to 100, and then simultaneously updates
these motifs and estimates the posterior probability for each of them for inclusion in the
CRM.

Let S denote the set of n sequences with lengths L1, L2, . . . , Ln, respectively, corre-
sponding to the upstream regions of n coregulated genes. We assume that the CRM
consists of K (<D) different kinds of TFs with distinctive position-specific weight
matrices (PWMs, which are just a special sequence HMM that do not allow for any
gaps). Both the PWMs and K are unknown and need to be inferred from the data. Let
a = {aij ; i = 1, . . . , n; j = 1, . . . , Li}, where ai,j denotes the location of the j th motif
site (irrespective of motif type) in the ith sequence. Associated with each site is its type
indicator Ti,j , with Ti,j taking one of the K values (Let T = (Tij )). We model the depen-
dence between Ti,j and Ti,j+1 by a K ×K transition matrix τ. The distance between
neighboring TF binding sites in a CRM, dij = ai,j+1 − ai,j , is assumed to follow the
distribution Q(d; λ,w) = (1− λ)d−wλ (d = w,w + 1, . . .). The background sequence
follows a multinomial distribution with unknown parameter ρ = (ρA, . . . , ρT ). Finally,



BAYESIAN METHODS IN BIOLOGICAL SEQUENCE ANALYSIS 89

we let u be a binary vector indicating which motifs are included in the module, that is,
u = (u1, . . . uD)

T , where uj = 1 if the j th motif type is present in the module, and 0 other-
wise. By construction, |u| = K . The set of PWMs for the CRM is then θ = {
j : uj = 1}.

Since we now restrict our inference of CRM to a subset of D, the probability model for
the observed sequence data can be written out explicitly as in Gupta and Liu (2005). To
implement the Bayesian analysis, we prescribe a joint prior distribution on the unknown
parameters, � = (D, τ, λ,ρ), and a prior probability of π for each ui = 1. A Gibbs
sampling approach was developed in Thompson et al. (2004) to sample both � and u
from their joint posterior distribution. But given the flexibility of the model and the
size of the parameter space for an unknown u, it is unlikely that a standard MCMC
approach can converge to a good solution in a reasonable amount of time. If we ignore
the ordering of sites T and assume components of a to be independent, this model is
reduced to the original motif model, which can be updated through the previous Gibbs or
data augmentation (DA) procedure.

The following strategy was developed in Gupta and Liu (2005). With a starting set of
putative binding motifs D, we iterate the following Monte Carlo sampling steps: (1) Given
the current collection D of motif PWMs (or sites), sample motifs into the CRM; (2) Given
the CRM configuration and the PWMs, update the motif site locations through DA; and (3)
Given motif site locations, update the corresponding PWMs and other parameters. Since
the construction of a CRM in our formulation is done by using an indicator variable D,
it is natural to use a genetic-type algorithm to speed up computation. So we implemented
an evolutionary Monte Carlo (Liang and Wong, 2000) strategy for the module inference,
and obtained very good results for a range of examples.

3.7 JOINT ANALYSIS OF SEQUENCE MOTIFS AND EXPRESSION
MICROARRAYS

A highly successful tactic for TF motif discoveries is to cluster genes based on their
expression profiles, and search for motifs in the sequences upstream of tightly clustered
genes (Spellman et al., 1998). When noise is introduced into the cluster through spurious
correlations, however, such an approach may result in many false positives. A filtering
method based on the specificity of motif occurrences has been shown to effectively
eliminate false positives (Hughes et al., 2000). An iterative procedure for simultaneous
gene clustering and motif finding has been suggested (Holmes and Bruno, 2000), but no
effective algorithms were implemented to demonstrate its advantage.

Two methods for discovering TF motifs via the association of gene expression values
with k-mer abundance have been proposed by Bussemaker et al. (2001) and Keles et al.
(2002). These approaches operate under the explicit assumption that, in response to a
given biological condition, the effect of a TF motif is strongest among genes with the
most dramatic increase or decrease in mRNA expression. In Bussemaker et al. (2001),
all the k-mers (k ranging from 5 to 7, say) are first enumerated. Then, for any k-mer, the
number ng of its occurrence in the promoter region (defined as the 800 base pair segment
upstream of the transcription start site for the baker’s yeast) of each gene g is counted. A
regression model is then fit between the expression level yg of the gene and ng , and those
k-mers whose occurrences are significantly correlated with the gene expression values are
regarded as potential TF motifs.
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As an alternative to the k-mer approach, Conlon et al. (2003) provide a motif regres-
sion approach to further utilize gene expression information or experimental data from
chromatin immunoprecipitation combined with microarrays (often called ChIP-chip) to
help motif discovery. They first use a fast and sensitive motif-finding method, such as
BioProspector, MEME, or MDscan (Liu et al., 2002) to generate a large set of putative
motifs that are enriched in the DNA sequence upstream of genes with the highest fold
changes in mRNA level relative to a control condition. Then, they conduct a stepwise
linear regression to select candidates that correlate with the microarray expression data.
Tadesse et al. (2004) later presented a Bayesian version of a similar approach. To alleviate
the dependence of the linearity and Gaussian assumptions, Das et al. (2004) suggested
an approach using MARS, and Zhong et al. (2005) designed a modified slice inverse
regression approach, which also effectively reduces the dimensionality without assuming
linearity.

An interesting and bold approach for combining multiple expression microarrays and
TF motif analysis is given by Beer and Tavazoie (2004), where they aspired to ‘predict
gene expression’ using only sequence information. To state briefly, they first collected 255
cDNA microarray datasets and used a tight clustering procedure to produce 49 clusters
for ∼2600 yeast genes (the remaining 3000+ genes were excluded from this analysis
because they cannot be clustered ‘tightly’ enough). For each cluster, they used AlignACE
(Roth et al., 1998) to conduct de novo motif search among the promoter regions of the
genes in the cluster, retaining 5–15 top motifs. The 49 clusters gave rise to a total of 615
motifs. They further conducted an optimization procedure to make each predicted motif
more specific to their corresponding cluster, and added 51 experimentally derived motifs
reported by Harbison et al. (2004). With the 666 motifs in hand, they then trained 49
Bayes network models to predict each gene’s cluster membership based only on its motif
occurrence scores, putative motif site positions, and orientations. They showed that their
procedure yielded an impressive 71 % accuracy in a fivefold cross-validation experiment
(compared to ∼20 % under random gene order). However, it is interesting to note that
their cross-validation procedure is flawed as they have used the cluster information in
their motif-finding and motif optimization step, which could lead to an overly optimistic
result. Furthermore, their Bayes network model seems to be too heavy for the data in
hand. Indeed, our recent preliminary study showed that perhaps they overestimated their
procedure’s accuracy by about 15 % and that a simpler Naive Bayes procedure can be as
accurate or more accurate than their Bayes network model.

3.8 SUMMARY

This article has reviewed a few statistical models used in biological sequence analysis, the
corresponding Bayesian formulations, and related computational strategies. As in classical
statistics, optimization has been the primary tool in computational biology, where point
estimates of very high-dimensional objects obtained by dynamic programming or other
clever computational methods are used. Characterizations of uncertainty in these estimates
are mostly limited to simple significance test or completely ignored. The marginalization
of nuisance parameters is also problematic, and is most frequently done using the profile
likelihood method in which the nuisance parameters are fixed at their best estimates.
In comparison, the Bayesian method has no difficulties in these important aspects:



BAYESIAN METHODS IN BIOLOGICAL SEQUENCE ANALYSIS 91

the uncertainty in estimation is addressed by posterior calculations and the nuisance
parameters are removed by summation and integration. In exchange for these advantages,
however, one needs to set prior distributions and overcome computational hurdles,
neither of which are trivial in practice. Recursion-based Bayesian algorithms generally
have time and space requirements of the same order as their dynamic-programming
counterparts. For those problems where there is no polynomial time solution, MCMC
methods (and other Monte Carlo methods) provide an effective means to implement
Bayesian analysis.
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APPENDIX A: MARKOV CHAIN MONTE CARLO METHODS

Metropolis–Hastings Algorithm. Let π(x) = c exp{−h(x)} be the target distribution
with unknown constant c. Metropolis et al. (1953) introduced the fundamental idea of
Markov chain sampling and prescribed the first general construction of such a chain.
Hastings (1970) later provided an important generalization. Starting with any configuration
x(0), the M-H algorithm evolves from the current state x(t) = x to the next state x(t+1) as
follows:

• Propose a new state x′ that can be viewed as a small and random ‘perturbation’ of the
current state. More precisely, x′ is generated from a proposal function T (x(t) → x′)
(i.e. it is required that T ≥ 0 and

∑
all y T (x → y) = 1 for all x) determined by the

user.

• Compute the Metropolis ratio

r(x, x′) = π(x
′)T (x′ → x)

π(x)T (x → x′)
. (3A.1)

• Generate a random number u ∼ Unif [0,1].

– Let x(t+1) = x′ if u ≤ r(x, x′).
– Let x(t+1) = x(t) otherwise.

A more well-known form of the Metropolis algorithm is obtained by iterating the
following steps: (a) a small random perturbation of the current configuration is made; (b)
the ‘gain’ (or loss) in an objective function (i.e. −h(x)) resulting from this perturbation
is computed; (c) a random number U is generated independently; and (d) the new
configuration is accepted if log(U) is smaller than or equal to the ‘gain’, and is rejected
otherwise. The well-known simulated annealing algorithm (Kirkpatrick et al., 1983) is
built upon this basic Metropolis iteration with an additional twist of including an adjustable
exponential scaling parameter to the objective function (i.e. π(x) is scaled to πα(x) and
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α→ 0). Metropolis et al. (1953) restricted their choices of the ‘perturbation’ function
to be the symmetric ones, that is, T (x → x′) = T (x′ → x). Hastings (1970) generalized
the choice of T to all those that satisfy the property: T (x → x′) > 0 if and only if
T (x′ → x) > 0.

Heuristically, π can be seen as a ‘fixed point’ under the M-H operation in the space
of all distributions. It follows from the standard Markov chain theory that if the chain is
irreducible (i.e. it is possible to go from anywhere to anywhere else in a finite number of
steps), aperiodic (i.e. there is no parity problem), and not drifting away, then in the long
run the chain will settle in its invariant distribution (Liu, 2001). The random samples so
obtained eventually are like those drawn directly from π .

Gibbs Sampler. Suppose x = (x1, . . . , xd). In the Gibbs sampler, one randomly or
systematically chooses a coordinate, say x1, and then updates its value with a new sample
x ′1 drawn from the conditional distribution π(· | x[−1]), where x[−A] refers to {xj , j ∈ Ac}.
Algorithmically, the Gibbs sampler can be implemented as follows:

Random Scan Gibbs sampler. Suppose currently x(t) = (x(t)1 , . . . x
(t)
d ).

• Randomly select i from{1, . . . , d} according to a given probability vector (α1, . . . , αd).

• Let x(t+1)
i be drawn from the conditional distribution π(· | x(t)[−i]), and let x(t+1)

[−i] = x(t)[−i].

Systematic Scan Gibbs sampler. Let the current state be x(t) = (x(t)1 , . . . x
(t)
d ).

• For i = 1, . . . , d , we draw x(t+1)
i from the conditional distribution

π(xi | x(t+1)
1 , . . . , x

(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
d ).

The Gibbs sampler’s popularity in statistics community stems from its extensive use of
conditional distributions in each iteration. Tanner and Wong (1987)’s data augmentation
first linked the Gibbs sampling structure with missing data problems and the EM
algorithm. Gelfand and Smith (1990) further popularized the method by pointing out that
the conditionals needed in Gibbs iterations are commonly available in many Bayesian
and likelihood computations.

Other Techniques. A main problem with all MCMC algorithms is that they may, for
some problems, move very slowly in the configuration space or may be trapped in the
region of a local mode. This phenomena is generally called slow-mixing of the chain.
When chain is slow-mixing, estimation based on the resulting Monte Carlo samples
can be very inaccurate. Some recent techniques suitable for designing more efficient
MCMC samplers in bioinformatics applications include simulated tempering, parallel
tempering, multicanonical sampling, multiple-try method, and evolutionary Monte Carlo.
These and some other techniques are summarized in Liu (2001). Some more discussions
and applications of MCMC can also be found in Chapters 8, 15, and 26.
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Finding genes in genomic DNA is a foremost problem of molecular biology. With the ongoing
genome sequencing projects producing large quantities of sequence data, computational gene
prediction is the major instrument for the identification of new genes. Usually, gene-finding
programs accurately predict most coding exons in analyzed sequences, while producing a complete
set of exact gene structures in any genome is still unsolved and difficult task, complicated by
the large amount of gene variants generated by alternative splicing, alternation promoters and
alternative polyadenylation sites. Nevertheless using gene prediction, the scientific community is
now able to start experimental work with the majority of genes in dozens of sequenced genomes.
Therefore, computational methods of gene identification have attracted significant attention of
the genomics and bioinformatics communities. This chapter presents a comprehensive description
of advanced probabilistic and discriminative gene-prediction approaches such as Hidden-Markov
Models and pattern-based algorithms. We have described the structure of functional signals and
significant gene features incorporated into the programs to recognize protein-coding genes. We have
presented comparative performance data for a variety of gene structure identification programs
and discussed some experiences in annotation of sequences from genome sequencing projects.
A complex approach for finding promoters and pseudogenes have been considered as well as
evaluation of their accuracy in annotation of human genome sequences. Finally, we described
structural features and expression of miRNA genes and some computational methods for miRNA
gene identification in genomic sequences as well as computational methods of finding miRNA
targets.

4.1 STRUCTURAL ORGANIZATION AND EXPRESSION OF
EUKARYOTIC GENES

The gene is the unit of inheritance encoded by a segment of nucleic sequence that
carries the information representing a particular polypeptide or RNA molecule. A two-
stage process comprising transcription and translation makes use of this information.
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Transcription (or pre-mRNA synthesis on a DNA template) involves initiation, elongation
and termination steps. RNA polymerase catalyzing RNA synthesis binds a special region
(promoter) at the start of the gene and moves along the template, synthesizing RNA,
until it reaches a terminator sequence. Posttranscriptional processing of mRNA precursors
includes capping, 3′-polyadenylation and splicing. The processing events of mRNA
capping and polyA addition take place before pre-mRNA splicing finally produces the
mature mRNA. The mature mRNA includes sequences that correspond exactly to the
protein product according to the rules of the genetic codes, called exons. The genomic
gene sequence often includes noncoding regions called introns that are removed from
the primary transcript during RNA splicing. Eukaryotic pre-mRNA is processed in the
nucleus and then transported to the cytoplasm for translation (protein synthesis). The
sequence of mRNA contains a series of triplet codons that interact with the anticodons
of aminoacyl-tRNAs (carrying the amino acids) so that the corresponding series of
amino acids is incorporated into a polypeptide chain. The small subunit of the ribosome
binds to the 5′-end of mRNA and then migrates to the special sequence on mRNA
(prior to the start codon) called the ribosome binding site, where it is joined by a large
ribosome subunit forming a complete ribosome. The ribosome initiates protein synthesis
at the start codon (AUG in eukaryotes) and moves along the mRNA, synthesizing the
polypeptide chain, until it reaches a stop codon sequence (TAA, TGA or TAG), where
release of polypeptide and dissociation of the ribosome from the mRNA take place.
Many proteins undergo posttranslational processing (i.e. covalent modifications such as
proteolytic cleavage, attachment of carbohydrates and phosphates) before they become
functional. The expression stages and the structural organization of a typical eukaryotic
protein-coding gene including associated regulatory regions is shown in Figure 4.1.
Figure 4.2 illustrates how one DNA sequence may code for multiple proteins due to
alternative promoters or terminators and alternative splicing. These processes significantly
complicate ab initio computational gene finding.

Enhancer
3′-

Core promoter

Start of
transcription

Transcription, 5′-Capping and 3′-polyadenilation

5′-non-coding
exon

3′-non-coding
exon

Poly-A
signalInternal exons

Introns

ATG-
codon

Stop-
codon

Translation

Splicing (removing of intron sequences)

Pre-mRNA

mRNA

Protein

5′-

Figure 4.1 Expression stages and structural organization of typical eukaryotic protein-coding gene
including its regulatory regions.
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Alternative promoters:

PolyA2Exon 3Exon 1 PolyA1Exon 2Promoter 2Promoter

Alternative splice sites:

Alternative PolyA signals:

Figure 4.2 Alternative gene products coded by the same DNA region.

Information describing structural gene characteristics is accumulated in the GenBank
(Benson et al., 1999) and the EMBL (Kanz et al., 2005) nucleotide sequence databases.
However, these databases mostly contain annotations of genome fragments. Therefore, one
gene can be described in dozens of entries containing partially sequenced gene regions or
alternative splicing forms of its mRNA. The value of public availability of predicted genes
was recognized during human genome sequencing by creating the InfoGene database
(Solovyev and Salamov, 1999), which contained descriptions of known and predicted
genes and their basic functional signals. Later, a few big research groups developed
powerful specialized WEB accessible recourses, where various annotations of different
genomes are stored and can be interactively analyzed: University of California Santa Cruz
(USSC) Genome Browser (Kent et al., 2002) and Ensembl genome database (Hubbard
et al., 2002). Some big sequencing centers such as The Institute for Genomic Research
(TIGR) and Joint Genomic Institute (JGI) produce and present annotation of specific
genomes at their Web servers.

Table 4.1 shows the major structural characteristics of human genes deposited to
GenBank (Release 116).

41 % of sequenced human DNA consists of different kinds of repeats. Only ∼3 % of
the genome sequence contains protein-coding exon sequences. Characteristics of genes in
major model organisms such as mouse, Drosophila melanogaster, Caenorhabditis elegans,
S. cerevisiae and Arabidopsis thaliana are presented in Table 4.2.

In general, there is no big difference in the size of protein-coding mRNAs in different
types of organisms, but the gene sizes are often higher in vertebrates and especially
in primates. Human coding exons are significantly shorter than the sizes of genes. The
average size of the exons is about 190 bp that is close to the DNA length associated with
the nucleosome particle. There are many exons as short as a few bases. For example, the
human pleiotrophin gene (HUMPLEIOT ) includes a 1-bp exon and one of the alternative
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Table 4.1 Structural characteristics of human genes.∗

Gene features Numbers from Infogen

CDS/partially sequenced CDS 48 088/26 584
CDS length (minimal, maximal, average) 15, 80 781, 1482
Exons/partially sequenced exons 72 488/19 392
Genes/partially sequenced genes 18 429/14 385
Alternative splicing 12 %

Pseudogenes 8.5 %
Genes without introns 8 %
Number of exons (maximal, average) 117, 5.4
Exon length (range, average) 1–10 088, 195
Intron length (maximal, average) 185 838, 2010
Gene length (maximal, average) 401 910, 7865
Repeats in genome 41 % of total DNA
DNA occupied by coding exons 3 %

∗The numbers reflect genes described in GenBank, which might deviate from the average parameters for the
organism. Gene numbers were calculated for DNA loci only. Many long genes have partially sequenced introns,
therefore average sizes of genes and introns are actually bigger. The average numbers of exons and gene lengths
were calculated for completely sequenced genes only.
CDS: protein CoDing Sequences.

forms of the human folate receptor (HSU20391 ) gene contains a 3-bp exon. Coding exons
can also be very short.

The human myosin-binding protein gene (HSMYBPC3 ) includes 2 exons that are 3-bp
long. At the same time we observe a coding region about 90 000 bp for the titin gene
(NM 003319) and an exon 8000 bp in human gene encoding microtubule-associated
protein 1a (HSU38291). Very often protein-coding exons occupy a small percent of the
gene size. The human fragile X mental retardation gene (HUMFMR1S ) presents a typical
example: 17 exons (40–60-bp long) occupy just 3 % of 67 000 bp gene sequence.

The structural characteristics of eukaryotic genes, discussed above, create difficult
problems in computational gene identification. Low density of coding regions (3 % in
human DNA) will generate a lot of false-positive predictions in fragments of noncoding
DNA. The number of these false positives might be even comparable with the true
number of exons. Recognition of small exons (1–20 bp) cannot be achieved using any
composition-based method that is relatively successful for identification of prokaryote
coding regions. It is necessary to develop gene-prediction approaches that rely significantly
on the recognition of functional signals encoded in the DNA sequence.

4.2 METHODS OF FUNCTIONAL SIGNAL RECOGNITION

In this paragraph, we will describe several approaches for gene functional signal recog-
nition and some features of these signals used in gene identification. The simplest way to
find functional sequences is based on a consensus sequence or weight matrix reflecting
conservative bases of the signal. Using a consensus sequence or weight matrix we can
scan a given sequence and select high scoring regions as potential functional signals.
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To select only significant matches, a statistical method for estimating the significance of
similarity between the consensus of functional signal and a sequence fragment was devel-
oped (Shahmuradov et al., 1986; Solovyev and Kolchanov, 1994). Computation of this
statistic was implemented in the program NSITE (http://www.softberry.com/
berry.phtml?topic=nsite&group=programs&subgroup=promoter) (Shah-
muradov and Solovyev, 1999) that identifies nonrandom similarity between fragments
of a given sequence and consensuses of regulatory motifs from various databases such as
Transcription Factor Database (TFD) (Ghosh, 2000), Transfac (Wingender et al., 1996),
RegsiteAnimal and RegsitePlant (Solovyev et al., 2003). Here we briefly describe appli-
cation of weight matrices, which usually contain more information about the structure of
functional signal than consensus sequences. Procedures using weight matrices are imple-
mented in many modern gene-prediction approaches that score potential functional signals.

4.2.1 Position-specific Measures

Weight matrices are typically used for functional signal description (Staden, 1984a; Zhang
and Marr, 1993; Burge, 1997). We can consider weight matrix as a simple model based
on a set of position-specific probability distributions {pis}, that provide probabilities of
observing a particular type of nucleotide in a particular position of functional signal
sequence (S). The probability of generating a sequence X(x1, . . . , xk) under this model is

P(X/S) =
k∏
i=1

pixi , (4.1)

where each position of the signal is considered to be independent. A corresponding
model can also be constructed for a sequence having no functional signal (N ): {πis }.
An appropriate discriminative score based on these models is the log likelihood ratio:

LLR(X) = log
P(X/S)

P (X/N)
. (4.2)

To evaluate a given sequence fragment, a score can be computed as an average sum
of weights of observed nucleotides using the corresponding weight matrix w(i,s) =
{log(pis/πis )} :

Score = LLR(X) = 1

k

k∑
i=1

w(i, xi). (4.3)

Different weight functions have been used to score the sequence, for example, weights
can be obtained by some optimization procedures such as a perceptron or neural network
(Stormo et al., 1982). Different position-specific probability distributions {pis} can also be
considered.

A generalization of the weight matrix uses position-specific probability distributions
{pis} of oligonucleotides (instead of single nucleotides). Another approach is to exploit
Markov chain models, where the probability of generating a particular nucleotide xi of the
signal sequence depends on the k0−1 previous bases (i.e. it depends on an oligonucleotide
(k0−1 base long) ending at the position i − 1). Then the probability of generating the
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signal sequence X is:

P(X/S) = p0

k∏
i=k0

pi−1,i
si−1,xi

: (4.4)

where pi−1,i
si−1,xi

is the conditional probability of generating nucleotide xi in position i given
oligonucleotide si−1 ended at position i−1, p0 is the probability of generating oligonu-
cleotide x1...xk0−1. For example, a simple weight matrix represents independent mononu-
cleotide model (or 0-order Markov chain), where k0 = 1, p0 = 1 and pi−1,i

xi−1,xi
= pixi . When

we use dinucleotides (1st order Markov chain) k0 = 2, p0 = p1
x1

, and pi−1,i
xi−1,xi

is the condi-
tional probability of generating nucleotide xi in position i given nucleotide xi−1 at position
i−1. The conditional probability can be estimated from the ratio of observed frequency
of oligonucleotide k0 bases long (k0 > 1) ending at position i to the frequency of the
oligonucleotide k0 − 1 bases long ending at position i−1 in a set of aligned sequences
of some functional signal.

pi−1,i
si−1,xi

= f(si−1, xi)

f(si−1)
.

Using the same procedure we can construct a model for nonsite sequences for computing
P(X/N), where often 0-order Markov chain with genomic base frequencies (or even
equal frequencies (0.25)) is used.

A log likelihood ratio (3) with Markov chains was applied to select CpG island regions
(Durbin et al., 1998). The same approach was used in a description of promoters, splice
sites and start and stop of translation in gene-finding programs such as Genscan (Burge
and Karlin, 1997), Fgenesh (Find GENES Hmm) (Salamov and Solovyev, 2000) and
GeneFinder (Green and Hillier, 1998).

A useful discriminative measure taking into account a priori knowledge is based on
the computation of Bayesian probabilities as components of position-specific distribu-
tions {pis}:

P(S/ois) =
P(ois/S)P (S)(

P(ois/S)P (S)+ P(ois/N)P (N)
) , (4.5)

where P(ois/S) and P(ois/N) can be estimated as position-specific frequencies of oligonu-
cleotides ois in the set of aligned sites and nonsites; P(s) and P(N) are the a priori
probabilities of site and nonsite sequences, respectively. S is a type of the oligonucleotide
starting (or ending) in ith position (Solovyev and Lawrence, 1993a). The probability that
a sequence X belongs to a signal, if one assumes independence of oligonucleotides in
different positions, is:

P(S/X) =
k∏
i=1

P(S/oim).
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Another empirical discriminator called preference uses the average positional probability
of belonging to a signal:

Pr(S/X) = 1

k

k∑
i=1

P(S/oim). (4.6)

This measure was used in constructing discriminant functions for the Fgenes gene-finding
program (Solovyev et al., 1995). It can be more stable than the previous measure on short
sequences and has simple interpretation: if the Pr > 0.5, then our sequence is more likely
to belong to a signal than to a nonsignal sequence.

4.2.2 Content-specific Measures

Some functional signal sequences have a distinctive general oligonucleotide composition.
For example, many eukaryotic promoters are found in GC-rich chromosome fragments.
We can characterize these regions by applying similar methods to the above scoring
functions, but using probability distributions and their estimates by oligonucleotide
frequencies computed on the whole sequence of the functional signal. For example, the
Markov-chain-based probability of generating the signal sequence X will be:

P(X/S) = p0

k∏
i=k0

psi−1
, xi. (4.7)

4.2.3 Frame-specific Measures

The coding sequence is a sequence of triplets (codons) read continuously from a fixed
starting point. Three different reading frames with different codons are possible for any
nucleotide sequence (or 6 if the complementary chain is also considered). The nucleotides
are distributed unevenly relative to the positions within codons. Therefore the probability
of observing a specific oligonucleotide in coding sequence depends on its position relative
to the coding frame (three possible variants) as well as on neighboring nucleotides
(Shepherd, 1981; Borodovskii et al., 1986; Borodovsky and McIninch, 1993). Asymmetry
in base composition between codon positions arises because of uneven usage of amino
acids and synonymous codons, as well as the specific nature of the genetic code (Guigo,
1999). Fickett and Tung (1992) did a comprehensive assessment of the various protein-
coding measures. They estimated the quality of more than 20 measures and showed that
the most powerful is ‘in phase hexanucleotide composition’. In Markov chain approaches,
the frame-dependent probabilities pfsi−1,xi (f = {1,2,3}) are used to model coding regions.
The probability of generating a protein-coding sequence X is

P(X/C) = p0

k∏
i=k0

pfsi−1,xi
, (4.8)

where f is equal to 1, 2 or 3 for oligonucleotides ending at codon position 1, 2 or 3,
respectively.

4.2.4 Performance Measures

Several measures to estimate the accuracy of a recognition function were introduced in
genomic research (Fickett and Tung, 1992; Snyder and Stormo, 1993; Dong and Searls,
1994). Consider that we have S sites (positive examples) and N nonsites (negative
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examples). By applying the recognition function, we correctly identify Tp sites (true
positives) and Tn nonsites (true negatives). At the same time Fp (false positives) sites
are wrongly classified as nonsites and Fn (false negative) nonsites are wrongly classified
as sites. Tp + Fn = S and Tn + Fn = N . Sensitivity (Sn) measures the fraction of the
true positive examples that are correctly predicted: Sn = TP/(TP + Fn). Specificity (Sp)

measures the fraction of the predicted sites that are correct amongst those predicted:
Sp = TP/(TP + FP). Note that the definition of Sp used in gene-prediction research is
different from the usual Sp = Tn/(Tn + FP). Only the simultaneous consideration of both
Sn and Sp values makes sense when we provide some accuracy information. Using only
one value of accuracy estimation means that the average accuracy of prediction of true
sites and nonsites is AC = 0.5(TP/S + Tn/N). However, this measure does not take into
account the possible difference in sizes of site and nonsites sets. A more correct single
measure (correlation coefficient) takes the relation between correctly predictive positives
and negatives as well as false positives and negatives into account (Matthews, 1975):

CC = (TpTn − FpFn)√
(Tp + Fp)(Tn + Fn)(Tp + Fn)(Tn + Fp)

.

4.3 LINEAR DISCRIMINANT ANALYSIS

Different features of a functional signal may have different significance for recognition
and may not be independent. Classical linear discriminant analysis provides a method to
combine such features in a discriminant function. A discriminant function, when applied to
a pattern, yields an output that is an estimate of the class membership of this pattern. The
discriminative technique provides minimization of the error rate of classification (Afifi and
Azen, 1979). Let us assume that each given sequence can be described by vector X of p
characteristics (x1, x2, . . . , xp), that can be measured. The linear discriminant analysis
procedure finds a linear combination of the measures (called the linear discriminant
function or LDF ), that provides maximum discrimination between site sequences (class 1)
and nonsite examples (class 2). The LDF classifies (X) into class 1 if Z > c and into
class 2 if Z > c. The vector of coefficients (α1, α2, . . . , αp) and threshold constant c are
derived from the training set by maximizing the ratio of the between-class variation of z
to within-class variation and are equal to (Afifi and Aizen, 1979):

→
a = s−1(

→
m1 −

→
m2),

and →
c = →

a (
→
m1 −

→
m2)/2,

where
→
mi are the sample mean vectors of characteristics for class 1 and class 2,

respectively; s is the pooled covariance matrix of characteristics

s = 1

n1 + n2 − 2
(s1 + s2)
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si is the covariation matrix, and ni is the sample size of class i. On the basis of these
equations, we can calculate the coefficients of LDF and threshold constant c using the
values of characteristics of site and nonsite sequences from the training sets and then test
the accuracy of LDF on the test set data. Significance of a given characteristic or a set of
characteristics can be estimated by the generalized distance between two classes (called
the Mahalonobis distance or D2):

→
D2 = (→m1 −

→
m2)s

−1(
→
m1 −

→
m2),

that is computed on the basis of values of the characteristics in the training sequences of
classes 1 and 2. To find sequence features a lot of possible characteristics as score of weigh
matrices, distances, oligonucleotide preferences at different subregions are generated.
Selection of the subset of significant characteristics (among those tested) is performed by
a stepwise discriminant procedure including only those characteristics that significantly
increase the Mahalonobis distance (Afifi and Aizen, 1979).

4.4 PREDICTION OF DONOR AND ACCEPTOR SPLICE JUNCTIONS

4.4.1 Splice-sites Characteristics

Splice-site patterns are mainly defined by nucleotides at the ends of introns, because
deletions of large parts of intron do not affect their selection (Breathnach and Chambon,
1981; Wieringa et al., 1984). A sequence of eight nucleotides is highly conserved
at the boundary between an exon and an intron (donor or 5′-splice site). This is
AG|GTRAGT and a sequence of 4 nucleotides, preceded by a pyrimidine rich region,
is also highly conserved between an exon and an intron (acceptor or 3′-splice site):
YYTTYYYYYYNC|AGG (Senapathy et al., 1990). The third less-conserved sequence of
about 5–8 nucleotides, and containing an adenosine residue, lies within the intron, usually
between 10 and 50 nucleotides upstream of the acceptor splice site (branch site). These
sequences provide specific molecular signals by which the RNA splicing machinery can
select the splice sites with precision.

Two very conservative dinucleotides are observed in practically all introns. The
donor site has GT just after the point where the spliceosomes cut the 5′-end of intron
sequences and the acceptor site has AG just before the point where the spliceo-
somes cut the 3′-end of intron sequences (Breathnach et al., 1978; Breathnach and
Chambon, 1981).

Additionally, a rare type of splice pair AT–AC has been discovered. It is processed by
related but different splicing machinery (Jackson, 1991; Hall and Padget, 1994). Introns
flanked by the standard GT–AG pairs excised from pre-mRNA by the spliceosome
including U1, U2, U4/U6 and U5 snRNPs (Nilsen, 1994). A novel type of spliceosome
composed of snRNPs U11, U12, U4atac/U6atac and U5 (Hall and Padgett, 1996, Tarn
and Steitz, 1996a; 1996b; 1997) excises AT–AC introns. For AT–AC group a different
conserved positions have been noticed: |ATATCCTTT for donor site and YAC| for
acceptor site (Dietrich et al., 1997; Sharp and Burge, 1997; Wu and Krainer, 1997).

Burset et al. (2000) have done a comprehensive investigation of canonical and
noncanonical splice sites. They have extracted 43 427 pairs of exon–intron bound-
aries and their sequences from the InfoGene (Solovyev and Salamov, 1999) database
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including all the annotated genes in mammalian genomic sequences. Annotation errors
present a real problem in getting accurate information about eukaryotic gene functional
signals from nucleotide sequence databases, such as GenBank or EMBL (Benson et al.,
1999; Kanz et al., 2005). The authors generated a spliced construct for every splice pair
combining 40 nt. of the left exon and 40 nt. of the right exon producing the same sequence
as the splicing machinery generated by removing intron region (Figure 4.3). To verify
the extracted splice sites, the alignments of splice constructs with known mammalian
expressed sequence tags (ESTs (Boguski et al., 1993) were used. For 43 427 pairs of
donor and acceptor splice sites (splice pairs), 1215 were annotated as nonstandard donor
sites (2.80 %) and 1027 were annotated as nonstandard acceptor sites (2.36 %). 41 767
splice pairs (96.18 %) contained the standard splice-site pair GT–AG. As a result of the
analysis, from 1660 noncanonical pairs, 441 were supported by ESTs (27.35 %) and just
292 (18 %) were supported by ESTs after removing potential annotation errors and cases
with ambiguities in the position of the splice junction (Table 4.3).

It is interesting to note that the EST-supported rate is clearly higher for canonical splice
pairs. There were 22 374 out of 42 212 canonical pairs supported by ESTs (53.63 %) and
just 27.3 % of noncanonical pairs. About a half (43.15 %) of all noncanonical splice
pairs belongs to the GC–AG group (126). The next biggest in size of the noncanonical
group GG–AG contains significantly less cases (12). There were many other groups in the
same size range, including those processed by the special splicing machinery, the AT–AC
group. Weight matrices for GT–AG and GC–AG pairs are presented in Table 4.4 and a
consensus sequence for AT–AC pair in Figure 4.4.

Most other noncanonical splice pairs have a canonical conserved dinucleotide shifted by
one base from the annotated splice junction. For example, for 12 EST-supported GG–AG
pairs, 10 have a shifted canonical donor splice site with the GT dinucleotide, 1 major
noncanonical site has the GC dinucleotide, and one GA–AG case (Figure 4.5).

One is prompted to explain the observations with the shifted canonical dinucleotides by
an annotation error of inserting/deleting one nucleotide that is actually absent/present in
real genomic sequence. This hypothesis was tested by comparing human gene sequences
deposited to GenBank earlier with the sequences of the same region obtained in
high throughput genome sequencing projects. Several examples of clear annotation and
sequencing errors identified by the comparison are presented in Figure 4.6. We found 88

Conservative dinucleotides

Splice construct:

Splice pairs:

Donor Acceptor

:

Figure 4.3 Structure of spliced constructs. Two sequence regions of a splice pair (marked as
Donor and Acceptor) with the corresponding splice-site dinucleotides surrounded by 40 nt. of
gene sequence at each side. Joining exon part of donor (40nt exonL) and exon part of acceptor
(40nt exonR) produce a sequence of splice construct to be verified by ESTs.
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Table 4.3 Canonical and noncanonical splice sites in mammalian genomes.
(a) Annotated splice pairs.

Splice sites Donors Acceptors Pairs

Canonical 42160 (97.28 %) 42344 (97.71 %) 41722 (96.27 %)
Noncanonical 1177 (2.72 %) 993 (2.29 %) 1615 (3.73 %)
EST - supported canonical 22437 (98.34 %) 22568 (98.92 %) 22374 (98.07 %)
EST - supported noncanonical 378 (1.66 %) 247 (1.08 %) 441 (1.93 %)
EST - supported canonical after

correction
22306 (98.94 %) 22441 (99.54 %) 22253 (98.70 %)

EST - supported noncanonical after
correction

239 (1.06 %) 104 (0.46 %) 292 (1.30 %)

(b) Generalization of analysis of human noncanonical splice pairs.

GT–AG 22310 99.20 %
GC–AG 140 0.62 %
AT–AC 18 0.08 %
Other Noncanonical 7 0.03 %
Errors 14 0.06 %
TOTAL 22489 100 %

AT-AC group:

Consensus of donor site:

Consensus of acceptor site:

Figure 4.4 Consensus sequences for the AT–AC pair of the alternative splicing machinery.

examples of independent gene sequencing with sequences overlapping splice junctions.
All human EST-supported GC–AG cases having HTS matches were supported by them
(39 cases). 31 errors damaging the standard splice pairs were found. 7 cases had one or
both intronic GenBank sequences completely unsupported by HTS, 8 cases had intronic
GenBank sequences supported, but there was a gap between exonic and intronic parts and
finally 16 cases had small errors as some insertions, deletions or substitutions. 5 AT–AC
pairs (3 pairs were correctly annotated in original noncanonical set and 2 were recovered
from errors) were identified. In additition, 2 cases were annotated as introns, but in HTS
the exonic parts were continuous (accession numbers: U70997 and M13300). 7 cases of
HTS were themselves GenBank sequences and for this reason they were excluded from
the analysis.
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Table 4.4 Characteristics of major splice-pair groups.

GT–AG group. Number of supported cases: 22 268

Donor frequency matrix

A 34.0 60.4 9.2 0.0 0.0 52.6 71.3 7.1 16.0
C 36.3 12.9 3.3 0.0 0.0 2.8 7.6 5.5 16.5
G 18.3 12.5 80.3 100 0.0 41.9 11.8 81.4 20.9
U 11.4 14.2 7.3 0.0 100 2.5 9.3 5.9 46.2

Acceptor frequency matrix

A 9.0 8.4 7.5 6.8 7.6 8.0 9.7 9.2 7.6 7.8 23.7 4.2 100 0.0 23.9
C 31.0 31.0 30.7 29.3 32.6 33.0 37.3 38.5 41.0 35.2 30.9 70.8 0.0 0.0 13.8
G 12.5 11.5 10.6 10.4 11.0 11.3 11.3 8.5 6.6 6.4 21.2 0.3 0.0 100 52.0
U 42.3 44.0 47.0 49.4 47.1 46.3 40.8 42.9 44.5 50.4 24.0 24.6 0.0 0.0 10.4

GC–AG group. Number of supported cases: 126

Donor frequency matrix

A 40.5 88.9 1.6 0.0 0.0 87.3 84.1 1.6 7.9
C 42.1 0.8 0.8 0.0 100 0.0 3.2 0.8 11.9
G 15.9 1.6 97.6 100 0.0 12.7 6.3 96.8 9.5
U 1.6 8.7 0.0 0.0 0.0 0.0 6.3 0.8 70.6

Acceptor frequency matrix

A 11.1 12.7 3.2 4.8 12.7 8.7 16.7 16.7 12.7 9.5 26.2 6.3 100 0.0 21.4
C 36.5 30.9 19.1 23.0 34.9 39.7 34.9 40.5 40.5 36.5 33.3 68.2 0.0 0.0 7.9
G 9.5 10.3 15.1 12.7 8.7 9.5 16.7 4.8 2.4 6.3 13.5 0.0 0.0 100 62.7
U 38.9 41.3 58.7 55.6 42.1 40.5 30.9 37.3 44.4 47.6 27.0 25.4 0.0 0.0 7.9

Donor Acceptor Donor + 1 shift

Figure 4.5 Shifted splice sites. Example for GG–AG verified splice sites (12 cases). In donor,
exactly after the cut point was always found a GG pair. To obtain which splicing pair are
characteristic to this donor we should produce a shift of 1 nucleotide downstream. After this
we reclassify sites as 10 GT–AG canonical splice sites, 1 GC–AG site and 1 apparently strange
GA–AG site.

By generalizing these results we conclude that the overwhelming majority of splice
sites contain the conserved dinucleotides GT–AG (99.2 %). The other major group
includes GC–AG pairs (0.62 %), the alternative splicing mechanism group AC–AT (about



110 V. SOLOVYEV

Sequences of homeodomain protein, HOXA9EC (AF010258) 

Genbank:
High throughput:

Sequences of  poly(A) binding protein II, PABP2 (AF026029)

Genbank:
High throughput:

Donor

Donor

Figure 4.6 Errors found by comparing GenBank and the human high-throughput sequences for
several annotated noncanonical splice sites.

0.08 %) and a very small number of other noncanonical splice sites (about 0.03 %)
(Table 4.3.d). Therefore, gene-finding approaches using only standard GT–AG splice sites
can potentially predict 97 % genes correctly (if we assume 4 exons per gene, on average).
Including the GC–AG splice pair will increase this level to 99 %. 22 253 verified examples
of canonical splice pairs were presented in a database (SpliceDB), which is available
for public use through the www (http://www.softberry.com/berry.phtml?
topic=splicedb&group=data&subgroup=spldb) (Burset et al., 2000). It also
includes 1615 annotated and 292 EST-supported and shift-verified noncanonical pairs.
This set can be used to investigate the reality of these sites as well as to further understand
the splicing machinery.

Analysis of splice-site sequences demonstrated that their consensuses are somewhat
specific for different classes of organisms (Senapathy et al., 1990; Mount, 1993) and some
important information is encoded by the sequences outside the short conserved regions.
Scoring schemes based on consensus sequences or weight matrices which take into account
the information about open reading frames, free energy of base pairing of RNA with
snRNA and other peculiarities, give an accuracy of about 80 % for the prediction splice-
site positions (Nakata et al., 1985; Gelfand, 1989). More accurate prediction is produced
by neural network algorithms (Lapedes et al., 1988; Brunak et al., 1991; Farber et al.,
1992). The integral view on the difference of triplet composition in splice and pseudosplice
sequences is shown in Figure 4.7. This figure demonstrates the various functional parts
of splice sites. We can see that the only short regions around splice junctions have a
great difference in triplet composition. Their consensus sequences are usually used as
determinants of donor or acceptor splice-site positions. However, dissimilarity in many
other regions can also be seen. For the donor site – coding region, a G-rich intron region
may be distinguished. For acceptor sites – a G-rich intron region, a branch point region, a
polyT/C tract and coding sequence. Splice-site prediction methods using a linear function
that combines several of such features is described below (Solovyev and Lawrence, 1993a;
Solovyev et al., 1994).

4.4.2 Donor Splice-site Characteristics

Seven characteristics were selected for donor splice-site identification. Their values were
calculated for 1375 authentic donor site and for 60 532 pseudosite sequences from the
learning set. The Mahalonobis distances showing the significance of each characteristic
are given in Table 4.5. The strongest characteristic for donor sites is a triplet composition
in consensus region (D2 = 9.3) followed by the adjacent intron region (D2 = 2.6) and the
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Figure 4.7 Difference of the triplet composition around donor and GT-containing non-donor
sequences (a); around acceptor and AG-containing non acceptor sequences (b) in 692 human genes.
Each column presents the difference of specific triplet numbers between sites and pseudosites in
a specific position. For comparison the numbers were calculated for equal quantities of sites and
pseudosites.

Table 4.5 Significance of various characteristics of donor splice sites.

Characteristics 1 2 3 4 5 6 7

Individual D2 9.3 2.6 2.5 0.01 1.5 0.01 0.4
Combined D2 9.3 11.8 13.6 14.9 15.5 16.6 16.8

1, 2, 3 are the triplet preferences (13) of consensus (−4 to +6), intron G-rich (+7 to +50) and coding regions
(−30 to −5), respectively. 4 is the number of significant triplets in the consensus region. 5 and 6 are the
octanucleotide preferences for being coding 54 bp region on the left and for being intron 54 bp region on the
right of donor splice-site junction. 7 is the number of G bases, GG doublets and GGG triplets in +6 to +50
intron G-rich region.

coding region (D2 = 2.5). Other significant characteristics are the number of significant
triplets in conserved consensus region; the number of G bases, GG doublets and GGG
triplets; and the quality of the coding and intron regions.
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Rigorous testing of several splice-site prediction programs on the same sets of new
data demonstrated that the linear discriminant function (implemented in SPL program:
http://www.softberry.com/berry.phtml?topic=spl&group=programs&
subgroup=gfind) provides the most accurate local donor site recognizer (Table 4.6)
(Milanesi and Rogozin, 1998).

Although a simple weight matrix provides less accurate recognition than more sophis-
ticated approaches, it can be easily recomputed for new organisms and is very convenient
to use in probabilistic HMM-gene-prediction methods. An interesting extension of this
approach was suggested on the basis of analysis of dependencies between splice-site
positions (Burge and Karlin, 1997). Using a maximal dependence decomposition proce-
dure (Burge, 1998), 5 weight matrices corresponding to different subsets of splice-site
sequences were generated. The subclassification of donor signals and the matrices
constructed based on 22 306 EST-supported splice sites are presented in Figure 4.8.
Performance of these matrices compared with other methods was evaluated on the Burset
and Guigo (1996) data set (Figure 4.9). We can observe that several weight matrices
definitely provide better splice-site discrimination than just one. However, their discrim-
inatory power is similar to that of the matrix of triplets and lower than that of the linear
discriminant function described above.

4.4.3 Acceptor Splice-site Recognition

Seven characteristics were selected for acceptor splice-sites recognition. Their values
were calculated for 1386 authentic acceptor site and 89 791 pseudosite sequences from
the learning set. The Mahalonobis distances showing the individual significance for each
characteristic are given in Table 4.7. The strongest characteristics for acceptor sites are the
triplet composition in the polyT/C tract region (D2 = 5.1); consensus region (D2 = 2.7);
adjacent coding region (D2 = 2.3); and branch point region (D2 = 1.0). Some significance
is found using the number of T and C in the adjacent intron region (D2 = 2.4) and the
quality of the coding region (D2 = 2.6).

Table 4.8 illustrates the performance of different methods for acceptor site recognition
(Milanesi and Rogozin, 1998). The linear discriminant function described above provides
the best accuracy. Also, we can observe that acceptor site recognition accuracy is lower
than that for donor sites.

It was shown that the first-order Markov chain model (11) based on dinucleotide
frequencies of [−20,+3] acceptor site region gives slightly better discrimination than
the simple weight matrix model (Burge, 1998). Such a model was incorporated in

Table 4.6 Comparing the accuracy of local donor splice-site recognizers. The accuracy is averaged
for 3 tested sets.

Method
False

positives (%)
False

negatives (%) CC Reference

Weight matrix 2.3 53 0.13 Guigo et al. (1992)
Consensus

MAG/GURAGU
6.0 18 0.27 Mount (1982)

Five consensuses 4.2 15 0.31 Milanesi and Rogozin (1998)
Neural network 25.0 2.7 0.51 Brunak et al. (1991)
Discriminant analysis 10.0 3.0 0.56 Solovyev et al. (1994)
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−4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10
A 27.6 34 60.5 9.2 0 0 52.5 71.3 7.1 16.1 27.4 20.8 20.1 19.9
T 28.7 36.2 12.8 3.3 0 0 2.8 7.6 5.5 16.6 21.1 27.1 28.9 25.5
G 24 18.3 12.4 80.3 100 0 42.2 11.8 81.5 21 32.7 25.5 26.7 29.3
C 19.7 11.4 14.3 7.2 0 100 2.5 9.3 5.9 46.3 18.7 26.5 24.2 25.3

A T G C
−3 31.4 28.9 16.9 22.8
−2 0 23.6 32.2 44.3
3 45.3 2 51.8 0.9
4 81.5 3.1 8 7.4
6 14.2 16.5 18.1 51.2

A T G C
−3 34.4 43.4 19.3 2.9
3 47 4.4 46 2.5
4 67 4.7 18.5 9.8
6 30.9 30.5 38.5 0

A T G C
−3 34.3 39.8 21 5
3 36.2 7.2 47 9.7
4 56 4.6 23.1 16.2

A T G C
−3 32.2 29.1 21.6 17.1
−2 42.9 30.9 17.2 9.1
−1 46.6 16.6 0 36.8
3 54.5 0.4 44.7 0.4
4 90.4 2.9 3 3.6
6 5.6 7.9 6.3 80.2

A T G C

−3 39.4 40.9 14.2 5.5
−2 83.6 4.8 4.9 6.7

−1 1.9 0.7 95.9 1.5
3 79.7 1.3 16.8 2.2
 4 53.2 24.6 9.6 12.7
5 38.1 30 0 31.9
6 21 18.3 30.8 29.8

H5

3930

G5G−1A−2T6
2636

G5G−1A−2V6
5183

G5H−1
4029

G5G−1B−2
5474

Figure 4.8 Classification of donor splice sites by several weight matrices reflecting different
splice-site groups (Burge and Karlin, 1997).

Genscan gene-prediction method (Burge and Karlin, 1997). Thanaraj (2000) performed
a comprehensive analysis of computational splice-site identification. The HSPL program
remains the best local recognizer. Of course, most complex gene-prediction systems use
a lot of other information about optimal exon (or splice site) combinations that provides
a better level of accuracy. However it cannot be applied to study the possible spectrum
of all alternative splice sites for a particular gene. Local recognizers seem useful for such
tasks.

4.5 IDENTIFICATION OF PROMOTER REGIONS IN HUMAN DNA

Computational recognition of eukaryotic polymerase II (PolII) promoter sequences in
genomic DNA is an extremely difficult problem. Promoter 5′-flanking regions may contain
dozens of short motifs (5–10 bases) that serve as recognition sites for proteins providing
initiation of transcription as well as specific regulation of gene expression. Each promoter
has its own composition and arrangement of these elements providing a unique regime
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Figure 4.9 Comparison of the accuracy of donor splice-site recognizers: single weight matrix,
five matrices suggested by Burge and Karlin (1997), matrix of triplets, linear discriminant function.

Table 4.7 Significance of various characteristics of acceptor splice sites.

Characteristics 1 2 3 4 5 6 7

Individual D2 5.1 2.6 2.7 2.3 0.01 1.05 2.4
Combined D2 5.1 8.1 10.0 11.3 12.5 12.8 13.6

1, 3, 4, 6 are the triplet preferences (13) of (−33 to −7) polyT/C tract, consensus (−6 to +5), coding (+6 to
+30) and branch point (−48 to −34) regions, respectively. 7 is the number of T and C in intron polyT/C tract
region. 2 and 5 are the octanucleotide preferences for being coding 54 bp region on the left and 54 bp region
for being intron on the right side of donor splice-site junction.

Table 4.8 Comparing the accuracy of local acceptor splice-site recognizers. The accuracy is
averaged for 3 tested sets.

Method False positives (%) False negatives (%) CC Reference

Weight matrix 5.0 20 0.22 Guigo et al. (1992)
Neural network 16.3 6.7 0.35 Brunak et al. (1991)
Discriminant

analysis
22.0 2.3 0.51 Solovyev et al. (1994)

of gene expression. Here we will consider some general features of PolII promoters that
can be exploited in promoter prediction programs.

The minimal promoter region that is capable of initiating basal transcription is referred
to as the core promoter. It contains a transcription start site (TSS), often located in
initiator region (Inr) and typically spans from −60 to +40 bp relative to TSS. About
30–50 % of all known promoters also contain a TATA box at a position about 30 bp
upstream from TSS. The TATA box is apparently the most conserved functional signal in
eukaryotic promoters. In some cases it can direct accurate transcription initiation by PolII,
even in the absence of other control elements. Many highly expressed genes contain a
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strong TATA box in their core promoter. However for large groups of genes, like most
housekeeping genes, some oncogenes and growth factor genes, a TATA box is absent
and the corresponding promoters are referred as TATA-less promoters. In these promoters,
Inr may control the exact position of the transcription start point or the recently found
downstream promoter element (DPE), usually located 30 bp downstream of TSS. Many
human genes are transcribed from multiple promoters often producing alternative first
exons. Moreover, transcription initiation appears to be less precise than initially assumed.
In the human genome, it is not uncommon that the 50 ends of mRNAs transcribed from
the same promoter region are spread over dozens or hundreds bp (Suzuki et al., 2001;
Cooper et al., 2006; Schmid et al., 2006).

The region 200–300 bp immediately upstream of the core promoter constitutes the
proximal promoter. The proximal promoter usually contains multiple transcription factor
binding sites that are responsible for transcription regulation. Further upstream is the distal
part of promoter that may also contain transcription factor binding sites as well as enhancer
elements. The typical organization of PolII promoters is shown in Figure 4.10. Because
the distal part is usually the most variable region of promoters and generally poorly
described, most current promoter recognition tools use the characteristics of only the core
and/or proximal regions. Comprehensive reviews of eukaryotic promoters, specifically
written from the prediction point of view, have appeared in the literature (Werner, 1999;
Pedersen et al., 1999; Cooper et al., 2006).

A collection of experimentally mapped TSSs and surrounding sequences called Eukary-
otic Promoter Database (EPD) was created by Bucher and Trifonov (1986). In 2000,
this database comprised about 800 independent promoter sequences including about 150
human promoters. There is no information about specific regulatory features in this
database (Perier et al., 2000). Up to release 72 (October 2002) EPD was a manually
compiled database, relying exclusively on experimental evidence published in scientific
journals. With release 73, they started to exploit 5′-ESTs from full-length cDNA clones

TF

TF

TATA−

TF

Inr DPE

Distal

Proximal Core

Figure 4.10 Schematic organization of polymerase II promoter. Inr – initiator region, usually
containing TSS. DPE – downstream promoter element, often appearing in TATA-less promoters,
TF binding sites – transcription factor binding sites.
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as a new resource for defining promoters. These data are automatically processed by
computer programs and already a year after the introduction of this new method, more
than half of the EPD entries (1634) are based on 5′-EST sequences (Schmid et al., 2004).
EPD is not the only database providing information about experimentally mapped TSSs.
DBTSS (Suzuki et al., 2004) and PromoSer (Halees et al., 2003) are large collections
of mammalian promoters based on clustering of EST and full-length cDNA sequences.
These databases define the TSS as the furthest 50 position in the genome which can
be aligned with the 50 end of a cDNA from the corresponding gene. In contrast, EPD
considers the most frequent cDNA 50 end as the TSS and further applies a specialized
algorithm to infer multiple promoters for a given gene (Schmid et al., 2006). There is
a plant-specific PlantProm (Shahmuradov et al., 2003) database of promoters based on
published TSS mapping data.

Regulatory promoter elements are relatively short sequence motifs (typically 5–15 bp
in length) (Wingender, 1988; Tjian, 1995; Fickett and Hatzigeorgiou, 1997). A relational
TFD including collection of regulatory factors and their binding sites was created by
Ghosh (1990; 2000). Over 7900 sequences of transcriptional elements have been described
in TRANSFAC database (Wingender et al., 1996; Matys et al., 2006). It gives informa-
tion about localization and sequence of individual regulatory elements within gene and
transcription factors, which bind to them. RegsiteDB (Plant) contains about 1300 various
regulatory motifs of plant genes and detail descriptions of their functional properties
(http://www.softberry.com/berry.phtml?topic=regsite). Practically it
is difficult to use most of these motifs to annotate long genomic sequences, because
of their short length and degenerate nature. For example, even using well described the
TATA box weight matrix there exists one false positive every 120–130 bp (Prestridge
and Burks, 1993). Nevertheless, such resources are invaluable for detail analysis of gene
regulation and interpretation of experimental data.

To generate regulatory diversity of gene expression, combinations of simple motifs
can be used. Transcription factors and regulatory sequences are composed of modular
components to achieve the high level of specificity by a relatively small number of
different transcription factors (Tjian and Maniatis, 1994). Therefore, to understand gene
function we should concentrate our attention on patterns of regulatory sequences rather
than on single elements. Searching for such patterns should be much more effective
in annotation of new sequences compared to the poor recognition of single motifs.
The simplest examples of regulatory patterns are observed in composite regulatory
elements (CE) of vertebrate promoters. Composite elements are modular arrangements
of contiguous or overlapping binding sites for various distinct factors, raising the
possibility that the bound regulatory factors may interact directly, producing novel patterns
of regulation. For example, the composite element of proliferin promoter comprises
glucocorticoid receptor (GR) and AP-1 factor binding sites. Both GR and AP-1 are
expressed in most cell types, but the composite element demonstrated remarkable cell
specificity: the hormone–receptor complex repressed the reporter gene expression in
CV-1 cells, but enhanced its expression in HeLa cells and had no effect in the F9
cell (Diamond et al., 1990). The database of composite elements (COMPEL) was
set up as a common effort by the groups of Wingender (Germany) and Kolchanov
(Russia) (Kel et al., 1995). Currently the compilation contains information about several
hundred experimentally identified composite elements, where each element consists of
two functionally linked sites.
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Development of the Transcription Regulatory Regions Database (TRRD), which
describes observed regulatory elements in gene regulatory regions, was started in the
Kolchanov group (Russia) in 1994 (Kolchanov et al., 2000). TRRD was created by scan-
ning the literature and covers just a fraction of genes taking into account the rather limited
resources and very complex nature of the problem of comprehensive and accurate anno-
tation. We are faced with exponentially growing data on transcriptional control owing
to the advancement of experimental technologies. This requires us to unite efforts and
expertise in creating knowledge databases in this field.

In one of the first attempts to predict eukaryotic promoters, Prestridge (1995) used the
density of specific transcription factor binding sites in combination with the TATA box
weight matrix. The program PROMOTERSCAN uses the promoter preferences for each
binding site listed in TFD (Ghosh, 1990) previously calculated on the set of promoter and
nonpromoter sequences. The other general-purpose promoter recognition tools take into
account the oligonucleotide content of promoter sequences (Hutchinson, 1996; Audic
and Claverie, 1997; Knudsen, 1999; Ohler et al., 1999). In an earlier version of the
linear discriminant recognizer, the signal-specific (TATA box weight matrix, binding site
preferences) and content-specific characteristics (hexamer preferences) were combined for
recognition of TSS (Solovyev and Salamov, 1997).

Fickett and Hatzigeorgiou (1997) presented a performance review of many general-
purpose promoter prediction programs. Among these were oligonucleotide content-based
(Hutchinson, 1996; Audic and Claverie, 1997), neural network (Guigo et al., 1992;
Reese et al., 1996) and the linear discriminant approaches (Solovyev and Salamov,
1997). Although several problems were identified through the relatively small test set
(18 sequences) (Ohler et al., 1999), the results demonstrated that the programs can
recognize just 50 % of promoters with false-positive rate about 1 per 700–1000 bp. If
the average size of a human gene is more than 7000 bases and many genes occupy
hundreds of kilobases, then we will expect significantly more false-positive predictions
than the number of real promoters. However, these programs can be used to find promoter
position (start of transcription and TATA box) in a given 5′-region or to help selecting
the correct 5′-exons in gene-prediction approaches.

We will describe a current version of the promoter recognition program TSSW
(Transcription Start Site, W stands for using functional motifs from the Wingender et al.
(1996) database) (Solovyev and Salamov, 1997) to show sequence features that can
be used to identify eukaryotic promoter regions. In this version, it was suggested that
TATA+ and TATA− promoters have very different sequence features and these groups
were analyzed separately. Potential TATA+ promoter sequences were selected by the
value of score computed using the TATA box weight matrix (Bucher, 1990) with the
threshold closed to the minimal score value for the TATA+ promoters in the learning
set. Such a threshold divides the learning sets of known promoters into approximately
equal parts. Significant characteristics of both groups found by discriminant analysis are
presented in Table 4.9. This analysis demonstrated that TATA− promoters have much
weaker general features compared with TATA+ promoters. Probably TATA− promoters
possess more gene-specific structure and they will be extremely difficult to predict by any
general-purpose method.

The TSSW program classifies each position of a given sequence as TSS or non-TSS
based on two linear discriminant functions (for TATA+ and TATA− promoters) with
characteristics calculated in the (−200,+50) region around a given position. If the TATA
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Table 4.9 Significance of characteristics of promoter sequences used by TSSW programs for
identification of TATA+ and TATA− promoters.

Characteristics D2 for TATA+ promoters D2 for TATA− promoters

Hexaplets −200 to −45 2.6 1.4 (−100 to −1)
TATA box score 3.4 0.9
Triplets around TSS 4.1 0.7
Hexaplets +1 to +40 0.9
Sp1-motif content 0.9
TATA fixed location 0.7
CpG content 1.4 0.7
Similarity −200

to −100
0.3 0.7

Motif Density(MD) −200
to +1

4.5 3.2

Direct/Inverted MD −100
to +1

4.0 3.3 (−100 to −1)

Total Mahalonobis distance 11.2 4.3
Number

promoters/nonpromoters
203/4000 193/74 000

box weight matrix gives a score higher than some threshold, then the position is classified
based on LDF for TATA+ promoters, otherwise the LDF for TATA-less promoters is used.
Only one prediction with the highest LDF score is retained within any 300 bp region.
If we observe a lower scoring promoter predicted by the TATA-less LDF near a higher
scoring promoter predicted by TATA+ LDF, then the first prediction is also retained as a
potential enhancer region.

The recognition quality of the program was tested on 200 promoters, which were
not included in the learning set. We provide the accuracy values for different levels of
true predicted promoters in Table 4.10. The data demonstrate a poor quality of TATA−
promoter recognition on long sequences and show that their recognition function can
provide relatively unambiguous predictions within regions less than 500 bp. Contrarily,
90 % of TATA+ promoters can be identified within the range 0–2000 bp that makes their
incorporation into gene-finding programs valid.

Ohler et al. (1999) used interpolated Markov chains in their approach and slightly
improved the previous results. They identified 50 % in Fickett and Hatzigeorgiou (1997)
promoter set, while having one false-positive prediction every 849 bp. Knudsen (1999),
applying a combination of neural networks and genetic algorithms, designed another

Table 4.10 Performance of promoter identification by TSSW program.

Type of promoter Number of test sites True predicted (%) 1 false positive per bp

TATA+ 101 98 1000
90 2200
75 3400
52 6100

TATA− 96 52 500
40 1000
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program (Promoter2.0). Promoter 2.0 was tested on a complete Adenovirus genome 35 937
bases long. The program predicted all 5 known promoter sites on the plus strand and 30
false-positive promoters. The average distance between a real and the closest predicted
promoter is about 115 bp. The TSSW program with the threshold to predict all 5 promoters
produced 35 false positives. It gives an average distance between predicted TSS and real
promoter of just 4 bp (2 predicted exactly, 1 with 1 bp shift, 1 with 5 bp shift and the
weakest promoter was predicted with 15 bp shift).

Figure 4.11 shows an example of the results of the TSSW program for the sequence
of human laminin beta 2 chain (GenBank accession number Z68155). The structure of
this gene including its promoter region has been extensively studied. The length of gene
is 11 986 bp, the first 1724 bp of which constitute a promoter region. TSSW predicts
one enhancer at position 931 and one potential TSS at position 1197 with corresponding
TATA box at the position 1167. Although both the predicted sites fall inside the desig-
nated promoter region, the second prediction is probably a false positive, because the

Figure 4.11 An example of output of the TSSW program for the sequence of human laminin beta
2 chain (GenBank accession number Z68155).
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predicted TATA box is located far upstream (500 bp) from the experimentally determined
beginning of the 5′-UTR. TSSW also optionally lists all potential TF binding sites around
the predicted promoters or enhancers (Figure 4.11). It outputs the position, the strand
(+/−), the TRANSFAC identifier and the consensus sequences of sites found. The infor-
mation about these sites may be of interest for researchers studying the transcription of
a particular gene.

There is a high false-positive rate of promoter prediction in long genomic sequences. It
is more useful to remove some false-positive predictions using knowledge of the positions
of the coding regions. TSSW was additionally tested on the several GenBank entries that
have information about experimentally verified TSS and were not included in the learning
set (Table 4.11). The lengths of the sequences varied from 950 to 28 438 bp with a median
length of 2938 bp. According to the criteria defined by Fickett and Hatzigeorgiou (1997),
all true TSS in these sequences can be considered as correctly predicted, with an average
1.5 false positives per sequence or 1 false positive per 3340 bp. The distances between
true TSS and those correctly predicted varied from exact matching to 196 bp, with the
median deviation of 9 bp. This can be considered to be quite a good prediction taking
into account that experimental mapping of TSS has an estimated precision of +/− 5 bp
(Perier et al., 2000).

Accurate prediction of promoters is fundamental to understanding gene expression
patterns, where confidence estimation of the produced predictions is one of the main
requirements for many applications. Using recently developed transductive confidence
machine (TCM) techniques, we developed a new program TSSP-TCM (Shahmuradov
et al., 2005) for the prediction of plant promoters that also provides confidence of the
prediction. The method presented in the paper identifies ∼85 % of tested promoters
with one false positive per ∼5000 bp. It allows us not only to make predictions, but
more importantly, it also gives valid measures of confidence in the predictions for each
individual example in the test set. Validity in our method means that if we set up a
confidence level, say, 95 %, then we can guarantee that we are not going to have more
than 5 errors out of 100 examples.

Recently there was an attempt to make a critical assessment of the promoter prediction
accuracy in its current state relative to the manual Havana gene annotation (Bajic et al.,
2006). There were only 4 programs in this EGASP project: 2 variants of McPromoter

Table 4.11 Results of TSSW predictions on some GenBank entries with experimentally
verified TSS.

Gene
GenBank accession

number Length (bp) True TSS Predicted TSS
Number of false

positives

CXCR4 AJ224869 8747 2632 2631 4
HOX3D X61755 4968 2280 2278 2
DAF M64356 2003 733 744 1
GJB1 L47127 950 404 428 0
SFRS7 L41887 8213 < 415 417 4
ID4 AF030295 1473 1066 1081 1
C inhibitor M68516 15 571 2200 2004 4
MBD1 AJ132338 2951 1964 1876 1
Id-3 X73428 2481 665 663 0
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program (Ohler et al., 1999; 2002), N-scan (Arumugam et al., 2006) and Fprom (Solovyev
et al., 2006), which is a modification of TSSW program described above that use
TFD transcriptional motif database (Ghosh, 2000). McPromoter and Fprom derived its
predictions from a sequence of the genome under analysis; N-scan used corresponding
sequences of several genomes (such as human, mouse and chicken). When the maximum
allowed mismatch of the prediction from the reference TSS for counting true positive
predictions on test sequences was 1000 bp, the N-scan produced ∼3 % higher accuracy
than the next most accurate predictor Fprom, but for the distance criterion 250 bp Fprom
shows the best performance on most prediction accuracy measures (Bajic et al., 2006). We
should note that the sensitivity of computational promoter predictions was only 30–50 %
(relatively 5′-gene ends of Havana annotation), but we should take into account that
TSS annotation from two experimentally derived databases also produced a sensitivity
of only 48–58 %. This leaves the open issue to create a reliable TSS reference dataset.
The lesson from this EGASP experiment relative to promoter predictions is that it is
beneficial to combine the TSS/promoter predictions with gene-finding programs as was
done in generating N-scan or Fprom predictions.

Despite recent improvements in promoter prediction programs, their current accuracy is
still not enough for their successful implementation as independent submodules in gene-
recognition software tools. The rather small amount of experimentally verified promoters
in databases such as EPD and GenBank hindered computational promoter identification
progress, while now there is an order more promoter data became available (Seki et al.,
2002) generated by CapTrapper technique (Carninci et al., 1996) that provided a relatively
reliable method for promoter identification. Many of the above-mentioned promoter
prediction algorithms use the propensities of each TF binding site independently and
does not take into account their mutual orientation and positioning. It is well known
that the transcriptional regulation is a highly cooperative process, involving simultaneous
binding of several transcription factors to their corresponding sites. Specific groups of
promoters may have specific patterns of regulatory sequences, where mutual orientation
and location of individual regulatory elements are necessary requirements for successful
transcription initiation or regulation.

4.6 RECOGNITION OF POLYA SITES

Another functionally important signal of eukaryotic transcripts is the 3′-untranslated
region (3′UTR), which has a diversity of cytoplasmic functions affecting the localization,
stability and translation of mRNAs (Decker and Parker, 1995). Almost all eukaryotic
mRNAs undergo 3′-end processing which involves endonucleotide cleavage followed by
the polyadenylation of the upstream cleavage product (Wahle, 1995; Manley, 1995). The
essential sequences are involved in the formation of several large RNA-protein complexes
(Wilusz et al., 1990). RNA sequences directing binding of specific proteins are frequently
poorly conserved and often recognized in a cooperative fashion (Wahle, 1995). Therefore
we have been forced to use statistical characteristics of the polyA regions that may involve
some unknown significant sequence elements.

Numerous experiments have revealed three types of RNA sequences defining a
3′-processing site (Wahle, 1995; Proudfoot, 1991) (Figure 4.12). The most conserved
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Figure 4.12 Characteristics of polyA signal sequences.

is the hexamer signal AAUAAA (polyA signal), situated 10–30 nucleotides upstream of
the 3′-cleavage site. About 90 % of sequenced mRNAs have a perfect copy of this signal.
Two other types, the upstream and the downstream elements, are degenerate and have not
been properly characterized. Downstream elements are frequently located within approx-
imately 50 nucleotides 3′ of the cleavage site (Wahle and Keller, 1992). These elements
are often GU- or U-rich, although they may have various base compositions and locations.
On the basis of sequence comparisons McLauchlan et al. (1985) have suggested that one
of the possible consensuses of the downstream element is YGUGUUYY. The efficiency
of polyadenylation in a number of genes can be also increased by sequences upstream of
AAUAAA, which are generally U-rich (Wahle, 1995). All these RNA sequences serve
as nucleation sites for a multicomponent protein complex catalyzing the polyadenylation
reaction.

There have been a few attempts to predict 3′-processing sites by computational methods.
Yada et al. (1994) conducted a statistical analysis of human DNA sequences in the vicinity
of polyA signal in order to distinguish them from AATAAA sequences that are not active
in polyadenylation (pseudo polyA signals). They found that a base C frequently appears
on the upstream side of the AATAAA signal and a base T or C often appears on the
downstream side, implying that CAATAAA(T/C) can be regarded as a consensus of the
polyA signal. Kondrakhin et al. (1994) constructed a generalized consensus matrix using
63 sequences of cleavage/polyadenylation sites in vertebrate pre-mRNA. The elements of
the matrix were absolute frequencies of triplets at each site position. Using this matrix,
they have provided a multiplicative measure for recognition of polyadenylation regions.
However this method has a very high false-positive rate.

Salamov and Solovyev (1997) developed LDF recognition function for polyA signal.
The data sets for 3′-processing sites and ‘pseudo’ polyA signals were extracted from
GenBank (Version 82). 3′-processing sites were taken from the human DNA entries,
containing a description of the polyA signal in the feature table. Pseudosites were taken out
of human genes as the sequences comprising (−100,+200) around the patterns revealed
by polyA weight matrix (see below), but not assigned to polyA sites in the feature table.
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4.7 CHARACTERISTICS FOR RECOGNITION OF 3′-PROCESSING
SITES

As the hexamer AATAAA is the most conservative element of 3′-processing sites, it
was considered as the main block in our complex recognition function. Although the
hexamer is highly conserved, other variants of this signal were observed. For example, in
the training set, 43 out of 248 polyA sites had hexamer variants of AATAAA with one
mismatch. To consider such variants the position weight matrix for recognizing this signal
has been used. The other characteristics such as content statistics of hexanucleotides and
positional triplets in the upstream and downstream regions were defined relative to the
position of the conservative hexamer sequence (Figure 4.12).

1. Position weight matrix for scoring of polyA signal [−1,+7].

2. Position weight matrix [8] for scoring of downstream GT/T-rich element.

3. Distance between polyA signal and predicted downstream GT/T-rich element.

4. Hexanucleotide composition of downstream (+6,+100) region.

5. Hexanucleotide composition of upstream (−100,−1) region.

6. Positional triplet composition of downstream (+6,+55) region.

7. Positional triplet composition of upstream (−50,−1) region.

8. Positional triplet composition of the GT/T-rich downstream element

In Table 4.12, the Mahalonobis distances for each characteristic calculated on the training
set are given. The most significant characteristic is the score of AATAAA pattern (esti-
mated by the position weight matrix) that indicates the importance of occurrences almost
perfect polyA signal (AATAAA). The second valuable characteristic is the hexanucleotide
preferences of the downstream (+6,+100) region. Although the discriminating ability of
GT-rich downstream element itself (characteristic 2) is very weak, combining it with the
other characteristics significantly increases the total Mahalonobis distance.

Kondrakhin et al. (1994) reported the error rates of their method at different thresholds
for polyA signal selection. If the threshold is set to predict 8 of 9 real sites, their function
also predicts 968 additional false sites. The algorithm-based LDF for 3′-processing site
identification is implemented in the POLYAH program (http://genomic.sanger.
ac.uk). First, it searches for the pattern similar to AATAAA using the weight matrix
and, if the pattern is found, it computes the value of the linear discriminant function
defined by the characteristics around this position. A polyA site is predicted if the value
of this function is greater than an empirically selected threshold. The method demonstrates
Sn = 0.86 and Sp = 0.63 when applied to a set of 131 positive and 1466 negative examples

Table 4.12 Significance of various characteristics of polyA signal.

Characteristics 1 4 2 5 3 6 8 7

Individual D2 7.61 3.46 0.01 2.27 0.44 1.61 0.16 0.17
Combined D2 7.61 10.78 11.67 12.36 12.68 12.97 13.09 13.1
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that were not used in the training. The POLYAH program has been tested also on the
sequence of the Ad2 genome, where for 8 correctly identified sites it predicts only 4 false
sites.

4.8 IDENTIFICATION OF MULTIPLE GENES IN GENOMIC
SEQUENCES

Computational gene finding started a long time ago with looking for open reading frames
with an organism-specific codon usage (Staden and McLachlan, 1982). The approach
worked well for bacterial genes (Staden, 1984b; Borodovskii et al., 1986), but short
eukaryotic exons and spliced genes require algorithms combining information about
functional signals and the regularities of coding and intron regions. Several internal
exon-predicting algorithms have been developed. The program SORFIND (Hutchinson
and Hayden, 1992) was designed to predict internal exons based on codon usage plus
Berg and von Hippel (1987) suggested discrimination energy for intron–exon boundary
recognition. The accuracy of exact internal exon prediction (at both 5′- and 3-′ splice
junctions and in the correct reading frame) by the SORFIND program reaches 59 %
with a specificity of 20 %. Snyder and Stormo (1993) applied a dynamic programming
approach (alternative to the rule-based approach) to internal exon prediction in GeneParser
algorithm. It recognized 76 % of internal exons, but the structure of only 46 % exons was
exactly predicted when tested on the entire GenBank sequence entries. HEXON (Human
EXON) program (Solovyev et al., 1994) based on linear discriminant analysis was the
most accurate in exact internal exon prediction at that time.

Later a number of single gene-prediction programs has been developed to assemble
potential eukaryotic coding regions into translatable mRNA sequence selecting optimal
combinations of compatible exons (Fields and Soderlund, 1990; Gelfand, 1990; Guigo
et al., 1992; Dong and Searls, 1994). Dynamic programming was suggested as a fast
method of finding an optimal combination of preselected exons (Gelfand and Roytberg,
1993; Solovyev and Lawrence, 1993b; Xu et al., 1994). This is different from the approach
suggested by Snyder and Stormo (1993) in the GeneParser algorithm to recursively
search for exon–intron boundary positions. FGENEH (Find GENE in Human) algorithm
incorporated 5′-, internal and 3′-exon identification linear discriminant functions and a
dynamic programming approach (Solovyev et al., 1994; 1995). Burset and Guigo (1996)
have made a comprehensive test of gene-finding algorithms. The FGENEH program was
one of the best in the tested group having the exact exon prediction accuracy 10 % higher
than the other programs and the best level of accuracy at the protein level. A novel step
in gene-prediction approaches was application of generalized Hidden Markov Models
implemented in Genie algorithm. It was similar in design to GeneParser, but was based
on a rigorous probabilistic framework (Kulp et al., 1996). The algorithm demonstrated
similar performance to FGENEH.

4.9 DISCRIMINATIVE AND PROBABILISTIC APPROACHES
FOR MULTIPLE GENE PREDICTION

Genome sequencing projects require gene-finding approaches able to identify many
genes encoded in the transcribed sequences. The value of sequence information for the
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biomedical community is strongly dependent on the availability of candidate genes that
are computationally predicted. The best multiple gene-prediction programs involve HMM-
based probabilistic approaches as implemented in Genscan (Burge and Karlin, 1997)
and Fgenesh (Salamov and Solovyev, 2000), Fgenes (discriminative approach) (Solovyev
et al., 1995) and Genie (Generalized HMM with neural network splice-site detectors)
(Reese et al., 2000). Initially we will describe a general scheme for HMM-based gene
prediction (Stormo and Haussler, 1994) (first implemented by the Haussler group (Krogh
et al., 1994; Kulp et al., 1996)) as the most general description of the gene model. A
pattern-based approach can be considered as a particular case of this approach, where
transition probabilities are not taken into account.

4.9.1 HMM-based Multiple Gene Prediction

Different components (states) of gene structure such as exons, introns and 5′-untranslated
regions occupy k subsequences of a sequence X:X = ⋃

i=1,k xi . There are 35 states that
describe eukaryotic gene model considering direct and reverse strands as possible gene
locations (Figure 4.13). However, in the current gene-prediction approaches, noncoding
5′- and 3′-exons (and introns) are not considered because the absence of protein-coding
characteristics makes their prediction less accurate. In addition, the major practical goal
of gene prediction is to identify the protein-coding sequences. The remaining 27 states
include 6 exon states (first, last single and 3 types of internal exons in 3 possible reading
frame) and 7 noncoding states (3 intron, noncoding 5′- and 3′-, promoter and polyA) in
each strand plus the noncoding intergenic region.

The predicted gene structure can be considered as the ordered set of states/sequence
pairs, φ = {(q1, x1), (q2, x2), . . . , (qk, xk)}, called the parse, such that the probability
P(X, φ) of generating X according to φ is maximal over all possible parses (or a score
is optimal in some meaningful sense that best explains the observations (Rabiner, 1989)):

P(X,φ) = P(q1)

(
k−1∏
i=1

P(xi |l(xi), qi)P (l(xi)|qi)(P (qi+1, qi)

)
P(xi |l(xk), qk)P (l(xk)|qk),

where P(q1) denotes the initial state probabilities; P(xi |l(xi), qi)P (l(xi)|qi) and
P(qi+1, qi) are the independent joint probabilities of generating the subsequence xi of
length l in the state qi and transitioning to i + 1 state.

Successive states of this HMM model are generated according to the Markov process
with the inclusion of explicit state duration density. A simple technique based on the
dynamic programming method for finding the optimal parse (or the single best state
sequence) is called the Viterbi algorithm (Forney, 1973). The algorithm requires on
the order of N2D2L calculations, where N is the number of states, D is the longest
duration and L is the sequence length (Rabiner and Juang, 1993). A useful technique was
introduced by Burge (1997) to reduce the number of states and simplify computations by
modeling noncoding state length by a geometrical distribution. The algorithm for gene
finding using this technique was initially implemented in the Genscan program (Burge
and Karlin, 1997) and used later in Fgenesh program (Salamov and Solovyev, 2000).
Since any valid parse will consist only of an alternating series of Noncoding and Coding
states: NCNCNC, . . , NCN, we need only 11 variables, corresponding to the different
types of N states. At each step corresponding to some sequence position, we select the
maximum joint probability to continue the current state or to move to another noncoding
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Figure 4.13 Different states and transitions in eukaryotic HMM genes model. Ei and Ii are
different exon and intron states, respectively (i = 0,1,2 reflect 3 possible different ORF). E marks
noncoding exons and I5/I3 are 5′- and 3′-introns adjacent to noncoding exons.

state defined by a coding state (from a precomputed list of possible coding states) that
ends in analyzed sequence position.

Define the best score (highest joint probability) γi(j) of optimal parse of the
subsequence s1,j , which ends in state qi at position j . We have a set Aj of coding
states {ck} of lengths {dk}, starting at positions {mk} and ending at position j , which have
the previous states {bk}. The length distribution of state ck is denoted by fck (d). The
searching procedure can be stated as follows:
Initialization:

γi(1) = πiPi(S1)pi, i = 1, . . . 11.

Recursion:

γi(j + 1) = max{γi(j)piPi(Sj+1),

max
ck∈Aj

{γi(mk − 1)(1− pbk )tbk,ck fck (dk)P (Smk,j )tck,ipiPi(Sj+1)}}

i = 1, . . . 11, j = 1, . . . , L− 1.
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Termination:

γi(L+ 1) = max{γi(L),
max
ck∈Aj

{γi(mk − 1)(1− pbk )tbk,ck fck (dk)P (Smk,j )tck,i}}

i = 1, . . . 11.

At each step, we record the location and type of transition maximizing the functional
to restore the optimal set of states (gene structure) by a backtracking procedure. Most
parameters of these equations can be calculated on the learning set of known gene
structures. Instead of scores of coding states P(Smk,j ) it is better to use log likelihood
ratios, which do not produce scores below the limits of computer precision.

Genscan (Burge and Karlin, 1997) was the first published algorithm to predict multiple
eukaryotic genes. Several HMM-based gene-prediction programs were developed later:
Veil (Henderson et al., 1997), HMMgene (Krogh, 1997), Fgenesh (Salamov and Solovyev,
2000), a variant of Genie (Kulp et al., 1996) and GeneMark (Lukashin and Borodovsky,
1998). Fgenesh is currently one of the most accurate programs. It is different from
Genscan because, in the model of gene structure, a signal term (such as splice site
or start site score) has some advantage over a content term (such as coding poten-
tial). In log likelihood terms, the splice sites and other exon functional signals have
an additional score, depending on the environments of the sites. Also, in computing
the coding scores of potential exons, a priori probabilities of exons are taken into
account according to Bayes theorem. As a result, the coding scores of potential exons are
generally lower than in Genscan. Fgenesh works with separately trained parameters for
each model organism such as human, drosophila, chicken, nematode, dicot and monocot
plants, and dozen yeast/fungi (currently using known genes or predicted protein-supported
genes, Fgenesh gene-finding parameters has been computed for about 40 various organ-
isms: http://sun1.softberry.com/berry.phtml?topic=fgenesh&group=
programs&subgroup=gfind). Coding potentials were calculated separately for 4
isochores (human) and for 2 isochores (other species). The run time of Fgenesh is prac-
tically linear and the current version has no practical limit on the length of analyzed
sequence. Prediction of about 800 genes in 34 MB of Chromosome 22 sequence takes
about 1.5 minutes of Dec-alpha processor EV6 for the latest Fgenesh version.

4.9.2 Pattern-based Multiple Gene-prediction Approach

FGENES (Solovyev, 1997) is the multiple gene-prediction program based on dynamic
programming. It uses discriminant classifiers to generate a set of exon candidates. Similar
discriminant functions were developed initially in Fexh (Find Exon), Fgeneh (Find GENE)
program (h stands for version to analyze human genes) and described in details earlier
(Solovyev and Lawrence, 1993a; Solovyev et al., 1995, Solovyev and Salamov, 1997).

The following major steps describe the analysis of genomic sequences by the Fgenes
algorithm:

1. Create a list of potential exons, selecting all ORFs: ATG.. GT, AG–GT, AG.. Stop
with exons scores higher than the specific thresholds depending on GC content
(4 groups);
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2. Find the set of compatible exons with maximal total score. Guigo (1998) described
an effective algorithm for finding such set. Fgenes uses a simpler variant of a similar
algorithm: Order all exon candidates according to their 3′-end positions; Going from
the first to the last exon select for each exon the maximal score path (compatible exons
combination) terminated by this exon using the dynamic programming approach.
Include in the optimal gene structure either this exon or the exon with the same 3′-
splicing pattern ending at the same position or earlier (which has the higher maximal
score path).

3. Take into account promoter or polyA scores (if predicted) in the terminal exon scores.

The run time of the algorithm grows approximately linearly with the sequence length.
Fgenes is based on the linear discriminant functions developed earlier for the identification
of splice sites, exons, promoter and polyA sites (Solovyev et al., 1994; Salamov and
Solovyev, 1997). We consider these functions in the following sections to see what
sequence features are important in exon prediction.

4.10 INTERNAL EXON RECOGNITION

For internal intron prediction, we consider all open reading frames in a given sequence that
are flanked by AG (on the left) and by GT (on the right) as potential internal exons. The
structure of such exons is presented in Figure 4.14. The values of 5 exon characteristics
were calculated for 952 authentic exons and for 690 714 pseudoexon training sequences
from the set. The Mahalonobis distances showing significance of each characteristic are
given in Table 4.13. We can see that the strongest characteristics for exons are the values
of the recognition functions for the flanking donor and acceptor splice sites (D2 = 15.04
and D2 = 12.06, respectively). The preference of an ORF being a coding region has
D2 = 1.47 and adjacent left intron region has D2 = 0.41 and right intron region has
D2 = 0.18.

ORF
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StopATG

StopA
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DORF

3′-region5′-region

3′-regionintron

intron intron

5′-exon

Internal exon

3′-exon

Single exon

5′-region intron
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Figure 4.14 Different functional regions of the first, internal, last and single exons corresponding
to components of recognition functions.
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Table 4.13 Significance of internal exon characteristics.

Characteristics 1 2 3 4 5

a Individual D2 15.0 12.1 0.4 0.2 1.5
b Combined D2 15.0 25.3 25.8 25.8 25.9

Characteristics 1 and 2 are the values of the donor and acceptor site recognition functions. Characteristic
3 gives the octanucleotide preferences for being coding for each potential exon. Characteristic 4 gives the
octanucleotide preferences for being an intron 70-bp region on the left and a 70-bp region on the right of the
potential exon region.

The performance of the discriminant function based on these characteristics was
estimated using 451 exon and 246 693 pseudoexon sequences from the test set. The general
accuracy of the exact internal exon prediction is 77 % with specificity 79 %. At the level
of individual nucleotides, the sensitivity of exon prediction is 89 % with specificity 89 %;
and the sensitivity of prediction of intron positions is 98 % with specificity 98 %. This
accuracy is better than in the most accurate dynamic programming and neural network-
based methods (Snyder and Stormo, 1993), which have 75 % accuracy of the exact internal
exon prediction with specificity 67 %. The method has 12 % less false exon assignments
with a better level of true exon prediction.

4.11 RECOGNITION OF FLANKING EXONS

Figure 4.15 shows the 3-dimensional histograms reflecting the oligonucleotide composi-
tion of the gene flanking regions based on a graphical fractal representation of nucleotide
sequences (Jeffrey, 1990; Solovyev et al., 1991; Solovyev, 1993). The clear differences
in compositions were exploited to develop of recognizers of these regions.

4.11.1 5′-terminal Exon-coding Region Recognition

For 5′-exon prediction, all the open reading frames in a given sequence starting with the
ATG codon and ending with the GT dinucleotide were considered as potential first exons.
The structure of such exons is presented in Figure 4.14. The exon characteristics and their
Mahalonobis distances are given in Table 4.14. The accuracy of the discriminant function
based on these characteristics was computed using the recognition of 312 first exons and
246 693 pseudoexon sequences. The gene sequences were scanned and the 5′ exon with
the maximal weight was selected for each of them. The accuracy of the prediction of the
true first coding exon is 59 %. Competition with the internal exons was not considered in
this test.

4.11.2 3′-exon-coding Region Recognition

All ORF regions that are flanked by GT (on the left) and finish with a stop codon were
considered as potential last exons. The structure of such exons is presented in Figure 4.14.
The characteristics of the discriminant functions and their Mahalonobis distances are
presented in Table 4.15. The accuracy of the discriminant function was tested on the
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Figure 4.15 Graphical representation of the number of different oligonucleotides 6 bp long in 5’
(a) and 3’ (b) gene regions. Each colon is the number of a particular oligonucleotide in the set of
sequences.

Table 4.14 Significance of 5′- exon characteristics.

Characteristics 1 2 3 4 5 6 7

a Individual D2 5.1 2.6 2.7 2.3 0.01 1.05 2.4
b Combined D2 5.1 8.1 10.0 11.3 12.5 12.8 13.6

Characteristic 1 is the value of donor site recognition function. 2 is the average value of positional triplet
preferences in −15 to +10 region around ATG codon. 4 gives the octanucleotide preferences for being intron
in 70 bp region on the right of potential exon. 3, 5 and 7 are the hexanucleotide preferences in −150 to −101
bp, −100 to −51 bp and −50 to −1 bp regions on the left of potential exon, respectively; 6 is the octanucleotide
preferences for being coding in exon region.

recognition of 322 last exons and 2 47 644 pseudoexon sequences. The gene sequences
were scanned and the 3′ exon with the maximal weight was selected for each of them.
The function can identify 60 % of annotated last exons.
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Table 4.15 Significance of 3′-exon characteristics.

Characteristics 1 2 3 4 5 6 7

a Individual D2 10.0 3.2 0.8 2.2 1.2 0.2 1.6
b Combined D2 10.0 11.4 12.0 13.8 14.3 14.5 14.6

Characteristic 1 is the value of acceptor site recognition. Characteristic 2 is the octanucleotide preferences for
being coding of ORF region. 3, 5 and 7 are the hexanucleotide preferences in +100 to 150 bp, +50 to +100
bp and +1 to +50 bp regions on the left of coding region, respectively. 4 is the average value of positional
triplet preferences in −10 to +30 region around the stop codon. 6 is the octanucleotide preferences for being
intron in 70 bp region on the left of exon sequence.

The recognition function for single exons combines the corresponding characteristics
of 5′- and 3′-exons.

4.12 PERFORMANCE OF GENE IDENTIFICATION PROGRAMS

Most gene-recognition programs were tested on a specially selected set of 570 single
gene sequences (Burset and Guigo, 1996) of mammalian genes (Table 4.16). The best
programs predict accurately on average 93 % of the exon nucleotides (Sn = 0.93) with
just 7 % of false-positive predictions. Because the most difficult task is to predict small
exons and exactly identify exon 5′ and 3′ ends, the accuracy at the exon level is usually
lower than at the nucleotide level.

The table demonstrates that the modern multiple gene-prediction programs as Fgenesh,
Fgenes and Genscan significantly outperform the older approaches. The exon identification
rate is actually even higher than the data presented as the overlapped exons were not

Table 4.16 Accuracy of the best gene-prediction programs for single gene sequences from (Burset
and Guigo, 1996) data set. Sn (sensitivity) = number of exactly predicted exons/number of true
exons (or nucleotide); Sp (specificity) = number of exactly predicted exons/number of all predicted
exons. Accuracy data for programs developed before 1996 were estimated by Burset and Guigo
(1996). The other data were received by authors of programs.

Algorithm
Sn

(exons)
Sp

(exons)
Sn

nucleotides
Sp

nucleotides Authors/year

Fgenesh 0.84 0.86 0.94 0.95 Solovyev and Salamov (1999)
Fgenes 0.83 0.82 0.93 0.93 Solovyev (1997)
Genscan 0.78 0.81 0.93 0.93 Burge and Karlin (1997)
Fgeneh 0.61 0.64 0.77 0.88 Solovyev et al. (1995)
Morgan 0.58 0.51 0.83 0.79 Salsberg et al. (1998)
Veil 0.53 0.49 0.83 0.79 Henderson et al. (1997)
Genie 0.55 0.48 0.76 0.77 Kulp et al. (1996)
GenLang 0.51 0.52 0.72 0.79 Dong and Searls (1994)
Sorfind 0.42 0.47 0.71 0.85 Hutchinson and Hyden (1992)
GeneID 0.44 0.46 0.63 0.81 Guigo et al. (1992)
Grail2 0.36 0.43 0.72 0.87 Xu et al. (1994)
GeneParser2 0.35 0.40 0.66 0.79 Snyder and Stormo (1995)
Xpound 0.15 0.18 0.61 0.87 Thomas and Skolnick (1994)
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counted in exact exon predictions. However, there is a lot of room for future improvement.
The accuracy at the level of exact gene prediction is only 59 % for Fgenesh, 56 % for
Fgenes and 45 % for the Genscan program even on this relatively simple test set.

The real challenge for ab initio gene identification is to find multiple genes in long
genomic sequences containing genes on both DNA strands. Often, there is no complete
information about the real genes in such sequences. One example studied experimentally at
the Sanger Centre (UK) is the human BRACA2 region (1.4 MB) that contains eight genes
and 169 experimentally verified exons. This region is one of the worse cases for genome
annotation because it has genes with many exons and almost all genes show no similarity
of their products with known proteins. Moreover, it contains four pseudogenes and at
least two of the genes have alternative splicing variants. The results of gene prediction
initially provided by T. Hubbard and R. Bruskiewich (Sanger Centre Genome Annotation
Group) are shown in Table 4.17.

Fgenesh predicts 20 % less false-positive exons in this region than the Genscan
approach, with the same level of true predicted exons. Even for such difficult region
about 80 % of exons were identified exactly by ab initio approaches.

The accuracy of the gene-finding programs depends not only on underlying algorithm,
but also strongly affected by parameter file computed on the learning set of known genes.
While Fgenesh and Genscan demonstrate similar performance for human gene prediction,
Fgenesh has shown significantly better accuracy than many other tested gene-finders
(including Genscan) in predicting rice genes (Yu et al., 2002).

4.13 USING PROTEIN SIMILARITY INFORMATION TO IMPROVE
GENE PREDICTION

The lessons from manual annotations show that it is often advantageous to take into
account all the available information to improve gene identification. Automatic gene-
prediction approaches can take into account the information about exon similarity with

Table 4.17 Accuracy of gene-prediction programs for BRACA2 1.4 MB human genomic
sequence. Masked is prediction when repeats have been defined by RepeatMasker (Smit and Green,
1997) program in the analyzed sequence and excluded from potential exon location during predic-
tion. The region consisted of 20 sequences with 8 verified genes, 4 pseudogenes and 169 exons.
Later one sequence was constructed and three additional exons were identified. The results of
prediction on this sequence marked bold.

CC Snb Spb Pe Ce,ov Sne Sn,ov Spe/Spe,ov

Genscan 0.68 90 53 271/271 109/131 65 80/76 40/49
Fgenesh 0.80 89 73 188/195 115/131 69 80/76 61/67
Fgenes 0.69 79 62 298/281 110/136 66 86/78 37/48
Genscan masked 0.76 90 66 217 109 65 80 50
Fgenesh masked 0.84 89 82 172/168 114/131 68 79/73 66/76
Fgenes masked 0.73 80 68 257/228 107/133 64 85/75 42/58

CC is the correlation coefficient reflecting the accuracy of prediction at the nucleotide level. Snb, Spb –
sensitivity and specificity at the base level (in %), Pe – number of predicted exons, Ce –number of correctly
predicted exons, Sne, Spe – sensitivity and specificity at the exon level, Snep – exon sensitivity, including partially
correct predicted exons (in %). Ov is including overlapped exons.
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known proteins or ESTs (Gelfand et al., 1996; Krogh, 2000). Fgenesh+ (Salamov and
Solovyev, 2000) is a version of Fgenesh which uses additional information from the
available protein homologs. When exons initially predicted by Fgenesh show high
similarity to a protein from the database, it is often advantageous to use this information
to improve the accuracy of prediction. Fgenesh+ requires an additional file with protein
homolog, and aligns all predicted potential exons with the protein homolog using own
alignment algorithm. To decrease the computational time, all overlapped exons in the
same reading frame are combined into one sequence and align only once.

The main additions to the algorithm, relative to Fgenesh, include:

1. Augmentation of the scores of exons with detected similarity by an additional term
proportional to the alignment score.

2. An additional penalty included for the adjacent exons in the dynamic programming
(Viterbi algorithm), if the corresponding aligned protein segments are not close in the
corresponding protein.

Fgenesh+ was tested on the selected set of 61 GenBank human sequences, for which
Fgenesh predictions were not accurate (correlation coefficient 0.0 <= CC < 0.90) and
which have protein homologs from another organism. The percentage identity between the
encoded proteins and their homologs varied from 99 % to 40 %. The prediction accuracy
using this set is presented in Table 4.18. The results show that if the alignment covers
the whole length of both proteins, then Fgenesh+ usually increases the accuracy relative
to Fgenesh and does not depend significantly on the level of identity (for ID>0 %).
This result makes knowledge of proteins from distant organisms valuable for improving
the accuracy of gene identification. A similar approach exploiting known EST/cDNA
information was implemented in Fgenesh c program (Salamov and Solovyev, 2000).

4.13.1 Components of Fgenesh++ Gene-prediction Pipeline

Ab initio gene-prediction program such as Fgenesh predicts ∼93 % of all coding exon
bases and exactly predicts ∼80 % of human exons when applied to single gene sequences
(Table 4.16). Analysis of multigene, long genomic sequences is a more complicated
task. A program can erroneously join neighboring genes or split a gene into two or
more. To improve automatic annotation accuracy, we developed a pipeline Fgenesh++,
which can take into account available supporting data such as mRNA or homologous
protein sequences. Fgenesh++ is a pipeline for automatic, without human modification of
results, prediction of genes in eukaryotic genomes. It uses thefollowing sequence analysis
software.

Table 4.18 Comparison of accuracy of Fgenesh and Fgenesh+ on the set of ‘difficult’ human
genes with known protein homologs from another organism.

CG Sne Spe Snb Spb CC

Fgenesh 0 63 68 86 83 0.74
Fgenesh+ 46 82 85 96 98 0.95

The set contains 61 genes and 370 exons. CG – percent of correctly predicted genes; Sne, Spe –sensitivity
and specificity at the exon level (in %); Snb, Spb – sensitivity and specificity at the base level (in %); CC –
correlation coefficient.
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Fgenesh++ script to execute the pipeline;
Fgenesh: HMM-based ab initio gene-prediction program;
Fgenesh+: gene-prediction program that uses homologous protein sequence to improve
performance;
Est map: a program for mapping known mRNAs/ESTs to a genome, producing genome
alignment with splice sites identification;
Prot map: a program for mapping a protein database to genomic sequence.

Est map can map a set of mRNAs/ESTs to a chromosome sequence. For example,
11 000 full-length mRNA sequences from NCBI reference set were mapped to 52 MB
unmasked Y chromosome fragment in ∼20 minutes Est map takes into account statistical
features of splice sites for more accurate mapping. Prot map uses a genomic sequence
and a set of protein sequences as its input data, and reconstructs gene structure based
on protein identity or homology, in contrast to a set of unordered alignment fragments
generated by Blast (Altschul et al., 1997). The program is very fast and produces gene
structures with similar accuracy to those of relatively slow GeneWise program (Birney
and Durbin, 2000), but does not require knowledge of protein genomic location. The
accuracy of gene reconstruction can be significantly improved further using Fgenesh+
program on output of Prot map, that is, using a fragment of genomic sequence (where
prot map found a gene) and the cooreponding protein sequence mapped to it.

Comparison of accuracy of gene prediction by ab initio Fgenesh and gene prediction
with protein support by Fgenesh+ or GeneWise (Birney and Durbin, 2000) and Prot map
was performed on a large set of human genes with homologous proteins from mouse or
drosophila. We can see that Fgenesh+ shows the best performance with mouse proteins
(Table 4.19). With Drosophila proteins, ab initio gene prediction by Fgenesh works better
than GeneWise for all ranges of similarity and Fgenesh+ is the best predictor if similarity
is higher than 60 % (Table 4.20).

Table 4.19 Accuracy of human gene prediction using similar mouse proteins.

(a) Similarity of mouse protein > 90 % in 921 sequences ∗

Snex Spex Snnuc Spnuc CC %CG

Fgenesh 86.2 88.6 93.9 93.4 0.9334 34
Genwise 93.9 95.9 99.0 99.6 0.9926 66
Fgenesh+ 97.3 98.0 99.1 99.6 0.9936 81
Prot map 95.9 96.9 99.1 99.5 0.9924 73

(b) 80 %¡ similarity of mouse protein < 90 % in 1441 sequences

Snex Spex Snnuc Spnuc CC %CG

Fgenesh 85.8 87.7 94.0 93.4 0.9334 30
Genewise 92.6 94.1 98.9 99.5 0.9912 58
Fgenesh+ 96.8 97.2 99.1 99.5 0.9929 77
Prot map 93.9 94.1 98.9 99.3 0.9898 60

∗ Snex, Sensitivity on exon level (exact exon predictions); Snoex, sensitivity with exon overlap; Spex, specificity,
exon level; Snnuc, sensitivity, nucleotides; Spnuc, specificity, nucleotides; CC, correlation coefficient; %CG,
percent of genes predicted completely correctly (no missing and no extra exons, and all exon boundaries are
predicted exactly correctly).



STATISTICAL APPROACHES IN EUKARYOTIC GENE PREDICTION 135

Table 4.20 Accuracy of gene prediction using similar Drosphilla pfroteins.

(a) Similarity of Drosophila protein > 80 % – 66 sequences.

Snex Spex Snnuc Spnuc CC CG %

Fgenesh 90.5 95.1 97.9 96.9 0.950 55
Genewise 79.3 86.8 97.3 99.5 0.985 23
Fgenesh+ 95.1 97.0 98.9 99.5 0.9914 70
Prot map 86.4 88.1 97.6 99.0 0.982 41

(b) 60 % < similarity of Drosophila protein < 80 % – 290 sequences.

Snex Spex Snnuc Spnuc CC CG %

Fgenesh 88.6 90.8 94.9 93.8 0.941 34
Genewise 76.3 82.9 92.8 99.4 0.959 7
Fgenesh+ 89.2 92.7 95.5 98.5 0.968 44
Prot map 75.1 74.9 91.4 97.5 0.941 10

In addition to the programs listed above, Fgenesh++ package also includes files with gene-finding parameters
for specific genome, configuration files for programs and a number of Perl scripts. In addition, Fgenesh++
pipeline uses the following public software and data: BLAST executables blastall and bl2seq (Altschul et al.,
1997), NCBI NR database (nonredundant protein database) formatted for BLAST, and NCBI RefSeq database
(Pruitt et al., 2005).

Fgenesh++ analyzes genome sequences and, optionally, same sequences with repeats
masked by N. Sequences can be either complete chromosomes or their fragments such
as scaffolds, contigs, etc. When preparing repeats-masked sequences, it is recommended
not to mask low complexity regions and simple repeats, as they can be parts of coding
sequences.

There are three main steps in running the pipeline:

1. mapping known mRNAs/cDNAs (e.g. from RefSeq) to genomic sequences;

2. prediction of genes based on homology to known proteins (e.g. from NR);

3. ab initio gene prediction in regions having neither mapped mRNAs nor genes
predicted on the basis of protein homology.

The output of the pipeline consists of predicted gene structures and corresponding proteins.
It also indicates whether particular gene structure was assigned on the basis of mRNA
mapping, protein homology, or ab initio gene prediction.

4.14 GENOME ANNOTATION ASSESSMENT PROJECT (EGASP)

NHGRI (The National Human Genome Research Institute) has initiated the ENCODE
project to discover all human genome functional elements (The ENCODE Project
Consortium, 2004). Its pilot phase is focused on performance evaluation of different
techniques of genome annotation, including computational analysis, on a specified 30 MB
of human genome sequence. The community experiment (EGASP05) was organized
(Guigo and Reese, 2005) to evaluate how well automatic annotation methods are able
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to reproduce manual annotations. The best performance in most categories has been
demonstrated by predictors that used the most sources of available information. Some of
them included conservation of corresponding coding regions in several available genomes:
Augustus (Stanke et al., 2006), Jigsaw (Allen et al., 2006) and Paragon (Arumugam et al.,
2006). The sensitivity of Fgenesh++ pipeline (which uses one genome information) is
similar with them, but the above multigenome programs demonstrated better specificity
(Guigo et al., 2006). Performance of Fgenesh++ pipeline for mRNA or protein-supported
predictions and ab initio predictions (in sequence regions where similar mRNA/protein
were not found) is presented in Table 4.21 (Solovyev et al., 2006). All the above-
mentioned pipelines demonstrate ∼90–95 % sensitivity on the nucleotide level and
75–80 % on the exact exon prediction level. They can exactly predict ∼70 % genes (when
we count at least one transcript per locus predicted exactly) and ∼50 % of all annotated
transcripts. No annotation strategy produces perfect gene predictions even using a lot
of supportive information that is available for human genome. It is worthwhile to note
that the human genes are the most difficult to predict (due to regular occurrences ofvery
short exons and very long intron sequences), while the accuracy on simpler organisms
is usually much better. While human genes present the most difficult case, the other
sequenced genomes have much less available experimental information.

4.15 ANNOTATION OF SEQUENCES FROM GENOME SEQUENCING
PROJECTS

Knowledge of gene sequences has opened a new way of performing biological studies
called functional genomics and the major challenge is to find out what all the newly
discovered genes do, how they interact and how they are regulated (Wadman, 1998).
Comparisons between genes from different genomes can provide additional insights into
the details of gene structure and function.

The successful completion of the Human Genome Project has demonstrated that large-
scale sequencing projects can generate high-quality data at a reasonable cost. In addition
to human genome, researchers have already sequenced the genomes of a number of
important model organisms that are commonly used as test beds in studying human
biology. These are the chimpanzee, the mouse, the rat, two puffer fish, two fruit flies, two
sea squirts, two roundworms and baker’s yeast. Recently, sequencing centers completed
working drafts of the chicken, the dog, the honey bee, the sea urchin and a set of four

Table 4.21 Performance data for annotating 44 ENCODE sequences by either mRNA and
protein-supported predictions or by ab initio predictions.

mRNA + protein- supported, Sn and Sp (%) Ab initio, Sn and Sp ( %)

nucleotide level 91.14 88.44
89.54 74.46

CDS EXACT 77.19 67.54
86.48 64.22

CDS OVERLAP 90.60 85.00
91.4 71.71
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fungi. A variety of other genomes are currently in the sequencing pipelines. Many new
genomes lack such rich experimental information as the human genome, and therefore
their initial computational annotation is even more important as a starting point for
further research to uncover their biology. The more comprehensive and accurate such
computational analysis is performed, the less time consuming and costly experimental
work will have to be done to determine all functional elements in new genomes. Using
computational predictions, the scientific community can get at least partial knowledge of
majority of real genes because usually gene-finding programs correctly predict most exons
of each gene. Fgenesh++ gene-prediction software has been used in annotation of dozen
new genomes such as human, rice, Medicago, silkworm, many yeast genomes, bee and
sea urchin (see for example, Sodergren et al., 2006; The Honeybee Genome Sequencing
Consortium, 2006). Annotation of many genomes is quite a complex procedure. For
example, five gene lists were combined to produce bee genome master gene set. Three
of them present gene predictors from NCBI, Fgenesh++ and ENSEMBL. Two others
comprised evolutionary conserved gene set and Drosophila ortologs. These gene sets
merged by special procedure (GLEAN), that construct consensus prediction based on
combination of evidences provided by the five gene lists. The Glean set of 10 157 genes
is considered as based on experimental evidence, the official ab initio gene set comprised
15 500 gene models that did not overlap models of the Glean set (The Honeybee Genome
Sequencing Consortium, 2006).

4.15.1 Finding Pseudogenes

Pseudogenes prediction can use two types of initial information (Solovyev et al., 2006).
One type contains exon–intron structures of annotated genes and their protein sequences
for a genome under analysis. To get such information, we can execute a gene-finding
pipeline such as Fgenesh++. In this case, we run Prot map program with a set of protein
sequences to find possible significant genome–protein alignments that do not correspond
to a location of a gene for mapped protein. Other type of initial data can be a set of
known proteins for a given organism. Having such data, we can restore gene structure of
a given protein using Prot map program. For each mapped protein, we can select the best
scoring mapping and the computed exon/intron structure as the ‘parent’ gene structure of
this protein. If the alignment of a protein with its own parent has obvious internal stop
codons or frameshifts, this locus could be included in the list of potential pseudogenes,
but we need to keep in mind more trivial explanations like sequencing errors. Such
loci cannot be analyzed on their Ka/Ks or checked for intron losses. In any case, for
each of two approaches we have a set of protein sequences, their parent gene structures,
and protein–genome alignments for further analysis to identify pseudogenes. Most other
pseudogene-finding methods do not include gene-finding and rely on the available protein
databases (Harrison et al., 2003) or search only for processed pseudogenes (Baren and
Brent, 2006). Example of two types of pseudogenes, processed and nonprocessed, and
their characteristics are presented in Figures 4.16 and 4.17.

4.15.2 Selecting Potential Pseudogenes

Using genome–protein alignments generated by Prot map program, PSF program
produces a list of alignments possessing the following properties for each protein.
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1. Identity in blocks of alignment exceeds certain value

2. Substantial portion of protein sequence is included in the alignment

3. Genomic location of alignment differs from that of parent gene

4. At least one of four events is observed:

i. Damage to ORF. There is one or more frameshifts or internal stop codons;

ii. Single exon with close PolyA site. PolyA site is too close to a 3′-end of an
alignment, while C-terminus of protein sequence is aligned to the last amino
acid, and a single exon covers 95 % of protein sequence.

iii. Loss of introns. Protein coverage by alignment is at least 95 %, and a number of
exons is fewer than in parent gene by a certain number.

iv. Protein sequence is not preserved. The ratio of nonsynonymous to synonymous
replacements exceeds certain threshold (Ka/Ks > 0.5). Ka/Ks is calculated
relative to a parent gene by method presented by Nei and Gojobori (1986).

4.15.3 Selecting a Reliable Part of Alignment

The procedures described above apply to a so-called reliable part of alignment. Necessity
of introducing this concept is caused by imperfections in aligning a protein against a
chromosome sequence. There are complex cases where accurate alignment cannot be
produced, such as very short (1–3 bp) exons separated by a large intron, or some errors
in protein or genome draft sequence that prevent perfect alignment. For instance, if a
protein as a whole is well aligned to a chromosome, but ∼20 amino acids on its 5′-end
cannot be aligned in one continuous block, Prot map will most likely try to align these 20
amino acids by scattering them along several short blocks. Most likely, these blocks will
not have any relation to a gene or a pseudogene. Therefore, in search for pseudogenes,
we remove short insignificant trailer blocks. The rest of alignment is considered as its
reliable part. To find a reliable part of alignment, we evaluate the quality of alignment
blocks (exons). For each exon found by Prot map, we calculate the number of aligned
amino acid (M), number of nonaligned amino acids (AI) and nucleotides (NI) within an
exon, number of aligned amino acids (AO) and nucleotides (NO) located outside of exon
region to the left and to the right side of an exon. We also compute the ‘correctness’
of splice sites conserved dinucleotides (SSC) that flank an exon. If an exon is N- or
C-terminal one, we also compute ‘correctness’ of corresponding start or stop codons. The
length of an intron (IL) that separates an exon from nearest exon in the direction of the
longest mapped exon is also computed. The empirical ‘quality’ measure is defined by
the following formula:

Q = M − PAI(AI)− PNI(NI)− PAO(AO)− PNO(NO)+ BSSC(SSC)− PIL(IL).

Where PAI, PNI, PAO, PNO are the penalties for the internal and external unaligned amino
acids and nucleotides, BSSC is a bonus for correctness of splice sites or start/stop codons,
and PIL is a penalty for high intron length. The reliable part of alignment consists of
neighboring exons alignments that each have Q > 5. After Prot map mapping, many loci
on a chromosome include alignments to more than one protein. In such cases, we choose
only one most reliable alignment, based on a sum of included exon’s qualities.
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The PSF (pseudogene finding) approach described above has been applied to identify
pseudogenes in 44 ENCODE sequences (Solovyev et al., 2006). As a result, it was found
181 potential pseudogenes, 118 of which had a significant overlap with annotated 145
HAVANA pseudogenes. 68 (58 %) of these 118 pseudogenes had only one exon and could
be classified as processed pseudogenes: 58 had the parent gene with more than one exon
and seven others had polyA tail. 106 (90 %) of 118 pseudogenes had one or more defects in
their ORFs. Among the remaining 12, there are four pseudogenes with a single exon (while
their parents have four or more exons), four contain both polyA signal and polyA tract,
four have only a polyA tract, and two have only high Ka/Ks ratios (0.59 and 1.04). The
PSF has not found 27 HAVANA annotated pseudogenes. Three of them were not reported
because they are located in introns of larger pseudogenes (AC006326.4-001, AC006326.2-
001 and AL162151.3-001). The other ten represent fragments of some human proteins and
are missing stop codons or frameshifts. We did not include pseudogenes corresponding
to fragments of proteins in our pseudogene set. The remaining 14 HAVANA pseudogenes
were not found probably due to some limitation of our program and the used datasets of
predicted genes and known proteins. Missed pseudogenes might have parent genes that
were absent from our initial protein set compiled by Fgenesh++ gene-prediction pipeline.
Some of 63 pseudogenes that have been predicted by PSF but were absent from HAVANA
set might have appeared because of imperfect predictions by the pipeline, which produced
frameshifts when a pseudogene candidate and its parent gene were aligned. However, some
of these ‘over-predicted’ pseudogenes might be actual pseudogenes missed by HAVANA
annotators (for example, see Figure 4.18).

To summarize, PSF pseudogene prediction program has found 81 % of annotated
pseudogenes. Its quality can further be improved by improving the quality of parent
gene/protein sets.

4.16 CHARACTERISTICS AND COMPUTATIONAL IDENTIFICATION
OF miRNA GENES

MicroRNA (miRNA) are a class of small (∼22 nt), noncoding RNAs that can regulate gene
expression by directing mRNA degradation or inhibiting productive translation (Mallory
and Vaucheret., 2004). They are sequence-specific regulators of posttranscriptional gene
expression in many eukaryotes. Some components of miRNA machinery have been found
even in archaea and eubacteria, revealing their very ancient origination. They are believed
to control the expression of thousands of target mRNAs, with each mRNA possible
targeted by multiple miRNAs (Pillai, 2005). miRNA discovery by molecular cloning
has been supplemented by computational approaches that identify evolutionary conserved
miRNA genes by searching for patterns of sequence and secondary structure conservation
These approaches indicate that miRNA constitute nearly 1–3 % of all identified genes in
nematodes, flies and mammalians (Jones-Rhoades and Bartel, 2004). Only in humans the
latest miRNA count exceeded 800 genes (Pillai, 2005). The first two miRNA genes (lin-4
and let-7) were discovered in C. elegans, where their mutations cause defects in the
temporal regulation of larval stage-specific programs of cell divisions. These miRNAs
affect by base pairing to partially complementary sites in the 3′ untranslated region
(UTR) of their target mRNAs and repressing their translation (Lee et al., 1993; Reinhart
et al., 2000).
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The majority of miRNA genes are located in intergenic regions or in antisence
orientation to annotated genes, indication that they for independent transcriptional units.
Most of the other miRNA genes are found in intronic regions, which may be transcribed
as part of the annotated gene. Independent miRNA genes are initially transcribed by RNA
PolII (Lee et al., 2004) as part of a long primary transcript, which contain the mature
miRNA as part of a predicted RNA hairpin. This transcript is cropped into the hairpin-
shaped pre-miRNAs by nuclear RNaseIII Drosha (Lee et al., 2003). The hairpin RNAs of
approximately 70 nt bearing the 2-nucleotide 3′ overhang are exported to the cytoplasm by
a Ran dependent nuclear transport receptor family. Once in the cytoplasm, pre-miRNAs
are subsequently cleaved by cytoplasmic RNase III Dicer into ∼22 nt miRNA duplex,
one strand of which is degraded by a nuclease, while the other strand remains as a mature
miRNA (Lee et al., 2004; Denli et al., 2004). A typical structure of miRNA gene and its
processing is presented in Figure 4.19.

Despite the plenty of miRNAs that have identified from cloning, such technique is likely
to be far from saturated, as it is biased to abundant miRNA. Therefore, computational
approaches have been developed that predict miRNAs encoded in animal and plant
genomes (Grad et al., 2003; Jones-Rhoades and Bartel, 2004; Ohler et al., 2004). There
are several variations of these methods: one is based on analysis of sequence and
secondary structure properties of typical pre-miRNA. However, the short length and
high degree of sequence and structure variation limit the accuracy of computational
predictions based on such characteristics along. To decrease the number of false-positive
predictions, the candidate miRNAs are selected to be conserved across species (the
presence in two or more genomes of very similar sequences embedded in the same
stems of predicted hairpins). A flowchart of computational selection miRNA candidates
for plant miRNA predictions is presented in Figure 4.20 (Jones-Rhoades and Bartel,
2004). Another algorithm is based on the search for possible homologs (including
hairpin selection and Smith–Waterman sequence alignment) of a few hundreds of
known miRNAs cloned from C. elegans, D. melanogaster, M. musculus and H. sapiens
(for identification of miRNAs in animal genomes) (Grad et al., 2003). Recently, using
similar approaches the FindmiRNA and the TargetmiRNA programs were developed

PolII Promoter miRNA gene PolyA

Pri-miRNA

DROSHA

DICER

ATCACATTGCCAGGGATTTCCA
(Example of mature
human miR-23a) miRNA

3′

5′

Figure 4.19 A model of expression of miRNA gene and processing of miRNA.
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1. Find inverted repeats

2. Find 20mers in miRNA-like
hairpins with MiRcheck

3. Identify Arabidopsis 20-mers
with potential Oryza homologs

4. Find all genomic matches
and re-evaluated with MiRcheck

5. Secondary filter of
repetitive sequences

6. Identity miRNA like patterns
of conservation between 
Arabidopsis and Oryza hairpins

7. Identify canserved
complementarity to miRNAs

8. Verify expression of miRNAs
and regulation of targets

9. Identify paralogs

122 O.s. miRNA loci 83/83
18 O.s. miRNA families 

87 A.t. miRNA loci 64/69
18 A.t. miRNA families 

81. A.t. miRNA loci 41/48
18 A.t. miRNA families 

111 O.s. miRNA loci 36/38
18 O.s. miRNA families

278 20mers (AtSet6)
100 A.t. miRNA loci 41/48

24 A.t. miRNA families

349 20mers (OsSet6)
103 O.s. miRNA loci 36/38

24 O.s. miRNAfamilies

1145 20mers (AtSets)
 228 A.t. miRNA loci  41/48 

118 A.t. miRNA families

1578 20mers (OsSet5)
401 O.s. miRNA loci 36/38
118 O.s. miRNA families

2506 20mers
(AtSet4) 42/48

2780 20mers
(OsSet4) 36/38

2588 20mers
(AtSet3) 42/48

3851 20mers
(At Set2) 32/48

389848 20mers
(At Set1) 32/48

138864 A.t inverted
repeats 41/48 loci

41067 O.s inverted
repeats 32/38 loci

1721759 20mers
(OsSet1) 31/38

3083 20mers
(OsSet3) 36/38

5438 20mers
(OsSet2) 31/38

Arabidopsis
thaliana genome

Oryza
sativa genome

Figure 4.20 Flowchart of the miRNA prediction approach using two plant genomes. (Reprinted
from Jones-Rhoades, M.W. and Bartel, D.P. (2004) Computational identification of plant
microRNAs and their targets, including a stressinduced miRNA. Mol. Cell 14: 787-799, with
permission form Elsevier.)
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to search for miRNA and their targets in sequences of a range of model eukaryotic
organisms (http://www.softberry.com/berry.phtml?topic=index&group
=programs&subgroup=rnastruct).

4.17 PREDICTION OF microRNA TARGETS

While hundreds of miRNAs have been deposited in the databases, their regulatory targets
have not been established or predicted for many of them. Finding regulatory targets for
plant miRNA is simply performed by looking for near-perfect complementarity to the
mRNAs. For example, in a search for the targets of 13 Arabodopsis miRNA families,
49 unique targets were found with just a few false predictions (Rhoades et al., 2002).
However, animal miRNA targets have complementarity to the miRNAs only in the ‘seed’
sequence (usually 2–8 nucleotides numbered from the 5′ end) and often have multiple
regions of complementarity, therefore more sophisticated search methods considering
these features have recently been published (Stark et al., 2003; Enright et al., 2003; Lewis
et al., 2003; Rehmsmeier et al., 2004). In general, miRNA, target genes are selected
on the basis of three properties: sequence complementarity using a position-weighted
local alignment algorithm, free energies of RNA–RNA duplexes, and conservation of
target sites in related genomes. Lewis et al. (2003) in their TargetScan software took
into account multiple miRNA–mRNA UTR complementary regions summing Z-scores
(exp(-G/T)) produced by each such region in evaluating a potential target mRNA, where G

Homo sapiens miR-26a-1 stem-loop structure:

   g      u         c          --g  ca
gug ccucgu caaguaauc aggauaggcu   ug  g 
||| |||||| ||||||||| ||||||||||   ||  g 
cgc ggggca guucauugg ucuuauccgg   ac  u 
   a      c         u          gua  cc

Two predicted target sites:

UGCCU---CUGGAAAACUAUUGAGCCUUGCAUGUACUUGAAG

UCGGAUAGGACCUA------------------- AUGAACUU 5'

–21.8 kcal/mol

5'

GAGCCUU-----GAUAAUACUUGAC
||||| |||

UCGGAUAGGACCUA--AUGAACUU

–17.0 kcal/mol

5'
||||||||

5'

||||||||||| |||||

Figure 4.21 An example of stem-loop structure and predicted target sites for miR26a in human
SMAD1 gene.
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Table 4.22 Web server software for eukaryotic gene and functional signals prediction.

Program/task WWW address

Fgenesh/HMM-based gene prediction
(Human, Drosophila, Dicots,
Monocots, C.elegans, S. pombe and
etc.)

http://sun1.softberry.com/berry.phtml?topic=
fgenesh &group=programs&subgroup=gfind

Genscan/HMM-based gene prediction
(Human, Arabidipsis, Maize)

http://genes.mit.edu/GENSCAN.html

HMM-gene/HMM-based gene
prediction (Human, C.elegans)

http://www.cbs.dtu.dk/
services/HMMgene/

Fgenes/Disciminative gene prediction
(Human)

http://sun1.softberry.com/
berry.phtml?topic=fgenes&group=
programs&subgroup=gfind

Fgenesh-M/Prediction of alternative
gene structures (Human)

http://sun1.softberry.com/
berry.phtml?topic=fgenesh-
m&group=programs&subgroup=gfind

Fgenesh+/Fgenesh c/
gene prediction with the help of
similar protein/EST

http://sun1.softberry.com/berry.
phtml?topic=index&group=
programs&subgroup=gfind

Fgenesh-2/gene prediction using 2
sequences of close species

http://sun1.softberry.com/
berry.phtml?topic=fgenes c&group=
programs&subgroup=gfs

BESTORF/Finding best CDS/ORF in
EST (Human, Plants, Drosophila)

http://sun1.softberry.com/
berry.phtml?topic=bestorf&group=
programs&subgroup=gfind

FgenesB/gene, operon, promoter and
terminator prediction in bacterial
sequences

http://sun1.softberry.com/
berry.phtml?topic=index&group=
programs&subgroup=gfindb

Mzef/internal exon prediction (Human,
Mouse, Arabidopsis, Yeast

http://rulai.cshl.org/tools/
genefinder/

FPROM/TSSP/ promoter prediction http://sun1.softberry.com/
berry.phtml?topic=index&group=
programs&subgroup=promoter

NSITE/search for functional motifs
Promoter 2.0/promoter prediction http://www.cbs.dtu.dk/services/

Promoter/
CorePromoter/promoter prediction http://rulai.cshl.org/

tools/genefinder/CPROMOTER/
index.htm

SPL/SPLM/splice-site prediction
(Human, Drosophila, Plants nd etc.)

http://www.softberry.com/
berry.phtml?topic=spl&group=
programs&subgroup=gfind

NetGene2/NetPGene/splice-site
prediction (Human, C.elegans, Plants)

http://www.cbs.dtu.dk/services/
NetPGene/

Scan2 searching for similarity in
genomic sequences and its
visualization

http://sun1.softberry.com/
berry.phtml?topic=scan2&group=
programs&subgroup=scanh

RNAhybrid prediction of microRNA
target duplexes

http://bibiserv.techfak.uni-
bielefeld.de/rnahybrid/
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Figure 4.22 A user interface of MolQuest comprehensive desktop package for gene finding,
sequence analysis and molecular biology data management.

is the free energy of miRNA:target site interaction. An example of stem-loop structure and
predicted target sites for miR26a in human SMAD1 gene is presented in Figure 4.21. Using
TargetScan ∼400 regulatory target genes have been predicted for the conserved vertebrate
miRNAs. Eleven predicted targets (out of 15 tested) were supported experimentally (Lee
et al., 2003).

4.18 INTERNET RESOURCES FOR GENE FINDING AND FUNCTIONAL
SITE PREDICTION

Prediction of genes, ORF, promoter, splice sites finding by the methods described
in the preceding text is mostly available via World Wide Web. Table 4.22 presents
WEB addresses of some of them. Many of these programs can be used within
window-based Molquest computer package (www.molquest.com). It is the most
comprehensive, easy-to-use desktop application for desktop sequence analysis (see
Figure 4.22). The package includes gene-finders family (fgenesh/fgenesh+) programs
for many organisms as well as pipelines (fgenesh++ and fgeneshb annotator) that
often used for fully automatic annotation eukaryotic and bacterial genomes (or genome
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Figure 4.23 A screenshot of UCSC Genome Browser displaying gene predictions computed by
various approaches.

communities) (The Honeybee Genome Sequencing Consortium, 2006; Tyson et al.,
2004). The package provides a user-friendly interface for sequence editing, primer
design, internet database searches, gene prediction, promoter identification, regulatory
elements mapping, patterns discovery protein analysis, multiple sequence alignment,
phylogenetic reconstruction, and a wide variety of other functions. A lot of informa-
tion generated during new genomes annotations (including gene predictions) is available
through various genome browsers. A screenshot of popular UCSC Genome Browser
(http://genome.ucsc.edu/) is presented in Figure 4.23. Another such interactive
tool Genome Explorer (http://sun1.softberry.com/berry.phtml?topic=
human&group=genomexp) can show a graph of expression data for selected genes
(Figure 4.24). Its version for annotations of bacterial genomes is demonstrated in
Figure 4.25. These web browsers provide search of numerous genome elements, visualiza-
tion and retrieval of gene and protein sequences and fast comparison with auser-provided
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Figure 4.24 The Genome Explorer annotation browser showing graph of expression data for
selected genes.

Figure 4.25 The Bacterial genome explorer displaying predicted operons, genes, promoters and
terminators.
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sequences. They are actively used not only by academic research community but also by
many drug discovery and biotechnology companies for identification of drug candidates.
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Over the last couple of decades, numerous genetic and physical maps have been developed for a
wide range of species. These data have led to the development of the field of comparative genomics,
in which we analyse characteristics of whole genomes, in contrast to the analysis of single genes
in comparative genetics. By comparing homologous markers between species, we can get a feel
for their relative distributions on the chromosomes of the respective species. Such information also
enables us to deduce segments of chromosomes where the gene content, and sometimes also the
order of the genes, is similar in two or more species. More recently, DNA sequences of whole
genomes have become available, enabling us to compare genomes at both the sequence and the gene
levels. Furthermore, these datasets have provided us with more detailed information with which
to study the processes involved in genome dynamics. The promise of the post-genome era means
that we will see many fully sequenced genomes within the next decade and we should develop
analytical methods that are mature when significant quantities of data become available. However,
not all species will be sequenced, at least in the near future, and so we should continue to develop
methods of analysis that are appropriate for both types of data. In this chapter, we give a flavour
of the types of comparative genome analysis that are currently possible. We highlight particular
problems such as phylogenetic inference and the use of maps to compare genomes. Finally, we
look at problems that should be tackled to enable us to make the most of the emerging genomic
data.

5.1 INTRODUCTION

Comparative genomics is pervasive in almost all branches of computational biology.
At its broadest, comparative genomics is simply the comparison between two or more
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genomic entities from different taxa. These entities can be genomic sequences (either
whole sequences or subsets), gene order, gene content, or some other genomic feature
such as codon usage or GC content. Furthermore, the way in which we compare these
entities across taxa is dependent on the type of data we are analysing.

The growing focus on comparative genomics within computational biology is simple to
understand. For example, we would like to be able to look at a particular dataset, say the
DNA sequence of a gene, from a single organism and predict the functional characteristics
of that dataset. Unfortunately, ab initio methods are currently rare or not yet powerful
enough to be useful in everyday science. More commonly, we discover information
about biological objects that we know little about by comparing them to other objects
about which we have been able to gain information, usually by experimental means.
Thus, many of the concepts in computational biology with which we are most familiar,
such as functional prediction of DNA and protein sequences, have their foundations
in comparative biology. Furthermore, we see how methodologies are evolving to take
advantage of large quantities of genomic data in related species. For example, in the
field of gene prediction, recently developed methods such as Twinscan and N-scan
(http://mblab.wustl.edu/software/) make use of existing annotated genomes,
other than that of the organism on which an analysis is being performed, to improve the
results of the analysis. The considerable breadth of computational genomics means that we
cannot cover the whole spectrum of methodologies here. Consequently, in this chapter we
concentrate on a few areas that most closely embody the spirit of comparative genomics
by comparing significant quantities of genomic information from two or more organisms
to gain new biological insights. We do not aim to provide an exhaustive bibliography on
each of the topics covered, but we introduce many of the key papers that in turn provide
the interested reader with a more complete history of the relevant methodology.

In the kinds of analyses we examine in this chapter, we would like to compare the
genomes of two or more organisms. But what sort of data do we wish to compare, what
is our motivation for comparing them and how do we go about the comparison? To answer
these questions, it is simplest to examine in turn each of the datasets. Essentially, different
types of dataset have arisen as technological advances have been made. In the early days
of comparative genomics, our datasets consisted of mapped genetic markers. Later, as
sequencing technologies improved, we began to gain information on the sequences of
small genomes, often organellar genomes, leading to the study of gene content and order.
More recently, we have seen the sequencing of large eukaryotic organisms and a new
series of analytical tools have arisen as a result.

In the next two sections we look at the concepts of homology and genomic mutation,
both of which we must understand in order to carry out a comparative genomic analysis. In
Section 5.4, we look at comparative mapping and the problems that comparing maps can
solve. We refer to the complex nature of chromosomal evolution in Section 5.5 and use the
concepts described in Section 5.3 to look at measures of gene order and content difference.
We introduce models of chromosomal evolution and show how these models, together
with these measures of difference, can be used in evolutionary studies. In Section 5.6, we
examine new methodologies emerging for the analysis of genome sequences. These new
methods include whole genome alignment, taking the lead from smaller-scale alignment
tools, and genomic palaeontology, essentially a combination of sequence and gene order
studies that together enable us to understand a genome’s evolutionary past through
self-comparison. Finally, in Section 5.7, we look at areas of potential future research.
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Table 5.1 Examples of databases and software tools for comparative genomic analysis.

Databases

COGs http://www.ncbi.nlm.nih.gov/COG/
Ensembl http://www.ensembl.org/
Inparanoid http://inparanoid.sbc.su.se/
PhIGs http://PhIGs.org/

Gene order software

BADGER http://badger.duq.edu/
BPAnalysis,

DERANGE II
http://www.mcb.mcgill.ca/~blanchem/software.html

CHROMTREE http://cbr.jic.ac.uk/dicks/software/CHROMTREE/
GOTREE http://www.mcb.mcgill.ca/~bryant/GoTree/
GRAPPA http://www.cs.unm.edu/~moret/GRAPPA/
GRIMM http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM/
MGR http://www-cse.ucsd.edu/groups/bioinformatics/MGR/
ParIS server http://www.stats.ox.ac.uk/~miklos/
SHOT http://www.bork.embl-heidelberg.de/~korbel/SHOT/

Gene content software

GeneContent http://xgu.zool.iastate.edu/
MPP http://cbr.jic.ac.uk/dicks/software/mpp/
SHOT http://www.bork.embl-heidelberg.de/~korbel/SHOT/

Block-finding software

ADHoRe,
i-ADHoRE

http://bioinformatics.psb.ugent.be/software.php

CloseUp http://contact14.ics.uci.edu/closeup/
DiagHunter http://www.tc.umn.edu/~cann0010/Software.html
FISH http://www.bio.unc.edu/faculty/vision/lab/FISH/
Gene Teams http://www-igm.univ-mlv.fr/~raffinot/geneteam.html
GRIL http://asap.ahabs.wisc.edu/software/gril/
LineUp http://titus.bio.uci.edu/lineup/

Whole genome alignment software

AVID, MAVID http://baboon.math.berkeley.edu/mavid/
DIALIGN http://bibiserv.techfak.uni-bielefeld.de/dialign/
LAGAN,

MLAGAN,
SLAGAN

http://lagan.stanford.edu/lagan web/index.shtml

MAUVE http://gel.ahabs.wisc.edu/mauve/
MUMmer http://mummer.sourceforge.net/
TBA http://www.bx.psu.edu/miller lab/
WABA http://www.soe.ucsc.edu/~kent/xenoAli/

Throughout the chapter we give examples of databases and software tools pertinent to
the subject matter covered in the section. References for these items are given in the text,
with URLs provided in Table 5.1.
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5.2 HOMOLOGY

Comparative genomics is built upon the concept of homology. Haldane (1927) laid
the foundations of comparative genetics by examining the coat colour of rodents and
carnivores. He discussed genetic homology and stated that ‘Structures in two species are
said to be homologous when they correspond to the same structure in a common ancestor.’
Historically, homology was established on the basis of a large array of experimental
evidence (see Searle, 1968). Today, we are more used to seeing sequence similarity with,
perhaps, the additional evidence of homologous flanking regions (i.e. being within a larger
region of homology) as sufficient to state a putative homology.

For much of this chapter, we refer to homology in the context of genes and the similarity
of their sequences. However, we should keep in mind that homology is equally relevant
to non-genic objects (e.g. markers in comparative mapping studies are not always gene
based). There are different categories of homology. For a given gene in one organism we
can often, though not always, find a corresponding gene that carries out a similar role in
a closely related organism. If the two genes arose from a common ancestor then they are
orthologues. However, if they evolved from different origins but have similar sequences
or functions as a consequence of convergent evolution, then they are analogous to one
another and are known as analogues. Relationships between genes are further complicated
by gene duplication, where we need to consider paralogous genes. Fitch (1970) wrote of
the difficulties and importance of correctly distinguishing homologous from paralogous
proteins. The recent burgeoning popularity of comparative genomic studies has led to
this matter being discussed widely, for example by Remm et al. (2001). Here, the term
inparalogue has been created to indicate paralogues that have arisen through a gene
duplication event after speciation, such that a group of such genes may together be co-
orthologous to a gene in another organism, while outparalogues have arisen following
a gene duplication preceding speciation. In general, outparalogues should have a more
diversified function than inparalogues. Figure 5.1 gives a depiction of the various types
of homology, using the representation of O’Brien et al. (2005).

Information on homologous structures, particularly genes, is also now available in many
public data resources. For example, the original Ensembl database (Hubbard et al., 2002)
was developed for dissemination of the annotated human genome sequence. However,
it has since been applied to several other genome sequences and this has led to the
development of resources for the linking of homologous genes across species and the
alignment of pairs of groups of whole genome sequences. In addition, some databases
are developed purely on the basis of homology. For example, the Inparanoid program
(Remm et al., 2001) was developed to identify orthologous clusters while differentiating
between inparalogues, which are included in clusters, and outparalogues, which are not.
The Inparanoid database (O’Brien et al., 2005) provides data on eukaryotic orthologues
from 17 genomes, examining over 500 000 proteins derived from Ensembl and UniProt.
The Clusters of Orthologous Groups (COGs; Tatusov et al., 1997) database compares
the protein sequences of genes from complete genomes representing major phylogenetic
lineages, grouping together genes that are co-located in multiple organisms. Each COG
consists of individual proteins or groups of paralogues from at least three lineages
and thus corresponds to an ancient conserved domain. Phylogenetically Inferred Groups
(PhIGs; Dehal and Boore, 2006) is a set of databases and web tools that analyse gene
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Figure 5.1 Homologous relationships between five contemporary genes in species B and C, all
descended from a single gene in the ancestral species A. Black boxes denote gene duplications.
Genes C2 and C3 are inparalogues and are co-orthologous to B2. B1 and C1 are orthologues but
B1 is an outparalogue of B2 and of C2 and C3.

sets from completely sequenced genomes, building clusters of genes using a graph-
based approach, and using maximum likelihood phylogenetic analysis to uncover the
evolutionary relationships among all gene families.

5.3 GENOMIC MUTATION

Before we begin to look at some of the main types of comparative genome analysis,
we must first understand the ways in which genomes evolve, so that we can understand
their relevance to these analyses. It is widely known that DNA sequences evolve via the
mutation events substitution, insertion and deletion, which affect single nucleotide sites
or perhaps a small number of adjacent sites in the latter two cases. When comparing
two relatively small sequences, it is usually sufficient to consider the differences between
them in light of these events alone. However, genomes may also change by a series
of much larger, but less frequent, mutations known as chromosomal rearrangements.
When we compare larger genomic datasets such as long DNA sequences or gene orders,
we also need to consider these events. Essentially, there are two types of chromosomal
rearrangement: those that alter the gene content of the chromosome (the non-conservative
rearrangements) and those that do not (the conservative rearrangements). For ease of
understanding, it is simplest to consider chromosomal rearrangements by describing their
effect on a series of linear and distinct regions along a genome, such as genes. However,
it can be seen easily that these events affect the underlying genomic sequence in a similar
way (as we see in later sections of this chapter).

First, let us consider the simple case of a single linear chromosome (this case can be
adapted easily to that of a circular chromosome such as the mitochondria or chloroplast).
The chromosome contains N genes gi (for i = 1 to N ) that are represented as signed
integers, such that homologues in other species share the same number. The sign of the
number represents the orientation of the gene, denoting the way in which it is transcribed,
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or read. For example, if we denote a gene as ‘+1’ on our first species then its homologues
in all other species must be denoted as ‘+1’ or ‘−1’, depending on their orientations and
regardless of their positions on their respective chromosomes. Therefore we can represent
the order of genes on the chromosome as a signed permutation:

G = {g1g2, . . . , gN−1gN }.
For simplicity, we will define all mutation events as the outcomes of breaks between genes,
in the intergenic regions. The locations of these breaks are known as breakpoints. Although
this convention will not always represent biological reality, it is likely to represent the
majority of cases.

There are three conservative (inversion, shift and inverted shift) and two non-
conservative rearrangements (tandem duplication and deficiency) that can affect our single
chromosome. An inversion (often termed a reversal in the computer science literature)
is the result of two breaks, with the central segment turning about 180° before rejoining
with the two broken ends. Consider e.g.

G = {+1+ 2+ 3+ 4+ 5+ 6+ 7+ 8} −−−→ G
′ = {+1+ 2+ 3− 6− 5− 4+ 7+ 8}.

A shift, or transposition, is a three-break mutation, where a segment is moved to another
part of the same chromosome. Consider e.g.

G = {+1+ 2+ 3+ 4+ 5+ 6+ 7+ 8} −−−→ G
′ = {+1+ 2+ 6+ 7+ 3+ 4+ 5+ 8}.

An inverted shift is similar to a shift, but here the segment inverts before it is inserted
into its new location. A tandem duplication causes a short chromosomal segment to be
duplicated and inserted adjacent to the original copy. Consider e.g.

G = {+1+ 2+ 3+ 4+ 5+ 6+ 7+ 8} −−−→
G
′ = {+1+ 2+ 3+ 4+ 4+ 5+ 6+ 7+ 8}.

The new segment can remain in its original position or it can be moved to another
location by subsequent mutations. For example, the evolution of the haemoglobin locus,
from a single gene to a four-gene complex, is thought to be a result of repeated tandem
duplication. Finally, a deficiency causes a segment to be removed from a chromosome.
Consider e.g.

G = {+1+ 2+ 3+ 4+ 5+ 6+ 7+ 8} −−−→ G
′ = {+1+ 2+ 3+ 4+ 5+ 8}.

A genome consisting of two or more chromosomes can be affected by additional
mutations (and of course any one of its chromosomes may undergo any of the mutations
seen for the single-chromosome case). There are three major additional conservative
mutations (reciprocal translocation, centric fusion and dissociation) that alter one or more
chromosomes. A reciprocal translocation is a two-break mutation that occurs when parts
of two chromosome arms swap with one another. Consider e.g.

G = {+1+ 2+ 3+ 4+ 5}{+6+ 7+ 8} −−−→
G
′ = {+1+ 2+ 3+ 7+ 8}{+6+ 4+ 5}.
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A centric fusion or Robertsonian translocation is a two-break mutation where two distinct
chromosomes join at their centromeres (with the very small remaining parts of the
chromosomes above the centromeres being lost – these do not usually contain genes).
Consider e.g.

G = {+1+ 2+ 3+ 4+ 5}{+6+ 7+ 8} −−−→ G
′ = {−8− 7− 6+ 1+ 2+ 3+ 4+ 5}.

A dissociation (or fission) is a one-break mutation, where a single chromosome breaks at
its centromere to produce two fully functional chromosomes. Consider e.g.

G = {+1+ 2+ 3+ 4+ 5} −−−→ G
′ = {+1+ 2+ 3}{+4+ 5}.

Whole genomes may also undergo polyploidy events, essentially a genome doubling. There
are two kinds of polyploidy: auto-polyploidy and allo-polyploidy. An auto-polyploidy
event occurs when a genome gives rise to a new genome with two copies of each of its
chromosomes. The organism containing the new genome is an instant species that cannot
interbreed with the species from which it derives. An allo-polyploidy event occurs when
a new genome receives the genomes of two distinct (but usually closely related) species.
Again, the organism containing the new genome belongs to a new instant species that
cannot interbreed with either of the species from which it derives.

In addition to the genomic mutations described above, we may wish in future to define
other mutations, as we become aware of them. For example, O’Keefe and Eichler (2000)
have discussed the possibility of a duplicative transposition event in human evolution,
where duplications of large genomic segments are transferred to a new location in the
genome. However, the events described above are those most widely considered in
comparative genomic analyses at the present time, and so will be sufficient to understand
the methodologies introduced in the next sections.

5.4 COMPARATIVE MAPS

Many of the first comparative genome analyses were carried out using comparative
maps. Even now, and despite the excitement generated by the human genome mapping
program and the genome sequencing projects that preceded and followed it, whole genome
sequences are available only for a small minority of organisms. For many species, physical
and genetic maps are still highly fruitful resources. Comparative maps focus on the
identification of homologous links between markers on two or more maps, where the
evidence supporting those links may take a variety of forms, from sequence similarity to
experimental evidence (e.g. cross hybridisation of probes). Figure 5.2 shows an example
of a comparative map, comparing the locations of homologues between a physical map
of Arabidopsis thaliana and a genetic map of Brassica napus. Note that the comparison
appears to indicate an inversion between the two maps.

Comparative maps can be used to extrapolate information from one species, on the
location and function of markers and genes, for application in another. For example,
imagine that we know about gene A, which is involved in an important function in
species 1. We would like to know if there is a ‘similar’ gene in species 2 that perhaps
carries out a similar function. We know that gene A is flanked by genes B and C
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Figure 5.2 An example of a comparative map between two plants, Arabidopsis thaliana and
Brassica napus. [Reproduced from Dicks et al., 2000 UK CropNet: a collection of databases
and bioinformatics resources for crop plant genomics, Nucleic Acids Research 28(1), 104–107
by permission of Oxford University Press.]

in species 1. If we know the locations of the homologues of genes B and C in species 2 we
can predict the location of a potential homologue in species 2. This provides a starting
point for further experimentation to confirm or refute the prediction. Of course, this
problem is often made more difficult by gene duplication because we cannot always know
if two genes are orthologous or paralogous and we may look for a gene in the wrong part of
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the genome. Alternatively, we may be interested in gene D in species 3 but we do not know
its function. By looking at the functions of its homologues in other species and perhaps the
functions of its close neighbours, we may gain more information on a putative function.

A comparative mapping analysis can help us answer questions such as the following:

• Where in species 2 is the homologue of gene A from species 1?

• What is the likely function of gene D in species 3?

• How many conserved chromosomal segments would we see if we knew about every
gene within a genome, rather than the subset we see within a map?

When comparing genomes by their maps, we have information about homologous markers,
which may or may not be gene based. There are gaps between these markers and we do
not know how many genes lie within these gaps or where their homologues lie in other
species. Other datasets may hold even less information, where a marker is known to be
located on a particular chromosome (a chromosome assignment) but its map position is
not known. This ‘missing’ information will undoubtedly bias the results of any analysis
carried out on those data. Despite this, it is possible to make inferences about conserved
chromosomal segments and evolution. Nadeau and Taylor (1984) used mapping data from
the autosomal chromosomes of human and mouse to estimate the number and lengths
of conserved chromosomal segments between these two species. They showed that the
length of a segment m̂, given the assumption that markers and breakpoints were scattered
randomly across a genome (the random breakage model), could be found as follows:

m̂ = r(n+ 1)

(n− 1)
, (5.1)

where n is the number of markers in a segment and r is the distance between the two
outermost markers. They reasoned that segments with fewer than two markers would be
missed and they used this to derive the expected sample mean of the transformed segment
lengths m̂:

E[x
′
] ∼= (L

2D + 3L)

(LD + 1)
, (5.2)

where L is the mean length of conserved segments measured in centimorgans and D is
the density of mapped homologous loci in the genome. They further estimated the number
of homology disruptions between human and mouse.

Waddington and colleagues generalised the work of Nadeau and Taylor in order
to compare maps of chickens with those of human and mouse (Waddington, 2000;
Waddington et al., 2000). They no longer assumed that chromosome lengths were large
when compared to segment lengths (important as chicken linkage groups vary considerably
in length, with some likely to contain just one segment while others may contain several)
and they did not assume chromosome breakage occurred at random. They used the beta
distribution to model segment lengths and used a scaling parameter lk , the length of
chromosome k, to derive the density function of segment length y on chromosome k:

f (yk) =
1

lk

(
y

lk

)a−1 (
1− y

lk

)b−1

B(a, b)
, (5.3)
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where a and b are the beta distribution parameters and B(a, b) the beta function
∫ 1

0 x
a−1

(1− x)b−1dx. Consequently, the expected number of segments on chromosome k is
Sk = (a + b)/a and the mean segment length on chromosome k is lk(a + b)/a. The
special case a = 1 corresponds to the random breakage model. They also derived the
distribution of the number of genes n in a syntenic group (count data), on the basis of a
conserved segment of length y, and the joint distribution of n and the distance between
the two outermost markers in the syntenic group (range data) and used these singly and
in combination to analyse the chicken dataset. They noted that the flexibility of the new
models made them suitable for the analysis of a wide range of datasets, particularly as
their formulation enabled testing of the models and data assumptions.

Ehrlich et al. (1997) developed methods to estimate synteny conservation (i.e. where
two or more homologous markers are located on the same chromosome in two or
more species). They used their methods to find the percentage of conserved syntenies
in human and mouse that had already been observed. They also showed that rates of
chromosomal rearrangement varied considerably between mammalian lineages and that
inter-chromosomal mutations had occurred four times more often than intra-chromosomal
mutations in the lineages leading to human and mouse, despite the strong selective forces
against them.

Sankoff et al. (2000b) analysed the Nadeau and Taylor approach, in light of the large
number of genes mapped in both human and mouse since 1984 (approximately 1500
genes compared to the 83 analysed by Nadeau and Taylor). They concluded that the
results of the Nadeau and Taylor analysis, which are consistent with current evolutionary
estimates, were accurate due to the formulation of their model and the data used rather
than due to luck alone. They also looked at the effect of using chromosomal assignment
only on estimating the number of conserved chromosomal segments. They noted that,
for example, small intra-chromosomal mutations (e.g. inversions) could result in two
chromosomal segments being regarded as one (see Section 5.5 for further analysis of
this phenomenon). For this case, they added a correction to their probability function
P(a,m, n):

P(a,m, n) =
(
m−1
a−1

)(
n+1
a

)(
n+m
m

) , (5.4)

the probability of observing a non-empty segments for m genes and n breakpoints so that:

Q(b,m, n, c) =
n+1∑
a=b
P (a,m, n)

(
a − 1

a − b

)(
1

c

)a−b (
c − 1

c

)b−1

, (5.5)

is the probability that only b of the a non-empty segments are counted on the c chromo-
somes being examined. They also calculated the number of segments due to inter- rather
than intra-chromosomal rearrangements.

Schoen (2000) looked at the effect of marker density on the estimation of the number
of chromosomal breakpoints between pairs of species for the random breakage model. He
showed that the estimated number of breakpoints was close to the expected value when
marker density was high. However, the amount of rearrangement could be underestimated
when marker density was low, particularly when the species being analysed were distantly
related. He also showed that underestimation could occur when inversions were common
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in the divergence of the species and discussed the results of Ehrlich et al. (1997) in light
of the bias against detecting inversion events.

5.5 GENE ORDER AND CONTENT

Sequencing of small genomes, such as the mitochondria of organisms from many lineages,
led to the first datasets where the content and order of all the genes was known. Unlike
comparative mapping datasets, these datasets did not contain gaps between the datapoints.
These early whole genome datasets led to new methods for genomic comparison, and
indeed the field is still highly active today, with the progression from organellar datasets
to gene order and gene content of large nuclear genomes.

5.5.1 Gene Order

Gene orders have been studied computationally since the late 1980s, such that current
methodologies enable us to:

1. Estimate the evolutionary distance between two gene orders.

2. Find the sequence of changes that could have altered the gene order of one genome
to that of another.

3. Estimate an evolutionary tree based on gene order data.

4. Hypothesise the gene order and content of an ancestral species.

The problems listed above can be tackled with reference to some measure of genome
difference between a pair of genomes. Genome difference measures can be broadly
grouped into two categories: distance based and path decomposition. The first of these
includes several fairly simple measures of the differences between gene orders. The
second category involves analysing likely sequences of mutations between gene orders
with identical gene contents. However, as we see later, the two categories are not mutually
exclusive and some distance measures are based upon the results of a path decomposition
analysis. Here we do not present an exhaustive list of distance measures but rather give
a flavour of the types of distances that have been proposed.

5.5.1.1 Distance Measures

When two DNA sequences are being compared, the edit distance is defined as the smallest
number of substitutions that transforms one sequence into another. This is fairly simple
to calculate and has been used successfully for many years. An analogous distance
for gene order was proposed by Sankoff et al. (1992). This edit distance dE is based
on the insertion/deletion distance dD, which is just the number of genes found in one
genome that are not present in the other, and the rearrangement distance dR, which is
the minimum number of chromosomal rearrangements required to convert one gene order
into the other (allowing for any differences in gene content) such that dE = dD + dR. This
distance measure was applied to the gene orders of a variety of plant, animal, and fungal
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mitochondrial genomes. A value of dE was calculated for each pair of gene orders and a
distance matrix constructed from the results. A least-squares algorithm was then applied
to the distance matrix to obtain a phylogenetic tree. At the time, practical application of
the algorithm was very slow, mainly due to the calculation of the rearrangement distance
but, as we see below, considerable advances in algorithmic efficiency have been made
since then.

In order to compare gene orders more rapidly, Sankoff and Blanchette (1997; 1998)
defined the breakpoint distance dBP. This is simply the number of adjacent gene pairs in
one gene order that are not adjacent (and in a consistent relative orientation) in a second.
For example, the breakpoint distance between the two gene orders below (with G1 being
the identity gene order for seven genes) is 3, with the vertical bars between genes in G2
denoting the locations of the breakpoints:

G1 = {+1+ 2+ 3+ 4+ 5+ 6+ 7}
G2 = {+1| − 6− 5| − 7| + 2+ 3+ 4}.

Sankoff et al. (2000a) further developed the normalised induced breakpoint distance to
allow the comparison of very differently sized genomes. First, genes that are not common
to both species are removed before calculating the breakpoint distance on the remaining
genes, the result being known as the induced breakpoint distance. Second, this distance
is normalised by dividing it by the number of the remaining shared genes.

Similar to the analysis of breakpoints, gene adjacency conservation was used as a simple
measure by Keogh et al. (1998) to compare different fungal genomes. The neighbour
pair distance dNP is simply the proportion of adjacent gene pairs in one genome that
are adjacent in the second. For G1 and G2 above, dNP = 0.5. Cosner et al. (2000) also
looked at neighbouring pairs but used them as binary characters – known as a binary
encoding. Pairs that were adjacent (and of consistent orientation) were scored as ‘1’ and
those that were not as ‘0’. This encoding, which in addition could be weighted, could
then be analysed using a maximum parsimony analysis in order to deduce an evolutionary
tree.

The distances above are not suitable for application to genomes containing many
paralogous genes, as is the case for most eukaryote genomes. Consequently Sankoff (1999)
defined the exemplar distance for use in this situation. This distance measure involves
reducing the size of each gene family to 1, deleting all family members except for the gene
that leads to the smallest distance between the reduced genomes. The exemplar distance
can be calculated on the basis of any of the above distances (e.g. the exemplar breakpoint
distance or the exemplar edit distance). For example, in the simple case below:

{+1+ 2+ 3− 4+ 6+ 7+ 2− 5},
deleting the first instance of the gene ‘+2’ would lead to a breakpoint distance with the
identity gene order of 5, whereas deleting the second instance would lead to a distance
of 3. Consequently, we would delete the second instance of the gene in order to calculate
the exemplar breakpoint distance. Although the breakpoint distance may be calculated
rapidly in linear time, calculation of the exemplar breakpoint distance is an NP-hard
problem, as there are many combinations in which the gene family members can be
deleted in more complex cases. Sankoff chose to calculate the exemplar distance using a
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branch-and-bound technique. However, this approach has been surpassed recently by that
of Nguyen et al. (2005) who used a divide-and-conquer approach.

5.5.1.2 Path Decomposition

The sequence of chromosomal rearrangements that mutates the gene order Gi to gene
order Gj is known as an evolutionary path ρi,j . Finding such a path or paths between
two genomes is known as a path decomposition analysis. For example, one successful path
between G2 and G1 above, involving just inversion events, is as follows, with underlined
segments indicating the location of the mutation at each step along the path:

G2 = {+1−6− 5− 7+ 2+ 3+ 4}
{+1+7+ 5+ 6+ 2+ 3+ 4}
{+1−4− 3− 2− 6− 5− 7}
{+1+ 2+ 3+ 4−6− 5− 7}
{+1+ 2+ 3+ 4+ 5+ 6−7}
{+1+ 2+ 3+ 4+ 5+ 6+ 7} = G1.

Note that the number of mutations on this path is different from the number of breakpoints
and, indeed, the relationship between these two quantities is not straightforward, with the
former generally thought to be a better indicator of true evolutionary distance.

A simple strategy to find an evolutionary path between two fairly short gene orders is
to carry out a tree searching technique. In an unrestricted tree search we would mutate
one of our genomes in all possible ways, according to our evolutionary model (i.e. our
nE allowed mutations). We are left with nE new gene orders. We then mutate the nE gene
orders, each according to our nE mutations to give us n2

E new gene orders. We repeat
this process, the result being a branching search tree. At each node of the search tree we
check to see if we have a genome identical to our target genome. If this is the case, we
have achieved a successful path. Thus, the number of nodes in the search tree of depth
l is:

l∑
k=1

nkE =
nE(n

l
E − 1)

nE − 1
. (5.6)

Obviously, the number of nodes quickly becomes very large, even for a small number of
genes. This is greatly pronounced in multi-chromosome genomes and indeed, nE is not
necessarily a constant in this case and so the search tree can become quite complex. In
practice, the tree must be pruned according to some heuristic.

The tree searching approach has been used by Blanchette et al. (1996) and Dicks
(1999). The authors differed slightly in their pruning strategies and more markedly
in the goals of their search. Blanchette et al. looked for the shortest path(s) sepa-
rating the query genome from the target genome, pruning the search tree with dBP
and using a depth-first search with limited look ahead and branch and bound for a
rapid search. Different weights were used for inversions and shifts, comparing the
optimal path to the random case. This method was implemented in the DERANGE



COMPARATIVE GENOMICS 173

II software. Dicks again used dBP to prune the tree with a depth-first search, but
here the search did not stop once the shortest path was achieved. Instead, the compu-
tation was stopped once the tree had been completely pruned or once a conserva-
tive upper bound on tree depth had been achieved, whichever occurred first. The
result was a set of paths R separating the two genomes, which were then used
to calculate a transition likelihood between Gi and Gj , under some probabilistic
model M . We can define this likelihood as follows (setting the constant of proportion-
ality to 1):

L(M|Gi,Gj ) =
∑
R

P (ρi,j |M), (5.7)

which is often approximated by:

L(M|Gi,Gj ) = max
R
P (ρi,j |M). (5.8)

The former approach uses all paths to calculate the transition likelihood. Note that
the real set of paths separating two gene orders is of infinite size and that the real
transition likelihood is merely approximated by summing over R. A combined like-
lihood approach was shown by Thorne et al. (1992) to be less biased than a single
maximum likelihood in the analysis of DNA sequence alignment and, although not
formally tested for chromosomal evolution, it is likely to be the case here. The latter
definition uses the maximum likelihood path ρ̂i,j , which is often used for computa-
tional convenience. Under any sensible model of evolution, where �(ρ) is the length of a
path ρ:

lim
�(ρ)→∞

P(ρ) = 0. (5.9)

Ideally, we would like to be able to use this fact to choose just those paths that
make a significant contribution to the combined transition likelihood and we could even
consider using it as a tree-pruning strategy. Indeed Savva (2001) has shown that, for
simple cases, just a few short paths make a very large contribution to the combined
transition likelihood. Unfortunately, for large gene orders, a tree-based approach is not
computationally feasible.

One alternative to finding the maximum likelihood path between two gene orders is
to find the most parsimonious path between them. This research area began in earnest
in 1995, with the introduction of the Hannenhalli–Pevzner algorithm (Hannenhalli and
Pevzner, 1995a) for sorting signed permutations by reversals (i.e. finding the shortest
path between two gene orders while permitting only inversion events to occur). This
paper has been extremely influential in gene order studies, defining concepts such as
the breakpoint graph that have been used both in other parsimony algorithms and in
the statistical approaches introduced below. To create a breakpoint graph for a given
gene order of size n, the gene order is first transformed so that, (1) a gene i with
a positive sign is replaced by elements 2i − 1 2i, (2) a gene j with a negative sign
is replaced by elements 2|j | 2|j | − 1 and (3) the gene order is framed by elements
0 and 2n+ 1. Thus, the gene order {+1 − 6 − 5 − 7 + 2 + 3 + 4} becomes
{0 1 2 12 11 10 9 14 13 3 4 5 6 7 8 15}. A graph is then constructed from this
transformed gene order by drawing edges between (1) elements on either side of a
breakpoint (e.g. between 2 and 12) and (2) even-numbered elements and those with
values one larger when the two elements are not adjacent. The result is a graph where all
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elements are either isolated or part of a cycle. In our example, it is easy to discover that
the number of cycles c is 2. In the subsequent decade, several polynomial-time algorithms
have been developed for other mutations or for combinations of mutations, such as for
translocations (e.g. Hannenhalli, 1996) and for inversions, translocations, fissions and
fusions (e.g. Hannenhalli and Pevzner, 1995b). For other mutations or combinations,
such as transpositions, fissions and fusions (e.g. Dias and Meidanis, 2001), heuristic or
approximation algorithms have been developed. Many of the major advances are cited in
Yancopoulos et al. (2005) so we will not list them here. This paper also describes a new
algorithm to sort multi-chromosomal gene orders by inversions, reciprocal translocations,
fissions, fusions and block interchanges (an event which swaps two segments on a single
chromosome, resulting in a transposition event when the segments are contiguous), thereby
including all of the major conservative mutations. Interestingly, all mutations are based
on a common operation known as a double-cut-and-join and the rearrangement distance d
is simply the number of breakpoints b minus the number of cycles c in the corresponding
breakpoint graph.

The path decomposition problem has also been studied using Markov chain Monte
Carlo (MCMC) techniques. York et al. (2002) used a simple Poisson process model with
a uniform prior for the mean to estimate the posterior distribution of the number of
inversions between two gene orders. This method has an advantage over non-statistical
approaches in that credible sets of estimates are made. Importantly, simulation studies
showed that the method was capable of providing good estimates of the true numbers
of inversion events and that these numbers were often underestimated by parsimony
approaches. Miklos (2003) also studied this problem, again using a Poisson process
model, but examined the broader problem of inversions, shifts and inverted shifts. The
method was further implemented in the ParIS genome rearrangement server (Miklos et al.,
2005).

The path or paths resulting from a path decomposition analysis can be used directly
to answer evolutionary questions about the number and types of mutation separating two
gene orders. Furthermore, path decomposition analyses lead naturally to mutation-based
distance measures between two genomes. Firstly, we note that the number of events in
the shortest path is simply the rearrangement distance dR as used above by Sankoff et al.
(1992). Secondly, we can calculate a probabilistic distance measure based on the path
decomposition. For example, for each genome pair, where our data are evolving under
some stochastic model M , we can find a maximum likelihood estimate for time, t̂ , as the
distance between our two genomes. Durbin et al. (2000) showed that maximum likelihood
estimates of distance are additive, lending themselves well to a subsequent phylogenetic
analysis. Consequently, a few distances based upon maximum likelihood estimates have
been developed. Dicks (1999) modelled the number of breakpoints between two gene
orders as a function of the mutations lying on an evolutionary path and used it to calculate
the probability of a given path for an observed value of dBP. Savva (2006) also investigated
the joint conditional probability distribution of dBP and dR and used it to calculate path
likelihoods under a simple evolutionary model. The latter method is implemented in
the CHROMTREE software. Caprara and Lancia (2000) also showed some interesting
results, such as the expected number of breakpoints in a random permutation of N
genes:

E[DBP] = N − 1, (5.10)
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and the expected number of breakpoints in a random permutation of N genes after a
random path of k inversions:

E[N(k)] = (N − 1)

(
1−

(
N − 3

N − 1

)k)
, (5.11)

using the results to calculate the conditional probability of the number of inversions given
an observed value of dBP.

5.5.1.3 Phylogenetic Analysis

Chromosomal banding patterns gave rise to what was probably the first comparative
genome analysis, carried out by Dobzhansky and Sturtevant (1938), where the orders of
bands on the chromosomes of the fruit fly Drosophila were used to derive an evolutionary
tree. This analysis was carried out visually, made possible by the relative simplicity of
the dataset. Today, we wish to carry out similar analyses, but for more complex datasets
and in a systematic manner.

Markov chains and, more recently hidden Markov models (HMMs), have been used
widely to model the evolution of DNA and amino acid sequences, with these models
being used successfully for phylogenetic inference in the Felsenstein likelihood framework
(Felsenstein, 1981). For DNA sequences, where each nucleotide site is considered
independently, the Markov property lends itself well to modelling the transitions between
the four possible states A, C, G and T in time t . Even when considering pairs of adjacent
sites, as is done for modelling RNA sequences, we need only consider 16 potential states.
Amino acid evolution is a little more complicated, with 20 states to consider. We can
see that chromosomal mutations also cause gene orders to move between states and it
would be natural to consider an analogous model for their evolution. However, a gene
order is a signed permutation, where adjacent genes are not independent. Imagine a small
chromosome consisting of just 10 genes. If we wished to use a Markov chain model, we
would need to consider 10!× 210, or a little over 3.7 billion states. Obviously, this is
computationally infeasible, even for such a small dataset. On the basis of the tree search
approach discussed above, Dicks (2000) tried to circumvent this problem by suggesting
an approximation to the maximum likelihood tree for gene order data, using a small set of
states at internal nodes (i.e. those states that lie along successful pairwise search paths),
where those states are thought to make a large overall contribution to the tree likelihood.
However, such an approach is slow even for small gene orders.

The simplest way to estimate a gene order phylogeny is to carry out a pairwise
analysis, perhaps using one of the distance measures described above. A distance matrix
is constructed, where each entry in the matrix is the distance between a pair of gene
orders. This matrix is then used as input to a tree-building algorithm. The neighbor-
joining algorithm (Saitou and Nei, 1987) is perhaps the best known of these algorithms
but others such as the FITCH (Fitch and Margoliash, 1967) and KITSCH algorithms
within the PHYLIP phylogenetic package (Felsenstein, 1993) are also applicable. Each
of these algorithms has its own advantages and disadvantages, as has been described
frequently elsewhere. Two software packages developed specifically for gene order
analysis are GOTREE and SHOT. GOTREE calculates breakpoint distances for gene
orders with both equivalent and differing gene contents and estimates phylogenetic trees
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using neighbor-joining. SHOT takes genome sequences as its data rather than gene orders.
It first finds homologous genes and subsequently estimates trees using various pairwise
distances. It can also perform tree bootstrapping using the jackknife.

A more difficult problem is to find the maximum parsimony tree, searching for a
topology and internal node gene order states that minimise the sum of the distances over
all edges of the tree. This problem was studied by Sankoff and Blanchette (1998) and
Blanchette et al. (1999) where the statistic to be minimised was the number of breakpoints
on the tree edges. This method was implemented in the BPAnalysis software. The approach
was improved by other researchers, as described in Tang and Moret (2003), with later
algorithms also facilitating the search for most parsimonious trees that minimised the
reversal distance. Tang and Moret’s method was implemented in the GRAPPA software.
Bourque and Pevzner (2002) also studied the problem of minimising the reversal distance
over a tree topology, calling it the Multiple Genome Rearrangement (MGR) problem. They
showed how the approach could be extended to the multi-chromosomal case, including
not only inversions but also reciprocal translocations, fusions and fissions. This approach
is implemented in the MGR software which itself uses algorithms from the GRIMM
software (Tesler, 2002) for calculating shortest distances between pairs of gene orders.

The approaches discussed so far illustrate a growing efficiency in the solution of optimal
gene order trees, where the main criteria for success are speed, efficiency and parsimony.
However, these approaches can tell us little about the accuracy of such methods, except
perhaps through simulation studies. In contrast, statistical approaches have the benefit
of assessing the uncertainty of parameter estimates. Bayesian MCMC methods have
been used successfully to search through tree space for the topology with the maximum
posterior probability in the case of DNA sequences. Larget et al. (2002) also showed
how MCMC methods could be applied to gene order problems, devising a model for
inversion events on single chromosomes that could be used in a Bayesian phylogenetic
analysis. The model priors defined a uniform distribution for the tree topology τ over the
space of all unrooted trees with � leaves and a gamma distribution �(α, λ) for branch
lengths β. Counts of inversions were independent Poisson variables with means equal to
the relevant branch lengths. Inversion events were chosen uniformly, at random, along a
branch from the set Mn, where the size of the set is

(
n+1

2

) = n(n+ 1)/2 and the position
of the event on the branch was a distance u from its start. Given that D is an indicator
variable representing whether the observed data were consistent with the parameters and
unobservable variables, and which takes the value 1 when this is the case and 0 when it
is not, the joint posterior distribution of all of the parameters was shown to be:

p(τ, β, x, r, u|D) ∝ p(τ, β, x, r, u)p(D|τ, β, x, r, u)

= 1

|T�|
2�−3∏
i=1

g(βi)h(xi |βi)
(

1

βi

)xi ( 1

|Mn|
)xi

1{(τ,x,r)↪→D}, (5.12)

where

g(βi) =
λα

�(α)
βα−1
i e−λβi

and

h(xi |βi) =
e−βiβxii
xi!

,
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which, after integrating out branch lengths β and inversion locations u analytically and
ignoring factors not depending on τ , x or r , becomes

p(τ, x, r|D) ∝ 1{(τ,x,r)↪→D}

(
1

|Mn|(1+ λ)
)2�−3∑

i=1

xi 2�−3∏
i=1

�(α + xi)
xi!�(α)

. (5.13)

An MCMC technique is used to sample from this distribution, using an update scheme
with three moves. The first two moves affect just the histories (i.e. sequences of inversions)
in localised areas of the tree, with the third potentially changing the tree topology as well as
the histories. This latter move is based on the concept of the breakpoint graph, as described
in Hannenhalli and Pevzner (1995a). Notably, York et al. (2002) and Miklos (2003) also
used the breakpoint graph in their update schemes. Later computational advances in the
update scheme enabled the method to be used on larger real datasets (Larget et al., 2005b)
and the model and method have been implemented in the BADGER software. Recently,
the performance of the method has been contrasted to the maximum parsimony approach
on a number of real datasets. For example, Larget et al. (2005a) reanalysed the herpesvirus
dataset examined in Bourque and Pevzner (2002). This dataset consisted of the gene orders
of Herpes simplex virus (HSV), Epstein–Barr virus (EBV) and Cytomegalovirus (CMV).
The problem was to construct the state of the ancestral gene order. Figure 5.3 shows the
solution found by Bourque and Pevzner, which involved seven inversions. Larget et al.
showed that there were two most parsimonious solutions and that one of them (shown
in Figure 5.3) had a posterior probability three times as great as the other. The Larget
et al. analyses showed that the method was capable of finding parsimonious solutions as
efficiently as parsimony software and also that, for some datasets, parsimonious solutions
had a low probability of being correct. The paper also described a strategy for adopting
the method within an empirical Bayes framework, which involved estimating values of
the hyperparameters α and λ from the datasets undergoing analysis.

5.5.2 Fragile Breakage versus Random Breakage Models

As we saw above, many of the early algorithmic advances in gene order studies were
inspired by organellar genomes, particularly mitochondrial genomes. Here, the order and
arrangement of a small number of genes was provided, without the need to carry out
a complex pre-processing of a raw dataset. However, the advent of sequencing large
nuclear genomes has brought new challenges to gene order studies. Firstly, there has
been a need to increase the efficiency of the algorithmic approaches. For example,
improvements in the computing time of rearrangement distance algorithms (e.g. Bader
et al., 2001; Bergeron, 2001; Tesler, 2002) now enable them to be applied to genomes
possessing thousands of genes. Secondly, nuclear genomes must be analysed to identify
genes and to establish homologous relationships within and between genomes. This latter
step is difficult and prone to error, particularly relatively soon after sequencing has been
completed. However, these larger genomes also give us larger datasets with which to test
hypotheses of evolutionary scenarios and to develop more realistic models of genomic
rearrangement.

Pevzner and Tesler (2003a; 2003b) established the concept of the breakpoint reuse
statistic r:

r = 2d

b
, (5.14)
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HSV

A

CMVEBV

Inversion  (−16 −15 −14)

Inversion  (−13 −12)

Inversion  (−23 −22 −21 −20 −19 −18 −17)

Inversion  (−25 −24 +17 +18 +19 +20 +21 +22 +23)

Inversion  (−19 −18 −17)

Inversion  (−25 −24)

Inversion (−20 −19 −18 −17)

HSV = +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 −19 −18 −17 +20 +21 +22 +23 −25 −24

EBV = +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 −20 −19 −18 −17 +21 +22 +23 +24 +25

CMV  = +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 −13 −12 −16 −15 −14 −25 −24 +17 +18 +19 +20 +21 +22 +23

A = +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25

Figure 5.3 A gene order phylogeny of three herpesviruses, showing the inferred state A of the
ancestral gene order for the most parsimonious tree.

where d is the rearrangement distance between two genomes of size n and b the number
of breakpoints separating their gene orders. As it is known that b/2 ≤ d ≤ b we see that
1 ≤ r ≤ 2. A value of r = 1 indicates a rearrangement path where each event breaks
the genome at two sites unique to that arrangement (i.e. no reuse, thereby supporting
random breakage) and r = 2 where each event after the first breaks the genome at one
new site and one site that is already used. Pevzner and Tesler identified a value of
r = 1.9 between the human and mouse genomes, suggesting a high level of breakpoint
reuse. Indeed, this fragile breakage hypothesis, where particular regions are implicated in
multiple rearrangement events has been advanced by others (e.g. Kent et al., 2003) and,
of course, it had already been hypothesised in the case of comparative maps.

However Sankoff and Trinh (2005), while not rejecting the hypothesis of fragile
breakage, argued that the statistic r was not a good estimator of breakpoint reuse and that
the high value of r achieved by Pevzner and Tesler may have been due to the method
with which they achieved their dataset. Rather than attempting to study large permutations
of genes, Pevzner and Tesler analysed almost 600 000 short aligned sequence fragments
and used them to build large collinear blocks, ignoring regions of local rearrangement.
The result was a set of 281 large blocks. This method was highly useful in that it largely
circumvented the problem of establishing gene order from genomic sequence.

Sankoff and Trinh showed through simulation that high values of r could be achieved
with no breakpoint reuse, if a proportion of genes θ was deleted at random (essentially
attempting to simulate Pevzner and Tesler’s smoothing out of small rearrangements).
In particular they showed that the greater the rearrangement distance between the two
genomes, the more r grew with increasing θ . Furthermore, as θ increased, r initially
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increased with a rate depending on d/n and then reached a maximum, before descending
sharply. Sankoff and Trinh went on to model the relationship between these statistics,
defining d1 and d2 as the number of one-breakpoint and two-breakpoint events needed to
sort the genome such that b = 2d2 + d1. Furthermore, they used the model to estimate
the rate of change in r:

dr

dθ
= n

(
2

b(t)

−d1(t)[d1(t)− 1]+

(1− ε(t))(n − t)(n− t − 1)
− 2d(t)

b(t)2

−b(t)(b(t) − 1)

(n− t)(n− t − 1)

)
, (5.15)

where ε(t) = d2(t)/[b(t)(b(t) − 1)], verifying that dr/dθ ≈ 2d/n near to θ = 0. Sankoff
and Trinh suggested that, although the reuse statistic r may not be a good estimator of
breakpoint reuse, it is a good indicator of a breakdown of genomic structure and therefore
could be used to measure the strength of the evolutionary signal in the comparison
of genome sequences. Peng et al. (2006) countered this argument by showing that the
algorithm used by Sankoff and Trinh to calculate collinear blocks was inappropriate and
did not mirror the Pevzner and Tesler approach. Peng et al. then demonstrated that their
method, implemented in the GRIMM-Synteny software, which inferred a greater number
of blocks than the Sankoff and Trinh method, did not inflate values of r so significantly in
a similar simulation study, and consequently the high value of r from the human/mouse
comparison could not be dismissed. They also hypothesised that inhomogeneity of gene
distribution and long regulatory regions could in part be responsible for breakpoint
reuse. Sankoff and Haque (2006) then went on examine the distribution of cycles in
the breakpoint graph for two random genomes. They used their results, together with the
relation d = b − c as proved in Yancopoulos et al. (2005), to show that r tended to 2 as
genomes became randomly ordered with respect to one other, backing up their previous
argument. However, whether or not r can be used reliably as an indicator of the fragile
breakpoint hypothesis, the model is gaining popularity through the results of empirical
studies.

5.5.3 Gene Content

When we compare the gene contents of two genomes we are looking to see how many
homologues they share and how many genes each contains for which the other does
not have a homologue. On average, we would expect closely related species to exhibit
roughly the same gene content and more distantly related species to possess species- or
group-specific genes, although this does not always hold for individual cases. Data on
gene content can be informative in evolutionary studies. For example, the availability
of whole genome sequences has enabled many researchers to infer species phylogenies
using gene content data (e.g. Herniou et al., 2001; House and Fitz-Gibbon, 2002; Lin and
Gerstein, 2000; Montague and Hutchison, 2000; Snel et al., 1999; Tekaia et al., 1999;
Whittam and Bumbaugh, 2002; Winzeler et al., 2003). These phylogenetic studies use a
variety of approaches, including distance measures derived from fractions of shared genes
in genome pairs and parsimony. Gene content data can also be highly useful on a practical
level. For example, in a recent analysis of the genomes of three parasites (Trypanosoma
brucei, Trypanosoma cruzi and Leishmania major), the authors found a ‘core’ of 6200
conserved genes (Berriman et al., 2005). It was noted that these common genes provided
targets for new drugs that could potentially fight all three parasites. In this section, we
will concentrate on recent advances in gene content modelling and analysis for the study
of genome evolution.
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5.5.3.1 General Approaches

A simple way of analysing gene content data is simply to score gene presence and absence
in a number of species, with a ‘1’ representing presence and a ‘0’, absence. The resulting
matrix can be further analysed, for example using parsimony algorithms available in many
phylogenetic software packages. In addition, a number of distance measures have been
developed for gene content datasets. Ferretti et al. (1996) proposed the syntenic distance
for multi-chromosomal genomes. Here, the minimum number of centric fusions, fissions
and translocations required to ensure that every chromosome within one genome has the
same gene content as a second genome, ignoring gene order, is counted. Snel et al. (1999)
proposed that the percentage of genes shared by two genomes could be used as a measure
of similarity between them:

d = 1− |G1 ∩G2|
min{|G1|, |G2|}

, (5.16)

where |G1| and |G2| are the numbers of genes in genomes 1 and 2 respectively and
|G1 ∩G2| is the number of genes common to both.

Kunin et al. (2005) developed a distance measure, which they called genome conserva-
tion, which takes into account both gene content and sequence similarity within a whole
genome context. The authors carried out a BLASTP analysis on the genes of genome
pairs, noting hits with an e-value cut-off of e−10 and using the ‘bit score’ as the measure
of sequence similarity. The sum of all best hits between genomes A and B was calculated
and was denoted by

∑
(A, B) (which notably is a non-reciprocal value as reciprocal best

hits are not used, so as to filter out paralogous genes) and the conservation between A
and B by S = min(

∑
(A, B),

∑
(B,A)). Two genome conservation measures were then

defined as:
D1 =

1− S
min(

∑
(A,A),

∑
(B,B))

, (5.17)

and

D2 = −ln

(
S/

√
2×∑

(A,A)×∑
(B, B)√

(
∑
(A,A)2 +∑

(B,B)2)

)
, (5.18)

corresponding to strategies for the transformation and normalisation of self-similarity and
adjustment for genome sizes. The new genome conservation distance measure was then
used to estimate a phylogeny for 153 sequenced genomes, with a comparison to the results
of two other methods. The first of these alternative analyses involved the gene content
method as used in Korbel et al. (2002) and the second an average orthologue similarity
method. In the genome conservation analysis, the pairwise score S was divided by the
smallest number of hits between the genomes, with the values being normalised between 0
and 100, for ease of comparison with the other measures. The resulting distance matrices
were then analysed using the neighbor-joining tree construction algorithm (Saitou and
Nei, 1987). It was noted that all three distance matrices contained a strong phylogenetic
signal but that the gene content, and to a lesser extent genome conservation, approaches
were affected by significant gene loss in certain lineages. However, genome conservation
was found to be capable of producing accurate phylogenetic groupings at a wide range of
taxonomic levels and was, in general, superior to both the gene content and average
orthologue similarity approaches. Consequently, merging gene content and sequence



COMPARATIVE GENOMICS 181

information within a single distance measure appears to be a valuable approach for the
comparison of whole genome data.

Many gene content analytical methods have been developed with phylogenetic tree
inference in mind, but none was developed specifically for more complex scenarios
involving genome fusions. In contrast, a recent method known as conditioned reconstruc-
tion has been developed by Lake and Rivera (2004). The method takes gene presence and
absence data conditioned on a reference genome, finds the set of most probable topologies
through a bootstrapping technique and tests whether the opposing topologies are consis-
tent with an evolutionary scenario involving genome fusions (i.e. a ring phylogeny). It
has been applied by the same authors to a series of bacterial, archaeal and eukaryotic
organisms (Rivera and Lake, 2004), which they claim gives evidence for the eukaryotes
having evolved through a genome fusion of two diverse prokaryotes.

5.5.3.2 Birth and Death Model–based Approaches

Birth and death processes are proving highly useful in the analysis of gene content, being
well-studied mathematical techniques with a natural affinity to this type of dataset. For
example Gu (2000) introduced a statistical framework for gene content analysis. The
model, which used a death process to describe gene loss, could be adopted to infer a
gene content phylogeny using both distance-based and maximum likelihood approaches.
Unfortunately, the maximum likelihood approach proved to be very computationally
intensive but Zhang and Gu (2004) later introduced a computationally tractable model for
gene content evolution. They showed that the transition probabilities between an ancestral
genome X0, possessing r0 copies of a gene, and a subsequent genomic state Xt , possessing
k copies of the same gene, were:

P(Xt = k|X0 = r0) =
min(r0,k)∑
j=0

r0!

j !(r0 − j)!

× (r0 + k − j − 1)!

(k − j)!(r0 − 1)!
βr0−jαk−j (1− α − β)j , k ≥ 1

P(Xt = 0|X0 = r0) = βr0, (5.19)

where
α = λ 1− e(λ−µ)t

µ− λe(λ−µ)t

β = µ 1− e(λ−µ)t

µ− λe(λ−µ)t
,

simplify to:

P(Y = 0|X0 = r0) = βr0
P(Y = 1|X0 = r0) = 1− βr0, (5.20)

when gene absence and presence are considered instead of gene family counts. They
went on to show that these simplified transition probabilities could be used for maximum
likelihood phylogenetic tree estimation on trees with four taxa (using the maximum
likelihood phylogenetic framework described by (Felsenstein, 1981) and extensible to
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greater numbers of taxa) as the probabilities of all 15 unrooted topologies themselves
then greatly simplified to expressions that could be calculated rapidly. Zhang and Gu
(2004) went on to evaluate the approach in real and simulated datasets and showed it to
possess high accuracy in many simulated situations and to provide a topology consistent
with other approaches for the real datasets analysed.

Gu and Zhang (2004) also developed the concept of extended gene content. Rather
than contrasting the two states of gene presence and gene absence, or a multi-state
character denoting the number of members of a gene family, they developed a three-state
intermediate character. These three states represented gene families with no members (i.e.
gene absence), those with a single member only and those with more than one member.
Using this concept, they developed an additive gene content distance measure:

G =
∑
i=1,2

αi + βi
βi − αi

ln
1− αi
1− βi

(5.21)

where αi and βi represent the gene proliferation and loss parameters within lineage i
respectively. Estimates of these parameters may be calculated from an extended gene
content matrix using a maximum likelihood-based approach. The authors also introduced
a software package, GeneContent (Gu et al., 2004), to implement this and other distance-
based methods.

Kunin and Ouzounis (2003) and Karev et al. (2003; 2004) also used birth and death
processes to model gene content evolution. The latter introduced a series of non-linear
stochastic birth, death and innovation models, assessing the suitability of different models
to the gene family sizes of several species, but the models have not been used within
comparative studies. A recent method developed by Hahn et al. (2005) noted that studies
of gene presence and absence were not capable of identifying genes involved in adaptive
change. They developed a birth–death model of gene family size that could be used to find
unusual gene family size change (both expansion and contractions) across a phylogeny
of species.

Huson and Steel (2004) developed a maximum likelihood–based distance for gene
content. Using a constant-birth, proportional-death model, with gene birth rate λ and gene
loss rate µ, they showed that:

tML = −
1

µ
log

(
β +√

β2 + 4α12

2

)
, (5.22)

where m = λ/µ, α1 = |G1|/m, α2 = |G2|/m, α12 = |G1 ∩G2| and β = 1+ α12 − α1− α2. The authors then compared the performance of this distance measure to the measure
above proposed by Snel et al. (1999) and to a Dollo parsimony approach (Le Quesne,
1974), which stipulated that each gene could be gained only once on a phylogeny but
could be lost many times. They found that their measure had a similar performance on
simulated datasets to the Dollo parsimony approach and that both outperformed the Snel
et al. measure.

The idea of genome conditioning, as described above, has also been investigated by
Savva (2006) modelling gene loss from a reference genome using a death process, while
also taking into account rate heterogeneity through a gamma distribution and a ‘core’ set
of genes that cannot be lost. The method, which defines a maximum likelihood–based
distance for conditioned gene content, has been applied successfully to datasets arising



COMPARATIVE GENOMICS 183

from Comparative Genome Hybridisation microarray experiments. A software package,
MPP, has been developed to implement the method, along with other steps in the analytical
pipeline (Davey, 2005).

5.5.4 Comparison of Gene Order and Gene Content Methods

From the sections above on gene order and gene content, we can see that there are overlaps
between the types of analysis that we can perform on each of our datasets. In particular,
gene content and gene order have both been used for phylogenetic inference. So how
should we decide which type of method is most informative for a particular dataset? This
question has been posed by several researchers in the past few years and we are beginning
to get a picture of the relative adequacies of each method with regard to different types
of dataset.

Herniou et al. (2001) examined the phylogeny of nine baculovirus genomes, carrying
out three separate analyses. In the first analysis, they applied maximum parsimony
algorithms to alignments found for each of the 63 genes common to all 9 genomes and also
to the concatenated sequence from these genes. In the second analysis, they calculated
the pairwise normalised induced breakpoint distances on their dataset, a method they
developed independently of Sankoff et al. (2000a) and calculated a phylogeny from the
distance matrix using neighbor-joining. Also in this second analysis, they independently
developed a binary encoding method, which they applied using maximum parsimony.
In the third analysis, they derived the presence/absence gene content matrix from their
nine genomes and estimated a phylogeny using maximum parsimony. From their results,
Herniou et al. concluded that the concatenated sequence phylogeny gave the tree topology
most consistent with current knowledge of the evolutionary history of the baculoviruses.
Notably, this topology was only identical to 7 of the 63 phylogenies found from analyses
of individual genes, highlighting the inadequacy of inferring species trees from genic
histories. They also found that the gene content and gene order trees were very similar
to the optimal topology, noting that the observed differences could be a consequence
of widely different genome sizes and long branch attraction. Interestingly, they mapped
gene content gains and losses onto the optimal topology, noting a large number of putative
homoplasies (i.e. where two genomes appear erroneously similar because of independent
acquisitions of an individual gene, perhaps through horizontal transfer, or because of
acquisition and subsequent loss of a gene that was absent from the other genome’s
lineage). They concluded that gene content and gene order gave useful methods with which
to find further supporting evidence for phylogenies derived from concatenated sequences,
noting that, ‘Gene order and gene content have the advantage of providing independent
datasets from the gene sequences, with independent dynamics and rates of evolution.’

Wolf et al. (2001) also carried out a comparative analysis of different methods,
applying them to bacterial and archaeal genomes. These researchers carried out five
different analyses on these genomes. In the first analysis, the presence/absence gene
content matrix was derived from the COGs database. A phylogeny was then generated
using Dollo parsimony. Crucially, this algorithm reduces the number of homoplasies
in the resulting phylogeny and is less sensitive to gene loss (common in prokaryotes)
than other parsimony algorithms. In the second analysis, a matrix of conserved pairs
of neighbouring genes in genome pairs was constructed. This analysis used a more
relaxed definition of a neighbourhood than other algorithms (e.g. the approach used by
Herniou et al. in which the two genes must be adjacent in both genomes), requiring
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adjacency in one genome but allowing a small number of intervening genes in the
second. This matrix was again analysed using Dollo parsimony. In the third analysis,
pairwise genomic distances were calculated on the basis of the distributions of identity
percentages between orthologues (e.g. the mean, median or mode of the percentage
values). In the fourth analysis, a maximum likelihood phylogeny was calculated for
the concatenated sequence of the ribosomal proteins. In the fifth analysis, maximum
likelihood phylogenies were estimated for a subset of carefully selected individual genes.
The results indicated that, overall, the sequence-based methods and the third method based
on identity percentages of orthologous genes gave trees that were most consistent with
the known evolutionary history of the organisms undergoing analysis. While the trees
based on local gene order and gene content were partially consistent with these results
(and notably included a previously unknown grouping now believed to be correct), the
differences were thought to be a consequence of extensive horizontal gene transfer and
lineage-specific gene loss.

Looking at these two approaches together, it appears that gene order and gene
content methodologies can be valuable in evolutionary studies but that this value varies
considerably depending on the type of dataset undergoing analysis. Furthermore, other
researchers have noted that gene order and gene content methods may be superior when
gene sequences have become saturated for mutations. Of course, if we are looking to find
out evolutionary information other than the topology, such as rearrangement histories and
ancestral states, then these can only be found using the relevant methodology. However,
an alternative strategy would be to map gene content and order changes onto a phylogeny
derived from gene sequences, as carried out by Herniou et al. above.

We can also compare gene order and gene content methods using the models themselves.
In gene order studies, path probabilities tend to a uniform ergodic distribution. This means
that, once a particular evolutionary time has passed or a number of events have occurred,
the probability of one path is equal to that of any other. Evolutionary analyses under
such conditions would be meaningless. Dicks (unpublished) has used a model-based
approach to show the time to stationarity under the model in a single chromosome is
linear with the number of genes it contains. Savva (2006) has compared simple gene
order and gene content models using Fisher’s information. Preliminary results show that,
for large t , gene content models provide a greater amount of information than gene order
models. Consequently, for widely diverged genomes, this would indicate that it is better to
compare their gene contents rather than the order of their genes. However, further research
is required before we can fully understand the evolutionary boundaries of each method.

5.6 WHOLE GENOME SEQUENCES

Since the first genome, of the bacterium Haemophilus influenzae, was sequenced in 1995
we have seen a proliferation of genome sequencing projects. In addition to dozens of
bacterial and viral organisms, the genomes of around 50 eukaryotic organisms have
now been sequenced. The Institute for Genomic Research (now part of the J. Craig
Venter Institute) provides a useful webpage listing the various genome projects underway
(http://www.tigr.org/tdb/). With the availability of multiple whole genome
sequences, we now have a motivation to compare them along their entirety, particularly
for relatively close species. How close are two sequences? Do we see good general
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correspondence or are there areas that are significantly more closely related than others?
In addition, we can delve deeper into problems of their evolutionary histories, looking
both within and between organisms. In this section, we examine some of the recently
developed methodologies for whole genome alignment of sequences, estimation of
conserved chromosomal blocks and dating of large-scale evolutionary events.

5.6.1 Whole Genome Alignment

One simple way to compare two whole genome sequences is to visualise them as a dot
plot. Such a plot is based on an underlying matrix derived from a comparison of the two
sequences. We ‘slide’ a window of a certain size (e.g. five bases or residues) along the
sequences and, if the sub-sequences within those windows match within a certain range
of precision, then the corresponding entry within the matrix is denoted as 1. If there is
no such match then an entry 0 is made. By adjusting the window size and tolerance
of mismatches, we can change the precision of our matrix. If we then plot the resulting
matrix, we can quickly see regions of similarity. If our two sequences align perfectly, then
our dot plot will show a perfect diagonal line from the bottom left to the top right corners
(or equivalently the top left to the bottom right corners). In a whole genome context,
dot plots are useful for spotting large genomic rearrangements such as those described
in Section 5.2. For example, Figure 5.4 shows a dot plot in which we see both areas of
regional similarity and disjointed regions. Regions that have ‘broken away’ from the main
diagonal are likely to be a consequence of translocations while those that have a differnt
orientation become inverted.

In addition to visualising the relationship between two genome sequences, we may wish
to align them formally with an alignment algorithm. Over the past couple of decades, it has
become commonplace to compare two or more DNA or amino acid sequences by aligning
them such that this technique is considered to be part of the biologist’s toolkit. If there
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Figure 5.4 Visualising a whole genome comparison with a dot plot.
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is a good correspondence between two sequences, then this is often seen as an indication
of a common evolutionary origin and perhaps also a structural and functional similarity.
There are two main types of sequence alignment algorithms: local and global. Local align-
ments do not try to match two sequences exactly but rather concentrate on local areas of
close similarity separated by more divergent regions. This type of algorithm is useful for
sequences without a good overall similarity but which are thought to contain conserved
regions within them. The well-known alignment algorithms BLAST (Basic Local Align-
ment Search Tool; Altschul et al., 1990) and Smith–Waterman (Smith and Waterman,
1981) are both local alignment tools. Conversely, global algorithms attempt to align
all sites or residues of a sequence, and are most useful when the sequences undergoing
comparison are generally similar and are of equal size. The Needleman–Wunsch algorithm
(Needleman and Wunsch, 1970), which is based on dynamic programming, is perhaps the
best-known algorithm of this type. For a more detailed look at sequence alignment, see
Durbin et al. (2000). Global alignments can be used to uncover the shared order of biolog-
ical features within genomic sequences. Furthermore multiple global alignments, which
align more than two sequences, can reveal common features between distantly related
species, particularly when intermediate sequences are also included in the alignment.

We saw above that global alignment algorithms have been developed to align large
sequences along their length. Unfortunately, for large genomes, using a Needleman–
Wunsch algorithm is a very slow process as the algorithm requires time proportional to
the products of the lengths of the aligned sequences. Consequently, a number of algorithms
have been developed specifically for whole genome alignment. Popular pairwise genome
alignment algorithms include MUMmer (Delcher et al., 2002), DIALIGN (Brudno and
Morgenstern, 2002), WABA (Kent and Zahler, 2000), AVID (Bray et al., 2003) and
LAGAN (Brudno et al., 2003a). Furthermore, some of these algorithms have multiple
genome alignment versions, such as MLAGAN (Brudno et al., 2003a) and MAVID
(Bray and Pachter, 2004). In general, pairwise algorithms reduce the computational
burden of alignment by first finding multiple local similarities, or anchors. For example,
LAGAN finds local similarities using the CHAOS algorithm (Brudno and Morgenstern,
2002), which identifies short inexact sequence matches. Some other algorithms find
longer exact matches and therefore are not as appropriate for alignment of distantly
related sequences. LAGAN then selects an ordered subset of the local similarities (the
anchors) and chains them together into a rough global map. Finally, LAGAN searches
for an optimal global alignment using Needleman–Wunch in a small, restricted region
bounding the rough global map. Figure 5.5 depicts this process, with the thick black lines
representing the anchors and the boxes representing the bounded region within which the
Needleman–Wunch algorithm is run.

A multiple alignment version of the LAGAN algorithm, MLAGAN, uses LAGAN
within a progressive alignment approach (where sequences are added to the alignment
one by one) that also uses a known phylogenetic tree to guide the order in which sequences
are added. Owing to the computational difficulties of dealing with very long sequences,
full statistical approaches to this problem are also not practical. However some programs,
such as MAVID (Bray and Pachter, 2004), use a combination of maximum likelihood
and heuristic techniques. MAVID aligns sequences travelling upwards (from the leaves)
within a guide phylogenetic tree. At internal nodes, two alignments are merged into
a single alignment. First, maximum likelihood ancestral sequences are found for each
of the two alignments, and the two ancestral sequences are then aligned using AVID.
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Figure 5.5 Global pairwise whole genome alignment strategy used by LAGAN.

Second, the alignment of the ancestral sequences is used to create a multiple alignment
of all sequences in the two alignments being merged. This efficient strategy is capable of
aligning whole genomes rapidly.

Unfortunately, most of the whole genome alignment algorithms listed above can
only be used reliably within conserved chromosomal regions that have not undergone
rearrangement events. To overcome this, new algorithms have been developed specifically
to deal with rearrangements. For example, SLAGAN (Brudno et al., 2003b) builds upon
the LAGAN tool, using CHAOS local alignments to build a map of the rearrangements
between the genome sequences and LAGAN to align conserved regions. The MULTIZ
component of the TBA algorithm (Blanchette et al., 2004) is also able to align genomes
containing inversions and duplications. The MAUVE tool (Darling et al., 2004b) was
also developed specifically for rearranged genomes. It decomposes genomes into locally
collinear blocks (LCBs, which are unaffected by rearrangements), which are ordered sets
of multi-MUMs (multiple maximum unique matches; sequences that occurred only once in
each genome undergoing analysis, that matched exactly and could not be extended in either
direction to develop larger unique matches). LCBs are weighted using breakpoint analysis
in order to find the most likely set of LCBs in the final alignment. Following a process
to lengthen old LCBs and to uncover new LCBs within large gaps, each LCB in the final
set is aligned using the CLUSTALW multiple alignment tool (Thompson et al., 1994).

5.6.2 Finding Conserved Blocks

In Section 5.4, we described work on the estimation of conserved chromosomal segments
from mapped markers. With whole genome sequences now available and many more
promised for the future, a new generation of algorithms must be developed that can
derive such segments from these emerging datasets. Indeed, since 2000 many researchers
have developed approaches for conserved block estimation from whole genome sequence.
However, until recently, the number of sequenced eukaryotic genomes has been low and
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those that have been sequenced have not been closely related. This may have led to
the early development of methods for genomic palaeontology, essentially searching for
blocks of duplicated genes within genomes such as human, yeast and Arabidopsis (e.g.
Abi-Rached et al., 2002; Dehal and Boore, 2005; Lynch and Conery, 2000) to discover
more about the nature of gene duplication and perhaps to find evidence of large-scale
evolutionary events such as polyploidy.

For example, following the analyses of Vision et al. (2000) and Simillion et al. (2002),
Blanc et al. (2003) examined the evolutionary history of Arobidopsis thaliana. First,
duplicated genes were uncovered by carrying out an all-again-all protein similarity search
of the genome. To detect conserved blocks, the authors searched for genomic regions in
which duplicated genes were in a consistent order. Notably, pairs of duplicated genes were
permitted to be separated by up to a fixed number of unduplicated genes. The resulting
blocks are also known as max-gap clusters, where the max gap is this permitted number
of unduplicated genes (typically ranging from around 3 in bacterial genomes to 30 in
humans; McLysaght et al., 2002). This analysis led to a set of 108 pairs of blocks sharing
6 or more duplicated genes. The statistical significance of the blocks was determined by
a permutation test, where the order of the duplicated genes was randomised many times
and the block detection algorithm applied to each randomised dataset. Such analyses
have also inspired the development of software for conserved block prediction, such as
ADHoRe (Automatic Detection of Homologous Regions; Vandepoele et al., 2002) and its
successor i-ADHoRe, DiagHunter (Cannon et al., 2003), FISH (Calabrese et al., 2003),
LineUp (Hampson et al., 2003) and CloseUp (Hampson et al., 2005). The methods differ
in terms of how conserved blocks are defined, the strategies for estimating them and
the ways in which the significance of the blocks is determined, making comparisons
between them difficult. Indeed, in an analysis of the rice genome, Wang et al. (2005)
discussed how different methods of assessment of block significance could change the
results of an analysis. Furthermore, Vandepoele et al. (2003) showed, in their analysis of
rice genome, that many block detection methods were not capable of finding all duplicated
regions. Instead, more sophisticated approaches were required to detect hidden and ghost
duplications, with hidden blocks being uncovered by examining a third region in the same
species while ghost blocks required the third region to be in another species in order to
uncover the evolutionary relationships between them.

Recently, work has begun on the evaluation of cluster significance. We noted earlier the
concept of a max-gap cluster in conserved block detection methods. Following Durand
and Sankoff (2003) on the testing of gene clustering, Hoberman et al. (2005) analysed
the statistical properties of max-gap clusters. They show that the probability of observing
m marked genes (i.e. those identified as being of interest) in a genome of size n, in a
max-gap cluster with a maximum gap of size g, and with wmg the maximum length of a
cluster of size m (i.e. m+ (m− 1)g), is:

P(n,m, g) = 1(
n

m

) { (n− wmg + 1)(g + 1)m−1 + wmg −m
2

(g + 1)m−1, if wmg ≤ n+ 1

d0(m, g, n) otherwise,
(5.23)

where
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Gap of size 4

Cluster of size 4
and length 7

Cluster of size 5
and length 8

Figure 5.6 Two max-gap clusters for a genome of n = 25 genes, m = 10 marked genes and a
max-gap of g = 3.

Figure 5.6 shows a simple example of a max-gap cluster for n = 25, m = 10 and g = 3.
Hoberman et al. then gave a dynamic programming solution to the problem of finding
the probability of observing a cluster with a subset, of size h, of the m marked genes and
showed that this has an analytic solution when h > m/2. Finally, they tackled the problem
of finding the probability of a max-gap cluster of size h from m homologues in a whole
genome comparison of two genomes of size n. This was not solved exactly, but rather
upper and lower bounds for the probability were established. Simulation experiments using
these equations provided interesting results. They showed, for example, that the genome
comparison upper and lower bounds are tight when the gap size g is small compared
to the genome size n and that the probabilities of observing a cluster of size h are not
monotonic with increasing cluster size h but may decrease initially before increasing as
h tends to m. The authors also noted that bottom-up algorithms to find max-gap clusters
(i.e. similar to some of those listed above) may not find the maximal clusters in certain
cases and that divide-and-conquer solutions such as that used within the Gene Teams
software described in Bergeron et al. (2002) should be used instead.

Mau et al. (2005) also developed a statistical approach to find LCBs using inexact
sequence matching. Within the MAUVE alignment tool introduced above, the same
research team (Darling et al., 2004b) had described an approach to develop computational
monotypic markers using multi-MUMs. However, the use of exact matches gave the
approach a limited evolutionary breadth and so the new approach was developed for
larger evolutionary distances. Monotypic markers were chosen to be single genes that
possessed a reciprocal best BLAST hit in the other genomes undergoing analysis (and
which also occurred just once in those genomes). A pseudo-Gibbs sampler was then
used to find the posterior probabilities of markers belonging to particular blocks, thereby
defining the number, composition and length of the LCB set. Crucially, a scale parameter
allowed the user to choose the resolution of the LCBs. If low resolution was chosen,
a few long LCBs would be found (essentially filtering out small rearrangements). At
higher resolution, some of the LCBs broke up into more, smaller LCBs. Indeed, this is
somewhat reminiscent of the gap length choice in the max-gap clustering described above.
The authors then described the application of LCB estimation within four Streptococci
genomes and showed how the choice of resolution affected the biological plausibility
of a subsequent genome rearrangement analysis. The approach was implemented in
the GRIL software (Genome Rearrangement and Inversion Locator; Darling et al.,
2004a).
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5.6.3 Dating Duplicated Genes and Blocks

The ages of duplicated genes and conserved blocks, once determined by methods such
as those outlined above, can be estimated by determining the level of synonymous
substitution per site,KS, (sometime also termed ds), in the underlying nucleotide sequence.
For a genome with no large-scale duplication events in its past (or at least in the length of
time in which such events are still able to be detected), the distribution of KS values when
plotted exhibits a characteristic ‘L’ shape (see e.g. Lynch and Conery, 2000). However,
genomes in which large-scale evolutionary events have occurred tend to exhibit ‘spikes’
or bursts overlaid on this curve, as shown in Figure 5.7. In the Blanc et al. (2003) study
discussed above, values of KS were estimated using the codeml method in the PAML
software (with large values discarded due to saturation of mutations). See Chapter 12
for details of the theory underlying the estimation of rates of synonymous substitution.
Blanc et al. found that the median KS values within conserved blocks clustered into two
groups: recent blocks and old blocks. The values of the 45 recent blocks showed low
variance, suggesting a single, recent, whole genome duplication, while the values of the
63 old blocks were more varied though not wholly inconsistent with a second more distant
whole genome event. The blocks were then dated by comparing the KS values of the two
groups to KS values found by comparing Arabidopsis genes with their orthologues in other
dicotyledon species. In a later study, Blanc and Wolfe (2004) also applied the method to
EST contigs from several plant species, showing that large-scale duplications are likely
to have occurred in 9 of 14 species analysed.

Phylogenetic approaches for determining evolutionary histories and dating duplication
events have been used by Bowers et al. (2003). These authors discussed the potential error
involved in dating evolutionary events by KS values, as such values had been shown to
vary considerably between genes belonging to different functional categories. Instead, in
their analysis of the Arabidopsis genome, rooted phylogenies of gene duplicates together
with a dicotyledon orthologue and an orthologue in an outgroup species (the latter of
which was used to root the tree) were examined. The relative frequencies of trees where
the gene duplicates were each other’s closest relative and those where the dicotyledon

Peaks resulting from bursts of
gene duplication in the past

Age of divergence

N
um

be
r 

of
 p

ai
rs

 o
f d

up
lic

at
ed

 g
en

es

Figure 5.7 Distribution of ages of pairs of duplicated genes, with two ancient bursts of gene
duplication.
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orthologue was more closely related to one of the duplicate genes than it was to one
another were found for a range of dicotyledons. This information was used to assess
whether duplicate events were genome wide and when they were most likely to have
occurred relative to speciation events. Furthermore, in their analysis of the rice genome,
Wang et al. (2005) showed that the negative correlation of GC content with KS values in
rice could affect the characteristic KS distribution and its interpretation. Instead of relying
solely on KS values to date evolutionary events, the authors decided to use a phylogenetic
approach as support for the results.

Recently, the use of KS values as quantities with which to estimate ages of evolutionary
events is being examined in more detail. Maere et al. (2005) developed a dynamic
population model to describe the shape of the KS distribution as seen, for example, in
Figure 5.7. The model described the number of duplicate genes retained in the genome,
performing 50 time steps (at KS intervals of 0.1) for 4 duplication mode categories
(0 being a background process of gene gain and 1, 2 and 3 distinct potential whole
genome duplications). It possessed three components:

D0(1, t) = ν
[ ∞∑
x′=1

Dtot(x
′, t − 1)+G0

]

Di(1, t) =
[ ∞∑
x′=1

Dtot(x
′, t − 1)+G0

]
δ(t, ti), i = 1, 2 or 3 and

Di(x, t) = Di(x − 1, t − 1)[x/(x − 1)]−αi , x > 1, i = 0, 1, 2 or 3,

which were summed to create the overall distribution:

Dtot(x, t) =
∑
i

Di(x, t). (5.24)

The first component represented the background process of single gene gain, where x was
the age of the gene, t the time step, Di(x, t) the number of genes of age x at time t in
duplication mode i, G0 the number of ancestral genes at KS = 5 and ν the gene birth rate.
The second component modelled potential whole genome duplications (three in this case,
for analysis of the Arabidopsis genome) by means of a parameter δ. Finally, the third
component modelled the process of gene loss as a power-law curve with decay rates αi .
The power-law curve was thought to be more appropriate than exponential gene loss as
it has been hypothesised that gene loss occurs rapidly immediately following genome
duplication, gradually evolving to a process preferentially retaining older duplicates.
Together, these components modelled the age distribution of duplicated genes which
was then transformed to a KS distribution through a Poisson smoothing technique. The
model could then be fitted to real datasets through, for example, simulated annealing
optimisation. The authors used the model to lend support for the three whole genome
duplications hypothesised in Arabidopsis and to show, for example, differences in gene
decay parameters for genes of different functional categories.

A different approach was taken by Cui et al. (2006) in their analysis of genome
duplications in the history of flowering plants, although the basis of the analysis was again
to model the KS distribution. The authors noted that the null model for this distribution
followed a constant rate birth–death process, with gene birth following a Poisson process
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with rate β and the number of duplicated genes decreasing exponentially with rate δ. The
age distribution of retained duplicates N(t) at time t was then:

N(t) ∼ PO(γ
∫ t

0
δ exp(δs)ds) = PO(γ · F(t)), (5.25)

where γ = β/δ and F(t) = 1− exp(−δt). This null model was then fitted to each dataset,
assessing the fit using a χ2 test. A quantile–quantile (Q–Q) plot was also used to compare
the observed data to a dataset simulated under the null model, using a bootstrapped
Kolmogorov–Smirnov test. Following the approach of Schleuter et al. (2004), datasets
that could not be described adequately by the null model were further analysed by a finite
mixture model of genome duplications (i.e. the log-transformed KS values followed a sum
of Gaussian distributions), with each component of the mixture representing a duplication
class (e.g. two components, where the first represented the background process of gene
gain and the second a whole genome duplication event). The authors went on to show,
through simulation, the difficulties of determining both very recent and ancient duplica-
tions withKS-based methods but successfully applied this method to several plant datasets,
providing support for several large-scale duplication events in their evolutionary histories.

5.7 CONCLUSIONS AND FUTURE RESEARCH

In this chapter, we chose to focus on a few key problems that are paramount in
evolutionary studies of whole genomes, using comparative maps, gene orders and contents,
and whole genome sequence data. Of course, there are many other ways in which we
can compare genomes (see, e.g. Saccone and Pesole, 2003 for a broader overview). We
might wish to discover more about GC signatures within genes and codon usage from
the genomic sequence. We might be interested in functional data and compare the protein
structures or functions of the proteins encoded by the genes. We might not be interested
in genes at all and prefer to look at intergenic entities such as transposable elements.
As new datasets arise, we see methodologies being developed to analyse all these data
types, to compare the results of the different methods and perhaps even to integrate them.
We have seen that there are many promising strands of research in comparative genome
analysis. How do we see research progressing in these areas?

Much of the early work in gene order studies has been of a computational nature
and there is still much work to be done in improving, testing and comparing models
of evolution. We have already seen that the fragile breakage model is being tested
in newly sequenced genomes and we could also model other phenomena such as
rapid rearrangement in sub-telomeric chromosomal regions, as has been seen in several
eukaryotes. In addition, we must also consider the possibility that a proportion of genes are
not randomly distributed along genomes but that their genomic location has some meaning.
It has long been understood that genes are clustered in operons within prokaryotic
genomes. However, several recent studies have shown that significant quantities of genes
in eukaryotic genomes are clustered according to other criteria (e.g. belonging to a
common metabolic pathway). A review of the evolutionary dynamics of eukaryotic gene
order (Hurst et al., 2004) discusses these criteria and examines potential mechanisms for
cluster formation. In an illuminating study Wong and Wolfe (2005) show how several
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genome rearrangement events have driven the formation of a secondary metabolite
gene cluster in sensu stricto yeast species. See also Chapter 13, which discusses the
implications of gene location (in addition to gene duplication and genetic redundancy) in
a section on genome organisation. These papers show that we may not be able to consider
all mutation events equally (i.e. those that separate neighbouring co-regulated genes may
be less likely to occur than some others) and perhaps we should not consider gene order
data in isolation but should rather analyse it in tandem with gene expression data.

In the analysis of whole genome sequences, it is likely that methods for whole genome
alignment will continue to improve, both in terms of speed and accuracy and in dealing
with problems such as rearrangement events, perhaps with an increase in model-based
methods. There is also a need for a thorough comparison of methods for conserved
block estimation. Some current methods search for clusters with a strict ordering of the
genes, while others allow it to be entirely random and still others fall somewhere between
these two extremes. Furthermore, there are essentially (at least) three types of clusters:
blocks between genomes (where we may need to filter out micro-rearrangements), blocks
within genomes (where we may need to filter out single-copy genes following large-
scale duplications) and functional clusters (e.g. those for secondary metabolites, where
a neighbourhood of genes from a number of functional classes may be more important
than their actual order). We may find that different stratagies are required for each of
these situations. Further modelling of dating methodologies (e.g. KS signatures) would
also be illuminating, formalising the goodness-of-fit of models and hypotheses for model
comparison.

Overall, it is clear that comparative genomics is an active, flourishing area of computa-
tional research and that statistical methods are beginning to make an impact on this field.
There is currently a great opportunity for statisticians to become involved in this research
and to play an important role in making sense of the enormous quantities of data arising
from the genome sequencing projects.
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This chapter reviews the methods utilized in processing and analysis of gene expression data
generated using DNA microarrays. This type of experiment allows relative levels of mRNA
abundance in a set of tissue samples or cell populations to be determined for thousands of
genes simultaneously. Naturally, such an experiment requires computational and statistical analysis
techniques. As processing begins, the computational procedures are largely determined by the
technology and experimental setup used. Subsequently, as more reliable intensity values for genes
emerge, pattern discovery methods come into play. The most striking peculiarity of this kind of
data is that one usually obtains measurements for thousands of genes for a much smaller number
of conditions. This is at the root of several of the statistical questions discussed here.

6.1 INTRODUCTION

In the context of the Human Genome Project, new technologies have emerged that
facilitate the parallel execution of experiments on a large number of genes simultaneously.
The so-called DNA microarrays, or DNA chips, constitute a prominent example. This
technology aims to measure mRNA levels in particular cells or tissue samples for many
genes at once. To this end, single strands of complementary DNA for the genes of
interest – of which there may be many thousands – are immobilized on spots arranged in a
grid (‘array’) on a support which will typically be a glass slide, a quartz wafer, or a nylon
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membrane. From a sample of interest, such as a tumor biopsy, the mRNA is extracted,
labeled and hybridized to the array. Measuring the quantity of label on each spot then
yields an intensity value that should be correlated to the abundance of the corresponding
RNA transcript in the sample.

Two schemes of labeling are in common use today. One variant labels a single
sample either radioactively or fluorescently. Radioactive labeling is used, for example, in
conjunction with hybridization on nylon membranes (Lennon and Lehrach, 1991). The
company Affymetrix synthesizes sets of short oligomers on a glass wafer and uses a single
fluorescent label (Lipshutz et al., 1999; see also www.affymetrix.com). Alternatively, two
samples are labeled with a green and a red fluorescent dye, respectively. The mixture of
the two mRNA preparations is then hybridized simultaneously to a common array on a
glass slide. This technology is usually referred to as the Stanford technology (Duggan
et al., 1999). Quantification utilizes a laser scanner that determines the intensities of each
of the two labels over the entire array. Recently, companies like Agilent have immobilized
long oligomers 60–70 base pairs in length and used two-color labeling.

The parallelism in this kind of experiment lies in the hybridization of mRNA extracted
from a single sample to many genes simultaneously. The measured abundances, though,
are not obtained on an absolute scale. This is because they depend on many factors that
are hard to control, such as the efficiencies of the various chemical reactions involved
in the sample preparation, as well as on the amount of immobilized DNA available for
hybridization.

The class of transcripts that is probed by a spot may differ in different applications. Most
commonly, each spot is meant to probe a particular gene. The representative sequence of
DNA on the spot may be either a carefully selected fragment of cDNA, a more arbitrary
polymerase chain reaction (PCR) product amplified from a clone matching the gene, or
one of a set of oligonucleotides specific to the gene. Another level of sophistication is
reached when a spot represents, for example, a particular transcript of a gene. In this case,
or to distinguish mRNA abundances of genes from closely related gene families, careful
design and/or selection of the immobilized DNA is required. Likewise, the selection of
samples to study and to compare to each other using DNA microarrays requires careful
planning, as will become clear upon consideration of the statistical questions arising from
this technology (Kerr and Churchill, 2001a; Churchill, 2002; Yang and Speed, 2002).

There are many different ways to plan a microarray experiment. In many cases a
development in time is studied, leading to a series of hybridizations following each
other. Alternatively, different conditions such as the presence/absence of disease or
different disease types may be studied. We generally refer to a time point or a state as a
condition, and typically for each condition several replicate hybridizations are performed.
The replicates should provide the information necessary to judge the significance of the
conclusions one wishes to draw from the comparison of the different conditions. When
delving deeper into the subject it soon becomes clear that this simple outline constitutes
a rather challenging program.

This chapter is organized along the various steps of analysis of a microarray experiment.
Statistical problems arise firstly as a consequence of various technical peculiarities,
and their solution is a prerequisite to any meaningful subsequent interpretation of
the experiment. Section 6.2 describes some of the issues related to quality control.
Visualization methods are introduced because they may greatly help in detecting and
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removing obviously failed measurements, as well as in finding more subtle systematic
biases associated with variations in experimental conditions.

Microarray measurements are subject to multiple sources of experimental variation, the
mathematical treatment of which is discussed in Section 6.3. Some of the variations
are systematic and may be explicitly corrected for, others are random and may be
accounted for through an error model. The correction for systematic effects is referred to
as calibration or normalization. We will discuss two error models: one involving a constant
coefficient of variation, that is, a purely multiplicative noise term; and one allowing for a
more general variance-to-mean dependence, with a noise term that has both multiplicative
and additive components. From these models we derive measures of relative abundance
of mRNA.

The goal of many microarray experiments is to identify genes that are differentially
transcribed with respect to different biological conditions of cell cultures or tissue samples.
Section 6.4 focuses on these issues, paying particular attention to the notoriously low
numbers of repeated hybridizations per condition in relation to the high numbers of genes
about which one wishes to draw conclusions. Section 6.5 proceeds to highlight some of
the issues in pattern discovery in microarray data. Here, again, classical methods of data
analysis need to be carefully evaluated with respect to their applicability to the particular
type of data at hand. A short summary will be given of the methods that have so far
been successfully applied. Emphasis is given to exploratory approaches that allow the
subsequent formulation of hypotheses that can be tested through either further analysis or
further experiments.

6.2 DATA VISUALIZATION AND QUALITY CONTROL

A microarray experiment consists of the following components: a set of probes, an array
on which these probes are immobilized at specified locations, a sample containing a
complex mixture of labeled biomolecules that can bind to the probes, and a detector
that is able to measure the spatially resolved distribution of label after it has bound to
the array (see Nature Genetics 21(supplement), 1999). The probes are chosen such that
they bind to specific sample molecules; for DNA arrays, this is ensured by the high
sequence-specificity of the hybridization reaction between complementary DNA strands.
The array is typically a glass slide or a nylon membrane. The sample molecules may be
labeled through the incorporation of radioactive markers, such as 33P, or of fluorescent
dyes, such as phycoerythrin, Cy3, or Cy5. After exposure of the array to the sample,
the abundance of individual species of sample molecules can be quantified through the
signal intensity at the matching probe sites. To facilitate direct comparison, the spotted
array technology developed in Stanford (Duggan et al., 1999) involves the simultaneous
hybridization of two samples labeled with different fluorescent dyes, and detection at the
two corresponding wavelengths. Plate 1 shows an example.

6.2.1 Image Quantification

The intensity images are scanned by the detector at a high spatial resolution, such that
each probe spot is represented by many pixels. In order to obtain a single overall intensity
value for each probe, the corresponding pixels need to be identified (segmentation),
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and the intensities need to be summarized (quantification). In addition to the overall
probe intensity, further auxiliary quantities may be calculated, such as an estimate of
apparent unspecific ‘local background’ intensity, or a spot quality measure. A variety of
segmentation and quantification methods is implemented in available software packages.
These differ in their robustness against irregularities and in the amount of human
interaction that they require. Different types of irregularities may occur in different types
of microarray technology, and a segmentation or quantification algorithm that is good for
one platform is not necessarily suitable for another. For instance, the variation of spot
shapes and positions that the segmentation has to deal with depends on the properties of
the support (e.g. glass or nylon), on the probe delivery mechanism (e.g. quill-pen type,
pin and ring systems, ink-jetting), and on the detection method (optical or radioactive).
Furthermore, larger variations in the spot positioning from array to array can be expected in
home-made arrays than in mass-produced ones. An evaluation of image analysis methods
for spotted cDNA arrays was reported by Yang et al. (2002).

For a microarray project, the image quantification marks the transition in the work flow
from ‘wet lab’ procedures to computational ones. Hence, this is a convenient time to look
at the quality and plausibility of the data. There are several aspects to this: confirmation
that positive and negative controls behave as expected; verification that replicates yield
measurements close to each other; and checking for the occurrence of artifacts, biases,
or errors. In the following we present a number of data exploration and visualization
methods that may be useful for these tasks.

6.2.2 Dynamic Range and Spatial Effects

A simple and fundamental property of the data is the dynamic range and the distribution
of intensities. Since many experimental problems occur at the level of a whole array
or the sample preparation, it is instructive to look at the histogram of intensities from
each sample. An example is shown in Figure 6.1. Typically, for arrays that contain quasi-
random gene selections, one observes a unimodal distribution with most of its mass at
small intensities, corresponding to genes that are not or only weakly transcribed in the
sample, and a long tail to the right, corresponding to genes that are transcribed at various
levels. In most cases, the occurrence of multiple peaks in the histogram indicates an
experimental artifact. To get an overview over multiple arrays, it is instructive to look at
the boxplots of the intensities from each sample. Problematic arrays should be excluded
from further analysis.

Crude artifacts, such as scratches or spatial inhomogeneities, will usually be observed
in the scanner image at the stage of the image quantification. Nevertheless, to get a quick
and potentially more sensitive view of spatial effects, a false-color representation of the
probe intensities as a function of their spatial coordinates can be useful. There are different
options for the intensity scaling, among them the linear, logarithmic, and rank scales. Each
will highlight different features of the spatial distribution. Examples are shown in Plate 2.

6.2.3 Scatterplot

Usually, the samples hybridized to a series of arrays are biologically related, such that
the transcription levels of a large fraction of genes are approximately the same across
the samples. This can be expected, for example, for cell cultures exposed to different
conditions or for cells from biopsies of the same tissue type, possibly subject to different



ANALYSIS OF MICROARRAY GENE EXPRESSION DATA 207

−200 0 200 400 600 800

0

100

300

Figure 6.1 Histogram of probe intensities at the green wavelength for a cDNA microarray similar
to that depicted in Plate 1. The intensities were determined, in arbitrary units, by an image
quantification method, and ‘local background’ intensities were subtracted. Due to measurement
noise, these lead to nonpositive probe intensities for part of the genes with low or zero abundance.
The x-axis has been cut off at the 99 % quantile of the distribution. The maximum value is about
4000.
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Figure 6.2 Scatterplot of probe intensities in the red and the green color channel from a cDNA
array containing 8000 probes.

disease conditions. We call this the majority of genes unchanged property. Visually, it can
be verified from the scatterplot of the probe intensities for a pair of samples. An example
is shown in Figure 6.2.

The scatterplot allows both measurement noise and systematic biases to be assessed.
Ideally, the data from the majority of the genes that are unchanged should lie on the
bisector of the scatterplot. In reality, there are both systematic and random deviations
from this (Schuchhardt et al., 2000). For instance, if the label incorporation rate and
photoefficiency of the red dye were systematically lower than that of the green dye by
a factor of 0.75, the data would be expected not to lie on the bisector, but rather on the
line y = 0.75x.

Most of the data in Figure 6.2 is squeezed into a tiny corner in the bottom left of the
plot. More informative displays may be obtained from other axis scalings. A frequently
used choice is the double-logarithmic scale. An example is shown in Figure 6.3. It is
customary to transform to new variables A = logR + logG, M = logR − logG (Dudoit
et al., 2002b). Up to a scale factor of

√
2, this corresponds to a clockwise coordinate

system rotation by 45°. The horizontal coordinate A is a measure of average transcription
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Figure 6.3 (a) The same data as in Figure 6.4, after logarithmic transformation and clockwise
rotation by 45°. The dashed line shows a local regression estimate of the systematic effect M0(A);
see text. (b) Similar to (a), but with a constant value c = 42 added to the red intensities before log
transformation. As a result, the estimated curve for the systematic effect M0(A) is approximately
constant.

level, while the log ratio M is a measure of differential transcription. If the majority
of genes are not differentially transcribed, the scatter of the data points in the vertical
direction may be considered a measure of the random variation. Figure 6.3(a) also shows a
systematic deviation of the observed values of M from the line M = 0, estimated through
a local regression line.1 There is an apparent dependence M0(A) of this deviation on
the mean intensity A. However, this is most likely an artifact of applying the logarithmic
transformation: as shown in Figure 6.3(b), the deviation may be explained sufficiently well
through a constant M0(A) = M0 if an appropriate offset is added to the R values before
taking the logarithm. Note that a horizontal line at M = M0 in Figure 6.3(b) corresponds
to a straight line with slope 2M0 and intercept c in Figure 6.2.

Figure 6.3 shows the heteroskedasticity of log ratios: while the variance of M is
relatively small and approximately constant for large average intensities A, it becomes
larger as A decreases. Conversely, examination of the differences R −G, for example
through plots as in Figure 6.2, shows that their variance is smallest for small values of the
average intensity R +G and increases with R +G. Sometimes one wishes to visualize
the data in a manner such that the variance is constant along the whole dynamic range. A
data transformation that achieves this goal is called a variance-stabilizing transformation.

1 We used loess (Cleveland et al., 1992) with default parameters span = 0.75, degree = 2.
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In fact, homoskedastic representations of the data are useful not only for visualization, but
also for further statistical analyses. This will be discussed in more detail in Section 6.3.

Two extensions of the scatterplot are shown in Plates 3 and 4. Rather than plotting
a symbol for every data point, they use a density representation, which may be useful
for larger arrays. For example, Plate 3 shows the scatterplot from the comparison of two
tissue samples based on 152 000 probes.2 The point density in the central region of the
plot is estimated by a kernel density estimator. Three-way comparisons may be performed
through a projection such as in Plate 4. This uses the fact that the (1, 1, 1) component
of a three-way microarray measurement corresponds to average intensity, and hence is
not directly informative with respect to differential transcription. Note that if the plotted
data were preprocessed through a variance-stabilizing transformation, its variance does
not depend on the (1, 1, 1) component.

6.2.4 Batch Effects

Present-day microarray technology measures abundances only in terms of relative probe
intensities, and generally provides no calibration to absolute physical units. Hence, the
comparison of measurements between different studies is difficult. Moreover, even within
a single study, the measurements are highly susceptible to batch effects – experimental
factors that add systematic biases to the measurements, and may vary between different
subsets or stages of an experiment. The following are some examples (Schuchhardt et al.,
2000):

1. Spotting. To manufacture spotted microarrays, the probe DNA is deposited on the
surface through spotting pins. Usually, the robot works with multiple pins in parallel,
and the efficiency of their probe delivery may be quite different (see Plate 2d or
Dudoit et al., 2002b). Furthermore, the efficiency of a pin may change over time
through mechanical wear, and the quality of the spotting process as a whole may be
different at different times, due to varying temperature and humidity conditions.

2. PCR amplification. For cDNA arrays, the probes are synthesized through PCR, whose
yield varies from instance to instance. Typically, the reactions are carried out in
parallel in 384-well plates, and probes that have been synthesized in the same plate
tend to have highly correlated variations in concentration and quality. An example is
shown in Plate 5.

3. Sample preparation protocols. The reverse transcription and the labeling are complex
biochemical reactions, whose efficiencies are variable and may depend sensitively on
a number of circumstances that are hard to control. Furthermore, RNA can quickly
degrade, hence the outcome of the experiment can depend sensitively on when and
how conditions that prevent RNA degradation are applied to the tissue samples.

4. Array coating. Both the efficiency of the probe fixation on the array, and the amount
of unspecific background fluorescence strongly depend on the array coating.

5. Scanner and image analysis.

These considerations have important consequences for experimental design. First, any
variation that can be avoided within an experiment should be avoided. Second, any

2 The arrays used were RZPD Unigene-II arrays (www.rzpd.de).
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variation that cannot be avoided should be dealt with so as not to confound the biological
question of interest. Clearly, when looking for differences between two tumor types, it
would not be wise to have samples of one tumor type processed by one laboratory, and
samples of the other type by another laboratory.

Points 1 and 2 are specific to spotted cDNA arrays. For less sensitivity to these
variations, the two-color labeling protocol is used, which employs the simultaneous
hybridization of two samples to the same array (Duggan et al., 1999). Ideally, if only
ratios of intensities between the two-color channels are considered, variations in probe
abundance should cancel out. Empirically they do not quite do so, which may, for example,
be attributed to the fact that observed intensities are the sum of probe-specific signal and
unspecific background (Yue et al., 2001). Furthermore, in the extreme case of total failure
of the PCR amplification or the DNA deposition for probes on some, but not all, arrays
in an experimental series, artifactual results are hardly avoidable.

If any of the factors 3–5 is changed within an experiment, there is a good chance that
this will later show up in the data as one of the most pronounced sources of variation. A
simple and instructive visual tool to explore such variations is the correlation plot: given a
set of d arrays, each represented by a high-dimensional vector �Yi of suitably transformed
and filtered probe intensities, calculate the d × d correlation matrix corr( �Yi, �Yj ), sort its
rows and columns according to different experimental factors, and visualize the resulting
false-color images.

6.3 ERROR MODELS, CALIBRATION AND MEASURES
OF DIFFERENTIAL EXPRESSION

The relation between a measured intensity yki of probe k and the true abundance xki of
molecule type k in sample i may be written as

yki = aki + bki xki . (6.1)

The gain factor bki represents the net result of the various experimental effects that come
between the count of molecules per cell in the sample and the final readout of the probe
intensity, such as the number of cells in the sample, the mean number of label molecules
attaching to a sample molecule, hybridization efficiency, label efficiency, and detector
gain. The additive term aki accounts for that part of the measured intensity that does not
result from xki , but from effects such as unspecific hybridization, background fluorescence,
stray signal from neighboring probes, and detector offset.

The parameters aki and bki are different for each probe k and for each hybridization i.
It is not practical to determine them exactly, but neither is it necessary. Rather, one is
content with obtaining statistical statements about relative abundances. To this end, one
may build stochastic models for the effects aki and bki . Different variations on this theme
have been proposed, as will be presented below.

First, however, we would like to discuss the functional form of equation (6.1), which
says that when the true abundance xki increases, the measured signal yki increases
proportionally. Might it be necessary to consider more complex nonlinear relationships?
Clearly, this cannot be ruled out for all possible experiments or for future technologies.
However, a linear operating range over several orders of magnitude has been reported by
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a number of authors for current microarray technologies (e.g. Ideker et al., 2000; Ramdas
et al., 2001; Irizarry et al., 2003). At the lower end, this range is limited only by the
requirement that xki be nonnegative. At the upper end, the linear range is limited by
saturation effects such as quenching, limited probe abundance, and detector saturation.
However, for realistic concentrations of sample molecules, the upper limit is not reached
in well-conducted experiments.

6.3.1 Multiplicative Calibration and Noise

In a seminal paper, Chen et al. (1997) introduced a decomposition of the multiplicative
effect (cf. (6.1)),

bki = biβk(1+ εki). (6.2)

Here, βk is a probe-specific coefficient, the same for all samples. For each sample i, the
normalization factor bi is applied across all probes. The remaining variation in bki that
cannot be accounted for by βk and bi is absorbed by εki . Furthermore, since the measured
intensities yki are already ‘background-corrected’ by the image analysis software’s local
background estimation, Chen et al. assumed the additive effects aki to be negligibly small.
They further simplified the problem in two steps.

First, they noted that one is mainly interested in relative comparisons between the
levels of the same gene under different conditions, that is, in the ratios xki/xkj . Hence
the probe-specific effects βk can be absorbed, µki = βkxki , simply rescaling the units in
which molecule abundances are measured, and need not be determined.

Second, they turned to a stochastic description, and modeled εki as a normally
distributed noise term with mean zero and standard deviation c, independent of i and k.
Thus, in the model of Chen et al. the measured intensity Yki is a random variable and
depends on the true level µki as follows:

Yki = bi µki (1+ εki), εki ∼ N(0, c2). (6.3)

Note that Yki has constant coefficient of variation c.
Chen et al. specifically considered two-color cDNA microarrays, where i = 1, 2 repre-

sents the red and the green color channel, respectively. For a given true ratio µk1/µk2,
Chen et al. derived the distribution of the observed, normalized ratio Mk = Yk2/Yk1 ×
b1/b2. This depends only on the values of c and b1/b2, and Chen et al. gave an algorithm
for the estimation of these parameters from the data. Based on this, they were able to
formulate a statistical test for differential expression, that is, for the hypothesis µk1 = µk2.
Hence, the ratios Mk were regarded as a sufficient summary of the results from a single
microarray slide, and they, or their logarithms, would then be used as the input for further
higher-level analyses of data from multiple slides.

To allow for a more systematic analysis of multiple slide experiments, Kerr et al. (2000)
proposed an approach based on the ANOVA technique. They modeled the measured
intensity Ykjlm of probe k on slide j , in the color channel of dye l, from a sample that
received treatment m, as

log Ykjlm = gk + sj + dl + vm + [gs]kj + [gv]km + εkjlm. (6.4)

Here gk, sj , dl , vm are main effects for probe, array, dye, and treatment, respectively.
The probe–array interaction [gs]kj accounts for variations of probe quality in the
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array manufacture, and the probe–treatment interaction [gv]km for differential levels of
transcription of gene g between different treatment groups m. The noise terms εkjlm
account for all other variations and are assumed to be independent and identically
distributed. The ANOVA model (6.4) is related to (6.1) by setting

aki = 0, (6.5)

log bki + log xki = (sj + dl + [gs]kj )+ (gk + vm + [gv]km)+ εkjlm, (6.6)

where j ≡ j (i), l ≡ l(i) and m ≡ m(i) are slide, dye, and treatment associated with
sample i, respectively. The terms in the first set of parentheses on the right-hand side of
(6.6) may be attributed to the measurement gain bki , and the terms in the second set to
the actual abundance xki , but generally such a decomposition is not unique.

Both the models of Chen et al. and Kerr et al. were formulated with reference to the
two-color cDNA array technology. However, (6.4) can be adapted (in fact, simplified) in
a straightforward manner to data from one-color array technologies, such as Affymetrix
genechips or cDNA membranes with radioactive labeling. Furthermore, to represent more
complex experimental designs than simple two-way comparisons, more detailed terms
than the single factor vm can be introduced into (6.4), and the efficiencies of different
designs can be compared using standard techniques for linear models (Kerr and Churchill,
2001a).

6.3.2 Limitations

The concepts of Section 6.3.1 have been widely used for microarray data analysis.
However, it has also become clear that, for many data sets that are encountered in practice,
they are not sufficient. The following points are worth noting:

1. Robustness. In order to make model (6.3) identifiable, Chen et al. assumed that the
transcription levels of all genes were unchanged, and set µk1 = µk2 for all k. Thus,
their model is misspecified for the part of the data arising from truely differentially
transcribed genes, which act as outliers. However, their parameter estimation is based
on least-squares criteria, and may be sensitive to the presence of such outliers. In
addition, outliers may be caused by technical artifacts.

2. Heteroskedasticity. The significance of log ratios depends on the absolute values of the
intensities in the numerator and denominator (Beissbarth et al., 2000; Baggerly et al.,
2001; Newton et al., 2001; Theilhaber et al., 2001; Kepler et al., 2002). Typically,
the variance of log-transformed intensities increases as their mean decreases.

3. Apparent nonlinearities. According to the above models, the data from a pair of
samples should lie along a straight line in the scatterplot of the log-transformed
intensities. However, in real data, several authors have observed data that follows
a curved line as in Figure 6.3 (Beissbarth et al., 2000; Dudoit et al., 2002b; Kepler
et al., 2002).

4. Negative values. While the image quantification’s estimates for probe ‘foreground’
and ‘background’ intensities are generally positive, this is usually not true for their
difference. If a gene is weakly or not expressed, it can happen by chance that the
background estimate is larger than the foreground estimate (see Figure 6.1). However,
nonpositive values make sense neither for ratios nor for the log-transformation.
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To address these problems, various fixes have been proposed. We give a brief and
incomplete review.

1. Robustness. Robust estimation techniques in the context of microarray data have
been described by many authors (Beissbarth et al., 2000; Thomas et al., 2001; Dudoit
et al., 2002b; Huber et al., 2002; Kepler et al., 2002). A general overview is given in
Rousseuw and Leroy (1987).

2. Heteroskedasticity. It is often observed that the variance of the log ratio is a
monotonously decreasing function of the mean intensity. One common practice has been
to discard the log ratios calculated from intensities below a certain threshold and to treat
the rest as if they were homoskedastic.

Newton et al. (2001) proposed a shrinkage estimator

y ′k1 + ν
y ′k2 + ν

(6.7)

to replace the naive ratio y ′k1/y
′
k2. Here, y ′ki = yki/bi are the normalized intensities.

Similarly to Chen et al. they neglected the additive terms aki and used a model of
the measurement error with a constant coefficient of variation. To arrive at (6.7), they
enclosed this in a hierarchical Bayesian model, using a prior distribution for the mRNA
abundances, and, in particular, their positivity. The form of this distribution is reflected
by the shrinkage parameter ν, which is estimated from the data. To infer differential
transcription, they derived ‘posterior odds of change’, which, however, are not a simple
function of the log ratio or of (6.7).

Several authors have addressed the problem of heteroskedasticity by estimating the
variance of the log ratios or of log-transformed intensities separately for each gene (e.g.
Thomas et al., 2001; Dudoit et al., 2002b). However, in many applications the number of
samples available is too small for reliable estimates of gene-specific variance, hence it has
been proposed to estimate the variance as a nonparametric smooth function of the mean
intensity, through a local regression. The log ratios may then be studentized by dividing
them by their locally estimated standard deviation (Kepler et al., 2002). Baggerly et al.
(2001) provided some theoretical foundation for this from models of the measurement
error for different levels of replication. According to these, the variance of the log ratio
is largest for small intensities and exponentially decreases toward an asymptotic positive
value as the intensity increases.

3. Apparent nonlinearities. To correct for the curved appearance of the scatterplot of
log-transformed data, Dudoit et al. (2002b) proposed to replace the normalization factor
b1/b2 in (6.3) by a smooth function M0(A) (see Figure 6.3). This is estimated by robust
local regression (Cleveland et al., 1992) and, by construction, this correction makes the
scatterplot look straight.

A similar correction was proposed by Kepler et al. (2002), in the framework of a model
similar to (6.4). In their approach, the terms sj + dl (slide and dye effects) are replaced
by smooth functions of gk (mean logarithmic abundance of gene k), which are again
estimated by robust local regression.

4. Negative values. In order to be able to calculate ratios and logarithms from real
microarray data, different fixes have been proposed to deal with nonpositive values:
marking them as invalid or missing; replacing them by a fixed, small positive value; using
an imputation algorithm to replace them by a more acceptable value; adding pseudocounts,
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such that the whole set of intensities becomes positive; ignoring the local background
estimate (cDNA arrays) or the mismatch probes (Affymetrix genechips) and using only
the strictly positive foreground or perfect match intensities.

All of these approaches seem to reflect the common wisdom that molecule abundances
are not negative. However, probe intensities are only measurements of abundance, and in
the presence of an additive component of the measurement noise negative measurements
may well be consistent with zero or positive abundance. In any experiment, a certain
proportion of genes will have zero or low abundance in some samples but not in others,
hence the treatment of the nonpositive intensity measurements may affect a large and
potentially informative fraction of the data.

6.3.3 Multiplicative and Additive Calibration and Noise

Interestingly, points 2–4 of Section 6.3.2 can be related to a rather basic assumption of
models (6.3) and (6.4), and it appears that in many cases the associated problems can be
resolved by using a more general model. Chen et al. as well as Kerr et al. assumed that
the additive terms aki in (6.1) were negligible, or at least sufficiently accounted for by
the image quantification’s local background estimation algorithm. One way to arrive at a
more realistic model is to set

aki = ai + biηki, (6.8)

bki = biβk(1+ εki), (6.9)

where the decomposition of the multiplicative effect (6.9) is the same as in (6.2),
ai is a sample-specific additive parameter, and ηki are independent and normally
distributed random variables with zero mean and common variance. Hence, model (6.3)
is replaced by

Yki − ai
bi

= µki eεki + ηki, εki ∼ N(0, c2), ηki ∼ N(0, s2). (6.10)

Model (6.10) was proposed by Rocke and Durbin (2001) and, using different distributional
assumptions, by Ideker et al. (2000). The latter authors used a more detailed parameteri-
zation of the noise terms, allowing for different values of the standard deviations c and s
for the red and green color channels i = 1, 2 and for correlation between εk1 and εk2, as
well as between ηk1 and ηk2. In both cases, the authors did not try to estimate the calibra-
tion parameters ai , bi , but rather assumed that a calibration had already been performed
by some other means.

6.3.3.1 Consequences

First, the intensities Yki are no longer supposed to have a constant coefficient of variation.
Rather, they obey a variance-to-mean dependence

v(u) = c2(u− ai)2 + b2
i s

2, (6.11)

where, in a slight abuse of notation, v ≡ var(Yki) and u ≡ E(Yki), and the equation holds
for all probes k for sample i. Recall that a constant coefficient of variation corresponds to
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a dependence v(u) = c2u2, which is a special case of (6.11) for ai = s = 0. In this case,
the logarithm is a variance-stabilizing transformation, that is, the log-transformed data
have approximately constant variance. For the more general variance-to-mean dependence
(6.11), such a transformation can also be found, as will be explained below.

Second, the ratio of intensities yk1/yk2 is no longer the best estimator for the true fold
change µk1/µk2. This was addressed by Dror et al. (2002), who estimated log(µk1/µk2)
by the posterior mean of a hierarchical model that consists of (6.10) together with an
empirical prior for the distribution of µki . Their estimator coincides with the log ratio if
both yk1 and yk2 are large, and remains well behaved for small or nonpositive values of
yk1 and yk2.

The appropriate variance-stabilizing transformation was described by Huber et al.
(2002) and Durbin et al. (2002). It has the form

hi(yki) = arcsinh
(
c

s
· yki − ai

bi

)
. (6.12)

The parameters ai and bi may be interpreted as array-specific calibration parameters, while
the coefficient of variation c and the background noise level s parameterize the overall
error model. The graph of the arcsinh function is depicted in Figure 6.4. The following
two relations hold between the arcsinh and the log function:

arcsinh(x) = log(x +
√
x2 + 1), (6.13)

lim
x→∞ {arcsinh(x)− log(2x)} = 0. (6.14)

In the framework of Section 6.3.1, log ratios, the differences between the logarithms of
normalized intensities, were the appropriate measure of differential transcription to be
used in downstream analyses. By analogy, we define (Huber et al., 2002)

�hk;ij = hi(yki)− hj (ykj ). (6.15)

−2 0 2 4
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1

2

arcsinh(x)

log(x) + log(2)

Figure 6.4 Graph of the arcsinh(x) (solid line) and log(2x) (dashed line). The vertical line
marks the singularity of the logarithm function at x = 0. The arcsinh function is symmetric,
arcsinh(x) = − arcsinh(−x); however, most relevant for (6.12) is its behaviour in an x range as
depicted here.



216 W. HUBER, A. VON HEYDEBRECK AND M. VINGRON

For intensities that are much larger than the additive noise level, (6.15) becomes equivalent
to the log ratio, as is seen from (6.14). But, in contrast to the log ratio, �hk;ij is well
defined and has constant variance c2 across the whole range of intensities. In fact,�hk;ij /c
may be thought of as a ‘studentized log ratio’.

To estimate the model and transformation parameters, one could directly fit model
(6.10) to the data, using the majority of genes unchanged assumption µki = µk for most
genes k. A computationally simpler approach is to fit the model

hi(Yki) = µ̃k + ε̃ki , ε̃ki ∼ N(0, c2). (6.16)

Up to first and second moments, models (6.10) and (6.16) are equivalent. Parameter
estimates can be obtained from a robust variant of the maximum likelihood estimator.
A robust estimator with high breakdown point is needed not only because there may be
technical outliers, but also because the assumption µki = µk does not hold for a minority
of genes that have biologically different transcription levels in different samples (Huber
et al., 2002).

The identification of differentially transcribed genes through statistical tests on �hk
values has been shown to have higher sensitivity and specificity than that through
tests on log ratios (Huber et al., 2002). This may be explained by the fact that for
nondifferentially transcribed genes the �hk values have unimodal distributions with mean
zero and variances independent of the genes’ mean transcription levels. Hence, within the
limits of the error model, all available information with respect to differential transcription
of gene k is contained in the values of �hk;ij . On the other hand, the distributions of log
ratios may have, even for some of the nondifferentially transcribed genes, mean values
different from zero due to sensitive dependence on calibration errors, they may have
variances that strongly depend on the mean transcription levels, and they may involve
missing values, if there are nonpositive net probe intensities. These points are illustrated
in Plate 6.

6.3.3.2 Probe Set Summaries

A gene transcript may be represented by multiple probes on an array. To obtain an
overall measure of abundance per gene, a straightforward approach is to take the average
of the corresponding calibrated and transformed probe intensities (6.12). If additional
information on the reliability of the probe measurements is available, a weighted average
may be used. This has been investigated most extensively in the context of Affymetrix
genechip data (Lipshutz et al., 1999). On these chips, each transcript is represented by
16–20 pairs of oligonucleotide probes referred to as probe sets. Each probe pair consists
of an oligonucleotide of 25 bases that exactly matches the target sequence, and of one
that has a mismatch in the middle. The mismatch probes are thought to provide estimates
of unspecific contributions to the signal measured from the perfect match probes. A good
overview, with many further references, was given by Irizarry et al. (2003).

6.4 IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES

One of the basic goals in the analysis of microarray gene expression data is the
identification of differentially expressed genes in the comparison of different types of
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cell or tissue samples. In order to control the biological and experimental variability
of the measurements, statistical inference has to be based on an adequate number of
replicate experiments. Here one may distinguish between cases in which one wishes to
make statements on a particular cell population and cases in which one wishes to make
statements that hold in the presence of biological variability, such as with biopsy studies
of diseased tissues. In the first case independent replications can be obtained at the level of
multiple mRNA isolations; in the second they may be provided by samples from different
patients.

For the following, we assume that the data are given either as absolute intensities or
as relative values with respect to a common reference sample, and have been calibrated
(see Section 6.3).

To identify differentially expressed genes with respect to a certain biological question, a
suitable statistical test may be performed for each gene (Claverie, 1999). The choice of test
statistic depends on the biological question and on the nature of the available experimental
data. In the simplest case, one seeks genes that show different transcript abundance
between two conditions. In more complex situations, one may look for genes whose
abundance is associated with multiple factor levels of one or more sample characteristics.
Furthermore, one may consider continuous-valued sample characteristics and test for genes
which show nonzero coefficients in a regression model, such as a linear model or a Cox
proportional hazards model on patient survival data.

Different test statistics may make more or less strong assumptions on the distributions of
replicate measurements. Important questions are whether the distributions are symmetric,
how similar or dissimilar they are to normal distributions, what their behavior in the
tails is like, and whether or how their variance (or another appropriate measure of scale)
varies between different genes or between different conditions. Such differences in the
variance may occur for several reasons: in Section 6.3, we discussed the dependence of
the variance on the mean, an example of which is given in equation (6.11). There may be
other technological effects that can influence the variance of the measurement distributions
in a gene- or condition-dependent manner, such as GC content or probe length. Finally,
there may be genuine biological differences, such as different tightness of the regulatory
control for different genes or for the same gene under different physiological or disease
conditions.

Data transformations, such as the logarithmic transformation or a variance-stabilizing
transformation like (6.12), may be used to make the distributions more symmetric and
possibly close to normal, and to remove the systematic dependence of the variance on the
mean (see Section 6.3). In the comparison of two conditions, one might use Student’s t-test
or the Wilcoxon rank-sum test. Both tests assume that the distributions of the replicate
measurements under the two conditions have the same shape and test for differences
in the location, with the t-test additionally assuming normal distributions. To account
for possibly unequal variances in the two groups, Welch’s version of the t-test may
be preferred (Welch, 1947; Best and Rayner, 1987). In order to avoid distributional
assumptions, Dudoit et al. (2002b) proposed to estimate the null distribution of the
t-statistic (or, equivalently, of the difference of means) for each gene using permutations
of the sample labels. Comparative analyses of different univariate statistical tests in the
analysis of gene expression data were presented in Herwig et al. (2001), Thomas et al.
(2001), and Pan (2002), but without a conclusive result.
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In addition to standard aspects of hypothesis testing, two specific properties of
microarray data have motivated the development of novel strategies:

1. Variance estimation. At one extreme, one may try to estimate the variance of the
distributions separately for each gene, and possibly for each condition. This requires
a large number of repetitions, which are not always available. At the other extreme,
one may use a pooled estimate of the variance over all conditions and genes. After the
application of a variance-stabilizing transformation such as (6.12), the assumption of
constant variance may result in tolerable bias and, due to the large number of genes
represented on an array, in very low variance of the estimator. This is the case
especially if few repetitions are available. Between the two extremes a number of
methods have been proposed that pool the variance estimation over some genes, but
also retain some gene dependence.

2. Multiple testing. Due to the large number of genes on an array and thus the large
number of tests performed, a considerable number of genes may show differential
signal intensities simply by chance. Several approaches to assessing the statistical
significance of test results obtained from microarray data have been developed.

6.4.1 Regularized t-Statistics

To overcome the instability of the gene-specific variance estimate in the case of few
replicate experiments per condition, several authors have proposed methods where a value
estimated from a larger set of genes is used to augment the gene-specific standard deviation
estimate, thus providing a regularized version of the t-statistic.

Baldi and Long (2001) suggested replacing the within-group empirical variance s2
k of

gene k in the two-sample t-statistic obtained from d observations by an expression of
the form

σ̃ 2
k =

ν0σ
2
0 + (d − 1)s2

k

ν0 + d − 2
.

This variance estimate results as the posterior mean from a Bayesian hierarchical model for
the measurements of each gene under an experimental condition. The measured values are
assumed to be normally distributed, and ν0 and σ0 are hyperparameters of the prior for the
parameters of the normal distribution. For practical purposes, the authors recommended
choosing σ0 as the empirical standard deviation obtained from averaging over all genes
within a certain intensity range. If a variance-stabilizing transformation has been applied
to the data, σ0 may be obtained from the pooled variance over all genes on the array.
The value ν0 is chosen as an integer determining the weight of σ0 compared to the gene-
specific standard deviation. Thus the large number of genes interrogated is exploited to
obtain potentially biased but more stable variance estimates for each single gene. The
resulting regularized t-statistic, used with a t-distribution with ν0 + d − 2 degrees of
freedom as null distribution, is shown to perform better than the standard t-test on real
and simulated data when there are less than about 5 replications per condition. A similar
approach was pursued by Lönnstedt and Speed (2002). Tusher et al. (2001), see also
Efron et al. (2000), also proposed to use a regularized version of the t-statistic, where the
empirical standard deviation sk of gene k is replaced by σ̃k = sk + s0, with s0 determined
from the data in a heuristic fashion.
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6.4.2 Multiple Testing

Assume that for each gene a statistical test for differential expression has been conducted.
If one fixes a genewise significance level of, say, α = 0.05, on average one in every 20
genes that are actually not differentially expressed will show a p-value below α just by
chance. Due to the large number of genes represented on a microarray, this may lead to
a large number of false positive calls. For this reason, Dudoit et al. (2002b) suggested
choosing a procedure that controls the familywise error rate (FWER). The FWER is
defined as the probability that the selected set of genes contains at least one false positive.
A multiple testing procedure is said to provide strong control of the FWER if it controls
the FWER for any combination of true and false null hypotheses. If p-values for the test
statistics T1, . . . , Tn of n genes are available, a simple adjustment that gives strong control
of the FWER is the Bonferroni correction, which amounts to multiplying the unadjusted
p-values by n. Dudoit et al. (2002b) described the use of a stepwise p-value adjustment
that is due to Westfall and Young (1993). This procedure is less conservative than the
Bonferroni correction and, in contrast to the latter, takes possible dependences between
the test statistics into account. The adjusted p-values are estimated by a permutation
algorithm.

For many applications, however, control of the FWER is too conservative, with the
danger of many interesting genes being missed. As microarrays are often used to screen
for candidate genes that may then be validated through further experiments, the researcher
may be willing to accept a certain fraction of false positives. This is accommodated by the
concept of the false discovery rate (FDR; Benjamini and Hochberg, 1995). For a family of
hypothesis tests, let R denote the number of rejected null hypotheses, and V the number
of falsely rejected null hypotheses. The FDR is defined as

FDR = E
[
V

R

∣∣∣∣R > 0
]
· Pr(R > 0).

Benjamini and Hochberg described a procedure to control the FDR under the assumption
that the test statistics arising from the true null hypotheses are independent. More precisely,
given the set of p-values from all individual hypothesis tests and a desired upper bound q
for the FDR, they give a bound p∗ such that rejecting all null hypotheses with p-value
smaller than p∗ guarantees an FDR of at most q for any possible combination of true and
false null hypotheses.

Another approach based on the FDR was presented by Storey and Tibshirani (2001); see
also Tusher et al. (2001). For a given rejection region of the statistical tests, the authors
estimated the FDR and the positive false discovery rate (pFDR), which is defined as3

pFDR = E
[
V

R

∣∣∣∣R > 0
]
.

Rather than computing a rejection region that guarantees an upper bound for the FDR,
Storey and Tibshirani assumed that a rejection region was fixed and estimated the FDR
on the basis of the distribution of the test statistics. The estimation procedure has been

3 In contrast to the method of Benjamini and Hochberg, where arbitrary but fixed combinations of true and
false null hypotheses are allowed, here the null hypotheses are considered as independent and identically
distributed Bernoulli random variables that are true with probability π0.
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designed for any kind of dependence between the test statistics and does not require p-
values for the single hypothesis tests. The algorithm of Storey and Tibshirani works as
follows. They assumed that all null hypotheses were identical and that the same rejection
region � was used for all test statistics T1, . . . , Tn, leading to a number R(�) of rejections.
Furthermore, they assumed that the joint null distribution of the test statistics could be
simulated by permutations of the sample labels. From this, the authors obtained estimates
for the expected number of rejections given that all null hypotheses are true,

Ê[R0(�)],

as well as for the probability of at least one rejection,

P̂r[R0(�) > 0].

The pFDR is then estimated by

̂pFDR(�) = π̂0 · Ê[R0(�)]

P̂r[R0(�) > 0] ·max(R(�), 1)
, (6.17)

and the FDR similarly by

F̂DR(�) = π̂0 · Ê[R0(�)]

max(R(�), 1)
. (6.18)

The expected proportion π̂0 of true null hypotheses is estimated as follows. Let �′
be a rejection region whose complement is likely to be achieved mostly for true null
hypotheses. The estimate for π0 is obtained as

π̂0 =
n− R(�′)

Ê[n− R0(�′)]
.

In order to determine how many falsely significant genes may appear with a certain
probability, or how likely it is that all genes with test statistics in the rejection region are
false positives, it is interesting to estimate not only the pFDR, but also quantiles of the
distribution of V/R. This is illustrated in Figure 6.5.

Under certain conditions on the dependence structure between the test statistics, it
was shown by Storey and Tibshirani (2001) that for all π0, the estimates are greater
than or equal to the true values of the FDR and pFDR in expectation. In Storey (2001)
(see also Efron et al., 2001), it is shown that in the case of independent test statistics
(and asymptotically also for some forms of dependence) the pFDR can be interpreted in a
Bayesian framework as the posterior probability that a gene is not differentially expressed,
given its test statistic lies in the rejection region:

pFDR(�) = Pr(H = 0|T ∈ �).
A special property of the approach of Storey and Tibshirani and Tusher et al. is how it

makes use of the assumption that the null distributions of the test statistics are identical
for all genes. The fact that the estimation procedure is based on the test statistics of
all genes under permutation of the sample labels gives accurate estimates for relatively
few replicate experiments, while at the same time it preserves the dependence structure



Plate 1. The detected intensity distributions from a cDNA microarray for a region comprising
around 80 probes. The total number of probes on an array may range from a few dozen to tens
of thousands. Left: gray-scale representation of the detected label fluorescence at 635 nm (red),
corresponding to mRNA sample A. Right: label fluorescence at 532 nm (green), corresponding to
mRNA sample B. Spots that light up in only one of the two images correspond to genes that are
only transcribed in one of the two samples. Center: false-color overlay image from the two intensity
distributions. The spots are red, green, or yellow, depending on whether the gene is transcribed
only in sample A, sample B, or both.
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Plate 2. False-color representations of the spatial intensity distributions from three different
64× 136 spot cDNA microarrays from one experiment series: (a) Probe intensities in the red
color channel; (b) local background intensities; (c) background-subtracted probe intensities. In (a)
and (b), there is an artifactual intensity gradient, which is mostly removed in (c). For visualization,
the color scale was chosen in each image to be proportional to the ranks of the intensities. (d) For
a second array, probe intensities in the green color channel. There is a rectangular region of low
intensity in the top left-hand corner, corresponding to one print-tip. Apparently, there was a sporadic
failure of the tip for this particular array. (e) and (f) show the probe intensities in the green color
channel from a third array. The color scale was chosen proportional to the logarithms of intensities
in (e) and proportional to the ranks in (f). Here, the latter provides better contrast. Interestingly,
the bright blob in the lower right-hand corner appears only in the green color channel, while the
crescent-shaped region appears both in green and red (not shown).
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Plate 3. Scatterplot of a pairwise comparison of noncancerous colon tissue and a colorectal
tumor. Each individual transcripts is represented by a ×. The x-coordinate is the average of the
appropriately calibrated and transformed intensities (see Section 6.3). The y-coordinate is their
difference, and is a measure of differential transcription. The array used in this experiment contained
152 000 probes representing around 70 000 different clones. Since plotting all of these would lead
to an uninformative solid black blob in the centre of the plot, the point density is visualized by a
color scale, and only 1500 data points in sparser regions are individually plotted.
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Plate 4. Scatterplot of a triple comparison between noncancerous colon tissue, a lymph-node
negative colorectal tumor (N0), and a lymph-node positive tumor (N1). The measurements from
each probe correspond to a point in three-dimensional space, and are projected orthogonally on a
plane perpendicular to the (1,1,1)-axis. The three coordinate axes of the data space correspond to
the vectors from the origin of the plot to the three labels ‘normal’, ‘tumor N0’, and ‘tumor N1’.
The (1,1,1)-axis corresponds to average intensity, while differences between the three tissues are
represented by the position of the measurements in the two-dimensional plot plane. For instance,
both c-myc and nme1 (nucleoside diphosphate kinase A) are transcribed higher in the N0 and in
the N1 tumor, compared to the noncancerous tissue. However, while the increase is approximately
balanced for c-myc in the two tumors, nme1 is more upregulated in the N1 tumor than in the N0
tumor, a behavior that is consistent with a gene involved in tumor progression. On the other hand,
the apoptosis-inducing receptor trail-r2 is downregulated specifically in the N1 tumors, while it
has about the same intermediate–high transcription level in the noncancerous tissue and the N0
tumor. Similar behavior of these genes was observed over repeated experiments.
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Plate 5. (a) Scatterplot of intensities from a pair of single-color cDNA arrays, comparing renal cell
carcinoma to matched noncancerous kidney tissue. Similar to Plate 4, the x-coordinate represents
average and the y-coordinate differential signal. At the bottom of the plot, there is a cloud of
probes that appear to represent a cluster of strongly downregulated genes. However, closer scrutiny
reveals that this is an experimental artifact: (b) shows the boxplots of the intensities for the two
arrays, separately for each of the 41 PCR plates (see text). Probes from plates 21, 22, 27, and 28
have extraordinarily high intensities on one of the arrays, but not on the other. Since the clone
selection was quasi-random, this points to a defect in the probe synthesis that affected one array,
but not the other. The discovery of such artifacts may be helped by coloring the dots in the
scatterplot by attributes such as PCR plate of origin or spotting pin. While the example presented
here is an extreme one, caution toward batch artifacts is warranted whenever arrays from different
manufacturing lots are used in a single study.
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Plate 6. Scatterplot of differential versus total intensities from a two-color cDNA array, using
two different transformations: (a) logarithmic; (b) equation (6.12). The horizontal lines correspond
to the z-score �h/ĉ = 0,±1,±2,±3. The z-score of a pair of red and green probe intensities is
their difference divided by its expected standard deviation according to the variance-versus-mean
function v(u). The z-score is a statistical measure of how strongly an observed pair of intensities is
indicative of true differential abundance. While the contours of the z-score are functions of both log
ratio and total intensity (a), they are independent of total intensity in the coordinate system of (b).
Due to a local background subtraction, this data set contained small and negative net intensities.
(a) shows measurements with R,G > 0 and log(RG) > 2.5. All data is shown in (b), with the
subset of the upper panel to the right of the dashed line.
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Figure 6.5 Estimation of the false discovery rate. Using 24 arrays with 32 000 cDNA probes
each, 12 pairs of matched breast cancer tissue samples dissected before and after neoadjuvant
chemotherapy were compared. Differentially transcribed genes were selected according to the
absolute value of the one-sample t-statistic. The rejection region � was fixed such that 50 genes
were selected (solid line). The histogram shows the distribution of R0(�), estimated from all 924
balanced sign flips. The dashed and dotted lines show median and mean respectively. The mean
may be used as an estimate of E [R0(�)] in (6.17) and (6.18). Note the skewness of the distribution
of R0(�).

between genes. On the other hand, this type of procedure is not able to take possibly
unequal variances in the two classes into account.

6.5 PATTERN DISCOVERY

Unsupervised as well as supervised learning methods play a central role in the analysis
of microarray gene expression data. Supervised methods aim to infer information from
the data with respect to a predefined response variable. For instance, in the context of
tumor diagnostics one tries to classify mRNA samples obtained from tumor cells with
respect to given tumor types. The application of classification methods to microarray
data was discussed, for example, in Golub et al. (1999), Ben-Dor et al. (2000), Dudoit
et al. (2002a), and Spang et al. (2002). In the following, we focus on unsupervised
methods, which aim to detect structures in the data without making use of gene or sample
annotations. A primary purpose of such methods is to provide a visualization of the data
in which conspicuous structures can easily be recognized. These may be relations among
genes, among samples, or between genes and samples. The perception of such structures
can lead the researcher to develop new hypotheses: for example, the result of a clustering
of genes may indicate the putative involvement of uncharacterized genes in a biological
process of interest, whereas a separation of the expression profiles of a set of patient tissue
samples into clusters may point to a possible refinement of disease taxonomy. On the other
hand, unsupervised methods are often used to confirm known differences between genes
or samples on the level of gene expression: if a clustering algorithm groups samples from,
say, two different tumor types into distinct clusters without using prior knowledge, this
provides evidence that the tumor types do indeed show clearly detectable differences in
their global gene expression profiles.
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For all of the following methods, we assume that we have a gene expression data matrix
of suitably calibrated and transformed expression levels with, say, the rows corresponding
to genes and the columns corresponding to cell or tissue samples.

6.5.1 Projection Methods

An important class of unsupervised methods works through dimension reduction. The row
or column vectors of a gene expression data matrix are projected onto a low-dimensional
space such that some measure of similarity between the vectors is optimally preserved.
The projected data may be visualized through one or more scatterplots, in the hope that
these convey important information contained in the data.

In principal component analysis, mutually orthogonal linear combinations of the row
or column vectors (the principal components) are computed, such that the ith principal
component has maximal variance among all vectors orthogonal to the first i − 1 principal
components. In applications, one may hope that the first few principal components carry
most of the information contained in the data, which can then be displayed in scatterplots.
Alter et al. (2000) demonstrated the use of principal component analysis for a gene
expression study of the cell cycle in yeast. The first principal component was found
to reflect experimental artifacts and was consequently filtered out. After that, the authors
found that the first two principal components (‘eigengenes’) are well described by a sine
and cosine function of time, respectively. The interpretation is that these ‘eigengenes’
reflect oscillating gene expression patterns, while the corresponding ‘eigenarrays’ define
a two-dimensional coordinate system for the cell cycle phases.

In correspondence analysis, the rows and the columns of a nonnegative data matrix are
simultaneously projected onto a low-dimensional space (Greenacre, 1984). The method
decomposes the deviations from homogeneity between rows and columns, as we will now
explain. For the data matrix Y, let yk+ and y+i be the sum of the kth row and the ith
column, respectively, y++ the grand total, and rk = yk+/y++ and ci = y+i/y++ the mass
of the kth row and the ith column. The matrix S, with elements

ski = (yki/y++ − rkci)/√rkci,

undergoes singular value decomposition, S = U�VT. Note that the sum of the squared
elements of S is just the χ2-statistic of Y. Suitably normalized columns of U and V
provide the principal coordinates for the rows and the columns of Y, respectively:

fkj =
λjukj√
rk
, gij =

λjvij√
ci
.

Usually, only the first two or three principal coordinates are used for a simultaneous
display of the rows and columns of the data matrix. The corresponding entries of � reflect
which proportion of the χ2-statistic of Y is represented in the low-dimensional projection.
The distances between rows and between columns approximate their χ2 distances, and
moreover, the association between rows and columns is reflected in a biplot: a row and
a column that are positively (negatively) associated will approximately lie on the same
(opposite) half-ray through the origin, with the distance from the origin reflecting the
strength of the association. An example is shown in Plate 7.
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6.5.2 Cluster Algorithms

Cluster algorithms generally aim to group objects according to some notion of similarity.
An overview of issues and methods in cluster analysis is given in Jain and Dubes (1988).
For microarray data, clustering may be applied to the genes whose expression levels are
measured, with the expectation that functionally related or coregulated genes will show
similar expression patterns. On the other hand, one may use clustering to analyse the
expression profiles of a set of cell or tissue samples with the hope that samples with similar
biological characteristics will be grouped together. Cluster algorithms are explicitly or
implicitly based on a quantitative measure of dissimilarity between the objects of interest.
In the case of row and column vectors of a gene expression data matrix, typical examples
are the Euclidean distance or 1 minus the correlation coefficient. For the clustering of
genes based on their expression patterns, the latter is often used because it is invariant
under affine-linear transformations of the input vectors and focuses on the pattern of
relative changes.

In hierarchical clustering algorithms, a tree structure (dendrogram) is computed that
contains the objects as leaves. Agglomerative methods build the tree starting with the
leaves (Eisen et al., 1998), whereas in divisive methods (Alon et al., 1999) the set of
objects is iteratively partitioned into subsets. To obtain a partition of the set of objects
into clusters, the resulting dendrogram may be cut at a certain height. In the analysis of
microarray data, however, hierarchical clustering is often simply used to obtain a linear
ordering of both the rows and the columns of a gene expression data matrix such that
similar rows or columns are located close to each other. The reordered data matrix is then
displayed using a color map, which may be a powerful visualization tool. However, many
implementations of hierarchical clustering do not try to find an optimal linear order of the n
leaves of the obtained dendrogram out of the 2n−1 possible orders that are compatible with
the tree structure. Bar-Joseph et al. (2001) described an efficient algorithm to compute an
optimal linear order of the set of leaves of a cluster tree compatible with the tree structure
in the sense that the sum of distances of pairs of neighboring leaves is minimized.

Nonhierarchical clustering algorithms directly yield a partition of the set of objects
into clusters, the number of which has to be fixed in advance in most methods. Examples
are k-means clustering, partitioning around medoids (Dudoit and Fridlyand, 2002) and
self-organizing maps (Tamayo et al., 1999). A graph-theoretical clustering method that
was developed especially for gene expression data is described in Ben-Dor et al. (1999).

An important but difficult question in cluster analysis is that of the validity of the
results. Cluster analysis assumes that the data are organized in distinguishable clusters.
However, a cluster algorithm will usually also produce a set of clusters if this assumption
is not fulfilled. Furthermore, the results may be affected by random fluctuations of the
data. Thus, it is of interest to estimate the number of clusters present in a data set (if any),
as well as to assess the variability of various features of the result.

Dudoit and Fridlyand (2002) proposed an approach for estimating the number of clusters
in a data set. In the first step, they applied a clustering algorithm to a subset of all
observations. Then they analyzed how much an assignment of the remaining observations
to the clusters by a class prediction method coincided with the partition obtained from
clustering these observations. Through comparing the resulting measure of predictability
to that obtained under a null model without cluster structure, they arrived at a quality
index that can be computed for different numbers of clusters. If none of the predictability
values is significant, there is no evidence for clusters in the data, whereas otherwise the
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number of clusters yielding the highest quality index is chosen. The performance of this
approach was demonstrated using simulated data and real gene expression data, where
clustering is applied to the samples. However, one might imagine that real data sometimes
lie between the extreme cases of a common distribution for all objects on the one hand and
distinct clusters on the other. Furthermore, if the objects are organized in hierarchically
nested clusters, such that there are partitions at different levels of granularity, the question
of how many clusters are present is not meaningful without further specifications.

Kerr and Churchill (2001b) used the bootstrap in order to assess the reliability of the
results of a cluster analysis. Resampling was performed on the residuals of an analysis
of variance model, yielding stability values for the assignment of genes to prespecified
clusters. In a more general context, Pollard and van der Laan (2002) analyzed the
performance of the bootstrap in assessing the variability of the results of a wide class
of clustering methods. Assuming that the expression profiles of the biological samples
are generated from a mixture of n-variate probability distributions, where n denotes the
number of genes, they gave a general definition of clustering methods (for clustering
genes or samples, or the simultaneous clustering of genes and samples) as algorithms to
estimate certain parameters of the data-generating distribution. Although an underlying
probabilistic model is assumed, the cluster algorithms under consideration do not have
to be model-based. This framework allows concepts of statistical inference to be applied
to clustering algorithms. In a simulation study, they analyzed both the nonparametric
(resampling of sample expression profiles) and the parametric bootstrap (based on normal
distributions). The results indicated that both bootstrapping methods are able to assess
the variability of various quantities describing the output of a clustering algorithm. In
addition, the authors proposed to test the statistical significance of a clustering of samples
via the comparison with data generated from an appropriate null model. A similar approach
for the evaluation of temporal gene expression patterns was presented in Dougherty et al.
(2002). Assuming the expression pattern of each gene to be generated from one of several
multivariate normal distributions, the authors analyzed the error rate of various clustering
algorithms in determining the correct cluster membership of genes.

Probabilistic clustering methods assume that each observation belongs to a cluster k
with probability πk , and the observations within each cluster k are generated according
to a probability distribution Lk . After the number of clusters and the family of admissible
probability distributions have been specified, the model parameters and the most likely
cluster assignment of each observation can be estimated by maximum likelihood. This
is usually done via the expectation–maximization algorithm (Dempster et al., 1977),
starting with some initial clustering. In such a probabilistic framework, it is possible
to assess the adequacy of different models – concerning the number of clusters, as
well as the allowed parameter space for the component distributions – through the
Bayesian information criterion (Fraley and Raftery, 1998). The application of model-
based clustering to microarray data is described in Yeung et al. (2001), Ghosh and
Chinnaiyan (2002), and McLachlan et al. (2002). Concerning the clustering of genes,
the application of normal mixture models, possibly with constraints on the covariance
matrices in order to reduce the number of free parameters, is more or less straightforward.
On the other hand, the application of model-based methods to the clustering of samples
poses problems, because in typical microarray data sets the number of genes, and thus the
number of parameters to be estimated, exceeds by far the number of samples. Ghosh and
Chinnaiyan (2002) suggested clustering the samples via a model-based approach using
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the first few components obtained from a principal component analysis. McLachlan et al.
(2002) proposed clustering the samples into a mixture of factor analysis models.

6.5.3 Local Pattern Discovery Methods

One limitation of clustering methods as described in Section 6.5.2 lies in the fact that they
are based on a global measure of similarity between the rows or the columns of the data
matrix. However, there may be biologically relevant situations where tissue samples share
similar expression levels of one particular set of genes, for example, those belonging to
a molecular pathway that is active in this group, whereas they differ with respect to the
expression of other genes. Also the similarity of the expression levels of a group of genes
may be present only under certain biological conditions. We give a brief overview on
methods that were developed with the aim of detecting such structures in an unsupervised
fashion.

Getz et al. (2000) described an algorithm where hierarchical clustering is alternately
applied to the rows and columns of submatrices of the data matrix, the rows and columns
of which were obtained as stable clusters in previous iterations.

A number of authors have suggested methods to identify interesting submatrices
of a gene expression data matrix (Califano et al., 2000; Chen and Church, 2000;
Ben-Dor et al., 2002; Lazzeroni and Owen, 2002). The underlying idea is that a set
of genes, perhaps belonging to a common molecular pathway, are coregulated only under
certain experimental conditions. This notion is quantified in terms of a score function on
submatrices of a gene expression matrix. As the number of submatrices is exponential in
the number of genes and the number of samples, efficient heuristics are applied in order
to find high-scoring submatrices. The submatrices identified can be evaluated in terms of
their statistical significance.

For the identification of conspicuous class distinctions among a set of tissue samples
based on microarray data, special approaches have been proposed (Ben-Dor et al., 2001;
von Heydebreck et al., 2001). These are based on a score function that quantifies the
strength of differential gene expression for any possible bipartition of the set of samples.
An optimization algorithm is used in order to find high-scoring bipartitions. As the
scoring is not based on global properties of the gene expression profiles, but rather on
the presence of subsets of genes that are differentially expressed, several independent
bipartitions can be obtained, each based on a specific subset of differentially expressed
genes. von Heydebreck et al. (2001) show that this approach is able to detect biologically
meaningful class distinctions that are not identified with cluster algorithms based on a
global dissimilarity measure.

6.6 CONCLUSIONS

We have described different aspects of microarray gene expression data analysis, from
quality control of the raw probe intensity data, via calibration, error modeling, and the
identification of differentially transcribed genes to explorative methods such as clustering
or pattern discovery. Yet, statistical analysis is only one part of a microarray experiment.
Frequently, data analysis is expected to correct for technological problems or shortcomings
in the design of an experiment. Awareness has grown, though, in recent years; interaction
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between experimentalists and data analysts is improving and, very importantly, starting
early in the planning of an experiment. This raises the hope that statistical analysis will
in future be less and less diverted by troubleshooting, and can increase its focus on
generating and validating biological hypotheses from the data.

Unlike with, for example, sequence data, it is still extremely difficult to relate different
experiments to each other and to quantitatively compare their results. Much stricter
standardization of the measurement process, which will have to include significant
improvements of present technologies or development of new ones, will be necessary to
obtain measurements that would be comparable across laboratories. As a result, currently
each experiment has to be large enough to be analyzable by itself because it is still not
feasible to view one’s own experiment as an incremental addition to an existing knowledge
base on gene expression. While this is both a technical problem and a data integration
problem, suggestions regarding the data standardization aspect are given in Brazma et al.
(2001).

Microarray-based experiments are frequently seen as the stronghold of hypothesis-free
genome research. While debatable in itself, this assertion simply shifts the responsibility to
the computational scientist analyzing the data. In the absence of a clear hypothesis much
of the analysis will be of an exploratory nature. Once this leads to a hypothesis further
independent verification is needed. This embeds microarray experiments and statistical
analysis into a feedback cycle producing new experiments.
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Microarrays enable investigators to simultaneously measure the expression levels of thousands
of genes in a tissue sample. The technology presents exciting avenues for biological research
coupled with interesting statistical challenges. Several methods to address these challenges have
been proposed and applied in the literature. We review some methods developed for use in what
we term phenotype-association analyses that aim to identify a set of genes whose expression is
associated with a particular phenotype. A phenotype-association analysis typically consists of initial
data processing, tests of the association of expression with phenotype, multiple-testing adjustments,
annotation analysis, and validation analysis. We briefly describe some methods used for each of
these stages of phenotype-association analysis and describe methods used for performing sample-
size calculations in planning a microarray study. We also describe the underlying assumptions of
these methods and outline some very basic considerations for choosing which methods are best
suited for specific applications.

7.1 INTRODUCTION

Microarrays have opened new and exciting possibilities in biomedical research. The
technology allows investigators to measure the messenger-RNA levels of thousands
of genes simultaneously. More recently, microarrays have been developed that allow
researchers to query genomic DNA at thousands of positions simultaneously as well.

Not surprisingly, the analysis of microarray data presents several statistical challenges
including, but certainly not limited to, data reduction, normalization, correlation of
variables, and multiple testing. None of these are new to statistics; however, in microarray
data, the magnitude of these problems is unprecedented. These challenges provide
opportunities for development of new statistical methods.

Statistical researchers have responded to these opportunities by proposing new statistical
methods to address these challenges. The number of statistical methods proposed for the
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analysis of microarray data has been growing exponentially over the past decade (Mehta
et al., 2004). In 2003, roughly 90 articles were published that describe new methods for
analysis of microarray data (Mehta et al., 2004). Now, there are several books that address
the statistical analysis of microarray data (Draghici, 2003; Allison et al., 2006; Do et al.,
2006; Lee, 2004; Simon et al., 2003; Gentleman et al., 2005; Speed, 2003; Parmigiani
et al., 2003).

Microarray studies often have one or more of the following objectives: class discovery,
class prediction, or phenotype association. In class discovery, the objective is to use
the microarray data to partition subjects or samples into biologically meaningful classes
that have not been previously defined. Clearly, the idea of ‘biologically meaningful’ is
subjective, and hence the analyses are very exploratory in nature. In class prediction, the
objective is to use microarray data to accurately assign subjects or samples into a set of
predefined classes. Class-prediction analyses typically rely on a variety of machine and
statistical-learning methods to achieve their objective. In phenotype-association analyses,
the objective is to identify which genes’ (or microarray probe sets’) expression is asso-
ciated with a phenotype of interest. For each probe set, a phenotype-association analysis
typically tests the null hypothesis that gene expression is not associated with phenotype
and then corrects for multiple testing. Additionally, a phenotype-association analysis often
performs a bioinformatics follow-up assessment to determine whether genes with specific
annotations, such as ontology (www.geneontology.org) or pathway membership
(http://www.genome.jp/kegg/pathway.html), tend to be more highly repre-
sented among the ‘significant’ genes than expected by chance. This chapter outlines some
methods for performing phenotype-association analyses; some useful resources for those
interested in class discovery or class-prediction analyses are mentioned briefly below.
Chapters 6 and 8 also review statistical methods for the analysis of microarray data.

Class-discovery analyses use clustering algorithms to assign subjects (or samples) into
groups that are similar according to a specified distance metric. Class-discovery analyses
are often criticized because they do not test a well-specified hypothesis, many of the
clustering algorithms utilized will assign samples of any data set (even complete noise)
into classes, and it is unclear how to generalize the results of a class-discovery anal-
ysis to a population (Mehta et al., 2004). Despite these shortcomings, class-discovery
analyses can lead to biologically important discoveries. For example, the results of a
class-discovery analysis led Thompson et al. (2006) to identify distinct genomic lesions
in pediatric medulloblastoma tumor cells. Nevertheless, it is still important that the statis-
tical analysis attempts to address the concerns of Mehta et al. (2004). As mentioned
above, a major concern is that many clustering algorithms will assign the subjects into
groups even if the data set is completely random noise (McShane et al., 2002). Clearly,
in such cases, no ‘meaningful’ subclasses exist. McShane et al. (2002) propose a method
to test a null hypothesis of unimodality prior to applying clustering algorithms. Rejection
of unimodality indicates that the data set has multiple modes that may be attributed to
the existence of two or more distinct subgroups. A class-discovery analysis should also
assess the reproducibility, stability, or both, of the resulting cluster assignments (Dudoit
and Fridlyand, 2003). Dudoit and Fridlyand (2003), and Smolkin and Ghosh (2003) have
proposed methods that use resampling or subsampling to assess cluster reproducibility or
stability.

Class-prediction analyses apply statistical-learning (Hastie et al., 2001) or machine-
learning (Kecman, 2001) algorithms to a ‘training’ data set to develop a classifier that
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assigns samples into predefined classes and then evaluate the performance of the classifier
on a ‘test’ or ‘validation’ data set in terms of classification accuracy. The prevalence of
class-prediction analyses in the literature may give some investigators (and reviewers) the
impression that class prediction is the preferred analysis approach for most microarray
studies. However, this is not so. Michiels et al. (2005) found that each of the seven
largest studies that used class-prediction analyses to examine the association of gene
expression with relapse published overly optimistic estimates of prediction accuracy.
Additionally, they found that five of the seven studies failed to show that their classifiers
were significantly more accurate than random class assignment. Some of these overly
optimistic estimates may arise because the validation and training phases of the analysis
were not performed totally independent of each other (Allison et al., 2005; Quackenbush,
2006). Moreover, these studies were too small to accommodate training and validation
data sets of adequate size to achieve the statistical power needed to develop an accurate
classifier and demonstrate that the classifier performs significantly better than chance.
Nevertheless, preliminary studies indicate that classifiers based on microarray data may
be useful diagnostic tools for some clinical applications. Thus, some studies with the
objective of developing and validating classifiers based on microarray gene-expression
data are still needed. Simon (2005a; 2005b) provides an excellent overview of how to
plan and execute microarray studies with the ultimate objective of developing a useful
classifier based on gene expression.

A phenotype-association analysis, the primary focus of this chapter, typically involves
at least three basic steps: initial data processing (IDP), tests of the association of
phenotype with expression (TAPE), and multiple-testing adjustments (MTA). Validation
analysis (VA) and annotation analysis (AA) are two additional steps that are becoming
common components of phenotype-association analyses. Figure 7.1 illustrates the steps
of a phenotype-association analysis in a flowchart. In IDP, image signals are converted,
summarized, and normalized into meaningful probe-set or gene-expression signals. Addi-
tionally, IDP may filter out probe sets that are believed to represent genes that are not
expressed in any study samples or poorly represent the expression of the targeted gene.
The second step, TAPE, applies a statistical procedure to describe and test the associa-
tion of each probe set’s expression signals with the phenotype of interest. The phenotype
may be assigned experimentally (e.g. treatment vs. control) or collected in an observa-
tional study (e.g. tumor subtype in a human study). The third step, MTA, controls or
estimates an appropriate multiple-testing error rate such as the false discovery rate (FDR)
(Benjamini and Hochberg, 1995) or the generalized family-wise error rate (gFWER) (van
der Laan et al., 2004a). The fourth step, VA, explores the reproducibility of results via
cross-validation, bootstrapping, or other data perturbation methods. The fifth step, AA,
attempts to determine if the most promising genes found in steps 2 and 3 show a significant
tendency to be annotated to specific ontologies or pathways.

There are several freely available software tools to implement each component of
a phenotype-association analysis. Table 7.1 lists websites where some of these software
tools can be obtained. The Bioconductor project (www.bioconductor.org; Gentleman
et al., 2004; 2005) represents one of the most comprehensive collections of software
tools for the analysis of microarray data. Bioconductor is a collection of R software
(www.r-project.org) routine libraries to implement various analysis methods. R
is a freely available programming language and implementation platform that includes
several functions and software libraries that are useful for statistical computations. Thus,
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Figure 7.1 Flowchart diagram of a phenotype-association analysis.

effective use of Bioconductor requires some programming (RSP). Other software tools use
web-based interfaces (WBI) or are stand-alone packages that offer a graphical user
interface (GUI).

The variety of available methods presents the challenge of choosing the best method(s)
for a specific application. Several comparisons of methods have been performed via
simulation studies, analysis of spike-in data sets, and analysis of case-study applications
(Lin and Johnson, 2003; Choe et al., 2005). At present, there is little consensus regarding
which methods are best for any of the five components of a phenotype-association
analysis and very little work has explored which combination of methods is best for
specific applications. Nevertheless, there are some key points to consider when choosing
a method. First, the method should be designed to explore the type of phenotype under
consideration. For example, it is inappropriate to treat a time-to-event variable, such
as duration of remission from cancer or survival time, as a binary outcome without
accounting for censoring and follow-up time (Jung et al., 2005a). Additionally, one should
consider whether the underlying assumptions of a particular method are reasonable and
how robust the method is likely to be against those violations. Many methods have been
proposed without explicit or thorough descriptions of their underlying assumptions. The
assumptions of a specific method can be ascertained indirectly by envisioning settings
that may lead the algorithm to yield misleading results. For example, one might try
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Table 7.1 Websites offering freely available software for phenotype-association analysis.

No. Web address Available tools� Usage†

1 www.r-project.org TAPE, MTA RSP
2 www.bioconductor.org IDP, TAPE, MTA, VA,

AA, SSC
RSP

3 www.stjuderesearch.org/depts/biostats IDP, MTA, SSC RSP
4 www.jax.org/staff/churchill/labsite IDP, TAPE RSP
5 www.dchip.org IDP GUI
6 www.soph.uab.edu/ssg.asp?id=1087 IDP, TAPE, MTA, SSC WBI
7 visitor.ics.uci.edu/genex/cybert/ TAPE, MTA WBI
8 www.geocities.com/jg−liao/software MTA RSP
9 bioinformatics.skcc.org/webarray/ IDP, TAPE, MTA WBI
10 www.biostat.harvard.edu/people/

faculty/mltlee/web-front-r.html
SSC WBI

11 www.biostat.umn.edu/weip/ge.html SSC RSP
12 gordonlab.wustl.edu/mills/ IDP GUI
13 bioinf.wehi.edu.au/folders/

arrayweights/
IDP, TAPE RSP

�IDP = initial data processing; TAPE = tests of the association of phenotype with expression; MTA =
multiple-testing adjustment; VA = validation analysis; AA = annotation analysis; SSC = sample-size calcu-
lations.
†RSP = requires some programming; GUI = graphical user interface; WBI = web-based interface.

to envision how a method would perform if many or few genes were associated with
the phenotype, how it might be affected by outliers, how it may perform under various
dependency structures, and how it would manage potential heteroskedasticity. Hopefully,
as more comparisons of methods are performed, the conditions under which various
methods perform reliably will become more thoroughly understood and more specific
recommendations will be possible. In this chapter, we review some methods that have
been proposed for phenotype-association analyses. We acknowledge that the review is not
exhaustive; an exhaustive review is not feasible in this venue given the vast amount of
recent research activity in the area.

7.2 INITIAL DATA PROCESSING

At the most fundamental level, microarray data are image files of the florescent signals
on the arrays. In their initial state, these image files are not useful for performing
statistical analyses to address questions of practical interest. The information in these
image files must be summarized into probe-set expression signals that can be used to
perform biologically meaningful comparisons across arrays. A data file with information
regarding the location of probe sets on the array is used in conjunction with each image
file to produce a file that gives a summarized, florescent-intensity signal for each probe
set that targets a known or hypothetical gene. Technically speaking, probes are individual
features printed on the array, collections of probes are called probe sets, and a probe set
is intended to measure the expression of a specific gene. However, in this chapter, we use
the terms probe, probe set, and gene interchangeably. A number of purely technical factors
can influence these summarized signals. It is often necessary to adjust the signals for these
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technical factors before statistical analyses can meaningfully explore the association of
these signals with phenotype. The term normalization is used to describe data processing
that intends to transform the summarized intensity signals into expression signals that are
biologically comparable across arrays. Additionally, sometimes probe sets that are deemed
as unreliable or believed to represent genes that are unexpressed across all samples are
excluded prior to subsequent analysis. The term filtering is used to describe data processing
that attempts to identify probe sets that should be excluded from statistical analysis.

In this section, we briefly review some normalization and filtering methods. Table 7.2
lists some methods for normalization and filtering. More detailed reviews on normalization
are given by Chapter 6, Quackenbush (2002), Reimers (2005), Eckel-Passow et al.
(2005), and Steinhoff and Vingron (2006).

7.2.1 Normalization
A wide variety of methods to normalize microarray signals have been proposed. From
a general perspective, the methods fall into one of a few categories: scaling, quantile
normalization, local regression (loess) normalization, and model-based normalization.
Scaling methods, such as the normalization algorithm of Microarray Analysis Software,
version 5.0 (MAS 5.0, www.affymetrix.com), assume that each array should have
a similar mean or median signal across probe sets. Quantile-normalization methods
assume that each array’s probe-set signals should have the same distribution. Model-
based methods make assumptions typically used in most general linear models. Loess
normalization methods assume that the technical biases are intensity dependent, and fit
loess curves to identify and remove those biases.

Table 7.2 Methods for initial processing of microarray data.

Method name or description Reference(s) Software�

Correction for PM/MM and background Irizarry et al. (2003a) 2
Bolstad et al. (2003)

Robust multiarray averages (RMA) Irizarry et al. (2003b) 2
Bolstad et al. (2003)

Preprocessing for two-dye arrays Irizarry et al. (2003b) 2
Sequence-based preprocessing (GCRMA) Wu et al. (2004) 2
Variance stabilization Huber et al. (2002) 2
Normalization by joint modeling of PM/MM signals Li and Wong (2001) 2
ANOVA-based normalization Kerr et al. (2000) 4

Wolfinger et al. (2001)
Cheng et al. (2004, Appendix)

Error model, local regression Kepler et al. (2002) NA
Quantile normalization Bolstad et al. (2003) 2
Quantile spline normalization Workman et al. (2002) 2
Present/absent p-value filter Pounds and Cheng (2005a) 3
Filter inconsistencies across Mills and Gordon (2001) 12
technical replicates Mills et al. (2001) 12
Hierarchical quality indices Hu et al. (2006) NA
Variance-based reweighting Ritchie et al. (2006) 13

�Table 7.1 gives full website addresses for software.
NA = not available.
[Source: Adapted from Steinhoff and Vingron (2006), used with permission.]
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Model-based normalization methods attempt to explicitly account for specific technical
sources of variation in the array signals. For example, Wolfinger et al. (2001) proposes that
the observed initial signals be the dependent variable in a linear model that includes terms
for technical factors such as dye, technician, array, spots, pens, and so on, as predictor
variables. The residuals from this model are then used as the normalized signals in
subsequent analyses. The approach offers essentially the same flexibility as general linear
models (Graybill, 1976). Thus, in principle, linear models could be used to normalize data
from oligonucleotide arrays or two-color arrays (see Chapter 6 for more information on
the various array platforms). Kerr et al. (2000) and Cheng et al. (2004, Appendix) also
describe normalization methods that utilize linear modeling. Of course, such model-based
normalization methods also rely on all the classical assumptions of general linear models,
namely that residuals are independent and identically distributed (i.i.d.) normal variables
with equal unknown variance. In practice, it may be difficult to determine which specific
technical factors should be included in the first model step. Furthermore, the data regarding
technical sources of variation may not have been recorded by the laboratory technician
or the investigator.

Li and Wong (2001) and Irizarry et al. (2003b) propose model-based normalization
methods for oligonucleotide arrays. Their models include terms specific to the array plat-
form (e.g. probe effects, etc.), but do not include terms for specific sources of technical
variation associated with sample preparation and processing. Thus, the detailed informa-
tion regarding sample processing and preparation are not required for the algorithms to
compute normalized signals. Implicitly, these normalization methods attempt to account
for such factors by including an array effect in the model.

Bolstad et al. (2003) proposed the quantile-normalization method. Quantile normaliza-
tion first sorts array signals separately within each array. Next, it computes the average
signal for each signal rank. More explicitly, the average of the maximum signal is
computed, and then the average of the second largest signal is computed, and so on.
Next, for each array, the normalized signals of each probe set are assigned to be the
average signals for its rank within the array. For example, the probe set with the highest
initial signal is assigned the average of the maximum signals across arrays. Thus, after
normalization, a plot of the quantiles of signals from one array against the quantiles of
signals from any other array would fall along the line y = x.

Yang et al. (2002) observed that often the simple scaling methods could not properly
normalize two-color cDNA microarray data since the log-transformed signal intensity
ratios tended to be intensity dependent. This phenomenon was most prevalent for low
intensity spots. Thus they devised an approach based on locally weighted linear regression
(lowess) for normalization. This method utilizes what is known as a ratio-intensity plot
(RI plot) or as a minus-add plot (MA-plot), where log ratios of expressions between the
two dyes are plotted on the y-axis against log-intensity (average log expression for the two
dyes) values on the x-axis. A lowess curve is then fitted to the data which is subsequently
used as the basis for normalization by subtracting the best fit from the observed log ratio
(see Chapter 6 for details and examples).

Clearly, normalization methods can have nontrivial effects on the subsequent statistical
analyses because the normalized signals are the input data. Thus, any artifacts introduced
by the normalization procedure are carried forward into later analyses; as the old adage
says, ‘garbage in – garbage out’. Hoffmann et al. (2002), Irizarry et al. (2003b), Choe
et al. (2005), and Harr and Schlotterer (2006) have explored the impact of normalization
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on the inferences of the final statistical analysis. In many cases, the effects are not
negligible. At present, there does not appear to be a method that is clearly a good performer
across a wide range of data sets. In the analysis of their spike-in experiment, Choe et al.
(2005) found that lowess renormalization of MAS 5.0-normalized signals gave the most
accurate final statistical inferences. In the analysis of the Affymetrix Latin Square spike-
in experiment, Irizarry et al. (2003b) noted that their normalization methods led to more
accurate inferences than did normalization by the Affymetrix algorithm. As mentioned in
the introduction, the selection of a normalization method should be guided by considering
method with the assumptions that are most reasonable for a specific application.

7.2.2 Filtering

After the microarray signals have been normalized, it is a common practice to remove
the data for some probe sets prior to statistical analysis. The term filtering is used to refer
to this process of excluding selected probe sets from the statistical analysis. A filter is
a specific filtering method. There are several reasons for which filtering may be useful
in practice. The technical aspects of handling and processing samples and arrays may
introduce variation or bias so that the probe set does not reliably measure the expression of
its intended target gene. Additionally, for some applications, it is expected that many of the
probe sets are unexpressed across all experimental conditions. Furthermore, it is difficult
to verify differential expression of small magnitudes by polymerase chain reaction (PCR)
in follow-up laboratory studies. If these unexpressed, unreliable, or invariant probe sets
can be accurately identified, then it seems reasonable to exclude them from the primary
analysis so that they do not clutter the final results.

Several filtering methods are available. Some are widely used even though their
statistical properties have not been thoroughly explored. A common filter is to remove
probe sets with a foreground to background ratio that is lower than a specified threshold.
In the analysis of Affymetrix data, it is common to remove probe sets that are called
present in less than a specified number of samples. Other filters remove probe sets with
small mean or variance in expression across all samples. In practice, several filters may
be used simultaneously (see e.g. Lampron et al., 2006; Tan et al., 2005).

Ideally, technical replicates will be available to provide useful information to identify
unreliable probe sets. Mills et al. (2001), Yang et al. (2002), and Wang et al. (2003)
describe methods that use the information in technical replicates for purposes of filtering.
The method proposed by Mills et al. (2001) utilizes duplicate cRNA generated from a
single preparation of sample RNA which is independently hybridized to a pair of chips.
These two chips are then compared to each other and genes with expression levels declared
as ‘increased’ or ‘decreased’ are defined as false positives. A three-dimensional plot is
then used to plot the signal intensities of the two chips along with the prevalence of
each intensity value combination from the two chips as measured by the fraction of the
total number of false positives. For details, see Mills and Gordon (2001). The location
of the false positive signals as identified by a grid system is subsequently used to rank
the combination of signal intensities based on their likelihood of being false positives.
Based on this ranking, lookup tables are constructed, which are used to filter noise from
the biologically distinct RNAs. The authors report that their approach eliminated 90 % of
false positives in the cases they investigated and that their approach was more reproducible
than fold-change based filtering.
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For some experiments, technical replication is too expensive or infeasible. Statistical
filtering methods have been developed for experiments that do not include technical
replication as well. For applications involving Affymetrix arrays, Pounds and Cheng
(2005a) proposed two filters that utilize the information in the p-values that are used to
make the present/absent calls. The method assumes the present/absent p-values from
different samples for an unexpressed or ‘absent’ probe set are i.i.d. uniform (0,1)
observations. Following Fisher (1932), they summarize the present/absent p-values for
a probe set across samples into a single, pooled p-value by comparing the negative sum
of the log-transformed p-values to a gamma distribution. The pooled p-value filter includes
all probe sets with a pooled p-value less than a specified α threshold; whereas the error-
minimizing pooled p-value filter includes all probe sets with a pooled p-value less than
the threshold αMTE that minimizes an estimate of the total error risk (Genovese and
Wasserman, 2002; Cheng et al., 2004). Additionally, they show that the α-level pooled
p-value filter corresponds to the uniformly most powerful test under a β model for the
individual present/absent p-values. Furthermore, in simulation studies, they observe that
their filters are superior to the widely used filters based on the number of present calls
seen across samples.

The rationale for filtering seems reasonable; however, its value in practice is question-
able. In their example application, Pounds and Cheng (2005a) observed that the final FDR
estimate for the 100 most significant probe sets was greater when their statistically-derived
filters were used than when no filter was applied. Similarly, Larsson et al. (2005) noted
that using a fold-change based filter before running the statistical analysis influences the
number of genes that are reported as significant in an unpredictable manner, changes the
q values assigned to genes, and affects the results of gene ontology (GO) classifications
which may be utilized in an effort to understand the role of the molecular processes in
the biological system under study. Therefore, filtering methods should be applied very
judiciously.

The intent of filtering is to reduce or eliminate the influence of probe sets that are
unexpressed or that measure the expression of their target gene poorly. Recently, several
methods have been developed that adhere to this intent without resorting to actually
excluding probe sets. Hu et al. (2006) introduced hierarchical quality indices that measure
the reliability of each probe set, and are used as weights in subsequent test-statistic and
p-value calculations. The test statistic for each gene is multiplied by its quality measure
and the associated p-value is based on a t-distribution whose degrees of freedom are
estimated by Satterthwaite’s approximation. The authors consider a variety of approaches
for the quality weights which include criteria based on present/absent calls as well as
detection p-values. They report that quality weights based on detection p-values generally
perform better than weights based on present/absent calls but note that the performance
of the various weighting statistics in the presence of MTA appears to be influenced by
the magnitude of the treatment effect.

Ritchie et al. (2006) proposed a similar approach that uses a heteroskedastic linear
model with shared variance terms to assign weights to each microarray based on a
residual maximum likelihood (REML) method which requires replicated data at the array
level. In addition to the full scale REML, the authors also provide a faster and more
computationally efficient method, which updates the weights gene-by-gene in a single
pass through the data to estimate the array variances. The array variances are then used as
inverse weights in subsequent calculations to detect differential expression. With respect
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to detecting differential expression, their results based on both simulations and case studies
indicate that their approach is superior to treating all arrays as the same or to removing
the worst-quality arrays from further consideration.

7.3 TESTING THE ASSOCIATION OF PHENOTYPE WITH
EXPRESSION

The primary objective of a phenotype-association analysis is to identify which probe sets’
expressions are associated with the phenotype of interest. A straightforward approach
to phenotype-association analysis would be to apply an appropriate classical statistical
method to the expression data for each probe set and then adjust for multiple testing.
For example, if the phenotype is characterized by membership in one of two groups,
then one could apply the two-sample t-test or the rank-sum test to the expression data
for each probe set. This approach has a number of advantages. It is conceptually and
computationally easy to implement: the data analyst needs only to determine and apply
(repeatedly) an appropriate classical method to explore the association of a continuous
variable with the phenotype of interest. Most classical methods are implemented in a
variety of software packages, including the freely available R software.

Additionally, several methods have been developed specifically for the analysis of
microarray data. Many of these more recently developed strategies attempt to borrow
information across genes in a way that improves variance estimation or statistical power.
As mentioned in the introduction, some of these newer methods have been proposed
without a thorough expository on the underlying assumptions. Certainly, information
borrowing assumes some form of exchangeability across genes or there are groups of
genes that have similar statistical parameters, such as variance of expression that can be
identified and pooled to improve estimation of those parameters. The validity of these
types of assumptions is difficult to assess for any specific application. However, the
inability to assess the validity of assumptions should not necessarily be considered a
reason to avoid using a method. It is doubtful that the assumptions of any method hold
for all the genes; rather, it is important to consider whether the assumptions hold for most
genes and how robust the method is to violations that are likely to occur. In this section,
we mention classical methods and briefly review some recently developed methods for
some of the most common kinds of analyses, namely two-group comparisons, k-group
comparisons, and association with quantitative or time-to-event phenotypes.

7.3.1 Two-group and k-group Comparisons

One of the most common goals for a microarray experiment is to compare expression
between two groups. For example, one may wish to assess the effects of a treatment on
gene expression by comparing a treated group to an untreated group. Clearly, one approach
to the two-group comparison would be to apply a classical method, such as the t-test or
the rank-sum test, to the expression of each probe set and then adjust for multiple testing.
In recent years, many other methods have been developed specifically for applications
involving the analysis of microarray gene-expression data. Most of these newer methods
borrow information across genes to modify the t-statistics or their Bayesian analogs. A few
of these methods are briefly described below; Pan (2002), and Cui and Churchill (2003b)
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Table 7.3 Some methods for phenotype-expression association testing.

Method name and purpose Reference(s) Software� Comments

Local pooled error test
Two-group comparison

Jain et al. (2003) 2 Assumes genes with similar
mean expression have equal
variance of expression

CyberT Two-group
comparison

Baldi and Long
(2001)

7 Uses hierarchical Bayesian
model to compute a revised
variance estimate for t-stat.

Shrinkage estimator
K-group comparison

Cui et al. (2005) 4 Proposes a shrinkage estimate
for error variance and
compares it to other existing
methods

Rank-based correlation
Time-to-event Phenotype

Jung et al. (2005a)
Jung et al. (2005b)

Available
from
author

Uses a rank-based correlation
stat for censored survival
times; null dist. derived by
permutation

Prop. hazards model
Time-to-event phenotype

Cox (1972) 1 Semi-parametric survival time
models with/without
covariates

Competing risks model
Time-to-event phenotype

Fine and Gray (1999) 1

� See Table 7.1 for web addresses.
[Source: Adapted from Steinhoff and Vingron (2006), used with permission.]

provide more specific reviews of additional procedures. Table 7.3 provides software
availability information for some of the methods we review in this section.

Baldi and Long (2001) describe a method that computes Bayesian point estimates of
variance for each group and then substitutes those estimates into the usual two-sample
t-statistic. The Bayesian model used to obtain the variance estimates assumes that the
mean and variance of each gene’s expression arise from a common joint prior distribution.
The method can be implemented in a fully Bayesian manner or in an empirical Bayesian
manner by using the data to estimate values for hyperparameters.

Jain et al. (2003) proposed a local pooled error test that combines information across
genes to compute a variance estimate for a statistic similar to the two-sample t-statistic.
For each pair of arrays testing the same condition, the mean and difference in log signals
are computed for each probe set. Then, the difference in log intensity is plotted against the
mean log intensity. A nonparametric regression procedure is used to fit a curve estimating
the expected variance in log intensity as a function of the mean log intensity. Then, for
each gene, a z-statistic is computed as the ratio of the difference of two groups’ medians
to the square root of the sum of the two groups’ standard error estimates. The standard
error estimates are obtained from the results of the nonparametric regression. Clearly,
genes with similar median signals are assumed to have the same signal variance. Under
this assumption, the variance estimate obtained from the nonparametric regression should
be more precise than that obtained for each gene separately.

Many times, a microarray study is conducted to compare expression levels across
several groups. One objective of such a study would be to identify genes that have
unequal mean or median expression across the groups. For example, Pounds and Morris
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(2003) compared expressions across four treatment groups. As before, the usual classical
methods such as one-way ANOVA or the Kruskal–Wallis test could be applied separately
for each gene followed by MTA. As with the two-group comparison, a number of methods
have been developed specifically for the analysis of microarray data. We briefly describe
one of these methods below.

Cui et al. (2005) derived a shrinkage estimator for gene-specific variance that pools
across all genes. The purpose of the shrinkage estimator is to avoid having large test
statistics due to underestimation of the variance that is likely to occur in applications with
small sample sizes. They subsequently use this shrinkage estimator as the denominator
of an F-like statistic and assess the significance via permutation. They show that their
shrinkage estimator converges to the gene-specific variance estimator as the sample size
increases. Thus, in some sense, their procedure uses shrinkage only if the sample size is
small enough to warrant it. In several simulation studies, they observe that their method
has greater power than several other approaches based on F -statistics.

As with other statistical methods, these analytical methods are based on some underlying
assumptions. These assumptions are not always explicitly stated in the literature. Certainly,
information-borrowing strategies assume that data can be pooled across genes to improve
the variance estimates for t-type statistics for all genes. Thus, there is an implicit
assumption of some type of exchangeability across all genes or subsets of genes.
Furthermore, any specific method that employs information borrowing implicitly assumes
that its particular technique for information borrowing improves the variance estimates
for most or all genes. These types of assumptions are sometimes difficult to formulate
mathematically. Therefore, it is often impossible to statistically test the validity of such
assumptions in a data analysis. Furthermore, it is difficult, if not impossible, to biologically
assess the validity of such assumptions. In practice, these assumptions can make a
considerable impact on the ordering of genes by significance. It may be useful to explore
the data with several methods and assess the consistency across analyses. Furthermore, the
conclusions drawn from a microarray study should be confirmed in follow-up laboratory
studies.

7.3.2 Association with a Quantitative Phenotype

Another possible objective of a microarray study is to explore the association of gene
expression with a quantitative phenotype. For example, the diagnostic white blood count
is a measure of disease burden and known to be prognostically relevant among pediatric
acute myeloid leukemia patients (Ribeiro et al., 2005). Therefore, it may be interesting
to study the association of gene expression in tumor cells with white blood count at
diagnosis. As before, phenotype-association analyses can be performed by applying a
classical procedure for each gene separately and then adjusting for multiple testing. For
instance, Spearman’s or Pearson’s correlation coefficients and corresponding hypothesis
testing procedures may be used to examine the association of each gene’s expression with
the quantitative phenotype. Regression methods may be used to explore the association
of expression after adjustment for other covariates.

7.3.3 Association with a Time-to-event Endpoint

One objective of collecting microarray gene-expression data in a clinical study is to
explore the association of gene expression with a measure of outcome. Many times,
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outcome is measured in terms of a survival-type endpoint. For example, Ross et al. (2004)
and Bullinger et al. (2004) explored the association of the duration of remission from acute
myeloid leukemia with the gene expression of the disease cells at diagnosis. Several
methods to examine the association of expression with survival have been described
(Shoemaker and Lin, 2005). Unfortunately, many of these methods may be subject to
severe biases because they treat an outcome such as relapse as a binary variable (remission
vs relapse) rather than as a time-to-event variable that may be censored (Jung et al.,
2005b). In other words, it is important that the analyses account for the possibility that
some patients may not have been observed for a sufficiently long period for a relapse to
occur.

This subsection describes three approaches to explore the association of gene expression
with a survival endpoint that accounts for follow up and censoring. The first approach
is to fit a separate, proportional, hazards regression model (Cox, 1972) for each gene to
describe and test the association of expression with survival and then adjust for multiple
testing. The second approach uses a nonparametric method developed by Jung et al.
(2005a; 2005b). Finally, the third approach accommodates various types of failure for
time-to-failure phenotypes (Gray, 1988).

Morris et al. (2005) examined the association of gene expression in tumor cells
taken at diagnosis with the survival of lung cancer patients. They fit a separate,
proportional, hazards model for each microarray probe set to test the association of
expression with survival. The fitted models included terms for previously known factors of
prognostic relevance so that the analysis would identify genes that may provide prognostic
information in addition to that available from the known factors. Thus, they obtained a
p-value for each probe set and fit a β-uniform mixture model (Pounds and Morris, 2003)
to the p-values to estimate the FDR (Benjamini and Hochberg, 1995). Using this approach,
at an estimated FDR of 20 %, they identified 26 genes that provide prognostic information
beyond that available from previously known factors.

Jung et al. (2005b) used their nonparametric method (Jung et al., 2005a) to explore
the association of gene expression in diagnostic tumor samples with the survival time
of lung cancer patients. They defined a rank-based correlation coefficient that measures
the association of a single continuous variable with a censored time-to-event variable.
For each gene, they computed this correlation coefficient to measure the association of
expression with survival time. Then, they computed these statistics for 10 000 permuted
data sets in which the gene-expression profile was paired at random to a set of follow-up
data. Controlling the gFWER at 0.10, they identified two genes associated with survival.
Their analysis did not account for the influence of previously known prognostic factors.

In some applications, it may be important to distinguish between various types of
failure. For example, treatment for leukemia can fail because of death due to therapy-
related complications, failure to achieve remission, relapse of the leukemia, or (rarely)
development of additional therapy-related malignancies (Bogni et al., 2006). A particular
analysis may want to focus on a specific type of failure, such as the development of a
secondary malignancy. Clearly, a therapy-related malignancy cannot be observed in any
patient who dies of complications during the early phases of therapy. In this situation, there
is no opportunity to observe the time-to-development of a therapy-related malignancy.
Thus, death due to complications of remission–induction therapy is a competing risk for
the development of a secondary therapy-related malignancy. See Gray (1988), Fine and
Gray (1999), and Kalbfleisch and Prentice (2002) for more details on the theory and
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methods to account for competing risks in the analysis of time-to-event data. See Bogni
et al. (2006) for an example of how to use the methods of Gray (1988) and Fine and Gray
(1999) in exploring the association of gene-expression data with the time-to-development
of therapy-related leukemia in the context of competing risks.

Each of the three approaches described above has its strengths and limitations. Propor-
tional hazards models that offer the flexibility to include known prognostic factors
are readily implemented in standard statistical packages (e.g. R, S-plus, SAS), and
are already familiar to readers in the academic medical community (Peto et al., 1976;
1977). However, the results may be biased because it is quite likely that some genes
may violate the model assumptions. Thus, it may be necessary to assess signifi-
cance via permutation or bootstrap methods. In their application, Morris et al. (2005)
computed p-values in three different ways (likelihood ratio test, permutation, and boot-
strap) and found that the results from the three approaches were qualitatively very
similar. Nevertheless, this may not be the case in all applications. The rank-based
method of Jung et al. (2005a) does not rely on the proportional hazards assumption
but does not adjust for other known variables. The rank-based method also offers
several practical computational advantages over proportional hazards modeling. The
method of Fine and Gray (1999) is likelihood based. In our experience, the model-based
approaches can be computationally difficult because the rank ordering of the expres-
sion of some genes relative to that of the follow-up times leads to a likelihood that
is monotone in one or more parameters. For this monotone likelihood, the maximum
likelihood estimates are undefined (Bryson and Johnson, 1981), and software packages
terminate calculations after reaching a maximum number of iterations for optimization
routines.

7.3.4 Computing p Values

For any given statistical method or test statistic, there are often several ways to compute
a p-value. For example, a p-value for the two-sample t-statistic may be computed
via permutation, exact methods, or by comparison with the t-distribution having the
appropriate degrees of freedom. In the context of microarray data analysis, there are
thousands of such t-statistics, one per gene. Considering the possibility of combining
information across genes, there are several more ways to compute p-values than the
classical methods.

Reiner et al. (2003) proposed pooling across genes to compute permutation-based
p-values. Briefly, under the assumption that the test statistic for each gene has (approx-
imately) the same null distribution, the p-value for a particular gene is computed by
comparing its observed test statistic to all genes’ test statistics obtained by permuting
the assignments of phenotype to gene-expression profiles. This approach allows one to
compute p-values with high resolution using relatively few permutations. The principle
can be extended to exact testing when the number of possible assignments is very small.

Many analysts choose permutation methods to compute p-values. Certainly, permutation
methods are appealing because they are robust and often do not rely as heavily on
distributional assumptions, unlike comparison to a mathematically derived null distribution
such as the t-distribution. However, some analysts mistakenly believe that permutation
methods do not require any assumptions and thus advocate the use of permutation in all
applications. It is important to recall that permutation methods are based on the assumption
of exchangeability under the null hypothesis and this assumption does not hold in all
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applications. For example, a permutation approach is an invalid way to compare two
groups’ means when the variances are unequal (Romano, 1990). Additionally, Huang
et al. (2006) caution that permutation testing can have inflated Type I error rates in the
analysis of microarray data because the assumption of equal variance is often violated.

7.4 MULTIPLE TESTING

After IDP, and testing the association of phenotype with each probe-set’s expression,
there is a test statistic (and usually a p-value) for each probe set. At this stage in the
analysis, it is important to adjust for multiple testing in interpreting the results. Although
microarray gene-expression studies are exploratory in nature, it is still desirable to control
or estimate the prevalence of Type I errors among a set of results considered ‘significant’.
Follow-up and confirmatory experiments can be costly and time-consuming; therefore, it is
advisable to keep the Type I error rate low. Clearly, multiple-testing issues are intrinsic to
the analysis of microarray data. Dudoit et al. (2003) and Ge et al. (2003) provide extensive
reviews of several approaches to adjust for multiple testing in the analysis of microarray
data. Pounds (2006) reviews some methods that use p-values to estimate or control the
FDR (Benjamini and Hochberg, 1995) and related error rates. Below, we describe some
methods that estimate or control the gFWER, the FDR, and other significance criteria.
Table 7.4 lists some of these methods and indicates where the related software can be
obtained.

7.4.1 Family-wise Error Rate

Traditional approaches which adjust for multiple-testing attempt to control the gFWER.
The gFWER is the probability that one or more Type I errors occur in the analysis.
These approaches were originally developed for applications that performed a very small
number of tests relative to the number of tests performed in the analysis of microarray
data. gFWER methods are typically very conservative for microarray applications. For
example, it is essentially impossible to have any rejections when using the well-known
Bonferroni correction in the context of thousands of tests.

The (gFWER) has been proposed as a more practical metric of Type I errors for the
analysis of microarray data (van der Laan et al., 2004a). The gFWER is defined as the
probability that k or more Type I errors occur in the analysis, where k is determined by
the investigator. Clearly, the gFWER is a less stringent measure of the incidence of Type
I errors and thus leads to increased statistical power. The theory and methods associated
with gFWER have been developed by van der Laan et al. (2004a; 2004b) and Dudoit
et al. (2004). Briefly, they proposed bootstrap-based approaches to control the gFWER.
Further details can be found in their articles.

7.4.2 The False Discovery Rate

The FDR (Benjamini and Hochberg, 1995) is a widely used measure of statistical
significance that accounts for multiple testing in the analysis of microarray gene-
expression data (Storey and Tibshirani, 2003b). Benjamini and Hochberg (1995) defined
the FDR as the expected value of the ratio Q of the number V of Type I errors to the
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Table 7.4 Methods to adjust for multiple testing.

Acronym Method name or description Reference(s) Software�

BH95 FDR-control procedure Benjamini and Hochberg (1995) 2
BH00 Adaptive FDR control Benjamini and Hochberg (2000) 2
YB99 Resampling-based FDR control

under dependency
Yekutieli and Benjamini (1999) 2

BY01 FDR Control under any
dependency structure

Benjamini and Yekutieli (2001) 2,3

St02 Estimation of pFDR
Calculation of q value

Storey (2002) 2,3

Al02 FDR estimation via elaborate
p-value modeling

Allison et al. (2002) 6

PM03 Fit a β-uniform mixture to
p-values to estimate FDR

Pounds and Morris (2003) 3

PC04 Estimate FDR by smoothing
the p-value histogram

Pounds and Cheng (2004) 3

L04 Estimate local FDR p-value
modeling (L04)

Liao et al. (2004) 8

Ch04 Estimate significance criteria Cheng et al. (2004) 3
G05 FDR Control for discrete

p-values
Gilbert (2005) NA

PC06 FDR estimation for discrete
p-values or one-sided tests

Pounds and Cheng (2006) 3

� See Table 7.1 for full web addresses.
[Source: Adapted from Pounds (2006), used with permission.]

number R of rejections (whereQ ≡ 0 for R = 0). They also developed a simple procedure
that operates on a set of m p-values to control the FDR at a prespecified value τ . In the
phenotype-association approach to microarray data analysis, m is the number of features
included in the analysis after initial processing and filtering. First, the procedure places the
m p-values in ascending order, i.e. p(1) ≤ p(2) ≤ . . . ≤ p(m). Next, the procedure computes

r(i) =
p(i)

i/m
, (7.1)

and
q(i) = min

j≥i r(j), (7.2)

for i = 1, 2, . . . , m. Each null hypothesis (i) with q(i) ≤ τ is rejected.
Under the assumption that p-values testing true null hypotheses are i.i.d. uniform (0,1)

observations, Benjamini and Hochberg (1995) prove that their procedure controls the
FDR at m0τ/m, where m0 is the number of tests with a true null hypothesis. In our
applications, m0 would be the number of microarray probe sets that do not exhibit an
expression-phenotype association. This observation prompted many groups to develop
methods that incorporate an estimate of the null proportion π0 = m0/m in hopes of
improving statistical power while maintaining the actual FDR control at or below the
nominal level τ . Pounds (2006) provides a review of some of those methods.
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Storey (2002) argued that the positive FDR, the expected value of the ratio Q given
that R > 0, is a more reasonable error rate than the FDR in exploratory settings such as
the analysis of microarray gene-expression data. Subsequently, he developed a procedure
that computes a quantity he calls the q value that is useful for controlling the positive
false discovery rate (pFDR) at a at a prespecified level in applications with at least one
false null hypothesis. Storey’s (2002) procedure is identical to the procedure of Benjamini
and Hochberg (1995) except that it incorporates an estimate of the null proportion π0 into
the numerator of r(i) for each i and is developed to control the pFDR instead of the
FDR.

Several other approaches have been proposed as well. Allison et al. (2002), and Pounds
and Morris (2003) have proposed methods that model p-values as independent observa-
tions arising from a mixture of a uniform distribution and one or more β distributions.
The fitted model is used to compute values for the numerator and denominator of r(i).
Pounds and Morris (2003) observed that the fitted model can be partitioned into four
regions, one for each of the four classical hypothesis testing outcomes (Figure 7.2). The
partition can be used to estimate several error rates such as the FDR, the empirical Bayes
posterior (Efron et al., 2001) that the null hypothesis is true, and the total number of
Type I and Type II errors (Genovese and Wasserman, 2002; Cheng et al., 2004). Addi-
tionally, (Pounds and Cheng 2004; 2006; Cheng et al. 2004) have proposed estimators
of these and other error rates by using nonparametric density estimators to describe the
distribution of the observed p-values. The density estimates are used to compute values
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Figure 7.2 Graphical illustration of error-control quantities. Region A corresponds to the occur-
rence of true positives because it lies above the horizontal line (the alternative component) and
to the left of the vertical line (declared significant). Region B corresponds to the occurrence of
false negatives because it lies above the horizontal line (the null component) and to the right of
the vertical line (not declared significant). Region C corresponds to the occurrence of false posi-
tives because it lies below the horizontal line (the null component) and to the left of the vertical
line (declared significant). Region D corresponds to the occurrence of true negatives because it
lies below the horizontal line (the null component) and to the right of the vertical line (declared
significant). [Reprinted from Pounds, S. and Morris S.W. (2003) Estimating the occurrence of false
positives and false negatives in microarray studies by approximating and partitioning the empirical
distribution of p-values. Bioinformatics 19, 1236–1242 by permission of Oxford University Press.]
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for the numerator and denominator of the FDR estimate and estimates of various other
error rates.

7.4.3 Significance Criteria for Multiple Hypothesis Tests

When testing a single pair of (null vs alternative) hypotheses, one reports a single p-value.
A decision to reject the null hypothesis is usually made by comparing the p-value to the
customary and subjective levels of Type I error α = 0.01, 0.05, or 0.10. It is important
to realize, as seen in the previous section, that in FDR-based multiple hypothesis testing,
5 % FDR does not correspond to the 0.05 significance level (p-value cutoff). In general,
p = α does not correspond to FDR = α. Thus, the traditional significance levels are not
necessarily appropriate to use as FDR-control levels. In practice, it is not always clear
how to select an FDR-control level or a p-value threshold α to define the set of results that
will be considered statistically significant, i.e. those having p-value less than or equal to
α. More specifically, it is difficult to know how to balance the trade-off between incurring
too many false positives (Type I errors) against incurring too many false negatives (Type
II errors). Cheng et al. (2004) propose two significance criteria to assist in choosing
the p-value significance threshold to balance the number of false positives against the
number of false negatives, namely the profile information criterion (Ip) and the total error
criterion (Er). These significance criteria were developed with microarray applications
in mind; however, they can be used in other applications that involve extensive multiple
testing. Cheng et al. (2004) also propose a guide-gene driven criterion for microarray
gene-expression analyses, suitable for applications where a reliable list of differentially
expressed genes is available a priori from existing biological knowledge. This section
briefly reviews Ip and Er .

Let m denote the total number of tests (genes). The Ip criterion is written as follows:

Ip(α) = R(α)+ λmπ0α. (7.3)

The first term, R(α), measures the deviation of the p-values from the uniform (0,1)
distribution in such a way that for each fixed α, R(α) decreases as the p-values distribute
more and more densely around zero than the uniform (0,1) distribution. Furthermore,
when the p-values distribute more heavily around zero than uniform (0,1), R(α) decreases
as α increases. A relatively large number of small p-values indicates the existence of
true alternative hypothesis (discoveries); in this setting, increasing α helps to reduce the
number of false negatives. Thus for the sake of making ‘true discoveries’ one would
like to reduce R(α) by increasing α. On the other hand, mπ0α in the second term is the
expected number of false rejections (false positives/discoveries) and λ is a penalty factor;
this term increases linearly in α. For the sake of avoiding ‘false discoveries’, one does
not want to make α too large. When the p-values are more heavily distributed around
zero than uniform (0,1), there is a unique α value that minimizes Ip(α). This minimizing
α is the ‘optimal’ significance threshold (p-value cutoff) according to the Ip criterion.
This α value strikes a balance between the levels of false positives and false negatives,
through the competition of the two terms.

Cheng (2006) formalizes the idea of the profile information criterion Ip and develops
the adaptive profile information (API) criterion: API (α) = Rγ (α)+ λmπ0α. The impor-
tant modification is the inclusion of a parameter γ in the first term. In practice, γ
is estimated from the p-values. This parameter reflects the deviation of the p-value
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percentiles from the uniform (0,1) percentiles in a vicinity of zero. The p-value percentiles
are directly related to the concentration of small p-values around zero – the higher the
concentration, the smaller are the percentiles. If the p-values exactly follow uniform (0,1)
then γ = 1. Also, γ increases as the p-value percentiles become increasingly less than
the corresponding uniform (0,1) percentiles. Rγ (α) is so constructed that it decreases as
the p-values distribute more and more densely around zero than the uniform (0,1) distri-
bution, and decreases in α with the rate of decrement dictated by γ . The larger γ is,
the slower is the decrement of Rγ (α) in α, in a vicinity of zero. So the γ parameter
dictates the emphasis of the deviation from the uniform (0,1) distribution: the higher the
concentration of small p-values around zero, the larger γ is, the slower is the decrement
of Rγ (α) in α; consequently, API (α) tends to minimize at a relatively large α. On the
other hand, if the concentration of small p-values around zero is not much higher than that
of uniform (0,1), then γ ≈ 1, Rγ (α) decreases fast in α, and API (α) tends to minimize
at a relatively small α.

A practical issue is the choice of the penalty factor λ. Theoretical investigations and
simulation studies in Cheng (2006) and Cheng et al. (2004) suggest a few conservative
choices. These choices result in ‘optimal’ α’s that guarantee to control the FDR (or
equivalently the gFWER) when all null hypotheses are true (i.e. π0 = 1, cf. previous
section) at the comparable level, as does the Bonferroni procedure. These choices may
be too conservative for general microarray applications. For exploratory analyses it may
be appropriate to set λ = 1. This issue remains an open research problem.

Now, we consider the total error criterion, which is written as

Er(α) = π0α + [1− FP (α)− π0(1− α)], (7.4)

where FP denotes the CDF of the p-values. The Er criterion can be interpreted in terms
of the p-value partition (Figure 7.2) recognized by Pounds and Morris (2003). The first
term, π0α, is the proportion of all tests resulting in a Type I error when significance
is based on comparing p-values to α. In terms of Figure 7.2, π0α is the area of region
A (below y = π0 and left of p = α). The second term, [1− FP (α)− π0(1− α)], is
the proportion of all tests resulting in a Type II error (corresponding to the upper-right
region in Figure 7.2). Theoretically, Er(α) is equivalent to the ‘total misclassification
risk’ (Genovese and Wasserman, 2002) in the limiting scenario when the number of tests
m→∞. Thus, choosing α to minimize an estimate Er(α) achieves an optimal balance
of Type I and Type II errors in terms of the Er criterion. Cheng et al. (2004) develop
estimates of π0, FP , and Er(α) for each α; the estimate of this optimal α is obtained by
minimizing the Er estimate.

7.4.4 Significance Analysis of Microarrays

Tusher et al. (2001) proposed the significance analysis of microarrays (SAM) algorithm
as a method that incorporates the MTA into the analysis. SAM has become quite popular
because it was one of the first statistically developed methods with accompanying user-
friendly software made widely available (www-stat.stanford.edu/~tibs/SAM).
SAM first computes a test statistic of specified form for each of the m probe sets. For a
two-group comparison of the expression of probe set i, Tusher et al. (2001) proposed a
‘relative difference’ statistic given by

di =
x̄1i − x̄2i

si + s0
, (7.5)
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where x̄1i and x̄2i are the mean expression of probe set i in groups 1 and 2, respectively;
si is a pooled estimate of the standard deviation of expression of probe i; and s0 is a
shrinkage parameter. Tusher et al. (2001) provide more details on how the value of the
shrinkage parameter is computed. Next, these relative difference statistics are ordered
to obtain d(1) ≤ d(2) ≤ · · · ≤ d(m). SAM then uses permutation to compute values of the
ordered statistics under the null hypothesis. More specifically, let d�(i)j be the value of the
ith ordered statistic in the jth permutation. After B permutations,

dE(i) =
1

B

B∑
j=1

d(i)j , (7.6)

is used as an estimate of the expected value of d(i) under the complete null hypothesis
for i = 1, . . . , m. The significance of d(i) is measured by the deviation δ(i) = d(i) − dE(i).
Next, given a user-specified threshold � for the δ’s, SAM defines j̃+ as the smallest j
such that δj ≥ � and j̃− as the smallest j such that δj ≤ −�. Then, the null hypothesis

is rejected for all j ≥ j̃+ and all j ≤ j̃−. The algorithm can be generalized by using
other test statistics. Given the form of the test statistic T , the algorithm is very easy to
program. Thus, it is conceptually straightforward to generalize the algorithm to various
types of applications. However, it is not immediately clear how to calibrate the threshold
δ to any specific measure of the Type I error rate. Storey and Tibshirani (2003a) describe
how to use information from the individual permutation rounds to calibrate the threshold
parameter to an estimate of the FDR.

SAM as described by Tusher et al. (2001) has been criticized for a variety of reasons.
The example application involved a two-group comparison. The relative difference statistic
proposed by Tusher et al. (2001) is a modified t-statistic. They modified the denominator
of the t-statistic by incorporating a shrinkage parameter into the denominator. This extra
term was included with the intention of preventing Type I errors due to underestimation
of variance. However, in the analysis of their spike-in experiment, Choe et al. (2005)
observed that SAM performed more poorly than the usual t-statistic with significance
assessed by permutation. They attributed the poor performance of SAM in that application
to over shrinkage of the t-statistic. Additionally, Dudoit et al. (2003) caution users that
the developers of SAM no longer recommend using some versions of the algorithm.

7.4.5 Selecting an MTA Method for a Specific Application

The number of available methods to perform MTA raises the practical issue of choosing
an appropriate method for a specific application. Currently, the literature provides very
limited guidance on this issue. Typically, each newly proposed method is shown to
be better than some of the previously proposed methods for a certain application.
However, later work may show that the newer method is inferior to other methods
for a different setting. Recently, Pounds (2006) outlined some recommendations for
choosing from among the methods that use p-values, a method to estimate or control
the FDR and similar error rates. Subsequently, Pounds and Cheng (2006) updated
those recommendations in light of the performance of their robust method of esti-
mating the FDR. These recommendations are briefly summarized below and outlined
in Table 7.5.
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Table 7.5 Recommendations for FDR Methods.

Setting Objective

Correlation� Tests p-values† Estimate (p)FDR Control (p)FDR

MoL two-sided cont. Al02,PC03,PC04 BH95, BH00, St02
L04,Ch04,PC06

MoL two-sided disc. PC06 BH95, G05
MoL one-sided cont. PC06 BH95, G05
MoL one-sided disc. PC06 BH95, G05
SaE two-sided cont. BY01†† YB99, BY01
SaE two-sided disc. BY01†† YB99, BY01
SaE one-sided cont. BY01†† YB99, BY01
SaE one-sided disc. BY01†† YB99, BY01

Note: Acronyms and full references for methods are listed in Table 7.4.
�MoL = mild or limited; SaE = Strong and Extensive.
†cont. = continuous; disc. = discrete.
††Results should be interpreted cautiously in these cases. The FDR-adjusted p-values should not be interpreted
as an estimate of the proportion of significant findings that are false discoveries.
[Source: Adapted from Pounds (2006), used with permission.]

MTA used in the analysis of microarray data typically have one of two objectives:
estimation or control of a multiple-testing error rate. Control is the classical approach
to performing MTA. Control methods attempt to select the set of results considered
significant in such a way that the error rate of interest is maintained at or below
a prespecified threshold of tolerance. Storey (2002) argues that because microarray
studies are very exploratory, it may not be necessary or possible to prespecify an
appropriate control level. Thus, Storey (2002) suggests estimation of the error rate as
a function of the p-value cutoff (possibly chosen after p-values are computed) used
to define the set of results to report in a research publication or examine in greater
detail through follow-up experiments. Clearly, the theory of error-rate estimation has
not been developed as thoroughly as the theory of error-rate control. Nevertheless,
one item of special importance is quite clear: interpreting control quantities such as
the q value (Storey, 2002) or FDR-adjusted p-values (Reiner et al., 2003) as estimates
of the corresponding error rates can grossly underrepresent the actual prevalence of
false discoveries (Pounds and Cheng, 2004). More specifically, because the ratios in
equation (7.1) can be interpreted as local estimates of the FDR (Benjamini and Hochberg,
2000), applying the minimization operation in equation (7.2) to the ratios prior to
smoothing clearly introduces downward bias into the final ‘estimates’ of the FDR (Pounds
and Cheng, 2004). In particular, the q’s in equation (7.2) are not conservative estimates
of the FDR.

Thus, the first major consideration in choosing an MTA method is determining whether
the application’s objective is error-rate estimation or error-rate control. As noted above,
interpreting control quantities such as the q values or FDR-adjusted p-values may grossly
understate the actual prevalence of Type I errors. Subsequently, estimation methods should
be used for applications with error-rate estimation as the objective. However, if error-
rate control is the objective, then control methods will tend to have greater power than
estimation methods (Pounds, 2006). Unless the experimental design is based on statistical
sample size and power calculations, Pounds (2006) suggests that estimation methods
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be used. When it is unclear whether error-rate control or error-rate estimation is more
appropriate, adaptive significance criteria coupled with FDR estimation (Cheng et al.,
2004; Cheng, 2006) can be considered.

The properties of the p-values should also be considered in choosing an FDR method.
Important properties to consider include the sidedness of the p-values (i.e. are the
p-values based on one-sided or two-sided tests?), the discreteness of the p-values, and
the correlation of p-values with one another. Pounds and Cheng (2005a; 2006) have
observed that FDR methods that estimate π0 can be very unstable when applied to p-values
arising from one-sided tests. Briefly, p-values from one-sided tests may be stochastically
greater than uniform (0,1) because the ‘untested alternative’ is true. For example, suppose
the tests are of the form H0 : µ ≤ 0 vs HA : µ > 0. For genes with µ < 0, the test
statistic may be stochastically less than the null distribution derived under the assumption
µ = 0. Subsequently, the p-value from the right-sided test will be stochastically greater
than uniform. This violates the assumption that p-values testing true null hypothesis are
uniformly distributed. The impact of this violation can be unpredictable. Therefore, Pounds
and Cheng (2006) developed a method to estimate the FDR in applications that involve
one-sided statistical testing.

The discreteness of the p-value distribution can affect the performance of the various
FDR procedures as well. In proving the control properties of their FDR-control procedure,
Benjamini and Hochberg (1995) assumed that the p-values testing true null hypotheses
were i.i.d. observations from a continuous uniform (0,1) distribution. Pounds (2006) notes
that other methods implicitly rely on an assumption of continuity via the use of modeling
or smoothing to compute an estimate of the null proportion, i.e. the proportion of tests
with a true null hypothesis. In extensive simulation studies, Pounds and Cheng (2006)
observed that discreteness of p-values introduced substantial instability in the performance
of methods that estimate the null proportion. The instability was more pronounced for
the nonparametric methods they explored than for the model-based method (Pounds and
Morris, 2003) they examined.

The correlation of p-values can affect the performance of several FDR methods. The
correlation of p-values arises from the correlation of genes. Benjamini and Yekutieli
(2001) showed that Benjamini and Hochberg’s (1995) procedure maintained the prespec-
ified level of control under a specific dependence structure among test statistics. Storey
et al. (2004) proved a similar result for Storey’s (2002) procedure. Storey and Tibshi-
rani (2003b) argue that genome-wide expression studies naturally result in a dependency
structure that satisfies the conditions for Storey’s (2002) method to maintain its control
properties due to the way that genes work together in pathways. Pounds (2006) notes that
most FDR methods perform operations similar to Storey’s (2002) procedure or Benjamini
and Hochberg’s (1995) procedure, and thus should have reasonable performance in this
setting as well; however rigorous proofs have not been outlined for many of these addi-
tional procedures, and data collected in studies which use custom arrays that focus on
particular pathways or diseases may not satisfy the positive regressive dependence struc-
ture. To our knowledge, there is no readily implemented procedure to test whether a
particular data set satisfies these requirements for dependency among p-values. Therefore,
we currently recommend that biological knowledge be used to suggest whether the data
set satisfies the assumption of positive regressive dependency structure. Benjamini and
Yekutieli (2001) developed a simple modification of Benjamini and Hochberg’s (1995)
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method that maintains its control properties for any dependency structure; however this
method is extremely conservative.

7.5 ANNOTATION ANALYSIS

There are several databases that summarize the biological knowledge about genes. For
example, the GO Consortium (2000) has defined a nomenclature to describe the biolog-
ical process, molecular function, and cellular component of each gene. Furthermore, the
GO consortium maintains and provides free access to databases that describe each gene
in terms of this well-defined nomenclature (www.geneontology.org). Additionally,
the Kyoto Encyclopedia of Genes and Genomes (KEGG; www.genome.jp/kegg/
pathway.html) databases maintain information about known pathways. Incorporating
the information from these databases can provide useful hints to understand and further
explore the biology driving the associations identified by the statistical analysis. AA incor-
porates these annotations of genes available from freely accessible public databases.
Table 7.6 provides software availability information for some of the methods we review
in this section.

Several approaches to AA have been used in the literature. A very common approach
is to construct a two-by-two table for each annotation term of interest. Each microarray
probe set is characterized as ‘significant’ or otherwise, and as having the annotation
or not. Then, the hypergeometric distribution is used to assign a p-value to the table.
This approach has been criticized because it relies heavily on the assumptions of the
hypergeometric distribution, which implies that genes are selected as significant in an
independent fashion. In reality, genes operate in pathways, and are therefore correlated,
thus violating this critical assumption of the hypergeometric-based approach.

Barry et al. (2005) propose the significance analysis of function and expression (SAFE)
algorithm for performing AA. First, test statistics are computed for each probe set in the
usual way and a test statistic is computed for each annotation term. The test statistics of the
probe sets characterize the association of expression with the phenotype. The statistic for
a particular annotation (such as the term apoptosis or participation in a specific pathway)
summarizes how strongly the probe sets with the annotation are associated with phenotype.
For example, the annotation statistic could be the average of the p-values of the probe sets
with the annotation. Then, the significance of the test statistics and annotation statistics are
assessed via permutation. The permutation is performed by randomly assigning expression
vectors to the phenotype data or labels. For instance, in applications involving two-group
or k-group comparisons, the permutation is performed by randomly assigning the group

Table 7.6 Some methods for annotation analysis.

Method name or description Reference(s) Software�

Significance analysis of function and expression (SAFE) Barry et al. (2005) 2
Omnibus permutation tests Potter (2006) NA
U -statistics Schaid et al. (2005) NA

� See Table 7.1 for full address of software websites.
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labels to the expression vectors. The observed test statistics and annotation statistics are
compared to those obtained via permutation to compute p-values and FDR estimates.

A key issue is how the annotation statistics should be defined. For association or
differential expression analyses that use linear models (t-test, ANOVA, etc.) at each
probe/probe set, Barry et al. (2005) propose to define GO annotation statistics by the
sum of the F -statistics or squared (or absolute value) t-statistics of the probes/probe sets
annotated to the GO category. This is quite a general approach because most of the
statistical tests are modified t-statistics or F -statistics. In a similar context, Potter (2006)
proposes to use p-values as the basic test statistics and considers several aggregation
schemes. Another approach to aggregation can be found in Schaid et al. (2005). A
complicating issue is how to know whether a particular formula for the annotation statistic
actually measures biological significance. For instance, the alteration of one gene may
impair an entire pathway, but the overall expression of other genes in the affected pathway
may not be substantially altered because of their participation in other pathways. This type
of effect may not stand out in an AA that aggregates test statistics across all genes with
a particular annotation, but may nevertheless have dramatic biological effects.

7.6 VALIDATION ANALYSIS

Certainly, the results of a microarray study are not definitive if they rely solely on
statistical analyses because there are too many possible factors that could cause the
statistical analyses to yield misleading results. Even when the ‘best’ statistical methods are
employed, there are too many uncertainties regarding assumption validity and multiple
testing for the findings of a microarray study to be considered definitive. Ideally, the
findings would be confirmed in a similar, separate, and adequately powered study.
Alternatively, auxiliary laboratory experiments may confirm the associations identified
in the statistical analysis. However, these studies can be very expensive; hence, it is
desirable to avoid committing resources in an attempt to ‘validate’ a false positive. Thus,
computational methods that can provide insights regarding the probability of success
for such follow-up studies would prove quite valuable. VA attempts to characterize the
‘validity’ of the study findings via examination of data sets acquired by resampling,
subsampling, permuting, or otherwise perturbing the original study data set.

The specific meaning of the validation depends on the type of analysis performed (recall
that the introduction outlines three analysis approaches: class discovery, class prediction,
and phenotype association). Although our primary focus has been to describe methods
used in phenotype-association analyses, we briefly mention some approaches of VA used
in class-prediction analysis. Class-prediction analyses attempt to validate their findings by
estimating the misclassification error rate on an independent data set. It is important to note
that it is the classifiers, not necessarily the probe sets, that are validated in this analysis.
Furthermore, prognostic classifiers must be built and validated in a specific therapeutic
context in order to be clinically applicable (Simon, 2005a). Thus, class-prediction analysis
and the corresponding VA may not be ideal for the objective of identifying genes to study
in greater detail in follow-up laboratory experiments. The typical class-prediction analysis
splits the study data set into training and validation sets for an internal validation (Simon,
2005b). Figure 7.3 of Bullinger et al. (2004) gives a good illustration of this approach.
The power to identify genes is diminished by reducing the sample size in this manner.
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Specify desired level of FDR control t and
average statistical power g

Specify a power formula for each hypothesis test

Specify or estimate values for the effect-size
parameter for each test

Specify an initial sample size n

Find a so that the average power is g

Compute the anticipated p estimate

Compute the anticipated FDR estimate

Compare the anticipated FDR estimate to t

aFDR ≤ t

Report n as the sample size estimate 

Increment n

aFDR > t

Figure 7.3 Flow diagram of Pounds and Cheng (2005b) method of sample-size calculation.

It is our perception that many investigators choose class-prediction approaches because
they wish to demonstrate that their findings have somehow been validated. However,
randomly splitting the study data set into two parts just once is often not adequate either
to provide an accurate estimate of the classification accuracy, or to demonstrate association
on the validation set, due to reduced statistical power. More importantly, Simon (2005b)
notes that ‘internal validation’ by computational methods is no substitute for the ‘external
validation’ provided by a separate, prospective, and adequately powered study. If the
purpose is to accurately identify genes and subsequently understand the biology, then a
phenotype association is preferred because it uses all the data and thus has greater power
than an analysis using only part of the data to identify interesting probe sets.

In some studies, the phenotype of interest is simply too infrequent to warrant splitting
the study data set. Bogni et al. (2006) utilize a combination of cluster analysis, multiple-
group failure time comparison, and permutation test to internally validate an expression
profile associated with the development of therapy-related myeloid leukemia (tML). First,
a hazard regression model (Fine and Gray, 1999; Section 7.3.3) is fitted separately for
each probe set to measure the association of expression with the development of tML. An
expression profile is formed by choosing the probe sets with p-value less than or equal
to 0.01 from the fitted Fine–Gray model. Next, hierarchical clustering (Gordon, 1999) is
performed to assign subjects into three groups, using probe sets in the expression profile
as features. Then, Gray’s (1988) test is used to compare the cumulative incidence of tML
across the clusters. Finally, the entire process is repeated across 1000 data sets obtained
by randomly permuting the assignment of expression to outcome data. The χ-square
statistics of Gray’s test obtained by permutation are compared to the one computed on
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the original data set to yield a p-value for the expression profile. A similar permutation-
based approach to VA was used by Edick et al. (2005) to study the association of gene
expression with the development of treatment-related brain tumors.

There are several open questions regarding VA in the context of a phenotype-association
analysis. Potentially, one could perform VA using bootstrap, jackknife, cross-validation,
or permutation techniques. Another open question is how to represent the association of
a particular expression profile with the phenotype. In the examples above, a clustering
algorithm was applied to the expression data of the selected profile to separate the subjects
into groups and then the groups were compared according to phenotype. This raises the
question of choosing the number of clusters and the clustering algorithm. Bair et al. (2006)
have proposed finding the principal components of the expression of the selected probe sets
and then testing the association of the first (few) principal component(s) with the pheno-
type. Certainly, other methods will be proposed, and some theoretical work and analysis
of case studies will help to clarify what methods are best suited for specific applications.

7.7 STUDY DESIGN AND SAMPLE SIZE

Experimental design is the most important phase of a microarray gene-expression
study. Decisions regarding sample pooling, replication, batching, and reference samples
will strongly impact the complexity and interpretation of the eventual data analyses.
Poor designs can lead to uninterpretable results due to inappropriate sample pooling,
confounding of batches with phenotypes or treatments, confounding of dyes with pheno-
types, comparison to a biologically meaningless reference, or inadequate statistical power.
These unfortunate outcomes can be avoided with careful planning and study design.

As with other scientific investigations, the design of a microarray study should be
directed by practical and statistical considerations. First, the study should be designed to
capture the most relevant biological information. For example, while it may be of interest
to compare expression across many groups, it may be more practical and efficient to focus
the study on the comparisons that may provide the most important biological insights.
More specifically, if resources limit one to study only 12 subjects, it may be preferred to
study two groups of size six than to examine four groups of size three. If this is the case,
then the investigator should choose which two groups to compare to obtain the biological
insights of greatest interest. Also, many times, it is not possible to process all samples
and arrays on the same day. Subtle variation in sample preparation and handling can have
very noticeable effects on the expression signals obtained (see Section 7.2). Hence, the
samples must be processed in batches. Batches should be blocked in the study design
to avoid confounding batch effects with phenotype effects. Additionally, studies that use
two-color arrays should be designed to avoid confounding dye effects with comparisons
of interest (Churchill, 2002). Sometimes, each subject cannot yield enough RNA from the
relevant tissues required for one array. Then, it becomes necessary to combine samples
from multiple subjects into one RNA pool. The RNA pool is then hybridized to the
microarray. Then, it becomes necessary to replicate the RNA pools within each condition
or phenotype that is studied (Kerr, 2003). As always, studies should be designed with
statistical power kept in mind.

Several methods have been proposed to perform power and sample-size calculations for
microarray studies (Table 7.7). Pan et al. (2002) describe how to compute the sample size
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Table 7.7 Methods for sample size and power calculations.

Sample-size objective Reference(s) Software

Control number of Type I errors and achieve desired
average power

Lee and Whitmore (2002) 10

Control FDR and achieve desired average power Pounds and Cheng (2005b) 3
Control FDR and achieve desired average power Jung (2005) Available

from
author

Control FDR and achieve desired average power Gadbury et al. (2004) NA
Control comparison-wise Type I error and

per-comparison power
Pan et al. (2002) 11

Sample-size estimation with a variety of objectives Simon et al. (2002) NA
Balancing tech. and biological replicates via cost

constraints
Cui and Churchill (2003a) NA

Sample size needed for a classifier with given accuracy Mukherjee et al. (2003) NA
Control FDR to achieve desired average power Hu et al. (2005) 1
Sample-size calculation based on Bayesian loss criteria Müller et al. (2004) NA

required to control the comparison-wise Type I error rate and achieve a specified level of
per-comparison power. Lee and Whitmore (2002) describe how to compute the sample
size required to achieve a desired level of power while controlling the expected number
of Type I errors. Simon et al. (2002) describe how to perform sample-size calculations
for a variety of objectives. Cui and Churchill (2003a) describe how to balance the level
of technical and biological replication to optimize the power under a cost constraint.
Mukherjee et al. (2003) describe how to determine the number of replicates needed to
develop a classifier with a specified level of accuracy. Gadbury et al. (2004) and Hu
et al. (2005) propose methods to determine the sample size for a two-group comparison
to achieve desired levels of power while controlling the FDR or pFDR. Müller et al.
(2004) describe a computationally demanding approach to determine the sample size
needed to achieve desired values for specified Bayesian loss functions. Jung (2005) and
Pounds and Cheng (2005b) describe general methods to determine the sample size needed
to achieve a desired level of power while controlling the FDR at a specified level; these
two approaches are described below briefly.

A key element of statistical sample-size calculations is defining an appropriate analog
to statistical power in the multiple-testing setting. The average power (Gadbury et al.,
2004) is widely used for this purpose. The average power of a procedure is the expected
proportion of true associations that are declared statistically significant. This is clearly
equal to the arithmetic average of the powers of the individual tests with true alternative
hypotheses. Given the formulae for the powers of the individual tests, the power of each
test can be estimated given the values for the effect-size parameters. These formulas can be
used either to estimate the average power of an experiment with a specified sample size or
to estimate the sample size required to achieve a desired average power while controlling
the FDR at a specified level. Of note are the methods proposed by Jung (2005), and
Pounds and Cheng (2005b), each of which measure the power of a microarray study by
the average power.
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Jung (2005) notes that the FDR, incurred by performing all tests at a common level α,
can be approximated by

f ≈ m0α

m0α + r1
, (7.7)

where f is the approximate FDR, m is the total number of tests, m0 is the number of
tests with a true null hypothesis, and r1 is the expected number of rejections among those
tests with a true alternative hypothesis. Solving (7.7) for α yields

α ≈ f r1

m0(1− f )
. (7.8)

Substituting a desired level of FDR control for f and a desired number of true discoveries
for r1 into (7.8) gives a value for α. Then, the sample size is determined such that
performing all tests at a common level α has an average power r1/(m−m0). Jung (2005)
outlines more details on how to perform this calculation when the two-sample t-test is
used to perform a two-group comparison.

Equation (7.8) highlights the important factors that affect the sample size required to
achieve the desired power while controlling the FDR at a specified level. Clearly, the
required sample size increases as α in (7.8) decreases. Thus, the required sample size
increases when m0 increases, f decreases, or r1 increases. In fact, it is clear that some
values of m0, f , and r1 give values of α that are less than or equal to 0 or greater than 1.
More specifically, for any m0 > 0, Jung’s (2005) derivations imply that there are some
combinations of f and r1 which cannot be achieved with any sample size.

Jung’s (2005) approach overlooks some subtle, yet important, issues regarding sample-
size estimation. Most FDR control or estimation procedures compute an estimate of the
null proportion. The estimate of the null proportion is typically conservatively biased, i.e.
E(π̂) ≥ π , so as to ensure the conservativeness of the control or estimation procedure
(Storey, 2002). Therefore, in practice, the specified average power may not be achieved by
the sample size computed using Jung’s (2005) approach, because the control procedures
will tend to choose a smaller p-value threshold than that determined by (7.8). Additionally,
Jung (2005) does not consider how to adjust effect-size estimates obtained from pilot data
for multiplicity. Failure to adjust effect-size estimates for multiplicity can lead to inflated
estimates of power and eventual underestimation of the sample size required to achieve
the desired average power.

Pounds and Cheng (2005b) developed a general iterative procedure to perform sample-
size calculations to achieve a specified average power while keeping the reported level of
FDR (or related measures) controlled at a desired level. The procedure accounts for the
dependence of the π0-estimator on the sample size and is designed so that the computed
sample size achieves the desired average power while being able to report controlling the
FDR at a prespecified level. The method relies on a quantity called the anticipated false
discovery rate (aFDR), which is the expected value of the FDR estimate given the sample
size, effect-sizes of the tests, power formula for the tests, the FDR procedure to be used to
compute FDR estimates, and a common level α for all tests. Thus, the power calculations
are performed so that one has the desired average power while reporting control of the
FDR at a desired level. Given all the necessary background information (effect-sizes,
power formula, FDR method for final analysis, desired level of FDR control, and desired
average power) and a starting value for the sample size, the procedure finds the level α
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that achieves the desired average power and then determines if the anticipated FDR is
less than or equal to the desired level of FDR control. If the anticipated FDR does not
satisfy the specified level for FDR control, then the sample size is increased and the steps
described above are repeated. The process is iterated until a maximum possible sample size
is reached or the specified requirements for average power and FDR control are satisfied.
Figure 7.3 illustrates the method in a flowchart. Furthermore, Pounds and Cheng (2005b)
described a method to adjust effect-size estimates obtained from background data for
multiplicity. This adjustment is necessary to prevent the sample-size calculations from
being overly optimistic. Pounds and Cheng (2005b) provided details on how to perform
the effect-size estimation and sample-size calculations for k-group comparisons based on
one-factor ANOVA.

7.8 DISCUSSION

Clearly, there are essentially an infinite number of ways to approach the analysis of
any microarray data set. Not surprisingly, numerous methods to explore microarray data
have been proposed in the literature. As mentioned in the introduction, most microarray
analyses can be characterized in terms of having class discovery, class prediction, or
phenotype association as an objective. This chapter has provided a very brief overview of
some methods that may be useful in phenotype-association analysis. Certainly, the number
of methods will continue to increase dramatically during the coming years. Additionally,
practical experience with available methods, simulation studies, and theoretical insights
will help to clarify how to select the best methods for specific applications.

Given the plethora of possibilities, choosing methods for a specific application can be
a daunting task. Nevertheless, there are some sensible considerations that can help in
choosing reasonable methods for specific applications. First, the selected method should
be designed to address the particular objective of the analysis. This chapter has described
some methods for phenotype-association analyses. Second, the method should be designed
to accommodate the data type (e.g. continuous, categorical, censored time-to-event) of
the phenotype of interest. For example, the analysis should not treat a censored time-
to-event phenotype as a binary outcome (Jung et al., 2005a). Third, the assumptions of
the selected method should be reasonable for the specific data set to be analyzed. Many
authors do not explicitly describe the assumptions of the methods they propose; therefore,
evaluation of assumptions can be difficult. Nevertheless, the validity of underlying implicit
assumptions will certainly affect the performance of the method and impact the reliability
of the obtained inferences. Finally, one must consider whether the study provides adequate
power to apply a specific method. For example, class-prediction analyses typically require
very large sample size so that each of the training and validation phases of analysis has
adequate statistical power.

There are many open research questions pertaining to the statistical analysis of
microarray data. An important question involves how to determine the extent to which two
or more studies of the same disease confirm or contradict each other’s findings. Simply
examining reported lists of most significant probe sets is certainly a flawed approach. It is
quite plausible that no genes would appear in two or more of the lists simply because the
requirements of being a reportable finding are so stringent that it is virtually impossible for
any gene to be reported in two or more studies. Additionally, individual microarray studies
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may be underpowered, so combining information across studies may guide investigators
to important biological insights. An early attempt at meta-analysis of microarray studies
has already been published (Rhodes et al., 2004). Many issues can arise in the meta-
analysis of microarray studies, including matching probe sets and genes across multiple
platforms and attempting to account for possible study-specific biases. Ghosh et al. (2003)
elaborate on some of the challenges that arise in the meta-analysis of microarray studies
and propose some approaches to address those challenges. This will be an exciting area
for future research.

Another opportunity for future research is the development of tests that can help
determine when permutation- or resampling-based approaches are necessary or preferred.
Some researchers assert that permutation approaches are preferred for microarray studies.
However, Huang et al. (2006) caution that permutation methods can lead to inflated
Type I error rates. Additionally, in their application, Morris et al. (2005) observed that
computationally demanding methods for p-value calculation gave qualitatively similar
results as the likelihood ratio test. As microarrays with a very large number of features,
such as exon arrays and tiling arrays, are more commonly used, the cost and complexity
of implementing computationally intensive methods will increase dramatically. Statistical
methods that could quickly assess the value of such methods for a specific data set may
prove quite valuable in those applications.

There are several other issues worthy of exploration as well. AA and VA are exciting
and relatively new areas to explore. Improvements in pathway analysis may help elucidate
biological insights by determining when specific pathways are associated with the
phenotype of interest. Additionally, methods to incorporate genotype data collected via
SNP arrays into the analysis will need to be developed as investigators perform studies
that collect genotype and gene-expression data on a common set of subjects. Furthermore,
controversies still exist regarding normalization methods (Choe et al., 2005); so even the
seemingly more mature areas within the field still need additional research to clarify
fundamental issues.

Related Chapters

Chapter 6; Chapter 8; and Chapter 9.
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In this article, we review the use of Bayesian methods for analyzing gene expression data. We
focus on methods that select groups of genes on the basis of their expression in RNA samples
derived under different experimental conditions. First, we describe Bayesian methods for estimating
gene expression level from the intensity measurements obtained from the analysis of microarray
images. Next, we discuss the issues involved in assessing differential gene expression between two
conditions at a time, including models for classifying the genes as differentially expressed or not.
In the last two sections, we present models for grouping gene expression profiles over different
experimental conditions, in order to find coexpressed genes, and multivariate models for finding
gene signatures, i.e. for selecting a parsimonious group of genes that discriminate between entities
such as subtypes of disease.

8.1 INTRODUCTION

High-throughput technologies such as DNA microarrays have emerged over the last 5–10
years as one of the key source of information for functional genomics. Microarrays
permit researchers to capture one of the fundamental processes in molecular biology,
the transcription process from genes into messenger ribonucleic acid (mRNA) that will
be subsequently translated to form proteins. This process is called gene expression. By
quantifying the amount of transcription, microarrays allow the identification of the genes
that are expressed in different types of cells and different tissues and help to understand the
cellular processes in which they intervene, thus giving a unique insight into the function
of genes. However, transforming the huge quantity of data that is currently produced in
experiments that involve microarrays into useful knowledge for system biology is not
trivial and research into ways of interpreting this rich body of data has become an active
area, involving statisticians, machine learning and computer scientists.
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Microarrays generally contain thousands of spots (or probes) at each of which a
particular gene or sequence is represented. In effect, a microarray experiment represents
data comparable to that obtained by performing tens of thousands of ‘experiments’
of a similar type in parallel. The ‘experiments’ on a given array will share certain
characteristics related to the manufacturing process of the particular array used and the
extraction and handling of the biological sample hybridized to the array. The interest
is in comparing expression levels between arrays with samples from different biological
conditions of interest (e.g. cancerous against noncancerous cells) and the challenge is
identifying differences that are related to the biology of the samples rather than to technical
experimental variation.

Many of the characteristic features of experiments involving microarrays render them
particularly well suited to a flexible modeling strategy within the Bayesian framework.
The aim of this chapter is to focus on the unique contribution that Bayesian methods offer
and highlight this by discussing in detail the steps taken for modeling the variability in
gene expression data at several levels.

The framework of Bayesian hierarchical modeling refers to a generic model building
strategy in which unobserved quantities are organized into a small number of discrete
levels with logically distinct and scientifically interpretable functions and probabilistic
relationships between them that capture inherent features of the data. It is of course
important to perform some basic exploration and visualization of the data before formu-
lating complex models; see Chapter 6, for examples. The hierarchy of levels makes it
particularly suitable for modeling gene expression data, which arises from a number of
processes and is affected by many sources of variability. In the next sections, we look at
an approach to modeling these different sources of variability using fixed effects, random
effects and distributional assumptions.

One of the most important aspects of Bayesian hierarchical modeling as regards
microarray data is the sharing of information across parallel units. For example, gene
expression experiments used by biologists to study fundamental processes of activa-
tion/suppression frequently involve genetically modified animals or specific cell lines,
and such experiments are typically carried out only with a small number of biological
samples. It is clear that this amount of replication makes standard estimates of gene vari-
ability unstable. By assuming exchangeability across the genes, inference is strengthened
by borrowing information from comparable units.

Another strength of the Bayesian framework is the propagation of uncertainty through
the model. Owing to the many sources of systematic variation between arrays and samples,
gene expression data is often processed through a series of steps, each time estimating and
subtracting effects in order to make the arrays comparable. The end result of this process
can be overconfident inference, as the uncertainty associated with each step is ignored. In a
Bayesian model, it is straightforward to include each of these effects simultaneously, thus
retaining the correct level of uncertainty on the final estimates. Further, when including
structured priors that are associated with classification, e.g. mixture priors, in the model,
estimates of uncertainty of the classification are obtained along with the fit of the model.

The field of microarray data analysis is very large, and it is not possible to cover all
aspects in this chapter. In particular, we do not discuss methods for estimating graphical
models and Bayesian networks that are aimed at understanding regulatory networks or
metabolic pathways. There is a large literature on this subject; see, e.g. a number of
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chapters in Do et al., 2006, and references therein. See also Chapter 9, Chapter 6 and
Chapter 7 for non-Bayesian approaches.

We focus on methods that select groups of genes on the basis of their expression in
RNA samples derived under different experimental conditions. In the next section, we
look at two Bayesian methods for estimating gene expression level from the intensity
measurements obtained from analysis of microarray images. This section includes some
discussion of the steps involved in a microarray experiment. Section 8.3 discusses the
issues involved in assessing differential gene expression between two conditions at a time.
There is an extensive literature on this topic. Our presentation is divided into sections
on normalization, gene variability and models for classifying the genes as those that are
differentially expressed and those that are not. We include a brief explanation of mixture
models and some discussion of different decision rules used to choose the lists of genes
that are considered to be differentially expressed. In Section 8.4, we present a range of
models for grouping gene expression profiles, which are vectors of gene expression over
several different experimental conditions, for ordered samples (e.g. time-course data) and
for samples with no ordering. Finally, Section 8.5 reviews the current work on multivariate
methods for finding subsets of genes that can predict and classify phenotypes. We focus
on variable selection methods that have been used to find, e.g. the so-called gene signature
of different subtypes of disease, as well as Bayesian shrinkage methods. In both cases, the
emphasis is on parsimony of the multivariate model in order to enhance interpretation. In
Bayesian models, inference is made in either an empirical or fully Bayesian framework.
In the case of fully Bayesian models, Markov Chain Monte Carlo (MCMC) is usually
used to estimate the posterior distribution of the model. We do not go into details of
these procedures, except in the case of nonstandard algorithms. Table 8.1 gives URLs for
software for the models discussed in this chapter.

A note on notation: we use xg for gene expression measures used as data in Sections 8.3
and onward, rather than the more usual yg . This is to allow the standard formulation for
the variable selection models in Section 8.5, where y stands for the outcome and x stands
for the variables (here genes). Throughout the chapter, p stands for the number of genes
and n stands for the number of samples or experimental conditions.

8.2 EXTRACTING SIGNAL FROM OBSERVED INTENSITIES

The output from a microarray experiment is an the image of an array (see Chapter 6).
This image must be gridded and segmented into spots, which are the basis for inference
about the sequences present in the sample of interest. There has been some work on
Bayesian methods for image analysis (see, e.g. Ceccarelli and Antoniol, 2006; Gottardo
et al., 2006a and references therein). This work is beyond the scope of this chapter. The
methods we describe in this section first deal with an intensity measurement for each pixel
on an array, found from the image analysis, and these are used to construct a summary
measure of the amount of RNA present in the sample for each gene of interest.

There are two main types of microarrays in use, spotted or cDNA arrays, which are
usually two color, and oligonucleotide arrays, which are one color. Spotted arrays are
microscopic slides onto which long strands of cDNA are fixed in a regular grid layout.
Each ‘spot’ on the array will then contain millions of copies of the same (known) sequence
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Table 8.1 Web pages containing software or code for the models described in this chapter.

Extracting signal from observed intensities

Frigessi et al., 2005 TransCount http://alba.uio.no/base/local/
demotranscount/index.html

Hein et al., 2005 BGX http://www.bgx.org.uk/
software.html

Differential expression

Baldi and Long, 2001 Cyber-T http://visitor.ics.uci.edu/
genex/cybert/

Broët et al., 2002 nmix http://www.bgx.org.uk/
software.html

Broët et al., 2004 gmix http://www.bgx.org.uk/
software.html

Do et al., 2005 BayesMIX http://odin.mdacc.
tmc.edu/∼kim/
bayesmix/

Efron et al., 2001 EBAM http://bioconductor.fhcrc.
org/packages/2.0/
bioc/html/
siggenes.html

Gottardo et al., 2006b rama http://www.stat.ubc.ca/
∼raph/Software/
BiocRPackages/
BiocRPackages.html

Gottardo et al., 2006c bridge http://www.stat.ubc.ca/
∼raph/Software/
BiocRPackages/
BiocRPackages.html

Ibrahim et al., 2002 code available from
author:
mhchen@stat.
uconn.edu

Ishwaran and Rao (2003;
2005a; 2005b)

BAM http://www.bamarray.com/

Lewin et al., 2006 BayesDE http://www.bgx.org.uk/
software.html

Lönnstedt and Speed, 2003 SMA http://www.stat.berkeley.
edu/∼terry/zarray/
Software/smacode.html

Newton et al. (2001; 2004) EBarrays http://www.stat.wisc.
edu/ %7Enewton/
research/arrays.html

Parmigiani et al., 2002 POE http://astor.som.jhmi.
edu/poe/

Reilly et al., 2003 http://www.biostat.umn.
edu/cavanr/
geneNormRepHier.txt

(continued overleaf )
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Table 8.1 (continued ).

Smyth, 2004 limma http://bioinf.wehi.edu.au/limma/

Clustering profiles

Gottardo et al., 2006c bridge http://www.stat.ubc.ca/∼raph/
Software/BiocRPackages/
BiocRPackages.html

Heard et al. (2006a; 2006b) http://stats.ma.ic.ac.
uk/naheard/public html/

Kendziorski et al., 2003 EBarrays http://www.stat.wisc.
edu/ %7Enewton/
research/arrays.html

Vogl et al., 2005 http://genome.tugraz.at/
BayesianClustering/

Zhou and Wakefield, 2006 http://faculty.washington.
edu/jonno/cv.html

of cDNA (called probes). One sequence corresponds to one gene, or expressed sequence
tag (EST). In order to find out what sequences are present in a sample of mRNA, a sample
of cDNA (the target) is produced from the mRNA by reverse transcription and fluores-
cently labeled. This sample is introduced onto the array, where hybridization reactions
take place between sequences of cDNA that match in the sample and on the array. The
array is then washed to remove target cDNA that has not hybridized to the array, and
scanned to detect the fluorescent labels of the cDNA strands that have hybridized. For
two-color arrays, two samples of cDNA, labeled with dyes of two different frequencies
(Cy3 and Cy5), are placed on the array. The two samples are usually from different mRNA
samples, enabling the concentrations of particular sequences to be compared between the
two samples.

There are two particularly important statistical issues arising from the process of the
microarray experiment. First, the Cy3 dye tends to appear brighter than the Cy5, owing
to differences in the reaction with the cDNA and different responses to the laser used in
the scanning process. This leads to the so-called dye effect. In addition, the known cDNA
sequences are printed onto the array using a number of spotting pins. The different pins
may deliver slightly different amounts of cDNA to the array, and thus there can be a
systematic effect between spots printed with different pins. This is known as the print-tip
effect.

Oligonucleotide arrays work in a similar way. There are three main differences from
spotted arrays (from a data analysis point of view), the first being that just one sample
is hybridized to each array, and thus only one dye is used, so there is no dye effect.
The second is that the same printing head is used for all spots, and thus there is no
print-tip effect. The third difference is that the probe sequences fixed to oligonucleotide
arrays are shorter than those used in spotted arrays. For this reason, several probes (of
different sequences) are used to detect one gene or EST. Spots on the array come in
pairs: one containing the ‘perfect match’ (PM) probe and an adjacent spot containing the
‘mismatch’ (MM) probe. The PM probe is a strand of cDNA that has the sequence of
interest. The MM probe has the same sequence except for the central nucleotide, which
is different.
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The reason for this is to provide a measure of cross-hybridization: target cDNA having a
similar but not identical sequence to the PM probe may hybridize to the PM, contaminating
the signal. The idea behind the MM probe is that these mismatched target cDNAs would
also hybridize to the MM probe, but the true matches to the PM would only hybridize to
the PM and not to the MM. Thus the amount of cDNA with the exact same sequence as
the PM could be estimated by subtracting the MM signal from the PM signal. In reality,
target cDNA with exact match to PM also hybridizes partially to the MM, so estimating
the correct amount is a complicated process (see Section 8.2.2).

8.2.1 Spotted cDNA Arrays

Most work with data from spotted arrays takes the ratio of the Cy3 and Cy5 intensities
as a measure of the relative expression of each gene in the two RNA samples. These
can be used in a fairly straightforward way to compare gene expression under different
experimental conditions. Care must be taken to account for the dye and print-tip effects.
These effects are often included as part of the model for differential expression, as seen
in Section 8.3.1.

Here we discuss a Bayesian model developed by Frigessi et al. (2005) for obtaining
estimates of concentrations of RNA from two-color arrays. This model includes the dye
and print-tip effects, along with other aspects of the experimental process, usually absorbed
into empirical normalization methods. The idea is to follow through the process that the
RNA molecules undergo in order to be detected as hybridized to the array. The steps in
this process are modeled with a hierarchical model.

The principal data used in the model are the intensity measurements in each pixel j
on each array a. These are denoted by Li,aj,s , where s labels spots to which the pixel
belongs and i labels the particular RNA sample hybridized to the array. The background
intensity is assumed to have been subtracted as part of the image analysis. The quantity of
interest to estimate is the concentration of RNA (in molecules per unit weight) for gene
g in sample i, denoted by Kig. The main steps relating this concentration to the observed
intensities are hybridization, washing, and scanning.

In order to model the scanning process, consider the number of molecules J i,as from
sample i left on spot s after hybridization and washing. The observations that contribute
directly to J i,as are the intensities for the pixels in the spots corresponding to that gene;
for a given sample and array, Li,aj,s ∝ J i,as /nas , where nas is the number of pixels in spot s.

The constant of proportionality is 2fdye.PMT
i,a

αdye, where PMT i,a is the voltage used in
scanning and fdye is the scanner amplification factor, both of which are known. The
factor αdye accounts for the dye effect (this is estimated as part of the model). With
this expected relation between intensity and number of molecules on a spot in place, the
intensity measurements are modeled as coming from a normal distribution,

L
i,a
j,s ∼ N(2fdye.PMT

i,a

αdyeJ
i,a
s /n

a
s , (σ

i,a
s )

2). (8.1)

The variance (σ i,as )
2 is estimated from the sample variance of the intensities, and treated

as fixed in the analysis.
In the second level of the hierarchical model, the prior for J i,as depends on the

concentrations Kig(s), where g(s) is the gene corresponding to spot s, and also on other
parameters for various effects encountered in the hybridization step. This step is treated as



BAYESIAN METHODS FOR MICROARRAY DATA 273

a selection process where each molecule of gene g(s) has an equal chance of hybridizing
to and remaining on spot s. Thus the number of molecules has a binomial distribution:

J i,as ∼ Bin(cnas q
i,aKig(s), p

i,a
s ), (8.2)

where qi,a is the total weight of sample i and c is a hybridization factor (estimated in a
calibration experiment). The probability of hybridization pi,as has several contributions:

pi,as = L−1(γ0 + γg(s,a) + γP i + βXas ). (8.3)

P i is a measure of the purity of sample i, and Xas contains the covariates for spot s on
array a: probe length, probe quality, print tip and array. Various link functions are used
for L. To ensure identifiability, several arrays must be analyzed together. The main object
of inference is Kig and a purposely designed MCMC algorithm is used to get posterior
samples.

8.2.2 Oligonucleotide Arrays

In contrast to cDNA arrays, the intensity measurements for spots on oligonucleotide
arrays cannot be combined in a simple manner to form gene expression measurements.
The simplest way to use the PM and MM measurements would be to use PM–MM as
a measure of expression. However, there is a problem with this, as very often the MM
intensity is larger than the PM intensity (see Figure 8.1, top row). There has been much
work in the microarray literature on methods to deal with this phenomenon. Here, we
present Bayesian models developed to model the PM and MM intensities in order to
produce measures of gene expression.

Hein et al. (2005) present a fully Bayesian hierarchical model, estimated by MCMC,
for obtaining gene expression measures for each gene in each experimental condition.
If there are replicate samples for a condition (including biological replicates), the model
produces an estimate for that condition, rather than separate estimates for each replicate.
On the other hand, by using the variability of the probe sets for each gene, the model
can be used with a single array for each condition and meaningful comparison between
conditions without any replicates can be obtained (Hein and Richardson, 2006).

The data used for the model in Hein et al. (2005) are the PM and MM intensities for
probe pair j of gene g in replicate r of condition c, denoted by PMgjcr and MMgjcr .
Each c, r pair corresponds to one physical array. The intensity observed at a PM probe
is assumed to be the result of hybridization, partly of fragments that perfectly match the
probe (specific hybridization, signal: Sgjcr ) and partly of fragments that do not perfectly
match the probe (nonspecific hybridization: Hgjcr ). A similar pattern is assumed for the
MM probe, with only a fraction φ of the perfectly matching fragments undergoing binding.
Both specific and nonspecific hybridization are estimated separately for each gene and
probe. To account for the possibility of the MM being bigger than the PM, the model
includes an additive error on the normal scale.

PMgjcr ∼ N(Sgjcr +Hgjcr , τ 2
cr ),

MMgjcr ∼ N(φSgjcr +Hgjcr , τ 2
cr ). (8.4)
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Figure 8.1 Upper panel: probe set response for four genes from an oligonucleotide microarray.
Each probe set consists of 20 probe pairs. Solid lines show PM–MM, dashed lines show PM,
dotted lines show MM. Lower panel: summaries of posterior distributions related to expression of
the four genes, from the model in Hein et al. (2005). The 95 % equal-tailed credibility intervals
of the Sgjcr are shown as horizontal lines (shifted vertically) and should be read off the x axis.
The bold line shows the 95 % equal-tailed credibility interval for µgc. Circles show the observed
log(PM–MM) values (plotted at zero when MM > PM). Curves show TN(µ̂gc, σ̂ 2

gc), with µ̂gc and
σ̂ 2
gc equal to the posterior means. [Reprinted from Hein, A.-M. K., Richardson, S., Causton, H.

C., Ambler, G. K., and Green, P. J. (2005). BGX: a fully Bayesian gene expression index for A
ymetrix GeneChip data. Biostatistics 6(3), 349–373, by permission of Oxford University Press.]

At the next level of the model, estimates for the specific hybridization for each gene
in each condition µgc are obtained, averaging across probes and replicates. These are the
final measures of interest. The nonspecific hybridization is modeled with an arraywide
distribution (indexed by c and r).

log(Sgjcr + 1) ∼ TN(µgc, σ 2
gc),

log(Hgjcr + 1) ∼ TN(λcr , η2
cr ). (8.5)

Here TN stands for the normal distribution truncated at zero on the left. This and the
shifted log function allow the hybridization signals to be zero.

Array-specific parameters (those indexed by c, r) are given independent priors. The
gene-specific variances σ 2

gc are modeled exchangeably, to share information across the
genes and stabilize the variance estimates.

Hein et al. (2005) have fit this model to the GeneLogic spike-in data set at
http://www.genelogic.com/media/studies/index.cfm. This is a widely
used data set consisting of gene expression measurements for replicate samples of cRNA
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from an acute myeloid leukemia (AML) tumor cell line, with 11 exogenous cRNAs spiked
into each sample at a different known concentration in each sample. Each sample was
hybridized on one array, thus all measurements for spike-in genes on a particular array
correspond to the same cRNA concentration. The top row of Figure 8.1 shows the PM
and MM measurements for four of the spiked-in genes (all from the same array). It can
be seen that the measurements of different probes within a gene vary widely, owing to
the different sequences being detected.

The lower panel shows results for the same four genes when the model is fit
to the single array. The plots show the posterior estimates of Sgjcr compared with
log(PMgjcr −MMgjcr ). It can be seen that the posterior estimates get more precise for
larger PM–MM, i.e. for probes with high specific hybridization, and consequently that
the posterior credibility intervals for the µc are reduced. For probes with large MM, the
estimates of Sgjcr are drawn toward those for the rest of the probes for that gene.

8.3 DIFFERENTIAL EXPRESSION

One of the most widely studied problems in microarray analysis is that of differential
gene expression between two experimental conditions, e.g. between knockout and wild-
type animals, or between cases and controls. Most work in this area starts with the gene
expression measures for each gene on each array, or the log ratios of expression under
two conditions. Expression measures have been observed to have increasing variability
with increasing value (Schadt et al., 2000), so they are often modeled on the log scale.
Sometimes a shifted log transform is used, as, e.g. in Gottardo et al. (2006b). Chapter 6
discusses many transformations used in the literature.

Many models that have been developed for differential expression can be written as a
linear model for the log expression level xgcr for gene g, condition c = 1, 2 and replicate
array r:

xgcr = µgc + γcr + εgcr , (8.6)

where µgc represents the level of expression of gene g for condition c, γcr is a
normalization term for the array containing the replicate r sample of condition c, and
εgcr is the residual.

Not all models we discuss can be fitted exactly into this format, e.g. Newton et al. (2004)
and Kendziorski et al. (2003) use the gamma distribution to model gene variability and
so their models do not quite fit into the linear framework. However, they still involve
parameters corresponding to the same biological quantities. In addition, the vast majority
of models can be fitted into the linear framework, and thus it is useful to give these
equations in an attempt to clarify where models differ or otherwise. We will indicate in
the text where models do not use the linear formulation (8.6).

The parameters of interest are the µgc. Before we discuss how these are modeled, we
look at the normalization and error terms.

8.3.1 Normalization

Microarray data show systematic differences between expression levels found on different
arrays (e.g. Schadt et al., 2000). Some of these differences are due to dye and print-tip
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effects discussed in Section 8.2.1. This may be taken into account when analyzing data
at lower levels, but generally empirical differences between arrays are still found for
the gene expression values. Often the systematic effect is such that there is nonlinear
relationship between the expression levels on different arrays.

Much work has been done in the classical statistical literature on different methods
of accounting for these systematic nonlinear differences (normalizing). These usually
involve a transformation of the data before it is analyzed with another method. Most
work on Bayesian models for gene expression has also assumed that this process has been
done beforehand. Bayesian models incorporating normalization include those proposed by
Parmigiani et al. (2002) and Gottardo et al. (2006b). Both of these include a constant term
in a linear model, estimated in a fully Bayesian manner.

Bhattacharjee et al. (2004) and Lewin et al. (2006) model normalization as a nonlinear
function of expression level. Bhattacharjee et al. (2004) use a normalization term γgcr ,
which is modeled as a piecewise linear function of gene expression level. Owing to
marginalization over the joint posterior, posterior estimates of γgcr will be reasonably
smooth functions of expression level.

Lewin et al. (2006) propose a model starting with that given in (8.6), but for which
the normalization term has an additional gene index: γgcr = f (µgc), where the function
f is a quadratic spline. They show that transforming the data first rather than modeling
the normalization simultaneously with the other unknown quantities can introduce bias,
as the gene expression levels µgc have to be estimated and thus have variability, as in
measurement error problems (Carroll et al., 1995). Figure 8.2 shows the posterior mean
array effects γgcr as a function of expression level for a group of three arrays hybridized
to cDNA from wild-type mice, as presented in Lewin et al. (2006).

8.3.2 Gene Variability

There are many sources of variation in gene expression data. It is possible to put replicate
RNA samples from the same individual on different microarrays, but this is usually
considered unnecessary as it has been observed that these so-called technical replicates
show very high correlation. More usually different arrays are hybridized with samples
taken from different individuals. Thus the variability incorporated in the error term εgcr
in (8.6) represents the biological variability. It is generally accepted that different genes
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Figure 8.2 Array effects as a function of expression level for a wild-type mouse expression data
set of three arrays as presented in Lewin et al. (2006). Each plot shows the array effect from one
array (curve) with the data residuals from the mean across arrays (points).
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show different levels of biological variability, and thus parameters in the distributions for
the errors will depend on the gene index.

Several Bayesian models in the literature assume normal errors (Lönnstedt and Speed,
2003; Baldi and Long, 2001; Bhattacharjee et al., 2004; Lewin et al., 2006). Gottardo
et al. (2006c) use a t-distribution (bivariate for cDNA data) to accommodate more outlying
data points. Newton et al. (2001; 2004) give the data a gamma likelihood rather than the
lognormal implied by (8.6). Simple model-checking techniques suggest that the gamma
and lognormal families are equally suitable for gene expression data.

Since the number of individuals for each experimental condition is often small, indepen-
dent estimates of gene variance parameters would be unstable. Therefore, gene variances
σ 2
gc are usually shrunk, by assuming exchangeability across genes (and sometimes condi-

tions). Both empirical Bayes (Lönnstedt and Speed, 2003) and fully Bayesian methods
(Lewin et al., 2006; Gottardo et al., 2006c) relying on MCMC algorithms for inference
have been used. Rather than allowing a separate variance for each gene, Bhattacharjee
et al. (2004) allow gene variances to take one of three values, estimated as part of the
model, as an alternative way of sharing information across genes. Baldi and Long (2001)
allow gene variances to depend on expression level, by making the variances exchange-
able among genes with similar expression levels (defined by a window on the expression
level) and estimating these using Empirical Bayes methods.

8.3.3 Expression Levels

It is useful to write the expression levels in two experimental conditions as

µg1 = αg − δg/2,

µg2 = αg + δg/2, (8.7)

where αg represents the overall expression level for gene g and δg represents the log
differential expression. For two-color arrays, the data can be given as log fold changes
between the conditions (the data is paired) and in that case there is no αg parameter. When
the data is given separately for the two conditions, αg must be modeled. It is usually treated
as a fixed effect, so no information is shared between genes for this parameter.

The fold change parameter δg can also be given an unstructured prior (e.g Baldi and
Long, 2001; Bhattacharjee et al., 2004; Lewin et al., 2006); however, many people choose
to use mixture models to classify genes as those differentially expressed and those that
are not. Usually, this implies putting a mixture prior on some measure of the difference
between expression levels in the two experimental conditions. The mixture models can
be classified into two groups: those that put a mixture prior on the model parameter δg,
and those that model the data directly as a mixture. These are not intrinsically different,
as the parameters δg could be integrated out to give a mixture model on the data, but it
is convenient to describe the models separately.

A finite mixture distribution for a quantity �g is a weighted sum of probability
distributions,

�g ∼
K−1∑
k=0

wkfk(φk), (8.8)
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where the weights sum to one (
∑K−1
k=0 wk = 1). Each mixture component has a certain

distribution fk , with parameters φk . The weight wk represents the probability of �g being
assigned to mixture component k. In the context of differential expression, most mixture
models used consist of two components (K = 2), one of which (f0) can be thought of
as representing the ‘null hypothesis’ that there is no differential expression. The second
component corresponds to the alternative hypothesis that there is differential expression.
Of course, it is not necessary to see the model in terms of hypothesis testing; in the
Bayesian framework, it is a straightforward procedure to classify each gene into one or
other of the mixture components. This is usually done using the posterior probability of
component membership (see Section 8.3.4 for details).

One of the earliest mixture models used in gene expression analysis was that of Efron
et al. (2001). In this model, �g in (8.8) is a regularized t-statistic tg , one for each gene.

tg ∼ w0f0 + w1f1. (8.9)

The densities of the mixture components are estimated nonparametrically using standard
kernel density procedures. Regularized t-statistics are calculated using expression data
from the same experimental condition, to provide an estimate of the null component
f0. An estimate of w0 (which represents the proportion of genes in the null, or not
differentially expressed) is obtained using empirical Bayes methods. The whole mixture
distribution (w0f0 + w1f1) can be estimated using all the tg . Thus the second component
f1 can be inferred.

A fully Bayesian version of this model has been discussed by Do et al. (2005). In this
work, the framework of Dirichlet Process Mixtures (DPMs) is used to formulate a prior
probability model for the distributions f0 and f1. A DPM model, characterized by a base
measure G∗, a scalar parameter α and a mixing kernel to be specified, is one of the most
popular nonparametric Bayesian models in view of the simplicity of its representation
and MCMC implementation (Escobar and West, 1995; Walker et al., 1999). Do et al.
(2005) choose base measures G∗0 ∼ N(0, τ 2) and G∗1 ∼ 1

2N(−b, τ 2)+ 1
2N(b, τ

2) for f0

and f1, respectively, and Gaussian mixing kernels with common variance parameter σ 2.
The specification of G∗1 reflects the prior belief that DE in either direction is equally likely,
in the absence of more specific prior information. Use of the stick-breaking construction
of DP (Sethurman, 1994) leads to a useful representation of fk, k = 0, 1 as an infinite
mixture of normals:

fk =
∞∑
h=1

phkN(µhk, σ
2),

with µhk
i.i.d
∼ G

∗
k, k = 0, 1 and the weights following the stick-breaking structure: phk =

Uh
∏
j<h(1− Uj) with Uh

i.i.d
∼ β(1, α). In Do et al. (2005), all the model parameters are

given hyperprior distributions, conjugate inverse gamma for τ 2 and σ 2 and conjugate
normal for b, α is fixed at 1 and w0 is given either a beta prior or a uniform prior away
from 0. As in Efron et al. (2001), within-condition data differences are used to estimate
f0, while between-condition differences are modeled as arising from the mixture defined
in (8.9). Figure 8.3 shows posterior estimates of f0, f1 and f ≡ w0f0 + w1f1 for the
Alon colon cancer data set (Alon et al., 1999) as analyzed in Do et al. (2005). This is a
data set of gene expression measurements for 2000 genes in 62 tissue samples (40 tumors
and 22 normal samples). The density f1 is bimodal, showing that there are genes that
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Figure 8.3 Illustration of the posterior distributions for the mixture densities in the Do et al.
(2005) model, found for the Alon et al. (1999) cancer data set. (a–c) show f0, f1 and f ; (d) shows
all three. Each curve is a draw from the posterior distribution of the relevant mixture component.
[Figure courtesy of Peter Müller.]

are expressed more in tumors than in normal samples, and genes that are expressed more
in normal samples. The estimate of the proportion of differentially expressed genes was
around 1 % in this data set. The performance of this model will depend on the number of
within-replicate differences that are used to calibrate f0 and on the information introduced
in the hyperprior specification. When there are only a few replicates, the mixture might
be close to nonidentifiability.

Broët et al. (2002) suggest another model using a mixture at the data level to classify
genes. Here the data is first transformed with a linear model to produce normalized log
fold changes dg . The dg are modeled using a fully Bayesian mixture of normals, which
includes estimation of the proportion of differentially expressed genes (the weights in the
mixture). The number of components in the mixture K is not restricted to 2. There is still
just one component representing the null, but several representing differentially expressed
genes. This allows grouping of genes into different levels of differential expression. In
fact K is not fixed in this model, but estimated, in a fully Bayesian way, using the split
and merge algorithm for mixtures with an unknown number of components introduced in
Richardson and Green (1997).

When mixture distributions are put on parameters of the model (prior) rather than
on the data (likelihood), care must be taken to ensure identifiability of the parameters
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of the mixture components. A common choice is to make the null component a point
mass. This corresponds to testing the null hypothesis δg = 0 versus the two-sided
alternative.

Lönnstedt and Speed (2003), Lin et al. (2003) and Smyth (2004) use mixture priors
on the parameter δg representing difference between conditions. Lönnstedt and Speed
(2003) use a mixture of a point mass at zero and a conjugate normal prior on the δg .
Smyth (2004) uses the same mixture model, but on data that has first been transformed
using a linear model similar to that in (8.6) but using a robust estimation method,
to obtain log fold changes. These two models are estimated using empirical Bayes
methods. The proportion of true nulls is not estimated. Thus these methods produce
a ranking of the genes rather than an actual estimate of how many genes are differentially
expressed.

Rather than putting the mixture directly on the δg , Newton et al. (2004) propose a
mixture prior on the pair of parameters µg1, µg2. Their likelihood is gamma, but the µgc
still represent mean expression in the two conditions. One component of the mixture
has µg1 = µg2 drawn from one distribution, and the other has µg1, µg2 drawn from
two separate distributions. These distributions are estimated nonparametrically, using an
expectation maximization (EM) algorithm. Gottardo et al. (2006c) has a similar mixture on
the pair µg1, µg2, this time using normal priors, and a fully Bayesian estimation method,
including estimating the proportion of differentially expressed genes. Reilly et al. (2003)
has a model with a similar structure, but in addition incorporates prior information about
certain genes being controls (and therefore not differentially expressed).

An early model for differential expression, which does not employ a mixture model
on the difference between the two conditions, is that of Ibrahim et al. (2002). They
model the data in each condition as that from a mixture of a point mass and a lognormal
distribution, the point mass representing the threshold for genes to be unexpressed. A
measure for differential expression is formed from the ratio of expectation of expression
in the two conditions.

As a final comment, note that finding differentially expressed genes can also be cast in
a multivariate framework. This approach was adopted by Ishwaran and Rao (2003) who
use multivariate shrinkage effected via a continuous version of the spike and slab variable
selection model (see Section 8.5.1 for a discussion of variable selection approaches). They
propose to detect differentially expressed genes by formulating the problem as a linear
regression. They then use a multivariate shrinkage approach to find posterior means of the
differentially expressed parameters and finally they compare these values to percentiles of
a standard normal distribution (with a scaling coefficient) in order to select differentially
expressed genes.

8.3.4 Classifying Genes as Differentially Expressed

In differential expression problems, the aim is to produce a list of genes that are considered
to be differentially expressed between the different experimental conditions. A decision
rule is used to classify genes as either differentially expressed (DE) or not differentially
expressed (non-DE). In Bayesian models, this will either be based on the value of some
model parameter (usually the posterior mean), or on posterior probabilities of some
criterion in the model, e.g. of being classified into a certain mixture component or of
some parameter being above a certain threshold.
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8.3.4.1 Models with Mixture Priors for Fold Changes

In the fully Bayesian mixture models described above, decisions are usually made using
the posterior probabilities of a gene being allocated to the different mixture components.
The mixture example given in (8.8) can also be written as

�g|zg ∼ wzgfzg (φzg ),
�(zg = k) = wk, (8.10)

where the zg are allocation parameters, which label the mixture component to which
gene g is assigned. The posterior probability of gene g being in component k is
�(zg = k|x).

Defining a loss function enables one to form the decision rule. First, denote the set of
genes declared to be DE by S1 and the set of genes called non-DE by S0. In the two-
component mixture models, since there are two possible classifications for each gene,
there are two possible penalties for misclassification, one for false positives and one for
false negatives. If the ratio of these two penalties is λ, the same for all genes, the loss
function is proportional to

L ∝
∑
g∈S0

�(zg �= 0|x)+ λ
∑
g∈S1

�(zg = 0|x). (8.11)

This is minimized by defining S0 as the set of genes for which �(zg = 0|x) ≥ 1/(1+ λ),
i.e. genes are classified using a threshold on the posterior probabilities of classification in
the mixture. Müller et al. (2007) discuss different possible loss functions and the decision
rules they lead to.

The posterior probabilities can also be used to obtain an estimate of the false discovery
rate, which is the ratio of false positives to total declared positives:

FDR = 1

|S1|
∑
g∈S1

�(zg = 0|x), (8.12)

(see Newton et al., 2004; Broët et al., 2004; Müller et al., 2007). An estimate of the false
nondiscovery rate (ratio of false negatives to total negatives) can be similarly defined.
The false discovery rate is widely used in classical statistical analysis of gene expression
data (see Chapter 6 and Chapter 7). It is useful to be able to give this estimate when
comparing with different analysis methods and it has generally be found in simulation
studies that (8.12) gives quite accurate estimates of the true FDR.

For mixtures of more than two components, one may consider different rules. The most
obvious would be to assign genes to the component with highest probability, i.e. gene g is
assigned to component k = maxk′�(zg = k′|x). However, when there are more than two
components, this can lead to genes being declared DE (in a particular component) when
their posterior probability of being classified into that component is low. For example,
with four components, a gene that has almost equal probability of being classified in all
components can be declared DE (into the best component for that gene) with posterior
probability of 0.26 of being in that component. An alternative, but more conservative,
suggestion would be to classify into one of the components representing DE only those
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genes for which the corresponding posterior probability of belonging to that component
is above a set threshold, e.g. 50 % or higher. Otherwise the genes are classified into
the null. Again, evaluating the associated FDR of such rules will guide the choice of
appropriate thresholds. Such a rule was used in a related context of modeling DNA copy
number changes (gains or losses) in comparative genomic hybridization experiments by
a spatially structured mixture model with three components (gain, loss, normal) in Broët
and Richardson (2006). For typical noise-to-signal ratio, the authors found that classifying
DNA sequences with a posterior probability above 0.8 into the gain or loss components
gave good operational characteristics in this context, whereas the Bayes rule had poorer
performance.

When mixture models are estimated using empirical Bayes methods, without an estimate
of the number of genes in the null, the posterior probability of being allocated to the null
can only be estimated up to a constant. In this situation, the posterior odds ratio can be
used to rank genes:

Oddsg =
�(zg = 0|x)
�(zg �= 0|x) , (8.13)

(Lönnstedt and Speed, 2003; Smyth, 2004).

8.3.4.2 Models with Nonstructured Priors on Fold Change Parameters

In the nonmixture methods of the previous section, a variety of measures of differential
expression are used to classify genes. Baldi and Long (2001) and Smyth (2004) propose
the so-called regularized or moderated t-statistics. These consist of the Bayesian posterior
mean estimate of the log fold change parameter, divided by a shrunken estimate of
standard deviation. This shrunken estimate is the square root of the posterior mean of the
variance parameter, shrinkage being provided by the exchangeable prior on the variances
estimated in an expectation maximization (EM) framework.

The model used by Bhattacharjee et al. (2004) allows gene variances to take one of
three values (a mixture on gene variability). These can be used to classify genes into
groups based on their variability within and between tissues.

With a noninformative prior on the δg, Lewin et al. (2006) proposed a decision rule
based on a threshold δcut set according to a biologically interesting level of differential
expression. Differential expression is defined as δg being greater than δcut, corresponding to
an interval null hypothesis with the interval fixed a priori. The decision rule is that genes
are declared to be differentially expressed if the posterior probability �(|δg| > δcut|x)
is greater than some threshold probability (e.g. 0.5). This rule combines statistical and
biological significance.

When the interval for an interval null hypothesis is required not to be fixed a priori,
Bochkina and Richardson (2006) suggest two types of decision rule based on tail posterior
probabilities. They define a loss function

L ∝
∑
g∈S0

I [|δg| > θ(σg)|x]+ λ
∑
g∈S1

I [|δg| ≤ θ(σg)|x]. (8.14)

They consider two possibilities for θ : first, θ ∝ σg, which leads to a decision rule where S0
is defined as the group of genes with �(|δg/σg| ≤ T α|x) ≥ 1/(1+ λ), which is an analog
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of a t-statistic procedure. The second choice is with constant θ , in which case the decision
rule defines S0 as genes with �(|δg| ≤ δαg |x) ≥ 1/(1+ λ). A heuristic argument is used to
choose the thresholds T α and δαg ; these are defined as the percentiles of the distribution
of δg/σg or δg found by hypothetically conditioning on x̄g2 − x̄g1 = 0 in the model, e.g.
f (δg|x̄g2 − x̄g1 = 0, s2

g). Bochkina and Richardson (2006) also consider a one-sided rule
with threshold zero. This is shown to be equivalent to the moderated t-statistic of Smyth
(2004) (when the same variance model is used).

8.3.5 Multiclass Data

A number of models that extend the methods used for differential expression in two
conditions to compare expression in several conditions or classes have been proposed.
These might be used, e.g. to compare the actions of several drugs and a control sample
simultaneously, or to compare different tumor samples. As with the mixture models
described previously, it can be useful to describe the classification of genes in terms
of null and alternative hypotheses. There are a number of different choices of alternative
hypothesis for multiclass data. Here we discuss models that use hypotheses of the type ‘the
gene is differentially expressed (or not) in at least one condition’, without distinguishing
what the condition is. Section 8.4 deals with models that classify genes by clustering
them according to the pattern of expression across the experimental conditions, thus
distinguishing between being differentially expressed in condition 4 only and being
differentially expressed in condition 2 only, for example. An intermediate approach
is taken by Ishwaran and Rao (2005b) who, similarly to their work on differential
expression, formulate the multiclass analysis as a multivariate regression problem, use
variable selection and shrinkage to output lists of significant genes between any two
conditions and then use these lists to highlight patterns of interest between the conditions.

A common formulation is the classical analysis of variance (ANOVA) model, which
tests the null hypothesis ‘the gene has the same expression in all conditions’ versus
the alternative ‘the gene has differential expression in at least one condition’. This is
used in a Bayesian framework by Broët et al. (2004), who start with an F-statistic for
each gene. These F-statistics are transformed to the normal scale and modeled with a
two-component mixture to classify genes as differentially expressed or not differentially
expressed. The null component is a standard normal, while the alternative component is
modeled semiparametrically with a mixture of normals. This type of formulation is also
suggested by Smyth (2004), who uses moderated F-statistics, using shrunken estimates
of variances as with the moderated t-statistics (see Section 8.3.4).

A slightly different formulation is considered by Bochkina and Richardson (2006),
who use alternative hypotheses such as ‘the gene is DE in a set of pairwise comparisons
of interest’ versus a compound null, which is the opposite of this, i.e. genes are only
selected as being of interest if they show changes in a predefined set of comparisons of
interest.

8.4 CLUSTERING GENE EXPRESSION PROFILES

When gene expression is measured in several conditions simultaneously, the data is in
the form of a matrix xgc with the index c taking more than two values, c = 1, . . . , n. In
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this case, the interest focuses on finding groups of genes that have the same pattern of
coexpression across the conditions. These patterns are called expression profiles.

8.4.1 Unordered Samples

The models dealt with in this section are designed for experiments in which there is no
special ordering of the different conditions, e.g. several tumor samples. Most commonly,
this sort of data has no replicate measurements, or at any rate samples from different
individuals are not treated as replicates. When replicates under different conditions have
been measured, the modeling of the profiles can take this into account to improve the
classification (Medvedovic et al., 2004; Dahl, 2006). Even when there are no replicates,
the different samples can however be used together to estimate gene variances, even
though the samples have different expression levels.

Most of these models are based on a similar linear model to that in (8.6). It is convenient
to write the gene profile as a vector:

�xg = �µg + εg, (8.15)

where the vectors �xg and �µg are of length n. The normalization term is omitted here, as
most published Bayesian models do not include this term (instead requiring the data to
have been transformed in a suitable way beforehand).

Choices for the distribution used to model gene variability are similar to those discussed
in Section 8.3.2. Here our focus is on modeling the mean expression levels in the different
groups. As with the differential expression models, a mixture model can be put on the
�µg parameters, or on the data directly. The correspondence with null and alternative
hypotheses can also be carried forward to this type of model, though now there may
be several alternatives. The null is ‘no difference in expression across conditions’. The
alternatives are usually all possible patterns showing some difference, though Kendziorski
et al. (2003) allow the number of alternative patterns to be restricted, which is a useful
feature for large numbers of experimental conditions.

The probability of expression (POE) model of Parmigiani et al. (2002) and Garrett-
Mayer and Scharpf (2006) is a simple three-component mixture model on the data. Its
aim is to estimate allocation probabilities for each gene and condition to one of three
groups: reference, under-, and overexpressed. In its simplest form, biological information
is available to classify some indices c as giving ‘normal’, i.e. reference values. Reference
values are modeled as arising from a normal distribution with additive gene effects plus
global condition effects, whereas the under and over components are assumed to be
uniformly left or right shifted from the reference mean with a range to be estimated.
All unknown parameters are given prior distribution and the mixture is estimated in a
fully Bayesian way via MCMC algorithms, (Parmigiani et al., 2002). The output of this
mixture model is a simple transformation of the data matrix into a probability scale based
on an underlying assumption that the information in the expression values is essentially
categorical. In contrast to other work described below, clustering of the probabilities to
define interesting subgroups of genes is not attempted within the model, but the authors
suggest that data mining tools may be used at a second stage.

Kendziorski et al. (2003), Gottardo et al. (2006c) and House et al. (2006) suggest
models for clustering gene expression profiles using a mixture model on the parameters
�µg . These models are extensions of those used in differential expression, and are
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formulated via combinations of point masses and continuous distributions for the various
hypotheses/clusters. Kendziorski et al. (2003) extend the model of Newton et al. (2004),
described in the differential expression section, to a mixture model on gene expression
profiles. As an example, when there are three experimental conditions, the gene expression
parameters are µg1, µg2, µg3. There are five possible patterns for a profile over three
conditions: one pattern with µg1 = µg2 = µg3, three patterns with two of the µgc equal
to each other and the third drawn from a separate distribution, and one pattern where
all three µgc are drawn from different distributions. Their implementation allows the
restriction to a few interesting patterns, as the number of possible patterns increases
rapidly with the number of conditions. One version of the model of Kendziorski et al.
(2003) is an extension of that used in Newton et al. (2004) where the likelihood is a
gamma and the mean expression parameters have gamma priors. They also look at a
version with lognormal likelihood and normal priors. Gottardo et al. (2006c) propose a
similar model for profiles, implemented for three experimental conditions. This model is
an extension of their differential expression model mentioned in Section 8.3.3, using log
normal likelihood and normal priors. They automatically consider all possible patterns.
House et al. (2006) give another similar model, this time implemented in five conditions.

Vogl et al. (2005) gives an example of a mixture model on the data (see Section
8.3.3 for more explanation on mixture models). In this case �µg is replaced by �µk in
(8.15), where k labels the mixture component and the mixture allocation parameter zg is
equal to k. This model assumes a normal distribution for each mixture component, with
variance σ 2

k , i.e. equal variance for all genes in the same component. Note that gene
variances integrated over different allocations will not be equal for all genes, as different
genes will be allocated to different combinations of mixture components. The prior used
in Vogl et al. (2005) for the �µk is a conjugate prior, with independence between different
experimental conditions. The number of clusters k = 1, . . . ,K is estimated in the model
along the lines of Richardson and Green (1997). This model does not in fact automatically
include the null cluster of equal expression in all conditions. Figure 8.4 shows some of
the gene profiles found by Vogl et al. (2005) for the Spellman cell-cycle data (Spellman
et al., 1998). Different clusters of genes peak at different phases of the cell cycle.

Rather than using finite mixture models for clustering profiles, a number of authors
(Medvedovic et al., 2004; Dahl, 2006; Lau and Green, 2006a; 2006b) have recently
developed fully Bayesian profile clustering, based on DPMs. In this setup, it is assumed
that gene profiles characterized by parameters �µg, g = 1, . . . , p are clustered according to
a tractable distribution on partitions corresponding to the Dirichlet process and that, within
each cluster, the profiles follow the same distribution. DPM is a popular formulation for
implementing clustering and partitions models. Indeed, besides their representation as
infinite mixtures (see Section 8.3.3), DP models with baseline distribution G∗ and scalar
α can be equivalently defined via a prior structure on the space C of partitions of p items
(here the genes) into K clusters, {1, . . . , p} = ⋃K

k=1 Ck , with pk items in cluster Ck , a
joint distribution on the partition given by:

p(C1, C2, . . . , CK) =
αK�(α)

∏K
k=1(pk − 1)!

�(α + p) ,

associated i.i.d. draws of �µ∗k from G∗, k = 1, . . . , K , and setting �µg = �µ∗k if g ∈ Ck .
Authors differ in their choice of specification of the base measure distribution, and in

whether they choose a fully conjugate specification between the mixture kernels for the
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Figure 8.4 Clusters of cell-cycle-regulated genes found in the Spellman et al., 1998 data using the
model of Vogl et al., 2005. [Reprinted from Vogl, C., Sanchez-Cabo, F., Stocker, G., Hubbard, S.,
and Wolkenhauer, O. (2005). A fully Bayesian model to cluster gene-expression pro les. Bioinfor-
matics 21, ii 130–ii 136, by permission of Oxford University Press.]

data part of the model and the base measure. In Lau and Green (2006b), the standard
DPM approach is extended by replacing the DP model by a variant in which there is
a background cluster not exchangeable with the others and in which there is a different
prior distribution of the cluster-specific parameters. Fully conjugate specification (Dahl,
2006; Lau and Green, 2006a; 2006b) is computationally advantageous as all the cluster
parameters can be integrated out and efficient MCMC algorithms that update solely the
partition can be used. Within cluster, posterior distributions for the parameters are then
sampled, conditional on the partition.

In general, drawing inference from the complex posterior clustering distribution is
not straightforward and, as the number of partitions grows rapidly with increasing p,
recording the partition with the highest posterior probability does not guarantee that it
is close to the posterior mode. Medvedovic et al. (2004) suggest computing the pairwise
posterior probabilities for two genes to be in the same cluster and then postprocessing
this output by traditional hierarchical clustering algorithms. Dahl (2006) proposes that,
among all the observed clustering, the clustering that minimizes, in the least square
sense, the distance between its 0-1 association matrix and the estimated pairwise posterior
probabilities be chosen. Lau and Green (2006a) have formulated a Bayesian solution to
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define the optimal clustering that optimizes a posterior expected loss function. This loss
function penalizes pairs that are clustered together when they should not be and vice
versa. They derived an efficient approximation to define the optimal clustering. Heard
et al. (2006a) propose a hierarchical algorithm that approximates the posterior mode in a
Bayesian clustering model without requiring MCMC computations (see next section for
details).

It is possible to apply the models presented above to time-course or dose–response
data, where there is an ordering of the samples, e.g. in Medvedovic et al. (2004) and
Vogl et al. (2005). In these examples, the unordered sample models work well. However,
for data with less pronounced patterns, it is better to use models that take into account
the ordering information, such as those presented in the next section.

8.4.2 Ordered Samples

Models for ordered samples also usually start with a linear model,

xgt = µgt + εgt , (8.16)

where again we omit the normalization term, as this is usually assumed to be already
taken care of. We use the index t for the ordered data points. For convenience we refer to
these as time points, though they could be any ordered data. This type of data tends not
to have repeated measurements for the same time point. Because of this, it is not possible
to estimate separate µgt for each gene and perform clustering on them. The mixture prior
for clustering must be at the data level, i.e. µgt is replaced by µkt , where k labels the
mixture component to which gene g is allocated.

Two broad classes of models for dependence between time points have been proposed in
the literature. One class models the parameter at any given time t in terms of the previous
time point or several time points. The other class uses parametric basis functions to give
a shape to the parameters across the time points. Note also that the formulation presented
in Lau and Green (2006a; 2006b) allows the structuring of �µg as a linear function of
a fixed set of covariates, in particular time (or function thereof), and can thus be used
effectively for both ordered and unordered samples.

Ramoni et al. (2002) implement the first class of model, using an autoregressive (AR)
prior on the µkt (thus µkt is regressed on µk,t−1, . . . , µk,t−q , where q is the order of the
AR prior). The AR prior assumes a stationary time series, so it will not be appropriate
for many types of microarray data, especially as data is often measured at irregular time
points. The clustering used in this method is hierarchical and agglomerative, that is, the
posterior space of clusters is not explored fully, but a path is taken through the space in
a similar way to classical hierarchical clustering methods. The scoring function used to
decide which clusters are to be merged is based on ratios of posterior probabilities of the
original and merged partitions.

A more flexible model in this class is given in Wakefield et al. (2003) and Zhou and
Wakefield (2006), who use a random walk model on the µkt :

µkt = µk,t−1,+ut , (8.17)

where ut ∼ N(0, |Xt −Xt−1|τ 2) and Xt is the value of time at the t th time point. Thus the
closer adjacent time points are, the more dependent they are. This model is fitted in a fully
Bayesian way, with the number of clusters estimated as part of the model. Inference is
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made on the basis of posterior probability of cluster membership, with particular attention
given to finding pairs of genes with high probability of being allocated to the same cluster.
This is to find genes that are coexpressed.

A model in the second class is proposed by Heard et al. (2006a). This uses splines
(with degree to be chosen) as basis functions for the trajectories of the genes over time,

µkt =
∑
h

Xthβhk, (8.18)

where Xth is the (fixed) value of the hth basis function at time t and βhk is the coefficient
of the hth basis function for cluster k. By using a fully conjugate specification, the joint
distribution of the data conditional on any partition can be computed in closed form.
Hence the posterior probability of any partition can also be evaluated. The clustering
method exploits this and proceeds by an agglomerative algorithm similar to that used by
Ramoni et al. (2002), in order to find the partition that approximates the posterior mode.
Heard et al. (2006b) extend this model to time series taken in a number of different
conditions, and estimate covariance between time series in different conditions.

Wakefield et al. (2003) also fit a basis function model, for periodic data

µgt = Agsin(wXt )+ Bgcos(wXt ), (8.19)

applied to a cell-cycle data set.

8.5 MULTIVARIATE GENE SELECTION MODELS

In the previous sections, we have discussed gene expression association studies where
the aim is to find gene expression changes that relate to biological outcomes by
comparing, for each gene, their differential expression under different conditions, and
profile clustering where the interest is to find patterns of coexpressed genes across
different experimental conditions, in order to understand pathways. In this section,
we are concerned with a different, but related, problem, which is that of using gene
expression for phenotype prediction. Our aim here is to build multivariate molecular
profiles based on combination of the expression of a subset of genes that can characterize
different phenotypes (e.g. clinical outcomes). We are thus in the framework of multivariate
regression and classification models. The specific difficulty of genomic applications is that
there are typically many more covariates than samples: the so-called large p (thousands
of genes), small n (50–100 samples) regression paradigm, and consequently standard
regression/discrimination techniques do not apply. Further, the interest is in finding
parsimonious regression models that include only small subsets of genes so that biological
interpretation and validation can be attempted.

Bayesian approaches to multivariate gene selection have broadly followed two related
lines of development: (1) regression methods with covariate selection, (2) multivariate
regression with shrinkage priors that favor sparsity. We shall review these in turn. Mostly,
we shall discuss so-called supervised classification situations where the characteristic of
the samples that one wants to predict are known. Variable selection can also be performed
simultaneously with the task of uncovering clustering patterns of the samples in an
unsupervised manner.
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8.5.1 Variable Selection Approach

Suppose that we have potentially p predictor variables, each measured on a set of
n samples: xgc with g = 1, . . . , p and c = 1, . . . , n. Thus, for each predictor variable
g, we have a vector of n measurements �xg . For the present, the outcome variable,
yc, c = 1, . . . , n, can be continuous (e.g. measuring a biomarker) or categorical (e.g.
encoding a cancer subtype) and we denote the vector of regression parameters linking X
and Y as β, (these being the matrices for predictors and outcomes, respectively). Thus
βg is the regression parameter corresponding to the covariate �xg .

Bayesian variable selection (BVS) is usually implemented through a hierarchical model,
where all possible 2p models are represented by a p-dimensional indicator variable γ:

γg =
{

1 variable (gene) g is included
0 variable (gene) g is excluded

.

A prior on the model space can be specified via a prior p(γ). A common choice is
p(γ) = ∏p

g=1 π
γg (1− π)1−γg , and by choosing small π , the number of variables selected

can be controlled. Alternatively, a beta prior distribution can be assumed for π and the
sparsity of the regression only controlled by the choice of prior for the βs.

This generic approach to variable selection, often referred to as the spike and
slab approach, was taken in Mitchell and Beauchamp (1988), George and McCulloch
(1993; 1997) and in many subsequent papers (Clyde, 1999; Brown et al., 1998; 2002).
Much of the work on BVS was developed for linear models where yc is continuous. In this
context, authors differ in the choice of the prior distribution for β, in particular whether
the components of β are treated as independent, and whether a conjugate formulation is
chosen so that the prior on β includes the noise parameter of the linear model. Typically,
the prior for β is formulated via a mixture. Most models define a point mass at zero for
βg when γg = 0, while when γg = 1, large variances are favored with a distribution to be
specified. Ishwaran and Rao (2003; 2005a; 2005b) use a modified spike and slab model
that assumes a continuous bimodal prior for βg , a scale mixture of two centered normals,
one having a small variance. They show that this prior is useful in gene expression; see
Sections 8.3.3 and 8.3.5. In the common case of a prior for βg with a point mass at zero,
for ease of notation, we shall denote all nonzero elements of β by βγ , and correspondingly,
we denote the columns of X corresponding to those elements of γ equal to 1 by Xγ .

A standard choice of prior for βγ is the so-called g prior, where βγ ∼ N(0, c(Xγ T
Xγ )

−1), where c is a positive scale factor to be chosen. Similarly, if independent normals
are specified for the components of β, again a scalar has to be chosen. These choices
influence the sparsity of the final regression model (Chipman et al., 2001) and a full
understanding of this aspect is the object of current research.

In the microarray context, because we are in a ‘large p, small n’ situation, the posterior
distribution over the model space of variable dimensions is multimodal. Moreover, full
posterior inference for the entire model space of size 2p is not feasible if p is larger than
about 20. Hence, MCMC methods are rather used as stochastic search algorithms with
the aim to quickly find many regions of high posterior probability. The Markov chain
needs to move quickly around the support of the posterior distribution and, as usual, it is
useful to integrate out as many parameters as possible. For this reason, conjugate settings
have been favored in the linear model. When proposing changes to γ, a key question is
how to propose sensible changes to the regression vector β. The current parameter values
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may be of little relevance in this case and joint moves that simultaneously update γ and
β produce an improvement (Holmes and Held, 2006).

Much of the application of variable selection in microarrays has concerned binary or
categorical variables rather than the linear model. Typically, samples are classified as good
or poor prognosis or linked to different clinical subentities, like subtypes of cancer. There
is no immediate conjugate formulation of Bayesian categorical regression, but following
the approach of Albert and Chib (1993), probit regression can be efficiently implemented
through the use of latent auxiliary variables, which allows integration of the regression
coefficients in the full conditional distribution of the indicator variables γ. This approach
was taken by Lee et al. (2003) and Sha et al. (2004). These authors have implemented
different MCMC schemes for updating γ (Gibbs sampling in Lee et al. (2003), which will
tend to be slow mixing, Metropolis with add/delete/swap moves in Sha et al. (2004)). In a
recent paper, Holmes and Held (2006) have proposed an auxiliary variable formulation of
the logistic model, which allows, in a similar way to the probit model, integration of the
regression coefficients when updating the indicator variables, thus improving mixing. For
both probit and logistic regression models, the calibration of the prior distribution of the
regression coefficients again influences the outcome of the variable selection process. In
this respect, the logistic regression, which is more commonly used for binary regression,
is easier to calibrate than the probit model as it has heavier tails and so exhibits less
sensitivity.

In general, MCMC variable selection algorithms in high dimension are difficult to
implement owing to slow convergence. Recent developments in stochastic simulation
algorithms, such as population-based reversible jump MCMC and the use of parallel
tempered chains seem promising (Jasra et al., 2006). An alternative search algorithm, the
shotgun stochastic search method, which is close in spirit to MCMC but aims to search
rapidly for the most probable models, has been recently proposed by Hans et al. (2007).
Note that it is a discussion point whether to report models with high posterior probabilities
and their associated variables, or to extract marginal information about the selected
variables by looking at their marginal posterior probabilities of inclusion (Sha et al., 2004).

We end this section by referring to the recent work of Tadesse et al. (2005) and Kim
et al. (2006) where variable selection and clustering of the samples are performed simul-
taneously. This joint modeling is motivated by the remark that using a high-dimensional
vector of gene expression to uncover clusters among the samples might not be effective
and on the contrary can tend to mask existing structure, while a more parsimonious model
that selects a only a small subset of covariates to inform the clustering is more easily inter-
pretable. Such joint modeling was discussed in a Bayesian context in two related papers,
which differ in their model for the clustering structure. Tadesse et al. (2005) formulate
their clustering structure using a finite mixture of multivariate normals with a variable
number of components and use reversible jump techniques to explore different structures,
while Kim et al. (2006) exploit the computational benefits of DP mixtures.

8.5.2 Bayesian Shrinkage with Sparsity Priors

An alternative approach to BVS for selecting a small number of regressors is to use
a hierarchical formulation of the regression problem with a prior on the regression
coefficients that favors sparsity. Effectively, a large number of regression coefficients are
essentially set to zero by having very small posterior values. Note that different choices of
prior and hierarchical structures can be interpreted as different choice of penalties if one
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adopts the point of view of penalized likelihood, framework into which ridge regression
and other shrinkage methods can be cast.

A general formulation that encompasses many of the models that have been proposed
is that of scale mixture of normals. In this formulation, the regression coefficients βg
are given independent normal priors: βg ∼ N(0, τg), and the variances τg are themselves
given a hyperprior distribution: τg ∼ p(τg). Choice of this prior distribution leads to a
different kind of sparsity for the βs, but all priors used have in common the desirable
feature that the integrated prior for β is a heavy tail distribution with a peak around zero,
thus favoring only a small number to be substantially different from zero. Note that a
Laplace prior for βg , which corresponds to a Lasso type penalization, can also be written
as a scale mixture of normals with p(τg) being a one-parameter exponential distribution,
(Griffin and Brown, 2005).

Bae and Mallick (2004) implement three different choices of prior for τg in the context
of gene expression studies: an inverse γ with two hyper parameters that are chosen in
order to favor large variances, a Laplace prior with one parameter and a Jeffreys improper
prior (which implies an improper prior of the form 1

βg
for βg). They found that Jeffreys

prior induces more sparseness than the Laplace prior and yields good performance. There
is currently a lot of interest in using general families of scale mixtures and in calibrating
them for efficient inference in high-dimensional setups (Griffin and Brown, 2005).

Sparsity priors can also be used in the context of latent factor models (West, 2003;
Lucas et al., 2006). Modeling high-dimensional data via latent factor models is a powerful
dimension reduction technique that allows the identification of patterns of covariation
among genes. In their application of factor models to the analysis of gene expression
data, West (2003) and Lucas et al. (2006) further structure the factor loading matrix to
encourage sparsity via a mixture prior with point mass at zero. A biological interpretation
of the factors as potentially representing biological pathways is then derived by examining
the list of genes most weighted on each factor.
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The ability to monitor transcript levels in a comprehensive fashion allows for a more general
characterization of transcriptional networks and their relationship to disease and other complex
physiological processes. Information on how variations in DNA impact complex physiological
processes flows through the transcriptional networks. Therefore, integrating DNA variation, tran-
scription, and phenotypic data has the potential to enhance identification of the associations between
DNA variation and disease, as well as characterize those parts of the molecular networks that drive
disease. Toward that end, we discuss mapping expression quantitative trait loci (eQTL) for gene
expression traits and then detail a method for integrating eQTL and expression and clinical data
to infer causal relationships among gene expression traits and between expression and clinical
traits. We further describe methods to integrate these data in a more comprehensive manner by
constructing coexpression gene networks, which leverage pair-wise gene interaction data to repre-
sent more general relationships. To infer gene networks that capture causal information, we describe
a Bayesian algorithm that further integrates eQTL and expression and clinical phenotype data to
reconstruct whole gene networks capable of representing causal relationships among genes and traits
in the network. These emerging high-dimensional data analysis approaches, that integrate large-scale
data from multiple sources, represent the first steps in statistical genetics moving away from consid-
ering one trait at a time and toward operating in a network context. Evolving statistical procedures
that operate on networks will be critical to extracting information related to complex phenotypes
like disease, as research goes beyond the single-gene focus. The early successes achieved with
some of the methods described herein suggest that these more integrative genomics approaches
to dissecting disease traits will significantly enhance the identification of key drivers of disease
beyond what could be achieved by genetics alone.
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9.1 INTRODUCTION

DNA microarrays have revolutionized the way we study genes and the role they play
in everything from the regulation of normal cellular processes to complex diseases
like obesity and cancer. High-throughput DNA microarray technologies are capable of
simultaneously providing quantitative measures of RNA present in cells or tissue samples
for tens of thousands of protein-coding genes, in addition to other noncoding transcribed
sequences. The quantitative measures of transcript abundances in cells are often referred
to as gene expression traits. In their typical use, microarrays allow researchers to screen
thousands of genes for differences in expression or differences in how genes are connected
in the network (Schadt and Lum, 2006) between experimental conditions of interest (see
Chapter 6, Sections 4 and 5, and also Chapters 7 and 8). These data are often used
to discover genes that differ between normal and diseased tissue, to model and predict
continuous or binary measures, to predict patient survival, and to classify disease or tumor
subtypes. Because gene expression levels in a given sample are measured simultaneously,
researchers are able to identify genes whose expression levels are correlated, implying an
association under specific conditions or more generally.

Causal associations among genes or between genes and traits have also been investi-
gated using time series experiments, gene knockouts or transgenics that overexpress a gene
of interest, RNAi-based knockdown or viral-mediated overexpression of genes of interest,
and chemical activation or inhibition of genes of interest. However, recently a number
of studies have demonstrated that naturally occurring DNA polymorphism can be used to
help establish causal associations, since gene expression and other molecular phenotypes
in a number of species have been shown to be significantly heritable and at least partially
under the control of specific genetic loci (Jin et al., 2001; Brem et al., 2002; Klose et al.,
2002; Oleksiak et al., 2002; Schadt et al., 2003; Monks et al., 2004; Morley et al., 2004;
Hubner et al., 2005; Stranger et al., 2005; DeCook et al., 2006). By examining the effects
that naturally occurring variations in DNA have on variations in gene expression traits
in human or experimental populations, other phenotypes (including disease) can then be
examined with respect to these same DNA variations and ultimately ordered with respect
to genes to infer causal control (Figure 9.1) (Mehrabian et al., 2005; Schadt et al., 2005;
Kulp and Jagalur, 2006; Lum et al., 2006). The power of this integrative genomics strategy
rests in the molecular processes that transcribe DNA into RNA and then RNA into protein,
so that information on how variations in DNA impact complex physiological processes
often flows directly through transcriptional networks. As a result, integrating DNA vari-
ation, transcription, and phenotypic data has the potential to enhance identification of the
associations between DNA variation and disease, as well as characterize those parts of
the molecular networks that drive disease.

A number of groups have now published on approaches for identifying key drivers of
complex traits by examining genes located in regions of the genome genetically linked to a
complex phenotype of interest, and then looking for colocalization of cis-acting expression
quantitative trait loci (eQTL) for those genes residing in a genomic region linked to the
phenotype (Jansen and Nap, 2001; Brem et al., 2002; Schadt et al., 2003; Monks et al.,
2004; Morley et al., 2004; Alberts et al., 2005; Chesler et al., 2005; Cheung et al., 2005;
Schadt et al., 2005; Petretto et al., 2006a; 2006b). Those genes with (1) expression values
that are significantly correlated with the complex phenotype of interest (including disease),
(2) transcript abundances controlled by QTL that colocalize with the phenotype QTL, and
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Figure 9.1 Possible relationships between phenotypes with and without genetic information.
Edges between nodes in each of the graphs represent an association between the nodes. A directed
edge indicates a causal association between the nodes. (a) A subset of the number of possible
relationships between three variables. (b) The set of possible relationships between two traits and
a controlling genetic locus, when feedback mechanisms are ignored.

(3) physical locations supported by the phenotype and expression QTL are natural causal
candidates for the complex phenotype of interest. Since DNA variation leads to changes
in transcription and other molecular trait activity, it can be used to partition the thousands
of gene expression traits that may be correlated with a given phenotype into sets of genes
that are supported as causal for, reacting to, or independent of the given phenotype. The
key to the success of this approach is the unambiguous flow of information from changes
in DNA to changes in RNA and protein function (Figure 9.1). That is, given that two traits
are linked to the same DNA locus, and a few simplifying assumptions discussed below,
there are a limited number of ways in which such traits can be related with respect to that
locus (Schadt, 2005; 2006; Schadt et al., 2005), whereas in the absence of such genetic
information, many indistinguishable relationships would be possible, so that additional
data would be required to establish the correct relationships.

Here we discuss mapping eQTL for gene expression traits and then detail a method for
integrating eQTL and expression and clinical data to infer causal relationships among gene
expression traits and between expression and clinical traits. We further describe methods
to integrate these data in a more comprehensive manner by constructing coexpression
gene networks, which leverage pair-wise gene interaction data to represent more general
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relationships. This type of network provides a useful construct for characterizing the
topological properties of biological networks and for partitioning such networks into
functional units (modules) that underlie complex phenotypes like disease. However,
these networks are, by design, undirected and so do not capture causal relationships
among genes. To infer gene networks that capture causal information, we describe a
Bayesian algorithm that, like the methods operating on only two or three expression
traits and/or clinical traits mentioned above, integrates eQTL and expression and clinical
phenotype data to reconstruct whole gene networks capable of representing direction
along the edges of the network. Here, directionality among the edges corresponds to
causal relationships among genes and between genes and clinical phenotypes. These
emerging high-dimensional data analysis approaches, which integrate large-scale data
from multiple sources, represent the first steps in statistical genetics moving away from
considering one trait at a time and toward operating in a network context. Evolving
statistical procedures that operate on networks will be critical to extracting information
related to complex phenotypes like disease, as research goes beyond the single-gene focus.
The early successes achieved with some of the methods described herein suggest that
these more integrative genomics approaches to dissecting disease traits will significantly
enhance the identification of key drivers of disease beyond what could be achieved by
genetics alone.

9.2 AN OVERVIEW OF TRANSCRIPTION AS A COMPLEX PROCESS

Messenger ribonucleic acid (mRNA) is an intermediate product of a process that generates
protein starting with DNA, where DNA is transcribed to produce RNA, and then RNA
is translated to produce protein. The nucleus is where DNA is transcribed into its RNA
analog, and in the case where RNA corresponds to a protein-coding gene, the RNA is
processed into a mature mRNA form. The mRNA then migrates to the cytoplasm where
it is translated, via tRNA, into a protein, which is often considered the functional product
of the gene itself. Thus, gene expression measures corresponding to protein-coding genes
are surrogates for either the state of a protein or the amount of protein that is being
produced by the corresponding gene. Therefore, the amount of mRNA detected in the
cytoplasm of a cell is seen to be the result of a number of different molecular processes,
including the transcription process itself, the rate of RNA degradation (which is sequence
specific and often sensitive to different functional forms of a protein), transport from the
nucleus, and alternative splicing (a microarray probe may target a part of the transcript
that is alternatively spliced).

The overall regulation of transcription is a complex process, especially in eukaryotic
cells. Transcription in all types of cells begins when RNA polymerase binds to specific
DNA sequences known as promoters, which are generally located close to the 5′ end
of the gene. In order to prevent the binding of the polymerase, and thus regulate the
otherwise constant transcription of a given gene sequence, many genes have negative
control elements called operators, which when bound by specific proteins called repressor
proteins prevent the binding of the polymerase to the promoter region. Using these
simple positive and negative controllers, cells can regulate the transcription of DNA
sequences in response to specific conditions or, as appropriate, for a given tissue type.
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In eukaryotes, promoters and operators are usually complemented by other regulatory
sequences that can operate at much longer distances, often tens of kilobytes or even longer.
Some elements, like enhancers, encourage and speed up transcription, while others, like
silencers, discourage and slow down transcription. While promoters and operators cause
binary, on/off regulation, enhancers and silencers can have much more subtle effects
on transcription. Nevertheless, mutations in any of these sequence elements can alter
gene expression at the basal level or affect a gene’s ability to react under varied cellular
conditions. These regulatory elements, which occur in or near the gene transcription
region, are referred to as cis-acting elements (Figure 9.2).

Complementary to the sequence-based regulatory elements are the protein elements that
interact with the sequence elements to regulate transcription. Repressor proteins are one
example of regulatory proteins that directly bind to DNA sequences. Other proteins may
bind to the promoter region to increase the affinity of RNA polymerase to the region and,
thus, are positive controllers of transcription. In eukaryotes, in order for polymerase to
bind the DNA and begin transcription, a number of additional molecules must first bind
the promoter region. These transcription factor binding–associated proteins (TAFs) form
transcription factor complexes that help position the polymerase in the promoter region.
This complex alone provides basal regulation of transcription but may also be enhanced by
additional ancillary proteins called activators, which bind to enhancer sequence elements
to speed transcription. Repressor proteins may bind to silencer sequence elements in the
DNA as well to slow transcription. Of course, these regulatory proteins may themselves
be regulated, where feedback control or other such processes are known to regulate the
quantities of these proteins in the cell. Other regulatory proteins may require that allosteric
effectors be in their active form or that they become inactivated by effector proteins. Other
proteins may inhibit the formation of the transcription factor complexes. These elements,

(a)

(d)

(b) (c)

Figure 9.2 Mapping proximal and distal eQTL for gene expression traits. The white rectangles
represent genes that are controlled by transcriptional units. The ellipses represent the transcriptional
control units, which could be transcription regulatory sites, other genes that control the expression
of the indicated gene, and so on. (a) Cis-acting control unit acting on a gene. DNA variations in
this control unit that affected the gene’s expression would lead to a cis-acting (proximal) eQTL.
(b) cis and trans control units regulating the indicated gene. DNA variations in these control units
that affected the gene’s expression would lead to proximal and distal eQTL. (c) cis control unit and
multiple trans control units regulating the indicated genes. DNA variations in these control units
would lead to a complex eQTL signature for the gene. (d) A single control unit regulating multiple
genes. DNA variations in this single control unit could lead to a cluster of distal eQTL (an eQTL
hot spot).
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which are usually coded for far from the genes they regulate, are called trans-acting
elements (Figure 9.2).

The view of transcription just discussed, although necessarily simplified for this
presentation, highlights that it is indeed a complex process, and with the recent discovery
of large numbers of noncoding ribonucleic acids (ncRNAs), many of which have already
been shown to regulate transcription, the complexity of how cells regulate transcription
will no doubt be shown to be more complex than we can appreciate at this time. Variations
in transcript abundances can be caused in a number of ways, many of which are ultimately
due to variation in genetic sequences, where altering the sequence in the regulatory region
or altering the proteins or quantity of the proteins that bind to these regions results in
variations in transcript abundances. Additionally, the rate of transcription of degradation
of gene transcripts can also be affected by ncRNAs. One class of ncRNAs currently
under intense study because of their regulation of transcription is micro-RNAs. These
small molecules bind to specific sequences in the mRNA, so that mutations in the DNA
encoding either the micro-RNA or the gene transcript can alter the binding affinity and thus
the rate of degradation. Whether variations in gene expression are due to changes in the
rate of transcription, degradation, transcript transport from the nucleus, alternative splicing,
or other such processes, these encoding or micro-RNA variations can be comprised of
genetic and environmental components, which when properly identified and integrated
with other information can lead to the identification of key drivers of complex phenotypes
like disease.

9.3 HUMAN VERSUS EXPERIMENTAL MODELS

eQTL analysis can be done using either designed crosses of experimental organisms or
natural segregating populations, like humans, using methods appropriate for the study
design (Chapters 18, 19, 20, 32, 33, 34, 35, 36, 37 and 38). eQTL mapping has been
successful both in animal crosses and in humans using both linkage and association. The
choice of animal model versus human should depend on many factors that include the
goal of the study and the availability of tissue samples in the chosen population.

In humans, there are two primary difficulties that make these studies less common.
First is the availability of tissue samples. Preliminary studies in humans were done using
lymphoblastoid cell lines, and with the exception of cell types that can be extracted from
blood, the procurement of most tissue types of interest is relatively invasive and often
prohibitive in most circumstances. Another barrier to performing these types of studies
in humans is that of power, which is always an issue when choosing between human
and designed animal experiments, due to the lack of full informativeness in human data.
In the situation of eQTL mapping, the issue of power is exacerbated by the multiple
testing issues that are obtained in examining thousands of expression traits rather than
one or few physical phenotypes. Studies must be appropriately powered to distinguish
signal from noise given both the dimentionality of the expression data and the size of the
genome.

Crosses of inbred lines in animal models are more informative in terms of identi-
fying the grandparental source of alleles; therefore, fewer individuals are required to
detect QTL. Additionally, tissue samples of all types are more readily available in
animal experiments than they are from human. Still, questions exist about the validity
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of extending the results from animal to human. Additional experiments are always
required to validate findings in human. Crosses of inbred lines are also limited by
the genetic differences between the two parental lines. Because all inbred strains are
related in some manner, between any two strains there is always some portion of the
genome that is nonvarying (identical by descent) between the two, and, thus, identi-
fiable QTL are limited to those at loci segregating polymorphisms. These are likely
to be fewer in number than in a natural population. As a result, no one experi-
ment can fully identify all eQTL and findings from one cross may not replicate in
another.

9.4 HERITABILITY OF EXPRESSION TRAITS

As a quantitative measure, gene expression can be treated as any other quantitative
trait in a genetic analysis. A variety of linkage methods for the analysis of quantitative
traits are described in Chapters 18, 19 and 20, which are just as useful for identifying
genetic controllers of gene expression as they are for, say, regulation of plasma LDL
cholesterol levels. This premise, of course, is only valid if expression is, indeed, a trait
under genetic control. Thus, characterizing the proportion of the trait variance that is
attributed to genetics (i.e. the heritability, see Chapter 32, Section 3) over a large set
of gene expression traits provides important information about the landscape of genetic
control, and ultimately determines how useful eQTL mapping strategies are. For instance,
if the genetic component of expression control is vastly outweighed by environmental
factors and measurement error, then strategies to map genetic contributions and ultimately
correlate these contributions with complex disease will fail.

Equally important is identifying the types of expression traits that are heritable. Many
studies have identified gene transcripts that (1) are associated with complex disease
phenotypes (Karp et al., 2000; Schadt et al., 2003), (2) are alternatively spliced (Johnson
et al., 2003), (3) elucidate novel gene structures (Shoemaker et al., 2001; Mural et al.,
2002; Schadt et al., 2004), (4) can serve as biomarkers of disease or drug response
(DePrimo et al., 2003), (5) lead to the identification of disease subtypes (van ’t Veer
et al., 2002; Mootha et al., 2003; Schadt et al., 2003), and (6) elucidate mechanisms of
drug toxicity (Waring et al., 2001). However, identifying the heritable traits and the extent
of their genetic variability provides insight about the evolutionary forces contributing to
the changes in expression that associate with biological processes that underlie complex
traits like disease, beyond what can be gained by looking at the transcript abundance data
alone.

Estimates of genetic heritability can be made with or without the aid of genetic marker
data. In the absence of genetic marker data, the correlation between the trait values of
related individuals provides information about the heritability of a trait by identifying
the extent to which an individual’s trait values can be predicted from their relatives. In
outbred populations, traditional methods involve regressing an offspring’s trait value on
those for the parents, comparing the within-family variance for groups of siblings to the
among-family variance in an ANOVA, or contrasting the correlation between pairs of
monozygotic and dizygotic twins. In general outbred pedigrees, the heritability can be
estimated using linear mixed models as in Section 3.2 of Chapter 19. In the absence of
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genetic marker information, however, specific QTLs are not modeled. Instead, the mixed
model contains only the fixed covariate effects and the random polygenic effect

y = Xβ+ Zu+ e, (9.1)

where
u ∼ N(0,Aσ 2

u ),

Here A is twice the kinship matrix and σ 2
u is the additive genetic variance of the trait, so

that σ 2
u /σ

2
y is the narrow-sense heritability. This polygenic model assumes many loci with

small effects (i.e. assumes the trait is complex), but these assumptions may be violated
in the presence of one or few loci with strong effects.

When a major gene contributes to the trait and genotype data is available, better
estimates of the genetic variance can be made by including allelic or genotypic effects
at a QTL locus or loci using the models in Sections 3.2 and 3.3 of Chapter 19. This
is identical to performing linkage analysis through variance components methods. Here,
summing over the appropriate variances for the QTL and polygenic components provides
an estimate for the genetic variance. Bayesian MCMC (Markov chain Monte Carlo)
methods (see Section 4.3 of Chapter 19) can provide more accurate estimates of the
genetic variance, as well as estimates of the number of major genes, by sampling over the
space of genetic models conditional on the data. The drawback to this type of approach,
when the number of traits being mapped is high, is that it is computationally intensive,
and the interpretations are not as clear-cut as point estimates obtained from frequentist
methods. However, even when computation time is a constraint, appropriate filters can
be applied to reduce the number of expression traits to consider in such an analysis. For
example, one may choose to restrict attention to those genes with at least one eQTL at
a relatively loose significance threshold. Brem and Kruglyak (2005) found 132 genes
with QTLs significant at the 5× 10−4 level, which provides a much smaller set of
genes to consider, compared to the tens of thousands of genes that were profiled in
this study.

Linkage approaches can also be used to estimate the genetic variance contribution in
crosses of inbred lines (Brem and Kruglyak, 2005). However, in this case, care should be
taken in the extrapolations made. Conclusions in these analyses apply only to populations
founded by the same parental strains and are limited by the extent and pattern of identity
by descent (IBD) between them. Here, estimates should be made in the presence of genetic
marker data. The power of segregation approaches is limited because, in common inbred
line designs such as F2 intercrosses or backcrosses, the subjects are genetically equivalent
to one large sibship. Because the relationship between each pair of individuals is identical,
the kinship coefficient among all pairs is also identical, resulting in no power to estimate
the polygenic component. In order to estimate the genetic variance of a trait, each genetic
contribution must be modeled explicitly. Further discussion of multilocus models is given
in the following section.

9.5 JOINT eQTL MAPPING

Ultimately, expression traits are quantitative measures that can be analyzed like any
other quantitative trait. The difficulty in analysis and interpretation comes with the large
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number of traits examined. Whatever method is ultimately chosen must be computationally
tractable enough to be performed hundreds of thousands of times. In addition, significance
thresholds must be adjusted for multiple testing. Multiple testing issues relate not only to
the number of transcripts tested but also to the number of markers or proportion of the
genome tested. Further, single-trait analyses lose information by ignoring the correlation
between associated expression traits. Appropriately chosen joint mapping methods can
leverage trait correlation and more elegantly handle multiple testing.

Typical approaches to the joint analysis of genetic traits involve mapping each gene
expression trait individually and inferring the genetic correlation between pairs or sets
of expression traits based on pair-wise Pearson correlation, eQTL overlaps, and/or tests
for pleiotropy. Using a family-based sample, Monks et al. (2004) estimated the genetic
correlation between pairs of traits using a bivariate variance-component-based segregation
analysis, and showed that the genetic correlation was better able to distinguish clusters of
genes in pathways than correlations based on the observed expression traits. This method
is similar to single-trait variance-component-based segregation analysis as in (9.1). For
two trait vectors v and y, let t denote the bivariate trait vector

t =
[

v
y

]
,

with piecewise mean vector

µt =
[
µv
µy

]
.

The partitioned covariance matrix can be written as

Vt =
[

Vv Vvy
Vvy Vy

]
,

where Vv and Vy are the univariate covariance matrices for traits v and y respectively.
More details are available in Section 3.3 of Chapter 19. The trait covariance matrix Vvy
is modeled as

Vvy = Aσ 2
uvy + Iσ 2

evy,

where A is twice the kinship matrix, I is the identity matrix, σ 2
uvy is the genetic covariance

between the two traits, and σ 2
evy is the nongenetic covariance. The genetic and nongenetic

covariances can be expressed in terms of the genetic and nongenetic correlation as

σ 2
uvy = σuvσuyρuvy,

and
σ 2
evy = σevσeyρevy,

where σuv and σuy are the square root of the genetic variances for traits v and y, σev and
σey are the square root of the environmental variances, and ρuvy and ρevy are the genetic
and nongenetic correlations respectively.

These methods can be extended to perform bivariate and multivariate linkage analysis,
which can be more highly powered to detect linkage when traits are correlated. Clusters
of correlated gene expression traits can often contain hundreds or thousands of genes,
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which would be computationally prohibitive in a joint analysis. Kendziorski et al. (2006)
approached this problem in a different way by employing a Bayesian mixture model to
exploit the increased information from the joint mapping of correlated gene expression
traits, which is computationally tractable for large sets of genes. Instead of doing a linkage
scan by computing LOD scores at positions along the genome, Kendziorski et al. (2006)
compute the posterior probability that a particular gene expression trait maps to marker
m for each marker, as well as the posterior probability that the trait maps nowhere in
the genome. More specifically, for a particular gene expression trait, k, from a correlated
gene cluster of interest, the marginal distribution of the data, yk , is

p0f0(yk)+
∑
m

pmfm(yk),

where pm is the probability that the transcript maps to marker m and fm is the distribution
of the data if it does, p0 is the probability that the transcript does not map to the genome,
and f0 is the data distribution in this case. Given appropriate choices for the distributions,
model parameters can be estimated via the EM algorithm, and posterior estimates of {pm}
can be obtained. Nonlinkage is declared for a transcript if the posterior probability of
nonlinkage exceeds a threshold that bounds the posterior expected false discovery rate
(FDR). One benefit to this approach is that it controls false discovery for the number of
expression traits being tested, whereas assessing the appropriate significance cutoffs in
single-transcript linkage analysis often requires data permutation analyses. The drawback
is that this method assumes that linkage occurs at either one or none of the markers tested,
and lacks a well-defined method for the case when multiple eQTL control an expression
trait.

9.6 MULTILOCUS MODELS AND FDR

In the study of inbred strain crosses, the only valid way of estimating the extent of
genetic control of a given trait is to explicitly model each eQTL, including any epistatic
interactions if they exist. Brem et al. (2005) showed that epistatic interactions were
prevalent in the gene expression levels in yeast, and similar suggestions have been made
in other species as well (Schadt et al., 2005), but more definitive studies are needed to
characterize the extent of epistasis among eQTL in these other species. In the absence
of epistasis, the genetic contribution for each transcript can be estimated by summing
contributions for each individual eQTL, assuming that little or no allelic association
exists between the eQTL loci. In the presence of epistasis, however, this practice does
not yield a valid estimate, and multilocus models are required to obtain valid estimates.
Additionally, multilocus modeling can identify loci contributing to expression traits that
would have been missed in single-locus eQTL scans (Brem and Kruglyak, 2005; Storey
et al., 2005).

While forward selection methods for general regression cases, as with any greedy
algorithm, do not typically choose the best model, they have been shown to be consistent
in the linkage modeling framework (Broman, 1997). For further discussion of model
selection techniques, see Section 4.4 of Chapter 18. In the eQTL framework, given the
large number of tests being performed, particular care needs to be taken to limit the FDR.
Storey et al. (2005) suggest controlling the FDR at each stage of a forward model selection
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procedure, and they employ a Bayesian technique to estimate false positive probabilities.
In other words, the posterior probability of linkage at K loci is calculated as

Pr(loci 1, . . . ,K linked|data) = Pr(locus 1 linked|data)

× Pr(locus 2 linked|locus 1 linked, data)× · · ·
× Pr(locus K linked|loci 1, . . . , K − 1 linked, data).

At each stage of selection, the posterior probability of the new locus, conditional on
the data and the linkage of the previously selected loci is calculated. All traits with
Pr(loci 1, . . . , K linked|data) ≥ T, for some threshold T , are called significant. If, at any
stage, the model for a trait fails to be significant, the last significant model for that trait
is chosen and the selection procedure stops.

The posterior probability of linkage is estimated empirically by comparing the distri-
bution of conditional test statistics to the null distribution, which is estimated using
permutation methods. Thus, the high dimensionality of the data is exploited to estimate
empirically based on the data, instead of assuming a fixed prior. More specifically, let FiK
be the test of the model containing all K loci versus the model containing K − 1 loci at
stage K in the model selection procedure. The null distribution for this test statistic can
be obtained by permuting the data conditional on the first K − 1 loci, by permuting the
traits within each of the (K − 1)-locus genotype classes. This maintains the relationship
between the trait and the previously selected loci, but randomizes the trait with respect
to the remaining loci. For some number of permutations, let FbiK be the test statistic for
the ith trait and the bth permutation. The set of true test statistics {FiK} can be assumed
to be from a mixture of true tests and false tests, and the set of permuted test statistics
{FbiK} provides an estimate of the null distribution of test statistics. For a trait with test
statistic equal to some value F at the K th selection step, the posterior probability of no
linkage, conditional on previous linkages, can be estimated as∣∣{FiK ≤ F }∣∣∣∣{FbiK ≤ F ; b = 1, . . . , B}∣∣ /B ,
where | · | denotes the cardinality of the set. Note that, since this method relies on empirical
estimation of test-statistic distributions over the set of ‘active’ traits that were significant
at the previous step, the number of ‘active’ traits and the number of permutations must be
high enough to give reasonable estimates. When proceeding through the model selection
procedure, at the point in which the number of significant traits becomes sufficiently low,
this approach to error rate estimation becomes inaccurate, and the model selection should
stop.

This Bayesian model selection criteria lends itself well to the FDR concept because the
posterior probability of linkage can be used to estimate the number of false models,
where a false model is defined to be one in which at least one of the K selected
loci is not truly linked. In other words, a false discovery is one in which any of
the selected linkages is false. At any stage of the model selection, K , the FDR is
defined as the ratio of expected number of false discoveries to the number of signifi-
cant K-locus selections. The expected number of false discoveries can be estimated as∑
(1− Pr(loci 1, . . . , K linked|data)), where the summation is over the K-locus models

called significant based on the threshold, T .



MAPPING OF EXPRESSION QUANTITATIVE TRAIT LOCI 307

9.7 eQTL AND CLINICAL TRAIT LINKAGE MAPPING TO INFER
CAUSAL ASSOCIATIONS

While understanding the mechanisms of RNA expression is in itself important for
understanding biological processes, the ultimate use of this information is identifying the
relationship between variation in expression levels and disease phenotypes in an organism
of interest. Microarray experiments are commonly used to explore differential expression
between disease and normal tissue samples or between samples from different disease
subtypes (see Chapter 6 Sections 4–5, Chapters 7 and 8). These studies are designed
to detect association between gene expression and disease-associated traits, which in turn
can lead to the identification of biomarkers of disease or disease subtypes. However, in
the absence of supporting experimental data, these data alone are not able to distinguish
genes that drive disease from those that respond. As discussed above, eQTL mapping
can aid traditional clinical quantitative trait loci (cQTL) mapping by narrowing the set of
candidate genes underlying a given cQTL peak and by identifying expression traits that
are causally associated with the clinical traits.

Expression traits detected as significantly correlated with a clinical phenotype may
reflect a causal relationship between the traits, either because the expression trait
contributes to, or is causal for, the clinical phenotype, or because the expression trait
is reactive to, or a marker of, the clinical phenotype. However, correlation may also exist
in cases when the two traits are not causally associated. Two traits may appear correlated
due to confounding factors such as tight linkage of causal mutations (Schadt et al., 2005)
or may arise independently from a common genetic source. The Ay mouse provides an
example of correlations between eumelanin RNA levels and obesity phenotypes induced
by an allele that acts independently on these different traits, causing both decreased
levels of eumelanin RNA and an obesity phenotype. More generally, a clinical and
expression trait for a particular gene may depend on the activity of a second gene, in
such a manner that, conditional on the second gene, the clinical and expression traits are
independent.

Correlation data alone cannot indicate which of the possible relationships between
gene expression traits and a clinical trait are true. For example, given two expression
traits and a clinical trait detected as correlated in a population of interest, there are
112 ways to order the traits with respect to one another. That is, for each pair of
nodes, there are five possible ways the nodes can be connected: (1) connected by an
undirected edge, (2) connected by a directed edge moving left to right, (3) connected
by a directed edge moving right to left, (4) connected by a directed edge moving right
to left and a directed edge moving left to right, (5) not connected by an edge. Since
there are three pairs of nodes, there are 5× 5× 5 = 125 possible graphs. However,
since we start with the assumption that all traits are correlated, we exclude 12 of the
125 graphs in which one node is not connected to either of the other two nodes,
and we exclude the graph in which none of the nodes are connected, leaving us with
112 possible graphs, some of which are illustrated in Figure 9.1(a). The joint trait
distributions induced by these different graphs are often statistically indistinguishable from
one another (i.e. they are Markov equivalent, so that their distributions are identical),
making it nearly impossible in most cases to infer the true relationship. On the other
hand, when the two traits are at least partially controlled by the same genetic locus
and when more complicated methods of control (e.g. feedback loops) are ignored, the
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number of relationships between the QTL and the two traits of interest can be reduced
to the three models illustrated graphically in Figure 9.1(b). The dramatic reduction in
the number of possible graphs to consider (from 112 to 3) is mainly driven by fact
that changes in DNA drive changes in phenotypes and not vice versa (it is extremely
unlikely that changes in RNA or protein lead to changes in DNA at a high enough
frequency to detect associations between germ-line transmitted polymorphisms and
phenotype).

It is important to note here that, when we use the term causality, it is perhaps
meant in a more nonstandard sense than most researchers in the life sciences may
be accustomed to. In the molecular biology or biochemistry setting, claiming a causal
relationship between, say, two proteins usually means that one protein has been deter-
mined experimentally to physically interact with or to induce processes that directly
affect another protein, and that in turn leads to a phenotypic change of interest. In such
instances, an understanding of the causal factors relevant to this activity are known,
and careful experimental manipulation of these factors subsequently allows for the iden-
tification of genuine causal relationships. However, in the present setting, the term
‘causal’ is used from the standpoint of statistical inference, where statistical associa-
tions between changes in DNA, changes in expression (or other molecular phenotypes),
and changes in complex phenotypes like disease are examined for patterns of statis-
tical dependency among these variables that allows directionality to be inferred among
them, where the directionality then provides the source of causal information (high-
lighting putative regulatory control as opposed to physical interaction). The graphical
models (networks) described here, therefore, are necessarily probabilistic structures that
use the available data to infer the correct structure of relationships among genes and
between genes and clinical phenotypes. In a single experiment, with one-time point
measurement, these methods cannot easily model more complex regulatory structures
that are known to exist, like negative feedback control. However, the methods can
be useful in providing a broad picture of correlation and causative relationships, and,
while the more complex structures may not be explicitly represented in this setting,
they are captured nevertheless given they represent observed states that are reached as
a result of more complicated processes like feedback control. A mathematical theory
of causal inferences from observed dependency patterns from raw data has been estab-
lished, and Judea Pearl, a pioneer of mathematical and computational methods for this
purpose, provides an excellent description and treatment of this underlying theory (Pearl,
1988; 2000).

While in principle the techniques we describe can be applied to any pair of
traits, continuous or binary, clinical or molecular (e.g. RNA, protein, or metabo-
lite), we focus on the problem of inferring causality among gene expression traits
and between gene expression and a continuous clinical phenotypes. We let T1 and
T2 denote RNA expression traits or an expression trait and a clinical trait, and
L the locus genotype. In the first model, the genetic locus is causal for T2 only
through T1 (causal model). In the second model, the T1 is a reaction to T2 (reac-
tive model). In the final model, the genetic locus affects both T1 and T2 indepen-
dently (independence model). With the inclusion of genetic marker information, the
data models are distinguishable due to the conditional independence structure of the
variables.
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9.7.1 A Simple Model for Inferring Causal Relationships

Assuming the conditional independence structure implied in the graphical models in
Figure 9.1(b), the following simplifications can be made for the joint probability distri-
butions for the causal, reactive, and independence models, respectively:

P1(L, T1, T2) = PθL(L)PθT1L
(T1|L)PθT1T2

(T2|T1),

P2(L, T1, T2) = PθL(L)PθT2L
(T2|L)PθT1T2

(T1|T2),

P3(L, T1, T2) = PθL(L)PθT1L
(T1|L)Pθ∗

T2L
(T2|L, T1)

= PθL(L)PθT2L
(T2|L)Pθ∗

T1L
(T1|L, T2). (9.2)

In the causal model depicted in Figure 9.1(b), the clinical trait (T2) is indepen-
dent of the genetic locus conditional on the gene expression trait (T1). In other
words, the locus genotype lends no additional information about the clinical pheno-
type when the gene expression measurement is known. Similarly, in the reactive
model, the expression trait is independent of the underlying genetics conditional
on the clinical trait. In the independence model, the gene expression and clin-
ical trait are not assumed to be conditionally independent to allow for correlation
due to other shared genetic and environmental influences. Failure to account for
this correlation, when it is of moderate size, can result in falsely choosing one
of the two other models because the two traits contain information, in addition to
that provided by the genetic locus, about the other, due to unmeasured common
influences.

The modeling framework in (2) is quite general and can accommodate a wide range of
genetic and trait dependence models. Genetic models for dichotomous and quantitative
traits have been developed for crosses of inbred lines (Chapter 18) and for outbred
pedigrees (Chapter 19). For continuous traits, a variety of trait models have been
developed for the purposes of testing for linkage of a QTL to a single locus. These
same models can be used to model an expression or clinical trait conditional on the
genetic locus. For example, when the data come from an intercross of two inbred lines,
it is common to model the trait using a normal distribution with a mean that depends on
the genotype at the locus (Section 3.1 of Chapter 18).

Given appropriate choices for the conditional distributions in the three models,
P(T1|L), P (T2|L), P (T1|T2), P (T2|T1), and P(T1|L, T2), likelihoods for the three differ-
ent models can be maximized with respect to the model parameters and the likelihoods
can be subsequently compared. Note that the log-likelihood of each model is the sum of
log-likelihoods for each of the three variables with no common parameters. For example,

logP1(L, T1, T2) = logPθL(L)+ logPθT1L
(T1|L)+ logPθT1T2

(T2|T1)

= logL(θL|L)+ logL(θT1L
|T1, L)+ logL(θT2T1

|T2, T1)

= logL1(θ1|L, T1, T2).

Thus MLEs (Maximum likelihood estimates) for θL, θT1L
, and θT2T1

can be obtained
by separately maximizing each corresponding term. The likelihoods are then compared
among the different models in order to find the most likely of the three. When the number
of model parameters among the models differs, a penalized function of the likelihood
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is used to avoid the bias against parsimony: the model with the smallest value of the
penalized statistic

−2 logLi(θ̂i |L, T1, T2)+ k × pi,
is chosen. Here, Li(θ̂i |L, T1, T2) is the MLE for the ith model, pi is the number
of parameters in the ith model, and k is a constant. Common choices for k include
k = 2, in which case the statistic is known as the Akaike information criteria (AIC),
and k = log(n), where n is the number of observations, which is called the Bayesian
information criteria (BIC).

An alternate approach, which is often taken in causal inference, is to use a significance
tests to identify a model consistent with the data. For example, in the causal model
depicted in Figure 9.1(b), the clinical trait is conditionally independent of the genetic
locus, L. Thus, a rejected test of conditional independence between T2 and L implies that
the data is not consistent with the causal model. In order to infer among the three models,
the steps are as follows:

1. Obtain the p value, pT2L|T1
, for the test of conditional independence between T2

and L.

2. Obtain the p value, pT1L|T2
, for the test of conditional independence between T1

and L.

3. Infer the model based on the following logic

i. If pT2L|T1
≥ α and pT1L|T2

< α, then the data is consistent with the causal model.

ii. If pT1L|T2
≥ α and pT2L|T1

< α, then the data is consistent with the reactive model.

iii. If pT2L|T1
< α and pT1L|T2

< α, then the data is consistent with the independence
model (neither the causal nor reactive model).

iv. If pT2L|T1
≥ α and pT1L|T2

≥ α, then the data is consistent with both the causal
and reactive models, the test is inconclusive.

In cases in which the clinical and gene expression trait are very highly correlated, this
approach may result in an inconclusive test because, conditional on the other trait, the
genetic data provides almost no additional information.

The model selection procedure described above does not lend itself very well to a
testing paradigm because, when choosing among these three models, there is no standard
null distribution that can be used in this context to carry out a test of hypothesis for the
‘best’ model. As a result, significance cannot be assessed by attaching a p value to a
hypothesis test in the usual way. Instead, when the scientific aim is to identify whether
a particular gene expression trait is causal, reactive, or independent to a second gene
expression trait or clinical trait, with respect to a given locus, a confidence measure for
the chosen model can be constructed using resampling methods. In such cases, a large
number of bootstrap samples is drawn from the empirical distribution of (L, T1, T2), and,
for each resample, the model selection procedure is carried out to estimate the proportion
of times each model is chosen. This proportion can then be considered as a measure of
confidence for the selected model.

A simpler case occurs when only one direction of causality is of interest. For example,
in order to identify expression traits that are specifically causal for a clinical trait of
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interest, with respect to a particular locus, an appropriate test can be constructed whose
alternative hypothesis is

P(T2|T1, L) = P(T2|T1),

where, for this case, T1 denotes an expression trait and T2 a clinical trait. For example,
given the linear model for the clinical trait

E[T2i ] = µ+ γf (T1i )+ βg(Li)+ λh(T1i , Li),

where f and g are functions or parameterizations of the RNA expression and the genotype
respectively and h is a function of the interaction, we can perform a test with null
hypothesis β �= 0 and λ �= 0. This is a test for the independence of the clinical trait and
locus genotype conditional on the gene expression, which would occur when the genetics
affects the clinical trait only through the expression trait. In order to test hypotheses of
this nature, a bioequivalence paradigm is required, so that hypotheses are actually of
the form |βi | > εi and |λi | > δi , which requires the selection of appropriate values for
the ε and δ. Dixon and Pechmann (2005) suggest selecting bounds based on biological
knowledge and informed judgment. One criterion for the choice of bound might be based
on the proportion of variance explained by the genetic component in this model. For
example, in the case of an F2 intercross population constructed from inbred lines of
mice and where we assume the genetic model contains only additive effects and no
genotype-by-gene expression interaction, a common parameterization of the genetic model
is E[T2i ] = µ+ γf (T1i )+ βAg(Li), where

g(L) =
{−1 L = BB

0 L = Bb
1 L = bb.

In this case, the expected additive genetic variance is 1
2β

2
A. Bounding the proportion

of variance explained by the genetic component results in a bound of the form |βA| <√
2ϕAσ

2
T2

for some value of ϕA, and where σ 2
T2

is the variance for trait T2. More complex
models can be managed in a similar way, including a bound on each component of the
genetic variance, including dominance and interaction terms when appropriate.

Given a single parameter of interest, hypothesis testing in the bioequivalence framework
requires testing two one-sided subhypotheses, H01 : β < −ε and H02 : β > ε. Because
both null hypotheses cannot simultaneously be true, testing each of these tests at level α
results in a test that is also of level α for the composite hypothesis, H0 : |β| > ε. Thus, H01

is rejected if the t-statistic T (1) = (β̂ + ε)/σ̂β is greater than the one-sided t-distribution

level-α critical value. Similarly, H02 is rejected if the t-statistic T (2) = (−β̂ − ε)/σ̂β is
greater than the same level-α critical value. Confidence intervals can also be used to infer
the bioequivalence; however, care needs to be taken to ensure the proper significance
level. Specifically, H0 is rejected at level α if the (1− 2α) 100 % confidence interval lies
entirely within the alternative hypothesis region, |β| ≤ ε.

Significance under the null hypothesis of the independence model can also be assessed
via permutation. In other words, permuting the relationship between the clinical trait
and the gene expression trait within each genotype results in a conditionally independent
relationship between the two traits.
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9.7.2 Distinguishing Proximal eQTL Effects from Distal

As discussed in previous sections, all genes expressed in living systems are cis regulated at
some level and so are under the control of various cis-acting elements such as promoters
and TATA boxes. In this context, expression as a quantitative trait for eQTL mapping
presents a unique situation in quantitative trait genetics because the expression trait
corresponds to a physical location in the genome (the structural gene that is transcribed,
giving rise to the expression trait). The transcription process operates on the structural
gene, and so DNA variations in the structural gene that affect transcription are identified
as eQTL in the mapping process. In such cases, we would identify eQTL as cis acting,
given that the most reasonable explanation for seeing an eQTL coincident with the physical
location of the gene is that variations within the gene region itself give rise to variations
in its expression (Doss et al., 2005). However, because we cannot guarantee that the
eQTL is truly cis acting (i.e. it could arise from variation in a gene that is closely linked
to the gene expression trait in question), it is more accurate to refer to such eQTL as
proximal, given they are close to the gene corresponding to the expression trait. Because
the cis-regulated components of expression traits are among the most proximal traits in a
biological system with respect to the DNA (Plate 8), we might expect that true cis-acting
genetic variance components of expression traits are among the easiest components to
detect via QTL analysis if they exist. This indeed has been observed in a number of
studies, where proximal (presumably cis-acting) eQTL have been identified that explain
unprecedented proportions of a trait’s overall variance (several published studies highlight
examples where greater than 90 % of the overall variation was explained by a single cis-
acting eQTL) (Brem et al., 2002; Schadt et al., 2003; Monks et al., 2004; Cervino et al.,
2005; Cheung et al., 2005; Lum et al., 2006).

Variations in expression levels induced by DNA variations in or near the gene itself
may in turn induce changes in the expression levels of other genes. Each of these genes
in a population of interest may not harbor any DNA variation in their structural gene,
so that they do not give rise to true cis-acting eQTL, but they would give rise to eQTL
nevertheless that link to the gene region inducing changes in their expression. Therefore,
we see that the individual variation in gene expression can be of two fundamental
types. The first, termed proximal, often results from DNA variations of a gene that
directly influence transcript levels of that gene. The second, termed trans acting or distal,
does not involve DNA variations of the gene in question but rather is secondary to
alterations of other true cis-acting genetic variations (Figure 9.2). In reality, variation in
expression traits may be due to variation in cis-acting elements and/or one or multiple
trans-acting elements. Additionally, master regulators of transcription, which affect the
expression of many traits in trans, may exist, though the evidence on this is mixed
(Figure 9.2).

Because, in many cases, it is not possible to infer the true regulatory effects (i.e. cis
vs trans) of an eQTL without complex bioinformatics study and experimental validation,
we instead categorize eQTL into proximal and distal types based on the distance between
the eQTL and the location of the structural genes. Obviously, if these are on different
chromosomes the eQTL is distal, but if they fall on the same chromosome then we require
the distance between the structural gene and the eQTL to not exceed some threshold. The
exact threshold is a function of the number of meioses and extent of recombination
in a given population dataset. In a completely outbred population, where LD (Linkage
Disequilibrium) mapping has been used to finemap the eQTL, it is reasonable to require
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the distance between the proximal eQTL and structural gene to be less than 1 MB (Cheung
et al., 2005). However, in an F2 intercross population constructed from two inbred lines
of mice, the extent of LD will be extreme, given all animals are descended from a single
F1 founder, with only two meiotic events separating any two mice in the population.
In such cases, the resolution of linkage peaks is quite low, requiring the threshold of
peak-to-physical gene distance to be more relaxed, so that eQTL that are within 20 or
30 MB could be considered cis acting (Schadt et al., 2003; Doss et al., 2005). While the
proximal eQTL provide an easy path to making causal inference, given the larger effect
sizes commonly associated with proximal eQTL make them easier to detect (Brem et al.,
2002; Schadt et al., 2003; Monks et al., 2004; Cervino et al., 2005; Cheung et al., 2005;
Lum et al., 2006), the methods discussed above work for distal as well as proximal eQTL.

9.8 USING eQTL DATA TO RECONSTRUCT COEXPRESSION
NETWORKS

Networks provide a convenient framework for representing high-dimensional data in
which relationships among the many variables making up such data are the key to
understanding the properties that emerge from the complex systems they represent.
Networks are simply graphical models comprised of nodes and edges. For gene networks
associated with biological systems, the nodes in the network typically represent genes,
and edges (links) between any two nodes indicate a relationship between the two
corresponding genes. For example, an edge between two genes may indicate that the
corresponding expression traits are correlated in a given population of interest (Zhu et al.,
2004), that the corresponding proteins interact (Kim et al. 2005), or that changes in the
activity of one gene lead to changes in the activity of the other gene (Schadt et al.,
2005). Interaction or association networks have recently gained more widespread use
in the biological community, where networks are formed by considering only pair-wise
relationships between genes, including protein interaction relationships (Han et al., 2004),
coexpression relationships (Gargalovic et al., 2006; Ghazalpour et al., 2006), as well as
other straightforward measures that may indicate association between two genes.

Forming association networks from expression data based purely on correlations
between genes in a set of experiments of interest can give rise to links in the network
driven by correlated noise structures between array-based experiments or other such
artifacts. The eQTL data can be simply leveraged in this case by filtering out gene–gene
correlations in which the expression traits are not at least partially explained by common
genetic effects. For example, we may connect two genes with an edge in a coexpression
network if (1) the p value for the Pearson correlation coefficient between the two genes
was less than some prespecified threshold, and (2) the two genes had at least one eQTL in
common. One intuitive way to establish whether two genes share at least one eQTL is to
carry out single-trait eQTL mapping for each expression trait and then consider eQTL for
each trait overlapping if the corresponding LOD for the eQTLs are above some threshold
and if the eQTL are in close proximity to one another.

The p-value threshold for considering two genes linked in the coexpression networks
is chosen such that the resulting network exhibits the scale-free property (Barabasi and
Albert, 1999; Ghazalpour et al., 2006; Lum et al., 2006) and the FDR for the gene–gene
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Figure 9.3 Variation in key parameters over different p values provides an objective way to select
p-value thresholds for reconstructing coexpression networks. The first box of this figure plots the
percent of gene pairs connected in the network that share GO biological process category terms,
as a function of − log of the p-value threshold for the correlation between the gene pairs used to
construct the network. The dark gray curve represents genes in the network connected by an edge
because the corresponding correlation coefficient is significant at the indicated p-value threshold
and the genes share at least one common eQTL (as described in the main text). The light gray
curve represents edges based on correlation significance only (no genetics). The second box plots
the false discovery rate (FDR) for edges in the coexpression network constructed as a function of
p-value threshold. The third box plots the coefficient of determination corresponding to how well
the degree distribution for the network nodes fits the inverse power law.

pairs represented in the network is constrained (Figure 9.3). Filtering correlations based
on eQTL overlap can be seen to improve the quality of the coexpression networks by
examining whether networks reconstructed without the eQTL data are more coherent
than networks reconstructed with the eQTL data with respect to the GO (Gene Ontology)
database biological process categories (see also ‘annotation analysis’ in Chapter 7). We
say one network is more coherent than another with respect to GO biological process
categories according to its percentage of gene–gene pairs sharing a common GO biolog-
ical process category. The pathways represented in GO are independently determined
and so provide an independent source of information in testing how much of the known
information is captured in the network. As an example, consider a previously described
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F2 intercross population constructed from the B6 and C3H inbred lines of mice (referred
to throughout as the BXH cross) (Lum et al., 2006; Yang et al., 2006). Figure 9.3 plots
the percentage of gene–gene pairs sharing common GO biological process categories as
a function of minus log of the correlation p value for the coexpression network recon-
structed from the BXH adipose data, both with and without the eQTL data. Over a range of
p values, the network reconstructed with the eQTL data is seen to be significantly more
coherent than the network reconstructed without the eQTL data. This provides direct
experimental evidence that incorporating eQTL information into network reconstruction
can enhance the accuracy of the network.

9.8.1 More Formally Assessing eQTL Overlaps in Reconstructing Coexpression Networks

While testing whether gene–gene pairs that are significantly correlated are partially
controlled by common genetic loci using the overlap method discussed above is intuitively
appealing, it fails to make full use of the data to infer whether overlapping eQTLs are
really the same eQTL or closely linked eQTL, and such an approach does not lend
itself to statistically robust hypothesis testing. One way to test more formally whether
two overlapping eQTL represent a single eQTL or closely linked eQTL is to employ
a pleiotropy effects test (PET) based on a pleiotropy model initially described by Jiang
and Zeng (1995) and Zeng et al. (2000). While we discuss this method for considering
only two traits simultaneously, the method can be easily extended to consider more traits.
The statistical model for PET is an extension of the single-trait model as defined in the
following equation:(

y11 · · · yn1
y12 · · · yn2

)
=
(
µ1
µ2

)
+
(
a1
a2

)
(x1 · · · xn)+

(
d1
d2

)
(z1 · · · zn)+

(
e1
e2

)
,

where yi is the vector of trait values for individual i(i = 1, . . . , n), aj and dj are the
additive and dominance effects for trait j (j = 1, 2), xi is as defined above, and ej is
the residual effect for trait j . In this case, we are assuming an F2 intercross population
constructed from two inbred lines of mice, but the model is easily generalizable to other
experimental cross populations.

From this statistical model, a series of tests of hypotheses can be performed to test
whether the two traits are supported as being driven by a single QTL at a given position.
The first test involves testing whether a given region is linked to the joint trait vector for
the traits under study:

H0 : a1 = 0, d1 = 0, a2 = 0, d2 = 0,

H1 : at least one of the above terms is not 0.

To test the above null hypothesis of no linkage against the alternative linkage hypothesis,
likelihoods associated with the null and alternative hypothesis are maximized with respect
to the model parameters. From the maximum likelihoods, the log-likelihood ratio statistic
is formed and used to test whether the alternative hypothesis (H1) is supported by the
data. With this model, the log-likelihood ratio statistic under the null hypothesis is chi-
square distributed with 4 degrees of freedom. If the null hypothesis (H0) is rejected, the
implication is that trait 1 and/or trait 2 have a QTL at the given test locus.

Subsequent to the test just described, resulting in a rejection of the null hypothesis,
second and third tests of hypotheses can be performed to establish whether the detected
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QTL affects both traits. For a given QTL test position,

H10 : a1 = 0, d1 = 0, a2 �= 0, d2 �= 0,

H11 : a1 �= 0, d1 �= 0, a2 �= 0, d2 �= 0,

assesses whether the first trait has a QTL at the test position, and

H20 : a1 �= 0, d1 �= 0, a2 = 0, d2 = 0,

H21 : a1 �= 0, d1 �= 0, a2 �= 0, d2 �= 0,

assesses whether the second trait has a QTL at the test position. As above, the log-
likelihood ratio statistics are formed for each of these tests, where under the null
hypotheses these statistics are chi-square distributed with 2 degrees of freedom. If both
null hypotheses H10 and H20 are rejected, the QTL is supported as having pleiotropic
effects on the two traits under study.

At the 2.8 LOD score threshold indicating suggestive linkage in an F2 intercross
population, the expected number of QTL detected is 1 for the conditional linkage tests
just described (Lander and Kruglyak, 1995). Therefore, an intuitive way to compute
the probability that both of these tests for independent traits give rise to a QTL at a
given location (so rejection of the null hypothesis for both tests at the same chromosome
position) is to consider the probability that the two QTLs expected by chance to
be identified for each test happen to be detected at the same chromosome location.
This probability can be approximated by the fraction 1/655, where 655 represents the
effective number of tests carried out in searching the entire genome at the 2.8 LOD
threshold (Lander and Kruglyak, 1995). However, because such an estimate is based on
theoretical arguments relying on assumptions that may not hold exactly, and because
in practice the traits under consideration will not be independent (especially not in the
coexpression network setting where we are interested in highly interconnected sets of
genes), permutation testing can also be used to assess the significance of both tests
leading to a rejection of the null hypothesis at the 2.8 LOD threshold. In the adipose
BXH cross expression data described above, the significance level associated with the 2.8
LOD score threshold was estimated to be 0.004 using permutation methods, only slightly
larger than the theoretical estimate of 0.002 given above. Therefore, using the suggestive
2.8 LOD score threshold established for single traits seems reasonable in this situation as
it corresponds to a genomewide significance level of 0.004 when considering two traits
at a time.

9.8.2 Identifying Modules of Highly Interconnected Genes in Coexpression Networks

Given the scale-free and hierarchical nature of coexpression networks (Barabasi and
Oltvai, 2004; Ghazalpour et al., 2006; Lum et al., 2006), one of the problems is to identify
the key network modules in the network, representing those hub nodes (nodes that are
significantly correlated with many other nodes) that are highly interconnected with one
another, but that are not as highly connected with other hub nodes. Plate 9(a) illustrates
a topological connectivity map for the most highly connected genes in the adipose tissue
of the BXH cross (Chen et al., 2007). After hierarchically clustering both dimensions of
this plot, the network is seen to break out into clearly identifiable modules. Gene–gene
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coexpression networks are highly connected, and the clustering results shown in Plate 9
illustrate that there are gene modules arranged hierarchically within these networks.

Ravasz et al. (2002) used manually selected height cutoff to separate tree branches after
hierarchical clustering, in contrast to Lee et al. (2004), who formed maximally coherent
gene modules with respect to GO functional categories. Another strategy is to employ
a measure similar to that used by Lee et al. (2004), but without the dependence on the
GO functional annotations, given it is of interest to determine independently whether
coexpression modules are enriched for GO functional annotations. A gene module in the
coexpression network is defined as a maximum set of interconnected genes. A coherence
measure for a given gene module can be defined as

Coherence = GPobs

GPtot

,

where GPobs is the number of gene pairs that are connected and GPtot is the total
number of possible gene pairs in the module. The efficiency of a gene module can then
be defined as

Efficiency = Coherence×Gmod

Gnet

,

where Gmod is the number of genes in the module and Gnet is the number of genes in
the network. Given these definitions, we define a process to iteratively construct gene
modules by the following steps:

1. Order genes in the gene–gene connectivity matrix according to an agglomerative
hierarchical clustering algorithm as previously described (Hughes et al., 2000).

2. Calculate the efficiency ei,j for every possible module, including genes from i to j
as given in the ordered connectivity matrix, where j ≥ i + 9 (i.e. minimum module
size is 10), using a dynamic programming algorithm.

3. Determine the maximum ei,j .

4. Set ei...j,1...Gnet
= 0 and e1...Gnet,i...j

= 0.

5. Go to step 3 until no additional modules can be found.

The modules identified in this way are informative for identifying the functional
components of the network that may underlie complex traits like disease (Lum et al.,
2006). It has been demonstrated that the types of modules depicted in Plate 9(a) are
enriched for known biological pathways, enriched for genes that are associated with
disease traits, and enriched for genes that are linked to common genetic loci (Ghazalpour
et al., 2006; Lum et al., 2006).

9.9 USING eQTL DATA TO RECONSTRUCT PROBABILISTIC
NETWORKS

Coexpression networks are informative as discussed for gross characterizations of the
properties of biological networks, identification of highly connected (hub) nodes, and



318 S.K. SIEBERTS AND E.E. SCHADT

identification of functional modules that aid in the characterization of subnetworks
associated with disease. Despite these and other advantages, coexpression networks do
not provide explicit details on the connectivity structure among genes in the network,
including the representation of causal associations among genes and between genes and
phenotypes. As detailed in previous sections, naturally occurring variations in DNA can
be leveraged as a systematic source of perturbations to infer causal associations among
gene expression traits and between gene expression and clinical traits. By examining the
effects naturally occurring DNA have on variations in gene expression traits in human
or experimental populations, other phenotypes (including disease) can then be examined
with respect to these same DNA variations and ultimately ordered with respect to genes
to infer causal control (Plate 8) (Mehrabian et al., 2005; Schadt et al., 2005; Kulp and
Jagalur, 2006; Lum et al., 2006).

While previous sections highlighted inferring causal associations by integrating eQTL
and quantitative trait data for two traits, Zhu et al. were among the first to formally
incorporate genetic data into the reconstruction of whole gene networks using Bayesian
network reconstruction methods (Zhu et al., 2004). Bayesian networks are directed acyclic
graphs that, while limited with respect to representing temporal information or feedback
loops, allow for the explicit representation of causal associations among nodes in the
network. With Bayesian network reconstruction methods taking gene expression data
as the only source of input, many relationships between genes in such a setting are
Markov equivalent (symmetric), similar to what was discussed for three-node graphs in
Figure 9.1(a). This means one cannot statistically distinguish whether a given gene causes
another gene to change or vice versa. To break this symmetry, Zhu et al. incorporated
eQTL data as prior information to establish more reliably the correct direction among
expression traits.

Bayesian network methods have been applied previously to reconstruct networks
comprised only of expression traits, as well as to networks comprised of both expression
and disease traits, where the aim has been to identify those portions of the network that are
driving a given disease trait. Forming candidate relationships among genes was carried out
using an extension of standard Bayesian network reconstruction methods (Chiellini et al.,
2002). In the first approach to extend this method using genetic data, QTL information for
the transcript abundances of each gene considered in the network was incorporated into
the reconstruction process. It is well known that searching for the best possible network
linking a moderately sized set of genes is an NP-hard problem. Exhaustively searching
for the optimal network with hundreds of genes is presently a computationally intractable
problem. Therefore, various simplifications are typically applied to reduce the size of the
search space and to reduce the number of parameters that need to be estimated from the
data. Two simplifying assumptions to achieve such reductions are commonly employed.
First, while any gene in a biological system can control many other genes, a given gene
can be restricted so that it is allowed to be controlled by a reduced set of genes. Second,
the set of genes that can be considered as possible causal drivers (parent nodes) for a
given gene can be restricted using the type of causality arguments discussed in previous
sections, as opposed to allowing for the possibility of any gene in the complete gene set
to serve as a parent node.

One method to select potential parents for each gene is to assess the extent of genetic
overlap between any two gene expression traits. If RNA levels for two genes are tightly
associated, or if such levels are genetically controlled by a similar set of loci, then their
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eQTL should overlap. The extent of QTL overlap can be carried out using the PET
procedure described in a previous section, or, to consider simultaneously more of the
eQTL data for any two traits, the correlation coefficient between vectors of LOD scores
associated with eQTL identified over entire chromosomes for each gene can be computed.
If we assume no epistasis between eQTL for a given expression trait, then the eQTL can
be considered independent between chromosomes, and a measure of genetic relatedness
over all chromosomes for any two traits can be subsequently computed as a weighted
average of correlations for each individual chromosome:

r =
∑
c

w(c)× r(c), (9.3)

where r(c)is the correlation coefficient for chromosome c and w(c) is the chromosome-
specific weight. The chromosome-specific correlation coefficient is given by

r(c) =

∑
l

xc(l)× yc(l)× Ic(l)∑
l

xc(l)× xc(l)+
∑
l

yc(l)× yc(l)
. (9.4)

In this equation, xc(l) and yc(l) are LOD scores at locus l on chromosome c and Ic(l)
is an indicator function defined as

Ic(l) =
{

1, if xc(l) > 1.5, yc(l) > 1.5
0, otherwise

}
, (9.5)

which is incorporated to eliminate low LOD scores that would have likely only contributed
noise to the correlation measures. The chromosome-specific weight terms are given by

w(c) = maxl(min(xc(l), 10)×min(yc(l), 10)). (9.6)

In effect, this equation provides for those chromosomes with high LOD scores to
more significantly influence the overall correlation measure. This heuristic weight is
intuitively appealing since gene expression traits with common significant eQTL have
a larger percentage of their overall variation explained by these common genetic effects.
For a particular data set, the weighted correlations can be computed for all gene pairs, and
the resulting list rank ordered, so that those genes in the upper percentiles can be chosen
as candidate parental nodes (Zhu et al. (2004) used the 80th percentile as the threshold).

To differentiate between colocalization of QTL for a pair of traits due to common
genetic effects (pleiotropy) versus multiple closely linked QTL, the extent of phenotypic
(RNA levels) association can be measured by the mutual information measure

mi(A,B) =
∑
i,j

p(ai, bj ) log
p(ai, bj )

p(ai)p(bj )
, (9.7)

where p(x) is the probability density function for the expression of gene X in the system
of interest. For a particular data set, the mutual information measure can be computed for
all gene pairs, and the resulting list rank ordered on this measure, so that those genes in
the upper percentile can be chosen as candidate parental nodes (Zhu et al. (2004) again
used the 80th percentile as the threshold).
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The selection of the genes in the 80th percentile of the rank-ordered lists generated
from the correlation and mutual information measures provides the prior evidence that
two genes may be causally related. The QTL data provide the causal anchors that allow
this type of inference to be made. That is, by definition, a QTL controlling for the
expression of two gene expression traits implies that DNA variations in the QTL lead to
variations in the expression of the associated gene traits. Therefore, it must be the case
that any gene expression trait pair controlled by a common QTL is either independently
driven by the same QTL, or causally associated in that one of the two traits is driven by
the QTL, while the other trait responds to the trait driven by the QTL.

In addition to utilizing the QTL information as prior information to restrict the types
of relationships that can be established among genes, the QTL information can be more
intimately integrated into the network reconstruction process. As indicated in previous
sections, correlation measures are symmetric and so can indicate association but not
causality. However, QTL mapping information for the gene expression traits can be
used to help sort out causal relationships. The different tests described in the section
on making causal inferences between pairs of traits provide one way to explicitly sort
out such relationships. Zhu et al. (2004) leveraged the eQTL data in a different way to
make similar types of inferences in their network reconstruction algorithm. Suppose gene
expression trait X has two high confidence eQTL at loci L1 and L2, while gene expression
trait Y has a single eQTL at L1 that is more significant than the eQTL for X at L1. In
this instance, it is reasonable to infer that Y may control X (or is ‘causal’ for X), since
if X were causal for Y we would expect Y to have an eQTL at L2 in addition to the
eQTL at L1, given X has an eQTL at L2. Further, the asymmetry in the significance of
the eQTL at L1 for X and Y also favors Y as being causal for X. Thus, the eQTL overlap
information can be used in this more heuristic way to infer causality by defining the prior
for a candidate relationship as

p(X→ Y ) = r(X, Y ) N(Y )

N(X)+N(Y ) , (9.8)

where N is a gene expression trait’s complexity as measured by the number of significant
eQTL mapped for the given gene expression trait. If X and Y have coincident QTL,
but the overall complexity of Y is greater than the overall complexity of X, then the
relationship X causes Y (X→ Y), as opposed to Y → X, is weighted as the more likely
scenario in the prior defined above. Implicit in this weighting scheme is the assumption
that traits driven by common QTL are causally related (i.e. one trait drives the other),
even though it is possible that the traits could be independently driven by the same set
of QTL. However, in cases where multiple traits are independently driven by a common
set of QTL, the correlation between the traits is smaller than when the traits are causally
related, so the prior in this case carries less weight. Further, the conditional mutual
information measure discussed below also serves to prevent, in at least some cases, causal
links from being made between genes that are independently driven by a common set of
QTL.

The causality relationships between gene expression traits can be further assessed
by considering whether the QTL for a particular gene expression trait is proximal.
As discussed previously, genes that give rise to eQTL that are coincident with the
gene’s physical location most likely harbor DNA variations that at least partially explain
variations in the gene’s observed RNA levels (proximal or cis-acting eQTL) (Doss et al.,
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2005). Therefore, it is reasonable to infer that a gene with a proximal eQTL is at least
partially under the control of the gene itself. In this particular situation, where another
gene expression trait Y has an eQTL mapping to the physical location of gene X, and
(X→ Y ) is inferred as the most likely relationship using a test for causality such as that
described in previous sections, we can infer that Y is likely not causal for X and set
p(Y → X) equal to 0.

With the various constraints and measures defined above, the goal in reconstructing
whole gene networks is to find a graphical model M (a gene network) that best represents
the relationships between genes, given a gene expression data set, D, of interest. That
is, given data D, we seek to find the model M with the highest posterior probability
P(M|D). The prior probability P(M) of model M is

p(M) =
∏
X→Y

p(X→ Y ), (9.9)

where the product is taken over all paths in the network (M) under consideration. The
algorithm Zhu et al. (2004) employed to search through all possible models to find
the network that best fits the data is similar to the local maximum search algorithm
implemented by Friedman et al. (2000).

The Bayesian network reconstruction algorithm can be employed to elucidate the
module connectivity structure depicted in Plate 9(a). Because reconstruction of Bayesian
networks is an NP-hard problem (Garey and Johnson, 1979), the number of nodes that
can be considered in the network and the extent of connections (edges) among these
nodes must be reduced (over what can be considered in reconstructing coexpression
networks) in order to make the problem tractable, thereby making such networks more
sparse compared to coexpression networks. Toward this end, Plate 9(b) shows the result
of the Bayesian network reconstruction algorithm discussed above applied to module
2 depicted in Plate 9(a) for the BXH cross. Further highlighted in Plate 9(c) is a
subnetwork containing the gene Lpl, a gene recently identified as causal for obesity
in the BXH cross (Schadt et al., Submitted). The more detailed structure provided in
Plate 9(b) and (c) allows for the examination of the context in which specific genes
like Lpl operate, providing insights into which parts of the network may impact a given
gene’s function, as well as what other parts of the network may be impacted by the
gene’s function.

9.10 CONCLUSIONS

The eQTL mapping methods and network reconstruction methods, including the causality
test, discussed here provide a convenient framework for moving beyond examining
genes one at a time to understand complex phenotypes like common human diseases.
Whether considering the relationship between two traits with respect to common QTL
driving each of the traits, interaction networks, Bayesian networks, or other types of
networks reconstructed by integrating genetic and molecular profiling data, the advantage
the network view affords is the ability to consider more of the raw data informing on
complex phenotypes simultaneously, taking into account dependency structures between
all of the different fundamental components of the system, and providing a framework to
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integrate a diversity of data types (something Bayesian network reconstruction methods
are particularly good at). Researchers in the life and biomedical sciences will have few
other options available to them in considering the vast amounts of data being generated
to elucidate how the hundreds of thousands or even millions of fundamental components
within the cell interact to give rise to complex phenotypes. Networks provide one of the
only frameworks of which we are aware to systematically and simultaneously take all of
the fundamental components into account. Statistical inferences on networks will come
to define much of the future research needed in this field to adequately leverage what
network models can provide.

Of course, the types of approaches reviewed here represent only the first steps being
taken to reconstruct meaningful gene networks, and even in this chapter we have
largely restricted attention to genetic, gene expression, and disease phenotype data.
Ultimately, it will be necessary to integrate many different lines of experimental data
simultaneously. Protein–protein interactions, protein–DNA interactions, protein–RNA
interactions, RNA–RNA interactions, protein state, methylation state, and especially
differential methylation states that have now been shown to act transgenerationally
(Anway et al., 2005), and interactions with metabolites, among other interactions, are
all important components that define complex phenotypes that emerge in living systems.
What a given protein and RNA does will give way to what a network of protein,
RNA, DNA, and metabolite interactions do, where such networks of interaction are
defined by the context in which they operate, with environment playing a critical role.
A particular network state that drives disease (or other complex phenotypes that define
living systems) will not only require knowledge of DNA and environmental variation
and the changes these variation components induce in the network but also information
on the previous states of the network that led to the current state, where environmental
stresses interacting in complex ways with genetic background not only influence the
current state of the network but can also lead to longer lasting effects on the network that
act transgenerationally.

While this more comprehensive reconstruction of biological networks is still outside
the scope of what is presently doable, the types of approaches discussed here represent
useful first steps toward this ultimate goal. Even though the number of networks that can
be reconstructed from the fundamental components of living systems is truly daunting, as
work progresses in this area we will learn the rules that necessarily constrain the possible
ranges of molecular interactions, and as a result begin to capture the more conserved
network motifs that form the framework upon which all other interactions are based. The
complexity revealed by a systems-biology motivated approach to elucidating complex
phenotypes like disease should be embraced, given the potential to develop a better
understanding of the true diversity of disease and the constellation of genes that need to
be targeted to effectively treat disease.

9.11 SOFTWARE

A variety of software is available for the analysis of genetic data. See Chapters 15, 29,
30, 31, 32 for details.
Software for Kendziorski’s Mixture of Markers method: http://www.biostat.
wisc.edu/∼kendzior/MOM/
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In this chapter, we assume that most readers know a little about proteins and protein structure
prediction, but that their knowledge might now be fuzzy and out of date. In order to refresh
their knowledge and get novices up to speed, we concentrate on the most basic principles. We
outline the categories of protein structure prediction before examining the underlying methods
used in ‘successful’ prediction tools. Each method will be accompanied by examples of biological
applications from recent papers and a section highlighting their advantages and disadvantages.

10.1 HISTORY

While knowledge about protein structure has a long history going back to Astbury’s early
experiments on hair and silk (and beyond), its current form came into being with the
solution, by X-ray crystallography, of the first globular proteins at near atomic resolution.
These consisted of two closely related globin structures (by Kendrew and Perutz and co-
workers), followed by the first enzyme structure (lysozyme, by Phillips and co-workers).
These structures were somewhat unexpected at the time: given the near crystalline regu-
larity of Astbury’s hair and silk structures (along with the structure for DNA proposed
then), the globular proteins were described by Kendrew as lacking symmetry and visceral.
Even worse, the structure of lysozyme did not immediately provide any clue as to how
it, or any enzyme, might work!

As more structures were solved, some of these early unexpected aspects were partially
rectified: symmetry was rediscovered in the structure of triosephosphate isomerase,
and plausible catalytic mechanisms for lysozyme and other enzymes were established.
However, despite progress, it remains true that proteins do not yield their secrets easily.
When a new structure is solved, it is often still difficult to describe its structure in a
systematic way and place it in relation to other structures. Similarly, if a structure is
solved for a protein of unknown function, it is not necessarily easy or possible to suggest
a function from just the structure.
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10.2 BASIC STRUCTURAL BIOLOGY

The proteins considered in this chapter are the globular proteins. Fibrous proteins are
neglected because they are less interesting – consisting of numerous repeated units
forming some trivial helical arrangement. Membrane proteins are neglected because much
less is known about them structurally. What is known reveals that they are effectively
confined to just two dimensions (in the membrane) and are therefore unable to explore
the structural richness available in three dimensions. This leaves globular proteins, which
exhibit the greatest variety of structures and functions.

Globular proteins form complex structures consisting of one or more chains of amino
acids known as polypeptides. For over 30 years it has been generally accepted that the
amino acid sequence provides sufficient information to specify the overall structure the
protein adopts in three-dimensional (3D) space. This theory is largely accepted owing
to work by Anfinsen and co-workers in the 1960s (Anfinsen, 1972; 1973). Since then,
several schemes have been devised to exhibit the physico-chemical properties of the amino
acids – naturally the authors’ favourite was outlined by Taylor (1986) (see Figure 10.1).
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Figure 10.1 Amino acid property Venn diagram. Taylor’s Venn diagram (Taylor, 1986) shows the
relationships of the 20 naturally occurring amino acids and their physico-chemical properties. The
two major sets are those that exhibit hydrophobic behaviour (shaded grey) and those that have a
polar group (referred to as hydrophilic). The third largest category (labelled small) contains nine
amino acids, and within this group there are the ‘tiny’ amino acids that contain, at most, two
side-chain atoms. In this representation, cysteine is represented once; however, it is reasonable to
represent it twice, in reduced form, where it behaves similarly to serine, or in its oxidised form
where it behaves more like valine.
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The amino acids can be roughly divided into two groups based solely on their side-
chain properties. The first group, termed hydrophilic or polar residues, are soluble in
water (unshaded), and the second group (shaded grey) are less soluble in water and
are termed hydrophobic or non-polar residues. The properties of the amino acids result
in the formation of internal structures: a hydrophobic core and secondary structure
elements. These features are integral to the overall structure of the protein and from
a theoretical perspective it is crucial that they can be predicted with some degree of
accuracy.

10.2.1 The Hydrophobic Core

The partitioning of the two types of residues with respect to the solvent (essentially water)
is the overall driving force behind protein folding and stability. While hydrogen bonding
is important in maintaining specific structural features, it is crucial to remember that for
every hydrogen bond formed internally two bonds with water are lost and one water–water
bond formed – a simple bond count reveals no net gain. The resulting structure is a core
of hydrophobic residues (from which water has been excluded), surrounded by a shell of
hydrophilic residues, which interface with the solvent thus making the protein soluble.
Experimental biologists should recognise that the white precipitate in their buffers is most
likely the result of the collapse of the residue partition. Bearing this in mind, it should
be clear how crucial it is to be able to create a properly formed hydrophobic core in
predicted structures.

10.2.2 Secondary Structure

Here three broad categories of secondary structure will be introduced. The cate-
gories are alpha (α); beta (β), and coil/loop regions. The α and β categories are
defined by main chain hydrogen bonding and combined phi (φ) and psi (ψ) angle
repetitions. Helical structures are formed by local hydrogen bonding while β struc-
tures can be formed by distant parts of the backbone. The archetypal α structure is
formed by hydrogen bonding between the CO of residue i and residue i + 4 with
φ ≈ −60° and ψ ≈ −40°. Beta sheets have φ ≈ −120° and ψ ≈ 140°. Beta structures
are less local and modular than helices owing to the fact that the hydrogen bonds
occur between strands, and the result is not a single β strand but a pair, which can
bond either in parallel or in anti-parallel arrangements. Over 30 years ago, computers
were first used to predict secondary structure (Nagano, 1973). Initially, and for some
time, the average accuracy of predictions ranged between 50 and 60 %, only 10 %
above that of a random prediction – 40 % based on the percentage occurrence of
secondary structure elements within the protein data bank (PDB) (Simossis, 2005).
Today, using methods that are introduced later in the chapter, it is possible to obtain
accuracies of up to 80 % while the average has increased to ∼75 % (Montgomerie
et al., 2006).

10.3 PROTEIN STRUCTURE PREDICTION

To take a protein sequence and predict the three-dimensional structure into which it folds
has been a goal for many years. Yet, despite faster computers and better theories of protein
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folding, no one has been able to succeed in this task for anything larger than a peptide of
30–40 residues (Duan and Kollman, 1998) – all of which have simple folding involving
only local contacts. An alternative to this direct (ab initio) approach is to use what is
known from the structures that have been seen to provide constraints on the structures
that are to be predicted. These can range from local constraints – such as the preference
of secondary structures to connect in a particular way – up to global constraints, which
can be inferred if there is some sequence similarity to a protein of known fold. The latter
end of this range can obviously lead to good predictions of structure (perfect when there
is 100 % identity between the two sequences) but as the sequence similarity diminishes,
then the less certain local rules must be relied on more heavily. The key to the success
of this approach is to know when a similarity is significant.

10.3.1 Homology Modelling

Where there is clear sequence similarity, the problem of constructing a 3D model
is largely how to substitute the existing side chains with the new side chains to
which they have been matched (aligned). Since there is clear similarity, many of
these will be the same and most will involve only minor substitution of groups
(e.g. Asp → Asn). In addition, most of the substitutions will occur on the surface
of the protein, leaving much of the tightly packed core intact. This is due to evolu-
tionary constraints, which mean that it is easier to change a side chain when it is
not buried. In this situation, the simple axiom, ‘if it ain’t broke, don’t fix it’ is the
best advice to follow. Indeed, even better advice is to let it all be done automat-
ically as there are now several programs that can construct good models provided
the sequences are clearly related. Many of these are commercial but the Swiss-model
(Schwede et al., 2003) program can be used freely over the internet for non-commercial
purposes.

In situations with less sequence similarity, the problem of indels (relative insertions
and deletions) becomes important. These also imply that the protein backbone will need
to be remodelled (to close the gaps after deletion, or add new chain for an insertion).
Fortunately, again most of these changes will be found on the protein surface where
there is usually space to make larger changes. If changes apparently do not occur
on the surface, then this is a strong indication that the alignment between sequence
and structure is incorrect. While such problems can be attempted to be solved using
programs like Swiss model, the limiting factor becomes being able to specify the
correct alignment on which to base the model – here the realm of threading must be
entered.

10.3.2 Threading

The strategy of aligning the protein sequences using standard alignment methods and
then building a model is no longer the standard approach for distantly related sequences.
Interaction is needed between the emerging model and the alignment. As mentioned
above, if an insertion is found in the core, then the answer is usually to change the
alignment – not the structure. Historically, this was carried out in a series of iterations
with manual realignment at each stage as, for example, in the construction of the
HIV protease model (Pearl and Taylor, 1987). Eventually it became apparent that this
progress could become more automated with the alignment and model being calculated
simultaneously.
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10.3.3 True Threading

To thread a sequence over a structure, two components are necessary: a packing measure
for the substituted amino acid and an alignment method that can optimise the sum of
packing scores. The former is available in the ‘rough’ empirical potentials of Sippl
(1990) (referred to as potentials of mean force). These are ‘rough’ in that they do
not directly consider side-chain interactions (to do so would be impossible until the
full model was constructed) but capture the preference of an amino acid to be in a
particular environment and (indirectly) secondary structure state. The second component,
the alignment method, is readily available from sequence alignment methods, but could
not be used directly. One solution is to apply the alignment in a series of iterations,
gradually substituting new residues into the existing structure. Another solution is to
take the double dynamic programming method (from structure comparison) and modify
it (Jones et al., 1992).

10.3.4 3D/1D Alignment

The sequence/structure matching problem was also approached from the sequence align-
ment side. Beginning with a pure sequence alignment, structural features are predicted
(such as secondary structure state and degree of burial), which are then matched to the
known corresponding features of a protein structure (along with its sequence) (Bowie
et al., 1991; Luthy et al., 1991; Rice and Eisenberg, 1997). Unlike the ‘true’ threading
methods described above, this approach does not take into account the 3D interactions in
the final calculation of the alignment, so it can use the dynamic programming algorithm
without any complications.

In theory, the 3D/1D approach is less powerful than the ‘true’ threading methods.
However, when applied to very distant relationships, there is little perceptible difference
in the methods. This probably results from the more common incorporation of multiple
sequence data into the 3D/1D methods and from accurate prediction of secondary
structure. The ‘true’ threading methods also make the assumption that the basic core
structure of the model protein will be the same as the structure on which it was built: for
distant relationships this is seldom completely true.

10.3.5 New Fold (NF) Prediction (Ab initio and De novo Approaches)

The last resort – although arguably the most exciting – is ab initio prediction. Ab initio
(from first principles) prediction relies on the assumption that natively folded proteins
exist in a state of low free energy. To obtain the structure of a protein, one simply
has to compute all possible interactions between all residues in a sequence until the
lowest free energy conformation is found! In reality, this problem is far from trivial – in
fact, it has only been done for short (30–40 residue) polypeptides (Duan and Kollman,
1998). Frustrated with a lack of progress, ab initio modellers have begun to use existing
structural information, often in the form of fragment packing, allowing for proteins up
to 100 residues to be predicted – although not from first principles (Rohl and Baker,
2002; Bradley et al., 2005). In order to retain correct nomenclature – as well as to keep
physicists happy – the name of the field has been changed to de novo or new fold (NF)
modelling.
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10.4 MODEL EVALUATION

Regardless of the method used to generate the protein structures, many thousands of
models can be produced by a single prediction attempt. Some models resemble real
proteins, with well-formed secondary structure and a hydrophobic core, while the majority
will be poorly formed with little or no ordered secondary structure and ‘unnatural’ packing
in the hydrophobic core (exposed hydrophobics and buried hydrophilics). To build and
evaluate models that resemble real proteins, it is crucial to use reliable prediction and
evaluation functions, such as YASPIN (Lin et al., 2005) for secondary structure prediction
and PHOBIC, an updated version of burial/hydrophobic matching used in Taylor et al.
(2006), for hydrophobic core evaluation. These functions are constructed using a diverse
mixture of methods to numerous to review here (Skolnick, 2006). A number of ‘popular’
techniques that have been used individually as well as in a combinatorial fashion to predict
secondary structure to overall model structure are presented here.

10.4.1 Decision Trees

The classification and regression tree (CART) algorithm was popularised by Breiman
et al. (1984). Decision trees (DTs) describe a tree structure wherein the leaves represent
classifications and branches represent conjunctions of features that lead to associated clas-
sifications. DTs are frequently referred to as classification trees – used for prediction of
class membership (i.e. is residue i buried or exposed) – or regression trees – used for
assigning a continuous value (i.e. the number of contacts residue i has). As with other
methods, the input to a CART should follow the form (x, y) = (x1, x2, x3, . . . xn, y),
where y corresponds to the label or independent variable and x1 . . . xn correspond to the
attributes that define y. The most fundamental concept is splitting the original dataset
into subsets based on a particular attribute. This process is recursive and is terminated
when a further splitting is either non-feasible or a classification can be made. The result
is structurally similar to that shown in Figure 10.2.

There are two primary formulas employed by DTs: the first is called Gini impurity –
based on squared probability of class membership – and the second is information gain –
based on entropy as used in information theory (Shannon, 1997). Both deal with the diver-
sity of the data at each node. The application of these formulas allows the current node to
be split into further nodes by calculating what is called impurity loss or goodness of split.

If y = (x1, x2, x3, . . . , xn) and f (i, j) is the frequency of value j in node i, then the
Gini impurity is defined as shown in (10.1).

IG(i) = 1−
n∑
j=1

f (i, j)2, (10.1)

while the information gain is defined as shown in (10.2), which is analogous to Shannon’s
entropy (10.3).

IE(i) = −
n∑
j=1

f (i, j) log2 f (i, j), (10.2)

H(X) = −
n∑
i=1

p(xi) log2 p(xi). (10.3)
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Figure 10.2 CART general outline. Once constructed, the DT can be viewed as shown here –
a set of choices represented by a node that branches out from the root node (starting point). An
unknown sample is fed into the system at the root node, and the sample is recursively processed until
a classification is made, hopefully correctly. Although this representation shows branches of equal
length, this is not a constraint. One of many internal DT methods is a branch-trimming algorithm
that attempts to refine the tree during training, reducing complexity and speeding up execution.

Typically DTs are used for data mining, a task that is not directly associated with protein
structure prediction. However, Selbig et al. (1999) used a DT to derive better consensus
secondary structure predictions. Selbig combined predictions from existing programs as
input for the DT. The role of the DT was to improve the final consensus prediction –
something that is now very popular. At that time (1999) Selbig’s program, CoDe, achieved
an accuracy of 72.9 %, which outperformed the methods that existed then. Today, more
advanced learning machines are used in this role, typically a support vector machine
(SVM) or artificial neural network (ANN), which is considered below.

10.4.1.1 Summary of CART Methods

Advantages
• Conceptually simple.
• Data requires very little pre-processing.
• White box – it is possible to look at a DT and see how it works.
• Handle regression and classification problems.
• Handle large datasets – it is possible to complete large tasks using a desktop pc.
• Many existing architectures including Weka (Ian and Witten, 2005) and Yet Another

Learning Environment (YALE) (Mierswa et al., 2006).

Disadvantages
• Rubbish in, rubbish out – can be heavily influenced by small amounts of low-quality

input.
• Requires qualitative input to give complete picture.
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• Probabilities are estimated.
• Real-time data problems.
• Trees become complex – over trained and require trimming.

10.4.2 Genetic Algorithms

Genetic algorithms (GAs) were developed by John Holland and co-workers at the
university of Michigan during the 1970s. GAs are based on the idea of natural selection
and are designed to approximate solutions to optimisation and search problems. The
starting point for a GA is a string, which is also known as a chromosome. The first step
in a GA is to encode the problem. However, to restrict this chapter only to the basics, this
step will be neglected as it often involves complex encoding. Examples applied to 3D
structure can be found in Dandekar and Argos (1994; 1996a; 1996b; 1997) and Petersen
and Taylor (2003). Each chromosome begins life with a fitness function (f ) and it is this
feature that the GA aims to maximise via four steps:

1. reproduction

2. ‘genetic’ Crossover

3. mutation

4. termination.

The reproduction method copies individual strings according to their fitness function.
The fitness function determines the probability of selecting a chromosome. Therefore
chromosomes with a higher fitness are more likely to be selected from the mating pool
for breeding, and thus they are more likely to make the transition to new generations.

The crossover method creates diversity and drives the evolution of the chromosome.
There are two steps to crossover: the selection of two parent strings at random from the
breeding pool and completion of the crossover itself. Given two strings of length (l), a
random position (n) that matches the criterion 1 ≤ n ≤ l − 1 is chosen. For example, if
two strings (A and Z) are selected at random from a breeding pool:

A = 01000001,

Z = 01011010,

and n = 4, then the chromosomes are split as shown below.

A = 0100|0001,

Z = 0101|1010.

To generate the next generation, the strings are pulled apart at the boundary (|) and
recombined, resulting in A′ and Z′.

A′ = 01001010,

Z′ = 01010001.

Mutation plays a secondary role in GAs (somewhat unlike biology). The mutation
operation exists to compensate for overzealous eradication of useful genetic information,
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or simply put, mutation prevents the loss of useful genetic information in the early stages
of evolution. Mutation operations generally occur at a low frequency; however it can (and
should) be optimised by the user.

All good (and bad) simulations must come to an end and this is taken care of by
the termination method. Termination is typically based on the time a method has been
running, the number of generations that have passed, or on completion (i.e. f does not
increase over a number of generations).

GAs have a long and successful history in computational biology and recent work
by Arunachalam et al. (2006) and Armano et al. (2005) has used GAs to good effect
in structure prediction. In Arunachalam et al. (2006), the prediction of several all α
proteins is described using mutually orthogonal Latin squares and GAs. The method
clearly explains the basics of GAs as well as showing how simple it is to extend the
simple GA to work on ‘real’ numbers as opposed to binary strings. Arunachalam’s GA
is of particular interest as a supplementary method that aims to aid convergence on local
minimum is described. Armano et al. (2005) introduces a hybrid ANN – GA approach
to secondary structure prediction. While the paper does not highlight a ground breaking
discovery, it does describe a method that is comparable to MUPRED (Bondugula and Xu,
2007), a method that is discussed in the next section.

10.4.3 k and Fuzzy k-nearest Neighbour

Given a residue (x), the question is, is it part of a helix, sheet, or coil? This ‘simple’
classification problem lends itself to a k-nearest neighbour (kNN) algorithm (10.4). A
kNN is a simple yet powerful method for assigning a class to an unknown sample. Given
a number of known samples, the distances between k and these samples is calculated using
a distance metric (see below). For the sake of simplicity, consider x to be defined by two
coordinates. In this space, the Euclidean (EC) distance (10.5) can be calculated quickly.
Initially the class of x will be known, and this allows for the number of neighbours
(k) to be optimised – to produce the most accurate prediction. When a new sample x is
introduced, the nearest k neighbours will be used to infer the structural class of x. The
result is a probability of x belonging to the helix, sheet, or coil classes. The beauty of
this method is that only one parameter has to be optimised – the value of k.

µc(x) =

k∑
j=1

µc(xj )dij
−2

k∑
j=1

dij
−2

, (10.4)

where 1 . . . k are the kNNs, µc(xj ) is the class membership of neighbour j , and dij is
the distance between features i and j . There are two commonly used distance metrics to
calculate di , the EC distance and the city block (CB) distance (10.6). The formula for
calculating the EC distance is shown in (10.5):

di =
√√√√ n∑
i=0

(Xi − Yi)2. (10.5)

The EC distance is computationally expensive to calculate, so typically the CB distance is
used if the dataset is large. The CB distance (10.5) is less accurate than the EC distance.
However, the increase in execution time on large datasets is noticeably reduced.
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di =
n∑
i=0

|Xi − Yi |. (10.6)

The most crucial and time consuming part of the kNN procedure is the optimisation of k.
There are several procedures for optimisation and they come as part of existing kNN
packages. The first step is to split the data (typically 60 : 40) into two sets – training
and hold out test (HOT). The training set is then subjected to either a leave one out or
an n-fold validation. The concept of the leave one out validation is simple – remove an
example, train the program, establish k, calculate accuracy, and repeat. The n-fold (where
n is a number defined by the user) breaks the data into n equal sections, one section is left
out and the algorithm is trained on the remaining data, and this is repeated n times. At
the end of the validation routes, a plot of k against percentage accuracy should reveal the
optimal value for k. When k is defined, each sample in the HOT set should be analysed
and an overall accuracy obtained.

A kNN can be improved using another user-definable parameter m. This parameter acts
as a ‘fuzziness’ parameter, weighting the class contribution for each k by its distance. The
introduction of this term means that the kNN algorithm is now defined as a fuzzy k-nearest
neighbour (fkNN ) algorithm. (10.7) shows the fkNN algorithm. Note the difference
between this and the previous equation is the inclusion of −2/(m− 1).

µc(x) =

k∑
j=1

µc(xj )d
−2/(m−1)
ij

k∑
j=1

d
−2/(m−1)
ij

. (10.7)

The kNN and fkNN approaches have been applied to both secondary structure (Bondugula
and Xu, 2007) and solvent accessibility (Sim et al., 2005), both individually and in
combination with more sophisticated methods such as ANNs.

10.4.3.1 Summary of kNN/fkNN

Advantages
• Simple to implement
• Powerful
• Existing architectures for moderate-sized datasets.

Disadvantages
• Computationally expensive
• Time consuming – have to run over full dataset for each prediction
• Classification problems only.

10.4.4 Bayesian Approaches

Bayesian theory, like the kNN, is a simple approach – indeed it reduces to ‘just counting’.
In protein structure prediction, this approach has been successfully applied by Thompson
and Goldstein for solvent accessibility (Thompson and Goldstein, 1996) and secondary
structure (Thompson and Goldstein, 1997) prediction and later by Lathrop for sequence
structure alignment (Lathrop et al., 1998).
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Bayes’ theorem (10.5) provides a method for adjusting the degree of belief in light of
new information.

P(A|B) = P(B|A)P (A)
P (B)

. (10.8)

The term P(A) is the prior probability; it represents the probability of seeing A in a
random population. P(B|A), the conditional probability, represents the probability of
observing B given knowledge of A. P(B) is referred to as the marginal probability and
is the probability of observing B in a random population. The left term, P(A|B), is the
posterior probability; it represents the probability of A given knowledge of B.

Given a residue (i) and a surrounding window of sequence ({Aj }), Bayes’ theorem
can be used to predict protein features (Sk) such as solvent accessibility and secondary
structure using a library of known examples (k) (10.9).

P(ωi |{Aj }) =
∑
k

P ({Aj }|Sk)
P ({Aj })

P (Sk)δ(s
k
j ∈ ωi), (10.9)

where s is the structural context (buried β sheet), and skj is a window of known structure
(k denotes a particular segment while j is an index in window k). The term δ(skj ∈ ωi) is
essentially a Boolean statement – zero unless the residue in structural context skj has the
structural state ωi (otherwise one). P(Sk) is the probability of witnessing the structural
window k at random and is trivially calculated from a library. P({Aj }) is the probability
of witnessing a window of sequence at random. P({Aj }|Sk) is the probability of observing
a sequence with structural context Sk , and again this must be calculated from a library.

When it comes to biological applications, some assumptions have to be made, for
example, when considering the probability of seeing a window of 15 residues. The number
of possible combinations in a 15 residue window is 1520, which means that it is highly
unlikely that all possible combinations of the amino acids will be witnessed in a sequence
library – the sequence partner to the structural library. To get around this problem, an
assumption is made that the product of the individual amino acid probabilities will be an
accurate approximation of the probabilities of the windows (10.10).

P({Aj }|Sk)
P ({Aj })

=
∏
j

P (Aj |skj )
P (Aj )

. (10.10)

This assumption changes the overall equation (10.9) to (10.11):

P(ωi |{Aj }) =
∑
k

∏
j

P (Aj |skj )
P (Aj )

P(Sk)δ(ski ∈ ωi). (10.11)

This approach, despite being ‘old’, remains one of the most effective tools for predicting
solvent accessibility and secondary structure (∼75 % accuracy). For a more general
introduction to Bayesian statistics, it is suggested that the reader refers to the chapter
by Richard Goldstein in Jorde et al. (2005) and to Thompson and Goldstein (1996; 1997)
for detailed biological application.
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10.4.4.1 Summary of Bayesian Methods

Advantages
• Resistant to overtraining.
• Easy to update given new example data.
• Several existing architectures, e.g. perl AI::Categorizer::Learner::NaiveBayes, which

is fast although it is not the most accurate.
• Remains one of the most accurate tools for solvent accessibility prediction and solvent

accessibility prediction.

Disadvantages
• Slow – has to complete a scan against a pattern library for each prediction.
• Some of the assumptions do not apply to all situations as detailed in Thompson and

Goldstein (1997).

10.4.5 Artificial Neural Networks (ANNs)

ANNs mark a significant step forward in complexity and power allowing for modelling of
complex non-linear relationships between input and output. The architecture of an ANN
is deceptively simple: at its most basic level is the neuron, a simple processing element
that is linked to form a complex machine. The ANN is made up of layers of neurons,
which are linked together by weighted connections (see Figure 10.3). It is the combination
of these weighted connections and transfer functions used in the nodes that defines the
overall performance of the machine. There are three categories of transfer functions:
linear, where the output is proportional to the total weighted input; threshold, where the
output is set to one of two states depending upon whether the input is greater or less than
a threshold; sigmoid, where the output varies continually but not linearly with the input.

The first neural networks appeared in 1957 when Rosenblatt created the perceptron, a
model that contained a single layer. The perceptron, or single-layer neural net, is the most

Input layer Ouput layerHidden layer

Network connections Š
weighted during training

Figure 10.3 A generic ANN layout. The most basic neural networks consist of a single hidden
layer that is fully connected to the input and output layers. The connections between each node
(black arrows) is given a default value before training, and when training begins the weights are
adjusted according to an error function. After training, the weights should be optimised to accurately
map input space to output space.
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basic of ANNs and is only capable of solving linearly separable problems. The concept
behind the network is simple: take the sum of the products of the weights and inputs per
node; if the value is above a specific threshold the neuron fires and obtains an ‘activated’
value or ‘higher state’. The simplicity is further reflected in training, which is completed
using the ‘depth’ walk. This function calculates the error between the sample and training
set and adjusts the network weights accordingly – this procedure is also referred to as
gradient descent, a method that is used in more complicated frameworks.

An excellent example of neural network usage in protein structure prediction is YASPIN
(Lin et al., 2005). Lin et al. presented a feed-forward perceptron network with a single
hidden layer to predict seven-state secondary structure, which is then optimised using
a hidden Markov model (HMM). YASPIN used a soft-max transition function with
a window of 15 residues, with each residue in that window being represented by 20
units. Each unit represents a transition state in a position specific scoring matrix (PSSM)
generated by PSI-BLAST. There is an additional element that is used where a terminal is
spanned, and the result is a 315 (21× 15) dimension input. The hidden layer comprises 15
elements while the output layer contains 7 – one for each structure classification. When
the seven-state prediction is made, it is passed to the HMM. The HMM uses the viterbi
algorithm (Durbin, 1998) to optimally segment the predictions, the result being transition
probabilities between each of the states. The final output to the user is a three-state
prediction (α, β,−) with confidence values.

10.4.5.1 Summary of ANN Methods

Advantages
• Very powerful if trained correctly.
• Solve linear and non-linear problems.
• Existing frameworks to build ANNs are available, for example, JOONE.

Disadvantages
• Black box – once they are built and implemented you have no idea how they work.
• Can be slow to train.
• Prone to over training.
• Computationally expensive.

10.4.6 Support Vector Machines

SVMs are supervised learning machines for regression and classification problems; they
were introduced by Boser, Guyon, and Vapnik in the 1980s. SVMs are capable of solving
linear and non-linear problems by taking an n-dimensional input space and mapping it
into a higher dimension, often referred to as the kernel trick, and once in this space a
linear classifier is constructed (see Figure 10.4).

The key part of the SVM is the kernel – a mathematical function that performs the
transition from a linear space to a non-linear space, or in the case of a radial basis function
(RBF) to a Gaussian infinite space. The majority of existing SVM architectures implement
four kernel functions (see Table 10.1), polynomial, radial basis, Gaussian radial basis, and
sigmoid. In most cases, the RBF proves to be a suitable starting point as it is able to handle
linear and non-linear relationships. Indeed it is the kernel of choice for most biologists.
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RBF

Project into Hilbert
space

Figure 10.4 Linear classification of a non-linear problem. The initial step is to determine whether
the problem is linearly separable or not. If the problem is linear, then a linear kernel should be
applied, skipping the transformation into multidimensional space. If the problem is non-linear (or
if checking seems like too much work), the radial basis function (RBF) provides an ideal starting
point. This is because it is capable of mapping linear and non-linear problems. Once in the higher
dimensional space, a linear separation of the data can be performed.

Table 10.1 Four commonly used kernel methods. Of all the kernels, the best starting point is one
of the two RBF functions. This is because they are capable of solving both linear and non-linear
problems.

Kernel Mathematical definition

Polynomial kernel k(x, x ′) = (x · x ′)d
Radial basis function (RBF) k(x, x ′) = exp(−γ ‖x − x ′‖2) where γ is

defined by optimisation routines

Gaussian RBF k(x, x ′) = exp−
(‖x − x ′‖2

2σ 2

)
Sigmoid k(x, x) = tanh(kx · x + c) for k > 0 and c < 0

The simplest example of an SVM is a linear classification. Consider a problem where
there are two classes. The first class describes residues that are buried, the second those
that are exposed. Using a set of features that describe each class, a plot can be constructed
as shown in Figure 10.5.

As the problem is clearly linearly separable, a linear kernel can be applied as shown
in Figure 10.6.

The central line (dividing hyperplane) splits the two classes, while the parallel
hyperplane’s function is to maximise the space between the dividing hyperplane and
each class. When an unknown sample is passed to the SVM, it should be possible to
classify it as buried (−1) or exposed (+1). The classification is achieved using (10.12),
implying that the problem reduces to defining the support vectors to be able to make a
prediction – all other data points can be discarded! To make the machine more robust,
error (slack) variables (ξ ) can be introduced. Error variables allow for a solution to be
found where the data is not so clearly divided.

ci = {1, if ω · x + b ≥ 0; −1 if ω · x + b ≤ 0}. (10.12)
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Buried

Exposed

Figure 10.5 Over simplification of residue burial/exposure. Plotting the state of several residues
using a number of features shows a clear separation of the two categories (it should be noted this
is not the case in reality). Because of the clear separation in normal space, a simple linear kernel
can be applied. However, readers with a creative mind can imagine that they used an RBF and
now exist in Gaussian infinite space.
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Figure 10.6 Application of a linear kernel on a linearly separable problem. The two classes can
be separated by a plane (the dividing plane). To either side of the dividing plane there are parallel
hyperplanes, and these define the maximum distance from the dividing hyperplane to each class.
The space between the parallel hyperplanes and the dividing hyperplane is void of data points. The
name support vector machine is derived from the use of support vectors to establish the position of
the parallel hyperplanes. The distance between the hyperplanes is defined by geometrical techniques
to be 2/|w| (so the aim of the SVM is to minimise |w|).
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Regression is slightly different from classification in implementation. Generally speaking,
existing tools use what is called epsilon (ε) support vector regression (SVR). Epsilon
defines a threshold under which data is ignored; this is the exact opposite of classification.
The detailed workings of this method are beyond the scope of this chapter and readers
are strongly advised to read Cristianini and Shawe-Taylor (2000) in order to obtain a full
understanding.

SVMs have been used successfully for both classification and for regression in
biological scenarios, the easier of the two problems being classification. A good example
of a classification problem is Disopred2 (Ward et al., 2004). Disopred2 uses support vector
classification and a neural network to predict the ordered or disordered state of a residue.
Ward et al., used a linear kernel to solve this problem and achieved a good degree of
success as shown by their performance in the critical analysis of structure prediction
(CASP) exercise.

An example of the regression problem is Yuan’s work (Yuan, 2005) for the prediction
of protein contact number. Previous work by Kinjo et al. (2005) had shown that contact
number prediction was not best solved using a linear method. Yuan implemented an SVM
using the RBF kernel to map the data into higher dimensional space before performing
a regression to predict absolute contact number. The overall performance of the SVMs
showed an improvement over existing techniques, achieving an accuracy ‘greater than
77 %’ (Yuan, 2005).

10.4.6.1 Summary of SVM Methods

Advantages
• Solve linear and non-linear problems.
• Kernels are hot swappable.
• Kernel addition and weighting allows for colourful combinations of SVMs.
• Simpler to implement compared to ANNs.
• Less prone to over training compared to ANNs.
• Existing frameworks – very simple to set up.

Disadvantages
• Mathematically complex.
• Kernels are hot swappable – many biologists try each kernel until they get the results

they want to see. This is not wrong but can be costly.
• Black box – once trained it is not easy to understand the rules that define the

system.
• On large datasets, it can be computationally very expensive to optimise all necessary

variables.
• Some implementations are more robust than others.

10.5 CONCLUSIONS

Extracting the maximum amount of structural information from sequence data has had
a long history of increasing diversity in the methods used and the problems to which
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they have been applied. Following secondary structure methods as an example, simple
frequency-based methods were used in the early 1970s (Chou and Fasman, 1974; 1978)
followed by information-theory-based methods during the late 1970s (Garnier et al.,
1978). The 1980s saw the introduction of artificial neural net methods, which have been
followed by SVMs in the last decade. Applications have also broadened from a focus
on the simple three-state (α, β, other) prediction of local structure to include the solvent
exposure of a residue and more recently, the predicted degree of disorder in the chain.

Despite these quantum leaps in methodology, the degree of accuracy in the predictions
has improved only slowly in recent years with small, usually single figure, increases
in prediction accuracy being reported. Compared to the wide range of variations in the
accuracy of the predictions between proteins, these small increases are barely significant.
The observed plateau in accuracy is not unexpected as most of the current methods
use data derived from a multiple sequence family. Without knowing the structures of the
proteins in the families, there will certainly be errors in their alignment that will introduce
a base level of noise that cannot be overcome without improved alignment methods. More
fundamentally, there is also variation in observed secondary structure definitions between
members of the family. Taking all members of the family together means there is no
unique definition of secondary structure against which accuracy can be measured. An
iterative approach that would overcome this problem might be considered: starting with
a wide diverse family to predict a starting state, which is gradually refined using smaller
subsets of the family, finishing with one sequence. At this stage, it would then probably
be necessary to predict the full three-dimensional structure.

The application of statistical methods to new problems, such as the prediction of chain
disorder, is probably where the methods are making their most significant contribution.
In this particular area, it is being realised that large parts of the coding sequences in
a large fraction of proteins in the genome have no intrinsic structure. They serve as
locations for modification, like phosphorylation, or are induced to have structure when
they encounter a specific binding partner. Their role is important in dynamic behaviour
of cellular systems, such as receptor signalling and gene regulation. With the growing
interest in ‘systems biology’, the identification and understanding of these regions will be
of increasing biological importance.

Finally, it is worth considering the direct application of statistical methods to three-
dimensional structure prediction. Most of the applications described above involve the
prediction of local structure or structural states, which can be used to constrain 3D
models. Some attempts have been made to apply ANNs to direct structure prediction
but with success only at the local structural level. There may be scope for methods that
use a higher level of structural description but the encoding to be used for this is not
obvious. A more likely route towards a practical tool is the use of statistical methods in
fold-recognition (or threading) methods. As more structures become available, this task,
which is essentially a classification problem, will become easier. The only impediment
along this route is that large proteins usually need to be broken down into their constituent
domains before they can be recognised and these domains are not always contiguous in
sequence.

In summary, while structure prediction methods are becoming more powerful and
helped by the vast new sources of sequence and structural data, to some extent, their
traditional areas of structure prediction are becoming less relevant. The increasing volumes
of data also means that there is now a good chance of finding all the necessary structural
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information on a protein from another structure related by clear sequence similarity.
Interesting application areas appear to lie more in novel directions associated with protein
interactions and their relevance to cellular function.
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Metabolic profiling (metabonomics or metabolomics) is a field in biomedical investigation that
combines the application of nuclear magnetic resonance spectroscopy and other experimental
platforms with multivariate statistical analysis in studies of the composition of biofluids, cells and
tissues. It is a system-level bioinformatics discipline that involves the quantitative measurement
of the multivariable metabolic response of living systems to pathophysiological stimuli or genetic
modification. Metabolic profiling therefore represents an important area of biological research that is
likely to have an impact on a diverse range of clinical areas. In this chapter, we give a description of
some basic metabolic data gathering techniques, and the most commonly used methods of statistical
analysis, namely, principal components analyis and partial least squares, cluster analysis, and other
modern classification approaches such as neural networks and evolutionary algorithms. Throughout,
we illustrate these concepts with specific biological examples.

11.1 INTRODUCTION

Metabolic profiling, also known as metabonomics (Nicholson et al., 1999) or metabolo-
mics (Raamsdonk et al., 2001), is a rapidly developing field in biomedical science that
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combines the application of spectroscopic techniques with multivariate statistical analysis
in studies of the molecular composition of biofluids, cells and tissues. The experimental
focus is on profiling metabolites – the thousands of low-molecular-weight molecules
which are the building blocks of the cell. These compounds interact with macromolecules
such as proteins and nucleic acids in the fundamental metabolic processes that keep organ-
isms alive. Thus, the metabolic state of an organism, as delineated by its metabolic profile,
can reveal information on the genetic, physiological or functional status the system. In
addition, in contrast to DNA or RNA, metabolic profiles also reflect the entirety of internal
and external influences on an organism or tissue, including environment, behaviours,
disease, drugs and interactions with parasitic or symbiotic organisms (Nicholson et al.,
2002; Nicholson and Wilson, 2003). This leads to important applications in the molecular
diagnosis and prognosis of disease, drug metabolism and toxicity, functional genomics
and the investigation of fundamental biological processes. From the statistical point of
view, however, metabolic profiles are complex and information rich, presenting unique
challenges to data analysis and modelling.

The term metabolome refers to the total metabolite complement of a cell, tissue or
organism. While there are currently no methods capable of delivering an exhaustive
measurement of the metabolome, there are several technologies that can approach this
ideal. A gold standard technique would be one that is (1) non-selective, in that, it
is not biased towards particular chemical classes of compounds, (2) quantitative and
accurate, thus producing data that can be meaningfully modelled by statistical procedures,
(3) sensitive to a wide range of metabolite concentrations and (4) able to resolve the
complex mixture into separate signals from each metabolite. These requirements are
satisfied, though not perfectly, by the techniques of nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS).

11.1.1 Spectroscopic Techniques

The two spectroscopic assay technologies, NMR and MS, are highly complementary and
therefore often used in parallel. NMR has the advantage that it is highly non-selective and
quantitative; it also requires little sample preparation and is non-destructive, thus permit-
ting multiple measurements on each sample. MS approaches are much more sensitive and
generally have higher resolution than NMR; yet they suffer from inaccuracies introduced
by differential ionisation efficiencies. These can be partially alleviated by preceding the
MS detection with a physical separation step using liquid chromatography (LC) or gas
chromatography (GC), leading to LC–MS or GC–MS Wilson et al. (2005). Figure 11.1
shows examples of NMR and LC–MS spectroscopic metabolic profiles of urine.

The resulting spectra (or profiles) consist of several thousands of individual measure-
ments at different resonances or masses. The spectra are complex and require dedicated
analysis procedures. The inherent high dimensionality immediately precludes many
conventional statistical analysis approaches. Similar to other spectroscopic data, the spec-
tral variables are usually highly collinear, a characteristic that arises for both chemical
analytic and biological reasons. For example, one metabolite may generate more than one
spectral signal (e.g. isotopic patterns in MS) leading to several highly correlated peaks.
Alternatively, signals from different metabolites may show high correlations because they
are involved in the same biological process. While the above properties are typical of
data from many so-called ‘-omic’ techniques such as those from transcriptomics and
proteomics, metabolic profiling poses its own challenges. The most important challenge is
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Figure 11.1 Typical metabolic profiles of rat urine. (a) a one dimensional 1H NMR spectrum,
(b) a two dimensional contour plot of an LC–MS profile. Both the higher number of signals and
level of noise are clear in the LC–MS profile.
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the problem of unidentified signals; while thousands of signals may be detected, typically
only a very small fraction will be identified with a known chemical structure – so such
prior chemical information is extremely helpful for correct interpretation and identifica-
tion. Another difficulty is the sensitivity and resolving power of the analytical technique,
as well as the complexity of the analysed mixture. A related problem is that the total
number of detected analytes is in general unknown and will vary between different biolog-
ical conditions. Thus, in metabolic profiling, there is a great emphasis on methods of
exploratory data analysis and visualisation, which allow the analyst to probe their data
for the presence of poorly detected or resolved signals and help in identifying unknown
metabolites.

11.1.2 Data Pre-processing

Metabolic profiles generally undergo some pre-processing prior to more advanced statis-
tical modelling, to account for spectral artefacts and render profiles from different samples
more comparable. Pre-processing is necessary to achieve comparability between replicate
samples, to achieve some form of measurement noise reduction and to more accurately
distinguish the different chemical constituents by means of peak deconvolution and sepa-
ration. In this chapter, we do not describe these issues in detail, but instead focus on
statistical feature extraction and discrimination procedures. However, a brief discussion
is given below.

One of the most serious problems affecting NMR profiles is that peak positions can be
affected by the pH or ionic strength of the sample. This phenomenon seriously affects a
minority of metabolites and means that the spectral intensity at a given NMR chemical
shift (or wavelength) may be due to both changes in molecular concentrations as well
as shifts in resonance positions, making the interpretation of statistical models difficult.
While there exist techniques that account for or correct such shifts automatically (Holmes
etal, 1992; Stoyanova et al., 2004), these are most suited to correction of small spectral
regions and have not yet been successfully applied to full-width NMR profiles. A similar
difficulty occurs in LC, where obtaining highly reproducible separation of metabolites
is difficult and peak alignment algorithms are often used to match LC profiles from
different samples. In mass spectrometry, various processes can lead to the signal from
each metabolite being broken up into multiple peaks. For example, the natural occurrence
of multiple isotopes of various nuclei leads to a characteristic isotopic pattern for each
primary ion, while the formation of adducts (e.g. the addition of metal ions to the
primary ion) ensures each metabolite is characterised by a pattern of different peaks.
In MS approaches, differential ionisation efficiency also complicates interpretation of
the data. Finally, regardless of the technique employed, the profiles will be affected by
gross changes in sample concentration, which can obscure important but subtle treatment-
related changes. To alleviate this, profiles are often normalised to unit total intensity, so
that subsequent values for any given metabolite relate to its concentration relative to
the rest of the mixture, rather than to an absolute measure. In most cases, this does not
detract from, and can even improve, the biological interpretation, though when there are
large changes between profiles, interpretation of profiles normalised in this way is less
clear.

Both NMR and MS spectra are typically data-reduced prior to statistical analysis.
This may take the form of discretisation of the continuous spectra by integrating the
signal in a grid of bins, or by a form of ‘peak picking’ and subsequent integration of



STATISTICAL TECHNIQUES IN METABOLIC PROFILING 351

individual signals. Thus, depending on the method of preprocessing, each data variable
may correspond to either a particular signal or merely an integrated region of the spectrum.
The peak picking approach requires complex peak detection algorithms using many
tuneable parameters and can be subject to a high degree of bias. The binning approach,
on the other hand, may result in a proportion of variables containing little real signal
and mainly influenced by noise. This is particularly true in the case of LC-MS, where
the grid-based binning approach results in a large number of noisy variables due to the
sparse nature of the two-dimensional data (see Figure 11.1b). In either case, there are
often many variables whose metabolic identity is difficult to pin down (e.g. because of
unidentified signals). It should be noted that, because of the issues described above (peak
shifts etc.), optimal preprocessing for both NMR and MS data is an area of active current
research.

Several metabolic profile analysis software packages are available. A popular and
effective one is the AMDIS software (Davies, 1998; Stein, 1999), which extracts individual
component spectra from LC or GC MS data files and then uses them to identify compounds
by matching the spectra to a reference library of chemical compounds housed at the
US National Institute for Standards and Technology (NIST). The analysis proceeds in
four steps (noise analysis, component ‘perception’ (extraction), spectral deconvolution
and compound identification) in an automatic fashions, using a variety of multivariate
modelling techniques and heuristic testing procedures. The entire approach has proved
very successful for analysing data from these platforms.

The aims of data analysis in metabolic profiling will depend on the scientific objectives
of the study. However, the objectives of analysis typically fall into one or more of
the following categories. Firstly, we wish to visualise the relationships between groups
of both samples and spectral variables. For example, this could include clustering
individuals or detecting significant correlations between variables. In addition, we wish
to determine whether there is a significant difference between groups related to the effect
of interest. The latter is a classic small n, large p inference problem (West, 2002). That
is, each individual datum (metabolic profile) consists of a large vector of interrelated
(dependent) observations, yet the number of samples in the study is relatively small.
Finally, and perhaps most importantly, we are interested in finding out which metabolites
are responsible for these changes. This chapter introduces some of the current techniques
used in the statistical analysis of metabolic profiles. We give the basic principles and
algorithms behind each method and illustrate their use with example datasets. We use X to
denote the n× p matrix of n metabolic profiles, where p is the dimension of the spectrum
(usually p is in the order of thousands). Therefore, each row of the X matrix represents
a metabolic profile. We define the sample covariance matrix S = X′X/n, assuming that
each column of X is standardised to have mean 0, and take y to be an n-dimensional
vector of responses.

11.1.3 Example Data

Several of the methods described in this chapter are illustrated with the help of data from
a study profiling the metabolic consequences of hydrazine toxicity (Lindon et al., 2005)
(Plates 10 and 11). Thirty Sprague–Dawley rats were randomly and equally assigned to
three treatment groups (control, low dose and high dose), and hydrazine was administered
orally at doses of 0, 30, and 90 mg kg−1, respectively. Urine samples were collected at
10 time points over 8 days, including 2 pre-treatment samples. All procedures were carried
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out in accordance with relevant national legislation and were subject to appropriate
local review. 1H NMR spectra were measured at 600 MHz and 300 K using a robotic
flow-injection system (Bruker Biospin, Karlsruhe, Germany). After phasing and baseline
correction, each NMR spectrum was segmented intoM = 205 variables by integrating the
signal in regions of equal width (0.04 ppm) in the chemical shift ranges δ 0.20–4.50 and δ

5.98–10.0, excluding spectral artefacts in the region δ 4.50–5.98. All segmented spectra
were then normalised to a constant integrated intensity of 100 units to take account of
large variations in overall urine concentration. The principal component analysis (PCA)
and partial least-squares (PLS) analysis shown were performed using SIMCA-P+ version
11 (Umetrics AB, Umea, Sweden). Other analyses were computed using in-house software
written in the MATLAB programming environment (version R2006a, The MathWorks,
Natick, MA).

11.2 PRINCIPAL COMPONENTS ANALYSIS AND REGRESSION

11.2.1 Principal Components Analysis

PCA is a well-known method of dimension reduction (Massy, 1965; Jolliffe, 1986),
which seeks linear combinations of the columns of X with maximal variance, or
equivalently, high information. It is routinely applied in chemometrics with the goal
of providing the most compact representation of the data. The original p variables
X = [x1 . . . xp] are transformed in a new predictor set T = [t1 . . . tk], with k ≤ min(n−
1, p). The new variables tj , called scores, are a weighted average of the original X

variables. The principal components are the eigenvectors, uj from the eigendecom-
position of X′X (and of the sample covariance matrix S, up to a constant). PCA
sequentially maximises the variance of a linear combination of the original predictor
variables

uj = arg max
‖u‖=1

Var(Xu),

subject to the constraint that u′iSuj = 0 for all 1 ≤ i < j . This ensures that tj = Xuj is
uncorrelated with all the previous linear combinations ti = Xui . The principal components
are ordered in terms of the amount of variation of the original data they account for. The
first principal component direction has the property that t1 = Xu1 has the largest sample
variance among all normalised linear combinations of the columns of X. Each subsequent
component gives combinations with the largest possible variance which are uncorrelated
with those that have been taken earlier.

There are various standard approaches to find the principal components, e.g. taking the
singular value decomposition of X. In chemometrics it is common to estimate the principal
components using the nonlinear iterative partial least-squares (NIPALS) algorithm (Wold,
1966). This is because the number of required components is usually much less than the
total possible number (k � p). In fact, the NIPALS algorithm does not calculate all the
principal components at once, but it first calculates t1 and u1 from the X matrix. Then
the outer product t1u′1 is subtracted from X and the residual X2 is calculated. In turn, this
residual can be used to calculate t2 and u2.
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NIPALS algorithm for PCA

0. Standardise each xj to have mean 0.
1. Initialise j = 1, Xj = X and tj to any of the columns of X.
2. Project Xj on tj to find the corresponding loadings uj : uj = X′

j tj /‖tj‖.
3. Normalise uj to have unit length: uj = uj /‖uj‖.
4. Project Xj on uj to find the corresponding score vector tj : tj = Xjuj /‖uj‖.
5. Check convergence: compare tj used in step 2 and tj calculated in step 4

(check if the difference is larger than a predefined threshold, e.g. 10−6).
If they are the same, the iteration has converged; then continue to step 6.
Otherwise return to step 2.

6. Remove the estimated PCA principal component from Xj : Xj+1 = Xj − tju′j .
7. Let j = j + 1 and repeat steps 1–7 until j = k.

If k = min(n− 1, p), then we have found all the principal components. We can now
form the scores matrix T and the loadings matrix U with columns tj and uj , respectively.
These matrices are such that

X = TU′,

where U is an orthogonal matrix and the tj are orthogonal. Note that λj = ‖tj‖2 and uj
are eigenvalues and eigenvectors of X′X, respectively. The NIPALS algorithm can be
modified to account for missing data (Christoffersson, 1970).

A key issue is the number of principal components necessary to describe a dataset in a
parsimonious way but without loss of important information. After k runs of the NIPALS
algorithm, the X matrix is decomposed as

X = t1u′1 + · · · + tku
′
k +Xk+1.

We want to choose k such that Xk+1 represents only noise (if k = min(n− 1, p),Xk+1=0)
and all the features of X are captured by the tju

′
j , j ≤ k.

The maximum number K of principal components is determined by the number of non-
zero eigenvalues, which coincides with the rank of S and K ≤ min(n− 1, p). However, k
is usually chosen through cross-validation (CV) (Stone, 1974; Wold, 1978). The proportion
of the total variance explained by a PCA model with k components is quantified by the
R2 parameter defined as

R2
k = 1−

n∑
i=1

‖̂xi − xi‖2

SS
,

where xi denotes a row of X, x̂i is the estimated xi from the PCA model and SS is the
total sum of squares of X, i.e. SS =∑n

i=1 ‖xi‖2.
R2 varies in the range 0–1, taking value one when k = min(n− 1, p). The CV

procedure quantifies how robust the model is to perturbation of data and thus avoids
overfitting. In each round of CV, a proportion (usually around 10 %) of the data is held
out Xo, the model is computed with the remaining data X−o, and the predicted values
of the held out data points are computed using X̂o =

∑k
i=1 tiu

′
i . This is repeated until all

data points have been held once. The parameter Q2 is the CV equivalent of R2 using the
predicted values of the data:

Q2 = 1− PRESS/SS,
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where PRESS =∑
i∈O ‖̂xi − xi‖2, where O is the set of individuals left out. Q2 is

bounded above by the value of R2, and a high ratio of Q2/R2 indicates a robust model
which is affected little by perturbations. As more components are computed, both R2 and
Q2 generally rise as more of the variance is explained. However, a point is reached where
the structure represented by the (m+ 1)’th component is mostly noise. At this point, the
predicted data deviates from the true data and Q2 starts decreasing, indicating that k = m
is the correct number of components to use in the model.

Figures 11.2 and 11.3 illustrate the use of PCA on the hydrazine dataset. Figure 11.2
shows the scores plot of the first two principal components. The plot shows the char-
acteristic L-shaped trajectory of hydrazine toxicity; high-dose profiles initially resemble
controls but over the time course move to a well-separated region of the plot. Figure 11.3
shows the PCA loadings of the first two principal components. Spectral bins which have
a high variance in the X space are indicated by points lying far from the origin and can
be used to interpret the distribution of data on the scores plot.

11.2.2 Principal Components Regression

In most applications we are interested in predicting y from the sets of inputs xj , e.g. we
are interested in studying the relation between the blood pressure and the metabolic profile
of an individual. From PCA we derive a representation of the data matrix X as a score
matrix T. Principal component regression (PCR) uses the score vectors tj as explanatory
variables and regresses y on t1, . . . , tk for some k ≤ min(n− 1, p):

y = α +
k∑
i=1

βiti + ε,

−3

−2

−1

0

1

2

3

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 2 3 8

t(
2)

t (1)

Control
Low dose
High dose

24–96 hours

Control and pre-dose

1 7654 9

Figure 11.2 Scores plot of the first two principal components for the hydrazine dataset. Each
point represents one urine sample (metabolic profile) from one animal at one time point. The
different patterns indicate different treatment groups (squares, control; circles, low dose; diamonds,
high dose). The plot shows the characteristic L-shaped trajectory of hydrazine toxicity; high-dose
profiles initially resemble controls but over the time course move to a well-separated region of the
plot. The ellipses identify regions associated with control-like profiles (on the right) and profiles
showing maximum toxicity (on the left).
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Figure 11.3 PCA loadings plot of the first two principal components for the hydrazine dataset.
Each point represents one spectral bin. Points lying far from the origin indicate those bins
characterised by a high degree of variation in the data and thus explaining the pattern on the
scores plot. Some analytes of interest are labelled on the plot.

where α denotes the intercept, βi are the regression coefficients and ε is a normal
error term. As the tj are orthogonal, PCR reduces to a sum of univariate regressions
(Hastie et al., 2001). Usually only the first principal components are used and the p − k
smallest eigenvalue components are discarded. PCR has major advantages over standard
multivariate regression when X is singular and when n < p due to the dimension
reduction. In the latter case, the eigenvalues λn = · · · = λp = 0 and so at most n− 1
components can be included.

11.3 PARTIAL LEAST SQUARES AND RELATED METHODS

11.3.1 Partial Least Squares

Partial least-squares regression (Wold, 1975) is extensively used in chemometrics as an
alternative to ordinary least squares (OLS) in ill-conditioned problems (e.g. n < p). It
is most often used when the explanatory variables are highly collinear and when they
outnumber the observations.

PCA (and therefore PCR) finds, in some way uncritically, those latent variables (scores)
that describe as much as possible of the variation in X. In PCR, the latent variables are
calculated without consideration of the response and it is possible that useful predictive
information for y is discarded as noise. If there is a lot of variation in X not correlated with
the response then the latent variables found by PCR might not be adequate to describe y.
PLS tries to solve this problem by constructing latent variables that are relevant for
describing y. The goal of PLS is to construct linear combinations of the original variables
that have simultaneously high variance and high correlation with the response (Frank and
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Friedman, 1993; Hastie et al., 2001):

uj = arg max
‖u‖=1

Corr2(y,Xu)Var(Xu), (11.1)

subject to the constraint that u′iSuj = 0 for all 1 ≤ i < j . Therefore the goal of PLS is to
find optimal weights uj to form a small number of latent variables that best predict the
response y.

PLS was introduced as a modification of the NIPALS algorithm for PCA (Wold,
1966), but it is most often presented as a latent factor regression method and produces a
sequence of models yj . The algorithm to compute the first k latent variables is described
below.

PLS algorithm

0. Standardise each xj to have mean 0 and variance 1.
Standardise y to have mean 0.

1. Initialise j = 1,Xj = X and yj = y.
2. Compute the univariate regression coefficient of y on each of the x: wj = X′

jyj .
3. Normalise wj to have unit length: wj = wj/‖wj‖.
4. Project Xj on wj to find the corresponding score vector tj : tj = X′wj .
5. Regress y on tj to get the ordinary least-square regression coefficient b̂j : b̂j = t′jy/‖tj‖.
6. Project Xj on tj to find the corresponding loadings uj : uj = X′

j tj /‖tj‖.
7. Orthogonalise Xj with respect to tj : Xj+1 = Xj − tju′j .
8. Let yj+1 = yj − b̂j tj .
9. Let j = j + 1 and repeat steps 2–9 until j = k.

Similar to the NIPALS algorithm for PCA, the number of components k is usually
determined by CV procedures. The emphasis in PLS is not only on regression but also on
uncovering latent structure in X and y. This latent structure is made up of pairs of latent
vectors, tj and uj . The latent vectors are determined through the process of estimating
the weights wj for the linear combination of the X variables. The weights wj correspond
to directions in the space of X with highest covariance with y and are such that large
variations in X are accompanied by large variations in y. Steps 2 and 3 of the algorithm
show that the wj are obtained by normalising the covariance matrix between X and y. In
step 4 we construct the latent variable tj (also called partial least-squares direction) by
reweighting the xi by the strength of their univariate effect on y (the weights are given by
the covariance between xi and y). In step 5 the response y is regressed on tj to obtain the
univariate OLS estimate and then in step 6 we obtain the latent variables uj by regressing
the columns of X on tj . PLS produces a bilinear representation of the data Martens and
Naes (1989):

X = t1u′1 + · · · + tku
′
k +Xk+1

y = b̂1t1 + · · · + b̂ktk + yk+1,

where the tj are orthogonal and Xk+1 and yk+1 are the residuals. The uj and the b̂j are
estimated by regression, and PLS fits a sequence of bilinear models by least squares,
thus the name partial least squares. In steps 7 and 8 the residuals Xj+1 and yj+1 are
calculated and in each iteration only the subspace of X that is orthogonal to the earlier
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linear combinations developed in the X space is used and the y space is projected on
the space orthogonal to the previous X component. The basic PLS algorithm can be
generalised to handle multiple responses.

The maximum number K of components is ≤min(n− 1, p). The number of compo-
nents k should be chosen so that Xk+1 contains no information on yk+1 (i.e. they are
uncorrelated) and similar to PCA, k is usually chosen through CV. The first few PLS
components are retained as they account for most of the covariance between X and y
and therefore lead to a more parsimonious representation of the data. We refer to Stone
and Brooks (1990), Frank and Friedman (1993), Breiman and Friedman (1997), Burnham
et al. (1999) and Butler and Denham (2000) for a review of the statistical properties
of PLS.

11.3.2 PLS and Discrimination

In many applications it is common that the response variable y is categorical, representing,
say, class membership, e.g. control/dosed, affected/unaffected individuals, etc. Partial
least-squares discriminant analysis (PLS-DA) consists of a classical PLS regression where
the response variable is a categorical one (replaced by the set of dummy variables
describing the categories). The goal of PLS-DA is to sharpen the separation between
groups of observations, by rotating PCA components such that a maximum separation
among classes is obtained, and to understand which variables carry the class separating
information. Figure 11.4 shows the application of PLS-DA to a subset of the hydrazine
data. To illustrate class discrimination, we have restricted the analysis to samples from
control and low-dose animals obtained at 8–72 hours post dose. The separation between
the groups is evident on the first latent variable, and metabolites responsible for such
separation can be found by examining the corresponding loadings.
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Figure 11.4 PLS-DA scores of the first two latent variables for a subset of the hydrazine dataset
(control and low dose, 8–72 hours). The plot shows a clear separation between the two subgroups
on the first latent variable. The metabolites responsible for the separation can be found from the
corresponding loadings (results not shown).



358 M. DE IORIO, T.M.D. EBBELS AND D.A. STEPHENS

11.3.3 Orthogonal Projections to Latent Structure

Orthogonal projections to latent structure (O-PLS) is a modification of the original
PLS algorithm and was proposed with the goal of removing variation from X that is
not correlated with y (Trygg and Wold, 2002). Spectra often contain systematic vari-
ations that are unrelated to the response y. This systematic variation may be due to
experimental effects (such as a temperature drift in the spectrometer) or systematic biolog-
ical variation (e.g. differences in diets between human subjects which are not easily
controlled) that often constitute the major part of the variation of the sample spectra.
It is important to deal with the variation in X that is uncorrelated with y as it affects
the construction and interpretation of statistical models, it may lead to unreliable predic-
tions for new samples and may also affect the robustness of the model over time. In the
analytical chemistry literature, differentiation and signal correction are commonly used
to remove systematic variation from the sample (see, e.g. Savitsky and Golay, 1964;
Geladi et al., 1985).

O-PLS provides a method to remove the variation in X orthogonal to y, therefore
improving the interpretation of PLS models and reducing model complexity. It analyses
the disturbing variation in each regular PLS component. Also O-PLS produces a bilinear
representation of the data:

X = tu′ + to1u′o1 + · · · + toku
′
ok +Xk+1

y = b̂t+ yk+1.

As in PLS, t represents the score vector for X and y, u is the vector of orthonormal
loadings, b̂ is a scalar and Xk+1 and yk+1 are the respective residual matrices for X and y.
The toj are the scores orthogonal to y and the uoj are the corresponding loadings. The
O-PLS method requires only a small modification of the PLS algorithm and therefore can
be embedded as an integrated part of the regular PLS modelling. It provides predictions
that are similar to those provided by PLS (Cloarec et al., 2005), but leads to more
parsimonious models. The number of correlated O-PLS components is reduced to one in
the case of a single response, thus making interpretation of the model easier. Moreover,
the structured noise is modelled separately from the variation common to X and y and
this gives the opportunity to analyse the uncorrelated variation and possibly explain its
presence. An extension of the O-PLS algorithm known as O2-PLS has been proposed by
Trygg and Wold (2003). O2-PLS improves on the original algorithm when dealing with
multiple responses by allowing, e.g. the calculation of orthogonal latent vectors in the Y
space.

Example. We illustrate the use of the O-PLS method with data from a study on
paracetamol (acetaminophen) toxicity (Coen et al., 2003). Twenty-six rats, divided into
dose (n = 17) and control (n = 9) groups were exposed to 150 and 0 mg kg−1 paracetamol,
respectively. Liver tissue was extracted and 1H NMR spectra acquired to ascertain any
metabolic difference due to paracetamol toxicity. Figure 11.5 shows the scores plot from
an initial PCA model and shows poor separation between the groups, along with a clear
drift over time. This drift was found to be the result of temperature variations in the
spectrometer over the course of the experiment, introducing variation in the profiles which
was unrelated to the toxicity effect. O-PLS-DA was used to remove the confounding effect
of the temperature drift. This is shown in Figure 11.6, where variation orthogonal to the
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Figure 11.5 Scores plot of the first two principal components of the paracetamol dataset. The
PCA score plot shows no separation and a clear trend due to run order is highlighted by the arrow.
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Figure 11.6 Scores plot of the first orthogonal component (y-axis) versus the first correlated
component (x-axis) for the paracetamol dataset. The systematic variation visible in Figure 11.5 has
been captured by the orthogonal component and it is no longer confounding the interpretation of
the correlated component.

class difference has been removed from the first component and a clear separation between
the groups is now observed on the scores plot. As mentioned above, a benefit of the
O-PLS approach is that one may examine the orthogonal part of the data to ascertain the
reasons for the confounding variation. Figure 11.7 plots the scores on the first orthogonal
component and a clear trend with run order is seen, indicating that the time-ordered drift
has been removed. The orthogonal loadings can also be examined (data not shown) giving
an indication of the metabolites that are most affected by the time drift.
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Figure 11.7 The plot shows the a strong relationship between the first orthogonal component
scores (y-axis) and the experimental run order (x-axis). The orthogonal filtering captures most of
the systematic variation due instrumental drift, visible in Figure 11.5.

11.4 CLUSTERING PROCEDURES

Cluster analysis identifies subgroups or clusters in multivariate data, in such a way that
objects belonging to the same cluster resemble each other, whereas objects in different
clusters are dissimilar. In two or three dimensions, clusters can often be visualised, but
in higher dimensions, we need some kind of analytical assistance.

Datasets for clustering of N observations can have either of the following structures:

• an N × p data matrix, where rows contain the different observations and columns
contain the different variables.

• an N × N dissimilarity matrix, whose (i, j) th element is dij , the distance or dissim-
ilarity between observations i and j that has the properties

– dii = 0
– dij ≥ 0
– dji = dij .

• The most typical distance measure between two continuously measured data points i
and j with measurement vectors xi and xj is the Euclidean distance

dij =
√√√√ p∑
k=1

(
xik − xjk

)2 =
√(

xi − xj
)T (

xi − xj
)
.

Clustering algorithms fall into two categories:

1. Partitioning Algorithms. A partitioning algorithm describes a method that divides
the dataset into k clusters, where the integer k needs to be specified. Typically, the
algorithm is run for a range of k values. For each k, the algorithm carries out the
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clustering and also yields a quality index which allows selection of the ‘best’ value
of k.

2. Hierarchical Algorithms. A hierarchical algorithm yields an entire hierarchy of
clusterings for the given dataset. Agglomerative methods start with the situation where
each object in the dataset forms its own cluster and then successively merge clusters
until only one large cluster (the entire dataset) remains. Divisive methods start by
considering the whole dataset as one cluster and then split up clusters until each
object is separated.

11.4.1 Partitioning Methods

Partitioning methods specify an initial number of groups and iteratively reallocate obser-
vations between groups until some equilibrium is attained. Several different algorithms
are available

1. The k-means algorithm. In the k-means algorithm the observations are classified
as belonging to 1 of k groups. Group membership is determined by calculating the
centroid for each group (the multidimensional version of the mean) and assigning each
observation to the group with the closest centroid. The k-means algorithm iterates
between calculating the centroids on the basis of the current group memberships
and reassigning observations to groups on the basis of the new centroids. When a
Euclidean metric is used, cluster centroids are computed (on the basis of a least
squares criterion) as the arithmetic means of the observations currently assigned to
each cluster, and then observations are re-assigned to the cluster whose centroid is
closest. This assignment is performed in an iterative fashion, either from a starting
allocation or configuration or from a set of starting centroids. The k-means algorithm
is essentially model free (though it assumes the clusters are compact and spherically
symmetric). It is heavily dependent on initial group assignments and the use of the
least-squares penalty.

2. Partitioning around medoids (PAM). The PAM method uses medoids rather than
centroids, i.e. medians rather than means in each dimension. This approach increases
robustness relative to the least-squares approach given above.

11.4.2 Hierarchical Clustering

Hierarchical clustering procedures can be carried out in two ways as listed below:

• Heuristic criteria. The basic hierarchical agglomeration algorithm starts with each
object in a group of its own. At each iteration, two groups are merged to form a new
group; the merger chosen is the one that leads to the smallest increase in the sum of
the within-group sums of squares. The number of iterations is equal to the number of
objects minus 1 and in the end all the objects are together in a single group. This
is known as Ward’s method, the sum of squares method or the trace method. The
hierarchical agglomeration algorithm can be used with criteria other than the sum of
squares criterion, such as the average, single or complete linkage methods described
below.

• Model-based criteria. Model-based clustering is based on the assumption that the data
are generated by a mixture of underlying probability distributions. Specifically, it is
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assumed that the population of interest consists of k different subpopulations (usually
assumed to be multivariate normally distributed) and that the density of an observation
from the subpopulation is specified by some unknown vector of parameters which are
to be determined. We study model-based criteria in more detail below.

In conventional hierarchical clustering, the method of agglomeration or combining
clusters is determined by the distance between the clusters themselves, and there are
several available choices. For merging two clusters Ci and Cj , with N1 and N2 elements
respectively, the following criteria can be used: (1) average linkage clustering, where
the two clusters that have the smallest average distance between the points in one
cluster and the points in the other are merged, (2) connected (single linkage, nearest-
neighbour) clustering, where the two clusters that have the smallest distance between any
point in the first cluster and any point in the second cluster are merged, (3) compact
(complete linkage, furthest-neighbour) clustering, where the two clusters that have the
largest distance between any point in the first cluster and any point in the second cluster
are merged. Efficient algorithms to achieve hierarchical clustering exist and are readily
available in standard statistical packages such as R.

11.4.3 Model-based Hierarchical Clustering

Another approach to hierarchical clustering is model-based clustering, which is based
on the assumption that the data are generated by a mixture of K underlying probability
distributions. Given that data matrix X = (

x1, . . . , xN
)T

, let

γ = (
γ1, . . . , γN

)
denote the cluster labels, where γi = k if the ith data point comes from the kth
subpopulation. In the classification procedure, a maximum likelihood procedure is used
to choose the parameters in the model.

Commonly, the assumption is made that the data in the different subpopulations follow
multivariate normal distributions, with mean µk and covariance matrix �k for cluster k. If

�k = σ 2Ip Ip = diag (1, . . . , 1) , a p × p matrix.

then maximising the likelihood is the same as minimising the sum of the within-group
sums of squares.

More general covariance models have been implemented in the statistical package
R in the library mclust. We give brief details. The key to specifying this is the
eigendecomposition of �k, given by eigenvalues λ1, . . . , λp and eigenvectors v1, . . . , vp ,
as in PCA. The eigenvectors of �k , specify the orientation of the kth cluster, the largest
eigenvalue λ1 specifies its variance or size and the ratios of the other eigenvalues to
the largest one specify its shape. Further, if �k = σ 2

k Ip, the criterion corresponds to
hyperspherical clusters of different sizes; this is known as the spherical criterion. Another
criterion results from constraining only the shape to be the same across clusters. This is
achieved by fixing the eigenvalue ratios

αj =
λj

λ1
j = 2, 3, . . . , p
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across clusters; different choices for the specification yield ellipsoidal, linear or spherical
clusters.

11.4.4 Choosing the Number of Clusters

A hierarchical clustering procedure gives the sequence by which the clusters are merged
(in agglomerative clustering) or split (in divisive clustering) according to the model or
distance measure used, but does not give an indication for the number of clusters that
are present in the data (under the model specification). This is obviously an important
consideration. One advantage of the model-based approach to clustering is that it allows
the use of statistical model assessment procedures to assist in the choice of the number
of clusters. A common method is to use approximate Bayes factors to compare models
with different numbers of clusters. This method gives a systematic means of selecting
the parameterisation of the model, the clustering method and also the number of clusters.
The Bayes factor is the posterior odds for one model against the other assuming neither is
favoured a priori. A common approximation to the Bayes factor is the Bayes information
criterion, which for model M is given by

BICM = −2 logLM + const ≈ −2 logLM(θ̂)+ dM logN,

where LM is the Bayesian marginal likelihood, LM(θ̂) is the maximised log likelihood
of the data for the model M , N is the number of data points and dM is the number of
parameters estimated in the model. The number of clusters is not considered a parameter
for the purposes of computing the BIC. The first term is a measure of fidelity to the data
and the second is a penalty for the number of parameters in the model. The more negative
the value of the BIC, the stronger the evidence for the model.

11.4.5 Displaying and Interpreting Clustering Results

The principal display plot for a clustering analysis is the dendrogram, which plots all of
the individual data linked at successive levels by means of a binary ‘tree’. Such a plot
is displayed in Plate 10. The distance up the tree, or height, represents overall similarity
between the samples and can be useful in determining the number of clusters that are
present in the data.

Plate 10 displays the hierarchical clustering results for a subset of the hydrazine
dataset (control and low dose, 8–72 hours). The control samples are shown in black
while the dosed samples are shown in red. There are two main branches corresponding
to control-like samples and dosed samples. The two groups of subjects are almost
perfectly delineated by the clustering procedure if a cut is made at similarity level
0.6 units.

Hierarchical clustering has often been used to investigate metabolic profiling data.
Some studies have investigated relationships between the metabolic profiles themselves
(Beckonert et al., 2003), while others have applied the method to elucidate dependencies
between metabolite concentrations (by clustering the transposed data matrix X′ (Dumas
et al., 2002)). In both cases, dendrograms generated intuitive visualisations of the
hierarchy, allowing effects such as outliers, misclassifications and chemical structure
correlations to be observed. Clustering approaches do not, of themselves, offer diagnostic
information on the reasons for classification of any given object. This can be important
if one wishes to know, e.g. the metabolites which are critical to determining cluster
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membership. Mean cluster profiles and inter-cluster differences can be inspected; though
information can still be lacking on the extent of cluster overlap and the overall relationship
between clusters. Finally, note that validation of the results of a clustering exercise is
recommended. This can take the form of data perturbation and reclustering to ensure that
the removal of a minority of data points is not pivotal to the clustering inferences or the
number of clusters selected.

11.5 NEURAL NETWORKS, KERNEL METHODS AND RELATED
APPROACHES

An artificial neural network (ANN) is a multilayered statistical model that represents the
variation in a potentially highly complex response or output variable to a collection of
input variables via varying numbers of unobserved or latent variables linked through
simple mathematical functions and a series of probabilistic dependence assumptions.
ANNs are a member of a broad class of supervised learning algorithms that attempt
to approximate the true data generation mechanism by mathematical models deduced
from observation of cases essentially via regression arguments. These models have been
perceived as mechanistic approximations to actual biological neural networks, although
this interpretation is neither necessary nor uniformly helpful. We summarise the nature of
such models below; see, e.g. (Ripley, 1996 Chapter 5) for a comprehensive description
of statistical aspects.

11.5.1 Mathematical Formulation
The simplest mathematical formulation of an ANN involves three levels of interlinked
variables;

• The outputs, Y (a q × 1 vector), interpreted as a single/collection of continuous or
categorical random variable(s).

• The inputs, X (p × 1), interpreted as a collection of random variables believed to
influence the variation in the response across an experimental sample of Y s.

• The hidden variables, Z (d × 1), interpreted as a collection of unobserved random
variables that form the hidden link between X and Y s.

This structure can be generalised to incorporate multiple hidden layers, but we restrict
attention to the single hidden layer case.

In a classical biological conception of the model, the hidden variables Z have some
physical interpretation as nodes in a neuronal network in the brain, but this interpretation
is not necessary. Mathematically, perhaps the most useful interpretation of Z is as a
projection of X onto a lower dimensional space (p > d) of features that facilitates
modelling of the variation in Y . These features may or may not have a physical
interpretation. Diagrammatically, such a network (with q = 2, p = 6 and d = 3) is
represented in Figure 11.8.

The arrows connecting the nodes in Figure 11.8 represent functional links encompassed
through mathematical functions. At the first stage, we represent the components of Z as
weighted sums of functions of the input variables, typically

zj = Gj
(
αj +

p∑
k=1

wjkgjk(xk)

)
j = 1, . . . , d, (11.2)
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Plate 7. Correspondence analysis applied to an experiment that searched for genes expressed as
a consequence of induction of the yeast cell cycle gene CDC14 (Fellenberg et al., 2001). A yeast
transgene was constructed with the CDC14 gene under a galactose-dependent promotor that allows
induction of the CDC14 gene through the addition of galactose. As a consequence, one observes
upregulation of genes both due to CDC14 induction and due to the natural reaction to galactose.
Four conditions were studied: wildtype yeast with and without galactose, and the yeast transgene
with and without galactose. For each condition several replicates were made. The correspondence
analysis biplot shows an embedding of rows and columns of the entire data matrix with genes
depicted as black dots and hybridizations depicted as small squares. Replicates for each condition
cluster together, and each of the four clusters defines a direction in which the genes that are typical
of the condition can be found. The bisection between the two galactose conditions points to two
GAL genes, known to be involved in the galactose pathway. Genes in the transgene+galactose
condition that are turned on in response to the addition of galactose are attracted also by the
wildtype+galactose condition. Thus, the lower left direction highlights genes that are exclusively
due to the CDC14 induction. Genes are encircled which show up in a related experiment (Spellman
et al., 1998), too, where they are also seen to be linked to CDC14. (Adapted with permission from
Fellenberg K et al. (2001) Correspondence analysis applied to microarray data. Proc Natl Acad Sci
USA. 98:10781-6. Copyright (1998) National Academy of Sciences, U.S.A.).
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Plate 8. Simplified view of strategy for reverse engineering gene networks using genetics in a
fixed environment. The top layer represents DNA in the genome, where in any given population we
can associate changes in the DNA with changes in the levels of transcription of both protein-coding
and ncRNA genes. DNA variations that fall within the region of the structural gene and associate
with that gene’s expression are referred to as proximal eQTL, as opposed to distal eQTL in which
the DNA variation does not fall in the genomic region supporting the corresponding structural
gene region (Doss et al., 2005). The proximity of transcribed sequences to the DNA provides for
increased power to detect regions of the genome affecting transcript abundance levels. Changes in
RNA are then shown to induce changes in proteins, where a complex web of protein interactions
can form and give rise to varied cellular functions that in turn lead to disease. The gene network
reconstruction methods discussed in the text exploit the ultimate source of perturbations (changes
in DNA) in a system under fixed environmental conditions to order nodes in the network.
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Plate 9. Coexpression and Bayesian networks from the BXH adipose expression data. (a)
Topological overlap map for adipose tissue hub genes in the BXH cross. All pairs of correlations
among the 5000 most highly connected genes in the BXH female adipose coexpression network
are plotted in the color matrix display (red indicates positive correlation, blue indicates negative
correlation, and white indicates correlation was not significant at the p < 10−20 level). The genes
are ordered along the x and y axes using an agglomerative hierarchical clustering algorithm.
Tightly correlated groups of genes (modules) clearly emerge from this plot. Modules are identified
as described in the text. (b) Bayesian network corresponding to genes in module 2 from (a).
(c) Subnetwork consisting of 36 genes that contain the gene Lpl, a gene recently validated as
causal for obesity (Schadt et al., Submitted).
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Plate 12. Summed frequency plot from GP analysis of the number of times each input (wave
number) was used for the 10 evolved populations. Also shown are the normalised FT-IR spectra
from E. coli (blue trace) and E. coli+5000 µg ml−1 ampicillin (red trace), and the structure
of ampicillin. [Reprinted from Goodacre, R. (2005). Making sense of the metabolome using
evolutionary computation: seeing the wood with the trees. Journal of Experimental Botany 56,
245–254, with permission from Oxford University Press.].
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Figure 11.8 Three-level neural network with q = 2, p = 6 and d = 3. The hidden layer
Z = (Z1, Z2, Z3)

′ links inputs X to outputs Y . Arrows indicate positive weights.

where αj , j = 1, . . . , d are unknown constants, wjk, k = 1, . . . , p, j = 1, . . . , d are
weights satisfying

0 ≤ wjk ≤ 1
p∑
k=1

wjk = 1

and Gj, j = 1, . . . , d and gjk, k = 1, . . . , p, j = 1, . . . , d are known link functions, the
latter often chosen to be identity functions for convenience. At the second stage we have
a similar structure modelling the dependence of Y on Z,

yl = Hl
βl + d∑

j=1

ωlj zj

 l = 1, . . . , p, (11.3)

for parameters βl, l = 1, . . . , p and weights ωlj , j = 1, . . . , d, l = 1, . . . , p.
In summary, therefore, we have parameters α, β, wj , j = 1, . . . , d and ωl , l = 1, . . . , p

to estimate from the data. This is achieved by optimisation of some objective function
characterising discrepancy of fit, i.e. for observed cases y1, . . . , yn, we choose parameters
θ̂ as

θ̂ = arg min
θ

n∑
i=1

D(yi , ŷi ), (11.4)

where D measures the discrepancy between the observed yi and the fitted value ŷi given
by using parameters θ in (11.2) and (11.3). D is chosen to represent the continuous or
categorical nature of the response variables, and the minimisation in (11.4) is achieved
using numerical methods.

As described above, ANNs are flexible non-linear regression models constructed from
simple mathematical functions that are learned from the observation of cases. As such, they
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are ideal models for classification. However, their flexibility means that model parameters
such as those determining the architecture (number of input, hidden and output nodes,
etc.) are not predetermined and must be chosen on the basis of the skill and experience
of the user. In addition, although good classification performance for metabolic profiles
has been obtained (El-Deredy, 1997), interpretation of the rules encoded by an ANN is
not straightforward. This has limited their application in the metabolic profiling arena
in recent years, since model interpretation is of prime importance in applications such
as biomarker screening and chemical structure elucidation. ANNs have found metabolic
profiling applications in diverse areas such as classification of tumours (Howells et al.,
1992), preclinical toxicity prediction (Anthony et al., 1995) and determination of the mode
of action of herbicides in plants (Ott et al., 2003). In all cases, the network weights could
not be interpreted directly and other methods had to be used to determine the biochemical
reasons for classification.

11.5.2 Kernel Density Estimates, PNNs and CLOUDS

Kernel density estimators (KDEs) are a well-known class of probability density estimators
which have been extensively applied in many different areas of science (Parzen, 1962;
Duda et al., 2000). In classification problems, KDEs are usually applied to estimation
of the class density (the conditional probability of observing an object, given that it is a
member of the class). The estimators are especially useful when the class density deviates
substantially from standard (e.g. normal) forms and allow us to estimate the density in an
essentially non-parametric way. Classification of test objects is then done by calculating
the class density at the coordinates of the test object and assigning the object to the class
whose density is highest. Use of a Gaussian kernel leads to estimates of the form

p
(
x | xi∈A

) = 1

NA(2πσ
2)M/2

∑
i∈A

exp
{
−‖x − xi‖

2

2σ 2

}
, (11.5)

for the density of class A at point x, where NA is the number of training set objects xi in
the class, M is the number of dimensions and σ 2 is the width of the kernel. The kernel
width regulates the smoothness of the density estimate and requires careful choice. It is
often fixed by CV methods at the value that maximises the likelihood of class membership
for objects left out of the training set in each CV round.

Probabilistic neural networks (PNNs) are a special kind of ANN whose architecture
enables them to compute a kernel density estimate of the above form. Each input node
corresponds to a variable in the input space and, when a test object is presented, feeds
the corresponding value to each of the nodes in the second layer. Each second-layer node
corresponds to one training set vector and computes the exponential of (11.5), feeding
its output to a final layer of nodes, which computes the summation. Classification of
unknowns by density superposition (CLOUDS) (Ebbels et al., 2003) uses the KDE/PNN
framework to both perform pointwise classification and detect similarity between the
estimated densities. The latter function uses the overlap integral of the two densities as a
measure of similarity and was developed to compare high-dimensional distributions with
complex shape and topology.

The potential of PNNs to model complex high-dimensional metabolic data was first
recognised by Holmes et al. (2001) who developed a model to classify 1H NMR spectra
of urine from laboratory rats treated with well-known toxins. When asked to classify
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test samples into 1 of 18 toxicity-related classes, the PNN obtained higher classification
accuracies than back-propagation neural networks and soft independent modelling of
class analogy (SIMCA). In the area of food processing, PNNs were recently applied
to classifying 1H NMR spectra of fish tissue extracts according to different processing
treatments (Martinez et al., 2005). In order to avoid problems with the high dimensionality
of the spectra, the scores from the first 20 principal components were used as inputs to the
network, which successfully classified 80 % of the spectra. In metabonomic toxicology,
CLOUDS was applied to several thousand 1H NMR urine spectra from laboratory rats
subjected to 19 different treatments known to cause toxic or other metabolic effects
(Ebbels et al., 2003). The approach was able to classify samples according to liver or
kidney toxicity with 77 and 90 % success respectively, while experiencing a low, 2 %,
rate of confusion between the classes. The class probabilities were further combined
into two parameters, the confidence and uniqueness of the classification, which allowed
pre-selection of the best-classified urinary profiles. Recently, the CLOUDS methodology
was employed in the construction of an ‘expert system’ for preclinical toxicity screening
using a large database of 1H NMR urinary metabolic profiles from 80 different treatments
(Ebbels et al., 2006). A novel measure of similarity between classes was developed on
the basis of the overlap integral of the density estimates. Although the system was unable
to judge the likely toxicity of some of the treatments, where a decision could be made,
over 92 % were classified correctly. In addition, the system correctly determined the site
of toxicity for two blinded treatments.

The densities estimated by CLOUDS and similar techniques can be visualised by
computing contours or isosurfaces of constant probability density and viewing them with
the help of dimension reduction techniques such as PCA. Plate 11 illustrates this with the
metabonomic toxicology data of Figure 11.2. The control class has a shape that might
be well summarised by a multivariate normal, while the high-dose cloud extends away
from the controls in a hairpinlike trajectory. The part of the high-dose density coinciding
with controls is due to samples from animals that are either yet to react or have already
recovered from the toxic episode.

Overall, use of KDE methods, while versatile and well suited to the characteristics of
metabolic profiling data, is subject to some drawbacks. The most important of these is
the large amount of data required to accurately estimate the density when the number of
dimensions is high. Along with the high storage requirement and the need for the ability
to interpret models in terms of spectral features, these are areas that will be the subject
of further research in the near future.

11.6 EVOLUTIONARY ALGORITHMS

Evolutionary computations have attracted increasing interest as a method of solving
complex problems in medicine, industry and bioinformatics. Evolutionary algorithms
(EA) are ideal strategies for mining metabolite data to build useful relationships, rules
and predictions. The advantages of this methodology include conceptual simplicity and
broad applicability, the ability to optimise complex multimodal objective functions and to
outperform standard optimisation procedures in real world applications. The algorithms
are typically flexible and easily hybridised with other methods such as neural networks
(Fogel and Corne, 2003). EAs are adaptive procedures, motivated by genetic processes
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as they evolve a population of chromosomal structures (possible solutions), in order to
find the fittest individual. Candidate solutions to the optimisation problem play the role
of individuals in a population that is evolved through generations, undergoing processes
inspired by biological evolution: reproduction, mutation, recombination, natural selection
and survival of the fittest. In general, the evolutionary optimisation techniques use a
population of possible solutions subjected to random variation and selection until some
termination criterion is satisfied. The fitness of each individual in the population reflects
the individual’s worth in relation to some objective function.

The aim of the EA is to progressively develop better solutions to the problem under
study by modifying previous solutions that exhibited good performance. Starting with
an initial population of individuals, generated through some randomised process, each
individual is then placed in a common environment where it competes and breeds with
the other members of the population. In many applications, the environment is usually
referred to as the design space and is the set of all possible solutions for a given problem.
The individual’s fitness shows how well it has adapted to its environment, i.e. larger fitness
values correspond to better solutions. The fittest individuals have more chance to survive in
the next generation and to be selected to reproduce. New individuals are generated through
variation operators, the most common of which are mutation, the introduction of one or
more random changes to a single parent individual, and recombination (commonly referred
to as crossover), which consists in randomly taking components/characteristics from two
or more parent individuals to create children. Variation operators are fundamental as they
affect the algorithm’s search power: when the search space has many local optima, large-
scale mutations might be useful for escaping local optima, but less radical mutations might
be important to proceed towards a global optimum. Following the application of variation
operators, two sets of solutions exist: the parent population and the child population.
Thus a selection for survival stage is required to form the new population. This step
requires scoring each solution on its worth with respect to a given goal, i.e. according
to its fitness. It is essential that the fitness function reflects the problem characteristics
although the specification of a suitable function can, in itself, be a difficult task. Once
the solutions have been scored, then the new generation is formed according to various
schemes: some schemes require that the new generation is formed only by child solutions,
while in other cases the new population is formed by combining individuals from both
the parent and the child population. Selection for survival is often a deterministic process,
in which the best solutions are selected, however stochastic schemes are also possible.
Most EAs work on a generational base, applying variation and selection operators to
all members of the population at a given time and iterating this process for a pre-
specified number of generations or until convergence to a local or global optimum has
been reached.

EAs are becoming increasingly popular in chemometrics as they can provide useful
supervised learning techniques that can be utilised in many scenarios, e.g. to identify
metabolites associated with a particular phenotype (Goodacre, 2005). These include
genetic algorithms, evolution strategies, genetic programming (GP) and genomic com-
puting. Among the evolutionary techniques, GP has been most commonly used in
metabolic profiling applications. In the GP framework, the solution is structured as a
parse tree. For example, in symbolic regression the parse tree specifies the regression
relationship between the response and the predictors. One of the earliest applications of
GPs to metabolic data can be found in the work of Gray et al. (1998). They proposed
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a GP algorithm to classify tumours on the basis of 1H NMR spectra of biopsy extracts.
Following successful use of GP algorithms for the analysis of pyrolysis mass spectral
data of fruit juice (Gilbert et al., 1997), similar strategies have been developed to
analyse metabolic profiling and fingerprinting data from several other spectroscopic and
chromatographic techniques including Fourier Transform – Infrared (FT – IR) (Johnson
et al., 2000; Goodacre, 2005), high performance liquid chromatography (HPLC) (Kell
et al., 2001), non-linear dielectric spectroscopy Woodward et al. (1999) and various types
of MS (Taylor et al., 1998; Goodacre et al., 2000; 2003). In most applications the authors
highlight the ability of the GP to combine small numbers of explanatory metabolites
in simple prediction rules to classify the response of interest. For example, as a test of
the GP approach to modelling complex mixtures such as metabolic profiles, Goodacre
(2005) developed a GP to quantify the levels of the antibiotic ampicillin in cultures
of the bacterium Escherichia coli. Ampicillin was added to E. coli cultures at different
concentrations, observed with FT-IR spectroscopy and the GP was used in ‘symbolic
regression’ mode to quantify the ampicillin level using the FT-IR profiles as input. The
GP was able to identify the 1767 cm−1 vibration (corresponding to the β-lactam ring
of ampicillin) as the important variable corresponding to ampicillin despite large signals
from other E. coli metabolites, thus highlighting its promise as a method for data mining
complex metabolic profiles. Plate 12 shows the frequency of the number of times each
input (wavenumber) was used for 10 evolved populations, i.e. 10 runs of the GP algorithm.
The area of the spectra corresponding to vibration 1767 cm−1 is clearly dominating for
E. coli treated with ampicillin, but absent from E. coli alone.

11.7 CONCLUSIONS

The techniques described here have found a wide variety of applications in metabolic
profiling, many of which are mentioned in the preceding paragraphs. Two of the
most important applications are biomarker screening and the structural identification
of metabolites. In biomarker screening, the goal is to find molecules that differentiate
between two biological states, for example, healthy and diseased populations. Almost any
of the supervised pattern recognition approaches described above can be employed here.
The input data are metabolic profiles (or metabolite levels derived from them) and the
task is to fit a model that discriminates between samples from the healthy and diseased
groups. If a discrimination is found, then the model can be examined to find out which
metabolites are influential in producing the discrimination and thus might be important
markers of the disease process itself. We note that some statistical techniques, for example
neural networks, are much less amenable to yielding discriminatory markers than others.
Additionally, such discriminators are not considered true ‘biomarkers’ until they have
been independently validated across multiple experiments/populations and shown to be
mechanistically linked with the disease or condition being studied.

As mentioned in the introduction, a large proportion of the metabolome is currently
unknown and therefore the structural identification of molecules is of great importance.
For this purpose, statistical analysis is directed at linking multiple signals coming from
the same molecule. For example, in NMR, each spin system (group of interacting nuclei)
will produce a different set of resonances. In the hands of a spectroscopist, the multiplet
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structure and relationship between the resonances can yield valuable information on the
likely structure of the molecule. Therefore, methods aimed at linking spectral peaks that
exhibit similar statistical properties are useful. For example, signals shown to discriminate
between groups in a similar way may originate from the same molecule. Alternatively,
specific methods can be designed to identify statistically connected signals, which may
originate from a structural relationship (Cloarec et al., 2005; Crockford et al., 2006).

In this chapter we have described the nature of metabolic profiling data and some of the
statistical approaches that are typically used to model it. Owing to space considerations
we have not undertaken a comprehensive review of all methods used in the field, but have
highlighted those that have seen wide application. The reader is referred to Lindon et al.
(2007) for a more thorough description of both the chemical and data analytic techniques
used, along with in-depth reviews of many different application areas of the technology.
It is clear that there are many problems still to be solved in the statistical analysis of
metabolic profiles, such as peak shifts in NMR and the proper treatment of differential
ionisation efficiencies in MS. The lack of structural identification of a large proportion
of the signals remains a huge impediment to biological interpretation and, given the
diversity of the metabolome throughout the various kingdoms of life, it seems clear that
this situation is unlikely to change soon. Therefore statistical approaches which can deal
with a mixture of identified and unidentified peaks are likely to have a large impact in this
area. Approaches based on mixed-models and wavelet approaches have proved extremely
useful (Morris et al., 2006; Brown et al., 2001; Clyde et al., 2006). For example, sparse
representation of the NMR spectrum in terms of wavelet coefficients makes wavelets an
excellent tool in data compression and hence feature extraction. In addition, the wide range
of chemical analytic techniques used in the generation of metabolic profiles will require
statistical models that can integrate and combine information across multiple platforms.
Overall, the field is a young but rapidly developing one and looks set to reap many
benefits from the input of researchers in other fields, including those of machine learning
and statistical analysis.
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This chapter reviews statistical methods for detecting adaptive molecular evolution by comparing
synonymous and nonsynonymous substitution rates in protein-coding DNA sequences. A Markov
process model of codon substitution, which forms the basis for all later discussions in this chapter,
is introduced first. The case of comparing two sequences to estimate the numbers of synonymous
(dS) and nonsynonymous (dN) substitutions per site is then considered. The maximum likelihood
(ML) method and a number of ad hoc counting methods are evaluated. The rest of the chapter deals
with joint analyses of multiple sequences on a phylogeny. Review is provided on Markov models
of codon substitution that allow the nonsynonymous/synonymous rate ratio (ω = dN/dS) to vary
among branches in a phylogeny or among amino acid sites in a protein. Those models can be used
to construct likelihood ratio tests (LRTs) to identify evolutionary lineages under episodic Darwinian
selection or to infer critical amino acids in a protein under diversifying selection. Real-data examples
are used to demonstrate the application of the methods. The chapter finishes with a discussion of
the limitations of current methods.

12.1 INTRODUCTION

While biologists accept Darwin’s theory of evolution by natural selection for morpho-
logical traits, the importance of selection in molecular evolution has been much debated.
The neutral theory (Kimura, 1983) maintains that most observed molecular variation
(both diversity within species and divergence between species) is due to random fixation
of mutations with fitness effects so small that random drift rather than natural selec-
tion dominates their fate. Population geneticists have developed a number of tests of
neutrality (for reviews, see Kreitman and Akashi, 1995 and Chapter 22). Those tests
have been applied to identify genes under positive selection from genome-wide anal-
ysis of within-species polymorphism (Fay et al., 2001; Smith and Eyre-Walker, 2002).
However, they seldom provide unequivocal evidence for positive selection as it is often
difficult to distinguish natural selection from demographic processes.

Another class of methods designed to detect adaptive molecular evolution relies
on comparison of synonymous (silent) and nonsynonymous (amino acid–changing)
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substitution rates in protein-coding genes. The synonymous and nonsynonymous rates
(dS and dN , or Ks and Ka by some authors) are defined as the numbers of synony-
mous and nonsynonymous substitutions per site, respectively. The ratio of the two rates,
ω = dN/dS , then measures selective pressure at the protein level. If selection has no
effect on fitness, nonsynonymous mutations will be fixed at the same rate as synony-
mous mutations, so that dN = dS and ω = 1. If nonsynonymous mutations are deleterious,
purifying selection will reduce their fixation rate, so that dN < dS and ω < 1. If nonsyn-
onymous mutations are favored by Darwinian selection, they will be fixed at a higher
rate than synonymous mutations, resulting in dN > dS and ω > 1. A significantly higher
nonsynonymous rate than the synonymous rate is thus evidence for adaptive evolution
at the molecular level. This criterion has been used to identify many cases of positive
selection, including the human major histocompatibility complex (MHC, Hughes and
Nei, 1988), primate stomach lysozyme (Messier and Stewart, 1997), abalone sperm lysin
(Lee et al., 1995), vertebrate visual pigments (Miyamoto and Miyamoto, 1996), and HIV-1
env genes (Bonhoeffer et al., 1995; Mindell, 1996; Yamaguchi and Gojobori, 1997).
Development of powerful methods, such as those reviewed in this chapter, has led to
identification of many more cases of molecular adaptation (Yang and Bielawski, 2000;
Yang, 2006: Chapter 8) providing important insights into the mechanisms of molecular
evolution.

The ω ratio has most often been calculated as an average over all codons (amino
acids) in the gene and over the entire evolutionary time that separates the sequences. The
criterion that such an average ω is greater than 1 is a very stringent one for detecting
positive selection (e.g. Kreitman and Akashi, 1995). Many amino acids in a protein must
be under strong functional constraints, with ω close to 0. Many proteins also appear to
be under purifying selection during most of the evolutionary history. Adaptive evolution
most likely occurs at a few time points and affects only a few amino acids (Gillespie,
1991). In such a case, the ω ratio averaged over time and over sites will not be greater
than 1 even if Darwinian selection has been operating.

A remedy for this problem is to examine the ω ratio over a short evolutionary time
period or in a short stretch of the gene such as functionally important domains. For
example, Messier and Stewart (1997) (see also Zhang et al., 1997) used inferred ancestral
genes to calculate dN and dS for each branch in the tree and identified two lineages in
the lysozyme phylogeny for primates that went through positive selection. In a similar
vein, Hughes and Nei (1988) found that dN > dS at 57 amino acids in the MHC that
constitute the antigen-recognition site, although dN < dS in the whole gene. Those ideas
have also been implemented in the likelihood framework. Markov process models of
codon substitution have been developed that account for different ω ratios among branches
in the tree (Yang, 1998; Yang and Nielsen, 1998). They can be used to construct likelihood
ratio tests (LRTs) of adaptive evolution along specific lineages, and have the advantage of
not relying on inferred ancestral sequences. Models have also been developed that allow
the ω ratio to vary among amino acid sites (Nielsen and Yang, 1998; Yang et al., 2000).
They do not require knowledge of functionally important domains and may be used to
test for the presence of critical amino acids under positive selection, and, when they exist,
to identify them.

This chapter reviews statistical methods for phylogenetic analysis of protein-coding
DNA sequences, with a focus on comparing synonymous and nonsynonymous substitution
rates to understand the mechanisms of protein sequence evolution. At first, a brief
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introduction to the probability theory of Markov process of codon substitution is provided.
This theory forms the basis for maximum likelihood (ML) estimation of dN and dS
between two sequences as well as ML joint analysis of multiple sequences on a phylogeny.
Different methods for comparing two sequences to estimate dN and dS are discussed.
Besides ML (Goldman and Yang, 1994), there are about a dozen so-called counting
methods for this estimation (e.g. Miyata and Yasunaga, 1980; Nei and Gojobori, 1986; Li
et al., 1985; Li, 1993; Ina, 1995; Yang and Nielsen, 2000). These will be evaluated.
Models that account for variable ω ratios among lineages and among sites are then
discussed with real-data examples to explain their use in ML analysis. This chapter
uses ML as the general framework. ML is known to have nice statistical properties,
and indeed offers insights into heuristic methods as well, which may not be based on an
explicit probabilistic model. A brief introduction to ML estimation and LRT is provided
in the Section 12.3.2. For a detailed and rigorous treatment of likelihood methods, the
reader should consult a statistics textbook, such as Edwards (1992), Kalbfleisch (1985),
and Stuart et al. (1999).

12.2 MARKOV MODEL OF CODON SUBSTITUTION

In molecular phylogenetics, we use a continuous-time Markov process to describe the
change between nucleotides, amino acids, or codons over evolutionary time. See Whelan
et al. (2001) or the chapters by Huelsenbeck and Bollback, and Thorne and Goldman
(Chapter 14 and Chapter 15) for use of Markov processes to model nucleotide or amino
acid substitution. In this chapter, our focus is analysis of protein-coding DNA sequences,
and the unit of evolution is a codon in the gene. We use a Markov process to describe
substitutions between the sense codons. We exclude stop codons as they are usually not
allowed in a protein. With the ‘universal’ genetic code, there are 61 sense codons and
thus 61 states in the Markov process.

The Markov process is characterized by a rate (generator) matrix Q = {qij }, where qij
is the substitution rate from sense codon i to sense codon j (i �= j). Formally, qij�t is
the probability that the process is in state j after an infinitesimal time �t , given that
it is currently in state i. The basic model we use in this chapter is simpler than the
model of Goldman and Yang (1994) but more complex than that of Muse and Gaut
(1994). It accounts for the transition–transversion rate difference, unequal synonymous
and nonsynonymous substitution rates, and unequal base/codon frequencies. Mutations
are assumed to occur independently among the three codon positions, and so only one
position is allowed to change instantaneously. Since transitions (changes between T and C,
and between A and G) are known to occur more frequently than transversions (all other
changes), we multiply the rate by κ if the change is a transition. Parameter κ is the
transition–transversion rate ratio. Typical estimates of κ are 1.5–5 for nuclear genes and
3–30 for mitochondrial genes. To account for unequal codon frequencies, we let πj be
the equilibrium frequency of codon j and multiply substitution rates to codon j by πj .
We can either use all πj ’s as parameters, with 60 (= 61− 1) free parameters used, or
calculate πj from base frequencies at the three codon positions, with 9 = 3× (4− 1) free
parameters used.

To account for unequal synonymous and nonsynonymous substitution rates, we multiply
the rate by ω if the change is nonsynonymous; ω is thus the nonsynonymous/synonymous
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rate ratio, also termed the ‘acceptance rate’ by Miyata et al. (1979). In models considered
here, the relationship holds that ω = dN/dS . For most genes, estimates of ω are much less
than 1. Parameters κ and πj characterize processes at the DNA level, including natural
selection, while selection at the protein level has the effect of modifying parameter ω.
If natural selection operates on the DNA as well as on the protein, the synonymous rate
will differ from the mutation rate.

Thus, the relative substitution rate from codon i to codon j (i �= j) is

qij =


0, if i and j differ at two or three codon positions,
πj , if i and j differ by a synonymous transversion,
κπj , if i and j differ by a synonymous transition,
ωπj , if i and j differ by a nonsynonymous transversion,
ωκπj , if i and j differ by a nonsynonymous transition.

(12.1)

For example, consider substitution rates to codon CTG (which encodes amino acid
Leu). We have qCTC,CTG = πCTG since the CTC (Leu) → CTG (Leu) change is a
synonymous transversion, qTTG,CTG = κπCTG since the TTG (Leu) → CTG (Leu) change
is a synonymous transition, qGTG,CTG = ωπCTG since the GTG (Val)→ CTG (Leu) change
is a nonsynonymous transversion, and qCCG,CTG = κωπCTG since the CCG (Pro) → CTG
(Leu) change is a nonsynonymous transition. Also qTTT,CTG = 0 since codons TTT and
CTG differ at two positions.

The diagonal elements of the rate matrix Q = {qij } are determined by the requirement
that each row in the matrix sums to 0∑

j

qij = 0, for any i, (12.2)

(e.g. Grimmett and Stirzaker, 1992, p. 241). Furthermore, molecular sequence data do
not allow separate estimation of rate and time, and only their product can be identified.
We thus multiply matrix Q by a constant so that the expected number of nucleotide
substitutions per codon is 1:

−
∑
i

πiqii =
∑
i

πi

∑
j �=i
qij = 1. (12.3)

This scaling means that time t is measured by distance, the expected number of
(nucleotide) substitutions per codon. The transition probability matrix over time t is

P(t) = {pij (t)} = eQt , (12.4)

where pij (t) is the probability that codon i will become codon j after time t . As long
as the rate matrix Q can be constructed, P(t) can be calculated for any t using matrix
diagonalization. Note that over any time interval, there is a nonzero probability that any
codon i will change to any other codon j , even if they are separated by two or three
nucleotide differences; that is, for any t > 0, pij (t) > 0 for any codons i and j .

Lastly, the model specified by (12.1) is time reversible; that is, πiqij = πjqji for any
i and j . This means that

πipij (t) = πjpji(t), for any t, i, and j. (12.5)
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Note that πipij (t) measures the amount of change from codons i to j over time t ,
while πjpji(t) measures the change in the opposite direction. Equation (12.5), known as
the ‘detailed balance’, means that we expect to see equal numbers of changes from i to j
and from j to i. Some implications of reversibility are mentioned in later sections.

12.3 ESTIMATION OF SYNONYMOUS (dS ) AND NONSYNONYMOUS
(dN ) SUBSTITUTION RATES BETWEEN TWO SEQUENCES

12.3.1 Counting Methods

We want to estimate the number of synonymous substitutions per synonymous site
(dS) and the number of nonsynonymous substitutions per nonsynonymous site (dN)
between two protein-coding DNA sequences. In the past two decades, about a dozen
methods have been proposed for this estimation. They are intuitive and involve treat-
ment of the data that cannot be justified rigorously. Important basic concepts were
developed in the early 1980s (Miyata and Yasunaga, 1980; Perler et al., 1980; Gojo-
bori, 1983; Li et al., 1985), which we explain here with a hypothetical example. The
critical question is by how much natural selection at the protein level has increased
or decreased the nonsynonymous substitution rate. Suppose the gene has 300 codons
and we observe five synonymous and five nonsynonymous differences (substitutions)
between the two sequences. Can we conclude that synonymous and nonsynonymous
substitution rates are equal with ω = 1? The answer is ‘No’. An inspection of the genetic
code table suggests that all changes at the second codon position and most changes
at the first position are nonsynonymous, and only some changes at the third position
are synonymous. As a result, we do not expect to see equal proportions of synony-
mous and nonsynonymous mutations even if there is no selection at the protein level.
Indeed, if mutations from any one nucleotide to any other occur at the same rate,
we expect 25.5 % of mutations to be synonymous and 74.5 % to be nonsynonymous
(Yang and Nielsen, 1998). If we use those proportions, it is clear that selection on the
protein has decreased the fixation rate of nonsynonymous mutations by about three times,
since ω = (5/5)/(74.5/25.5) = 0.34. There are 900 nucleotide sites in the sequence, so
the numbers of synonymous and nonsynonymous sites are S = 900× 25.5 % = 229.5
and N = 900× 74.5 % = 670.5, respectively. We then have dS = 5/229.5 = 0.0218 and
dN = 5/670.5 = 0.0075.

All counting methods roughly follow the above intuitive procedure (see Ina, 1996; Yang
and Nielsen, 2000 for reviews). They involve three steps. The first step is to count the
numbers of synonymous (S) and nonsynonymous (N) sites in the two sequences; that
is, the number of nucleotide sites in the sequence is classified into the synonymous and
nonsynonymous categories, measuring substitution opportunities before the operation of
selection on the protein. This step is complicated by factors such as transition–transversion
rate difference and unequal base/codon frequencies, both of which are ignored in our
hypothetical example. The second step is to count the numbers of synonymous and
nonsynonymous differences between the two sequences; that is, the observed differences
between the two sequences are classified into the synonymous and nonsynonymous
categories. This is straightforward if the two compared codons differ at one codon
position only. When they differ at two or three codon positions, there exist four or
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six pathways from one codon to the other. The multiple pathways may involve different
numbers of synonymous and nonsynonymous differences and should ideally be weighted
appropriately according to their likelihood of occurrence, although most counting methods
use equal weighting. The third step is to apply a correction for multiple substitutions at
the same site since an observed difference may be the result of two or more substitutions.
In our hypothetical example, we ignored the possibility of multiple hits and treated
the observed differences as substitutions. All counting methods have used multiple-hit
correction formulas based on nucleotide-substitution models, which assume that each
nucleotide can change to one of three other nucleotides. When those formulas are applied
to synonymous (or nonsynonymous) sites only, this basic assumption of the Markov
model is violated (Lewontin, 1989). Nevertheless, such corrections appear usable when
the sequence divergence is low.

The method of Miyata and Yasunaga (1980) and its simplified version of Nei and
Gojobori (1986) are based on the nucleotide-substitution model of Jukes and Cantor
(1969), and ignore transition–transversion rate difference or unequal base/codon frequen-
cies. As transitions are more likely to be synonymous at the third positions than
transversions are, ignoring the transition–transversion rate difference leads to underesti-
mation of S and overestimation of N . This effect is well known, and a number of attempts
have been made to account for different transition and transversion rates in counting sites
and differences (Li et al., 1985; Li, 1993; Pamilo and Bianchi, 1993; Comeron, 1995; Ina,
1995). The effect of unequal base/codon frequencies was not so much appreciated (but
see Moriyama and Powell, 1997). However, Yang and Nielsen (1998; 2000) found that
extremely biased base/codon frequencies can have devastating effects on the estimation of
dN and dS , often outweighing the effect of the transition–transversion rate difference. A
counting method taking into account both factors was implemented by Yang and Nielsen
(2000).

12.3.2 Maximum Likelihood Estimation

Likelihood is a powerful and flexible methodology for estimating parameters and testing
hypotheses. Since the data are observed, we view the probability of observing the data
as a function (the likelihood function) of the unknown parameters. The likelihood or
log-likelihood function is our inference tool and contains all information about the
parameters in the model. We estimate the unknown parameters by maximizing the
likelihood function. Furthermore, the log-likelihood value under a model measures the
fit of the model to data, and we compare two models by comparing their log-likelihood
values. This is known as the LRT. When two models are nested, twice the log-likelihood
difference between the two models can be compared with the χ2 distribution, with the
difference in the number of parameters between the two models as the degrees of freedom
(df). The χ2 approximation to the likelihood ratio statistic relies on large sample sizes
(long sequences). How large the sample should be for the χ2 approximation to be reliable
depends on the specific model being tested as well as other factors such as sequence
divergence. In a few cases where LRTs applied to phylogenetics were examined by
computer simulation, the χ2 approximation appears very good with as few as 100 or
200 nucleotides in the sequence (e.g. Nekrutenko et al., 2001). When the sequences are
too short or when the two models are not nested, the correct distribution of the test statistic
can be derived by Monte Carlo simulation (Goldman, 1993).
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The ML method for estimating dN and dS (Goldman and Yang, 1994) is described
below. The data are two aligned protein-coding DNA sequences. As a numerical example,
we will use the human and mouse acetylcholine receptor α genes. The first 15 codons of
the gene are shown below.

Human GAG CCC TGG CCT CTC CTC CTG CTC TTT AGC CTT TGC TCA GCT GGC . . .

Mouse GAG CTC TCG ACT GTT CTC CTG CTG CTA GGC CTC TGC TCC GCT GGC . . .

We assume that different codons in the sequence are evolving independently according
to the same Markov process. As a result, data at different sites are independently and
identically distributed. Suppose there are n sites (codons) in the gene, and let the data at
site h be xh = {x1, x2}, where x1 and x2 are the two codons in the two sequences at that
site (see Figure 12.1a). In the above example, the data at site h = 2 are x1 = CCC and
x2 = CTC. The probability of observing data xh at site h is

f (xh) =
61∑
k=1

πkpkx1
(t1)pkx2

(t2). (12.6)

The term in the sum is the probability that the ancestor has codon k and the two current
species have codons x1 and x2 at the site. This probability is equal to the prior probability
that the ancestor has codon k, given by the equilibrium frequency πk , multiplied by the
two transition probabilities along the two branches of the tree (Figure 12.1a). Since the
ancestral codon k is unknown, we sum over all possibilities for k. Time reversibility of
the Markov process implies that

f (xh) =
61∑
k=1

πx1
px1k

(t1)pkx2
(t2) = πx1

61∑
k=1

px1k
(t1)pkx2

(t2) = πx1
px1x2

(t1 + t2). (12.7)

The last step follows from the Chapman–Kolmogorov theorem (e.g. Grimmett and
Stirzaker, 1992, pp. 239–246). Thus the data are probabilistically identical whether we
consider the two sequences to be descendants of a common ancestor (as in Figure 12.1a)
or we consider one sequence to be ancestral to the other (as in Figure 12.1b). In
other words, the root of the tree cannot be identified and only t = t1 + t2 can be esti-
mated, but not t1 and t2 individually. Parameters in the model are thus the sequence
divergence t , the transition–transversion rate ratio κ , the nonsynonymous/synonymous
rate ratio ω, and the codon frequencies πj ’s. The log-likelihood function is then
given by

Figure 12.1 The tree for two sequences, with the codons
x1, x2 for one site shown. Codon-substitution models considered
in this chapter are all time reversible and do not allow iden-
tification of the root. As a result, parameters t1 and t2 cannot
be estimated separately (a), and only their sum t = t1 + t2 is
estimable (b).

(a) (b)

k

t = t1+ t2
t2t1

x1 x2 x1 x2
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Figure 12.2 The log-likelihood surface contour as a function of parameters t and ω for the
comparison of the human and mouse acetylcholine receptor α genes. The maximum likelihood
method estimates parameters by maximizing the likelihood function. For these data, the estimates
are t = 0.444, ω = 0.059, with the optimum log likelihood to be � = −2392.83.

�(t, κ, ω) =
n∑
h=1

log{f (xh)}. (12.8)

If some sites have the same data x, the probability f (x) need be calculated only once.
An equivalent way of deriving the likelihood function is to note that the data follow a
multinomial distribution with 612 categories corresponding to the 612 possible site patterns
(configurations).

We usually estimate the codon frequencies (πj ’s) by the observed base/codon frequen-
cies. To estimate parameters t, κ , and ω, we use a numerical hill-climbing algorithm to
maximize �, since an analytical solution is impossible. Figure 12.2 shows a log-likelihood
surface as a function of t and ω for the human and mouse acetylcholine receptor α genes.
The model assumes equal transition and transversion rates and equal codon frequen-
cies (with κ = 1 and πj = 1/61 fixed), and involve two parameters only. This is the
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model underlying the method of Miyata and Yasunaga (1980) and Nei and Gojobori
(1986).

The dN and dS rates are defined as functions of parameters t, κ, ω, and πj , and their
ML estimates are simply functions of ML estimates of parameters t, κ, ω, and πj . The
following description thus gives both the definitions of dN and dS , and also the ML
method for their estimation. The basic idea is the same as explained in our hypothetical
example before. Here we count sites and substitutions per codon rather than for the
entire sequence. First, note that the sequence divergence t is defined as the number of
nucleotide substitutions per codon. We partition this number into the synonymous and
nonsynonymous categories. We note that

ρ∗S =
∑
i �=j

aai = aaj

πiqij (12.9)

and
ρ∗N =

∑
i �=j

aai �= aaj

πiqij (12.10)

are the proportions of synonymous and nonsynonymous substitutions, respectively, as
ρ∗S + ρ∗N = 1 (12.3). The summation in ρ∗S is taken over all codon pairs i and j (i �= j)
that code for the same amino acid, while the summation in ρ∗N is taken over all codon
pairs i and j (i �= j) that code for different amino acids; aai is the amino acid encoded
by codon i. The numbers of synonymous and nonsynonymous substitutions per codon are
then tρ∗S and tρ∗N , respectively.

Next, we calculate the proportions of synonymous and nonsynonymous sites. Let
these be ρ1

S and ρ1
N . As noted before, these measure the substitution opportunities

before the operation of selection at the protein level, that is, when ω = 1 (Goldman
and Yang, 1994; Ina, 1995). They are calculated similar to (12.9) and (12.10), using the
transition–transversion rate ratio κ and codon frequencies (πj ), except that ω = 1 is
fixed. We assume there are three nucleotide sites in a codon (see Yang and Nielsen,
1998 for a discussion of the effect of mutations to stop codons). The numbers of
synonymous and nonsynonymous sites per codon are then 3ρ1

S and 3ρ1
N , respectively.

The numbers of synonymous and nonsynonymous substitutions per site are then dS =
tρ∗S/(3ρ1

S) and dN = tρ∗N/(3ρ1
N), respectively. Note that ω = dN/dS = (ρ∗N/ρ∗S)/(ρ1

N/ρ
1
S),

where the numerator ρ∗N/ρ∗S is the ratio of the numbers of (observed) substitutions
while the denominator ρ1

N/ρ
1
S is the ratio of the (expected) numbers of substitutions

if ω = 1.
Interpretation of dN and dS and definitions of a few other distances between

two protein-coding genes were given by Yang (2006, Chapter 2). While the basic
concepts discussed in the hypothetical example underlie both the ML and the counting
methods for estimating dN and dS (and their ratio ω), differences exist between the
two classes of methods. In the ML method, the probability theory (i.e. calculation
of the transition probabilities by (12.4)) accomplishes several difficult tasks in one
step: estimating mutational parameters such as κ , correcting for multiple hits, and
weighting evolutionary pathways between codons. The Chapman–Kolmogorov theorem
mentioned above ensures that the likelihood calculation accounts for all possible



386 Z. YANG

pathways of change between two codons, weighting them appropriately according to
their relative probabilities of occurrence. When we partition the number of substi-
tutions (t) into synonymous and nonsynonymous categories, we only need to do it
at the level of instantaneous rates (12.9 and 12.10), where there are no multiple
changes.

In the counting methods, each of the three steps offers a challenge. For example,
some methods ignore the transition–transversion rate difference. Others take it into
account but it has been difficult to estimate κ reliably. Ina (1995) used the third
codon positions and Yang and Nielsen (2000) used so-called four-fold degenerate sites
and nondegenerate sites to estimate κ , assuming that substitutions at those sites are
either not affected or affected equally by selection at the protein level. Both methods
use nucleotide-based correction formulas to estimate κ , which seem problematic. Use
of a limited class of sites also leads to large sampling errors in the estimates. The
steps of counting differences, weighting pathways, and correcting for multiple hits are
extremely complicated when we want to incorporate major features of DNA sequence
evolution such as the transition–transversion rate difference and unequal base/codon
frequencies (Yang and Nielsen, 2000). Notably, the synonymous and nonsynonymous
status of a site changes over time and also with the nucleotides at other positions of
the codon (Muse, 1996). As a result, nucleotide-substitution models used in counting
methods are not capable of dealing with the complexity of the codon-substitution
process.

After dN and dS are estimated, statistical tests can be used to test whether dN is
significantly higher than dS . For the counting methods, a normal approximation is applied
to the statistic (dN − dS). For ML, an LRT can be used, which compares the null model
with ω fixed at 1 and the alternative model that does not place this constraint. Twice
the log-likelihood difference between the two models is compared with a χ2 distribution
with 1 degree of freedom to test whether ω is different from 1. In practice, such tests
rarely detect positive selection, as dN and dS are calculated as averages over the entire
sequence. Indeed, an interesting use of this LRT is to predict protein-coding potentials
of genomic regions, making use of the fact that in almost all genes, dN is significantly
lower than dS (Nekrutenko et al., 2001).

12.3.3 A Numerical Example and Comparison of Methods

To see the differences among methods for estimating dN and dS , we compare the human
and mouse acetylcholine receptor α genes, using ML as well as several counting methods
(Table 12.1). The data set is the first (alphabetically) of the 49 genes analyzed by Ohta
(1995). The sequence has 456 codons (1368 nucleotides) after the start and stop codons
are removed. With the ML method, we examine the effects of model assumptions. Some
models ignore the transition–transversion rate ratio (with κ = 1 fixed), while others
account for it (with κ estimated). Some ignore biased codon frequencies (Fequal), while
others account for it to some extent (F1× 4, F3× 4, and F61) (see legend to Table 12.1
for definitions of these models).

Most of these models are nested, and the χ2 approximation can be used to perform
LRTs. For example, we can compare models A and B in Table 12.1 to test whether the
transition and transversion rates are equal. Model A is the null hypothesis and assumes
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Table 12.1 Estimation of dN and dS between the human and mouse acetylcholine receptor α
genes.

Model κ̂ Ŝ d̂N d̂S d̂N/d̂S(ω̂) �

Counting Methods
Nei and Gojobori (1986) 1 321.2 0.030 0.523 0.058
Li (1993) N/A N/A 0.029 0.419 0.069
Ina (1995) 6.1 408.4 0.033 0.405 0.081
YN00 (Yang and Nielsen, 2000) 2.1 311.2 0.029 0.643 0.045

ML methods
(A) Fequal, κ = 1 1 348.5 0.029 0.496 0.059 −2392.83
(B) Fequal, κ estimated 2.8 396.7 0.031 0.421 0.073 −2379.60
(C) F1× 4, κ = 1, fixed 1 361.0 0.029 0.513 0.057 −2390.35
(D) F1× 4, κ estimated 2.9 406.5 0.031 0.436 0.071 −2376.12
(E) F3× 4, κ = 1, fixed 1 281.4 0.029 0.650 0.044 −2317.72
(F) F3× 4, κ estimated 3.0 328.1 0.030 0.545 0.055 −2303.33
(G) F61, κ = 1, fixed 1 261.5 0.028 0.736 0.038 −2251.92
(H) F61, κ estimated 3.0 319.5 0.030 0.613 0.048 −2239.33

Note: Fequal: equal codon frequencies (=1/61) are assumed; F1× 4: four nucleotide frequencies are used to
calculate codon frequencies (three free parameters); F3× 4: nucleotide frequencies at three codon positions
are used to calculate codon frequencies (nine free parameters); F61: all codon frequencies are used as free
parameters (60 free parameters). � is the log-likelihood value. [Data are from Ohta (1995) and Yang and
Nielsen (1998).]

that transition and transversion rates are equal (κ = 1). Model B does not impose this
constraint and has one more free parameter (κ) than model A. The likelihood ratio statistic,
2�� = 2× (−2379.60− (−2392.83)) = 2× 13.23 = 26.46, should be compared with
the χ2 distribution with df = 1, giving a p value of 0.27× 10−6. So there is significant
difference between the transition and transversion rates.

For these data, both the transition–transversion rate difference and unequal codon
frequencies are clearly important. ML results under the most complex model (F61 with
κ estimated), which accounts for both factors, are expected to be the most reliable and
will be used to evaluate other methods/models. The F3× 4 model is commonly used as
it produces similar results to, and has far fewer parameters than, the F61 model. We
note that counting methods give similar results to ML under similar models; for example,
Ina’s method gives similar estimates to ML accounting for the transition–transversion
rate difference and ignoring biased base/codon frequencies (Table 12.1: MLB, Fequal,
with κ estimated).

It is well known that ignoring the transition–transversion rate difference leads to
underestimation of the number of synonymous sites (S), overestimation of dS , and
underestimation of the ω ratio. This effect is obvious in Table 12.1, when ML estimates
with κ estimated are compared with those when κ is fixed at 1, or when the method of Nei
and Gojobori (1986) is compared with those of Li (1993) or Ina (1995). Unequal codon
frequencies often have opposite effects to the transition–transversion rate difference and
lead to a reduced number of synonymous sites. This is the pattern we see in Table 12.1, as
estimates of S under the F3× 4 and F61 models are much smaller than under the Fequal
model. The gene is GC-rich at the third codon position, with base frequencies to be
16 % for T, 43 % for C, 14 % for A, and 27 % for G. As a result, most substitutions
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at the third codon position are transversions between C and G, and there are more
nonsynonymous sites than expected under equal base/codon frequencies. In this data
set, the effect of unequal base frequencies is opposite to and outweighs the effect
of the transition–transversion rate difference. As a result, the method of Nei and
Gojobori (1986), contrary to general belief, overestimates, rather than underestimates,
S and ω. The method of Ina (1995) accounts for the transition–transversion rate difference
but ignores the codon frequency bias, and performs more poorly than the method
of Nei and Gojobori (1986). The method of Yang and Nielsen (2000) accounts for
both biases, and seems to produce estimates close to ML estimates under realistic
models.

In general, different methods can produce either very similar or very different esti-
mates of ω. With very little transition–transversion rate difference and little codon
usage bias, different methods tend to produce similar results. For other data sets, esti-
mates from different methods can be three to ten times different (Yang and Nielsen,
2000; Dunn et al., 2001). Such large differences can occur even with highly similar
sequences, as extreme transition–transversion rate difference or codon usage bias can
drastically affect the counting of sites. One feature of the estimation is that when
a method overestimates dS , it tends to underestimate dN at the same time, resulting
in large errors in the ω ratio. This is because the total number of sites (or differ-
ences) is fixed, and if the method underestimates the number of synonymous sites (or
differences), it will overestimate the number of nonsynonymous sites as well, and vice
versa.

Simulation studies performed to compare different methods produced results that are
consistent with real-data analysis. For example, Ina (1995) compared several counting
methods and concluded that none of them performed well when base frequencies were
extreme. Yang and Nielsen (2000) examined the effects of the transition–transversion rate
difference and unequal base/codon frequencies, and found that estimation of the ω ratio
is very sensitive to both factors. A worrying result is that the method of Nei and Gojobori
(1986) can both underestimate and overestimate the ω ratio, often with large biases. In
general, counting methods may be used for exploratory data analysis, and the ML method
accounting for both the transition–transversion rate difference and the codon usage bias
should be preferred.

12.4 LIKELIHOOD CALCULATION ON A PHYLOGENY

Likelihood calculation for multiple sequences on a phylogeny may be viewed as an
extension of the calculation for two sequences. The calculation is also similar to that
under a nucleotide-substitution model (Felsenstein, 1981), although we now consider a
codon rather than a nucleotide as the unit of evolution. We assume in this section that the
same rate matrix Q (12.1) applies to all lineages and all amino acid sites. The data are
multiple aligned sequences. We assume independent substitutions among sites (codons),
so that data at different codon sites are independently and identically distributed. The
likelihood is given by the multinomial distribution with 61s categories (site patterns) for
s species. Let n be the number of sites (codons) in the sequence and the data at site h be
xh(h = 1, 2, . . . , n); xh is a vector of observed codons in different sequences at site h. An
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Figure 12.3 A tree of four sequences with codons at one site for nodes in the tree. Branch lengths
t0-t4 are parameters in the model.

example tree of four species is shown in Figure 12.3. As in the case of two sequences,
the root cannot be identified, and is arbitrarily fixed at the node ancestral to sequences
1 and 2. The data xh can be generated by any codons j and k for the two ancestral nodes in
the tree, and thus the probability of observing the data is a sum over all such possibilities.

f (xh) =
∑
j

∑
k

[πjpjx1
(t1)pjx2

(t2)pjk(t0)pkx3
(t3)pkx4

(t4)]. (12.11)

The quantity in the square bracket is the contribution to f (xh) from ancestral codons
j and k, and is equal to the prior probability that the codon at the root is j , which is given
by the equilibrium frequency πj , multiplied by the five transition probabilities along the
five branches of the phylogeny (Figure 12.3). For a tree of s species with (s − 2) ancestral
nodes, the data at each site will be a sum over 61s−2 possible combinations of ancestral
codons. In computer programs, we use the ‘pruning’ algorithm of Felsenstein (1981) to
achieve efficient computation.

The log likelihood is a sum over all sites in the sequence.

� =
n∑
h=1

log{f (xh)}. (12.12)

Compared with the case of two sequences, we now have the same parameters in the
substitution model (κ, ω, and the πj ’s), but many more branch length parameters (e.g.
t0, t1, . . . , t4 in Figure 12.3 instead of the single t in Figure 12.1b). Again, numerical
optimization algorithms have to be used to maximize the likelihood function.

As mentioned above, the quantity in the square bracket in (12.11) is the contribution
to the probability of the data f (xh) by ancestral codons j and k. This contribution
varies greatly depending on j and k, and the codons j and k that make the greatest
contribution are the most probable codons for the two ancestral nodes at the site. This gives
the empirical Bayes approach (also known as the likelihood approach) to reconstructing
ancestral character states (Yang et al., 1995; Koshi and Goldstein, 1996). Compared with
the parsimony reconstruction (Fitch, 1971; Hartigan, 1973), the Bayes approach uses
branch lengths and relative substitution rates between character states. Intuitive methods
that use reconstructed ancestral sequences to detect adaptive molecular evolution will be
discussed later in comparison with the ML method.
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12.5 DETECTING ADAPTIVE EVOLUTION ALONG LINEAGES

12.5.1 Likelihood Calculation under Models of Variable ω Ratios among Lineages

It is easy to modify the model of the previous section to allow for different ω ratios among
branches on a tree. The likelihood calculation under such a model proceeds in a similar
way, except that the transition probabilities for different branches need to be calculated
from different rate matrices (Qs) generated using different ωs. Suppose we want to fit
a model in which the branch for species 1 of Figure 12.4 has a different ω ratio (ω1),
while all other branches have the same ‘background’ ratio (ω0). Let pij (t;ω) denote the
transition probability calculated using the ratio ω. Under this model, the probability of
observing data, xh, is

f (xh) =
∑
j

∑
k

πjpjx1
(t1; ω1)pjx2

(t2; ω0)pjk(t0; ω0)pkx3
(t3; ω0)pkx4

(t4; ω0), (12.13)

(compare with (12.11)).
Yang (1998) implemented models that allow for different levels of heterogeneity in the

ω ratio among lineages. The simplest model (the ‘one-ratio’ model) assumes the same ω
ratio for all branches in the phylogeny. The most general model (the ‘free-ratio’ model)
assumes an independent ω ratio for each branch in the phylogeny. Intermediate models
such as two- or three-ratio models assume two or three different ω ratios for lineages in the
tree. These models can be compared using the LRT to examine interesting hypotheses. For
example, the likelihood values under the one-ratio and free-ratio models can be compared
to test whether the ω ratios are different among lineages. Also, we can let the lineages
of interest have a different ω ratio from the background ω ratio for all other lineages
in the phylogeny (as in Figure 12.4). Such a two-ratio model can be compared with the
one-ratio model to examine whether the lineages of interest have a different ω ratio from
other lineages. Furthermore, when the estimated ω ratio for the lineages of interest (say,
ω1 in Figure 12.4) is >1, models with and without the constraint that ω1 = 1 can be
compared to test whether the ratio is different from (i.e. greater than) 1. This test directly
examines the possibility of positive selection along specific lineages.

x1

t2, w0

t0, w0

t4, w0

t3, w0t1, w1

x3

x4
x2

j k

Figure 12.4 A tree of four sequences to explain a model of variable ω ratios among lineages.
The ω ratio for the branch leading to species 1 (ω1) is different from the ratio (ω0) for all other
branches.
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It should be pointed out that variation in the ω ratio among lineages is a violation
of the strictly neutral model, but is itself not sufficient evidence for adaptive evolution.
First, relaxed selective constraints along certain lineages can generate variable ω ratios.
Second, if nonsynonymous mutations are slightly deleterious but not lethal, their fixation
probabilities will depend on factors such as the population size of the species. In large
populations, deleterious mutations will have a smaller chance of getting fixed than in
small populations. Under such a model of slightly deleterious mutations (Ohta, 1973),
species with large population sizes are expected to have smaller ω ratios than species
with small population sizes. At any rate, an ω ratio significantly greater than one provides
convincing evidence for Darwinian selection.

12.5.2 Adaptive Evolution in the Primate Lysozyme

In the following, we use the example of the lysozyme c genes of primates (Figure 12.5)
to demonstrate the use of codon-substitution models of variable ω ratios among lineages
(Yang, 1998). Lysozyme is mainly found in secretions like tears and saliva as well as in
white blood cells, where its function is to fight invading bacteria. Leaf-eating colobine
monkeys have a complex foregut, where bacteria ferment plant material, followed by a
true stomach that expresses high levels of lysozyme, where its new function is to digest
these bacteria (Stewart et al., 1987; Messier and Stewart, 1997). It has been suggested
that the acquisition of a new function may have led to high selective pressure on the
enzyme, resulting in high nonsynonymous substitution rates. In an analysis of lysozyme
c genes from 24 primate species, Messier and Stewart (1997) identified two lineages
with elevated ω ratios, indicating episodes of adaptive evolution in the lysozyme. One
lineage, expected from previous analysis (Stewart et al., 1987), is ancestral to colobine
monkeys, and another unsuspected lineage is ancestral to the hominoids. The two lineages
are represented by branches h and c in Figure 12.5 for a subset of the data of Messier
and Stewart (1997).

As branches h and c are the lineages of interest, we test assumptions concerning
three ω ratio parameters: ωh for branch h,ωc for branch c, and ω0 for all other
(background) branches. Table 12.2 lists log-likelihood values and ML parameter estimates
under different models. The simplest model assumes one ω ratio (Table 12.2, A) while the
most general model assumes three ratios (E, I, and J). The six possible two-ratio models

0.1

Angolan colobus

Douc langur

Rhesus macaque

Human

Gibbon

Squirrel monkey

Marmoset

c

h

Colobines

Cercopithecines

Hominoids

New World monkeys

Figure 12.5 Phylogeny of seven primate species, for a subset of the lysozyme data of Messier
and Stewart (1997) used to demonstrate models of variable ω ratios among branches. The analysis
uses the unrooted tree, but the root is shown here for clarity. After Yang (1998).
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Table 12.2 Log-likelihood values and parameter estimates under different models for the
lysozyme c genes.

Model p � κ̂ ω̂0 ω̂h ω̂c

A. 1 ratio: ω0 = ωh = ωc 22 −906.02 4.5 0.81 = ω̂0 = ω̂0

B. 2 ratios: ω0 = ωh, ωc 23 −904.64 4.6 0.69 = ω̂0 3.51
C. 2 ratios: ω0 = ωc, ωh 23 −903.08 4.6 0.68 ∞ = ω̂0

D. 2 ratios: ω0, ωh = ωc 23 −901.63 4.6 0.54 7.26 = ω̂H

E. 3 ratios: ω0, ωh, ωc 24 −901.10 4.6 0.54 ∞ 3.65

F. 2 ratios: ω0 = ωh, ωc = 1 22 −905.48 4.4 0.69 = ω̂0 1
G. 2 ratios: ω0 = ωc, ωh = 1 22 −905.38 4.4 0.68 1 = ω̂0

H. 2 ratios: ω0, ωh = ωc = 1 22 −904.36 4.3 0.54 1 1
I. 3 ratios: ω0, ωh, ωc = 1 23 −902.02 4.5 0.54 ∞ 1
J. 3 ratios: ω0, ωh = 1, ωc 23 −903.48 4.4 0.54 1 3.56

Note: p is the number of parameters. All models include the following 21 common parameters: 11 branch
lengths in the tree (Figure 12.5), nine parameters for base frequencies at codon positions used to calculate
codon frequencies, and the transition–transversion rate ratio κ .
Source: Yang (1998).

(B−D and F−H) are used as well. In models F-J, the ω ratio for the branch(es) of interest
is fixed at 1.

Estimate of the ω ratio under the one-ratio model (ω0 = ωh = ωc) is 0.81, indicating
that, on average, purifying selection dominates the evolution of the lysozyme. Estimates
of ωc for branch c range from 3.4 to 3.6 when ωc is allowed free to vary (models B,
E, and J in Table 12.2). Estimates of ωh are always infinite when ωh is assumed to be a
free parameter (models C, E, and I), indicating the absence of synonymous substitutions
along branch h. Estimate of the background ratio ω0 is 0.54, when ωh and ωc are not
constrained to be equal to ω0 (models D, E, I, and J).

Results of LRTs are shown in Table 12.3. Tests A–E examine whether the ω ratio for
the branch(es) of interest is different from (i.e. greater than) the background ratio, while
tests A’–E’ examine whether the ratio is greater than 1. For example, test E compares
models B and E of Table 12.2 and examines the null hypothesis that ωh = ω0, with ωc free
to vary in both models; ωh is significantly higher than ω0 in this comparison. Such tests
suggest that ωh is significantly greater than the background ratio ω0 (P < 1 %; Table 12.3,
D and E) and also significantly greater than 1 (P < 5 %; Table 12.3, D’ and E’). Similar
tests suggest that ωc is significantly greater than ω0 (P < 5 %; Table 12.3, C), but not
significantly greater than 1 (P ranges from 17–20 %; Table 12.3, B’ and C’). More
detailed analyses of the data set can be found in Yang (1998).

12.5.3 Comparison with Methods Based on Reconstructed Ancestral Sequences

Evolutionary biology has had a long tradition of reconstructing characters in extinct
ancestral species and using them as observed data in all sorts of analyses. For molecular
data, statistical methods (Yang et al., 1995; Koshi and Goldstein, 1996) can be used to
obtain more reliable ancestral reconstructions, taking into account branch lengths and
relative substitution rates between characters (nucleotides, amino acids, or codons) (see
the discussion below (12.12)). Overall, reconstructed molecular sequences appear much
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Table 12.3 Likelihood ratio statistics (2��) for testing hypotheses concerning
lysozyme evolution.

Hypothesis tested Assumption made Models compared 2��

A. (ωh = ωc) = ω0 ωh = ωc A & D 8.78**
B. ωc = ω0 ωh = ω0 A & B 2.76
C. ωc = ω0 ωh free C & E 3.96*
D. ωh = ω0 ωc = ω0 A & C 5.88*
E. ωh = ω0 ωc free B & E 7.08**
A’. (ωh = ωc) ≤ 1 ωh = ωc D & H 5.46*
B’. ωc ≤ 1 ωh = ω0 B & F 1.68
C’. ωc ≤ 1 ωh free E & I 1.84
D’. ωh ≤ 1 ωc = ω0 C & G 4.60*
E’. ωh ≤ 1 ωc free E & J 4.76*

* Significant at the 5 % level.
** Significant at the 1 % level.
Source: Yang (1998).

more reliable than reconstructed morphological characters (Yang et al., 1995; Cunningham
et al., 1998).

Messier and Stewart (1997) reconstructed ancestral sequences and used them to perform
pairwise comparisons to calculate dN and dS along branches in the tree. Their analysis
pinpointed two particular lineages in the primate phylogeny that may have gone through
adaptive evolution. Crandall and Hillis (1997) took the same approach in an analysis
of relaxed selective constraints in the rhodopsin genes of eyeless crayfishes living deep
under the ground. Zhang et al. (1997) argue that the normal approximation to the statistic
dN − dS may not be reliable due to small sample sizes. These authors instead applied
Fisher’s exact test to the counts of differences between the two sequences, ignoring
multiple hits at the same site.

A major difference between the ML method discussed in this section and the heuristic
approaches using ancestral reconstruction is that ML uses all possible ancestral characters
(such as codons j and k for the two ancestral nodes in the tree of Figures 12.3 and 12.4),
while the approach of ancestral reconstruction uses only the most likely codons and
ignores the others. Ancestral sequences reconstructed by both parsimony and likelihood
involve random errors, as indicated by the calculated posterior probabilities (Yang et al.,
1995). Using the optimal reconstruction and ignoring the sub-optimal ones may cause
a systematic bias. One kind of such bias is obvious if we use reconstructed ancestral
sequences to estimate branch lengths, as both parsimony and likelihood tend to minimize
the amount of evolution to select the most likely ancestral characters. Biases involved
in estimation of dN and dS using reconstructed ancestral sequences are more complex.
They can be reduced by considering sub-optimal as well as optimal reconstructions, but
such modifications have not been attempted. Furthermore, pairwise comparisons along
branches of the phylogeny may not be as reliable as a simultaneous comparison of all
sequences by ML.

It appears advisable that ancestral reconstruction should be used for exploratory data
analysis and ML be used for more rigorous tests. When the LRT suggests adaptive evolu-
tion along certain lineages, ancestral reconstruction may be very useful to pinpoint the



394 Z. YANG

responsible amino acid changes. Indeed, an interesting use of ancestral reconstruction is
to provide ancestral proteins to be synthesized in the lab to examine its biochemical and
physiological properties. Such studies of ‘paleobiochemistry’ were envisaged by Pauling
and Zuckerkandl (1963) several decades ago; see Golding and Dean (1998) and Chang
and Donoghue (2000) for reviews.

12.6 INFERRING AMINO ACID SITES UNDER POSITIVE SELECTION

12.6.1 Likelihood Ratio Test under Models of Variable ω Ratios among Sites

Till now, we have assumed that all amino acid sites in a protein are under the same
selective pressure, with the same underlying nonsynonymous/synonymous rate ratio (ω).
While the synonymous rate may be homogeneous among sites, it is well known that
nonsynonymous rates are highly variable. Most proteins have highly conserved amino
acid positions at which the underlying ω ratio is close to 0. The requirement that the
ω ratio, averaged over all sites in the protein, is greater than 1 is thus a very stringent
criterion for detecting adaptive evolution. It would be much more realistic if we allow
the ω ratio to vary among sites.

We can envisage two cases, which require different statistical modeling. In the first
case, we may know the different structural and functional domains of the protein, and
can use such information to classify amino acid sites in the protein into several classes.
The different site classes are assumed to have different ω ratios, which are parameters
to be estimated by ML. Suppose we have K site classes, with the corresponding
ω ratios to be ω1, ω2, . . . , ωK . The likelihood calculation under this model is rather
similar to that under the model of one ω ratio for all sites (12.11 and 12.12), except
that the corresponding ω ratio will be used to calculate the transition probabilities for
data at each site. For example, if site h is from site class k(k = 1, 2, . . . , K) with
the ratio ωk , then f (xh) of (12.11) will be calculated using ωk . The likelihood is
again given by (12.12). A few such models were implemented by Yang and Swanson
(2002) and applied to MHC class I alleles in which structural information was used
to identify amino acids at the antigen-recognition site. The models were termed ‘fixed-
sites’ models.

In the second case, we assume that there are several heterogeneous site classes
with different ω ratios, but we do not know which class each amino acid site
belongs to. Such models were termed ‘random-sites’ models by Yang and Swanson
(2002) and will be the focus of discussion here. They use a statistical distribu-
tion to account for the random variation of ω among sites (Nielsen and Yang,
1998). We assume that the synonymous rate is constant among sites, and allow
only the nonsynonymous rate to be variable, although the same approach can be
taken to deal with synonymous rate variation (Kosakovsky Pond and Muse, 2005).
Branch length t is defined as the expected number of nucleotide substitutions per
codon, averaged over sites. Suppose amino acid sites fall into a fixed number of
K classes, with the proportions p0, p1, . . . , pK−1, and ω ratios ω0, ω1, . . . , ωK−1
treated either as parameters or as functions of parameters in the ω distribution.
To calculate the likelihood, we need to calculate the probability of observing data
at each site, say data xh at site h. The conditional probability of the data, given
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ωκ, f (xh|ωk), can be calculated as described before (12.11). Since we do not know
which class site h belongs to, we sum over all site classes (i.e. over the distribution
of ω):

f (xh) =
K∑
k=1

pkf (xh|ωk). (12.14)

The log likelihood is a sum over all n sites in the sequence,

� =
n∑
h=1

log{f (xh)}. (12.15)

Parameters in the model include branch lengths in the tree, κ, πj ’s, and parameters in
the distribution of ω among sites. As before, we estimate the codon frequency parameters
by the observed frequencies, and estimate the other parameters by numerical optimization
of the likelihood.

A number of statistical distributions have been implemented by Nielsen and Yang
(1998) and Yang et al. (2000). Positive selection is tested using an LRT comparing a
null model that does not allow ω > 1 with an alternative model that does. Computer
simulations have revealed two tests to be particularly effective (Anisimova et al., 2001;
2002; Wong et al., 2004). The first compares the null model M1a (neutral), which assumes
two site classes in proportions p0 and p1 = 1− p0 with 0 < ω0 < 1 and ω1 = 1, and the
alternative model M2a (selection), which adds a proportion p2 of sites with ω2 > 1. M1a
and M2a are slight modifications of models M1 and M2 in Nielsen and Yang (1998),
which had ω0 = 0 fixed and were found to be highly unrealistic for most data sets.
As M2a has two more parameters than M1a, the χ2

2 distribution may be used for the
test. However, the regularity conditions for the asymptotic χ2 approximation are not
met, as M1a is equivalent to M2a by fixing p2 = 0, which is at the boundary of the
parameter space, and as ω2 is not identifiable when p2 = 0. The use of χ2

2 is expected
to be conservative. The second test compares the null model M7 (beta), which assumes
a beta distribution for ω, and the alternative model M8 (beta & ω), which adds an extra
site class of positive selection with ωs > 1. The beta distribution, beta(p, q), can take
a variety of shapes depending on its parameters p and q, such as L-, inverted L-, U-,
and inverted U-shapes, but is restricted to the interval (0, 1). It is thus a flexible null
model. M8 has two more parameters than M7, so that χ2

2 may be used to conduct the
LRT. As in the comparison between M1a and M2a, use of χ2

2 is expected to make the
test conservative.

Another model, called M3 (discrete), is sometimes useful as well. This assumes a
general discrete model, with the frequencies and the ω ratios (pk and ωk in (12.14)) for
K site classes estimated as free parameters. All models discussed here may be considered
special cases of this general mixture model. As is typical in such models, often only
a few classes can be fitted to real-data sets. Model M3 may be compared with model
M0 (one-ratio) to construct an LRT to test whether the selective pressure varies among
sites.

After ML estimates of model parameters are obtained, we can use the empirical Bayes
approach to infer the most likely site class (and thus the ω ratio) for any site. The marginal
probability of the data f (x) (12.15) is a sum of contributions from each site class k, and
the site class that makes the greatest contribution is the most likely class for the site, that
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is, the posterior probability that a site with data xh is from site class k (with rate ratio
ωk) is

f (ωk|xh) =
pkf (xh|ωk)
f (xh)

= pkf (xh|ωk)∑
j pjf (xh|ωj)

, (12.16)

(Nielsen and Yang, 1998). When the ω estimates for some site classes are greater than 1,
this approach can be used to identify sites from such classes, which are potential targets
of positive selection. The posterior probability provides a measure of accuracy. This is
known as the naı̈ve empirical Bayes approach (NEB) (Nielsen and Yang, 1998). A serious
drawback with this approach is that it uses the maximum likelihood estimations (MLEs)
of parameters as fixed constants in (12.16), ignoring their sampling errors. This may be
a sensible approach in large or medium-sized data sets. However, in small data sets, the
information content may be low and the parameter estimates may involve large sampling
errors. This deficiency appears to be the major reason for the poor performance of the
procedure in small data sets in several simulation studies (e.g. Anisimova et al., 2002;
Wong et al., 2004; Massingham and Goldman, 2005; Scheffler and Seoighe, 2005). A
more reliable approach, known as the Bayes empirical Bayes (BEB ), was implemented
by Yang et al. (2005). BEB accommodates uncertainties in the MLEs of parameters in the
ω distribution by integrating numerically over a prior for the parameters. Other parameters
such as branch lengths are fixed at their MLEs, as these are expected to have much less
effect on inference concerning ω. A hierarchical (full) Bayesian approach is implemented
by Huelsenbeck and Dyer (2004), using markov chain monte carlo (MCMC) to average
over tree topologies, branch lengths, as well as other substitution parameters in the model.
This approach involves more computation but may produce more reliable inference in
small uninformative data sets, where the MLEs of branch lengths may involve large
sampling errors (Scheffler and Seoighe, 2005).

12.6.2 Methods That Test One Site at a Time

An intuitive approach to examining selective pressure indicated by the ω ratio at individual
sites is to reconstruct ancestral sequences and then count synonymous and nonsynonymous
changes at each site. Comparison of the observed counts with a ‘neutral’ expectation may
then allow us to decide whether the site is evolving under purifying selection or positive
selection. On a large phylogeny, some sites may have accumulated many changes at a
single site for this approach to be feasible. Fitch et al. (1997) performed such an analysis
of the hemagglutinin (HA) gene of human influenza virus type A and considered a site
to be under positive selection if it has more nonsynonymous substitutions over the gene
than the average. Suzuki and Gojobori (1999) compared the counts with the neutral
expectation that dS = dN at the site, using the method of Nei and Gojobori (1986) to
estimate dS and dN . A large number of sequences are needed for the test to have any
power, as confirmed in computer simulations (Suzuki and Gojobori, 1999; Wong et al.,
2004). Both the approaches of Fitch et al. (1997) and Suzuki and Gojobori (1999) used
the parsimony algorithm to infer ancestral sequences.

The use of reconstructed ancestral sequences may be a source of concern since the
reconstructed sequences are not real observed data. In particular, positively selected sites
are often the most variable sites in the alignment, at which ancestral reconstruction is the
least reliable. This problem may be avoided by taking a likelihood approach, averaging
over all possible ancestral states. Indeed Suzuki (2004), Massingham and Goldman (2005),
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and Kosakovsky Pond and Frost (2005) implemented methods to estimate one ω parameter
for each site using ML. Other parameters in the model such as branch lengths are usually
estimated from the whole data set and fixed when the ω ratio is estimated for each site.
Then at every site, an LRT is used to test the null hypothesis, ω = 1. This is called the
site-wise likelihood ratio (SLR) test by Massingham and Goldman (2005). A problem with
those methods is that the number of ω ratios estimated in the model increases without
bound with the increase of the sequence length. Likelihood methods often perform poorly
under such parameter-rich models. However, in computer simulations Massingham and
Goldman (2005) found that the SLR test achieved good false-positive rates and reasonably
high power.

The methods discussed above test every site for positive selection, and are similar to
the BEB procedure for identifying individual amino acid sites under positive selection
(Yang et al., 2005). To test whether the gene is under positive selection (i.e. whether
the gene has any codon with ω > 1), a correction for multiple testing should be applied
(Wong et al., 2004).

12.6.3 Positive Selection in the HIV-1 vif Genes

An example data set of HIV-1 vif genes from 29 subtype-B isolates is used here to
demonstrate the likelihood models of variable ω ratios among sites. The data set was
analyzed by Yang et al. (2000). The sequence has 192 codons. Several models are used
in ML estimation, with the results shown in Table 12.4. Only parameters involved in
the ω distribution are listed, as other parameters (branch lengths in the phylogeny, the
transition–transversion rate ratio κ , and the base frequencies at the three codon positions)
are common to all models. The model codes are those used in Yang et al. (2000) and in
the CODEML program in the PAML package (Yang, 1997).

Table 12.4 Likelihood values and parameter estimates under models of variable ω ratios
among sites for HIV-1 vif genes.

Model code � dN/dS Estimates of parameters

M0. one-ratio (1) − 3499.60 0.644 ω̂ = 0.644

M1a. neutral (2) − 3393.83 0.438 p̂0 = 0.611, ω̂0 = 0.080,
(p̂1 = 0.389), (ω̂1 = 1)

M2a. selection (4) − 3367.86 0.689 p̂0 = 0.573, ω̂0 = 0.090,
p̂1 = 0.346, (ω̂1 = 1)

(p̂2 = 0.081), ω̂2 = 3.585

M3. discrete (5) − 3367.16 0.742 p̂0 = 0.605, ω̂0 = 0.108
p̂1 = 0.325, ω̂1 = 1.211

(p̂2 = 0.070), ω̂2 = 4.024

M7. beta (2) − 3400.44 0.440 p̂ = 0.176, q̂ = 0.223

M8. beta & ω (4) − 3370.66 0.687 p̂0 = 0.909, p̂ = 0.222, q̂ = 0.312
(p̂1 = 0.091), ω̂s = 3.385

Note: The number of parameters in the ω distribution is given in parentheses after the model code.
dN/dS is the average ω over all sites in the gene. Parameters in parentheses are given to ease
interpretation but are not free parameters. Estimates of the transition–transversion rate ratio κ range
from 3.6 to 4.1 among models.
Source: The data are from Yang et al. (2000).
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The one-ratio model (M0) assumes one ω ratio for all sites and gives an average
ω ratio of 0.644, indicating that on average, purifying selection is the dominating
force during the evolution of the gene. The selection model (M2a) suggests that about
p̂1 = 8.1 % of sites are under positive selection with ω̂2 = 3.58, and it has a significantly
higher log-likelihood value than model M1a (neutral), which does not allow for sites
under positive selection. The LRT statistic for comparing M1a and M2a is 2�� =
2× 25.97 = 51.94, much greater than χ2

2,1 % = 9.21. Similarly estimates under model
M8 (beta & ω) suggest that about p̂1 = 9.1 % of sites are under positive selection
with ω̂s = 3.385. M8 fits the data much better than M7 (β), which does not allow for
sites with ω > 1. Thus, the two LRTs, which compare M1a with M2a and M7 with
M8, provide significant evidence for the presence of sites in the gene under positive
selection.

The discrete model (M3) suggests that about p̂2 = 7.0 % of sites are under strong
positive selection with ω̂2 = 4.0, while a large proportion (p̂1 = 33 %) of sites are under
weak positive selection or are nearly neutral with ω̂1 = 1.2.

Figure 12.6 plots the posterior probabilities for site classes at each site under model
M2a (selection), calculated using the NEB approach (12.16). Parameter estimates under
M2a suggest that the three site classes have the ω ratios 0.090, 1, and 3.585 and
are in proportions 57.3, 34.6, and 8.1 % (Table 12.4). These proportions are the prior
probabilities for site classes at every site. The observed data at the site alter these prior
probabilities considerably, so that the posterior probabilities are very different from the
prior. For example, the posterior probabilities for site 1 are 0.986, 0.014, and 0.000, and
this site is almost certainly under purifying selection. In contrast, the probabilities at site
31 are 0.000, 0.012, and 0.988, and this site is most likely to be under strong diversifying
selection (Figure 12.6).

The above calculation used the NEB procedure (12.16), which treats the estimates of
the proportions and ω ratios as true values. NEB is used here as it is simple to explain. In
real-data analysis, the BEB procedure should be used instead, which takes into account
estimation errors in those parameters. The HIV vif data set is relatively large, so that
the two procedures produced very similar results. For example, at the 99 % cutoff, both
methods identified three sites to be under positive selection: 39 F, 127 Y, and 167 K (the
amino acids are from the reference sequence B SF2). At the 95 % cutoff, BEB identified
five additional sites: 31 I, 33 K, 101 G, 109 L, and 122 N, while the NEB list also included
63 K and 92 K.

Amino acid site in HIV-1 vif gene
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191
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Figure 12.6 Posterior probabilities of site classes along the gene for the HIV-1 vif genes under
the site model M2a (selection).
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12.7 TESTING POSITIVE SELECTION AFFECTING PARTICULAR
SITES AND LINEAGES

12.7.1 Branch-site Test of Positive Selection

A natural extension to the branch- and site-models discussed above is the branch-site
models, which allow the ω ratio to vary both among sites and among lineages (Yang and
Nielsen, 2002). Such models attempt to detect signals of local episodic natural selection
(Gillespie, 1991), which affects only a few sites along particular lineages. In the models
of Yang and Nielsen (2002), branches in the tree are divided a priori into foreground and
background categories, and an LRT is constructed to compare an alternative hypothesis
that allows for some sites under positive selection on the foreground branches with a null
hypothesis that does not. However, computer simulations conducted by Zhang (2004)
suggest that the resulting tests can produce excessive false positives when the model
assumptions are violated, and in general, the tests were unable to distinguish positive
selection from relaxed selective constraint along the foreground branches. Later, the
branch-site models were modified, and the tests constructed using the modified models
were found to be much more robust and appeared to produce reliable inference (Yang
et al., 2005; Zhang et al., 2005).

The modified model, known as branch-site model A, is summarized in Table 12.5.
Along the background lineages, there are two classes of sites: the conserved sites with
0 < ω0 < 1 and the neutral sites with ω1 = 1. Along the foreground lineages, a proportion
(1− p0 − p1) of sites come under positive selection with ω2 ≥ 1. Likelihood calculation
under this model is very similar to that under the site models (12.14). As we do not know
a priori which site class each site is from, the probability of data at a site is an average
over the four site classes. Let Ih = 0, 1, 2a, 2b be the site class that site h is from. We
have

f (xh) =
∑
Ih

pkf (xh|Ih). (12.17)

The conditional probability f (xh|Ih) of observing data xh at site h, given that the site
comes from site class Ih, is easy to calculate, because the site evolves under the one-ratio
model if Ih = 0 or 1, and under the branch model if Ih = 2a or 2b.

To construct an LRT, we use model A as the alternative hypothesis, while the null
hypothesis is the same model A but with ω2 = 1 fixed (Table 12.5). This is known as the
branch-site test of positive selection. The null hypothesis has one fewer parameter, but
since ω2 = 1 is fixed at the boundary of the parameter space of the alternative hypothesis,
the null distribution should be a 50 : 50 mixture of point mass 0 and χ2

1 (Self and Liang,

Table 12.5 The ω ratios assumed in branch-site model A.

Site class Proportion Background ω Foreground ω

0 p0 0 < ω0 < 1 0 < ω0 < 1
1 p1 ω1 = 1 ω1 = 1
2a (1− p0 − p1)p0/(p0 + p1) 0 < ω0 < 1 ω2 > 1
2b (1− p0 − p1)p1/(p0 + p1) ω1 = 1 ω2 > 1

Note: The model involves four parameters: p0, p1, ω0, ω2.
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1987). The critical values are 2.71 and 5.41 at the 5 and 1 % levels, respectively. One may
also use χ2

1 (with critical values 3.84 at 5 % and 5.99 at 1 %) to guide against violations
of model assumptions.

As in the site-based analysis, the BEB approach can be used to calculate the posterior
probability that a site is from site classes 2a and 2b, allowing identification of amino acid
sites potentially under positive selection along the foreground lineages (Yang et al., 2005).

Similar to the branch test, the branch-site test requires the foreground branches to be
specified a priori. This may be easy if a well-formulated biological hypothesis exists,
for example, if we want to test adaptive evolution driving functional divergences after
gene duplication. The test may be difficult to apply if no a priori hypothesis is available.
To apply the test to several or all branches on the tree, one has to correct for multiple
testing. Several correction procedures have been suggested in the statistics literature. The
simplest is the Bonferroni correction (Miller, 1981, pp. 67–70), by which one uses α/m
as the significance level to test every hypotheses when m hypotheses (branches) are being
tested.

12.7.2 Similar Models

Several other models of codon substitution also allow the ω ratio to vary both among
lineages and among sites. Forsberg and Christiansen (2003) and Bielawski and Yang
(2004) implemented the clade models. Branches on the phylogeny are a priori divided
into two clades, and an LRT is used to test for divergences in selective pressure between
the two clades indicated by different ω ratios. There may not be any sites under positive
selection with ω > 1. Clade model C, implemented by Bielawski and Yang (2004) is
summarized in Table 12.6. This assumes three site classes. Class 0 includes conserved
sites with 0 < ω0 < 1, while class 1 includes neutral sites with ω1 = 1; both apply to
all lineages. Class 2 includes sites that are under different selective pressures in the two
clades, with ω2 for clade 1 and ω3 for clade 2. The model involves five parameters in
the ω distribution: p0, p1, ω0, ω2, and ω3. An LRT can be constructed by comparing
model C with the site model M1a (neutral), which assumes two site classes with two free
parameters: p0 and ω0 (see Section 12.6). The χ2

3 distribution may be used for the test.
The clade models follow on the ideas of Gu (2001) and Knudsen and Miyamoto (2001),
who used amino acid substitution rates to indicate functional constraint.

A switching model was implemented by Guindon et al. (2004), which allows the ω ratio
at any site to switch among three different values: ω1 < ω2 < ω3. Besides the Markov
process that describe substitutions between codons, a hidden Markov chain runs over
time and describes the switches of any site between different selective regimes (i.e. the
three ω values). The model has the same structure as the covarion model of Tuffley and
Steel (1998) (see also Galtier, 2001; Huelsenbeck, 2002), which allows the substitution

Table 12.6 The ω ratios assumed in clade model C.

Site class Proportion Clade 1 Clade 2

0 p0 0 < ω0 < 1 0 < ω0 < 1
1 p1 ω1 = 1 ω1 = 1
2 p2 = 1− p0 − p1 ω2 ω3

Note: The model involves five parameters: p0, p1, ω0, ω2, ω3.
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rate for any site to switch between high and low values. The switching model is an
extension of the site model M3 (discrete) discussed above, under which the ω ratio is
fixed at every site. An LRT can thus be used to compare them. Guindon et al. (2004)
found that the switching model fitted a data set of the HIV-1 env genes much better
than the site models. An empirical Bayes procedure can be used to identify lineages
and sites with high ω ratios, and it appears necessary to apply a correction for multiple
testing.

12.8 LIMITATIONS OF CURRENT METHODS

Both the test of positive selection along lineages and the test of positive selection at amino
acid sites discussed in this chapter are conservative. When we are testing for lineages under
positive selection, we assume that the ω ratio is identical across sites. Positive selection
is detected along a lineage only if the ω ratio averaged over all sites is significantly
greater than 1. Since many or most sites in a protein are under purifying selection with
the underlying ω ratios close to 0, this procedure constitutes a very conservative test
of positive selection. Similarly, the LRT for detecting positively selected sites is based
on the assumption that the ω ratio is identical among all lineages on the tree. Positive
selection is detected for a site only if the underlying ω ratio averaged over all lineages
is greater than 1. This assumption appears unrealistic except for genes under recurrent
diversifying selection; for most genes, positive selection probably affects only a few
lineages.

The branch-site and switching models (Yang and Nielsen, 2002; Guindon et al., 2004;
Yang et al., 2005; Zhang et al., 2005) allow the ω ratio to vary both among lineages and
among sites and appear to have more power to detect positive selection. Nevertheless,
these models are new, and more testing is needed before we know how robust they are.
At some stage we will have to compromise. On one hand, we want to focus on a short
time period and a few amino acid sites so that the signal of adaptive evolution will not
be overwhelmed by purifying selection. On the other hand, a short time period and a
few amino acid sites may not offer enough opportunities for evolutionary changes to
accumulate to generate a signal that is detectable by statistical tests.

The models discussed here assume the same ω ratio for any amino acid changes; at
a positively selected site, changes to any amino acid are assumed to be advantageous.
This assumption is unrealistic and appears to make the test conservative. Some authors
distinguish between radical and conservative amino acid replacements (i.e. between amino
acids with very different and very similar chemical properties, respectively), and suggest
that a higher radical than conservative rate is evidence for positive selection (Hughes
et al., 1990; Rand et al., 2000; Zhang, 2000). However, this criterion is less convincing
than the simple ω ratio and is found to be sensitive to assumptions about transition and
transversion rate differences and unequal amino acid compositions (Dagan et al., 2002).

The tests discussed here identify only positive selection that increases the nonsyn-
onymous rates, and may have little power in detecting other types of selection such as
balancing selection (Yang et al., 2000). Furthermore, they require a moderate amount of
sequence divergence to operate and tend to lack power in population data. They may be
useful for species data or fast-evolving viral genes only.
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12.9 COMPUTER SOFTWARE

A number of counting methods to estimate dN and dS between two sequences, such as
those of Nei and Gojobori (1986), Li et al. (1985), Li (1993), and Pamilo and Bianchi
(1993) have been implemented in MEGA3 (Kumar et al., 2005). These and the likelihood
method for estimating dN and dS (Goldman and Yang, 1994) have been implemented in the
CODEML program in the PAML package (Yang, 1997). The latter program also implements
the ML models discussed in this chapter.
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Our understanding of the forces that have shaped the evolution of genome organisation is still
largely rudimentary. The process of genome evolution is, in some ways, different in kind from
those more typically studied by population and evolutionary geneticists. Firstly, forces of selection
that operate at levels different from the individual may be important, as in the spread of selfish
intragenomic parasites and in the impact of changes in genome organisation on the ability of
lineages to proliferate and diversify. Secondly, alternative genotypes are often not allelic, such that
the process of evolutionary change is not necessarily ended by the spread to fixation of a new
genetic type. However, some progress can be made in understanding genome evolution. A number
of the most controversial issues in genome evolution, such as the evolution of codon bias, the
antiquity of introns and the selfishness of mobile DNAs, are reviewed. In addition, the evolutionary
forces affecting gene number, linkage between genes, gene expression and the functional overlap
between gene products are considered.

13.1 INTRODUCTION

Evolutionary processes involve mutation, recombination, migration, selection and genetic
drift. These forces are typically thought sufficient to explain evolutionary change.
Examples of the success of this microevolutionary, population genetics approach to
evolutionary explanation include the many cases in which new advantageous alleles have
arisen by mutation and spread in populations subjected to new environmental pressures.
Indeed, it has become a byword for evolutionary explanation that, in order to explain a
feature of an organism, we have to show a way in which, in a polymorphic population,
a gene causing the feature would be expected to spread at the expense of its allele.
The classic case of the spread of the carbonaria form of the peppered moth, Biston
betularia – notwithstanding doubts about the evidential strength of the story (Majerus,
1998) – provides a case in point. Here the carbonaria allele spreads at the expense of the
pale allele in conditions of darkened tree trunks, hypothetically as a result of its increased
crypsis (Kettlewell, 1955).
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This paradigm of evolutionary explanation cannot realistically be applied to some issues
of genome structure, which are dealt with in this chapter. There are three reasons. The first
is that the levels of comparisons are different. We cannot discuss a situation in which the
presence or absence of introns in genes, for example, can be fully explained by a microevo-
lutionary process in which two alternative types of organisms exist, one with introns in all
its genes and the ability to process these from the transcripts, and another competing type
in which no introns are present. In long-term evolutionary processes such as this, we still
need to consider the mechanisms that may cause loss or gain of introns at the mutational
level and the microevolutionary forces acting, which allow new variants to spread in the
populations in which they first arise. In addition, however, we need to discuss whether the
groups of organisms which possess introns will, in the longer term, have a greater ability
to evolve to exploit new niches and opportunities. Selection, in other words, is partially
operating at the species level, or, indeed, at higher levels. This means that we have to
invoke selective forces operating over the longer timescale, involving the ability of species
to proliferate in numbers and diversify into successful families, orders, classes and phyla.

The second concept that is different from our paradigm of microevolution, is that in
the ordinary explanations of molecular evolutionary change we tend to imagine changes
in which a new mutation arises that may then spread, by genetic drift or by selection,
to fixation. Fixation signifies the end of the evolutionary process with respect to that
particular mutation. Molecular evolutionary change, therefore, only requires a combination
of a rate of mutation and probabilities of fixation of individual mutations.

For some aspects of genomic evolution, however, the concept of fixation, which itself
follows from the concept of allelism, does not apply. Processes by which the numbers
of transposable elements in the genome may be stabilised by a combination of forces
involving selection, drift and replicative transposition are discussed later. In these cases,
there can be an equilibrium copy number of a transposable element family, even when, as
in Drosophila, individual transposable element insertions are rarely fixed in populations.
So, the spread of a transposable element family may result in an equilibrium state in
which few sites are fixed, and in which, indeed, individual transposable element loci are
continually being created by transposition, and lost by a combination of deletion, selection
and drift.

Similarly, in considering questions such as the determination of the extent of codon
usage bias, an equilibrium is envisaged between mutation, selection and drift, in which
an equilibrium level of codon bias is maintained despite changes in the nucleotides at
individual codons.

This raises a related and more general question, which goes beyond molecular evolution,
extending to evolution in general, which is whether organisms can be considered to be
at equilibrium with respect to selectively important mutations. In other words, are typical
wild populations so well adapted to their environments that virtually no new mutations
would improve their fitness and only if the external environment changed would any
mutations become selectively advantageous? Alternatively, might wild populations, and
their interactions with their environments, typically be such that there are very many
adaptive mutations that would be possible, but which have either not arisen or which
have, by drift, failed to spread? While the truth must certainly fall somewhere between
these two extremes, Li (1997) makes a strong case that the latter situation will be typical
in evolution, and that, in this sense, the creation of new advantageous mutations is a
limiting factor in evolutionary change. However, in studies of the experimental evolution
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of micro-organisms in particular, the rate of morphological evolution in Escherichia
coli (Mongold and Lenski, 1996), and evolution of patterns of new gene expression
in Saccharomyces cerevisiae (Farea et al., 1999) when in new environments, implies
that very rapid change can arise through advantageous mutations despite the stability of
phenotypes in wild populations. Our view on this question influences the way we see
many aspects of the interaction between selection and genome variability, such as the
likely impacts, through hitch-hiking, of advantageous allelic substitutions.

The third aspect of genome evolution which does not correspond closely to our
paradigms of microevolutionary change is particularly relevant to repetitive DNA
sequences, and could be summarised as genomic conflicts arising from selfish genetic
elements (reviewed in Hurst and Schilthuizen, 1998). These include, e.g. medea (maternal
effect dominant embryonic arrest) mutations, seen in Tribolium, e.g. where heterozygous
mothers create eggs, among which only those that contain the medea gene itself are viable.
Here, if the half of the offspring of a heterozygous mother that inherit the gene benefit
from the death of their siblings, from reduced competition or from eating the sibs, a
medea gene that is initially rare, will spread deterministically (Wade and Beeman, 1994).

More common are selfish transposable elements. Since these typically have a mecha-
nism through which their copy number is increased in the act of transposition, there will
be, all else being equal, a rise in the number of elements in the genome from one gener-
ation to the next, a rise that appears to be countered by natural selection acting against
those individuals who have above-average numbers of copies of the elements. In other
words, there is a conflict of interest between the transposable element and the host, and,
in this regard, the elements can be regarded as parasites.

This concept of parasitic DNA sequences coexisting with their hosts makes it very
unlikely that any stable copy number equilibrium that we see will be stable in the face
of mutation. Host mutations which reduce the harmful effects of transposable elements,
possibly by reducing copy number, will be favoured, yet transposable element mutations
which increase copy number would, in many cases, be expected to spread, even if they
reduce host fitness. Thus, any equilibrium that we see will reflect only the genetic
properties of the sequences that currently coexist and will be unstable to mutational
change. Of course, for parasitic DNAs, as with all parasites, there is strong ascertainment
bias, in that we only see selfish DNAs that have succeeded and prevailed despite host
efforts to remove them.

13.2 THE STRUCTURE AND FUNCTION OF GENOMES

13.2.1 Genome Sequencing Projects

A feature of the progress in the biological sciences over the last decade has been the
availability of whole genome sequences. One very obvious conclusion from genome
projects has been that the differences in gene number between organisms are very
much less than the differences in DNA content. Thus, among eukaryotes, the largest
genomes seen are those of some flowering plants, which exceed 120 000 Mb in size,
while the smallest are less than 10 Mb (Brown, 1999). This range in genome size is not
matched by gene number, which seems to show little relationship with genome size among
eukaryotes. Thus, the estimated gene numbers for Arabidopsis thaliana and Homo sapiens
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are each around 25 000 genes (International Human Genome Sequencing Consortium,
2004; Arabidopsis Genome Initiative, 2000), notwithstanding the human genome, at
just over 3 Mb (in the haploid) being around 20 times larger than that of Arabidopsis.
Other animal genome sequencing projects include mouse (Mus musculus), rat (Rattus
norvegicus), chicken (Gallus gallus), dog (Canis familiaris), zebrafish (Danio rerio), two
species of pufferfish (Tetraodon nigroviridis and Takifugu rubripes), chimpanzee (Pan
troglodytes), rhesus macaque (Macaca mulatta), wallaby (Macropus eugenii ), sea squirt
(Ciona savignyi ), many species of Drosophila, the mosquito Anopheles gambiae, the
beetle Tribolium castaneum , the honey bee Apis mellifera , the nematode Caenorhabditis
elegans and the sea urchin Strongylocentrotus purpuratus (Gibson and Muse, 2004),
while plants also include rice (Oryza sativa), maize (Zea mays), plus Populus, Medicago,
Sorghum, Lycopersicon, Brassica and Solanum (Paterson, 2006).

More than 300 genomes of unicellular organisms have now been sequenced (TIGR,
2006), and these, in particular, have given rise to the science of comparative genomics.
A number of important questions have been addressed by the comparison of prokaryotic
genomes, in particular. Firstly, when orthologous genes are found in different sequenced
genomes, we can ask what can be said about the relative divergences, and thus rates of
evolution, of different genes. Do different types of genes evolve at systematically different
rates? Another issue is whether incongruencies in the estimated phylogenetic trees of
different genes suggest that horizontal gene transfer has taken place in the evolution of
these genomes.

Another very important question is whether the phenotypic and metabolic differences
between organisms result from differences in gene contents or differences in the details
of the functions of homologous genes. It is tempting to imagine that it is the differences
in gene content that underlie phenotypic differences between prokaryotic species, since a
catalogue of genes is available as a result of sequencing projects, and genes present in
one species but without orthologues in another can easily be identified. If two organisms
possess orthologues, the temptation is to assume that these genes are carrying out the same
function in the two organisms. By this hypothesis, the changes in amino acid sequence
are either neutral or are simply involved in adapting the protein product to the changed
physiological and metabolic requirements of a different species, and also perhaps to subtle
changes in the amino acid sequences of interacting proteins.

However, often a gene in one species might have two homologues in another, owing
to a duplication in the lineage separating the second species from the common ancestor.
The two genes in this second species may also have mutant phenotypes that are different
from each other. Certainly, as we see later (Section 13.3.5), the maintenance of a gene
duplication implies that the two genes have partially non-overlapping functions. One type
of explanation is that the function of a gene in the first species is in some way shared
between these two genes in the second, a concept referred to as subfunctionalisation
(Force et al., 1999; Lynch and Force, 2000). The prediction of this model would be that
the wild-type allele of the single gene in the first species could simultaneously rescue the
mutant phenotypes of both genes in the second. However, another, more radical idea is
that the two functions of the genes in the second species are not only different in kind from
each other, but also fundamentally different from the role of the gene in the first species.
In other words, conservation of sequence should not be regarded as always implying
conservation in function (e.g. conserved genes might still clearly encode serine/threonine
kinases, yet their targets could differ between species).
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13.2.2 The Origins and Functions of Introns

Spliceosomal introns are found in protein-coding genes in the majority of plants, animals
and fungi. However, they are absent from the genomes of bacteria, archaea and the most
primitive eukaryotes. Intron number is high in vertebrates and plants but lower in the genes
of Drosophila melanogaster and other invertebrates and introns are almost completely
absent from the genes of the yeast S. cerevisiae, although Schizosaccharomyces pombe
has considerably more introns (Jeffares et al., 2006). The debate about the origins and
causes of introns is a good illustration of the way in which considerations of the evolution
of genome structure depend partly on the advantageous nature of genomic change over
the long timescale.

There are two related issues that are important in the study of the evolution of introns.
The first is the historical question of when they were introduced into the genomes of
organisms (Roy and Gilbert, 2006). The introns-early view (Gilbert, 1987) is that the
intron–exon structure seen in the genomes of higher eukaryotes is a relic of the structure
of the first genes in the progenote (the first living thing, ancestral to all life today),
and what today are exons are the remains of what were shorter ancestral genes in the
progenote. The introns-late view suggests that spliceosomal introns are derived from type
II bacterial introns and have been being added to eukaryotic genomes, only, throughout
their evolution. There is now no doubt that there have been extensive intron gains and
losses in eukaryote genes. Rogozin et al. (2003), comparing conserved genes from species
with fully sequenced genomes, identified many introns conserved between genes from
organisms from different kingdoms, while there were very many intron gains and losses
also observed. The question, however, remains whether there were any introns present
in the progenote – the introns-early view does not require all introns currently seen to
be early genomic components, merely that some were. This creates an unsatisfactory
situation, in that an introns-early theory in which the proportion of the current introns
that are ancient might be very small does not make many very specific predictions about
today’s intron distribution. One prediction that can be arrived at is that, if ancient introns
separate exons that were the original functioning minigenes in the progenote, then ancient
exons should correspond to protein domains. In ancient proteins, exons of zero phase,
where the intron falls precisely between codons, indeed show the strongest correlation
with protein domains (de Souza et al., 1998).

The fundamental problem with the introns-early hypothesis is its requirement that the
ancestors of all extant prokaryotic groups would have had to lose all their introns, while
the lineage that was to give rise to eukaryotes would have had to retain them. Furthermore,
Palmer and Logsdon (1991) noted that, given the then-accepted phylogeny of the early
eukaryotes, genomes with introns fall into a rather restricted subgroup of the eukaryotic
tree. They suggested that, in order for introns to be present in the progenote, they must
have been lost independently in six basal eukaryote taxa, yet maintained in the equally
acellular eukaryotes that were our ancestors. However, genome-wide intron loss is a real
phenomenon. Parsimony arguments based on intron numbers in other species of fungi
indicate that intron losses, in the lineage leading to S. cerevisiae in particular, have been
extensive. Furthermore, there is evidence that the spliceosomal machinery was ancestrally
found in a wider group of eukaryotes than those that now possess introns, and probably
in the common ancestor of all extant eukaryotes (Collins and Penny, 2005; Lynch and
Richardson, 2002). There is a potential mechanism for intron loss in organisms such as
yeast, which contain retrotransposons encoding reverse transcriptase. It is the loss by
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gene conversion involving cDNAs as a template. The role of this process as a general
mechanism is supported by observations of the simultaneous loss of adjacent introns
(Frugoli et al., 1998).

A second issue, conflated with this first, is the mechanistic explanation for the gain
and loss of introns, both in terms of the molecular processes creating these changes in
the DNA and the population genetics and evolutionary processes determining whether
mutated genomes with intron gains or losses proliferate. The mechanism of intron loss by
gene conversion by reverse transcribed cDNAs, while elegant in conception, has not been
established to be involved in most intron losses. Intron gains, save for the special case of
reinsertion of an ancestral intron through gene conversion by a paralogue that has retained
it (Hankeln et al., 1997), require an insertion of DNA from a source somewhere else in
the genome. The obvious sources are transposable elements and other introns. Coghlan
and Wolfe (2004) examined introns gained in C. elegans and C. briggsae since their split
100 million years ago and showed that the sequences of some of these resembled those of
other introns. However, at least one case is known of intron gain by the introduction of
a mobile DNA (a short interspersed nuclear element (SINE) element in plants) (Iwamoto
et al., 1998). There remains a question whether the rate of DNA sequence evolution of
introns is sufficient to explain why introns do not typically have identifiable homologues
elsewhere in the genome, notwithstanding the continuing process of intron insertion,
which must require a donor element. (Even if this insertion was conservative in the initial
creation of the first intron-bearing allele, in that the donor DNA physically moved without
replication into the gene to form the intron, recombination during the slow spread of this
allele by drift would (unless the intron and its source were tightly physically linked) place
it in a genetic background with the donor DNA still present elsewhere in the genome.) The
genomic uniqueness of introns means that they cannot typically be derived from currently
active families of mobile DNAs. We can thus imagine a model in which, at some time in
the past, t million years ago, an intron was inserted into a gene, and the source of that
intron and the intron itself have both since evolved in a selectively unconstrained way,
with a rate of base substitution of x changes per base per million years. Under this model,
the expected base identity between the intron and its source is given (from the simplest
Jukes and Cantor (1969) one-parameter model) by Identity = 0.25+ 0.75e−8xt/3. Suppose
we believe that the identification of the source of a particular intron requires that it shares
at least 80 % sequence identity, this predicts, if we use an approximate rate of evolution,
x, of 10−8 changes per base per million years, that introns inserted in the last 11.65 million
years would have their sources identified (provided that the sources themselves had not
subsequently been lost from the genome). This would imply that a time-homogeneous
process of intron insertion where an intron was inserted somewhere in the genome at
least once every 5 million years or so would be likely to result in identifiable sources
of recently inserted introns if whole genome sequences are available. In Caenorhabditis
the rate of intron insertion per genome is estimated to be almost 1–2 per million years
(Coghlan and Wolfe, 2002).

What is the mechanism for a new allele with an intron gain or loss to spread through
the population? In principle, an allele with a newly inserted intron could be advantageous,
neutral or deleterious (possibly weakly so) relative to its progenitor. While arguments for
advantageous effects of introns have been suggested (see below) almost none of these
have an instantaneously beneficial effect. If so, the implication is that the initial spread
of introns must be by genetic drift, which can, in the case of small populations, also
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bring about the spread of weakly deleterious alleles. Indeed, Lynch (2006) argues that
the smaller effective population sizes of multicellular eukaryotes make introns effectively
neutral. He argues that, since genes can be inactivated by mutations in introns, there will
be selection against an allele bearing an intron relative to one lacking an intron, but the
strength of selection will be dependent on the mutation rate per base, multiplied by the
number of bases in the intron where mutational changes create inactivation. The product
of these two is likely to be greater than the reciprocal of the large effective population
size of unicellular organisms, causing effective selection against intron insertions in these
species, while selection of the same strength would be ineffective in the smaller effective
population sizes of multicellular organisms, and alleles with inserted additional introns
would be able to spread to fixation by genetic drift.

Four types of adaptive functions have been ascribed to introns. The first is that
introns play an important role in the process of nonsense-mediated decay. In nonsense-
mediated decay, transcripts with premature nonsense (stop) codons are eliminated prior to
translation, whether a stop codon is inherited by the organism, is the result of a somatic
mutation or represents a transcription error (Maquat, 2004). The effect is a diminution in
the amount of truncated and potentially harmful proteins produced. The obvious question
is how the cell recognises the difference between these premature stop codons and the
codon marking the end of the wild-type polypeptide. Proteins that attach to the junctions
between exons being spliced together in the nucleus allow this recognition, with the
prediction that introns may play a role in protection against the effects of these premature
stop codons (Lynch and Richardson, 2002).

The second advantage for introns is that downstream sequences controlling transcription
may evolve in introns, which may be more evolutionary labile than exons, since they
will have no constraint arising from a role encoding amino acids, and many examples
of intronic enhancers are now known. Thirdly, introns will allow alternative splicing
pathways, where functionally different proteins will be produced from the same gene (Xing
and Lee, 2006). This has probably been elucidated most clearly in the D. melanogaster
somatic sex determination pathway, in which a pathway of transcripts from the genes
sex-lethal, transformer, transformer 2 and doublesex are alternatively spliced to yield
functional female-specific proteins only in a female (XX) cellular environment (Cline,
1993). Finally, introns allow the creation of new genes by exon shuffling. This is where
ectopic intronic recombination brings about the creation of hybrid genes combining exons
from different sources, which then are spread to fixation by selection or drift. While genes
created by exon shuffling were first identified and are most familiar in the vertebrates,
they have also been seen in other metazoan groups. They are, however, apparently absent
from fungi, plants and protists (Patthy, 1999). Furthermore, many of the genes where exon
shuffling may be important are genes that allow animal multicellularity, suggesting that
exon shuffling may have played a significant role in its evolution. Note that it is implicit
in all these last three adaptive effects of introns that they are long-term advantages, which
would require introns to be present in genes long before these advantages could be felt.

A model for the proliferation of introns thus has two components, one of which
is the process for the insertion of introns into genes – this insertion process could
be seen as a process of selfish spread, with the individual intron insertions being
neutral or weakly deleterious (or weakly advantageous as a result of enhancement of
nonsense-mediated decay) and with numbers of introns being built up by this mutational
pressure. Subsequently, the long-term advantages would give benefit at higher levels of
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selection, in which intron-bearing lineages may be able to proliferate and diversify at the
expense of intronless competitor lineages. This kind of explanation is, however, still quite
unsatisfactory, in that there is no good quantitative theory of selective processes operating
at levels higher than the individual.

13.3 THE ORGANISATION OF GENOMES

13.3.1 The Relative Positions of Genes: Are They Adaptive?

Genome projects reveal the relative positions of genes. In prokaryotes, genes are organised
into operons, such that non-homologous genes involved in the same metabolic pathway
are adjacent and are transcribed into a polycistronic message, as a mechanism for
integrating their activities. In eukaryotes, functional clustering of this kind is not seen,
and genes involved in a shared metabolic pathway would typically be located on different
chromosomes. The overall picture is one in which the positions of genes cannot, by and
large, be predicted from their functions (save for a tendency for paralogues to cluster –
see Section 13.3.3 below – as a result of the mechanisms for their generation). Are gene
positions therefore random? The answer is ‘no’, and the causes of non-randomness can be
seen as a combination of a small contribution from functionality and a larger contribution
from the vagaries of evolutionary history.

The most straightforward way to imagine a chromosome is as a segregation device.
In this context, linkage between genes is an inevitable consequence of there being more
genes than chromosomes. An important issue, therefore, is whether the relative positions
of genes on chromosomes have an adaptive significance that follows from the levels of
recombination between them.

The fact that patterns of linkage between genes are adaptive has been a major theme
in the development of ecological and population genetics. In the Malaysian swallowtail
butterfly Papilio memnon , the females are mimetic, but are highly polymorphic, and
indeed each female morph mimics a different distasteful model butterfly. Clarke and
Sheppard (1968; 1969) carried out crosses to find out the pattern of inheritance of the
morphs, and found that, at first sight, the complex mimetic patterns were apparently
inherited as alleles at a single locus. However, exceptional butterflies were found that
combined features of the different mimetic patterns, and seemed to be poor mimics of
any of the model species. More detailed crosses revealed that these butterflies showing
scrambled mimetic patterns were recombinants. From these experiments, Clarke and
Sheppard concluded that at least five tightly linked genes were controlling the variation
between mimetic morphs, and that the genes were linked for adaptive reasons, in order to
maintain linkage disequilibrium between alleles at the loci, and thereby prevent poor
mimics from appearing by segregation. They called such a set of adaptively linked
polymorphic loci a supergene.

On the basis of these and earlier data, there was considerable discussion of the evolu-
tion of supergenes (see, e.g. Ford, 1964). Genes which carried out functionally related
tasks, such as the colour and banding loci of Cepaea nemoralis (Cain et al., 1960), were
hypothesised to physically translocate in the chromosomes, so as to occupy tightly linked
chromosomal positions. The results from genome projects, in general, strongly support
the maintenance of synteny over evolutionary time periods longer than the duration of
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individual functional polymorphisms, and show that genes do not, typically, move between
or within chromosomes for reasons connected with the establishment of linkage disequi-
librium between polymorphic, functionally distinct alleles. However, there is evidence
for some level of clustering on non-homologues in eukaryotic genomes. In S. cerevisiae,
essential genes show significant evidence of clustering (Pal and Hurst, 2003), as do genes
with similar expression patterns (Hurst et al., 2004). Most remarkably, S. cerevisiae’s
DAL cluster of six genes involved in allantoin degradation has been shown to have
been created by the movement of genes from previously unrelated locations (Wong and
Wolfe, 2005).

Clustering of coexpressed non-homologues is probably not generated as a mechanism
to ensure linkage disequilibrium, as was postulated in the original supergene concept.
Rather, the clustering is related to the control of gene expression. The locus control sites
of the globin gene clusters are just one example of a mechanism of gene expression control
having the result that adjacent genes need to remain so because their joint expression is
controlled by cis-acting sequences operating simultaneously on many linked genes. This
effect apparently operates through the modulation of chromatin structure (for a review of
the case of the β-globin gene cluster, see Li et al., 1999). However, the clustering in the
human genome of genes regulated by the aire transcription factor appears not to be the
result of an effect of chromatin remodelling (Johnnidis et al., 2005).

13.3.2 Functional Linkage Among Prokaryotes

In bacteria, operons form an example of phylogenetically unrelated genes brought together
as a means of coordinating their expression. Genome comparisons have shown that
operon structures can be evolutionarily unstable (Itoh et al., 1999). Genes themselves
may be added to bacterial genomes by horizontal transfer. Comparisons between the
E. coli genome and that of Salmonella enterica have revealed that between 8 and 18 %
of the E. coli sequences have been added to the genome by horizontal transfer following
the split between the two species (Lawrence and Ochman, 1998). Indeed, it has been
suggested that, with such high rates of gene transfer being observed between bacterial
cells, the operon itself might be thought of as the unit of function (Lawrence, 1997).
The clustering of genes in operons arises not solely from the need for simultaneous
expression of all the genes, but also from the ability of a transferred group of functionally
related genes to create a complete functional pathway when transformed into a naı̈ve
host. One example of collections of functionally related genes are the pathogenicity
islands (Hacker et al., 1997). These are groups of genes encoding pathways that allow
bacteria to infect specific eukaryotic hosts. Their horizontal transfer is revealed through
the sharing of recent ancestry for pathogenicity islands from distantly related bacterial
species (Lawrence, 1999). Indeed, such ‘genomic islands’ of genes of related function
are not solely related to pathogenicity, but to a range of ecological adaptations (Dobrindt
et al., 2004), and their rapid and promiscuous movement between bacterial lineages has
the effect that there can be very major differences in gene content between very closely
related genomes (Gogarten and Townsend, 2005).

13.3.3 Gene Clusters

Many vertebrate genes exist as linked clusters of homologous genes. The paradigm for
the explanation of this type of organisation is the human globin genes. Here, there are two
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clusters. The β-globin genes, consisting of those encoding the adult β and δ globins, the
foetal Gγ and Aγ globins and the embryonic ε globin, along with a ψβ pseudogene, are
clustered on chromosome 11. The θ globin (the function of which remains unknown
(Cooper et al., 2005)), together with the two adult α globins, and the embryonic ζ
globin, plus ψα and ψζ pseudogenes, are in the α-globin cluster on chromosome 16. All
genes and pseudogenes are in the same orientation within each cluster. In these α- and
β-globin clusters it is clear that the mechanism for the generation of the clusters and
thus families is local duplication by unequal crossing over. Unequal crossovers would
be expected to create deletions of genes as well as duplications. However, while the
deleted chromosome would be expected to have low fitness, at least in the homozygous
state, and thus would be eliminated by selection, a haplotype bearing a duplicated gene
might be neutral, and thus might (with a probability of 1/2N , where N is the population
size) spread to fixation by genetic drift. Under such a piecemeal process, one would
expect that numerous duplications might accumulate, in which case the duplicated gene
is, at least initially, truly redundant, in that silencing mutations in it would be neutral. A
pair of genes created following duplication have three possible fates. If one is not lost
by the reciprocal of the unequal recombination event that created the duplication, then
either they could evolve to be functionally different (either through subfunctionalisation
or neofunctionalisation, see Section 13.3.5), such that selection maintains each gene,
or one copy could be silenced to form a pseudogene. True redundancy of the genes
would not be stably maintained (see Section 13.3.6). A cycle of neutral duplication,
followed by silencing, followed by decay, would thus be expected, which would lead to
an increase in genome size with time. There are abundant examples of such clustered
gene families, many containing pseudogenes, in the chromosomes of humans and other
vertebrates. However, the extent to which pseudogenes arise and are maintained differs
greatly between genomes. Unlike vertebrates, in Drosophila pseudogenes are almost
unknown. The one case thought to be of a processed Adh pseudogene (i.e. a pseudogene
generated by the insertion of reverse transcribed mRNA) in the species D. teissieri and
D. yakuba (Jeffs and Ashburner, 1991) turned out to be a new functional gene, jingwei,
created by the insertion of an Adh cDNA into a coding sequence from another gene
(Long and Langley, 1993). The explanation for the absence of pseudogenes seems to
be that Drosophila shows a high rate of evolutionary loss of DNA for sequences that
are not actively maintained by selection (Petrov et al., 1996; Petrov and Hartl, 1998).
Indeed, almost the entire non-coding region of the Drosophila genome appears to be
under selective constraint (Halligan and Keightley, 2006). This purging of the Drosophila
genome of non-functional sequences may be the result of weak selection, which may be
effective in Drosophila’s large population size, whereas the same selection strength would
be ineffective in the smaller effective population sizes of vertebrates. Alternatively, the
selection coefficients associated with DNA loss in Drosophila may be larger than their
equivalents in other species, possibly reflecting selection for rapid genome division in
syncytial early embryonic development, when nuclear division occurs every 9 minutes
(Lawrence, 1992).

13.3.4 Integration of Genetic Functions

Systems biology seeks to interpret the effects of genes in terms of the complex networks
connecting genes and their products. Thus, there are networks showing causal links
between genes whose products influence the expression of other genes, and there are
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networks of interactions between protein molecules. Such networks can be described
in a Boolean way, concerned only with presence and the signs of interactions of the
genes, or in a more quantitative way, in which the strengths of the interactions are also
documented. The goal of such integrative approaches is ambitious – by understanding the
ways in which genes and their products interact, we should be able to predict the likely
phenotypes associated with mutational changes to genes, including gene losses.

Some have noted a scale-free property in a variety of networks in biology and elsewhere
(Barabasi and Albert, 1999). The scale-free property is that the probability that a node in
the network is connected to i other nodes is given by P(i) = ci−γ , with c and γ being
constants, such that a log–log plot of P(i) against i will give a straight line of slope
−γ . This property has been identified, e.g. in the network of protein–protein interactions
in yeast. It implies that networks grow by new nodes preferentially attaching themselves
to nodes that already have many connections. It has also been seen approximately in the
probability that a gene family has i members in a given genome (although here it has
the modified form or a Pareto function, where P(i) = c(a + i)−γ , where a is a further
constant). Karev et al. (2003; 2004) have shown that this family size distribution can be
the result of a linear model involving gene births by duplication, deaths and innovations
(changing the family to which a given gene belongs), although it is not clear whether
the timescale of gene family evolution has been sufficient for real families to reach these
models’ equilibrium states. The scale-free distribution identified in networks of protein
interaction also raises the question which modes of gene and thus protein duplication and
divergence in protein function would be expected to result in networks with this property
(Hughes and Friedman, 2005). Others have also approached gene family evolution from
the standpoint of stochastic birth–death models (e.g. Hahn et al., 2005; Csuros and Miklos,
2006, who also include horizontal gene transfer). It should also be said that many argue
that the scale-free property is not seen, in detail, in the networks available (Khanin and
Wit, 2006), also, it would not be expected to be seen in the sub-networks typically
examined, even if it held in networks as a whole (Stumpf et al., 2005).

13.3.5 Gene Duplications as Individual Genes or Whole Genome Duplications?

One of the great recent myths in molecular biology was the very high estimates of gene
number in vertebrates, with 80 000 being typical, which were current and in undergraduate
textbooks (e.g. Brown, 1999) around the start of this decade, prior to the completion of
sequencing projects. These were quoted by, among others, me in the first edition of
this book. These inaccurately high estimates arose from measurements of gene density
in well-studied regions of the genome, but gene density is itself highly heterogeneous
across genomes and well-studied regions were typically chosen because of the genes
that they contained, with the result that they constituted a biased sample of genomic
material. However, there is still no general agreement about the number of human genes,
with recent estimates being as low as 25 000 (International Human Genome Sequencing
Consortium, 2004). In fact, the identification of genes in eukaryotes is difficult, mainly
as a result of introns: while an open reading frame of the length of a typical polypeptide
is statistically highly unlikely, open reading frames the length of exons are not unlikely
enough to constitute a strong signal.

We have seen the way in which the globin genes have been created by a series of gene
duplications, which have also given rise, ultimately, to pseudogenes. Are gene families
therefore typically created by piecemeal gene addition (Lynch and Conery, 2000), or,
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rather, do they typically arise from genome-wide duplication events? A clear example
of genome doubling is that of the Xenopus laevis genome, which is derived from at
tetraploidisation event around 30 million years ago. Notwithstanding the presence of
effectively four copies of each gene in a diploid X. laevis, it appears that both loci of
each gene are under selective constraint, in that each shows a reduced rate of amino acid
sequence change relative to synonymous changes (Hughes and Hughes, 1993). An earlier
duplication has been detected in the budding yeast, S. cerevisiae (Wolfe and Shields,
1997) by comparing the S. cerevisiae genome to the related Kluyveromyces, which does
not share the duplication. Genome sequencing of Kluyveromyces waltii has confirmed this
interpretation (Kellis et al., 2004).

Ohno (1970) suggested that it is through gene duplication that new functions can be
developed. He further suggested that there could have been two rounds of tetraploidisation
in the origin of the vertebrates (the ‘2R’ hypothesis). While the apparent support for
this model that was derived from the apparent fourfold increase in gene number in
vertebrates relative to invertebrates proved to be illusory, there remains some evidence
to support this hypothesis. One source of support has been the Hox genes, clusters of
genes encoding transcription factors involved in antero-posterior differentiation, identified
initially in Drosophila, but since seen in all metazoan animals. These are found as a
single cluster in all invertebrates (albeit a broken one in Drosophila itself) but exist as
four clusters, now called A,B,C and D, in tetrapods. The suggestion has been made that
the first of the 2R duplications may have occurred initially prior to the divergence of the
two clades of agnathans (lampreys and hagfish) from the lineage leading to the jawed
vertebrates, followed by a second duplication in the gnathostomes (Holland et al., 1994).
The cephalochordate Branchiostoma, which is the closest relative to the vertebrates among
invertebrates, has a single Hox cluster (Garcia-Fernandez and Holland, 1994). However,
the situation is not the simple one of there always being four Hox clusters in jawed
vertebrates. While tetrapods have four Hox clusters, the zebrafish (D. rerio) has seven
clusters (Amores et al., 1998), the result of a teleost-specific genome duplication, with
one cluster (a D) having been subsequently lost. Puffer fish Spheroides nephelus and
T. rubripes also have seven clusters, but have lost a C cluster rather than a D (Amores
et al., 2004).

The agnathans form an important test of the ‘2R’ hypothesis, since, by this hypothesis,
they should either share all four of the gnathostome Hox clusters or have only two clusters.
The sea lamprey Petromyzon marinus (Force et al., 2002) has at least four Hox clusters,
but phylogenetic arguments suggest that the second duplication event was independent
of that in the gnathostomes, and it has even been suggested that the common ancestor
of lampreys and gnathostomes had a single Hox cluster (Fried et al., 2003). The hagfish
Eptatretus stoutii has many Hox genes in, apparently, at least four clusters, and possibly
up to seven, and orthologies with mammalian Hox clusters suggest that at least two Hox
clusters were present in the hagfish–gnathostome ancestor (Stadler et al., 2004).

If the 2R hypothesis is correct, there is a strong prediction that, if there is a gene
family found as a single gene in invertebrates and as four genes in tetrapods, then the
four tetrapod genes should form two clades, each of two genes, in the rooted phylogeny.
Bailey et al. (1997) looked at the Hox gene clusters in mammals and tried to estimate
the topology of the phylogeny linking clusters A, B, C and D. While this was impossible
with the Hox genes themselves, since too many individual genes had been lost from the
clusters since their creation, the phylogeny was estimated using collagen genes linked
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to each of the four clusters. An unrooted tree showed AD and BC clusters, but rooting
with an outgroup placed the root on the branch connecting cluster D to the other three
clusters. The implication is that, if the clusters had been derived from whole genome
duplications, there would have been three such duplications, not two. The first would
create the duplication distinguishing D from the ancestor of the other three clusters; the
second would distinguish the ancestor of A from the ancestor of B and C (the duplicate
of the D cluster created by this event must subsequently have been lost). Finally, a third
genome duplication would be required to create the B and C clusters, after which the
duplicates of the A and D clusters would again have to be lost. Alternatively, the clusters
could have duplicated individually rather than as parts of whole genome duplications.
This failure to find the topology expected from genome-wide duplications has turned out
to be typical of developmentally important genes in vertebrates (Hughes, 1999). Clearly
if there are multiple genome duplications followed by extensive loss of duplicates, the
theory of genome duplications no longer creates any prediction of the number of gene
family members expected to be seen or of the phylogeny connecting them (since that
will depend on the subsequent pattern of gene loss). Indeed, genome-wide duplications
followed by piecemeal and rapid loss of duplicated genes or clusters of genes will be
indistinguishable from piecemeal segmental duplications. Only if piecemeal segmental
losses affected different genomic regions in different lineages could the extent of the
duplicated region at the time the lineages split be reconstructed.

Thus, while the genome duplication in the teleosts is well established, the status of
the 2R hypothesis in early vertebrate ancestry is uncertain (Panopoulou and Poustka,
2005). There was undoubtedly a burst of gene duplication at the time suggested for the
genome duplications in the 2R hypothesis (Blomme et al., 2006). Furthermore, analysis of
chromosomal regions bearing genes duplicated prior to the human–Tetraodon split using
the ascidian Ciona’s genome as an outgroup reveals extensive regions showing fourfold
paralogy (Dehal and Boore, 2005).

Whether genes are duplicated singly or as part of the regional or genome duplication, the
possible fates, of subsequent loss, formation of a pseudogene or continued functionality
are mentioned above (Section 13.3.4). There has been considerable recent debate (Force
et al., 1999; Lynch and Force, 2000) as to whether the acquisition of new functions
for genes (neofunctionalisation) is preceded by, or indeed replaced by, a process of
subfunctionalisation. In the subfunctionalisation model, it is imagined that a gene might
have a series of sequences controlling the function of the gene, which can be partitioned
into separate subfunctions. The most obvious way that this could come about is for
there to be separate enhancer sequences, typically 5′ to the start of transcription,
controlling the expression of the coding sequence of a gene at different times or in
different tissues. In the simplest case, imagine that there are two enhancer sequences,
A and B, which independently bring about the gene’s expression in different tissues.
Following duplication, which yields two gene copies, I and II, the possibility exists
that a mutation arises which inactivates subfunction A in gene copy I. Such a mutation
would be effectively neutral and could spread to fixation. A further mutation, causing
the inactivation of subfunction B in gene copy I or indeed a mutation inactivating
the coding sequence in gene copy I would also be able to spread neutrally. However,
another neutral possibility would be a mutation inactivating subfunction B in gene
copy II. Spread of such a variant would leave the genes subfunctionalised, with copy
I carrying out subfunction B and copy II carrying out subfunction A. Calculations
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and simulations (Lynch and Force, 2000; Force et al., 2005) reveal that, provided the
effective population size is considerably less than the gene’s rate of inactivating mutations
(whether they are in the coding sequence or subfunction enhancers), the probability
of subfunctionalisation can be reasonably high (particularly when the mutation rate to
subfunction loss is large relative to the mutation rate for inactivation of the whole
gene). Once the subfunctions of the genes are being carried out by different duplicates,
advantageous mutations in the coding sequences of the two genes may spread, adapting
the genes for their now subtly different roles. The key element of this model, named DDC
for ‘duplication–degeneration–complementation’, is that the molecular events that lead to
the sharing of the function of the gene between the two copies are not driven to fixation by
natural selection. The prediction is thus that the DDC model’s effects should be sensitive
to effective population sizes, particularly when these approximate the reciprocal of the
rates of inactivating mutations (which might be around 10−6 − 10−5 per generation).

The DDC model has been of considerable interest to those studying the changes to gene
functions following gene duplication events. In particular, the events following the genome
duplication event in the teleosts have been examined for evidence of subfunctionalisation.
Prince and Pickett (2002) showed that the Hoxb1a and Hoxb1b genes of the zebrafish
(D. rerio) collectively have an expression pattern that duplicates that of the ancestor –
inferred from the expression pattern in mouse – and that, of two sequences controlling the
ancestral gene’s expression, a autoregulatory sequence 5′ to the gene and a retinoic acid
response element 3′ to the coding sequence, the Hoxb1a and Hoxb1b genes have retained
the former and the latter, respectively. The whole genome duplication of the teleosts will
supply a rich database for the identification of further cases of subfunctionalisation (Hurley
et al., 2005). Is this sharing of functions, expected from the DDC model, typical of the
outcomes following this genome duplication? Chiu et al. (2002) examined controlling
sequences in the HoxA cluster, and identified those conserved between humans and
the horn shark (Heterodontus francisci ). Do these controlling sequences get partitioned
between the two zebrafish HoxA clusters? It was found that while there was very
high conservation of cluster organisation between shark and human, the duplicated
zebrafish clusters were far more diverged in structure. The human–shark-conserved
putative cis-acting elements showed no clear pattern of reciprocal partitioning between
the zebrafish clusters. Similarly, in duplicated genes of Arabidopsis, some pairs show
signs of subfunctionalisation and others of neofunctionalisation only (Duarte et al., 2006).
Rates of amino acid evolution in gene duplicates are often, and unsurprisingly, very
unequal following duplication, a result consistent with either adaptive evolution or reduced
constraint in one of the pair (Conant and Wagner, 2003).

The DDC model requires not only that an ancestral gene’s function is shared among
the duplicates, but that the events that create this functional partitioning are themselves
‘degeneration’-neutral events spreading to fixation. However, an outcome in which
functions are shared could equally come about through changes that are all individually
adaptive. As we have seen above, the DDC functional sharing, itself hypothesised to
result in gene duplicate retention, should be more probable in organisms with small
population sizes. Yet Shiu et al. (2006) demonstrate that the mouse genome has retained
more gene duplicates than the human genome. If one makes the fairly strong assumption
that the effective size of the lineage leading to the mouse has typically been larger than
the effective size of populations leading from the human–mouse common ancestor to
humans, then this result is more consistent with selection leading to the retention of
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duplicated genes, rather than neutrally spreading degenerative mutations followed by
selection. However, an effect of this kind could equally have been created by an enhanced
rate of gene duplication in the mouse lineage. However, more genes already duplicated
prior to the human–mouse split have been retained in the mouse lineage, an observation
which could not be explained in this way.

The teleosts are the most speciose vertebrate group, and as the presence of the extra
genes might be seen as creating opportunities for adaptive change, it is tempting to explain
the very large number of teleost species as a consequence of their genome duplication.
In particular, it has been suggested that the Hox cluster duplications may be correlated
with a burst of adaptive radiation in vertebrates (Wagner et al., 2003). Crow and Wagner
(2005) suggest that the effect of the teleost genome duplication on the generation of
the high species number seen in extant teleosts came through teleosts having a slower
rate of extinction than other fish groups. However, the finding that teleosts show this
(or any other) property of evolutionary persistence, diversity or adaptability does not
demonstrate that the genome duplications in any way caused or facilitated this evolutionary
property.

13.3.6 Apparent Genetic Redundancy

One consequence of major gene duplications is that there may be more overlap between
functions of genes in duplicated genomes. The results of mouse knockout experiments
have often shown that the phenotypes of homozygous null mutations, of genes thought
to be important through studies of the biochemical roles of their products, are slight or
undetectable (Brookfield, 1997). But is there true redundancy between duplicated genes,
in which the selective advantage or disadvantage of loss of a second gene is zero, given
that the first gene is present? We have seen that, immediately after a gene duplication
event that has spread to fixation by genetic drift, there will be true redundancy, in this
sense. We can define partial redundancy as situations in which the fitness loss associated
with simultaneous mutations in genes A and B is much greater than the sum of the fitness
losses associated with mutations in A and B individually. However, provided the fitness
effects of mutation in genes A and B are individually greater than the reciprocal of the
effective population size, selection (albeit of a weak and subtle kind) can maintain both
genes. In budding yeast, S. cerevisiae, the selective impact of gene deletions is less for
genes that possess paralogues elsewhere in the genome, but this effect gradually attenuates
as the divergence in sequence between the copies increases (Gu et al., 2003).

One method that could be suggested for the creation of a subtle selective advantage
required to maintain partial redundancy in genes A and B, deletions in which may not
be individually associated with a visible phenotype, is that the possession of two genes
may create phenotypic robustness, not just to mutation but to the effects of environmental
changes (Kitano, 2004). While having extra gene copies might be expected to buffer
an organism against the harmful effects of recessive somatic mutations, it is not clear
that somatic mutations are a major force in determining organismal phenotypes. Does a
developmental process with multiple genetic pathways being involved in the production
of a particular phenotypic trait make the probability of production of the trait (and
concomitant Darwinian fitness) higher in an unpredictable environment than would a
developmental process involving a single pathway? In my view, a positive and general
answer to this question cannot be derived from first principles and is an empirical matter
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only. At present, we do not know whether, in general, partial genetic redundancy increases
robustness to environmental insults in the way that it does (by definition) to genetic lesions.

One major problem is the identification of the evolutionarily realistic environment in
which to carry out tests for the effects of mutants. Deletion strains of S. cerevisiae have
been created in which, in individual strains, every open reading frame in the genome
has been inactivated (Winzeler et al., 1999). Many of these knockouts show no effect on
growth rate in a range of laboratory environments, but the conclusion that this represents
true genetic redundancy cannot be drawn, since the fitness measurement is imprecise
and the appropriate environment might not have been used (Giaever et al., 2002). In
fact, systematic characterisation of the visible phenotype of these deletion strains reveals
morphological abnormalities even in deletion strains lacking a growth phenotype (Ohya
et al., 2005).

13.4 POPULATION GENETICS AND THE GENOME

13.4.1 The Impact of Chromosomal Position on Population Genetic Variability

Does the position of genes have any effect on their evolution? Comparison of the level
of genetic polymorphism between Drosophila genes has shown that there is a strong
correlation between the rate of recombination per unit DNA length and the level of DNA
sequence polymorphism, as measured, for example by the gene diversity, π (Begun and
Aquadro, 1992; Charlesworth and Wright, 2001). Since there is much smaller apparent
effect of the local recombination rate on the divergence between Drosophila species,
the correlation observed with diversity cannot be completely explained by a directly
mutagenic effect of recombination. Rather, it must result from alleles sampled from low-
recombination regions having recent shared descent. A number of processes have been
suggested to explain how this could have come about.

One of these is a selective sweep. If a new advantageous mutation arises in a non-
recombining region, it will arise initially in a particular haplotype and, in spreading, it
will take with it this haplotype – extending over a length of chromosome which will be
longer the lower is the effective recombination rate (Barton, 2000). This idea has been
used to identify the selective sweeps in progress in the human genome, where rapidly
spreading, new advantageous alleles generate ‘extended haplotype homozygosity’ (Sabeti
et al., 2002) – the sign of a haplotype which, while at high frequency, shows strong linkage
disequilibrium extending into flanking markers – a pattern indicative of the recent rapid
spread of the allele from a single progenitor. While sweeps undoubtedly happen, their
impact is conditional upon a particular model for adaptive change, in which the rate-
limiting step in adaptive allelic substitution is the generation of new mutations. However,
another view of adaptive change is of weakly deleterious mutations being generated
constantly and being present in an equilibrium population in a mutation–selection balance.
An environmental change then changes the sign of the selection coefficient, creating
an advantage for some formerly deleterious, phenotypically equivalent mutations. The
advantageous alleles spread but, since they exist at the start of the sweep in a variety of
different genetic backgrounds, the selective ‘sweep’ will create less reduction in diversity
than would a more classical example of a sweep, starting from a unique mutation. Sweeps
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of this kind have been called soft sweeps (Hermisson and Pennings, 2005; Pennings and
Hermisson, 2006).

While selective sweeps are an effect on diversity resulting from an advantageous
mutation, deleterious mutations will also tend to reduce diversity in low-recombination
regions, in diverse ways. The first mechanism is ‘background’ selection (Charlesworth,
1996). Here mutations that are disadvantageous (and with selection coefficients greater
than 1/Ne) will eliminate chromosomes from the population, reducing the effective
population size for the chromosomes that remain, and thus reducing neutral variability,
and, as with selective sweeps, the size of the reduction generated increases as the local
recombination rate drops. Even if the strength of the selection effect is weak, s < 1/Ne, if
there are very many linked sites subject to selection, the neutral diversity will be reduced
(McVean and Charlesworth, 2000) through what has been called the Hill–Robertson effect
(Hill and Robertson, 1966). Finally, the process of Muller’s ratchet (in which, in the
absence of recombination, the occasional random irreplaceable loss from the population
of the chromosomal class with the smallest number of deleterious mutations will steadily
erode fitness) will also cause a reduction in the standing level of variability relative to a
neutral population (Gordo et al., 2002).

13.4.2 Codon Usage Bias

The genetic code is degenerate and thus allows different codons to be used to specify
the same amino acid. However, not all codons for any given amino acid are used equally
frequently, and since the initial finding of such biased codon usage, controversy has
existed as to whether the bias is the result of mutation bias or of selection. There are many
reasons why selection might be expected to generate a biased set of codons. Those that
have been most favoured have suggested that codons are preferred by natural selection
if they are complementary to anticodons on abundant tRNA species in the cell. This
result was first demonstrated by Ikemura (1981; 1982) for strongly expressed genes in
E. coli and S. cerevisiae. In each species, genes that were weakly expressed were not
found to show such strong bias. The bias in strongly expressed genes could potentially
arise from selection for increased translation rate or increased accuracy (Akashi, 1994).
While the correlation between preferred codons and tRNA abundances has not been
directly demonstrated in other species, in D. melanogaster strongly expressed genes again
appear to show stronger codon bias than do weakly expressed genes (Shields et al., 1988).
However, the strong bias in codon usage seen in E. coli and yeast is not ubiquitous in
bacterial genomes, being seen in only around 70 % of genomes examined (Sharp et al.,
2005). These genomes with codon bias seem to be those that have been selected for rapid
growth in optimal conditions and are also characterised by high numbers of ribosomal
RNA and transfer RNA genes. Biased codon usage also arises from deviations from a
50 % G+ C ratio, as in the actinomycete Streptomyces coelicolor , for example, with 72 %
C–G base pairs (Bentley et al., 2002). Mammalian genomes contain isochores, which are
blocks of DNAs of divergent C + G content (Bernardi et al., 1985), the origin of which
may be through mutational rather than selective causes.

For weakly expressed genes that fail to show codon bias, the explanation for their
lack of bias is not selection to maintain particular non-optimal codons, since the rate
of sequence evolution is high at these sites (Sharp and Li, 1989), rather, it appears that
any selection operating is too weak to affect the choice of codons. For selection to be
effectively neutral, the selection coefficient, s, has to be less than the reciprocal of the
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effective population size, Ne (Bulmer, 1991). For stronger selection, the degree of codon
bias depends on the product sNe. This product can be estimated from the frequencies
of preferred and unpreferred bases at polymorphic silent sites. In Drosophila simulans ,
it is estimated that sNe is around 1, on average, implying that very weak selection is
operating at these sites in this species (Akashi, 1999). If selection in D. simulans is only
just strong enough to have a detectable effect, one would expect that in D. melanogaster,
whose lower levels of all types of polymorphism when compared to D. simulans imply a
smaller historical effective population size, the selection acting on silent sites might not be
enough to maintain codon bias. Indeed, the codon bias in D. melanogaster is substantially
reduced relative to D. simulans, and the majority of substitutions in the D. melanogaster
lineage have been away from preferred codons. It appears that D. melanogaster has not
reached equilibrium between mutation, selection and drift in its codon usage patterns
(Akashi, 1996).

The evidence for selection on codon bias in mammals is less clear cut, but a variety
of analyses have pointed to weak selection affecting a minority of synonymous codon
variants, even in humans, where the effective population size has recently been particularly
small (Chamary et al., 2006; Comeron, 2006).

13.4.3 Effective Population Size

One aspect of population genetics that is of great relevance to the evolution of genome
structure is that the impact of purifying selection depends on the strength of selection
relative to the effective population size. Specifically, the probability of spread of a
mutation with selective advantage s (in the heterozygous state) is given by

P = 1− exp(−2sNe/N)

1− exp(−4Nes)
,

where N and Ne represent the census population size and the effective population
size, respectively (Kimura, 1962). This relationship is important in genome evolution,
as we have already seen in the determination of codon usage bias, in the likelihood
of subfunctionalisation and in the likelihood that weakly deleterious intron insertions
might spread to fixation. Indeed, Lynch (2006) has identified the consequences of the
low effective population sizes of multicellular organisms (in particular, the low effective
size relative to the reciprocal of mutation rates per generation) as being the cause of
the majority of the differences in genome structure between multicellular organisms
and micro-organisms. Such a view identifies the fixation process for changes to genome
structure as typically being genetic drift acting on effectively neutral variants. Otto and
Yong (2002), however, stress that changes to genome structure – in particular, gene
duplicates, arise initially in single individuals, and their probability of spread will be
greatly enhanced if they bring an instant selective benefit to their bearers (which could
occur by a variety of mechanisms).

Effective population sizes may change with time. For humans, e.g. while the current
census size is around 7× 109, the diversity of the human population is more congruent
with an effective size of 10 000. Here the appropriate effective size is the harmonic
mean effective size over the timescale during which population genetic diversity has been
generated (which is of the order of the last 4Ne generations). However, in explaining
genome structure in terms of effective population sizes, the appropriate time window
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over which Ne should be averaged is very much longer, which means that present census
sizes of species with contrasting genome structures may be a very poor guide to their
evolutionarily realistic Nes in terms of their genome organisation.

13.5 MOBILE DNAs

13.5.1 Repetitive Sequences

Repetitive sequences can be crudely divided into two broad classes on the basis of their
pattern of repetition. Some sequences are found in tandem arrays, while others are found
as single copies interspersed with unrelated sequences. The tandemly arrayed sequences
can be apparently functionless, such as the microsatellite, minisatellite or longer satellite
arrays, or functional, such as the ribosomal RNA genes and the histone genes. Interspersed
repeats are shown, by their interspersion pattern itself, to be either currently active mobile
DNAs or the descendants of sequences that have been mobile in the past. The mode
of transposition is used to distinguish between what are named Class I elements, or
retrotransposons, which move via an RNA intermediate, and Class II elements, which
transpose as DNA. Both the RNA and DNA routes give opportunities for transposable
elements to increase in the genome as a result of transposition (Brookfield, 1995). This
ability to overreplicate has led to the widespread view that these elements are parasitic
or selfish DNAs, maintaining their abundance in the genome through a balance between
replicative transposition and the combined effects of deletion and of selection against their
bearers.

In humans, the interspersed repetitive DNA sequences are dominated by Class I
sequences called long interspersed nuclear element (LINE ) and SINE sequences, of which
there are very many copies. The long-term existence of these sequences at their current
chromosomal locations means that they have almost all been inactivated, either at the
moment they were inserted, or subsequently, by what has been called the pseudogene effect
(McAllister and Werren, 1997). (Selection will not act to maintain sequences required for
transposability in a sequence copy at a given genomic location, and individual copies
will decay, eliminating their ability to act as donors for new insertions elsewhere in the
genome.) Selection for active subfamilies operates through the ability of these families
to replicate preferentially through the generation of daughter elements. Once inactivated,
sequences independently (save for gene conversion) accumulate copy-specific patterns of
base changes, and, from their divergence from the most closely related sequences, it is
possible to identify when these sequences were inserted into their current chromosomal
locations. This therefore allows the reconstruction of the history of the active elements of
a mobile sequence family, as the ‘extinct’ subfamilies still exist in the genome.

The selfish nature of mobile DNAs does not preclude their evolving to serve roles that
are functional for the host, either through ‘domestication’ or through their abilities as
generators of diversity. Very many examples of elements serving adaptive roles are now
known, and the number of examples can only increase as our knowledge grows, without
threatening the paradigm that it is the capacity for selfish spread of elements through
overreplication in transposition that explains the abundance of the majority of elements
(Brookfield, 2005).
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13.5.2 Selfish Transposable Elements and Sex

The concept of transposable elements as purely selfish DNA sequences faces major
problems in the case of bacterial and other clonal populations. In clonally reproducing
organisms, any individuals lacking selfish DNA sequences will inexorably outcompete
those possessing the sequences, and replicative transposition of selfish elements in lineages
possessing them will merely hasten this outcome. It is interesting to note that the purely
asexual Bdelloid rotifers lack actively mobile retrotransposing DNAs (Arkhipova and
Meselson, 2000). The transition to asexuality in this group may have been successful
only because the asexual founders lacked active retroelements at the transition to clonality
(Arkhipova and Meselson, 2005).

If selfish spread of mobile DNAs is impossible in clonal populations and if the mobile
DNAs lack selectable trans-acting functions (as do bacterial insertion sequences), the
obvious way in which these sequences could be maintained is by selection at the level of
the host for their role as mutators. In clonal populations evolving adaptively, the frequency
of alleles increasing the mutation rate is expected to be higher than in sexual populations,
since mutator alleles are spread by hitch-hiking with the advantageous alleles that they
generate (Taddei et al., 1997). By a corresponding mechanism involving linkage disequi-
librium, Edwards and Brookfield (2003) have produced a model for the selective mainte-
nance of mobile DNAs through their ability to create null mutations which can create an
environment-dependent selective advantage but can subsequently revert. Null mutations
creating selective advantages were demonstrated in E. coli in a companion paper (Edwards
et al., 2002). Similarly, in experimental populations of E. coli, allowed to adapt to labora-
tory culture for more than 20 000 generations (Schneider and Lenski, 2004), many of the
advantageous mutations were generated by insertion sequences (Schneider et al., 2000).

13.5.3 Copy Number Control

The selfish spread of elements would be expected to continue indefinitely unless the
elements themselves evolve a self-limitation in transposition or unless a balance with
selection is generated. Examples of self-limitation are known, as in the restriction of
the D. melanogaster I element’s movements by homology-dependent gene silencing
(Jensen et al., 1999). However, Charlesworth and Langley (1986) showed that the area of
parameter space over which harmful transposable elements would be expected to evolve
self-limitation is extremely restricted. However, it has been shown (Brookfield, 1991;
1996) that, if the harmful effects of mobile DNAs arise through the process of transposition
itself (rather than through the actions of elements after they have inserted in the genome),
the evolution of self-limited transposition is more likely. One way in which copy number
could be stabilised is through ectopic recombination between element copies from diverse
locations (Langley et al., 1988). Such a process is likely to be most effective in organisms
such as Drosophila, where there is very high variation between individuals in the positions
of their mobile DNAs, such that, in a typical meiosis, an element will find itself without
a partner on the homologue.

13.5.4 Phylogenies of Transposable Elements

As there are many copies of a given mobile sequence family in the genome, it is possible to
estimate the phylogeny of copies of a repetitive sequence family from the DNA sequence
differences between copies. It is also possible to examine members of the same family
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from other species and draw a tree including copies from both species. If the time to
common ancestry of elements within each of two species is more recent than is the time
to common ancestry of sequences from the two species, the elements will be seen to
show ‘concerted evolution’, where species-specific substitutions will distinguish between
the collections of elements from the two species (Figure 13.1a). One way in which
variation between mobile DNAs from different species has been analysed is through
the creation of consensus sequences for the sequences within each host species and
comparison between these consensus sequences being used to examine between-species
evolution of the family. However, there are problems with such an approach, illustrated in
Figure 13.1. Figure 13.1(a) illustrates a tree showing three mobile DNAs sampled from
each of two species, A and B, with t1, t2 and t3 representing times in generation between
bifurcations in the ancestry of the tree. Here there is a clear split in the tree separating the
sequences from species A and those from species B. This is the type of tree expected if the
time to common ancestry of sequences in species A and the time to common ancestry of
sequences in species B were each more recent than the split between the two species, and
thus concerted evolution will be seen. The time to common ancestry of any A sequence
with any B sequence is (t1+ t2+ t3). The mean time to common ancestry for any two
A sequences (or any two B sequences) is t1+ 2t2/3. In the absence of back or recurrent
mutation (i.e. assuming an infinite sites model) the consensus sequence for species A
would correspond to that ancestral to the most closely related pair of A sequences, and
the consensus sequence of species A and the consensus of species B would be separated by
2(t2+ t3) generations of evolution. Figure 13.1(b) represents a different situation, where
the first split in the tree pre-dated the split of species A and B. However, the representation
of the two clades defined by this initial split is different in the two species (or at least in
the small samples drawn from the two species). The result is that now, while the difference
between the consensus sequence is still created by 2(t2 + t3) generations of evolution, A
sequences share common ancestry, on average, t1+ 2(t2+ t3)/3 generations ago, while
A and B sequences share ancestry, on average, t1+ t2+ 5t3/9 generations ago. The
same difference in sequence between the consensuses masks a much-reduced ratio of
the between- to within-species diversity. Figure 13.1(c) shows a case where the mean
time to common ancestry within elements within species is t1+ t2+ 2t3/3 generations,
while that between species is t1+ (7t2+ 5t3)/9 generations. Here there is no reason to
suspect any difference in transposable element populations between the species, and the
mean time to common ancestry within species in this tree is greater (for any t1, t2 and
t3 values) than that between species, and yet there is a difference between the species’
consensus sequences corresponding to 2t3 generations of evolution.

What determines the time to common ancestry of copies of a repetitive sequence family
within a given genome? In D. melanogaster, many studies have shown that transposable
element site frequencies approximately follow the infinite alleles distribution (e.g. see
Biemont et al., 1994). A model that would, at least approximately, generate such a
distribution would be one in which duplicative transpositions into a very large number of
potential target sites could occur, with a process of genetic drift with weak selection
generating the infinite alleles distribution at equilibrium. Such a model was initially
explored by Langley et al. (1983). Suppose that we have an effective population size
of Ne and that elements transpose duplicatively at a rate of ν per element per generation.
It is assumed that ν represents the rate of insertion into neutral sites, and that at equilibrium
this also represents the rate of deletion of the elements. If the number of available



428 J.F.Y. BROOKFIELD

t3

t2

t1

A

t3

t2

t1

t3

t2

BBBAA

A BBABA

A BABAB

(a)

(b)

(c)

t1

Figure 13.1 Three possible phylogenetic relationships between six transposable elements sampled
from two species, A and B. t1, t2 and t3 represent the times to bifurcations in the tree. The extent
of divergence of elements from the two species diminishes in going from (a) to (c). For each of
the trees, (a), (b) and (c), it is possible to calculate the mean time to shared ancestry for sequences
from A (owing to symmetry the mean time for sequences from B will be the same). It is also
possible to calculate the mean time to common ancestry for pairs of sequences, one from A and
one from B. The evolutionary time separating the consensus sequences can also be calculated as a
function of t2 and t3 in each case.

sites for transposable element insertion is very high, the equivalence of the rates of
element insertion and deletion will have the consequence that the frequency distribution
of transposable elements will follow an infinite allele distribution with parameter 4Neν.

This model was extended by the author (Brookfield, 1986) to the expected time to
common ancestry of randomly chosen transposable elements from different genomic
locations, on the basis of an assumption of functional equivalence (as measured by
transposition probability) of all elements at all sites. This model showed that the expected
time in generations to common ancestry, t , was approximately given by

t ≈ (n(1+ 4Nev))

2ν
, (13.1)

where n is the number of element copies per haploid genome. Similar results were found
by others (Slatkin, 1985; Ohta, 1985).

This formula gives intuitively reasonable time estimates for the Drosophila transposable
elements, but is clearly inappropriate for mobile DNAs from, e.g. vertebrates. One reason
for this is that there will be very many element insertions which are inactive and the rate
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of turnover of the active subset of elements would be greater than that predicted by this
formula. Indeed, if only a proportion A of new insertions are active, the corresponding
formula to (13.1) is

t ≈ (2(1− A)+ An(1+ 4Nev))

2ν
. (13.2)

The pseudogene effect leads to a different kind of model, in which the inacti-
vation process can affect all element copies equally, rather than being restricted to
elements inactivated at the moment of their insertion (so-called dead-on-arrival elements).
A pseudogene effect further increases the rate of turnover of active elements and relates
the rate of turnover of active elements to the proportion of the elements in a gene family
that are active. Suppose now that there is a rate of inactivation of κ per element per
generation and a rate of deletion of d per element per generation and, thus, a rate of
replicative transposition into neutral sites of (κ + d) per active element per generation at
equilibrium. The expected time to common ancestry of two randomly chosen copies is

t ≈ 3

(2 d)
+ na(1+ 4Neκ)

2κ
, (13.3)

where na is the number of active elements in the genome (with na >> 1) and κ >> d .
However, these considerations of expected times to common ancestry mask another

important aspect of transposable element phylogenies, which is the expected phylogeny
of transposable element copies sampled from a genome. It had been noted that, for both
LINEs and SINEs in mammals, the phylogeny resembles that expected under a ‘master
gene’ model (Deininger et al., 1992; Clough et al., 1996) in which only a single element
serves as the template for all transpositions. The result is a phylogeny in which all the
bifurcations occur in a single branch.

Thus, we (Brookfield and Johnson, 2006) considered the expected phylogeny of mobile
DNA sequences in an equilibrium model, where we imagine that the sample of copies is
taken of members of a mobile sequence family from the genome, and we are interested
in the phylogenetic tree connecting these sequences back to their common ancestor. We
imagine a mobile sequence family, which was in equilibrium between three processes,
replicative transposition of active elements, inactivation of elements (which may occur at
the moment of transposition or result from inactivating mutations in situ – the pseudogene
effect) and deletion of elements. The relative rates of these processes define the expected
numbers of copies of active and of inactive elements of this family in the genome, and
this population of elements can then be seen as a population from which our sample and
their ancestors can be traced following a coalescent approach. In large gene families the
majority of elements will be inactive, and so we imagine the coalescent process for a
sample of inactive elements. In the ancestry of our sample, tracking backwards in the
standard approach of the coalescent, two types of events can occur – activations and
coalescences. In the simplest model, where inactivation occurs via a pseudogene effect
and never at the moment of transposition itself, coalescence in the ancestry of the sample
can only occur between active lineages. Thus, in tracing the sample back to the common
ancestor, there will be activation events, and coalescences. The expected shape of the
phylogeny thus depends very greatly on the relative size of the two variables determining
the probability of activation of a lineage, d (which is, at equilibrium, equal to the rate
of deletion), and the probability of coalescence between two active lineages, which we
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call T . If d >> T , the ancestors rapidly activate and slowly coalesce, which means that at
the time of coalescences, there will be very many active lineages and the phylogeny will
be complex (with coalescence events affecting many branches). Alternatively, if T >> d ,
coalescence follows rapidly for any pair of ancestral lineages that have activated, with
the result that most coalescences involve a single branch. The tree is now as expected
if there is a single, active master gene. The relative sizes of T and d are also related to
the proportion of elements in the equilibrium population that are active. In the simplest
case of pseudogene effect inactivations, having T > d and, thus, a master gene–like tree,
is associated with an equilibrium where the number of active elements is less than the
square root of the total number.

13.5.5 Functional Variation between Element Copies

In addition to the presence of active and inactive elements and the impact of their presence
on the expected element phylogeny, another important issue here is the possibility of
advantageous element copies arising in a mobile sequence family. The advantage for
such variants would typically be an increased rate of replicative transposition. With a
large number of active elements per genome, n, and 2N genomes in the host population,
one might expect new, advantaged variants to arise frequently in this population of
2Nn elements. A new variant of this kind would be expected to sweep through the
sequence family in a two-speed process, initially replacing all active elements and
subsequently replacing inactive elements much more slowly. However, the probability
of spread of a new variant might be low (as a result of a low intrinsic rate of replicative
transposition). Imagine that the rate of transposition per active copy is 10−3, e.g. and
that there is equilibrium between transposition and the combined effects of inactivation
and deletion, such that an active element’s probability of loss or inactivation is the same
as its probability of copying itself. Now, imagine a more active variant, which has a
probability of transposition raised by 10 % of its former value. Such a variant, instead of
having, on average, one active descendant after one generation, would have, on average,
1.0001 descendants, and the probability that this variant would spread as a result of its
advantage would only be approximately 0.0002. The important point is that the variant
will arise initially in a single sequence copy, and its probability of spreading, rather than
being lost by drift, may be very small.

13.6 CONCLUSIONS

This necessarily qualitative outline of some of the issues of genome evolution raises
some questions concerning the forces that have shaped genome structures. Some of these
processes, such as those concerned with mobile genetic elements and biases in codon
usage, have long been subject to approaches involving quantitative modelling. Others,
such as the effects of gene and genome duplications of gene families and the control
of gene expression and its evolution, have mainly been dealt with in a descriptive and
qualitative way and are only now being subjected to a quantitative approach. A major
problem is whether, if we regard the process of genome duplication, for example, as an
example of a Poisson process with an underlying expected rate, we will ever have enough
data from the rare events which have actually taken place in evolving lineages to calcu-
late what the underlying rate is likely to be. For many of these issues, the fundamental
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problem is whether we can consider the state of the genome as being an equilibrium state
in which a balance has been reached between dynamical evolutionary processes acting
on the genome or whether the parameters of these underlying processes are themselves
changing at such a high rate, relative to the rate of the individual events through which
individual genomes change, that attempts to model equilibrium states on the basis of fixed
parameters will be futile.
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Mathematical models are indispensable tools for characterizing the process of protein evolution,
many aspects of which are not easily amenable to direct experimentation. Ideally, a model of
protein evolution would provide a good description of the data and would simultaneously be
parameterized in a manner that facilitates biological insight. Probabilistic descriptions of protein
change are especially valuable because they engender a sound basis for likelihood-based statistical
inference, and can provide the foundation for local and global alignment, phylogeny reconstruction,
and prediction of protein structure and function. In this chapter, models of protein evolution are
reviewed. Their strengths and limitations are emphasized.

14.1 INTRODUCTION

The relationship between genotype and phenotype is central to biology. Proteins are at the
heart of this relationship at its fundamental molecular level: the DNA coding for a protein
is the genotype whereas a protein’s structure and its pattern of expression are phenotype.
Evidence that molecular biologists and biochemists have recognized the key role of
proteins in this relationship can be found, for example, in the amount of money being
spent to deduce all the protein-coding sequences (the proteome) for numerous species,
the tremendous enthusiasm surrounding the development of microarray technologies for
measuring gene expression, and the copious intellectual capital being invested in the
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development of methods for determining protein tertiary structure from protein sequence
data.

The relationship between genotype and phenotype is surely as important to the study
of evolution as it is to the rest of biology. Largely because of the complexity of the
genotype–phenotype relationship, the process of protein evolution remains poorly under-
stood. Many probabilistic models of protein evolution have been proposed and explored,
but a model that satisfactorily combines mutation, genetic drift, and natural selection is
not yet on the horizon. Nevertheless, existing models provide a statistical foundation for
characterizing the process of evolution and for inferring evolutionary history. While these
models still have obvious flaws, there have been substantial improvements during the last
two decades.

A heightened interest in the ability of probabilistic models to extract biological
information has accompanied the improvements. Much recent interest is a result of the
emerging field of comparative genomics. In addition to the desire to understand protein
evolution on a genomic scale, there are also tasks in comparative genomics for which
understanding evolution is not the goal but for which evolution should be carefully treated
because common ancestry is responsible for correlations among genomes. The extent and
nature of the correlation structure is determined by the phylogeny that relates species and
the processes by which genomes have evolved on these phylogenies. Correlation between
proteins due to common ancestry is the implicit underlying basis of established techniques
of predicting protein function via sequence database searches, global sequence alignment,
and homology modeling to predict protein structure. Common ancestry also plays a key
role in promising techniques for predicting the phenotypic severity of new mutations and
disease contributions of single nucleotide polymorphisms (Ng and Henikoff, 2001; 2002;
Stone and Sidow, 2005). All of these techniques have the potential to be improved via
better treatments of protein evolution.

In this chapter, we describe some of the important features of existing models of protein
evolution. As well as focusing on widely applied models, we also highlight some of the
most promising research directions. Molecular evolution and comparative genomics are
no longer fields where the ability to collect data is the main obstacle to progress. Instead,
we think that progress in these fields is mainly limited by a lack of adequate tools for
extracting information from existing data and that improved evolutionary models will
inevitably lead to better tools.

14.2 EMPIRICALLY DERIVED MODELS OF AMINO ACID
REPLACEMENT

14.2.1 The Dayhoff and Eck Model

Dayhoff and Eck (1968; see also Dayhoff et al., 1972; 1978) introduced the most
influential model of protein evolution. It describes the process of amino acid replacement
in terms of a continuous-time Markov process on a phylogenetic tree, and is based upon
the assumption that all sites in a protein sequence evolve independently and identically.
The independence assumption is convenient because it allows the likelihood of an aligned
set of protein sequences to be written as a product of likelihoods for individual alignment
columns (i.e. site likelihoods).
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Site likelihoods can be calculated via the pruning algorithm of (Felsenstein, 1981),
mentioned in Chapter 15 Huelsenbeck and Bollback of this book. We do not repeat the
algorithm here, but we emphasize that the pruning algorithm requires the calculation
of transition probabilities. In molecular phylogenetics, a transition probability is the
probability of a possible state at the end of a branch on a phylogenetic tree conditional
upon the state at the beginning of the branch and the amount of evolution represented by
the branch (i.e. the branch length), as well as upon values of other model parameters. For
the Dayhoff and Eck model there are 20 possible states, each representing one of the 20
amino acids.

The parameters of the Dayhoff and Eck model are the instantaneous rates αij of
replacement of amino acid type i by amino acid type j . Computation of transition
probabilities from underlying instantaneous replacement rates of a Markov process is
a standard procedure, described for example by Liò and Goldman (1998). The rates in
Dayhoff and Eck’s formulation are constrained so that the model is time-reversible. In
other words,

πiαij = πjαji for all i and j , (14.1)

where the equilibrium frequency of each amino acid type k is denoted πk and is uniquely
determined by the matrix of rates (αij ). Informally, the time-reversibility property means
that, without additional information, there is no way to determine which of two sequences
is the ancestral protein and which is the descendant protein.

In fact, the Dayhoff and Eck model is the most general 20-state time-reversible
homogeneous Markov model. Although four-state models of nucleotide substitution are
computationally simpler, it is interesting to note that the most general four-state time-
reversible model (see Tavaré, 1986; Yang, 1994a), and even the simplest four-state model
(Jukes and Cantor, 1969), were not studied until after the Dayhoff and Eck model was
proposed.

For models of nucleotide substitution, all parameters are typically estimated from the
aligned data set of interest. The number of parameters defining a 20-state general time-
reversible (GTR) rate matrix is 209, greatly exceeding the nine parameters needed to
specify a four-state GTR rate matrix. As a consequence, estimates of αij for a 20-state
rate matrix are unlikely to be reliable unless the amount of data being analyzed is large, and
estimates of relative rates of replacement for Dayhoff–Eck-type approaches are usually
obtained prior to analysis of the aligned data set of interest. These estimates are generally
based upon many data sets of aligned protein sequences and are fixed when subsequent
data sets of interest are studied.

Dayhoff and Eck estimated the instantaneous rates αij implicitly, via a clever technique
that relied upon comparing closely related protein sequences to derive transition proba-
bility matrices. When protein sequences are closely related, they will be identical at the
majority of positions. At the few positions where the sequences differ, the cause of the
difference will usually be a single amino acid replacement event because the chance that
two or more replacement events occurred at a position will be negligible. By comparing
closely related sequences and neglecting the possibility of multiple amino acid replace-
ments at positions, Dayhoff and Eck were able to infer implicitly the relative rates of
the different kinds of amino acid replacements. Different methods for recovering the
instantaneous rates αij from results such as those presented by Dayhoff and Eck (1968)
were subsequently proposed, and are reviewed by Kosiol and Goldman (2005). Goldman
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et al.(1998) gave an alternative procedure to estimate rates αij directly from amino acid
replacement counts.

Improved techniques for estimating the αij parameters are now available (Adachi and
Hasegawa, 1996; Yang et al., 1998; Adachi et al., 2000; Müller and Vingron, 2000;
Whelan and Goldman, 2001; Holmes and Rubin, 2002; Müller et al., 2002), and we refer
the reader to the original Dayhoff and Eck publication (1968; see also Dayhoff et al., 1972;
1978; Kosiol and Goldman, 2005) for other details about their estimation procedure. For
an insightful analysis with the original Dayhoff data, see Kishino et al. (1990).

Subsequent to the Dayhoff and Eck (1968) publication, Dayhoff and collaborators
published updated results as additional protein sequence data became available (Dayhoff
et al., 1972; 1978). Conventionally, references to the ‘Dayhoff model’ do not simply mean
the 20-state GTR model of amino acid replacement but instead are usually intended to
convey both the Dayhoff and Eck (1968) parameterization of the 20-state GTR model and
specific estimates of the αij parameters obtained from the results of Dayhoff et al. (1978).

14.2.2 Descendants of the Dayhoff Model

The widely used ‘Jones-Taylor-Thornton’ or ‘JTT’ model of amino acid replacement
(Jones et al., 1992b) employs the same parameterization as did (Dayhoff and Eck, 1968)
but refers to estimates of αij that were derived from a much larger data set. Gonnet
et al.(1992) also published an updated set of αij estimates. More recently, it has become
computationally feasible to obtain maximum likelihood estimates of all parameters in
a 20-state general time-reversible model (see Adachi and Hasegawa, 1996; Yang et al.,
1998; Adachi et al., 2000; Whelan and Goldman, 2001; Klosterman et al., 2006). Whelan
and Goldman (2001) used such a technique to generate the increasingly popular WAG
model, based (like the models of Dayhoff and Eck, (1968), Dayhoff et al.(1972; 1978) and
Jones et al.(1992b)) on data sets containing globular proteins encoded by nuclear DNA.

Adachi and Hasegawa (1996) derived amino acid replacement rate estimates from a data
set consisting of all the mitochondrial proteins from each of 20 different vertebrate species.
They detected some substantial differences between their estimates and those derived from
nuclear-encoded proteins. Very similar findings were made by Yang et al.(1998), who
studied mammalian mitochondrial proteins. A possible source of this variation is that
mitochondrially-encoded proteins tend to be integral membrane proteins whereas nuclear-
encoded proteins are often not, placing different functional constraints on the proteins and
their evolution. It is reasonable to expect that the intracellular environment of a protein
and its amino acid replacement process are correlated (see also Jones et al., 1994), and
it has been known for some time that mitochondrially encoded proteins exhibit unusual
patterns of nucleotide sequence evolution (e.g. Brown et al., 1982). Parameter estimates
for protein evolution models derived from chloroplast genes and retroviral polymerase
proteins were obtained by Adachi et al.(2000) and Dimmic et al.(2002), respectively.

14.3 AMINO ACID COMPOSITION

Amino acid replacements tend to involve chemically similar types of amino acids. There
have been numerous attempts to classify amino acids on the basis of their physicochemical
properties, and physicochemical distances among amino acid types have been proposed
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(e.g. Grantham, 1974; Taylor and Jones, 1993). However, these physicochemical distances
between amino acid types are unlikely to directly reflect the propensity for amino
acid replacements to occur. Studies have been made relating amino acid properties to
evolutionary patterns (e.g. Xia and Li, 1998), but these have not led to evolutionary
models. The Dayhoff–Eck approach is appealing because estimates of relative amino
acid replacement rates are empirically derived.

However, although the Dayhoff–Eck approach reflects the tendency for amino acid
replacements to involve similar amino acid types, it describes evolution of the ‘average
site’ in the ‘average protein’. In reality, there is variability of amino acid replacement
patterns among proteins. Certain proteins might be proline-rich, others might be leucine-
rich, and still others might possess their own distinct patterns of amino acid composition.
Dayhoff-type models can be modified to allow variation in composition of amino acids
among proteins. Let us denote by π̂i and α̂ij the amino acid frequencies and replacement
rates estimated with a Dayhoff-type approach (i.e. from a database of aligned protein
sequences under the assumption that all families in the database have common composition
and replacement rates), and by π ′i and α′ij the corresponding values we will choose to use
in the analysis of a particular protein. Then, to allow variation of amino acid composition
among proteins, the π ′i can be treated as parameters specific to each protein of interest.
This is achieved by forcing the α′ij for i �= j to obey

α′ij =
π ′j
π̂j
α̂ij ,

(Cao et al., 1994). The resulting replacement process defined by the α′ij combines empir-
ical information derived from databases (the α̂ij /π̂j , also known as exchangeabilities –
(Whelan and Goldman, 2001)) with the amino acid frequencies for the particular protein
under study (π ′j ), now estimated from that data set. Note that this approach maintains
time reversibility (14.1). The benefit of this hybrid parameterization can be a sizeable
improvement in model fit (Cao et al., 1994). It is also attractive because it maintains
the biologically realistic property of allowing amino acid replacements to occur among
chemically similar amino acids, and for the pragmatic reason that estimation of the 20
amino acid frequencies π ′j from individual protein alignments is computationally tractable
and seems statistically robust. Goldman and Whelan (2002) have obtained even greater
improvements in model fit with a more general parameterization that makes the α′ij a
function of α̂ij , the frequencies of the amino acid being replaced (π ′i and π̂i), and the
frequencies of the replacement amino acid (π ′j and π̂j ). The use of these parameterizations
has thus been both to increase our understanding of the importance of particular amino
acid residues in different proteins and to improve robustness of phylogenetic inferences.

14.4 HETEROGENEITY OF REPLACEMENT RATES AMONG SITES

Not only there is a variability of amino acid replacement among proteins but also there
is variability of amino acid replacement rates among sites within a single protein. Yang
(1994b) introduced a practical method for incorporating heterogeneity of evolutionary
rates among sites into models of nucleotide or amino acid substitution (see Chapter 15).



444 J.L. THORNE AND N. GOLDMAN

Yang’s innovation was to discretize a continuous gamma distribution of rates among
sites into a relatively small number C of categories. Evaluation of a likelihood with
Yang’s discrete gamma treatment of variation of rates among sites requires an amount
of computation that is approximately a factor C more than would be needed if all sites
were assumed to share identical rates. Yang (1994b) demonstrated that discretization of a
gamma distribution into a relatively small number of rate categories (e.g. five or six) often
fits data about as well as more general (and more computationally difficult) approaches. It
is now convincingly established that, for the majority of proteins, allowing heterogeneity
of nucleotide substitution rates over sites is a great improvement over models that assume
homogeneity of evolutionary rate, a fact partly attributable to the triplet coding nature
of DNA and to the structure of the genetic code. It is also now known that amino acid
replacement models often fit data much better when allowance is made for rate variation
among sites (e.g. Yang et al., 1998; Goldman and Whelan, 2002). This has confirmed that
rate variation over protein sites is a widespread evolutionary phenomenon, that should be
considered in all phylogenetic analyses.

14.5 PROTEIN STRUCTURAL ENVIRONMENTS

Although allowing for particular proteins’ distinct amino acid compositions and among-
site rate variation provides a large improvement in fits of models of protein evolution,
the models described so far shed little light on the cause of the variation. It is clear, from
considering protein structure and function, that at least some of the variability will be
associated with the structural environment of a site. For example, consider the solvent
accessibility of a site. A site on the surface of a globular protein will be exposed to
solvent, typically water. Sites with high solvent accessibility therefore tend to be occupied
by hydrophilic amino acids. In contrast, sites buried in the interior of a protein are less
accessible to solvent and are apt to be occupied by hydrophobic amino acids. Further,
exposed sites tend to evolve about twice as fast on average as buried sites (Goldman et al.,
1998). This is most likely because residues at buried sites interact with many neighboring
residues; an amino acid replacement at an exposed surface site is less likely to disrupt
the position of other protein residues than is a residue at a buried site.

One of the most striking findings in the study of protein structure has been that proteins’
secondary and tertiary structure usually changes very slowly during evolution. In cases
where homologous proteins are known to perform the same biological functions, it is
often the case that their structures are very similar even when the sequences that code for
them are quite diverged. In other words, protein sequence evolution tends in some sense to
occur at a higher rate than the evolution of protein structure (e.g. Chothia and Lesk, 1986;
Russell et al., 1997). This tendency can be exploited by models of amino acid replacement.
Because structure changes more slowly than does sequence, a group of homologous
protein sequences is likely to share a common underlying structure. Homologous amino
acid residues (i.e. those that are in the same alignment column) are likely to be in a
similar structural environment. For example, if a residue from one protein is part of an
α helix, then other sequences’ residues in the same alignment column are also likely
to be in an α helix. If the tertiary structure of one protein sequence in an alignment
has been experimentally determined, then each alignment column can be assigned a
structural environment and thus a separate 20-state GTR model can be estimated for
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each environment (e.g. Overington et al., 1990; Lüthy et al., 1991; Topham et al., 1993;
Wako and Blundell, 1994a; 1994b; Koshi and Goldstein, 1995; 1996; Thorne et al., 1996;
Goldman et al., 1998).

Further, the structural environment at one site in a protein is not independent of the
environment at other sites. For example, if site i is in an α-helix environment, then site
i + 1 is also probably in the α helix. It is possible to use this knowledge to further improve
models of protein evolution. One approach has been the modeling of the organization of
structural environments along a protein sequence as a first-order Markov chain. In protein
sequence analysis, this approach was first used to predict secondary structure from single
protein sequences (Asai et al., 1993; Stultz et al., 1993). The basis for the prediction was
the tendency for certain kinds of amino acids to be found in certain secondary structure
environments. Such models are referred to as hidden Markov models (HMMs) because the
secondary structure underlying the sequence is not directly observed. Instead, it is ‘hidden’
but can be estimated on the basis of the amino acids that encode the protein sequence. A
first-order Markov chain for the organization of protein structure along a sequence is not
ideal because in reality protein structure is three dimensional rather than linear, and the
structural environment of a site may be strongly influenced by other sites that are nearby
in the tertiary structure but are far separated along the linear protein sequence. However,
a first-order Markov model for structural organization is computationally tractable and is
clearly superior to assuming independence of structural environments among sites.

The HMM for organization of structural environment can be combined with the models
of amino acid replacement for each structural environment to generate an integrated model
of protein sequence evolution. This has been done for the study of globular proteins
(Thorne et al., 1996; Goldman et al., 1998), transmembrane proteins (Liò and Goldman,
1999), and mitochondrial proteins (Liò and Goldman, 2002). With this approach, each
category k of structural environment has its own equilibrium amino acid frequencies (πki )
and its own rates of amino acid replacement (αkij ).

The algorithms used to calculate the likelihood with a HMM of protein structure were
first applied to molecular sequence data by Churchill (1989) and are given in detail by
Thorne et al.(1996). Felsenstein’s (1981) pruning algorithm is used to compute likelihoods
conditional on the unobserved states of the HMM, and the HMM’s transition probabilities
are incorporated to deal with uncertainty about which structure state each site belongs.
The likelihood calculations now have a computational burden that is approximately a
factor S more than without the HMM, where S is the number of distinct structure states
considered, and this remains fast enough to permit maximum likelihood phylogenetic
inference.

Algorithms for predicting the underlying protein secondary structure with a HMM also
exist (Churchill, 1989; Asai et al., 1993; Stultz et al., 1993; Goldman et al., 1996) but
these will not be detailed here. Predictions of secondary structure that are based upon
combined explicit treatment of protein structural organization and protein evolution have
several potential advantages over methods for protein secondary structure prediction that
are not based upon an explicit evolutionary model (Goldman et al., 1996). Although
aligned sequences are likely to share a common underlying secondary structure, these
sequences are not independent realizations of some process. Instead, aligned sequences
are related via an evolutionary tree. It is the phylogeny relating the sequences that is
responsible for the correlation structure among sequences (see Felsenstein, 1985; Harvey
and Pagel, 1991). Treatment of sequences as independent realizations of some process or
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any other ad hoc weighting of sequences may be less desirable than explicit treatment of
correlation structure.

Studies using these methods have shown the importance of structural environments to
protein evolution. Different secondary structure elements do exhibit typical and distinct
patterns of evolution, presumably related to different residues’ propensities to adopt
the local structures and biochemical properties required of protein functions. It is also
clear that taking a phylogenetic approach could be of advantage to other sequence
analyses aimed at investigating protein function, most obviously the simple goal of protein
structure prediction which remains difficult even after many years of intensive research
and competition (e.g. Kryshtafovych et al., 2005).

Although they change slowly, secondary structure and solvent accessibility do evolve.
Kawabata and Nishikawa (2000) have empirically estimated rates of change among
secondary structure categories and solvent accessibility environments. This is a chal-
lenging endeavor, particularly because protein alignment becomes difficult when proteins
being compared are so diverged as to have moderately different structures. Kawabata
and Nishikawa base a procedure for recognizing distantly related protein homologs on
their model of secondary structure and solvent accessibility change and they show that
this procedure performs well. The future development of these or other ideas (e.g. see
Grishin, 1997) into a complete model of protein sequence and structure evolution would
be of great value.

14.6 VARIATION OF PREFERRED RESIDUES AMONG SITES

Some, but clearly not all, variation of amino acid composition and replacement rates
among sites can be explained by consideration of structural environments among sites.
The specific biochemical function of a protein, and even of its individual sites, mean
that the evolution of every site of every protein takes place under different constraints,
potentially leading to different evolutionary patterns. Bruno (1996) (also see Halpern and
Bruno, 1998) made the first progress in this respect, devising a model that allowed each
site in a protein to have its own equilibrium frequencies. We denote the frequency of
amino acid type i at site s by πi,s . This highly flexible approach suffers from potential
overparameterization problems because the 20 amino acid frequencies per site add 19
degrees of freedom per site to the model. To remedy the overparameterization problems,
it is not sufficient to restrict analyses to data sets consisting of a large number of
sequences because, if sequences in a data set are closely related, then the sequences
will be highly correlated with one another and good estimates of πi,s may still not be
obtained confidently. Therefore, the approach of Bruno should work best when a data set
contains a large number of highly diverged sequences.

Although this approach of allowing variation of ‘preferred’ residues among sites
in a model of protein evolution is not computationally convenient, it is biologically
attractive. The Dayhoff-type models allow the tendency of amino acid replacements to
involve physicochemically similar amino acid types to be reflected in estimates of the
replacement rates αij . On the other hand, the tendency for amino acid replacements to
involve chemically similar amino acids may instead be largely attributable to a tendency
for the values of πi,s to be positively correlated for physicochemically similar amino
acids. These two explanations for the tendency of amino acid replacements to involve
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physicochemically similar amino acids are not mutually exclusive, but little is known
about their relative importance.

By adopting a Bayesian perspective, Lartillot and Philippe (2004) largely overcome the
overparameterization concerns associated with variation of ‘preferred’ amino acid types
among sites. They assume each site belongs to some amino acid replacement process
category, but that the category is not directly observed. Different replacement categories
share a common set of amino acid exchangeability parameters taken from existing standard
models, but have different equilibrium amino acid frequencies. The number of categories
and their frequencies are jointly determined by a Dirichlet process prior distribution, and
the set of 20 different amino acid frequencies for a given category has a Dirichlet prior.
This Bayesian approach, with prior distributions for the number of replacement categories,
the frequencies of the categories, and the amino acid composition of each category, enables
Lartillot and Philippe to greatly reduce the potential for overparameterization that occurs
otherwise. They convincingly demonstrate that their Bayesian scheme is a substantial
improvement over models that do not permit variation of preferred residues among sites.

Holmes and Rubin (2002) also investigate models that assume each site of a protein
belongs to an amino acid replacement category that is not directly observed. Their inno-
vative expectation-maximization (EM) algorithm yields maximum likelihood estimates
of amino acid replacement rates for each replacement category. Although their frequen-
tist procedure may be subject to potential overparameterization problems and requires the
number of replacement categories to be prespecified, it has the advantage of not assuming
that a particular protein site belongs to the same replacement process call for all of its
evolutionary history. Instead, the EM algorithm can simultaneously estimate the rate at
which sites switch among the replacement processes being modeled.

This impressive flexibility of the Holmes and Rubin procedure has the potential to
assist in identifying biologically interesting cases where the evolutionary behavior of a
site changes on a phylogeny. Building upon a practical adaptation by Tuffley and Steel
(1998) of ideas first described by Fitch and colleagues (e.g. Fitch and Markowitz, 1970;
Fitch, 1971), several groups have shown that evolutionary patterns at sites or codons
change over time and that these changes in pattern should not be ignored by evolutionary
models (e.g. Galtier, 2001; Huelsenbeck, 2002; Guindon et al., 2004; Philippe et al.,
2005; Inagaki et al., 2004). This characteristic of protein evolution, somewhat related
to Fitch’s (1971) idea of concomitantly variable codons or ‘covarions’ and also known
as heterotachy (Lopez et al., 2002), may be attributable to changes in protein structural
constraints over long evolutionary times. Absence of heterotachy in evolutionary models
has been implicated in failures of phylogenetic inference methods, particularly in cases
of long-branch attraction (e.g. Inagaki et al., 2004; Delsuc et al., 2005).

14.7 MODELS WITH A PHYSICOCHEMICAL BASIS

An alternative approach to statistical models that implicitly reflect the tendency for amino
acid replacements to involve physicochemically similar amino acid types is for this
tendency to be reflected via the explicit inclusion of physicochemical properties into a
model. Koshi et al.(1999) chose to quantify the physicochemical attributes of amino acid
types according to hydrophobicity and bulk–properties that are expected to be of great
importance to protein structure. Their approach assumes that each site in a protein belongs
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to exactly one of several classes, with each class k occurring with probability γk . The
probability πki of amino acid i in class k is πki = eFk(i)/

∑
j e
Fk(j), where Fk(i) is a measure

of the suitability of amino acid type i in structural environment k. Koshi et al.(1999)
investigated the use of suitability functions Fk(i) that depended on the hydrophobicity Hi
and the bulk Bi of the amino acids in both linear (Fk(i) = βHk Hi + βBk Bi) and quadratic
(Fk(i) = βHk (Hi −Hk

0 )
2 + βBk (Bi − Bk0 )2) forms. Here, βHk , βBk , Hk

0 , and Bk0 represent a
relatively small number of additional free parameters (two or four per site class), making
this approach statistically attractive in comparison to the 20-state GTR model, which
assumes all sites experience identical evolutionary processes and, even so, requires 209
parameters to be estimated. The instantaneous rates of amino acid replacement for the
Koshi et al.(1999) model are then defined as:

αkij =
{
γk if Fk(j) > Fk(i)
γke

Fk(j)−Fk(i) if Fk(j) ≤ Fk(i).
This approach has not been widely pursued but it can yield substantially better fits to

data than Dayhoff-type models (Koshi et al., 1999). It will be interesting to determine
the reason or reasons for these good fits. Aside from the obvious conclusion that the
suitability of amino acid types at certain sites in a protein is indeed well described by the
hydrophobicity and bulk preferences, another possible reason for the good performance of
this model is more mundane. This parameterization scheme is very flexible, e.g. allowing
for variation of preferred residue types among sites, and some of the improvement
provided by this model may be attributable simply to the parametric forms for αkij . This
could be addressed by evaluating variants of the model with the formulae for the Fk(i)
modified by assigning to each amino acid type i the hydrophobicity and bulk of a randomly
selected amino acid type j . If permutation or randomization experiments of this sort tend
to result in fits comparable to those found by Koshi et al.(1999), then it would be the
form of the αkij rather than the actual hydrophobicity and bulk attributes themselves that
are responsible for the good fit.

14.8 CODON-BASED MODELS

In reality, evolution occurs at the DNA level, with protein change being a consequence
of phenomena such as nucleotide sequence mutation, genetic drift, and natural selection.
It therefore makes sense to model protein evolution in terms of codons rather than amino
acid types (Schöniger et al., 1990; Goldman and Yang, 1994; Muse and Gaut, 1994).
Codon-based models are typically framed in terms of the 61 codons that specify amino
acids in common genetic codes. The three nucleotide triplets that represent stop codons
are not allowed by most codon-based models.

Existing codon-based models follow largely the same approach as the Dayhoff model for
amino acids. Codon replacements are modeled as a Markov process, with the instantaneous
rate (αij ) of change from codon i to codon j usually being defined as the product
αij = πj sij where πj is the frequency of codon j . The exchangeabilities sij are symmetric
(sij = sji), ensuring reversibility (14.1), and are themselves often products of parameters
representing phenomena such as transition–transversion bias and the strength of selection
acting on each mutation.
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Codon-based models have become quite refined. For instance, Pedersen et al.(1998)
designed a model to reflect the fact that CpG dinucleotide levels are depressed
in lentiviral genes. Codon-based models are also well suited for testing hypotheses
regarding natural selection. Through their parameterization of the exchangeabilities
sij , they provide a basis for estimating synonymous and nonsynonymous nucleotide
substitution rates (Muse, 1996; Yang and Nielsen, 2000) and have received consid-
erable attention for their potential ability to detect both diversifying natural selection
(e.g. Nielsen and Yang, 1998; Yang et al., 2000; Massingham and Goldman, 2005;
see Chapter 12 (Yang), this volume) and purifying natural selection (Massingham and
Goldman, 2005).

Halpern and Bruno (1998) have made some progress reconciling codon-based substi-
tution rate matrices with molecular population genetics, explaining variation of preferred
amino acid types among sites in terms of selective forces operating at the sites. While their
approach may be overly rich in parameters and based upon restrictive assumptions about
natural selection, they have taken an important step toward narrowing the gulf between
population genetics and the models employed in phylogenetics.

Widely used codon-based models have some limitations. For instance, most assume
that all mutational events result in exactly one nucleotide position changing identity.
Spontaneous mutations often result in changes that are more complicated than a simple
point mutation or than an insertion or deletion (see, e.g. Ripley, 1999). It seems
reasonable that some of these more complicated changes are fixed in evolution. There
is evidence that a moderate number of evolutionary changes are the result of mutational
events that simultaneously affect two consecutive positions in a sequence (Averof et al.,
2000). Evolutionary models that allow for these changes now exist (Whelan and Goldman,
2004), and should be the focus of further research in the near future.

14.9 DEPENDENCE AMONG POSITIONS: SIMULATION

A limitation of widely used models of protein evolution is the assumption that the
evolution of one position is independent of the sequence at other positions. Proteins
are obviously three dimensional, and evolution at one site in a protein is likely to be
affected by the amino acids at sites that physically neighbor it in the tertiary structure
of the protein. Covariation of residues at different sites may indicate that these sites are
nearby in the tertiary structure of the protein, and has been used to make inferences about
protein tertiary structure and function (e.g. Pazos et al., 1997; Pollock et al., 1999; Tillier
and Lui, 2003).

Parisi and Echave (2001; see also Bastolla et al., 2003) have introduced a noteworthy
technique for simulating the evolution of protein-coding genes subject to constraints
imposed by protein structure. They begin their simulations with a reference protein that has
known tertiary structure, and assume that this structure does not change over time. They
then employ a sequence–structure distance scoring function to assess how well protein
sequences fold into the known structure. Such scoring functions have been actively devel-
oped and are well established for predicting protein folds from protein sequence data. The
underlying idea behind the Parisi and Echave technique is that the sequence–structure
compatibility function can be employed to help parameterize rates of nonsynonymous
substitutions.
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As with conventional codon models (e.g. Goldman and Yang, 1994; Muse and Gaut,
1994), Parisi and Echave force the replacement rate between codons i and j to be 0
if i and j differ by more than one nucleotide or if a stop codon is involved. If the
difference between i and j represents a single synonymous nucleotide change then the
replacement rate is modeled as in conventional codon models, reflecting codon frequencies
and different mutational processes that act on DNA. In the Parisi and Echave approach,
however, nonsynonymous replacement rates from conventional codon models are multi-
plied by a factor of either 0 or 1, depending on the sequence–structure distance for the
newly arising sequence containing codon j . If the distance is smaller than some prespec-
ified value then the factor has a value of 1, permitting mutations that are considered
to perturb the protein structure by not more than a set amount. Otherwise, this factor
has a value of 0, disallowing evolutionary changes that lead to biologically implausible
sequences.

Through simulations, Parisi and Echave (2001) convincingly demonstrated both that
their model captured information that would be missed by other models of protein
evolution and that this information capture could occur without requiring large numbers
of free parameters to be added to the model. In a specific example, the simulation studies
showed tendencies of certain amino acids to preferentially occupy certain sites in the left-
handed β-helix domain of UDP-N-acetyl glucosamine acetyltransferases. When a group
of actual acetyltransferases with this helix domain was examined, qualitatively similar
tendencies were observed. To date, the Parisi and Echave model has been employed for
simulation of evolution rather than for inference from a set of observed protein-coding
sequences. Phylogenetic inference with models that make allowance for dependence
among sites is computationally much more challenging.

14.10 DEPENDENCE AMONG POSITIONS: INFERENCE

Fornasari et al.(2002; see also Bastolla et al., 2006) approximated the behavior of the full
Parisi and Echave model with a 20-state amino acid replacement model at each position.
The resulting model has independent changes among amino acid positions but does not
force all of the positions of a protein to experience identical replacement processes. This
is accomplished via simulating according to the Parisi and Echave codon-substitution
model many times. For each position in a protein, the number of times that simulated
changes occur between each pair of amino acid types can be recorded and rates of amino
acid replacement for each protein position can be obtained based upon these counts of
simulated changes.

A model of change permitting dependence among sequence positions poses enormous
challenges for conventional evolutionary inference procedures that use the pruning algo-
rithm of Felsenstein (1981). The difficulty is that Felsenstein’s algorithm relies upon
converting instantaneous evolutionary rates to transition probabilities. With independently
evolving nucleotides or amino acids or codons, the number of rows and columns in the
rate and transition probability matrices equals 4 or 20 or 61, respectively. But with a
relatively general dependence structure, the number of rows and columns in the rate
and transition probability matrices equals the number of possible sequences. Because the
number of possible sequences grows exponentially with sequence length, Felsenstein’s
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pruning algorithm becomes computationally intractable with dependent change among
sequence sites unless sequence length is extremely short.

A promising alternative to Felsenstein’s inference procedure has been explored by
Jensen and Pedersen (2000) and Pedersen and Jensen (2001) as part of their efforts to
understand the effects of overlapping reading frames and context-dependent mutation
on molecular evolution (see also Siepel and Haussler, 2004; Hwang and Green, 2004;
Christensen et al., 2005). Jensen and Pedersen augmented the observed sequence data at
the tips of evolutionary trees with ‘sequence paths’. The sequence path on a particular
branch of a phylogeny specifies all of the changes that occurred on the branch. For
each change, the sequence path contains information about the time at which the change
occurred, the sequence position at which the change occurred, and the nature of the
change. Although the sequence path is not directly observed, Markov chain Monte Carlo
techniques can be used to randomly sample possible sequence paths according to the
appropriate probability density. The big advantage of the sequence path approach to
inference is that it is often computationally tractable in cases where Felsenstein’s pruning
algorithm is difficult to apply because transition probabilities cannot be calculated or well
approximated.

We illustrate the sequence path approach to inference with the technique of Robinson
et al.(2003), an inference method that combines the innovations of Parisi and Echave
(2001), Jensen and Pedersen, (2000) and Pedersen and Jensen (2001). The Robinson
et al. model of protein-coding evolution is designed for analyzing aligned protein-
coding DNA sequences that, when translated, are assumed to share a known protein
tertiary structure that does not change during evolution. For simplicity, we discuss
evolutionary inference for data sets consisting of only two sequences. This is the case
considered by Robinson et al.(2003). However, the inference procedure has subsequently
been extended to data sets with three (Robinson, 2003) or more (Rodrigue et al., 2005)
sequences.

To measure the compatibility between the encoded amino acid sequence of a DNA
sequence i and the known tertiary structure, an empirically derived system originally
developed for protein fold recognition with globular proteins (Jones et al., 1992a; Jones,
1999) is employed. This system returns two scores for any protein sequence that is folded
into a particular structure. One of these scores, Es(i), is the solvent accessibility score
for sequence i when translated and folded into the known structure; the other Ep(i), is
the pairwise interaction score for sequence i when translated and folded into the known
structure. Es(i) and Ep(i) loosely resemble free energies: both will be negative when
sequence and structure are compatible, and sequence–structure compatibility deteriorates
as the two scores rise.

The Robinson et al.(2003) model has the parameter κ to differentiate between transitions
and transversions and the parameter ω to differentiate between nonsynonymous and
synonymous substitutions. It also has parameters πA, πC , πT , and πG to represent what the
frequencies of the nucleotide types would be if all natural selection was absent. Because
the model permits a general dependence structure, rates of change are defined at the
whole-sequence level rather than at the codon or individual position levels. We now use
αij to denote the rate of change from DNA sequence i to DNA sequence j , with the
value of αij forced to be zero unless sequences i and j differ at exactly one position. If
sequence j has nucleotide type h ∈ {A,C,G, T } at the one position where i and j differ,
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the rate of change is given by:

αi,j =

uπh for a synonymous transversion
uπhκ for a synonymous transition
uπhωes(Es(i)−Es(j))+p(Ep(i)−Ep(j)) for a nonsynonymous transversion
uπhκωes(Es(i)−Es(j))+p(Ep(i)−Ep(j)) for a nonsynonymous transition.

(14.2)
The parameters s and p in (14.2) represent the importance of solvent accessibility and
pairwise interactions, respectively. When s and p are both zero, protein structure does
not influence protein-coding DNA evolution and substitutions occur independently among
codons. When these parameters are both positive, the biologically plausible situation of
proteins evolving to be compatible with their structure results. While it is formally possible
for s and p to be negative, this is biologically unrealistic, representing the situation where
proteins evolve to be incompatible with their tertiary structure.

Although Felsenstein’s pruning algorithm is not computationally feasible with this
model because of the high dimensionality of the rate and transition probability matrices,
the inference ideas of Jensen and Pedersen (2000) and Pedersen and Jensen (2001) can
be adopted. Using a sequence path approach, what must be calculated instead is the
probability of the events described by any given path (ρ). To do this, we need to know
the rate of change from each successive sequence in the path, and the probability that
when each change occurs, the result is the next sequence in the path. Both of these are
readily derived from (14.2). The rate of change away from any sequence i (i.e. to any
sequence that differs from i) is:

αi,• =
∑
k

αi,k. (14.3)

Since rates of change from one sequence to another are 0 unless the two sequences differ
at exactly one position, the number of sequences that differ from sequence i at exactly
one position cannot exceed the length of sequence i multiplied by 3. The sum in (14.3)
is therefore computationally tractable, because most terms being added are 0.

For a particular sequence path ρ from an ancestral sequence i to a descendant sequence
j , let q be the total number of nucleotide substitutions on the path and let t (z) be the
time of the zth substitution. The time the branch begins will be t (0) = 0 and the time
the branch ends will be t (q + 1) = 1. Because the scaling parameter u can be adjusted,
the time at which the branch ends can always be considered to be 1. The sequence that
exists immediately after the zth substitution will be represented by i(z), with the initial
sequence i now written as i(0) and the final sequence j = i(q + 1) = i(q). The sequence
path ρ is then fully specified by t (0), t (1), . . ., t (q), t (q + 1) and i(0), i(1), . . . , i(q),
i(q + 1). Let θ be a vector representing all model parameters, the probability density of
the sequence path is then given by:

p(ρ|θ, i) =
(
q∏
z=1

αi(z−1),i(z)

αi(z−1),•
αi(z−1),•e

−αi(z−1),•(t (z)−t (z−1))

)
e−αi(q),•(t (q+1)−t (q))

=
(
q∏
z=1

αi(z−1),i(z)e
−αi(z−1),•(t (z)−t (z−1))

)
e−αi(q),•(t (q+1)−t (q)). (14.4)
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Here, the product over z gives the probability density for the q sequence changes
from i(z − 1) to i(z) occurring at times t (z), and the final term is the proba-
bility of no further change occurring in the time interval from the final substitu-
tion at t (q) until the time t (q + 1) = 1 at which the path ends. By combining a
prior distribution for θ with (14.4) and with the expression for the stationary prob-
ability for sequence i, the Metropolis–Hastings algorithm (Metropolis et al., 1953;
Hastings, 1970) can be applied to perform Bayesian inference (Robinson et al.,
2003).

Initial applications of this model yielded biologically plausible positive estimates of
the s and p parameters and indicated that the evolutionary information leading to the
estimates of these two parameters was quite distinct from the information contributing to
the ω parameter (Robinson, 2003; Robinson et al., 2003). Rodrigue et al.(2005; 2006)
have carefully evaluated evolutionary models with rate parameterizations similar to
that of Robinson et al.(2003). Employing a new model comparison procedure (Lartillot
and Philippe, 2004; 2006) as well as inference based upon sequence paths, Rodrigue
et al.(2006) demonstrate that evolutionary models with dependence among sequence
positions due to tertiary structure are statistically superior to those without dependence.
However, these authors also conclude that available treatments of protein tertiary structure
are not sufficient to produce satisfactory evolutionary models. They find that adding
rate heterogeneity among sites via the discrete gamma technique of Yang (1994b)
generates model fit improvements beyond those realized solely by incorporating tertiary
structure.

One reasonable interpretation of these findings is that sequence–structure compatibility
measures yield models of protein evolution that are biologically meaningful and statis-
tically valuable, extracting information that is otherwise not utilized, yet which are still
incomplete summaries of natural selection. Although the Robinson et al.(2003) model
was designed to reflect dependence due to protein tertiary structure, the same inference
strategy could be applied to add evolutionary dependence due to other aspects of pheno-
type (e.g. protein expression or protein function). This could be done by incorporating
scores for the other phenotypic aspects into the rates of (14.2).

14.11 CONCLUSIONS

After nearly 40 years, progress continues to be made with probabilistic models that give
increasingly good statistical descriptions of the patterns of protein evolution. But a useful
model is not simply one that fits data well. For a model of protein evolution to help us
to understand processes and pressures acting on evolving genomes, it is also important
to establish a solid connection between the model parameters and the biological features
that they represent. Although the best models of protein evolution are now far more
realistic than the earliest models, understanding of protein evolution is still at a primitive
stage. Evidence for variation in evolutionary processes and evolutionary rates among
sites is strong. Unfortunately, the extent to which this variation can be partitioned into
components of interest (e.g. the structural environments of a site, the protein to which
the site belongs, mutational tendencies at the site, interactions with other sites, protein
function, etc.) remains unclear.



454 J.L. THORNE AND N. GOLDMAN

Ideally, protein evolution should be linked to the DNA that codes for the protein,
the structure of the protein, the expression patterns of the protein, the function of the
protein, and external influences on the protein that act via natural selection. Progress
on modeling protein evolution will depend in part on the advances that are made in
techniques for in silico prediction of phenotype from genotype. Protein-coding DNA that
results in deleterious phenotypes is unlikely to be ancestral to extant DNA. Accurate in
silico prediction of phenotype from genotype would lead to evolutionary models in which
substitution rates are high for selectively advantageous changes and low for deleterious
changes. Existing systems for in silico mapping of genotype to phenotype tend to be
crude and this is one reason there is so much room for improvement in models of protein
evolution.

Despite the primitive nature of models of protein evolution, software implementing
those models for data analysis is in great demand. It must be emphasized that even the
existing models of protein evolution, however unrealistic, are better than having no models
at all. Explicit evolutionary models provide a basis upon which homologous sequences
can be recognized, phylogenetic history can be inferred, evolutionary hypotheses can be
evaluated, protein structure can be predicted, and our understanding of evolution can be
quantified. For these reasons, the development of model-based approaches to study protein
evolution is an attractive, active, and valuable area of research.
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Liò, P. and Goldman, N. (1999). Using protein structural information in evolutionary inference:
transmembrane proteins. Molecular Biology and Evolution 16, 1696–1710.

Liò, P. and Goldman, N. (2002). Modeling mitochondrial protein evolution using structural
information. Journal of Molecular Evolution 54, 519–529.

Lopez, P., Casane, D. and Philippe, H. (2002). Heterotachy, an important process of protein
evolution. Molecular Biology and Evolution 19, 1–7.
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The likelihood of a phylogenetic tree is proportional to the probability of observing the comparative
data (such as aligned DNA sequences) conditional on the tree. The likelihood function is important
because it is the vehicle that carries the observations. The likelihood function can be used in
two ways to infer phylogeny. First, the tree that maximizes the likelihood can be chosen as the
best estimate of phylogeny; this is the method of maximum likelihood. Second, a prior probability
distribution on trees can be specified and inferences based upon the posterior probability distribution
of trees; this is the approach taken by Bayesians. Although maximum likelihood and Bayesian
inference are similar in that the same models of DNA substitution can be used to calculate the
likelihood function, they differ in their interpretation of probability. Markov chain Monte Carlo
(MCMC) can be used to approximate the posterior probabilities of trees. MCMC also makes it
possible to perform comparative analyses that accommodate phylogenetic uncertainty.

15.1 INTRODUCTION

How can the evolutionary history of life be inferred? This problem – called the phylogeny
problem – has generated intense interest since publication of Origin of Species. The
phylogeny problem has by no means been ‘solved’; debate continues to center around
the merits of competing methods of phylogeny inference, the applicability of concepts
such as the accuracy of competing methods, how phylogenies can be used in comparative
analyses, and even whether the phylogeny problem is one of statistical inference (Farris,
1983).

Sometimes the choice of phylogenetic method does not appear to matter; the same
phylogenetic tree is obtained regardless of the details of the analysis. This type of situation
is, of course, an ideal one. Often, however, the details of the phylogenetic analysis do
matter; different phylogenies are obtained if different phylogenetic methods are used
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or even if the same method of analysis is used under different assumptions. What is
the biologist to do when different phylogenetic methods give different trees? Typically,
biologists use one or more of the following arguments to choose among competing
methods (and by extension, among the competing trees produced by these methods):

Expected accuracy. Sometimes the choice among phylogenetic methods is based upon
simulation studies of the expected accuracy of competing methods under specific
evolutionary scenarios. Numerous studies have used computer simulation to investi-
gate the ability of different phylogenetic methods to accurately reconstruct phylogeny
under idealized models of DNA substitution (Charleston, 1994; Gaut and Lewis, 1995;
Huelsenbeck, 1995a; 1995b; Huelsenbeck and Hillis, 1993; Kuhner and Felsenstein,
1994; Nei, 1991). These types of studies have provided useful information on the
consistency (ability to correctly estimate phylogeny given an unlimited number of
data), efficiency (ability to correctly estimate phylogeny with a limited number of
data), and robustness (ability to correctly estimate phylogeny when the assumptions
of the analysis are violated) of different phylogenetic methods under a variety of
evolutionary scenarios. Specifically, we know that factors such as the overall substi-
tution rate and the relative lengths of the branches of phylogenies are among the
main determinants of the performance of methods. Several disturbing properties of
phylogenetic methods have also been uncovered in these studies, such as the complete
failure of many phylogenetic methods under some combinations of branch length
(e.g., the well-known ‘Felsenstein zone’ in which many phylogenetic methods can
converge to the incorrect tree even with an infinite amount of data; see Felsenstein,
1978).

Philosophy. Some methods are considered to be more acceptable than others based upon
philosophical concepts. For example, the parsimony method has been justified based
upon the ideas of hypothetical deductive reasoning (Gaffney, 1979), falsificationism
(Wiley, 1975), and, more recently, on Sir Karl Popper’s concept of corroboration
(Kluge, 1997; Siddall and Kluge, 1997). Other more explicitly statistical methods have
justifications based upon reasoning in the face of uncertainty and use probability models
to express the uncertainty of different possible outcomes (see Edwards, 1972).

Flexibility. Some methods of phylogenetic inference can be applied to a wide variety
of data types and models of evolution. For example, the maximum parsimony method
can easily be used to infer phylogeny from molecular or morphological data or from
monomorphic or polymorphic characters. The method of maximum likelihood can be
applied to estimate parameters from even complex models of evolution.

Testability. It should be possible, in principle, to test the assumptions made in the
course of a phylogenetic analysis (Penny et al., 1992). This is easy to do using explicitly
statistical methods, such as likelihood and distance methods (Goldman, 1993; Rzhetsky
and Nei, 1995), but very difficult to do using other methods. Moreover, as biologists
turn their attention to comparative questions (problems that depend upon phylogeny,
but for which the phylogeny is not the central question), the ability of a method to be
tailored to address specific evolutionary questions becomes more important.

In this chapter, we concentrate on phylogenetic methods that are based upon the
likelihood function – the methods of maximum likelihood and Bayesian inference. We
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believe that of the many methods of phylogenetic inference that have been proposed,
these methods have the greatest potential to simultaneously satisfy the criteria posed
above. Although maximum likelihood and Bayesian inference are very similar in that the
likelihood function carries the information about phylogeny contained in the data, these
two methods have very different concepts of probability. In a field that has experienced
vigorous debate on the relative merits of different methods of phylogenetic inference, it
is perhaps safe to predict that the next debate in systematics will focus on the merits of
maximum likelihood versus Bayesian inference of phylogeny (mirroring debates in the
statistical literature over the past 30 years).

15.2 HISTORY

Most authors (see Edwards, 1974; Berger and Wolpert, 1984) attribute the ideas of
likelihood and the method of maximum likelihood estimation to Sir Ronald A. Fisher
(1912; 1921; 1922). In Fisher’s 1912 work, published while a university undergraduate,
he used the Bayesian term ‘inverse probability’ to describe his method of maximum
likelihood by which he was later (Fisher, 1915) able to generate the likelihood surface
for two parameters. By 1921 Fisher recognized his inappropriate use of the term ‘inverse
probability’ in his 1912 paper and coined the term ‘likelihood’ (Fisher, 1921).

15.2.1 A Brief History of Maximum Likelihood in Phylogenetics

Edwards and Cavalli-Sforza made several important contributions to phylogenetics,
including the introduction of the least squares, minimum evolution or parsimony, and
maximum likelihood methods of phylogenetic inference (Edwards and Cavalli-Sforza,
1964; Cavalli-Sforza and Edwards, 1967). Perhaps their most important contribution,
however, was the early realization that the phylogeny problem was one of statistical
inference. In fact, a number of authors later emphasized this idea (Felsenstein, 1973;
1988). Both Edwards and Cavalli-Sforza had ‘sat at the feet of R.A. Fisher’ (Edwards,
1998) and it was natural for them to consider the method of maximum likelihood to infer
phylogeny. Indeed, they discussed maximum likelihood estimation of phylogeny at the
1964 meeting of the Systematics Association and at the Cold Spring Harbor Symposium on
Quantitative Biology. In 1970 Edwards published a description of a maximum likelihood
method for inferring phylogeny using gene frequency data. Neyman (1971) applied the
method of maximum likelihood to analyze nucleotide or amino acid sequence data for
three species using a simple probabilistic model of symmetric change similar to the
Jukes–Cantor formula (Jukes and Cantor, 1969). Soon after, this method was extended
to more than three species by considering triplets of species at one time and combining
the results in a somewhat arbitrary manner (Kashyap and Subas, 1974). The limitation
on the number of species these approaches could address, and possibly why they found
little application at the time, centered around the high computational cost of likelihood
calculations.

Felsenstein (1973) proposed an algorithm for the application of maximum likelihood
to discrete character data, but practical applications of his approach were still hindered
by the computational difficulties. Computational limitations were greatly reduced in a
seminal paper by Felsenstein (1981) in which he introduced the ‘pruning algorithm’. The
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pruning algorithm makes possible efficient calculation of the likelihood for a large number
of taxa by taking advantage of the form of the tree topology; today, all computer programs
for calculating likelihoods on phylogenies use Felsenstein’s pruning algorithm. By 1985
maximum likelihood estimation of phylogeny began to be applied more widely. DeBry
and Slade (1985) analyzed restriction site data using maximum likelihood. Since then
developments in the application of maximum likelihood to phylogenetics have accelerated,
centering around construction of increasingly realistic stochastic models of change – e.g.
codon models (Muse and Gaut, 1994; Goldman and Yang, 1994) – for a variety of data
types, and the application of maximum likelihood estimation to evolutionary questions –
e.g. testing the molecular clock (Felsenstein, 1988); testing the monophyly of a group
(Huelsenbeck et al., 1996); and reconstructing ancestral states (Yang et al., 1995; Pagel,
1999).

15.2.2 A Brief History of Bayesian Inference in Phylogenetics

Bayesian inference of phylogeny was described in the dissertations of Mau (1996) and
Li (1996) and by Rannala and Yang (1996). More recently, Markov chain Monte Carlo
has made it possible to efficiently approximate the posterior probability of trees (Yang
and Rannala, 1997; Mau et al., 1999; Larget and Simon, 1999). The Bayesian approach
has been applied to numerous evolutionary questions, such as host–parasite cospeciation
(Huelsenbeck et al., 1997; 2000a; Newton et al., 1999), simultaneous sequence alignment
and phylogeny estimation (Mitchison, 1999), inferring the history of a character (Schultz
and Churchill, 1999), and estimating species’ divergence times under a relaxed molecular
clock (Thorne et al., 1998; Huelsenbeck et al., 2000b).

15.3 LIKELIHOOD FUNCTION

The likelihood of a hypothesis is proportional to the probability of observing the data
given the hypothesis, or

�(Hypothesis) = C × f (Observations|Hypothesis),

where f (Observations|Hypothesis) is the probability of observing the data given a
hypothesis. The constant, C, is arbitrary. (Throughout this chapter, we follow the
convention of using f (·|·) to denote a conditional probability.) As an example, take the
simple case of tossing a coin n times with the object of estimating the probability of
observing a head on a single toss of the coin. The number of heads observed in the
course of the n tosses is x. The probability of observing the data (x heads) given a
particular value for the parameter p can be calculated using the binomial distribution,

f (x|p) =
(
n

x

)
px(1− p)n−x,

where
(
n

x

) = n!/x!(n− x)!. The likelihood function, then, is

�(p) = C ×
(
n

x

)
px(1− p)n−x.
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For the phylogeny problem, the observations are taken to be the aligned character
matrix. For DNA sequence data, the aligned matrix will be denoted X. As an example of
aligned sequences, consider the first and last 15 aligned sites of the replicase gene from
nine bacteriophage species of the family Leviviridae:

PP7 GACAGC- - - CGGUUC. . . CGGAUCCCUGACACG
FR GGCAACGGU- - - GUG. . . GCAGACCCACGCCUC
MS2 GGGAACGGA- - - GUG. . .UCAGAUCCACGCCUC
GA GGCAACGGU- - - UUG. . . UCAGAUCCGCGACUC
SP UCA- - - AAUAAAGCA. . . UGGGAUCCUAGAGCA
NL95 UCG- - - AAUAAAGCA. . . UGGGAUCCUAGGGUA
M11 CCUUUCAAUAAAGCA. . .UGGGAUCCUAGGGUA
MX1 CCUUUCAAUAAAGCA. . .UGGGAUCCUAGGGUA
Qβ CCUUUUAAUAAAGCA. . .UGGGAUCCUAGGGCC

The core region of the replicase gene corresponds to amino acid residue numbers 205
to 443, referenced to Qβ (GenBank accession numbers: FR, X15031; MS2, J02467;
GA, X03869; SP, X07489; NL95, AF059243; M11, AF052431; MX1, AF059242; Qβ,
X14764; PP7, X80191; Bollback and Huelsenbeck, 2001). The phage PP7 is treated as
an outgroup.

The individual observations are the sites. For example, the first observation
in the bacteriophage matrix is the site x1 = (G, G, G, G, U, U, C, C, C)′. The
second, third, fourth, and fifth observations are x2 = (A, G, G, G, C, C, C, C, C)′,
x3 = (C, C, G, C, A, G, U, U, U)′, x4 = (A, A, A, A, −, −, U, U, U)′, and x5 = (G, A,
A, A, −, −, U, U, U)′, and so on. There are a total of c = 720 sites in this example
data set.

How can the probability of observing the individual sites (x1, x2, . . . , xc) be calculated?
The probability of observing the nucleotides at a site depends upon the topology of the
tree relating the species, the lengths of the branches on this tree, and a specific model of
how the sequence changes along the tree. Throughout this chapter, the topology of the
tree relating the species will be denoted τ and the lengths of the b branches on this tree
will be denoted v = (v1, v2, . . . , vb), with b = 2s − 3 for unrooted trees and b = 2s − 2
for rooted trees. The lengths of the branches are in terms of expected number of changes
per site.

The model of evolution gives the probability of a change from one state to another
over a specified evolutionary distance, v. These transition probabilities are denoted
pij (v, θ), where i is the starting state, j is the ending state, v is the length of the
branch, and θ is a vector of evolutionary parameters (such as the transition/transversion
rate ratio). Currently, all stochastic models of evolutionary change on a phylogeny
are examples of a continuous-time Markov chain. Figure 15.1 shows an example of
a Markov chain in which there are four events of substitution (change in a DNA
sequence) at a site. The substitutions occurred at times t1, t2, t3, and t4. In Figure 15.1,
Wi is the waiting time for the ith substitution. The waiting times for a continuous-
time Markov chain follow an exponential distribution with parameter λ (the rate may
change depending on the state of the chain). The waiting time until the rth substitution
(Wr = W1 +W2 + · · · +Wr) follows a gamma distribution with shape parameter r and
scale parameter λ. The number of substitutions in time interval T1 is N(T1) = 3 and the
number of substitutions in the time interval T2 is N(T2) = 4. For a Poisson process, the
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Figure 15.1 An illustration of a Poisson process. The large dots represent times at which
substitutions occur.

number of substitutions in nonoverlapping time intervals are independent, the number of
substitutions in a time interval of duration T follows a Poisson distribution with parameter
λT , and the number of substitutions at time T = 0 (the beginning of the process) is
N(0) = 0.

For models of character change, different transition types often have different rates.
For example, for the simple case of two states (‘0’ or ‘1’), the rate of change from 0 → 1
and 1 → 0 might be different:

Q = {qij } =
(−α α

β −β
)
.

The rows give the rate of change from state 0 or 1 and the columns give the rate of
change to state 0 or 1. This means that the rate of change from 0 → 1 is α and the rate
of change from 1 → 0 is β. The diagonal entries of the matrix give the rate of change
away from a particular state. The matrix Q is called the instantaneous rate matrix. The
transition probabilities (probability of a change from 0 to 1 or 1 to 0 over a time period t)
are calculated by exponentiating the matrix Qt :

P(t, θ) = {pij (t, θ)} = eQt =


β

α + β +
αe−(α+β)t

α + β
α

α + β −
αe−(α+β)t

α + β
β

α + β −
αe−(α+β)t

α + β
α

α + β +
βe−(α+β)t

α + β

 ,
where θ = (α, β) contains the parameters of the substitution model. Note that if the
process is run for a very long time, that the probability that the process is in state 0 or
in state 1 converges to β/(α + β) and α/(α + β), respectively. These are the stationary
or equilibrium frequencies of the process and are usually denoted πi for the frequency of
state i.

The transition probability depends upon two quantities: the rate at which a change
occurs between state i and state j (qij ) and the amount of time the process has been
running (t). For the phylogeny problem, the observed data can be explained by either a
high substitution rate and a small amount of time or by a low substitution rate and a large
amount of time. For example, the transition probabilities for the two-state example given
above are the same if α = 1, β = 1, and t = 1 or if α = 2, β = 2, and t = 0.25. For this
reason, the branches of a phylogenetic tree are usually in terms of expected number of
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substitutions per site, v. To make the branch lengths of a phylogenetic tree in terms of
expected number of substitutions per site, the rate matrix Q is rescaled in such a way that
the average rate of change away from some state is 1 (that is, −∑N

i=1 πiqii = 1, where
N is the number of states).

The model of evolution can be tailored to accommodate different types of data. The
2× 2 instantaneous rate matrix discussed above, for example, might be most appropriate
for morphological data where only two states are typically scored (e.g. the presence or
absence of a character state). For DNA or RNA sequence data, each site is assumed
to take one of four states (A, C, G, or T/U) and a 4× 4 instantaneous rate matrix is
typically used. Details of calculating transition probabilities for models of DNA sequence
evolution are discussed in Swofford et al. (1996). Typical models of DNA substitution
include the Jukes and Cantor (1969) model where all substitution types have equal rates
and the equilibrium frequencies of the four nucleotides are equal; the Kimura (1980)
model, which allows transitions (A ↔ G or C ↔ T changes) to occur at a different rate
than transversions (A ↔ C, A ↔ T, C ↔ G, and G ↔ T changes) but assumes that the
frequencies of the four nucleotides are equal; and the Hasegawa et al. (1984; 1985)
model which accommodates a transition/transversion rate bias and potentially different
nucleotide frequencies. Even a model that allows there to be 11 different substitution
rates has been implemented for DNA sequence evolution (Yang, 1994b). Table 15.1
summarizes the properties of models of DNA substitution commonly used in phylogenetic
analysis.

One useful aspect of considering evolution as a stochastic process is that the
evolutionary model can be modified to accommodate new biological processes as they are

Table 15.1 Summary of the major features of different models of DNA substitution. All of these
models are time reversible.

Rate JC69 K80 K81 F81 F84 HKY85 TN93 GTR

A → C 1 1 1 πC πC πC πC rACπC

A → G 1 κ κ πG

(
1+ K

πA + πG

)
πG κπG κ1πG rAGπG

A → T 1 1 α πT πT πT πT rATπT

C → A 1 1 1 πA πA πA πA rACπA

C → G 1 1 α πG πG πG πG rCGπG

C → T 1 κ κ πT

(
1+ K

πC + πT

)
πT κπT κ2πT rCTπT

G → A 1 κ κ πA

(
1+ K

πA + πG

)
πA κπA κ1πA rAGπA

G → C 1 1 α πC πC πC πC rCGπC

G → T 1 1 1 πT πT πT πT πT

T → A 1 1 α πA πA πA πA rATπA

T → C 1 κ κ πC

(
1+ K

πC + πT

)
πC κπC κ2πC rCTπC

T → G 1 1 1 πG πG πG πG πG

πA = πC = πG = πT Yes Yes Yes No No No No No
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discovered. For example, models of DNA substitution have been modified to accommodate
limited dependence among sites. Schöniger and von Haeseler (1994) accommodate
nonindependent substitutions in Watson–Crick bond pairs in stem regions of rRNA genes
by expanding the model of DNA substitution around doublets of nucleotides; instead of
a 4× 4 matrix of rates, there is a 16× 16 matrix of rates from one doublet to any other
doublet (e.g. from doublet AA → AC). Only one substitution in any instant of time is
allowed, so many of the elements of the Q matrix are 0 (e.g. changes that require a
change at both positions simultaneously, such as AA → GC). Similarly, models of DNA
substitution have been expanded around the codon – a triplet of nucleotides (Goldman and
Yang, 1994; Muse and Gaut, 1994). Hence, the instantaneous rate matrix (Q) is 64× 64
(or, more commonly, 61× 61 because stop codons are excluded from consideration).
Importantly, codon models allow parameters such as the nonsynonymous/synonymous
rate ratio to be directly estimated, and account for all possible histories of synonymous
and nonsynonymous change.

The probability of observing the data at a particular site is a sum over all possible
nucleotides that can be observed at the internal nodes of the tree. Let y be a generic
vector of states at the internal nodes of the tree. We will assume that the tree is rooted
and that the tips of the tree are labelled 1, 2, . . . , s and the internal nodes of the tree
are labeled s + 1, s + 2, . . . , 2s − 2. Moreover, in the following, the ancestor of node k
on the tree is denoted σ(k) and the length of the kth branch is vk . The probability of
observing the data at site i, then, is

f (xi |τ, v, θ) =
∑

y

πw2s−2

(
s∏
k=1

pwσ(k)xk (vk, θ)

)(
2s−2∏
k=s+1

pwσ(k)wk (vk, θ)

)
.

The summation is over all 4s−1 possible assignments of nucleotides to the internal nodes
of the tree. The reason why the probability of observing the data at a site is a sum over all
possible assignments of nucleotides at the internal nodes of the tree is that we do not want
our inferences to be conditioned on a particular character history; instead, the probability
of observing the data is a weighted average over all possible character histories. The
number of possible combinations of nucleotides becomes too large to enumerate for even
moderately sized problems (e.g. for s = 20 species there are 2.75× 1011 combinations
of nucleotides). However, Felsenstein (1981) described a pruning algorithm that takes
advantage of the tree topology to evaluate the summation over nucleotide states in a
computationally efficient (but mathematically equivalent) manner.

Assuming independence of the substitutions at different sites in the sequence, the
probability of observing the entire aligned sequence data set is simply the product of
the probabilities of observing the data at each site:

f (X |τ, v, θ) =
c∏
i=1

f (xi |τ, v, θ).

Typically, this number will be very small (because many numbers between 0 and 1 are
multiplied). The log of the probability is used instead so that the number can be accurately
stored in computer memory.

The above calculation for the probability of observing the aligned data matrix assumes
that the same set of branch lengths (v) apply to every site in the sequence. This is another
way of saying that the rate across sites is assumed to be equal. This assumption has been
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relaxed in two different ways. The first divides the observed sequences into partitions, such
as first, second, and third codon positions. The rate of substitution within each partition
is assumed to be homogenous but potentially different across partitions. A protein coding
gene, for example, might be divided into three partitions according to codon position.

The other method for accommodating rate variation assumes that the rate at a site is
unknown but drawn from some distribution. Usually, the rate at a site is assumed to
follow the proportion of invariant sites model or a gamma distribution (Yang, 1993). The
proportion of invariant sites model states that the rate at a site is r = 0 with probability
p and r = 1/(1− p) with probability 1− p. The gamma model assumes that the rate at
a site is drawn from a gamma distribution with shape and scale parameters equal to α.
The gamma distribution, then, is scaled such that the mean rate is 1 and the variation in
rates is 1/α. For the proportion of invariant sites model, the probability of observing the
data at the ith site is

f (xi |τ, v, θ, p) =
[∑

y

πw2s−2

(
s∏
k=1

pwσ(k)xk (0, θ)

)(
2s−2∏
k=s+1

pwσ(k)wk (0, θ)

)]
p

+
[∑

y

πw2s−2

(
s∏
k=1

pwσ(k)xk (vk/(1− p), θ)
)

×
(

2s−2∏
k=s+1

pwσ(k)wk (vk/(1− p), θ)
)]
(1− p),

which is the sum of the probability of observing the data for each category weighted
by the prior probability that the site is in each category. Similarly, the probability of
observing the data at a site for the gamma-distributed rate variation model is

f (xi |τ, v, θ, α)

=
∫ ∞

0

[∑
y

πw2s−2

(
s∏
k=1

pwσ(k)xk (vkr, θ)

)(
2s−2∏
k=s+1

pwσ(k)wk (vkr, θ)

)]
f (r|α, α) dr

where f (r|α, α) is the gamma density with shape and scale parameters equal to α. This
function cannot usually be calculated numerically. Instead, an approximation suggested
by Yang (1994a) is used. The gamma distribution is divided into K categories of equal
weight, with the mean rate for each category representing the rate for the entire category.
The probability of observing the data at the ith site then becomes

f (xi |τ, v, θ, α) =
K∑
j=1

[∑
y

πw2s−2

(
s∏
k=1

pwσ(k)xk (vkrj , θ)

)(
2s−2∏
k=s+1

pwσ(k)wk (vkrj , θ)

)]
1

K
.

The logic applied to modelling rate variation across sites has also been applied to
the problem of detecting sites that are under the influence of positive selection. The
nonsynonymous to synonymous rate of substitution (ω) is assumed to be a random variable
drawn from some distribution. The probability of observing the data at a codon position is
a sum over all possible values for ω weighted by the prior probability for each ω. Nielsen
and Yang (1998) used this type of model to calculate the probability that a particular site
is in the positive selection category conditioned on the observed sequences at that site.
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As mentioned above, many different types of data can be used in phylogenetic analyses
using the likelihood function. Until recently, morphological data were a major exception.
Morphological data are difficult to accommodate using stochastic models for two reasons.
For one thing, morphological traits are very complex genetically; it is difficult to imagine
that many important biological processes are being captured by a simple model of
stochastic change. Another impediment to introducing stochastic models of evolution to
morphological data has been related to sampling biases in morphological data. Two-state
stochastic models have been around for decades that, in principal, could be applied to
morphological data; morphological characters are typically scored as presence or absence
of a trait, so a simple two-state model seems natural. However, direct application of
such a model would not be valid because the calculations assume that all characters have
been sampled; most morphologists do not score invariant characters in a phylogenetic
analysis. A morphological study of lizards, for instance, never includes a character such
as ‘presence or absence of vertebral column’. Recently Lewis (1999) proposed a solution
to this problem: One simply conditions on the fact that these characters are not sampled
in the first place. Practically speaking, the analysis is changed only in that the probability
of observing a dummy invariant character must be calculated along with the observed
characters.

15.4 DEVELOPING AN INTUITION OF LIKELIHOOD

One of the strengths of likelihood methods is that the assumptions of the analysis
are explicit and transparent. What is not so transparent to many is what a likelihood
score is and what it means to sum over all possible ancestral states. In this section,
we try to develop an understanding of likelihood with reference to the parsimony
method.

Consider the simple tree of two sequences shown in Figure 15.2(a). For this tree, the
nucleotide ‘A’ was observed for both species at a particular site. The parsimony method
would reconstruct the history of this character as involving no changes. What would
likelihood do? The reconstruction provided by maximum likelihood would depend upon
the length of the branch separating the two species as well as upon the model of evolution
assumed. In this example, we will assume that the sequences evolve under a very simple
model of DNA substitution first described by Jukes and Cantor (1969) and consider several
different branch lengths (v).

Table 15.2 shows how much weight likelihood and parsimony give to different
reconstructions. The numbers in parentheses provide the probability of observing the site

A CAA

(a) (b)

Figure 15.2 A simple phylogenetic tree of two species with two different character patterns
(a) AA and (b) AC.
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Table 15.2 The percentage probability of different character histories under the Jukes–Cantor
model for the tree of Figure 15.2(a). The length of the branch separating the two sequences is
denoted v.

Number of changes Parsimony
v = 0.01
(0.2475)

v = 0.1
(0.2266)

v = 0.2
(0.20611)

v = 1
(0.11192)

0 100 99.99 99.83 99.31 82.17
1 0 0.00 0.00 0.00 0.00
2 0 0.0011 0.11 0.44 9.13
3 0 – – 0.034 3.55
4 0 – – – 0.0027

pattern (AA) given the branch length v. The percentages are the percent of the site pattern
probability that involves reconstructions of 0, 1, 2, or more changes. Parsimony places
all of the weight on the reconstruction that has 0 changes across the simple two-species
tree. Likelihood, on the other hand, gives some weight to all possible reconstructions.
In a sense, likelihood hedges its bets with respect to reconstructing character history.
When the branch length is small (e.g. v = 0.01), likelihood, like parsimony, places most
of the weight on the reconstruction that has no changes. For this particular pattern of
nucleotides at the branch tips, likelihood places no weight on the reconstruction that has
one change because it is impossible to explain the data with only a single change on
the tree. However, likelihood does place some weight on reconstructions that involve
two or more changes. Note that as the branch length increases, likelihood places more
weight on reconstructions involving multiple changes. In fact, when the branch length is
v = 1.0, likelihood places 9.13 % of the weight on reconstructions involving two changes
and 3.55 % weight on reconstructions involving three changes.

Parsimony and likelihood also behave similarly when there must be a character change.
Consider the same tree shown in Figure 15.2(b), now with nucleotide ‘A’ observed for
one species and ‘C’ for the other species. Table 15.3 gives the weights assigned to various
reconstructions for this character pattern. The probability of observing a site pattern with a
change increases as the branch length increases. This makes sense because as the branch
becomes longer, it becomes more probable that changes will occur along that branch.
Also, note that the parsimony and likelihood methods are most similar when the branch
length is small; when the branch length is small, parsimony places 100 % weight on the

Table 15.3 The percentage probability of different character histories under the Jukes–Cantor
model for the tree of Figure 15.2(b). The length of the branch separating the two sequences is
denoted v.

Number of changes Parsimony
v = 0.01
(0.00083)

v = 0.1
(0.00786)

v = 0.2
(0.01462)

v = 1
(0.04602)

0 0 0.00 0.00 0.00 0.00
1 100 99.66 96.64 92.36 66.54
2 0 0.33 3.22 6.22 22.19
3 0 0.12 0.48 8.61
4 0 0.003 0.023 2.05
5 0 0.0037 0.42
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reconstruction involving one change whereas likelihood places 99.66 % weight on the
same reconstruction.

15.5 METHOD OF MAXIMUM LIKELIHOOD

The likelihood function (probability of observing the data) depends upon several unknown
parameters. For the phylogeny problem, these parameters include (minimally) the topology
of the phylogenetic tree relating the species and the lengths of the branches on this
tree, but may also depend upon parameters of the substitution process, such as the
transition/transversion rate ratio, or parameters that describe the degree of rate variation
across sites. Up to this point in the chapter, we have assumed that these parameters are
fixed. However, we would like to estimate these parameters as they are generally unknown.

The method of maximum likelihood estimates parameters of a stochastic model by
finding that combination of parameter values that maximizes the likelihood function. Take,
for example, the coin-tossing problem, discussed above. The likelihood function was

�(p) = C ×
(
n

x

)
px(1− p)n−x,

which was proportional to the probability of observing the data given a specific value
for p (the unknown parameter). The method of maximum likelihood would estimate p
by finding that value of p that maximized the likelihood function. This can be done by
taking the first derivative of the likelihood function and finding where the first derivative
equals 0. Taking the log of the likelihood function does not change where the function is
maximized and makes the calculation easier:

loge �(p) = loge C + loge

(
n

x

)
+ x loge p + (n− x) loge(1− p).

Then, the first derivative is calculated:

d loge �(p)

dp
= x − np
p(1− p).

Solving for d loge �(p)/ dp = 0 gives p̂ = x/n. This means that the maximum likelihood
estimate of the parameter p is simply the proportion of the time that heads were observed
in the n tosses. This estimate does not depend upon the value of the constant C in the
likelihood function.

For the phylogeny problem, the peak of the likelihood surface cannot be found analyti-
cally (as it could for the coin-tossing problem). Instead, the peak of the likelihood surface
must be found numerically. Most modern computer programs take the following approach:
A tree is visited and the parameters for that tree are changed such that the likelihood is
maximized. The maximum likelihood value for this tree is then stored and the procedure
is repeated for other trees. The tree that has the largest maximum likelihood value is
the best estimate of phylogeny. The maximization of the likelihood for the phylogeny
problem, then, involves two distinct problems: finding the maximum likelihood combina-
tion of parameters for distinct trees and finding the tree that has the greatest likelihood.
Lewis (1998) has taken a different approach to finding the maximum likelihood estimate
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of phylogeny by using a genetic algorithm. The genetic algorithm takes a population of
trees and subjects the trees to mutation (changes of the parameter values on the trees) and
recombination (grafting parts of one tree on to another tree). The population is allowed
to evolve under the influence of selection, with those trees that have the greatest fitness
(highest likelihood scores) contributing the larger number of trees in the next generation.

A practical limitation of maximum likelihood in phylogenetics is that it is very difficult
to maximize the likelihood simultaneously for many parameters. Often, the biologist is
interested in inferring phylogeny under a more parameter-rich (and presumably more
realistic) model of DNA substitution. However, some of the parameters in a substitution
model are difficult to maximize. It turns out that it is relatively easy to maximize the
likelihood with respect to branch lengths because the algorithm can take advantage of
information on the slope and curvature of the likelihood surface; this information tells
the algorithm in which direction and by how much to change the length of a branch.
Other parameters, such as the transition/transversion rate ratio or parameters specific to
the model of DNA substitution, are inherently more difficult to estimate because it is
difficult to obtain information on the slope and curvature of the likelihood function for
those parameters. This means that it can become very time consuming to maximize the
likelihood for parameter-rich models of DNA substitution.

One strategy for maximizing the likelihood under complex models of DNA substitution
that can be implemented in PAUP∗ (Swofford, 1998) is to maximize the likelihood in a
stepwise manner (Swofford et al., 1996). First, a reasonable starting tree (e.g. a maximum
parsimony tree) is obtained. The parameters of the substitution model are maximized on
this tree. Next, the parameters of the substitution model are fixed to their maximum
likelihood values and a heuristic search is performed starting from the parsimony tree.
This procedure is iterated until one cannot find a better tree than the one on which
the parameters were estimated. This strategy relies on the idea that, for trees near the
maximum likelihood tree, parameters of the substitution model do not differ by very
much. An example of a PAUP block that can implement this search strategy under the
GTR+ � model of DNA substitution is as follows:

begin paup;
set autoclose = yes warnreset = no increase = auto criterion

= parsimony;
hsearch;
set criterion = likelihood;
lset nst = 6 rmatrix = est basefreq = est rates = gamma shape

= est ncat = 4 pinvar = 0;
lscores 1;
lset rmatrix = prev basefreq = prev shape = prev;
hsearch start = 1 swap = nni;
savetrees file = like.trees replace = yes;
lset rmatrix = est basefreq = est shape = est;
lscores 1;
lset rmatrix = prev basefreq = prev shape = prev;
hsearch start = 1 swap = spr;
savetrees file = like.trees append = yes;
lset rmatrix = est basefreq = est shape = est;



APPLICATION OF THE LIKELIHOOD FUNCTION IN PHYLOGENETIC ANALYSIS 473

lscores 1;
lset rmatrix = prev basefreq = prev shape = prev;
hsearch start = 1 swap = tbr;
savetrees file = like.trees append = yes;
end;

This PAUP block performs three iterations of the search strategy using three different
heuristic searches.

The phylogeny problem involves numerous parameters (e.g. minimally tree topology
and branch lengths). Often, however, the biologist is interested in only one or a few of
these parameters. The parameters that are not of interest are called nuisance parameters.
(For a more extensive discussion of nuisance parameters in phylogenetic analysis, see
Goldman, 1990.) Nuisance parameters can be dealt with in one of several ways. First,
the likelihood can be maximized with respect to all parameters, including the nuisance
parameters. This is the solution taken in most computer programs implementing maximum
likelihood. Second, a prior probability distribution can be assigned to these parameters
and the likelihood integrated over the range of the parameter. This is how rate variation
across sites is often accommodated; a prior such as the gamma distribution is placed
on the rate at a site and the overall site likelihood is integrated over all possible rate
assignments. Finally, a consistent estimator (but not necessarily a maximum likelihood
estimator) can be substituted for the parameter. To our knowledge, this pseudomaximum
likelihood method has not been used in phylogenetics.
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Figure 15.3 The maximum likelihood estimate of phylogeny under the HKY85+ � model of
DNA substitution. Parameter estimates for the nuisance parameters were κ = 2.33, α = 0.69,
πA = 0.24, πC = 0.26, πG = 0.23, and πT = 0.27.
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Figure 15.3 shows the maximum likelihood tree for the bacteriophage species. The
Hasegawa et al. (1985) model of DNA substitution with gamma-distributed rate variation
(Yang, 1994a) was assumed in the analysis. Nuisance parameters (e.g. the transi-
tion/transversion rate ratio, base frequencies, and branch lengths) were accommodated
by maximizing the likelihood with respect to those parameters. The log-likelihood of the
tree was −5695.07. The maximum likelihood estimates for the model parameters were
κ = 2.33, α = 0.69, πA = 0.24, πC = 0.26, πG = 0.23, and πT = 0.27. The analysis was
performed using the program PAUP∗ (Swofford, 1998).

15.6 BAYESIAN INFERENCE

In a Bayesian analysis inferences are based upon what is called the posterior probability
of a parameter. The posterior probability of a parameter is the probability of the
parameter conditional on the observed data. This is different from maximum likelihood
which maximizes the likelihood function (the probability of observing the data given
the parameter). The posterior probability of a hypothesis (Hi; i = 1, 2, . . . , n) can be
calculated using Bayes formula,

f (Hi |D) =
f (D|Hi)f (Hi)

f (D)
,

where

f (D) =
n∑
j=1

f (D|Hj)f (Hj )

for discrete H . The posterior probability is a function of the likelihood, f (D|Hi), and the
scientist’s prior beliefs about the hypothesis, f (Hi). Just as with maximum likelihood,
the likelihood function is the vehicle that carries the information about the parameter
contained in the data.

Figure 15.4 shows the posterior probabilities of the parameter p for the coin-tossing
experiment discussed earlier. Here, the proportion of heads observed is always 0.8, for 5,
10, and 100 tosses of a coin. The likelihood function is the first column in this figure. The
first (top) row of this figure shows three different priors that express the uncertainty in p
before any observations have been made; the first is an uninformative prior, giving equal
weight to all values of p in the interval between 0 and 1. The second and third are infor-
mative priors, placing more weight on values of p near 0.5. The other plots in Figure 15.4
show the posterior probability of p when the likelihood and prior are combined; the like-
lihood function for the observations of the row are combined with the prior of the column.
Bayes formula is used to combine the scientist’s prior beliefs with observation.

How are posterior probabilities of phylogenies calculated? The posterior probability of
tree τi is obtained using Bayes rule,

f (τi |X , v, θ) =
f (X |τi, v, θ)f (τi)

B(s)∑
j=1

f (X |τj , v, θ)f (τj )
,
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Figure 15.4 An example of Bayesian inference for the coin-tossing example with different priors.

where B(s) is the number of possible trees for s species (B(S) = (2s − 3)!/2s−2(s − 2)!
for rooted trees and B(s) = (2s − 5)!/2s−3(s − 3)! for unrooted trees). One possible prior
for trees is to set f (τi) = 1/B(s), making all trees a priori equally probable.

Note that the posterior probability of a tree was conditioned on the data and several
parameters, such as the branch lengths (v) and substitution parameters (θ). One approach
to accommodating these parameters is to substitute an estimate (such as the maximum
likelihood estimate). This is called an empirical Bayes analysis. An alternative method
integrates over uncertainty in these parameters; the inference of phylogeny, then, is not
conditioned on unknown parameters taking specific values. Such an analysis is called a
hierarchical Bayes analysis. The posterior probability for a hierarchical Bayes analysis is

f (τi |X ) =
f (X |τi)f (τi)∑

j=1

B(s)f (X |τj )f (τj )
,

where

f (X |τi) =
∫
f (X |τi, v, θ) dF(v, θ)
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and integration is over all possible combinations of branch lengths on the tree and over
all possible values for the substitution parameters. An attractive feature of a hierarchical
Bayes analysis is that inferences are conditioned only upon the data.

A Bayesian analysis of phylogeny requires that the scientist specify his or her beliefs
about the phylogeny before observing any data. This can be viewed as either a strength or
a weakness of Bayesian inference. It is a strength in that the method can potentially take
advantage of any prior knowledge the scientist might have about the phylogeny. On the
other hand, priors can be difficult to specify. Two different types of priors have been used
in the phylogeny problem. The first was specified by Rannala and Yang (1996; also see
Yang and Rannala, 1997; Thompson, 1975), who used a birth–death process of cladoge-
nesis to specify the prior probabilities of phylogeny and branch lengths. Under a random
branching model of cladogenesis (such as the birth–death process), all labeled histories
have equal probability. Labeled histories are distinguished from one another not only by
their topology but also by the relative speciation times (Edwards, 1970). The birth–death
process has two parameters, the speciation and extinction rates. These can be fixed, or
priors (called hyperpriors) can be placed on the rates of speciation and extinction. Mau
(1996), Mau and Newton (1997), and Newton et al. (1999) place uninformative priors
on topology and branch lengths. Equal weight is placed on all trees, and uniform priors
(from 0 to a large number) are placed on branch lengths. The posterior probability will
be mainly determined by the likelihood function when uninformative priors are used.

15.7 MARKOV CHAIN MONTE CARLO

The posterior probability of a tree involves, minimally, a summation over all possible
trees and integration over branch lengths and other parameters of the substitution model.
In short, the posterior probability of a tree cannot be evaluated analytically, and must
be approximated. Markov chain Monte Carlo (MCMC) can be used to approximate the
posterior probability of phylogenies.

MCMC is a method that makes valid, but dependent, draws from the probability
distribution of interest. MCMC constructs a Markov chain that has as its state space
the parameter(s) of interest. A simple example will illustrate MCMC as applied to the
coin–tossing problem (for a good introduction to MCMC, see Gilks et al., 1996). This
example is of a variant of MCMC called the Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970; Green, 1995). The current state of the chain will be
denoted p. If this is the first generation of the chain, then p is initialized to be some value
between 0 and 1. A new state, p′, is proposed. For this example, the proposal mechanism
will be to pick a uniformly distributed random number in the interval (p − ε, p + ε); this
means that the next state of the chain will be very similar to the current state (ε might
be 0.05, for example, meaning that the proposed state of the chain will be within 0.05 of
the current state). The proposed state is accepted with probability

R = min

1,

(
n

x

)
p′x(1− p′)n−xf (p′)/f (x)(

n

x

)
px(1− p)n−xf (p)/f (x)

× f (p|p
′)

f (p′|p)
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= min

 1,
p′x(1− p′)n−x
px(1− p)n−x︸ ︷︷ ︸ × f (p′)

f (p)︸ ︷︷ ︸ × f (p|p′)
f (p′|p)︸ ︷︷ ︸

likelihood ratio prior ratio proposal ratio

 .
Note that the most difficult part of the posterior probability to calculate (f (x) = ∫ 1

0

(
n

x

)
px

(1− p)n−xf (p) dp) cancels. The proposal probabilities (f (p′|p) and f (p|p′)) give the
probability of proposing a move p→ p′ or the reverse move p′ → p. Many proposal
mechanisms will work as long as the chain is aperiodic and irreducible. Hence, the
computer programmer has much latitude in choosing proposal mechanisms, and, in fact,
there is an art to constructing a Markov chain that works well. The important point,
though, is that any chain will work in that it will converge on the correct distribution if
the chain is run long enough.

Once the acceptance probability, R, is calculated, a uniformly distributed random
number on the interval [0, 1] is generated. If this random number is less than R, then
the proposed state is accepted and p = p′. If the new state is not accepted (i.e. the
random number is greater than R), then the current state stays the same. This process of
proposing a new state and then accepting or rejecting it is repeated a large number of
times. The sequence of states (values of p) visited over the course of the analysis forms a
Markov chain. The states visited during the analysis (i.e. different values of p) are valid,
albeit dependent, draws from the posterior probability; a Markov chain that was run for
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Figure 15.5 The posterior probability of p for the coin-tossing problem. The dotted line is the
posterior probability calculated analytically. The solid line is the approximation of the posterior
probability obtained using Markov chain Monte Carlo. The chain was run for (a) 5000 generations
(b) 50 000 generations, and (c) 500 000 generations. Source: Huelsenbeck et al. (2000a).
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100 steps and sampled at every step does not represent 100 independent draws from the
posterior probability. However, the proportion of the time that different values of p were
visited is a valid approximation of the posterior probability. Figure 15.5 shows an example
of an MCMC analysis for the coin-tossing example where the data are x = 5 heads in
n = 10 tosses of a coin. Note that as the length of the chain is increased, that the MCMC
approximation converges to the true (analytically calculated) posterior probability.

Although MCMC was illustrated for a Bayesian analysis of coin tossing, the method
can be extended to much more complex problems involving many parameters. Moreover,
the method has been applied to maximum likelihood analysis where it has been used to
integrate over uncertainty in coalescence histories when estimating population parameters
(Kuhner et al., 1994; Beerli and Felsenstein, 1999).

A limitation of MCMC is that it is not clear when the chain has been run long enough to
produce a reliable approximation of the distribution of interest. The Markov chain law of
large numbers guarantees that posterior probabilities can be validly estimated from long-
run samples of the chain (Tierney, 1994). However, for any given analysis, it is difficult to
determine if the chain has converged to the desired distribution. Several different heuristics
are available to determine if the chain has converged (see Gelman, 1996). These involve
running several independent chains starting from different (perhaps random) trees.

To illustrate Bayesian inference of phylogeny using MCMC, we analyzed the bacterio-
phage replicase data under the HKY85+ � model of DNA substitution. We used MCMC
to approximate the posterior probabilities of trees using a program written by one of us
(JPH). The Markov chain was run for 500 000 steps. Figure 15.6 shows the log of the
likelihood function through time for the chain. Note that at first the log-likelihood was
low and that it quickly reached a plateau near the maximum likelihood value (indicated by
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Figure 15.6 The log-likelihood function was tracked during the course of the MCMC analysis
of the replicase sequences. The log-likelihood started at a low value, but quickly reached apparent
stationarity. The shaded portion shows the part of the chain that was discarded as the ‘burn-in’.
The gray horizontal line shows the maximum likelihood value for the data.
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a gray horizontal line). Inferences should be based on the portion of the chain at station-
arity. Hence, we discarded the first 50 000 steps in the chain as the ‘burn-in’. Figure 15.7
shows the 50 % majority rule tree of the sampled trees. The numbers at the interior nodes
of the tree do not represent bootstrap support values but rather the posterior probability
that the clade is true. Just as with maximum likelihood, the parameters of the substitu-
tion model can be estimated using Bayesian inference. Figure 15.8 shows the posterior
probabilities for the transition/transversion rate ratio (κ) and the shape parameter of the
gamma distribution (α) for among-site rate variation.
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Figure 15.7 The Bayesian estimate of phylogeny. Only clades with greater than 0.5 posterior
probability are shown. The numbers at the interior nodes represent the posterior probability that
the clade is correct.
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Figure 15.8 The posterior probability distribution of the transition/transversion rate ratio (κ) and
the gamma shape parameter for among-site rate variation (α).
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15.8 ASSESSING UNCERTAINTY OF PHYLOGENIES

The nonparametric bootstrap, introduced to the phylogeny problem by Felsenstein (1985),
has become a standard method for assessing the uncertainty in phylogenetic trees. The
bootstrap works by constructing many replicate data sets of the same size as the original
data matrix by randomly sampling the sites with replacement. Hence, for any single
bootstrap data matrix, some sites might be represented several times and others not at
all. Each bootstrap data matrix is analyzed in the same manner as the original data. The
proportion of the time that a particular clade is found in analysis of the bootstrapped data
matrices represents the bootstrap confidence for that clade.

The appeal of the bootstrap is that it can be used to assess the accuracy of estimated
phylogenetic trees (τ̂ ) without making explicit assumptions about the distribution of
trees around the true tree (τ T ). However, the application of the bootstrap method to the
phylogeny problem has been criticized as providing biased estimates of the accuracy of
phylogenetic trees (Hillis and Bull, 1993); Hillis and Bull (1993) performed simulations in
which the bootstrap distribution of trees (τ̂ B) was compared to the true tree that generated
the simulated data (τ T ). Efron et al. (1996) argue that this is not the relevant comparison as
the bootstrap method is intended to evaluate the (unobservable) distribution of differences
between τ̂ and τT by using the (observable) distribution of differences between τ̂ B and τ̂ .
The bootstrap is not severely biased in evaluating the difference between the estimated
tree and the true tree, though Efron et al. (1996) argue that the bootstrap can be improved
by performing a more elaborate bootstrap procedure. The bootstrap can also be used to
construct confidence intervals for other parameters of evolutionary models. However, use
of the bootstrap for this purpose is uncommon in the phylogenetics literature.

Efron et al. (1996) also argue that the bootstrap proportions on a tree have a Bayesian
interpretation as the assessment of error in the estimated tree when assuming all
phylogenetic trees have an equal prior probability. Larget and Simon (1999) point out that,
if this is true, it is computationally much more efficient to perform a Bayesian analysis
using MCMC than to perform a traditional nonparametric bootstrap using maximum
likelihood. MCMC is very efficient in how it uses computational resources. Every
calculation of the likelihood for a tree (a task that is computationally difficult) provides
some information about the posterior probabilities of trees. If a move to a particular tree
is often accepted then, roughly speaking, that tree has a higher posterior probability than
a tree that is rarely moved to during the course of the Markov chain.

Figure 15.9 shows the maximum likelihood and Bayesian estimates of phylogeny for
the bacteriophage groups with the support for the clades indicated. For the maximum
likelihood tree the numbers at the interior branches represent bootstrap support for the
clade, whereas for the Bayesian estimate the numbers indicate the posterior probability that
the clade is correct. The confidence intervals for the parameters of the substitution model
are κ = 2.33 (1.89, 2.88) for the transition/transversion rate ratio and α = 0.70 (0.55, 0.85)
for the gamma shape parameter describing the rate variation across sites. In a Bayesian
analysis, the uncertainty in the parameters can be evaluated directly from the posterior
probability of the parameter (see Figure 15.8). However, a 95 % credibility interval can be
constructed by taking the 2.5 and 97.5 % quantiles of the posterior probability distribution.
The 95 % credibility intervals for the transition/transversion rate and the gamma shape
parameter are κ = 2.28 (1.93, 2.68) and α = 0.75 (0.62, 0.92), respectively.
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Figure 15.9 The best estimate of phylogeny for the Leviviridae for the replicase gene under
the maximum likelihood and Bayesian criteria. The HKY85+ � model of DNA substitution was
assumed. The numbers above the branches show the posterior probability that the clade is correct,
whereas the numbers below the branches show the bootstrap support for the clade.

15.9 HYPOTHESIS TESTING AND MODEL CHOICE

There are a number of ways to construct hypothesis tests. One of the most general and
important of these is based on the likelihood ratio. The likelihood ratio is the ratio of
the probability of observing the same data under different models. The likelihood ratio in
favor of model 1 against model 2 is

�12 =
f (Observations|M1)

f (Observations|M2)
.

When the models are nested (i.e. M1 is a special case of M2), twice the negative log of
the ratio

�12 =
max[f (Observations|M1)]

max[f (Observations|M2)]
,

is asymptotically χ2 distributed, with the degrees of freedom being the difference in the
number of free parameters between the two models (Wilks, 1938). Alternatively, if the
models are not nested or if the assumptions of the test are otherwise violated, the null
distribution of the test statistic can be simulated using the parametric bootstrap. Likelihood
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ratio tests have been used extensively in phylogenetic analysis to test the molecular clock,
to choose among different models of DNA substitution, and to test hypotheses on trees
(see Goldman, 1993; reviewed in Huelsenbeck and Rannala, 1997).

Bayesian model choice is often guided by the Bayes factor (Kass and Raftery, 1995).
The Bayes factor in favor of model 1 against model 2 is

B12 =
f (M1|Observations)

f (M2|Observations)
f (M1)

f (M2)

,

which is the ratio of the posterior odds ratio to the prior odds ratio. The Bayes factor
is on roughly the same scale as the likelihood ratio and should be interpreted as ‘the
change in the odds in favor of the hypothesis when going from the prior to the posterior’
(Lavine and Schervish, 1999). The Bayes factor can be used for nested models, but is
also easily extended to nonnested models. To date, Bayes factors have found only a
limited application in phylogenetics. For example, Suchard et al. (1999) examined nested
models of DNA substitution using Bayes factors, with results similar to those found
using likelihood ratio tests. Also, Huelsenbeck et al. (2000a) examined two models of
host switching using Bayes factors.

15.10 COMPARATIVE ANALYSIS

Biologists often test evolutionary hypotheses by comparing some feature of an organism
across several different species (broadly referred to as the ‘comparative method’ here,
though the term is usually applied to analyses that examine correlation in two or more
characters). The comparative method removes the covariation of characters induced by
a common phylogenetic history by performing the analysis in a phylogenetic context.
To date, most methods that have been proposed to test specific evolutionary hypotheses
assume that the phylogenetic history of a species group is known without error; this
assumption is implicitly made when the phylogeny is estimated and then used in the
comparative analysis without consideration of the possible errors in the phylogeny. Is it
possible to avoid the assumption that the phylogeny of a species group is known without
error?

Bayesian inference implemented using MCMC suggests one way of performing
comparative analyses without assuming that the tree is known without error: The
comparative question is addressed on all possible trees, weighted by the probability
that each tree is correct. Suppose, for example, that each possible phylogenetic tree
is either consistent with or inconsistent with an evolutionary hypothesis. The overall
probability that the hypothesis is correct is simply the sum of the posterior probabilities
of trees consistent with the hypothesis. Table 15.4 illustrates how such an analysis might
be done. The sum of the posterior probabilities of trees consistent with the evolutionary
hypothesis is 0.58. This might be taken as only weak evidence that the hypothesis
is true.

A real example better illustrates the concept. The example concerns the evolution of the
horned soldier aphids (Stern, 1998). The phylogeny of horned soldier aphids was based
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Table 15.4 The posterior probabilities of different
trees that are either consistent or inconsistent with
some evolutionary hypothesis. The probability that
the hypothesis is correct is simply the sum of the
posterior probabilities of trees consistent with the
hypothesis.

τi f (τi | X )
Tree consistent or

inconsistent with hypothesis

τ1 0.40 Consistent
τ2 0.33 Inconsistent
τ3 0.07 Inconsistent
τ4 0.07 Consistent
τ5 0.06 Consistent
τ6 0.05 Consistent
τ7 0.01 Inconsistent
τ8 0.01 Inconsistent

Table 15.5 The posterior probabilities for the number of gains and losses of the horned
soldier caste character.

# Losses
0 1 2 3 4 5

# 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
G 1 0.0000 0.0076 0.1759 0.5819 0.0004 0.0000
a 2 0.0000 0.0316 0.1769 0.0006 0.0000 0.0000
i 3 0.0002 0.0131 0.0004 0.0000 0.0000 0.0000
n 4 0.0113 0.0000 0.0000 0.0000 0.0000 0.0000
s 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

on mitochondrial DNA sequences sampled from 34 aphid species. One question concerns
the number of times that horned soldiers (a specialized caste for defense only present on
the secondary hosts) evolved. Previous analysis suggests that the horned soldiers evolved
once and were lost twice. We examined this hypothesis by approximating the posterior
probabilities of trees using the program BAMBE (Simon and Larget, 1998; this analysis
is from Huelsenbeck et al., 2000c). We ran the Markov chain for 1 000 000 generations,
sampling the chain every 200 generations. Inferences on the number of gains and losses
of the horned soldiers were made using parsimony mapping on each of the 5000 sampled
trees. Table 15.5 summarizes the results. The posterior probability of a reconstruction that
has 1 gain and 2 losses is 0.1759. However, the posterior probability is spread out over
a number of other reconstructions. For example, the posterior probability of reconstruc-
tions involving 1 gain and 3 losses and reconstructions involving 2 gains and 2 losses
is also substantial. In fact, these three reconstructions (1 gain, 2 losses; 1 gain, 3 losses;
and 2 gains, 2 losses) account for 93 % of the posterior probability. This aphid example
illustrates how comparative analyses can be performed in such a way that inferences do
not depend critically upon any single phylogeny.
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15.11 CONCLUSIONS

The 1990s saw several exciting developments in phylogenetics. First, the models of DNA
substitution assumed in statistically based methods were greatly improved to reflect basic
biological observations, such as rate variation across sites and nonindependent substitu-
tions. Second, maximum likelihood and Bayesian inference of phylogeny became more
practical because of faster computers and improved computer programs implementing the
methods (such as PAUP∗: Swofford, 1998). Third, Bayesian inference was introduced to
the phylogeny problem. Bayesian inference represents the last of the widely used methods
of statistical inference to be applied to the phylogeny problem. Finally, MCMC was
applied to evolutionary problems with some success. For example, MCMC was applied
to maximum likelihood inference of coalescence parameters. Similarly, MCMC has been
applied to approximate posterior probabilities of phylogenies in a Bayesian framework.

However, the full potential of statistical methods that are based upon the likelihood
function is only beginning to be realized in phylogenetics. For example, coupled with
MCMC, it should be possible to examine more complex models of DNA substitution, such
as the covarion model, in a Bayesian or maximum likelihood framework. Similarly, many
questions that depend upon correlation among several different trees, such as inference
of horizontal gene transfer and host-parasite cospeciation, can be usefully addressed
using MCMC.

Maximum likelihood and Bayesian inference are very similar in that they both
use the likelihood function. However, Bayesian inference uses a subjective concept
of probability whereas many of the useful concepts in maximum likelihood (such
as confidence intervals and p-values) use a frequentist concept of probability. Much
debate in the statistics literature has focussed on the merits of these two definitions
of probability and the role that prior information should play in statistical inference
(especially when it is difficult to specify the prior information as a part of the statistical
model). These problems, as applied to the phylogeny problem, we leave as an exercise
for the reader.
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Phylogenetics: Parsimony, Networks,

and Distance Methods
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The accurate recovery of evolutionary trees is a major problem in mathematical inference. The
relevant theory comes from mathematics (graph theory, combinatorics, and Markov chains),
statistics (likelihood, Bayesian methods, resampling, and exploratory data analysis), operations
research (optimisation, and search heuristics), and computer science (complexity theory). Different
ways of presenting molecular data are described and a consistent terminology is presented. The
problem of the combinatorial explosion in the numbers of potential trees leads to a description of
the complexity of algorithms. The use of simple Markov models for studying the evolution of DNA
sequences is described. Methods for inferring trees are analysed under the three components of, an
optimality criterion, searching tree space, and assumptions or knowledge about the mechanism of
evolution (which can allow compensation for multiple (unobserved) changes at a site). The analysis
of methods in this chapter concentrates on parsimony and distance methods for inferring trees, but
also discusses the limited range of cases when maximum parsimony and maximum likelihood are
equivalent. A section describes the use of networks to represent the complexities in the data or
to summarise the variability of the output trees. An overview of tree-building methods includes
several strategies for searching tree space, from complete searches, branch-and-bound searches, to
different forms of heuristic approaches.

16.1 INTRODUCTION

The mathematics behind phylogenetic programs is interesting in that it comes from
several areas of pure and applied mathematics, both discrete and continuous. These
include graph theory, combinatorics, and Markov chains from mathematics, together with
statistics (likelihood, Bayesian analysis, resampling), operations research (optimisation,
search heuristics), and computer science (complexity theory). Fortunately, the underlying
concepts are relatively simple (even if the mathematics is complex) and in this chapter we
only consider the concepts. Our description of the mathematics is informal, more formal
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discussions are found in the primary literature. Of course, underlying all the algorithms are
(or should be) the biological models of the genetic information and biochemical processes.
More detailed treatments on tree building are available in Swofford et al. (1996), Page
and Holmes (1998), Nei and Kumar (2000), and Felsenstein (2003); and the mathematical
basis is in Semple and Steel (2003).

We focus on input data that is either aligned sequences representing a set of taxa,
or a matrix of differences (genetic distances) between each pair of taxa. The sequence
information is usually DNA, RNA, or protein sequences, though increasingly it is
information such as gene order or the position of sequence elements (short interspersed
nuclear elements (SINEs) and long interspersed nuclear elements (LINEs), respectively,
Kriegs et al., 2006), insertions/deletions, presence of exon boundaries, etc). The output is
in a graphical form (in the sense of graph theory) and can be either a single phylogenetic
tree, a set of trees, or a network (a connected graph with circuits, see later). A consequence
of the use of many areas of mathematics is that non-standard terminology has been
introduced into phylogeny in an ad hoc manner. An unfortunate consequence is that some
appropriate areas of mathematics have been overlooked, important problems neglected,
or erroneous assumptions made. We will keep our analysis of the problems as broad as
possible while keeping to well-defined mathematical terminology that is introduced later
in Figure 16.5. Basically, the terminology is both simple and powerful, and it is unclear
why phylogenetics does not use a conventional terminology from mathematics.

Another theme of this chapter is the need for careful analysis of concepts in regular
use. It is necessary to identify that any ‘method’ for inferring trees is a combination of at
least three components. These are (1) an optimality criterion, (2) a search strategy, and
(3) assumptions about the mechanism of evolution (including whether there is sufficient
knowledge to correct for multiple changes). Similarly, a concept such as parsimony has
two distinct uses: the principle of parsimony (Ockham’s razor) is the main use in science
generally, and an optimality criterion for inferring an evolutionary tree by minimising the
number of mutations on a tree. This second meaning usually uses data without correction
for multiple changes at a site, but the same algorithm works (often better) if corrections
are made for multiple changes. The two usages (the principle and the optimality criterion)
are quite different, and need not agree. For example, the Principle of Parsimony lead to
the conclusion that in some cases maximum (average) likelihood is to be preferred over
minimising the number of mutations (Steel and Penny, 2000).

It is worth reflecting on the general difficulty of inferring evolutionary trees accurately.
Because the events we wish to uncover happened over time periods ranging from hundreds
of years to 3000 million years ago, we usually cannot observe them directly (evolution
of RNA viruses is a good exception). The subject is therefore both difficult and exciting.
Exciting because it is necessary to push the current limits of quantitative science; difficult
because it is not possible to check answers directly. This makes the subject ideal for
mathematical and statistical reasoning. It also means that controversies will abound, and
that is expected when science is stretched to its limits. However, we must never get lost
in the mathematical reasoning to the exclusion of the biology.

16.2 DATA

Several ways of presenting data are illustrated in Figure 16.1: character state matrices
(such as aligned sequences); distance matrices; splits (partitions, patterns, subsets of taxa);
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tensors (3D matrices); gene order; and presence/absence of inserted elements and/or gaps.
As used here, tensors are based on three taxa, giving a three-dimensional ‘matrix’.

16.2.1 Character State Matrix

Figure 16.1(a) is a multiple alignment for short sequences from four mammals; it is a
character state matrix or simply the data matrix, data set, or data. Mathematically a
matrix or set is a singular object containing many entries – thus ‘data’ is singular. Each
row in the matrix is a sequence and represents the information about a taxon (plural taxa).
A taxon can be an individual, a group, a population, a species, or some higher taxonomic
group. It is a useful general term, and the number of taxa is denoted by t . Each column of
the matrix is a site, a column, a position (nucleotide or amino acid), or (as in the case of
morphological or behavioral information) a character, and their number is denoted as c.
An individual entry in a column may be a nucleotide, an amino acid, the presence or
absence of a SINE, a code, a colour, or a character state (hence, character state matrix ).
‘Colour’ is a mathematical term for discrete character states and the number of colours
is usually given the symbol r . On this terminology DNA has four colours, A, G, C,
and T; and proteins have 20. The number of character states is also called the size of the
alphabet, thus forming a useful analogy with letters in an alphabet. The patterns in the
full character state matrix are easily enhanced by a consensus format (see the lower part
of Figure 16.1(a)). The preferred method is to make a consensus for each site (breaking
ties arbitrarily), place it at the top, and show only deviations from the consensus. This is
a natural form for introducing another way of describing the data, partitions or splits, but
distances will be discussed first.

16.2.2 Genetic Distances (Including Generalised Distances)

Figure 16.1(b) is a distance matrix derived from Figure 16.1(a). In general, values can
be derived from any character state matrix, or directly from a range of measurements
such as DNA/DNA hybridisation, comparison of shapes of RNA or protein secondary
and tertiary structures (Collins et al., 2000), to the number of ‘breakpoints’ required to
equalise gene order in two genomes (Figure 16.1e, Henz et al., 2005). Distances are a
subset of difference values that form a ‘metric’; to be a metric, the values for any subset
of three taxa i, j , and k must have the following properties:

di,i = 0;
di,j = dj,i > 0 for i �= j ; and

di,j ≤ di,k + dj,k(this being the triangle inequality).

The first two are straightforward, each thing is identical to itself (di,i = 0); and the
difference between A and B must be the same as between B and A (thus di,j = dj,i); and
the value must be positive when they differ. The third part of the definition, the triangle
inequality is also a simple concept; the direct distance between London and Sydney cannot
be greater than the sum of the distances from London to New York plus New York to
Sydney. This simple intuitive concept of distances from everyday life is thus extended to
a wide range of scientific activities, in this case, the genetic distance between organisms.

When measuring parameters such as DNA/DNA hybridisation, or distances between
RNA or protein shapes, it is possible that any the three properties will be violated. There
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(a)  Character state matrix

Taxa names
or labels

Taxon
index

1 2

| 0 | 0 |

t1 Monkey 1 TGAACTCAAGCACCAAAAAGGAAGACTAC

t2 Horse 2 TAGGCTCTAGCACCAACATGGCATACTAC

t3 Kangaroo 4 TAAGCCAAAGCGACAAACTAGCCGTCTAC

t4 Opossum 8 TAAGCCATAGCGACAAACAAGCCTATTAC

1 2

| 0 | 0 |

Consensus TAAGCTCAAGCACCAAAAAGGCAGACTAC

t1 Monkey 1 .G.A.................A.......

t2 Horse 2 ..G....T........C.T....T.....

t3 Kangaroo 4 .....CA....GA....CTA..C.T....

t4 Opossum 8 .....CAT...GA....C.A..CT.T...

(b)  Distances
Divergence matrix, Fij, for monkey and horse

t1 Monkey 0 0.28 0.41 A 9 1 1 2
t2 Horse 8 0 0.41 0.41

0.45
G 1 7 0 0 Monkey

t3 Kangaroo 12 12 0 0.17 C 1 3 3 1
t4 Opossum 13 12 5 0 T 0 0 0 3

Monkey Horse Kanga Oposs A G C T
Horse

(c)  Splits Splits (from data a)

Index Taxa in splits No. Frequency s2 Columns in each split
0 , {t1,t2,t3,t4} 12 0.41 0.242 1, 5, 9, 10, 11, 14, 15, 16, 21, 27, 28, 29

1 {t1} {t2,t3,t4} 3 0.10 0.090 2, 4, 22

2 {t2} {t1,t3,t4} 2 0.07 0.065 3, 17

3 {t1,t2} {t3,t4} 7 0.24 0.182 6, 7, 12, 13, 18, 20, 23

4 {t3} {t1,t2,t4} 1 0.03 0.029 25

5 {t1,t3} {t2,t4} 2 0.07 0.065 8, 24

6 {t2,t3} {t1,t4} 1 0.03 0.029 19

7 {t1,t2,t3} {t4}  1 0.03 0.029 26

29 1 0.732

(d) Tensor (e) Gene order

(f) Presence/absence TGAACTCAAGCACCGCATTACGAAGTCCTGCCAAAAAAGGAAGACTAC

TAGGCTCTAGCACC

3

2
R 11

Y 3
R
Monkey

Kangaroo

Horse
b c d ea

c d e ba2
8

0
0

Y

AACATGGCATACTAC...

–
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may be a detectable interaction between, say, the hybridisation of DNA from the
same individual (di,i �= 0), the reciprocal values between two taxa may not be equal
(di,j �= dj,i), and/or the triangle inequality may not hold. Measures based on these
properties are differences or dissimilarities rather than distances; they are still useful
though many tree-building algorithms are expected to work better if the data are metric
distances.

Hamming distances simply count the relative number of differences between two
aligned strings. The strings may be sequences, morphological characters, or even word in
copies of an ancient manuscript. Many weightings are possible, e.g. transversions more
than transitions. It is important to then divide by c, the length of the sequence, because
corrections for multiple changes depend on proportion of sites that vary, not just on the
total number of sites that differ. This gives the distance (di,j ) as a proportion 0 ≤ di,j ≤ 1.
Thus dividing by c leads to more information being included in the distances.

As described, these are observed distances and generally, because they do not include
multiple changes at a site, underestimate the total number of changes between a pair of
taxa. For example the changes A → C → A between a pair of taxa will not be detected,
both sequences have an ‘A’. Similarly the series of changes A → C → G will appear as
a single A → G change. Later we give the formulae (see Swofford et al., 1996), which
estimates the expected number of multiple changes and these may allow more accurate
estimates of the real distance. Corrections are important for sequences that have diverged
for longer times, but they introduce other sources of error. Small differences introduced
by sampling can be exaggerated, variances increased, and a bias toward higher values
introduced. Corrections become erratic when divergences are large, especially when the
underlying processes vary between parts of the evolutionary tree.

These Hamming distances are not the only distances that can be obtained from
sequences; the two additional distance matrices in Table 16.1 are also derived from the
four sequences in Figure 16.1(a). The entries of the 4× 4 matrix on the left is based solely
on the nucleotide frequencies of the sequences, in this case the distance between species
i and j is dij =

√
�(fi − fj )2, where fi and fj are the frequencies of the nucleotides.

Alternatively, entries in the matrix on the right are derived from divergence matrices,
Fij , for each pair of taxa (see the right-hand side of Figure 16.1(b)) with the distance

Figure 16.1 Data for tree building; the same data is used for (a) to (d). (a) Sequence data for 29
nucleotide positions (originally derived from α-crystallin protein sequences). A consensus format
is given in the lower part of (a). (b) Distances derived from (a) or (c) by: lower left, counting the
number of differences between pairs of taxa; and, upper right, dividing these by the length of the
sequences. A divergence matrix, Fij , for monkey and horse is shown on the right. This is used to
estimate a genetic distance even when two sequences differ in nucleotide composition. (c) Splits
derived from (a) by using the number of times subsets of taxa have a different code to the last
taxon (t4). This form of the data is equivalent to (a) for two-state characters, but omits the order
of columns in the sequence, and which of the two codes occurs in (t1). (d) Tensor (3-D matrix)
for (a), recoded as R (purines) and Y (pyrimidines). In this example the entry 3 in front lower
left counts the number of sites where monkey and kangaroo have R, while horse is Y – the RYR
pattern (sites 8, 22, 24). Similarly, there are two sites (7 and 13) where monkey and horse have Y,
and kangaroo R – the YYR pattern. (e) Gene order for five genes, indicating by the arrow the 5′
to 3′ direction of the gene. (f) This is an example of an insertion in one sequence, it is present in
one, absent in the other.
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Table 16.1 Two distance matrices derived from the data in Figure 16.1(a). The values on the
left hand are derived from nucleotide frequencies; those on the right are LogDet distances that
compensate for differences in nucleotide composition.

Monkey 0.000 0.181 0.181 0.117 Monkey 0.000 0.414 0.744 0.834
Horse 0.181 0.000 0.000 0.091 Horse 0.414 0.000 0.578 0.593
Kangaroo

0.181 0.000 0.000 0.091

 Kangaroo

0.744 0.578 0.000 0.253


Opossum 0.117 0.091 0.091 0.000 Opossum 0.834 0.593 0.253 0.000

Monkey Horse Kanga Oposs Monkey Horse Kanga Oposs

dij = ln(det Fij ), the natural logarithm of the determinant of the divergence matrix Fij
for each pair i, j of species. These LogDet (or paralinear) distances compensate partially
when the sequences have different nucleotide compositions.

The important point here is that there are many ways of forming pairwise
distances–distances do not just appear, they are derived from the data by a calculation
that depends on a reasonable knowledge of the organisms, the data, and the mechanisms
of evolution.

Three important terms are additive distances, ultrametric distances, and the four-point
condition. Additive distances are values in a distance matrix D that can be fitted exactly
on a tree. An example is shown in Figure 16.2. Check that the path lengths on the tree add
up to the values in the distance matrix. Note also that in this case if the tree were built by
selecting the smallest entries in D, then taxa 2 and 3 would be selected first – but on this
tree these taxa are not joined directly. Additive distances have two interesting features;
they describe a unique tree and in addition, the lengths (weights) of the edges of the tree
are unique, though it is still be hard to interpret the edge lengths in any particular case.
Do not get too excited about additive distances; real data is never additive, even after
correcting for multiple changes. The underlying problem is the number of equations and
the number of unknowns. In general, there are (t2 − t)/2 distances; 10 for five taxa. Then
there are 2t − 3 edge weights (which are our unknowns, seven for five taxa). It is therefore
seldom that distances are additive, although the concept is important for understanding
the accuracy and reliability of tree reconstruction.

Ultrametric distances are additive distances with an additional property that can be
described both biologically and mathematically. Biologically, the distances fit a rooted
tree under a molecular clock so that there are (statistically) equal rates of evolution from
the root to all the tips. This is equivalent to the mathematical property that for all triples

Taxon 1 0
Taxon 2 7 0
Taxon 3 8 5 0
Taxon 4 13 10 9 0
Taxon 5 11 8 7 6 0

t1 t2 t3 t4 t5

t1

t2
t3

t4

t5

5

2

1

 2

3
4

2

Figure 16.2 Additive distances and the corresponding tree.
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i, j , and k there is some ordering so that the two largest distances are equal,

dik = djk ≥ dij ,
(‘some ordering of i, j , and k’ means that the indices of the three taxa can be interchanged
to find an order for which this relationship holds). For example, dik may be 29 nucleotide
differences, djk 31, and dij 12. In this case you might decide that, statistically speaking,
you could not reject the ultrametric relationship. The ultrametric relationship is used in
the relative rates test that estimates whether the same rate of change occurs on the two
closest taxa. It is necessary to check that taxon k is genuinely more distantly related than
the other two taxa, that it is a genuine outgroup. However, this test is relatively weak
(Bromham et al., 2000).

The third term, the ‘four-point condition’ is that for any taxa i, j, k, and l, the larger
two of the sums

dij + dkl, dik + djl, dil + djk,
are of equal value i.e. (dij + dkl) = (dik + djl) ≥ (dil + djk) for some ordering of i, j, k,
and l.

This condition is mathematically equivalent to the distances being additive. As an
exercise, test any three distances from the right-hand side of Table 16.1 to see if they are
ultrametric. Test also with all four whether the distances satisfy the four-point condition.
You will find it helpful to look at the three unrooted trees for four taxa, as follows.

Taxon 1 Taxon 1 Taxon 1Taxon 3 Taxon 2 Taxon 3

Taxon 3Taxon 2 Taxon 2Taxon 4 Taxon 4 Taxon 4

Take a set of distance values, and see how well they fit onto each of the three trees.
Most data sets will not fit exactly. Programs, such as SplitsTree (Huson and Bryant,
2006), adds cycles into the graph if the distances carry a signal additional to the tree; an
example is shown below on the left. This introduces an additional weight in the graph,
shown by the weights, w12 and w13, on two internal edges (the parallel edges have the
same weights in this graph). This graph will more closely represent the distances in the
data by summing the weights on the most direct path between any pair of taxa. This
can be extended further to a Buneman graph, shown below on the right, where a further
weight is included. Again, parallel edges are assigned the same weight.

Taxon 1 Taxon 2

Taxon 3 Taxon 4

w13

w12

Taxon 1 Taxon 2

Taxon 3 Taxon 4

One additional concept, generalised distances, is described now and used later for
spectral analysis. Note that the distance values above are for pairs of sequences and
are therefore ‘pairwise distances’. However, for any subset with an even number of taxa
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(4, 6, 8 . . .), we can sum the minimum combination of pairwise distances to get a distance
value for the subset. For example, in Figure 16.2 the generalised distance value for the
subset {1,2,4,5} would be d12 + d45 = 7+ 6 = 13. This broader concept is useful because
the total number of subsets with an even number of taxa is the same as the number of splits
of the taxa (see next section). In each case there are 2t−1 even-order subsets (including
zero taxa, which has a distance 0), and 2t−1 splits. This equality between the numbers of
subsets and of splits is very important because it allows the Hadamard conjugation that is
described later. Basically, it is possible to move between splits of the data and generalised
distances without any loss of information. However, distance methods traditionally use
just the pairwise distances. When distances are derived from sequence data there is loss
of information because it is not possible in general to recover the frequency of splits just
from the pairwise-distance values (Penny, 1982).

In this section we have shown several ways of forming distance matrices to emphasise
the richness and diversity of the concept. Our purpose is to emphasise that the investigator
needs to understand the alternatives and choose variants that are appropriate. Science is
not a ‘passive’ process where you put data into a computer program and accept the
answer that pops out. Rather it is an active process where the investigator is making
hypotheses, testing them, looking for alternatives, challenging dogma, discussing questions
with peers – altogether a much more exciting adventure. So review this section quickly
with this in mind.

16.2.3 Splits (Bipartitions)

Sequence data can be represented as splits (or bipartitions), a natural extension of the
character state matrix (Figure 16.1). The distribution of characters at a site is a pattern
and the number of columns in which each pattern occurs is recorded. When only two
states are present at a site the pattern can be identified by the subsets of taxa that share
a common character. This pair of subsets is called a split or bipartition.

Examine the lower part of Figure 16.1(a) where the sequences are shown in consensus
form. The first and the fifth columns have equivalent character states, the same pattern
of taxa sharing the same character. Similarly, in the second and fourth columns the taxa
have the same pattern–taxon 1 (monkey) is different from the other three, so the split
is {monkey}, {horse, kangaroo, opossum}. Look at columns 2 and 4 again, the patterns
are the same but one column is [GAAA]t and the other is [AGGG]t (here we transpose
a column to show it as a row). The pattern of taxa sharing the same character state
(code) is also the same as column 22 [ACCC]t –thus the patterns are the same in columns
2, 4, and 22, even though the nucleotides differ. Clearly we will need a simple way of
numbering these patterns so that they can be counted easily by computer.

At this point we only describe partitions for two-state characters (two colours) such
as for purines and pyrimidines, or the presence or absence of a SINE at a specific site
in a sequence. The concept of a split (or bipartition) comes from the observation that
each column in the data set (Figure 16.1a) splits (or partitions) the taxa into two disjoint
subsets. (Disjoint means that each taxon occurs in just one of the two subsets – no taxon
is omitted and no taxon occurs in both.) With four taxa (t1 − t4) there are eight possible
splits, which we number 0− 7 to make it easier to automate calculations. You will find
this way of recoding the data very instructive because there is both a direct relationship
between splits in the data, and edges in evolutionary trees. It also allows a natural way
of introducing estimates of sampling errors.
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Figure 16.3 Spectrum for the splits in Figure 16.1(a).

Figure 16.3 gives the frequencies of the splits as a histogram, which is a spectrum.
When we come to Hadamard transforms we will find that the transforms are examples
of Fourier analyses and so they fit into the general framework of spectral analysis (see
later).

The indexing system to identify taxa, splits (the information in columns of data), and
edges in a tree is simple and beautiful. It is worth mastering because it provides a simple
and unambiguous method for describing and relating edges in the tree, the taxa, and
patterns in the data. Each taxon has its own name or label that is fixed for the study,
but in addition we give each taxon an index that depends on its position in the data set.
The taxon name (or label ) may be Equus caballus, horse, Dendroligotrichum dendroides,
Drosophila, kangaroo, Sam, t5, . . ., etc. Its index will be selected from successive powers
of 2; i.e. 1, 2, 4, 8, 16, . . ., etc. depending on whether it is the first, second, third, etc.
sequence in the data set (see Figure 16.1). Thus the indices are,

20, 21, 22, 23, 24, 25 · · ·
1, 2, 4, 8, 16, 32 · · ·

This is a binary indexing system because it uses powers of 2. Indices for taxa are
added together to index either splits in the data, or edges of a tree. The indices are shown
for the taxa in Table 16.2. Using this indexing system you will find that the sum of the
taxon labels of the first t taxa is one less than the label for taxon t + 1. For example,
with four taxa the sum of the labels is 1+ 2+ 4+ 8 = 15 and the next label added to
make a five-taxon tree is 25−1 = 16.

Next we need to count all the ways in which t taxa can be split into two subsets–these
are shown in a natural ordering in Table 16.2. When listing the two subsets, the taxon
with the largest index (in this case taxon 4, t4 with label 8) is always put in subset 2.
Consequently subset 1 has all the taxa whose character state differs from the last taxon
(t4 in this case). This indexing is repeated for every site (character).

In the first split in Table 16.2 all taxa have the same code; none differ from t4. Hence,
this split has index 0 (s0). In the second split, index 1 (s1), t1 is the only taxon where
the character state differs from t4, so the split has index 1. With another example, the
split in column 19 of Figure 16.1(a) has index 6 = 2+ 4 because the taxa differing from
t4 are t2 and t3, with indices 2 and 4. It is easy to verify that there are 2t−1 splits. For
two-state characters, each column represents a split and summing over all columns gives
the frequencies of each split. The frequencies of the splits in Figure 16.1(a) are 12, 3,



498 D. PENNY, M.D. HENDY AND B.R. HOLLAND

Table 16.2 Splits. A split partitions the taxa into two disjoint subsets, shown on the left as subset 1
and subset 2. All splits of four taxa, t1 − t4, are shown, together with their indices. (For completeness
we also identify the null split, where all taxa have the same state, so subset 1 is the empty set ∅.)
Check that in every case the sum of the indices is 15 (1+ 2+ 4+ 8); consequently only the index
of first subset need be used. The right-hand side of the table has columns representing all eight
splits for two-state characters. Under a symmetric model, e.g. [abbb]t as equivalent to [baaa]t.
These pairs of columns are assigned the same indices, 0–7, and are shown above the columns.

All possible patterns in columns (splits)
Index 1+ and their indices. Both symmetric forms are

Subset 1 Index 1 Subset 2 Index 2 Index 2 given, e.g. pattern 7 = [aaab]t and [bbba]t

∅ 0 {t1, t2, t3, t4} 15 15 Name 0 1 2 3 4 5 6 7
{t1} 1 {t2, t3, t4} 14 15 t1 a|b b|a a|b a|b a|b a|b a|b a|b
{t2} 2 {t1, t3, t4} 13 15 t2 a|b a|b b|a a|b a|b b|a b|a a|b

{t1, t2} 3 {t3, t4} 12 15 t3 a|b a|b a|b b|a b|a a|b b|a a|b
{t3} 4 {t1, t2, t4} 11 15 t4 a|b a|b a|b b|a a|b b|a a|b b|a

{t1, t3} 5 {t2, t4} 10 15
{t2, t3} 6 {t1, t4} 9 15

{t1, t2, t3} 7 {t4} 8 15

2, 7, 1, 2, 1, and 1, for splits 0–7 respectively. Dividing these values by the number of
columns estimates the probability of observing a particular subset in the sequence.

Extending to additional taxa is straightforward and is shown for five taxa. The eight
splits in subset 1 are the same as for four taxa – then subset 2 (for four taxa, Table 16.2)
is written below subset 1, in reverse order. We now have 16 indices, numbered 0–15.
This completes subset 1 for five taxa; subset 2 for these is the complement of subset 1.
Calculating their indices, and verifying that for each pair they sum to 31 is a check. This
procedure gives a simple recursive method that can be used as t increases. There are other
ways for ordering the splits, but it is essential to be consistent and this way of indexing
is simple for both man and beast (computer). Make sure that you could determine the
32 splits for t = 6. There are several ways of indexing four-state characters, but this is
outside the scope of this chapter (see Hendy et al., 1994).

16.2.4 Sampling Error

How accurate are our data samples? Biologists are used to the concept of sampling error
and any estimate for a distance value or frequency of a split should have an indication of
this. For distances, the variance is di,j × (1− di,j )/c where the distances are expressed
as differences per site. There is a similar formula for split i (Waddell et al., 1994); its
variance is Vi = si(1− si)/c, where si is the frequency of columns with that split. The
covariance for the splits i and j is Vij = si(1− sj )/c. The variance on each distance
value is expected to be relatively less than that for splits, there are t (t − 1)/2 distance
values compared with 2t−1 splits.

There is an additional factor for covariances with distances when a tree-like process
generated the data; there is a high correlation between many pairs of distances. Consider
the rooted tree in Figure 16.4. The number of differences between any pair of taxa depends
on the path between them; most values will be correlated – the extent depends on the
proportion of paths they share. In this example chicken–turkey and moa–kiwi distances
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Chicken KiwiMoaTurkey
1 2 3 4

Figure 16.4 Correlation of distances. The distance between chicken and kiwi is the path length
(dashed line) between them. However the distance from chicken to moa shares much of the same
path and consequently its value is highly correlated. The turkey–moa distance is also highly
correlated with chicken–kiwi.

Table 16.3 Covariance matrix for the splits from Figure 16.1. Variances are shown on the diag-
onal, and covariances off the diagonal. Check that, e.g. V01 = V10 = −s0 × s1(−0.4138× 0.1034 =
−0.0428), etc. Fill in the remaining entries.

Index 0 1 2 3 4 5 6 7

s [ 0.4138 0.1034 0.0690 0.2413 0.0345 0.0690 0.0345 0.0345]

0.2426 −0.0428 −0.0286 – – – – –
−0.0428 0.0927 −0.0071 – – – – –
−0.0286 −0.0071 0.0642 – – – – –

V[s]


−0.0998 −0.0250 −0.0166 0.1831 – – – –


−0.0143 −0.0036 – – 0.0333 – – –
−0.0286 −0.0071 – – – 0.0642 – –
−0.0143 −0.0036 – – – – 0.0333 –
−0.0143 −0.0036 – – – – – 0.0333

are not correlated, but this requires knowing the tree. Splits come from a multinomial
sampling procedure. For Figure 16.1(a) the covariance matrices are given for both splits
(Table 16.3) and distances (Table 16.4). These are calculated using Hadamard transforms
and do not require knowledge of the tree (see later).

16.3 THEORETICAL BACKGROUND

This section gives some theoretical background to inferring evolutionary trees and
networks. It covers the terminology of trees and graphs, the numbers of trees and its
relation to computational complexity and to evolutionary models.

16.3.1 Terminology for Graphs and Trees

The terms we use are given in italics with alternatives given in parentheses. A graph
G = (V ,E) is a set V of nodes (vertices, points) and a set E of edges (internodes, links,
‘branches’) where each edge is represented by a pair of nodes. If edge e is represented by
the pair of nodes {v1, v2}, then we can write e = (v1, v2), and we say the edge e is incident
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Table 16.4 Covariance matrices for generalised distances V[d]. The vector of distances d is shown
first. The largest and smallest covariances in V[d] are underlined. Entries 1 and 5 in d (the distances
between taxa 1 and 4, and taxa 1 and 3, respectively) covary the most, while entries 4 and 5 are
slightly negatively correlated.

0 d14 d24 d12 d34 d13 d23 All 4

d [ 0.0000 0.4482 0.3793 0.2759 0.1725 0.4137 0.4138 0.4584 ]

V[d] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.4947 0.2116 0.0975 0.0524 0.3186 0.2497 0.0594
0.0000 0.2116 0.4709 −0.0023 0.0072 0.2378 0.3067 0.0239
0.0000 0.0975 −0.0023 0.3996 0.1118 0.0475 0.0477 0.2116


0.0000 0.0524 0.0072 0.1118 0.2855 −0.0048 0.0643 0.0547

0.0000 0.3186 0.2378 0.0475 −0.0048 0.4851 0.2092 0.0761
0.0000 0.2497 0.3067 0.0477 0.0643 0.2092 0.4852 0.0072
0.0000 0.0594 0.0239 0.2116 0.0547 0.0761 0.0072 0.3663

Source: Data from Figure 16.1.

on v1 and v2. The graph is often drawn with a dot for each node, and a line connecting
two adjacent dots for each edge. Two edges are adjacent if they share a common node.
A path is a sequence of edges e1, e2, . . . , en, where e1 is adjacent to e2, e2 is adjacent to
e3, . . . , en−1 is adjacent to en. If e1 = (v0, v1) and en = (vn−1, vn), then we say the path
connects v0 to vn, with v0 and vn being the endpoints of the path.

A graph is connected if for each pair of nodes of G there is a path connecting them. A
circuit (cycle) is a path with two ends being the same node. Figure 16.5(a) is a graph that
is not connected and contains several circuits. The degree (valence) of a node v is the
number of edges incident on it. A node of degree 1 is a leaf (tip, external node, pendant
vertex). Figure 16.5(a) contains vertices of degrees 0, 1, 2, 3, and 4. Sometimes we may
draw two edges crossing, although the point of crossing does not represent a node, as in
the centre of Figure 16.5(a).

A tree is a graph T = (V ,E) which is connected and has no circuits, a ‘connected
acyclic graph’; Figure 16.5(b) is a tree. For phylogenetic trees a node may represent a
taxon by attaching a label (name) to the node; Figure 16.5(c) is a tree where all nodes are
labelled. Often the edges have an associated real number, the weight (length) of the edge.
In phylogenetics this can represent the number of substitutions, time, or a probability of
substitution; hence edge weights are non-negative. When the edges are weighted, T is a
weighted tree (see Figure 16.5d). A graph or tree, or parts of the tree, can be rotated on
the page and it is still the same graph or tree. Examples include (t1, t2) in Figure 16.5(f)
and similarly (t5, t6) with t4. What is essential is the relationship between the edges and
vertices, not the way they are represented on the computer screen or on the page.

We often wish to identify the root of the tree (the most recent common ancestor). Such
a tree is a rooted (directed) tree; the root is unique and the tree can be drawn at the
top, bottom, or to the left, but with all edges directed away from the root. A rooted tree
can be derived from an unrooted tree by identifying a root, which may be an existing
node, or a new node (of degree 2) can be inserted into an edge. Figure 16.5(e) is a
rooted tree obtained from Figure 16.5(b) where the root has been added to the central
edge in Figure 16.5(b). Removing the root from Figure 16.5(e) returns to the unrooted
tree Figure 16.5(b).
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Figure 16.5 Terminology for trees. Examples of graphs (trees and networks), see text for details.

A phylogenetic tree (phylogeny, X-tree, cladogram) for a set of taxa S is a tree with
labels on all leaves, and possibly on some internal nodes. More than one taxon can
label a node. Figure 16.5(f) is a phylogenetic tree on the taxon set S = {t1, t2, . . . , t6}.
A phylogenetic tree may be rooted or unrooted, weighted or unweighted, binary or
nonbinary. A path connecting two labelled vertices (t2 and t3), is shown in Figure 16.5(f)
as a dotted line. In a rooted tree we can identify a lineage as a path from an internal node
to a labelled node; the path is directed away from the root. In addition, a subtree (branch,
in mathematical and botanical terminology) is the set of lineages from a node v with
a common first edge e. Figure 16.5(h) shows both a lineage and a subtree. In a binary
rooted tree, any path from the root has two choices (a bifurcation) at every non-leaf node.

A phylogenetic network is a connected graph, again with some of the nodes labelled
(Figure 16.5i). In this example the number of times a sequence has been found in a
population is indicated by the size of the circle. In a tree the removal of any edge partitions
the taxa into disjoint subsets, in a network a set of (parallel) edges may be required to
partition the graph into two connected subgraphs (so the graph appears ‘box-like’ as in
Figure 16.5(i) which has two sets of parallel edges).

There are two non-standard usages found in phylogenetics. The first is that a ‘branch’
refers to an edge (not a subtree; in both mathematical and botanical terminology a branch
is a subtree). The second is that ‘topology’ often refers to an unweighted tree (rather
than to an unlabelled tree). It is important to be aware of both alternative usages, only
occasionally are they ambiguous. However, we will avoid both non-standard usages.

16.3.2 Computational Complexity, Numbers of Trees

16.3.2.1 Numbers of Trees

A fundamental problem with inferring evolutionary trees is the very large numbers of
trees, even in searches limited to unrooted binary trees. The numbers of trees (and either
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Figure 16.6 Counting unrooted binary trees. There is a single unrooted binary tree for three taxa.
The fourth taxon (t4) can be connected to any of the three edges a, b, or c. This leads to the three
distinct unrooted trees for four taxa (shown as a, b, and c), each with five edges. A fifth taxon can
be added to any of these five edges, thus leading to 15 trees (3 trees, times five edges), etc.

the time to calculate them, or the amount of computer storage required) increases faster
than exponentially with respect to the number of taxa t , i.e. ∝ t t . There are simple
formulae for counting tip-labelled binary trees, either unrooted or rooted. The number of
unrooted binary trees is (2t − 5)!! and the number of rooted binary trees = (2t − 3)!!,
where t is the number of taxa. The ‘double factorial’ notation (!!) is the product of every
second number, i.e. (2t − 5)!! = 1× 3× 5× 7× . . .× (2t − 5) where the ‘. . .’ indicates
repeating the intermediate steps until you reach the last value (2t − 5). For example, for
10 species 2t − 5 = 15 so there are 1× 3× 5× . . .× 15 = 2 027 025 unrooted binary
trees. An informal way of finding the above formulae is given in Figure 16.6.

16.3.2.2 Computational Complexity

The fundamental measure of the usefulness of an algorithm (a numerical recipe) is the
time and/or computer storage space it requires – its computational complexity. This can
be the number of computational steps as a function of the size of the input data. It is
usually expressed as a function of n; here it is the number of sequences (t) and so we use
n and t interchangeably. If this function is bounded (limited) by a polynomial of n (such
as n2, or n4, etc.), then the algorithm is a polynomial time algorithm and is efficient. The
classification uses the worst case, and so an order n2 algorithm guarantees to complete in
that number of steps. The number of steps to determine a tree using the neighbor-joining
(NJ) algorithm is a polynomial of degree 3 and we write O(n3) (pronounced as order n
cubed ) for the computational complexity of NJ.

In contrast, any algorithm which requires a separate calculation of each of the (2n – 5)!!
tip-labelled binary trees (such as maximum parsimony (MP) or maximum likelihood (ML))
cannot in general be computed in polynomial time. We write O(nn) for the number of
binary trees, because (2n− 5)!! is asymptotic to nn. We consider complexity under just
a single variable, the number of taxa. In practice it is necessary to also consider the
complexity of an algorithm under sequence length, c. Most tree-building methods are
linear with respect to c, but alignment algorithms may be of order c2 or c3. When an
algorithm is O(n.log n) then, because log n is less than n, n.log n is less than n2, so the
algorithm is still efficient because its complexity is bounded by a polynomial in n. Some
examples of efficient algorithms include:

1. Locating an item in an ordered list of n items is O(log n). For example, to find
the telephone number of a friend in a telephone directory of n names, first compare
your friend’s name with a name in the middle of the book. Then compare it with
the middle of the first, or second half, depending on whether her name is before
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or after that central name. Repeating this subdivision process until finding the name
requires at most log2n comparisons. The number might be located in fewer steps but
the complexity always refers to the worst case; we can guarantee the algorithm will
terminate in at most log2n steps.

2. If we needed to find the person with a specific number in this telephone directory,
then potentially we need to look at each number until it is found. It could be the very
first number, but also it could be nth, the very last, so this is an O(n) algorithm.

3. To sort the telephone directory by numbers (rather than by names) requires O(n.log2n)
steps. This is achieved by locating the position of each successive number among
those already sorted. The search algorithm of example 1 above orders each of the n
numbers in log2n steps.

4. Finding the smallest distance for n taxa is O(n2). The numbers of entries (distances)
is n2, and because the matrix is symmetric we need only compare the entries above
the diagonal. Thus the number of comparisons is bounded by a polynomial in n2, so
the search is O(n2).

5. In the unweighted pair-group mean average (UPGMA) algorithm (see later), the
closest pair of taxa (requiring O(n2) steps to find them, as in example 4) are
amalgamated, giving a new matrix of distances between the n – 1 remaining ‘taxa’.
The closest pair in this matrix is again found, amalgamated, and the process repeated
n− 2 times. The complete algorithm is thus O(n3) and so is an efficient algorithm.

6. The tree-building algorithms of MP and ML, if fully implemented, require an
evaluation of each of the (2n− 5)!! binary trees. Even if each tree can be evaluated
efficiently (as for MP) the number of trees cannot be bounded by a polynomial
in n. Consequently, these algorithms are not polynomial and hence not efficient. In
Table 16.5 we compare the growth of some of these functions for some small values
of t .

7. The Hadamard conjugation used in the spectral analysis involves calculating values
for each split, and there are 2n−1 splits. The fast Hadamard transform involved requires
2n steps for each split, and hence Hadamard conjugation is an O(n2n) algorithm.
Again, this is not an efficient algorithm (even if it is the best possible).

It is easy to demonstrate the general problem resulting from the large numbers of
trees. Estimate how long it would take to do all the calculations for algorithms of
different efficiencies. Assume that the time for calculating each step is the same for
each algorithm. If one million trees could be calculated per second, how long would it
take to calculate all trees for 20 species? There are ≈ 2.2× 1020 trees for 20 taxa and
≈ 3.16× 107 seconds year−1 so we can calculate ≈ 3× 1013 trees per year. Thus we
require 2.2× 1020/3× 1013 ≈ 7 million years calculating the trees for 20 taxa!

Thus for t = 20, a million-fold increase in computing speed is not going to make the
calculation practical. In contrast, at 106 calculations per second, the Hadamard conjugation
would require almost 21 seconds, and the NJ algorithm would require less than one-
hundredth of a second.

This means that for t > 20 it is not practical to simply evaluate a function for each
tree to find the optimal tree. Finding the optimal tree for t taxa is an example of a



504 D. PENNY, M.D. HENDY AND B.R. HOLLAND

Table 16.5 Values for some polynomial and exponential functions for small values of t .

t t log2 t t2 t3 t2t (2t − 5)!! (2t − 3)!!

3 4.75 9 27 24 1 3
4 8.00 16 64 64 3 15
5 11.61 25 125 160 15 105
6 15.51 36 216 384 105 945
7 19.65 49 343 896 945 10 395
8 24.00 64 512 2048 10 395 135 135
9 28.53 81 729 4608 135 135 2 027 025

10 33.22 100 1000 10 240 2 027 025 34 459 425
11 38.05 121 1331 22 528 34 459 425 654 729 075
12 43.02 144 1728 49 152 654 729 075 1 374 931 575

non-deterministic polynomial (NP)-complete problem. The travelling salesman problem
is another well-known example. That problem is, given the distances between all pairs
of n cities, find the shortest path that allows a salesman to visit all cities and return to
the start. This general class of NP-complete problems has the following properties: if an
efficient solution is found for one, it will work for all; no general solution has been found
for any; but there is no proof that an efficient solution cannot exist.

That is the bad news from complexity theory, which deals with the worst case scenarios.
There are special cases where algorithms can run in polynomial time for the number of
sequences (Fernandez-Baca and Lagergren, 2003). One example is for population data
with many similar sequences; there may be only a single nucleotide difference between
them. In this case, parsimony is a ML estimator, and a MinMax Squeeze program
(Holland et al., 2005a) has been able to guarantee the shortest possible tree for over
50 human mitochondrial genomes. However, having considered some of the theoretical
computational questions, it is time to look at the models of evolution used when inferring
evolutionary trees from biological data.

16.3.3 Three Parts of an Evolutionary Model

Scientific models are usefully classified into three parts: the structure of the system; the
forces (mechanisms) operating on it and; some initial conditions that specify the system
at a particular point in time. For an evolutionary model, the equivalencies are as follows,

1. A tree (or more generally a graph), is either rooted or unrooted. This is usually
a tree, but cycles can arise from endosymbiosis, lateral transfer, gene conversion,
allopolyploidy, hybridisation, etc. This part of the model gives the relationships
between the sequences and is assumed even if there is insufficient information to
specify a common mechanism (see later).

2. A mechanism of change (typically, changes to the sequences are stochastic and are
independent and identically distributed (i.i.d.) – again, see later).

3. Probabilities q (weights) of observing a change along each edge of the tree, these
are the initial conditions including edge lengths, transition/transversion ratios, and
nucleotide composition at the starting point.
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Given these three features, we calculate or predict the expected frequencies of patterns
(splits) in the sequence data (Figure 16.7). For simpler mechanisms this is best done by
spectral analysis using Hadamard transforms, a simple discrete-Fourier process. For small
numbers of taxa, the calculations can be carried out in spreadsheet programs such as Excel.
The transforms convert the vector of the observed frequencies of splits (s, the sequence
spectrum) to the probabilities of change on each edge of a tree T (in the vector q).
Each entry in these vectors is indexed by one of the 2t−1 possible splits (Section 16.2.3).
The intermediate steps are generalised distances (Section 16.2.2), which are equivalent to
paths through the tree (or graph). The series of vectors is thus s (observed frequencies
of splits), r (observed generalised distances), ρ (rho, predicted (corrected) generalised
distances), γ (γ , predicted (corrected) frequencies of splits), and finally q (γ values fitted
onto edges of a tree). For simple models, these transforms are invertible with the use of
Hadamard matrices (see later), so that γ can be derived from s, and vice versa.

The Hadamard transforms are a series of simple invertible steps involving a Hadamard
matrix, H. This m by m matrix has entries 1 and −1 and satisfies the equation HtH = mI,
where I is the m by m identity matrix and Ht is the transpose of H (rows and columns
interchanged). The transform allows a simple set of equations that add and subtract the
lengths of edges on a tree to give path lengths; or conversely (the inverse) add and
subtract path lengths to get lengths of individual edges. Figure 16.7 shows the relationships
between data as sequences (i), and the evolutionary model (vi).

In following Figure 16.7 from (i) to (vi) you will see that the first step is translate
the sequence data as a sequence spectrum s; the observed frequencies of each of the
2t−1 possible splits from the sequences for t taxa (see Figure 16.1c and Table 16.2).
The Hadamard product r = Hs (a linear transform) calculates the observed generalised

2
3
4

1

...

.

...........................

...........................

...........................

...........................

n

Sequence data

Model (tree, mech-
anism and lengths)

1

2

3

4
n − 1

n

(Tree spectrum)
(corrected)

Inconsistent

Closest tree
compatibility
parsimony

Closest tree
compatibility
parsimony

ConsistentConsistentInconsistent

Distance compare
neighbour-joining
neighbourliness
minimum evolution

Distance compare
neighbour-joining
neighbourliness
minimum evolution

Sequence
spectrum
(observed)

Linear
transform

Non-linear
transform

Generalised
distances

(corrected)

Generalised
distances
(observed)

Linear
transform

...........................

s vector r vector ρ vector γ  vector

H

H−1

H−1

H

(i)

(ii) (iii) (iv) (v)

(vi)

exp

In

Figure 16.7 Invertible transformations between data (i) and model (vi).



506 D. PENNY, M.D. HENDY AND B.R. HOLLAND

distances r (iii). Many methods use just pairwise distances, i.e. distances that are
calculated for each pair of taxa. Pairwise distances can be used to infer generalised
distances, and they reduce the variance when corrections are made for multiple changes
(Waddell et al., 1994).

The step from r to ρ corrects, depending on the mechanism of evolution, for inferred
multiple changes at a site. The values in ρ are predicted generalised distances (iv). The
logarithmic function from (iv) to (iii) corrects for unobserved changes and depends on the
distribution of substitution rates in the model. When all sites are evolving at the same rate
(the uniform rate model), the natural logarithm is used in going from (iii) to (iv), with its
inverse being the exponential function when going from (iv) to (iii). If not all sites evolve
at the same rate then a Gamma distribution can be used, though other distributions are
possible (Waddell et al., 1997). The inverse Hadamard matrix (a linear transformation)
is used to get from the generalised distances to corrected edge lengths γ = Hρ, see (v).
This inverts path lengths (generalised distances) to individual edges of a tree (observed
splits, or splits in the underlying model). The three-step procedure from (ii) to (v) uses
a Hadamard transformation, then a logarithmic transformation, and finally the inverse
Hadamard transformation. Applying three functions sequentially, with the third being the
inverse of the first, is (in mathematics) a conjugation. Thus the three-step procedure is
called a Hadamard conjugation, and is invertible.

From this spectrum in (v), a tree can be selected by a number of selection criteria
(parsimony, closest tree, minimum evolution, etc.) Thus, trees can also be selected
anywhere along the transformation from s to p. Notice that in Figure 16.7 the Hadamard
conjugation is NOT a tree selection criterion, it is an invertible method for moving
between paths and edges without loss of information. The transformations are invertible,
so the method can be used to calculate properties of sequences from simple models
of evolution, or recover a model of evolution given observed sequences. Different tree
selection procedures can be applied to components within the transformation. Distance
based methods are applied to the r and the ρ vectors, while sequence based methods can
be applied to the s and the γ vectors. The selection procedures are statistically consistent
after the correction for multiple changes (iii) to (iv) (provided that the correct mechanism
was used), but can be inconsistent otherwise.

For analysis of a set of t taxa, the Hadamard conjugation is a function of a spectrum
(a vector of 2t−1 components) where each entry is indexed by a split. The simplest
substitution process is the symmetric two character state model. The two character states
could be purines (R) and pyrimidines (Y) in DNA or RNA. The model has a probability
pe for each edge e of the tree T , where pe is the probability of a substitution (either
R to Y or Y to R) between the vertices of the edge. It can also be applied (Hendy et al.,
1994) to the symmetric four-state models of Jukes and Cantor, and Kimura’s 2ST and
3ST models (see Swofford et al., 1996).

A Hadamard matrix is a square matrix with entries of 1 and −1 and where all the
columns (or rows) are orthogonal. (Two vectors are orthogonal if the result is zero when
their corresponding entries are multiplied and summed.) An 8× 8 Hadamard matrix in
an appropriate form is shown below. The order of rows and columns is critical, it must
correspond to the order of the entries in p, q, γ, and the other vectors. That is, changing
the order of rows and/or columns still gives a Hadamard matrix, but no other order would
be suitable unless we also change the ordering of splits and subsets. Below we show H
in two forms, the usual way on the left and on the right-hand matrix + stands for +1
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and – for −1. The right-hand matrix is broken by dotted lines into four 4× 4 submatrices
to illustrate the recursive process for generating the matrix. The two top and the lower
left submatrices are identical, the lower right has the sign reversed for every entry.

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1





+ + + + · + + + +
+ − + − · + − + −
+ + − − · + + − −
+ − − + · + − − +
· · · · · · · · ·
+ + + + · − − − −
+ − + − · − + − +
+ + − − · − − + +
+ − − + · − + + −


H(3) H

For t taxa, H is generated recursively starting from the matrix with a single entry
H(1) = [1], and then forming the next larger Hadamard matrix as follows.

Let H(1) = [1], and H(m+1) =
[

H(m) H(m)

H(m) −H(m)

]
, for 1 ≤ m ≤ t − 2,H = H(t−1).

Note that the signs of the upper left 2× 2 submatrix are of the form,[+ +
+ −

]
,

and the upper left 4× 4 submatrix can be derived from this upper left 2× 2 submatrix
with the same pattern of sign changes. Thus, the four upper left 2× 2 submatrices have
the same pattern of sign changes. For example, row 6, column 5 will be the negative of
row 2, column 1; row 8, column 7 will be the negative of row 4, column 3. Similarly,
you can repeat the generating process once more to derive H(4), the 16× 16 matrix for
five taxa, and in general H(t−1), for the 2t−1 × 2t−1 matrix for t taxa.

Hadamard matrices have several important properties. Firstly, it allows an invertible
transform between splits and generalised distances. This requires the same numbers of
entries in each vector, here 2t−1. In mathematical terms the transform is one to one and
‘onto’, therefore it is invertible. A second important property is that multiplication of
a vector by H(t) can be reduced to t2t additions and subtractions (the fast Hadamard
transform). Another particularly useful property is that the inverse of any Hadamard
matrix (H−1) is the transpose of the matrix, H(t) divided by the number of rows (2t−1

in our case), i.e. H−1 = H(t)/2t−1. Together these make the method simple but powerful.
However, it is now time to consider the final aspect of theoretical background; mechanisms
of evolution for sequence data.

16.3.4 Stochastic Mechanisms of Evolution

Markov models (named after a Russian mathematician) are widely used in science,
including describing the evolution of sequences through time. They are very general
and the simplest versions just require that the probability of substitution depends only on
the current state. For sequences, this means that the probability of a substitution depends
only on the present nucleotide at a site; it is independent of what the sequence might
have been earlier in evolution. This is realistic for molecular evolution where, e.g. no
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information is retained in a human sequence as to which nucleotide was present at a
given site in early primates.

Fortunately, Markov models are well studied and relatively easy to work with. Consider
a sequence that evolves from time A until time B, the total length of time is t . We are
interested in both the rate of change at any point x, as well as the total amount of change
from A to B. Evolutionary models are effectively reversible, we could equally consider
the amount of change from B to A (though a different Markov process might be required).

t

x

A B

Time

At any point x, the instantaneous rate matrix, K, describes the rate (per site) that
mutations are fixed into the sequence. The transition matrix, M, describes the probability
of states at a site being different at A and B, it depends on both K and the time t . (In
Markov models, ‘transition’ is used in a general sense for any type of substitution, not as a
contrast to a transversion.) The 3ST Kimura model (shown below on the left) is frequently
used with nucleotides and has three classes of substitution, rates α, β, and γ (identified
in the middle graph below). This model can be simplified to the Kimura 2ST model
by setting β = γ , giving the model with separate rates for transitions and transversions.
Furthermore, setting α = β = γ gives the simple Poisson model, the Jukes–Cantor model.
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where∗ = −(α + β + γ ).
Consider the rate matrix K. At any point x along a lineage from A to B there is a

probability (per unit time) that an adenine will be mutated to guanine (α), or to cytosine
(β), or to thymine (γ ). Consequently, the probability of replacing adenine by another
nucleotide is = (α + β + γ ). K is normalised with diagonal entries −(α + β + γ ) so
that each of the rows sums to zero; thus there is conservation of the nucleotides. The
same process holds for the other nucleotides; they also have similar probabilities of
changing (α, β, and γ ). Under this model (which is simplistic, but useful and popular),
the nucleotide composition will converge to equal proportions (25 %) of A, G, C, and T,
even if the proportions of nucleotides was different when the process started.

The next step is to obtain the transition matrix, the expected probability of a difference
between A and B over the time t . The expected number of substitutions of each class is
αt, βt , and γ t . The transition matrix, M, is calculated from the instantaneous rate matrix
K and t , as, M = exp(Kt); with exp(K) = I+K+K2/2!+K3/3!+K4/4!+ . . ., which
converges. This transition matrix gives probabilities for each class of substitution during
the time interval t , and entries in M predict the number and classes of nucleotide changes
between the times A and B. In the right-hand example above, there is a 3 % chance that
any adenine in the sequence will have mutated to G, and 7 % to C and 7 % to thymine.
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Consequently, there is an 83 % chance it is still an adenine (even though it may have
mutated to another nucleotide and then mutated back again).

These matrices are simple and symmetric (the rate A → G is equal G → A). It is
straightforward to compensate for unequal frequencies of nucleotides (or amino acids) if
all sequences are similar, say 60 % G + C. This is modelled with a symmetric matrix plus
a vector of nucleotide frequencies. However, when sequences have different nucleotide
(or amino acid) compositions, an asymmetric rate matrix with its resulting asymmetric
transition matrix is required. This asymmetry is not a problem (apart from requiring more
parameters) if the transition matrix is being used to predict sequence data, such as in
a simulation study, or for ML. However, when compensating for multiple changes it is
necessary to make a 4× 4 divergence matrix for DNA (or 20× 20 for amino acids) for
each pair of sequences (see Figure 16.1b, right). Taking the logarithm of the determinant
of this divergence matrix corrects for multiple changes. This is the LogDet (or paralinear)
distance correction (Lockhart et al., 1994).

A frequent assumption is that changes occurring in the sequence are ‘i.i.d’. Independent
means that a change at any site in the sequence, and on any lineage on the tree, is
independent of all other changes. Identically distributed is that all sites (nucleotides or
amino acids) are selected from the same distribution of rates. Sites may have different
rates, but are still drawn from the same distribution. The mathematics requires (Tuffley and
Steel, 1997) that sites are always in the same rate class over the whole tree, whether fast,
medium, or slower sites. This is problematic, and contradicts the biochemical knowledge
that the 3D structure of proteins evolves through time. The covarion model of Walter Fitch
is an early attempt to allow, over time, sites to vary in their rates. His model assumed a
limited number of sites were free to change, but that this set could slowly drift as the 3D
structure evolved. A hidden Markov Model (Tuffley and Steel, 1997) can approximate
this covarion process, using just two additional parameters. These are the proportion of
nucleotides that are (for functional reasons) free to change, and how quickly variable and
fixed sites interchange. A relaxed covarion model would allow this proportion of fixed
sites to vary. Future developments will probably incorporate more biochemical realism.
Some mechanisms also assume the same rate of change along each edge of the tree – the
molecular clock – and this imposes additional constraints on edge lengths. The chapter
of Swofford et al. (1996) has a good discussion of the standard mechanisms, and how
they are interrelated.

16.4 METHODS FOR INFERRING EVOLUTIONARY TREES

Most new methods for inferring trees have been developed for sequence data (DNA
and protein), but most work equally well on discrete (i.e. not continuous) data from
morphology, anatomy, biogeography, behaviour, etc. Methods for inferring tree are
considered in three parts:

1. an optimality criterion, to measure how the data ‘fits’ a particular tree (or graph);

2. a search strategy for finding the optimal tree(s); and

3. assumptions about the mechanisms of evolution for the data.
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It is incorrect to speak of a ‘method’ of inferring trees without specifying the optimality
criterion, the search strategy, and how multiple changes are handled (by the mechanism
assumed). Examples of these three combinations are given with the optimality criterion
identified as (1), search strategy as (2), and the mechanism as (3). A method could
be, a parsimony (1) branch-and-bound search (2) on data corrected for multiple changes
by the Kimura 2ST model (3). Or, a NJ search (2) for the minimum evolution tree
(1) using observed (uncorrected) distances (3). Or, ML with hill climbing to find the
optimal parameters on a tree (1), a general reversible model of change (3), and a heuristic
search through the tree space (2).

Comparing two methods that differ in all three of above options has generated a great
deal of confusion. To take just one example, several studies have compared ‘MP’ and
‘NJ’ (details are given later). These ‘methods’ differ in their optimality criterion, their
search strategy, and whether or not they correct for multiple changes. But which of the
three differences leads to a particular set of results? Such sloppy work is poor science,
and unfortunately many simulation studies are not worth the silicon they are computed
on. We will examine some criteria for evaluating the different approaches.

16.4.1 Five Desirable Properties for a Method

There is still no general agreement how to evaluate tree reconstruction methods. We have
suggested that being efficient, consistent, powerful, robust, and falsifiable is a good starting
point for analysis (Penny et al., 1992). Efficiency is discussed earlier under computational
complexity – to have any real chance of finding the global optimum for medium to large
data sets, the algorithm must run in polynomial time. The concept is used in multiple
alignment, in evaluating an optimality criterion on a single tree, and searching over all
trees. Alignment is not discussed here, but there are efficient algorithms available for a
weighting scheme of matches, mismatches, and gaps for pairs of sequences. However, in
general it is necessary to optimise an alignment on a tree and there are no known efficient
solutions for the combined problem. Optimality criteria such as parsimony, minimum
evolution, and closest tree can be calculated efficiently for a single tree. For ML it is not
yet known whether this is true.

The next two desirable features come from considering the effects of increasing the
length of the sequences, c. Biologists accept that, with short sequences, there will be
sampling error and are not too surprised if details of the optimal tree changed when longer
sequences became available. Eventually, with long sequences, we expect convergence to a
single tree. But is it the correct tree, the tree on which the sequences were generated? Two
questions that arise are: does the method converge to the correct tree, and how long do
sequences need to be to get convergence? A method (optimality criterion, search strategy,
plus assumed mechanism of evolution) is said to be consistent if it guarantees to converge
to the correct tree; conversely, it is inconsistent if it can converge to an incorrect tree.

There is both good news and bad news here. Any reasonable optimality criterion is
consistent if the correct assumptions are made about the mechanism of evolution. But each
is also inconsistent if invalid assumptions are made. Parsimony is consistent if the correct
assumptions are made (and compensated for), inconsistent otherwise. ML is inconsistent
if, e.g. it assumes that all sites are free to vary when most are fixed for functional reasons.
Differences in nucleotide composition between sequences lead to similar problems for all
optimality criteria. There has been a lot of confusion with statements that optimality
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criteria are, or are not, consistent, when the real issue is the consistency of the complete
method – optimality criterion, search strategy, and assumed mechanism of evolution.

In an important development J. Felsenstein showed in 1978 (see Swofford et al., 1996)
that even with only four taxa, but with unequal rates of evolution, uncorrected parsimony,
and some distance methods using observed (uncorrected) data were not consistent even
with two-state sequences under a symmetric model of substitution. With five or more
taxa, uncorrected parsimony is also inconsistent even with equal rates of evolution, and
even with equal edge lengths for larger numbers of taxa. We (Hendy and Penny, 1989)
suggested that there was a general problem when there was a juxtaposition of long-
short-long edges on a tree – the two long edges (branches) tended to join together. We
called this the long-edges-attract problem. Although it may appear bad news, it does
give biologists the chance to use their biological knowledge to select taxa that intersect
long edges in the tree. Uncorrected parsimony can be improved with additional taxa
that join into what would otherwise be long edges on the tree, and/or by correcting for
multiple changes. A method is inconsistent under a given model if there are any possible
cases where it converges to the wrong tree. It is a separate, but important, question as to
whether such cases are common. This leads us into the next criterion, how long should
the sequences be.

Do we need to analyse sequences of 103, 105, or 107 nucleotides in length? Convergence
with relatively short sequences we call powerful and is another desirable property. Not
surprisingly, considerable effort has gone into measuring the rates of convergence and
the techniques available include: computer simulation; repetitive sampling (bootstrap and
jackknife); congruence of trees from different sets of data; fit to a model; prior knowledge
(occasionally possible); and analytical solutions.

Different rates of convergence can result from methods using different amounts of
the information in sequences. As the number t of taxa increases, methods using genetic
distances use only a vanishingly small fraction of the information in the data. The number
of distance values increases in proportion to t2 while the number of patterns in the data
(bipartitions or splits) increases exponentially (2t−1). Uncorrected parsimony omits sites
that are constant or where only one character state occurs more than once (singletons). But
both types of position give information about the appropriate model of evolution. In addi-
tion, such sites occur frequently, so the estimates of their frequencies are more accurate.

Many optimality criteria, especially non-parsimony methods, ignore information from
insertions and/or deletions (which are highly informative), and also from other types of
biochemical information (such as SINEs). Using only subsets of taxa (such as quartets)
disregards most of the information that can come from incompatibilities. Variability within
taxa is again ignored. Information loss is not limited to a particular method. All omit some
information and consequently the power of each method is reduced. As yet, we can make
only rather weak predictions about the relative power of methods. For large data sets, ML
and closest tree methods use more sequence information than uncorrected parsimony, and
these together use more than distance methods.

To move onto the fourth desired feature – robustness. A method may be consistent under
one model, but become inconsistent with only small deviations from it. Everyone would
like a method that is efficient, powerful, and consistent, even with sizeable deviations
from the model – i.e. a method that is robust. Robustness is an area where there is almost
a conspiracy of silence from those developing techniques. In general, we only compare
data from simulations where the data is generated on a tree, and by a known mechanism.
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With simulation, data can be generated under one mechanism of evolution and different
assumptions tested when inferring a tree. For example, data may be generated with a γ
distribution of rates at different sites, and the effect studied of recovering the tree with
very different γ values (including all sites evolving at the same rate). This is an excellent
start, but we still have little idea of the consistency of different approaches as real data
start deviating from the simplest models.

Computer simulations can study several aspects of the problem of robustness. A method
that was consistent with equal nucleotide frequencies can become inconsistent when the
frequencies of character states (such as GC (guanine plus cytosine) content) vary between
taxa. Simulation studies are only of limited help unless the results are integrated into
a theoretical analysis of the methods. The real problem is that, considering all models,
there are billions of combinations of parameters to be tested. By itself, testing four or
five combinations of parameters is not that useful. Simulations are more powerful when
testing predictions from theoretical studies of algorithms.

The final desired feature is the standard scientific requirement that the data, in principle,
must be able to falsify the model. This is perhaps the least studied, and the most difficult,
of our five desirable features. Perhaps the worst methods in this respect are clustering
(or local search) methods that do not evaluate an optimality criterion over the whole
tree. They output just a single tree, and give no ranking of the other (2t − 5)!! trees.
Would a network be better for a given data set? We distinguish cases when the model
is very wrong, from those when the model is incomplete – missing some significant
aspect. Examples are when recombination, or gene conversion, has occurred and a tree
(lacking cycles) is then incomplete. Another case is when the mechanism assumes similar
nucleotide compositions, when the sequences differ significantly. In such cases, features
of the model such as, the tree, stochastic mechanism, similar rates, may all be reasonable;
but the full model requires at least one additional parameter.

In practice it is difficult to test the full model completely. If a tree is assumed, it may
be easy to test quantitatively two versions of the mechanism of evolution. Conversely, for
a given mechanism, we can test between different trees. This aspect of the falsifiability of
models requires more consideration. At present we are left with the status that no method
(combination of optimality criterion, search strategy, and initial conditions) can meet all
five of our desired features. This is a problem, but has not stopped a lot of progress in
understanding the evolution of both macromolecules and organisms. It is perhaps a call
for less special pleading about our own favourite method, more caution in interpreting
results, and a challenge to keep improving.

16.4.2 Optimality Criteria

It is time to consider the first aspect of a method for recovering trees – the optimality
criterion (objective function). Common optimality criteria include parsimony, minimal
length, ML, least-squares fit, minimum evolution, etc. An optimality criterion usually
estimates how well the data fits a particular tree though the splits-graph criterion is a fit
of distance data to a phylogenetic network.

16.4.2.1 General Comments on Parsimony

Parsimony is one of the most frequently used optimality criteria, but there are ambiguities
in the use of the concept. In everyday life the term is used as an adjective, e.g. when
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someone is said to be parsimonious; not sharing, thrifty, or stingy. However, parsimony
has a long history in science as looking for the ‘simplest’ explanation. Thus there are two
major usages.

1. The Principle of Parsimony (Ockham’s razor). This is its most common usage in
science – find the simplest hypothesis that explains the data; do not add complexities
to a model that works.

2. Minimising the number of mutations when fitting sequences onto a tree.

The two usages can be in contradiction. In other words, it is not always true that the
simplest explanation (the Principle of Parsimony) is to minimise the observed number of
mutations on a tree (Steel and Penny, 2000). It is traditional when minimising the number
of mutations on a tree not to make any adjustments for multiple changes at a site. This
is best called maximum parsimony to distinguish it from other variants such as weighted
parsimony, or corrected parsimony. Weighted parsimony uses additional knowledge of
the mechanism of evolution such as the transition/transversion ratio, or the relative rates
of change between nucleotides or between amino acids. Similarly, corrected parsimony
(Penny et al., 1996) minimises the number of mutations on a tree after correcting for
inferred multiple changes.

MP thus consists of two independent concepts: minimising the number of mutations on
a tree (the optimality criterion), and, using the observed data (not correcting for multiple
changes). Normally the only part of the model of evolution it assumes is the tree itself.
However, parsimony can be modified to minimise the number of mutations of data onto
a network (i.e. a connected graph with cycles). The failure to distinguish between the
minimal length (number of mutations) criterion, and using observed data (uncorrected for
multiple changes) has led to acrimonious debates because the problem was not analysed
adequately.

16.4.2.2 Relationship between Parsimony and Maximum Likelihood

Just as with parsimony, there are many usages of the term maximum likelihood (Steel
and Penny, 2000) and we use their terminology. All usages have the common theme
of maximising the likelihood of observing the data, given some background information
about the model of evolution (in this case, a tree, a mechanism of change, and initial
conditions). J Huelsenbeck discusses ML itself separately. Here we only consider the
relationship between parsimony and ML.

The usual form of ML in phylogeny is called maximum average likelihood (MLav).
This uses a weighted tree (weights associated with edges), and then sums the likelihoods
of observing the data over all codings at the internal nodes. We illustrate MLav with
two character states ‘a’ and ‘b’ over an unrooted tree connecting four taxa (Figure 16.8).
There are four ways the two internal nodes (ancestors) could be coded, both internal nodes
could be ‘a’ [a, a, Case 1], or one ‘a’ and one ‘b’ [a, b, Case 2 or b, a, Case 3] or both
‘b’ [b, b, Case 4]. For simplicity we assume the same rates (probabilities) of change on
each edge of the tree, namely 0.05. It is straightforward to calculate the likelihood of the
pattern [a, a, b, b] by:

1. calculating the probability of a specified coding at internal nodes for Cases 1–4; and

2. summing the probabilities over all possible internal codings (four in this example).
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Figure 16.8 Calculating maximum average likelihood, given the pattern a, a,b, b on the external
points, and with the internal points indicated as being either ‘a’ or ‘b’. The symbol ‘×’ marks each
edge where a change (mutation) is required for a particular coding at internal points. There are two
such changes in Case 1, one for Case 2, etc. This simple model gives the same results wherever
the root is placed; the model is essentially an unrooted tree.

For 0.05 as the probability of a change, the probability of no change is 0.95 (1− 0.05).
Thus, for the tree in Case 1 of Figure 16.8, the probability (to five decimal digits) is

Case 1[a, a] 0.00214 (= 0.95× 0.95× 0.95× 0.05× 0.05);
Case 2[a, b] 0.04073 (= 0.95× 0.95× 0.05× 0.95× 0.95);
Case 3[b, a] 0.00000 (= 0.05× 0.05× 0.05× 0.05× 0.05); and again

Case 4[b, b] 0.00214 (the same as the first).Summing these values gives

0.04501 as the probability for observing this data under this model.

This is for just a single site in the data, probabilities for each site are multiplied together
(in practice, the logarithms are taken and added in order to keep the numbers manageable).

Another form of ML is to find the most-likely codings at the internal nodes of the tree,
and this is maximum most-parsimonious likelihood (MLmp, Steel and Penny, 2000). For
the example above, Case 2 is the most likely and so the internal codes [a, b] would be
selected. (In this example, the same choice would be made by MP, but this is not always
true.) This form of ML would be chosen if a researcher wishes, e.g. to synthesise the
most-likely ancestral form of a gene and test whether it functions as expected.

However, even more detailed information might be required; perhaps the investigator
wishes to know the most-likely coding at every point along the edges of the tree, not
just for the internal nodes as for MLmp. This more highly specified form of ML is called
evolutionary pathway likelihood (MLep). This form of ML is equivalent to MP (Steel and
Penny, 2000), this is the first of the equivalencies between ML and MP.

These three (MLav,MLmp,MLep) are examples of maximum relative likelihood. In each
case they are selecting a weighted tree. Another form of ML in phylogeny is maximum
integrated likelihood (Steel and Penny, 2000). This form of likelihood is probably closer
to what researchers really want and may, e.g. take into account the a priori distribution of
trees. However, this is outside the scope of studying the relationship between parsimony
and likelihood. To sum up, there are several forms of both parsimony and likelihood. This
in itself is not a problem at all, as long as it is made explicit about which version is being
used.

Having considered some forms of ML, we turn to a more detailed consideration of
parsimony and ML, an area that has been controversial. The relationship between the
two concepts appears complex but is being resolved. There are occasions when the MP
solution is equivalent to a ML solution.
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Site 1 Site 3Site 1

(a) (b)

Site 2 Site 2Site 3

Figure 16.9 Common mechanism and no common mechanism. (a) Common mechanism – each
site evolves on the same tree and proportionally has the same expected rate of change on every
edge (branch). (b) No common mechanism – each character or site evolves on the same tree, but
each character has different rates of change for every edge.

If there is only a single column of data, then the ML and MP solutions are the same.
That is for this particular case, the ML estimator is MP. With only a single site, there
is no additional information from combining additional sites. This may sound trivial
but it leads to a much more interesting case, when there is no common mechanism of
evolution shared by all the characters. For example, each character may have evolved
on the same tree, but the potential for a character to change on a particular edge of the
tree varies between characters. The concepts of common mechanism, and no common
mechanism, are illustrated in Figure 16.9. An example of no common mechanism could
occur with morphological data – the chance of an insect evolving eight legs may be zero,
but somewhere deep in the invertebrate tree a 6 ↔ 8 change (for example) must have
been possible. Some major rearrangements in genomes and/or gene structure have similar
properties. Although with no common mechanism the MP and ML solutions are the same,
it is an area where ML itself does not guarantee consistency. Basically, with a common
mechanism each site is an estimate of the same process. This means that additional
sites give an improved estimate of the common underlying process. Conversely, with no
common mechanism, each site is basically a new and unique process.

Before considering additional examples where parsimony is the ML estimator it is
worth noting that with the present example it is a good point to consider whether the
‘Principle of Parsimony’ supports using observed data (rather than considering multiple
changes at a site). Unfortunately, it does not. Advocates of Ockham’s razor (the Principle
of Parsimony) would, as illustrated by the following example, invoke the principle at this
point. They would point out that, for some data sets, assuming a common mechanism
for all sites is ‘more parsimonious’ than assuming ‘no common mechanism’ (each site
evolving differently).

Table 16.6 has a small segment of homologous sequences from a pseudogene
(a duplicate copy of a gene that no longer codes for a gene product). The full sequences
are over 10 000 nucleotides long, and as a first approximation it is expected that there is
little selection at any of the sites – most mutations would be neutral. Therefore, according
to the Principle of Parsimony, it is simplest to assume one common mechanism for all
sites, not 10 000 different mechanisms, one for each site. Each site is thus an estimate
of the same underlying model – the same tree, the same mechanism, and same rates of
change on each edge of the tree. In this case the Principle of Parsimony supports the
standard (average) ML approach, rather than assuming a separate mechanism for each
site (as MP does). Thus it is ‘simpler’ to correct for multiple changes. In this case, the
two uses of parsimony (Ockham’s razor, and minimising the number of mutations on
observed data) are not in agreement.

Another example of the equivalency between parsimony and likelihood is with an
extremely large number of character states, two changes may never occur at same site in
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Table 16.6 A small segment of sequences from a pseudogene. If there is little selection at such
sites, then it is more parsimonious to assume one common mechanism for all 10 000 sites.

. . . A C A C T G A G G G A A G G A T G A G A A A T A A A T G T G A A A G C A. . .Human
G Chimpanzee
T Gorilla
T C Orang-utan

G T Rhesus monkey

different lineages. Here again the MP and ML solutions coincide (Steel and Penny, 2004;
2005). Examples include SINEs or LINEs inserting at a new site. Such unique events may
be the most reliable evidence for oldest divergences, but this requires large amounts of
sequence data to find the relevant examples. For example, each insertion of a transposable
element would be at a different location in the genome. Some gene and/or chromosomal
rearrangements may also be unique events and MP is then the ML solution.

A major difficulty with ML is that it is computer intensive. There is no efficient
algorithm known for calculating the ML for just a single tree, even before considering
the large numbers of trees. In Figure 16.8, the calculation was done for just one set of
edge weights (rates). It is necessary to repeat the calculation many times, adjusting the
rates slightly until the highest likelihood value is found. It has been shown that data sets
can have many optima on a single tree (i.e. combinations of edge weights that cannot be
improved by slight iterations, see Chor et al., 2000). Again, this is for a single tree and, for
large data sets, likelihood methods are limited to heuristic searches of tree space (see later).

To summarise this section, there are interesting relationships between maximum
(uncorrected) parsimony and likelihood. They are equivalent on a single column of data
and thus when there is no common mechanism shared by the characters. They are also
equivalent under MLep, or there are infinite character states (the same mutation never
occurs twice). Another example is when there are many sequences just one mutation
apart (i.e. the sequences are ‘abundant’, as in a population study). However, sequences
from different species are usually quite distinct (‘sparse’) and the two criteria differ, and
need not arrive at the same tree. It is now time to look at the parsimony criterion itself.

16.4.2.3 The Fitch Algorithm for Parsimony

Parsimony is both easy and fast to calculate on a single tree, it is O(t)–though the problem
of the large number of trees still remains. For a set of t aligned sequences, and a labelled
tree T , parsimony counts the minimum number of changes on the edges of T . Consider
an example of five species (taxa), where at one site, the first two have A (adenine), and
the other three have G (guanine). Find a tree that requires the smallest number of changes
(see Figure 16.10). With only five taxa a minimal coding can be found by eye. The trees
are unrooted because the parsimony score is independent of the position of the root; other
information is required to identify the root.

The data A1 and A2, and G3 to G5 are the leaves of the tree. In the first tree, only a
single A ↔ G change is required, indicated by the arrow (unrooted trees do not specify
which direction the change is going), but two changes are necessary for tree II. On the
parsimony criterion, tree I is preferred over tree II for this single column of data. Tree
II requires at least two changes, no matter how you code the internal nodes (all three
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Tree I Tree II (c)

G3 G4A1

G5A2

G4A1 A2

G3 G5

G3 G4G4

GG

A1

A

A1 A2

G3G5A2 G5

GGG

Tree II, two changes(a) (b) Tree I (one change) (d)

Figure 16.10 The parsimony criterion. The data is a site with character states [A,A,G,G,G]t, these
are shown as A1,G3, etc. Two trees (I and II) are shown in (a) and (b) and then minimal coding at
the internal points are shown in (c) and (d); the changes (mutations) required are shown as arrows.
Parsimony selects the tree with fewest changes, tree I in this example, but this is just for one site
in the sequence.

internal nodes are be labelled ‘G’ in this case). This visual process works only for a few
columns on a small number of taxa.

The Fitch algorithm quickly finds the parsimony score. It moves through the internal
nodes (starting from neighbouring pairs of taxa) and gives both the minimal number
of changes for the tree and a first estimate of the character states at internal nodes.
There are many alternatives for moving through the tree, but the result is independent of
the choice. For each internal node the algorithm checks two adjacent nodes where the
character states are already defined; either because they are external nodes labelled by the
sequences, or they are internal nodes for which a first estimate has already been made.
The first estimate takes the intersection (∩) of the character states at the two adjacent
nodes. If the intersection is not empty, keep the value and move to the next internal node.
If the intersection is empty, then take the union (∪) of the character states and add a ‘cost’
to the total length of the tree. The cost (or weight) is usually equal for each column, but
if the same pattern occurs in several columns then the cost is the number of times the
pattern appears (or the expected number of times for corrected parsimony). For weighted
parsimony the cost varies between character states, transitions are usually weighted less
than transversions, and the weights need no longer be integers. The costs are summed
over all columns in the data.

The tree (or trees) that requires the smallest number of changes (mutations) over the
whole data set is selected. There is a second pass for the Fitch algorithm but it is only
used to finalise the alternatives that may occur at an internal node on a minimal coding.
The Fitch algorithm is efficient (on a single tree) because it is linear with respect to t ,
the number of taxa.

Many other things could be said about parsimony. As an optimality criterion it is
not consistent on observed sequences, but neither are other criteria. However, we have
pointed out that most criteria are consistent if appropriate corrections are made for multiple
changes, and this includes parsimony. There is an interesting case under a molecular clock
where MP can be inconsistent if applied to the tree as a whole, but is consistent if the tree
is built up from quartets of taxa. There is still much to be learned about the properties of
optimality criteria!

16.4.2.4 Minimum Evolution and Related Criteria

This section includes several optimality criteria that involve distances directly, or else
edge lengths on trees (often calculated from distances). The details are well covered in
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Swofford et al. (1996) and consequently we only give an overview here. However, the
section again illustrates the necessity of distinguishing between optimality criteria and
search strategies.

NJ, e.g. is one of the most popular ‘methods’ for distances but it is basically a tree search
strategy that can be implemented with other optimality criteria, including parsimony and
ML. In the standard NJ programs a pair of taxa x and y is selected to combine based
on their net divergence – estimates of the length of the internal edges that results from
pairing two taxa. Initially x and y are separate taxa, but later in the search they can belong
to a cluster of taxa that has already been combined. To calculate the net divergence for
any pair x and y, (Exy), the distances from each taxon in the pair to every other taxon is
used, as follows,

Exy =
1

n′ − 2

 n′∑
i=1

(
dxi + dyi

)− dxy,
where n′ is the current number of clusters (n′ decreases during tree building; i.e. part of
the tree searching section). Suppose we choose clusters x and y to amalgamate to form
the new cluster, z. A new distance matrix D is recalculated with z replacing x and y, as
follows

dzj =
dxj + dyj − dxy

2
= djz (the values are symmetric).

The procedure is consistent if the distances are additive. Essentially, the optimality
criterion is maximising the lengths of the internal edges of the tree but the search strategy
only finds the maximum value for the next edge. It is relatively easy to evaluate the
optimality criterion over the entire tree (not just a single edge at a time). In a general
sense then, NJ is a local (greedy) search strategy using a minimum evolution optimality
criterion.

Another optimality criterion just selects the smallest entry in the distance matrix, this
is UPGMA, or average linkage. After each clustering the distance matrix, D, is modified
to

(dzj ) =
axdxj + aydyj
ax + ay

= (djz), where ax is the size of cluster x, ay that of cluster y.

Additive distances are not sufficient to guarantee that UPGMA is consistent; it also
requires that they fit a molecular clock, i.e., the distances between each taxon and the
root are the same. On the other hand, when a molecular clock is appropriate UPGMA can
out perform NJ (see Holland et al., 2003). There are also a group of Fitch–Margoliash
(FM) methods where each possible tree is tested, and edge lengths assigned to minimise∑

1≤i<j≤n
wij

∣∣∣dij − pij ∣∣∣α ,
where wij is a weighting factor, dij is the distance (which may be adjusted for multiple
changes), pij is the sum of the edge lengths on the path on the tree between i and j
(the patristic distance). α is a constant, usually 1 or 2 depending on whether absolute or
squared deviations are to be minimised. While reasonably fast algorithms exist to find the
best-fit edge lengths when α = 1 or 2, they are not available for other values of α.
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An important criterion, Closest Tree, minimises the Euclidean distance between either
the inferred (or observed) bipartition spectrum γ (or s), and that expected for a particular
tree T . When the split spectrum is known, as from character sequences, the square of this
distance is ∑

i>0,ei /∈T
γi

2 + (2n− 2)γT
2,

where

γT =
1

2n− 2

γ0 +
∑
ei∈T

γi

 and γ0 = −
m−1∑
i=1

γi.

This optimality criterion, because it is implemented over the whole tree, can be
implemented with branch-and-bound searches of tree space, as described in Section
16.6.1.1. Thus there is a range of optimality criteria that work either directly on distances,
or on how well edge lengths on a tree predict the data. More research is still required
with different combinations of optimality criteria and search strategies; there tends to be
unnecessary associations of criteria, corrections, and search strategies.

Distances (pairwise or generalised) are readily corrected for multiple changes at a site
for a wide range of possible mechanisms. Again the details are well handled in standard
texts such as Swofford et al. (1996), Page and Holmes (1998), and Nei and Kumar (2000).
The simplest is a standard Poisson correction, which is called Neyman or Cavender /Farris
for two character states, Jukes/Cantor for four. In general, the correction is

d ′xy = −((r − 1)/r) · ln(1− (r/(r − 1) · dxy),
where d ′ is the inferred distances after correcting for multiple changes at a site and r the
number of character states (r = 2 for two-state characters, 4 for nucleotides and 20 for
amino acids).

The main problem with the corrections is that they both increase the variance on the
distances, and introduce a bias that overestimates the distances. This bias results from
taking the logarithm of the observed distances and is particularly marked for relatively
short and/or quite distant sequences. The formulae under-correct slightly if a particular
distance is smaller than expected – but even more overcorrect if the distance is larger
than expected, even by the same amount ε. This asymmetry in the correction leads to the
bias. Formulae are available to reduce the bias, and in our experience should always be
used. The Tajima (1993) formula is;

d ′ab = �
((k

(i)
ab × 2i−1)

(i × c(i))) ,where i is summed over 1 to kab

and where
z(i) = z!

(z − i)!
The parsimony criterion can also be used after correcting for multiple changes (Penny

et al., 1996) and although such a method does not use ‘distances’ in its final step, it
does use distances (pairwise or generalised) in intermediate steps during the correction
for multiple changes. This emphasises that there are many interrelationships between
methods and each ‘method’ is a combination of an optimality criterion, a search strategy,
and an assumed mechanism of evolution (included the option of insufficient knowledge
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to be able to correct for multiple changes). The interrelationship of methods is still an
active area of research.

16.5 PHYLOGENETIC NETWORKS

Phylogenetic networks can usefully illustrate evolutionary relationships when the evolu-
tionary history of sequences or species may be poorly represented by a tree. They have
been used to study viruses and plants species where the underlying assumption of tree-like
evolution is inadequate possibly due to recombination, lateral gene transfer, or hybridis-
ation. They display the extent of conflicting signals in the data and thus provide a visual
measure of confidence in a model. Across a range of taxonomic groups, species trees and
gene trees may differ due to gene duplication and loss, or lineage sorting. This gives rise
to the gene tree/species tree reconciliation problem, which prompted Maddison (1997) to
describe species phylogeny as a cloud of gene histories. In studies within interbreeding
populations, networks can represent recombination. In all these cases it is of interest to
reconstruct a reticulate evolutionary history and represent it with a directed acyclic graph
(DAG). Even when the underlying historical signal fits a tree there may be conflicting
non-historical signals caused by sampling error, long-branch attraction, nucleotide compo-
sition bias, or changes in the substitution rate at individual sites across the tree, as well as
alignment or misreading errors. Here we require networks that can visualise conflicting
signals in data, but we do not require an explicit representation of evolutionary history.

16.5.1 Reconstructing Reticulate Evolutionary Histories

Each site (character) has a tree-like history, even when sequences have a reticulate history.
We expect that contiguous segments of DNA (for instance most genes) evolve along a
tree, but that the complete sequence alignment may be a mosaic of different tree-like parts
(Maddison, 1997). This means that the problem of representing the evolutionary history
of the complete sequences often reduces to finding a DAG that displays a set of trees.
There will not generally be a unique solution so we need to find minimal DAGs that
minimise the number of reticulation nodes (such as hybridisation events or recombination
nodes).

Bordewich and Semple (2007) have shown that in general it is NP hard to find a
minimal hybrid phylogeny (a DAG with some restrictions) that displays two gene trees.
Baroni et al. (2006) gave a non-polynomial time algorithm for computing a minimal
hybrid phylogeny for two gene trees, but the problem of combining more than two gene
trees is unresolved. Special cases can be solved in polynomial time. For instance, if
the hybridisation events are all independent (cycles do not overlap) the minimal hybrid
phylogeny can be found efficiently (Nakhleh et al., 2005). Huson et al. (2005) have made
further progress; their method solves cases where the reticulations are non-independent
but overlap in a special way. These approaches all make the assumption that the gene trees
are error free. Nakhleh et al. (2005) provide a polynomial time algorithm for constructing
a hybrid phylogeny from two gene trees where error is allowed but the network can have
only a single reticulation. Another special case is when one of the input trees is known to
be the species tree for the gene tree/species tree reconciliation problem; the aim is to find
a series of events (gene duplication, loss, or lateral transfer) that explain how a gene tree
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has arisen in the species tree. Hallett and Lagergren (2001) give an efficient algorithm
for this where only lateral gene transfer is considered.

Huber et al. (2006) infer DAGs that represent the evolutionary history of polyploids.
Unlike a lateral gene transfer event, where a species acquires a novel gene or a current
gene is displaced, a polyploidy hybridisation event is additive, all versions of the gene are
retained. This scenario gives rise to multilabelled trees that are like standard phylogenetic
trees except that the same taxon name may appear at more than one tip. Their algorithm
finds a DAG that exhibits a multilabelled tree using a minimal number of recombination
nodes.

Recombination is an important process within a sexual population and in this case
we need to recover the ancestral recombination graph – a DAG where at recombination
nodes a breakpoint indicates which sites inherit their state from the left parent and which
inherit from the right parent. Work in this area usually assumes the infinite sites model
of sequence evolution, which implies that each site undergoes at most one mutation, so
any incompatibilities between sites must be explained by recombination events rather than
parallel mutations or reversals (Hein, 1990). The problem of finding the minimal ancestral
recombination graph (where minimal refers to the number of recombination events) is NP
hard (Wang et al., 2001). Song and Hein (2005) give a non-polynomial time algorithm
for it. Gusfield et al. (2003) give a polynomial time algorithm for the special case where
cycles introduced into the DAG by recombination nodes are all independent.

16.5.2 Displaying Conflicting Phylogenetic Signals

Rather than attempting to explicitly model reticulate evolution it is often of interest to
simply display conflicting signals in the input data. This is partly because the problem of
estimating reticulate evolution is computationally difficult, and partly because although
we think a tree is useful we are nevertheless interested in the signals in the data that do
not fit on a tree.

Splits graphs are a versatile tool for displaying conflict in many types of phylogenetic
data. A split is a bipartition of the taxa set (see Section 16.2.3), so every edge in a tree
corresponds to a split, since its removal separates the labels into disjoint subsets. A split
system is any collection of splits, and a splits graph is a network that represents the
split system. Trees are the simplest splits graphs; split systems that correspond to trees
are called compatible, and those that do not are incompatible. Incompatible split systems
can be represented by splits graphs but each split corresponds to a set of parallel edges
(Figure 16.11). Although every splits graph corresponds to a unique split system, the
same split system can be displayed by many splits graphs.

A k-clique in a split system is a collection of k pairwise incompatible splits, a k-
compatible split system is defined by requiring that there is no (k + 1) clique. Any
k-compatible split system can be displayed by a k-dimensional graph. However, it is
hard to interpret splits graphs in more than three dimensions, so it has been an active
area of research to characterise split systems that are less complex than general split
systems. Circular split systems arise from defining a circular ordering of the taxa and
then only allowing splits that correspond to a contiguous segment of this ordering, or in
graphical terms, splits that correspond to cuts though the circle. Circular split systems can
be displayed by planar graphs even though they can contain k-cliques for arbitrarily large
k (see Figure 16.12). Weakly compatible split systems are defined by requiring that there
is no set of four taxa a, b, c, d where all three possible quartet trees ab|cd, ac|bd, ad|bc
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Splits

{a,b}, {c,d,e,f}
{a,b,c}, {d,e,f}
{a,b,c,d}, {e,f}
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{b,c}, {a,d,e,f}
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Figure 16.11 Incompatible split systems can be represented by splits graphs. Unlike a tree where
each edge corresponds to a split here each set of parallel edges corresponds to a split. The edges
in the splits graph that correspond to the split {a,c,e}, {b,d,f} are shown in bold.
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Figure 16.12 A NeighborNet of uncorrected distances from an alignment of 89 436 sites of the
chloroplast genomes of 14 angiosperms and 1 gymnosperm (Pinus). The split system found by
NeighborNet is circular and the resulting splits graph can be drawn in the plane.

are displayed in the split system. In other words, any two quartets can be shown on the
graph, but not all three. Weakly compatible split systems can be displayed by ‘almost’
planar graphs.

We now give a brief description of splits-based methods. All the methods mentioned
below (with the exception of quartet imputation supernetworks) are implemented in the
freely available software package SplitsTree4 (Huson and Bryant, 2006). Spectral analysis
and median metworks are implemented in spectronet (Huber et al.., 2002).

Split decomposition (Bandelt and Dress, 1992) works from a distance matrix and
identifies a set of weakly compatible splits. Split weights are assigned by a function (the
isolation index ) which is a minimum of a quantity evaluated over all quartets displayed by
the split; this means that split-decomposition networks can be poorly resolved (star-like)
especially for large data sets. The split residue or percentage of the distances that is not
captured by the split system is summarised by the fit percentage.
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NeighborNet (Bryant and Moulton, 2004) works from a distance matrix, it begins
by finding a circular ordering on the taxa by an extension of the NJ algorithm. This
circular ordering selects the splits and it then uses a least-squares criterion to find non-
negative weights for each split. The circular ordering ensures that the splits can be
displayed by a planar splits graph. NeighborNets are almost always more resolved than
split-decomposition graphs.

Median networks (Bandelt, 1994) are one-connected networks where edges represent
a single mutation and nodes represent sequences (extant or inferred). New sequences
are inferred using the median hull operation which, given three sequences, can form a
potentially new sequence by taking the majority-rule consensus, this is repeated until no
new sequences can be derived. These networks are guaranteed to contain all the most-
parsimonious trees. Unlike split decomposition or NeighborNet, the resulting split system
need not be weakly compatible or circular, and the associated splits graph can be complex.
Median networks have proven useful for analysing population data where sequences are
densely sampled (Bandelt et al., 1995).

Spectral analysis exploits the relationship between sites patterns and splits (Hendy and
Penny, 1993). Any site where only two different states occur corresponds directly to a
split of the taxon set. If more than two states are observed at a site then some recoding
is required, e.g. RY coding or other projections to two states. The spectral graph displays
all splits that correspond to site patterns in the data. Spectral analysis can be used directly
on a sequence alignment or combined with Hadamard conjugation and applied to the γ
vector (see Figure 16.7), although only with simple models (K3ST and subclasses). As
with median networks, the splits graph can be complex, so usually a threshold is specified
and splits with fewer than this number of supporting sites are excluded.

Consensus networks and super-network methods take trees as input, rather than the
initial data (distances or sequences). The trees could arise from bootstrap analysis, Monte
Carlo Markov Chain (MCMC) analysis, equally parsimonious trees or trees estimated
from different genes. Consensus networks (Holland et al., 2004; 2005b) display all splits
that appear in more than some threshold t of the input trees. This threshold controls the
complexity of the resulting graph which is k compatible, where k is the first integer less
than or equal to 1/t . A drawback of the consensus network method for gene trees is that
all trees must include the same taxa. When the taxa set is overlapping, but not identical,
supernetwork methods are required. The first supernetwork method was the Z-closure
network of Huson et al. (2004), which is based on repeated use of a closure operation
that takes two partial splits (i.e. splits on a subset of the complete taxa set) and extends
them; the closure rule is applied iteratively until no further splits can be extended, and
then all the full splits are displayed in a splits graph. The method is dependent on the
order of the partial splits, so typically many orders are used and the union of the full splits
found is displayed. A new super-network method was recently presented by Holland et al.
(2007); it adds all missing taxa into each partial tree according to a scoring function that
maximises the number of quartets in agreement with other trees in the input set. If there
is enough information to complete the partial trees they are combined in a consensus
network.

Other approaches also show conflict within phylogenetic data but are not within the
splits-graph framework. Legendre and Makarenkov (2002) developed Reticulograms that
use a least-squares criterion with distance data. They begin by constructing a tree and
then augment it with additional edges that improve the fit to the data. It adds edges
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one at a time by minimising a least-squares fit of the distances on the network to the
observed distances. A scoring function that considers both the least-squares fit and the
total number of edges decides when to stop adding edges. The method is implemented
in the software package T-Rex. Statistical parsimony (Templeton et al., 1992) creates a
minimum spanning network up to some connection limit. A graph is constructed starting
with the taxa as vertices and no edges; edges are added between taxa that differ at
only one site, then between taxa that differ at two sites, etc until either the network is
connected or the connection limit is reached. The connection limit is set by calculating
how likely multiple substitutions are at a site between taxa, a certain distance apart. If the
probability of multiple substitutions is greater than 5 % then connections at that distance
are disallowed.

Further information on network methods can be found in recent review articles,
including Linder and Rieseberg (2004) who discuss the application of network approaches
to reconstructing reticulate evolution in plants; Morrison (2005) who discusses the
application of networks to problems in population biology; Posada and Crandall (2001)
who discuss the gene tree/species tree problem; Huson and Bryant (2006) who describe
splits-based methods and their implementation in the software package SplitsTree4; and
Huber and Moulton (2005) who give a detailed description of median networks, consensus
networks, split decomposition, and NeighborNet.

16.6 SEARCH STRATEGIES

Optimality criterion that are evaluated on a tree have the problem, discussed earlier, of
the large number of trees on which the criterion must be evaluated. This is what makes
finding the optimal tree NP complete; there is no efficient algorithm for searching all
trees. We consider strategies of searching for an optimal tree under three classes, exact
methods that (in principle) consider all trees, heuristic searches with limited (or local)
searches, and heuristic searches that move through the space of all trees.

16.6.1 Complete or Exact Searches

For small numbers of taxa (for most optimality criteria up to about 10 taxa, 2 027 025
unrooted binary trees) we can search all trees. However, even in this case, it is better to
use the first branch-and-bound search strategy outlined below.

16.6.1.1 Branch-and-bound Methods

These are standard methods in Operations Research. The ‘branch’ is a structured search
through the space of trees; this is the standard use of ‘branch’, not the non-standard use
in phylogeny for an edge of a tree. The ‘bound’ is the cost of the optimality criterion
on the best tree found (for parsimony, the tree with the fewest changes). If the ‘bound’
is exceeded, there is no need to search deeper from that point, thus eliminating large
numbers of trees from the search.

The two most popular branch-and-bound approaches are adding taxa sequentially (thus
forming subtrees with a subset of taxa), and adding sites sequentially (‘TurboTree’).
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The first starts with a subtree of three widely separated taxa; adds a fourth to every
position on that subtree, etc. (see Figure 16.6). If a subtree with, say, 10 out of 20 taxa is
already longer than the best tree already found then there is no need to add the remaining
10 taxa. For example, if the best tree has 769 changes, and a subtree of 10 taxa has 770,
then 17× 19× 21× . . .× 35(> 1014) trees are excluded because each must be worse.
It is important to eliminate early unproductive regions of the search space. A second
approach, TurboTree, ranks the most frequent patterns first. It then forms a tree by adding
these most frequent sites sequentially, but includes the cost of excluding the other sites.
Patterns in the data that fit the optimal tree are expected to be more frequent and are added
quickly. By having a gain from including an edge in a tree, and the costs of excluding
other edges, it finds optimal trees quickly (especially for closest tree).

Branch-and-bound methods are readily implemented with parsimony, minimum evolu-
tion, and closest tree optimality criteria. They can be used with either observed data,
or data corrected for multiple changes. Branch-and-bound methods are easy to imple-
ment, even though optimising them in order to decrease average run time still has scope
for improvement. It is unfortunate that branch-and-bound methods have not yet been so
useful with maximum (average) likelihood. They can be implemented quite readily but do
not give the many orders of magnitude speedup that occurs with the simpler optimality
criteria.

If branch-and-bound searches run to completion, they guarantee to have found the best
trees for that optimality criterion. For MP, the searches should work for up to 20 taxa
and improvements will work for up to 30 taxa in some cases, especially for corrected
parsimony. But many data sets have 100+ sequences! Approximations are possible to cut
running time, but this will sacrifice the certainty of finding the shortest possible tree, and
so are really a heuristic searches. By using an artificial bound, a tight limit on the length
of the minimal tree can be determined, even if the unrestricted search takes too long to
complete. For example, a heuristic search may have found a tree with 679 changes, but
the branch-and-bound search does not run to completion. You can repeat the search with
a bound of 677 or of 678. The search with bound 677 may run to completion and simply
report that there are no trees of that length or shorter. Even if the search trees of length
678 keeps running forever, you now know that the shortest possible tree is of length 678
or 679. Consequently, the known tree of length 679 cannot be more than one mutation
longer than the global minimum.

16.6.1.2 Converging Upper and Lower Bounds (the Minmax Squeeze)

This approach combines two search methods simultaneously, neither of which can
guarantee optimality by itself. They are: a heuristic search for shorter and shorter trees
(thus reducing the ‘upper bound’ – the shortest tree cannot be longer than one you have
already found); and partitioning sites into subsets for which a minimal tree can be found
(thus increasing the lower bound – the minimum length of the shortest tree). The lower
bound comes from partitioning sites into small subsets for which a guaranteed minimal
tree can be found. For example, if there are 12 distinct combinations of codes for a subset
of sites, and linked with steps no more than a single mutation (see Figure 16.5g), then
the minimal length subtree has 11 steps. Every tree on the full data must have at least
11 parsimony steps for this subset of sites. The lower bound is the sum of the lengths
of all disjoint subsets of columns. The aim is to find shorter and shorter trees (reducing
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the upper bound) and larger and larger lower bounds, until they meet, hence the name
MinMax Squeeze.

If (emphasise ‘if’) the length of the shortest tree (the upper bound) reaches the same
value as the lower bound, then no tree with fewer mutations can exist. This combined
approach has been used to establish a minimum length tree for 127 complete human
mitochondrial genomes (Pierson et al., 2006). In general, this approach is better for
population samples because it works most efficiently when the sequences are close
together (abundant). However, the general approach will be of growing interest with
the increasing use of molecular information such as gene order, presence or absence of
inserted elements, major insertions and/or deletions.

16.6.2 Heuristic Searches I, Limited (Local) Searches

Heuristic methods do not guarantee to find a global optimum; but based on previous
experience, they will quickly find a ‘reasonable’ solution. They are sometimes called
‘quick and dirty’, and a huge effort has been spent in improving them because they are
used in thousands of applications worldwide. We consider them under the two categories,
limited or greedy searches, and hill-climbing searches. We discuss the first group under
cluster methods, and subtree searches.

16.6.2.1 Cluster Methods

There are a many cluster search strategies, including NJ and UPGMA, which build trees
sequentially by joining pairs of taxa. They sequentially select internal edges of the tree
until the tree is fully resolved. There are several optimality criteria, as well as methods
of adjusting the distance values after joining two groups. The searches are essentially
‘greedy’ in that the programs do not evaluate an optimality criterion over the entire tree;
they just accept the tree from the stepwise search. In practice, virtually all cluster methods
use distance data, either observed or corrected for inferred multiple changes. In principle,
the methods could function on the original sequence data, and with either parsimony
or ML.

NJ is the most popular cluster method. It selects two taxa (including previously clustered
taxa) that give the biggest increase in ‘net divergence’ (Section 16.4.2). The pair with the
largest internal edge is joined together and this new cluster is treated as a single taxon
thereafter (hence the name, neighbor joining). For example, if building a tree of mammals,
then humans and chimpanzees are joined on the tree and information about them averaged
(more or less). Later in the search, this group may be joined to the gorilla and then this
threesome forms a new cluster, etc. The search strategy for t taxa is fast, O(t3), because
it searches just one pathway in building a tree. As mentioned in the previous paragraph,
NJ could be implemented with many optimality criteria; it is basically a search strategy.
One variation of the method takes in to account variances and covariances of distances,
and another allows several trees to be stored during the search, thus considering a larger
range of trees.

UPGMA is a search strategy that clusters the most similar pair of taxa, and unites them
as a single taxon for subsequent rounds. When a molecular clock is a good description
of the data then this strategy is effective, especially if the distances are not corrected for
multiple changes. UPGMA is no longer consistent when there are differences in the rates
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of evolution. An example of data where UPGMA will fail is shown Figure 16.2, which
illustrates additive distances and their corresponding tree.

16.6.2.2 Addition Trees

Other limited search algorithms use the original data (not converted to distances). A
simple method is to add taxa successively into an enlarging subtree, each time the new
sequence is added into its (locally) optimal position. The ‘random addition tree’ selects
taxa randomly, and adds them into the best place on the growing subtree. This can be
repeated many times and gives a broader search of tree space. In both versions the fourth
taxon is added to all three edges of the single tree for three taxa (see Figure 16.6). The
fifth taxon is added to just the five edges of one best tree for four taxa, etc. Overall,
1+ 3+ 5+ 7+ . . .+ (2t − 5) trees and subtrees are evaluated, and this is proportional
to t2. But this is a vanishingly small fraction of the (2t − 5)!! unrooted binary trees. A
more general but slower version is to add all remaining taxa at each point, and select the
taxon that has the most stable position in the subtree. In other words, a taxon that had a
unique position two steps longer than the second best tree would be preferred to a taxon
whose best position was only one step longer than the second best. The latter would be
preferred over a taxon that had two equally good optimal positions.

Both cluster analysis and addition trees are technically ‘greedy’ algorithms; select the
best choice at each step, but do not go back and re-evaluate earlier decisions. These tree(s)
can be used as a starting point for more extensive explorations of tree space, as in the
next section.

16.6.3 Heuristic Searches II–Hill-climbing and Related Methods

There is a major literature in Operations Research on searching effectively through a
complex ‘landscape’; there are thousands of major real-world problems that require
effective solutions, even if the global optimum is unknown. For phylogenetics the simplest
approach selects a tree randomly, then starts making slight changes to it. Every time a
better tree is found the new tree is taken and the procedure repeated with changes to this
new tree. The process is repeated until no further changes are found that lead to a better
tree.

The two aspects of the algorithm are: moving through the space of all trees; and
accepting (or not) the new tree. There are many ways of changing a tree slightly;
randomly moving a taxon to a new position; collapsing an internal edge and re-expanding
it (a commonly used technique for moving through tree space – a crossover or nearest
neighbour interchange); and a cut-and-paste move (or tree bisection and reconnection)
that breaks one internal edge (branch) of a tree and reconnects the two resulting subtrees
in a different way. In the last two methods, the edges can be selected randomly, and if
only approach is used to move through the space of all trees then it is a MCMC.

When it comes to searching for improved trees, the simplest strategies are basically ‘hill-
climbing’ methods; either accepting any better tree, or accepting the tree with the largest
improvement (steepest ascent). This continues until no further improvement is possible.
Such searches are widely used, but are prone to being caught in a local optimum – a
reasonable solution, but not the global optimum. Improved methods can initially accept
slightly worse trees for a while – then resume hill climbing. They may eventually end up
with a better tree. We will mention just three variants.
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1. Simulated annealing (the Metropolis algorithm) has a probability of accepting a worse
solution at any point in the search, but gradually reduces this probability as the search
continues. Thus it will eventually stop when it has hill-climbed to an optimum.

2. The next variant is the Great Deluge search strategy that accepts any solution (better or
worse) above a bound. However, the bound keeps increasing, faster in a good region
of the search, more slowly in a poorer region (thus giving more time to escape).

3. The third is a tabu search, which hill climbs until it reaches an optimum, backs away
from it by several steps, then resumes hill climbing. By recording how it backed away
from the optimum (the tabu list) it avoids immediately re-climbing the last optimum.

The latter two strategies appear especially useful for tree searches. All can be coupled
with a MCMC search, with the Metropolis algorithm it is called Metropolis-coupled, or
MCMCMC.

Other approaches use a population of trees at any one time, and can use the best features
of each. For example, hitchhiking can be combined with the options above. Several trees
are being optimised simultaneously, some are drivers that are hill climbing, other trees
are hitch-hikers that accept a better solution their driver finds – if it is also an increase
for them. The hitchhikers periodically change drivers, effectively giving recombination
possibilities. Charleston (2001) describes some of these search strategies, as well as giving
properties of the search space that can be readily measured. Understanding the landscape
of the search space with real data is of critical importance, but the problem is in need of
much more study.

16.6.4 Quartets and Supertrees

Finally, there are two strategies that both involve building trees from subtrees, one from
quartets of taxa, the other with any sized subsets. With just three taxa, there is only
one unrooted tree (though a molecular clock version with three taxa is possible). Four
taxa (a quartet) is the smallest subset that leads to a decision between unrooted trees;
there are three choices to consider. It might be expected (hoped?) that only having three
choices leads to a greater chance of getting the correct subtree. If all quartets were chosen
correctly, then they could readily be joined into one large tree with all taxa included. If all
quartets of t taxa are considered the algorithm is of order t4. In practice, not all subsets
will agree and it is necessary to form the best overall tree. The best-known approach is
quartet puzzling that evaluates quartets using ML, and then searches for the best tree that
agrees with as many subsets as possible. Equal weight needs not be given to all quartets;
the relative advantage of the best tree over the second best is one subsidiary criterion that
could weight the reliability of quartets.

A second approach in this category of searching tree space does not limit the quartets
to four taxa, they can be of any size (Bininda-Emonds et al., 2003). In many studies the
sequences available for the taxa may differ. In such a case, trees can be inferred for each
data set, and if there is sufficient overlap of taxa between subsets (and the trees from
the subsets are in reasonable agreement), then ‘supertrees’ can be built from the subtrees.
The algorithm works efficiently only if there is at least one species common to all the
subsets; this taxon effectively acts as an artificial root for building the subtree.

In conclusion, searching through the space of all trees is the limiting feature in inferring
trees. It is this aspect that stops any algorithm from being efficient. This is not really a
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surprise; in Operations Research there are large numbers of problems for which no efficient
algorithm is known, and others for which it is proven that no efficient algorithm can exist.
But because there are so many such real-world problems, the range of techniques that are
useful has been studied extensively. In this section we have considered branch-and-bound,
local searches, greedy algorithms, hill-climbing methods (including those that can escape
local maxima), and finally trees assembled from subtrees. The searching of tree space is
a major study in its own right.

16.7 OVERVIEW AND CONCLUSIONS

Although this chapter is limited to parsimony and distance methods, it still encompasses
a wide field. Our central theme is the need for careful analysis of the problems involved.
Many areas of mathematics are involved, not just classical statistics. Trees and graphs
are a well-understood part of graph theory. It really matters little if there are two uses
of ‘parsimony’ in phylogenetics, as long as the particular use is made clear, and as long
as the assumptions are understood. Real confusion has arisen when it is forgotten that
a ‘method’ for inferring trees consists of three procedures, (1) an optimality criterion,
(2) a search strategy, and (3) a procedure for handling multiple changes. This, by itself,
has caused more confusion than any other aspect of the theory of tree reconstruction.
Similarly, claiming an optimality criterion was, or was not, consistent, misses the point
that it is the method of handling multiple changes that leads to consistency, or otherwise.
Inferring divergences from millions of years ago is at the cutting edge of modern science
and as long as we all learn, the subject will continue to progress.

There is still a range of topics in the quantitative study of trees that need to be
understood. We require more information on objective ‘tree comparison’ methods and
their distributions. These help in the evaluation of results, especially in the testing of
hypotheses. They do not replace standard resampling (parametric and non-parametric
bootstrap and jackknife) methods. Locating the root of the tree is still particularly
susceptible to error. This is largely because some well-established groups (such as
mammals, birds, and flowering plants) have been separated for many millions of years
from their closest living relatives. Outgroups are very distant from the in-group, a classic
case for a long-edge attraction problem. If a molecular clock were known to be a realistic
description of the data, then ‘centering’ on the average midpoint of the unrooted tree is
another approach.

It is necessary at all times to keep potential sources of error in mind. Perhaps there
has been too much emphasis on convenient mathematical models, rather then checking
them against biochemical processes. A classic example is assuming that sites are always
in the same rate class over the whole tree. This is not expected based on 3D structure of
proteins, which keeps evolving. Better estimates of dates of divergence, calibrated against
the fossil record, are urgently needed to test a wider range of hypotheses.

Molecular data is now the most important data for phylogeny as it allows phylogenies
for all organisms and is providing a large amount of data at relatively low cost. There is
still a need for improved methods and in ensuring there is a thorough testing of the results.
Phylogeny is now a part of normal science – it does not depend on subjective ideas of
the research worker. Darwin’s ‘theory of descent’ can now be established quantitatively,
though still with exceptions such as lateral gene transfer. Phylogenetics will continue to
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fascinate both theoretical and experimental biologists. This chapter illustrates the wide
range of mathematics involved, and the need for careful analysis of the basis of the
methods in use.
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Evolutionary quantitative genetics is the study of how complex traits evolve over time. While this
field builds on traditional concepts from quantitative genetics widely used by applied breeders and
human geneticists (in particular, the inheritance of complex traits), its unique feature is in examining
the role of natural selection in changing the population distribution of a complex trait over time.
Our review focuses on this role of selection, starting with response under the standard infinitesimal
model, in which trait variation is determined by a very large number of loci, each of small effect.
We then turn to issues of measuring fitness (and hence natural selection) on both univariate
and multivariate traits. We conclude by examining models that treat fitness itself as a complex
trait.

17.1 INTRODUCTION

Evolutionary quantitative genetics is a vast field, ranging from population genetics at
one extreme to development and functional ecology at the other. The goal of this field
is a deeper understanding of not only the genetics and inheritance of complex traits in
nature (traits whose variation is due to both genetic and environmental factors) but also
the nature of the evolutionary forces that shape character variation and change in natural
populations. Given the limitations of space, we have chosen to focus this review on
evolutionary change, in particular estimation of the nature of selection and aspects of the
evolutionary response to selection. A detailed treatment of the inheritance of complex
traits in nature can be found in Lynch and Walsh (1998). Roff (1997) provides a good
overview of the entire field, while the reader seeking detailed treatments of specific issues
should consult Bulmer (1980) and Walsh and Lynch (2003). Bürger (2000) provides an
excellent (but, in some places, highly technical) review of the interface between population
and quantitative genetics.
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17.1.1 Resemblances, Variances, and Breeding Values

A few summary remarks on quantitative genetics are in order to give the reader the
appropriate background. A good introduction is Falconer and Mackay (1996), while a
very detailed treatment is given by Lynch and Walsh (1998). Chapter 18, Chapter 19,
Chapter 20, and Chapter 21 in this Handbook also examine some of these issues in
greater detail.

17.1.1.1 Fisher’s Genetic Decomposition

Although Yule (1902) can be considered the first paper in quantitative genetics, the genesis
of modern quantitative genetics is the classic paper by Fisher (1918). Fisher made a
number of key insights, notably that with sexual reproduction only a specific fraction of
an individual’s genotypic value (the mean value of that genotype when averaged over
the distribution of environments) is passed on to its offspring, and that we can estimate
the variances associated with these various components by looking at the phenotypic
covariances between appropriate relatives.

Fisher decomposed the observed phenotypic value z of an individual into a genotypic
G and environment E value,

z = G+ E. (17.1a)

The genotypic value can be thought of as the average phenotypic value if the individual
was cloned and replicated over the universe of environments it is likely to experience. As
mentioned, Fisher noted that a parent does not pass along its entire G value to its offspring,
as for any given locus a parent passes along only one of its two alleles to a particular
offspring. Thus, the genotypic value can be further decomposed into a component passed
on to the offspring A (the additive genetic value) and a nonadditive component, which
includes the dominance D and any epistastic effects. We ignore the effects of epistasis
here, whose complex features are extensively examined by Lynch and Walsh (1998) and
Walsh and Lynch (2003). Thus,

z = µ+ A+D + E, (17.1b)

where µ is the population mean (by construction, the mean values of A, D, and E
equal zero). The additive values A are often referred to as breeding values, as the average
value of an offspring is just the average breeding value of its parents. Hence, the expected
value of an offspring is µ+ (Af + Am)/2, where Af is the paternal (or sire) and Am the
maternal (or dam) breeding values.

17.1.1.2 Additive Genetic Variances and Covariances

When the phenotype can be decomposed as in (17.1b), Fisher showed that the pheno-
typic covariance between parent and offspring is half the population variance of breeding
values, σ 2

A:

σ 2(zp, z0) =
σ 2
A

2
. (17.2a)
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Thus, twice the parent–offspring phenotypic covariance provides an estimate of σ 2
A, which

is called the additive genetic variance. There are a number of potential complications in
blindly applying (17.2a), such as shared environmental effects, and maternal effects when
considering the mother–offspring covariance. See Falconer and Mackay (1996) and Lynch
and Walsh (1998) for details on handling these complications. Chapter 19 considers how
to use not just parent–offspring information, but also at the same time all the information
in general pedigrees in estimating the additive genetic variances.

The covariance in breeding values between two traits (say x and y), σA(x, y), is needed
for considering evolution of multiple traits. These additive genetic covariances can also be
estimated from parent–offspring regressions, as the phenotypic covariance between one
trait in the parent (p) and the other trait in the offspring (o) estimates half the additive
genetic covariance of the traits, e.g.,

σ 2(xp, yo) = σ 2(yp, xo) =
σA(x, y)

2
. (17.2b)

Two different mechanisms can generate a (within-individual) covariance in the breeding
values of two traits: linkage and pleiotropy. Linked loci show an excess of parental
gametes, creating a correlation between alleles at these loci. (If a parent has alleles A and
B on one chromosome and a and b on the other homologous chromosome, this parent will
produce more AB and ab parental gametes than Ab and aB recombinant gametes.) In this
case, even if each linked locus affects only a single trait, the correlation between alleles
(linkage disequilibrium) generates a short-term correlation between the breeding values of
the traits. Over time these associations decay through recombination, randomizing allelic
associations across loci. Alternatively, with pleiotropy a single locus can affect multiple
traits. Covariances due to pleiotropic loci are stable over time.

17.1.2 Single Trait Parent–Offspring Regressions

17.1.2.1 Phenotypic and Genetic Regressions

Most of the theory of selection response in quantitative genetics assumes linear
parent–offspring regressions that have homoscedastic residuals (i.e., the variance about
the expected value is independent of the values of the parents). The simplest version
considers the phenotypic value of the midparent, zmp = (zm + zf )/2, with the offspring
value zo predicted as

zo = µ+ b(zmp − µ), (17.3a)

where µ is the population mean. Recalling that the slope b of the best linear regression
of y on x, y = a + bx, is given by

b = σ(x, y)
σ 2
x

,

the slope of the midparent–offspring regression becomes

b = σ(zo, zmp)
σ 2(zmp)

= σ(zo, zm)/2+ σ(zo, zm)/2
σ 2(xm/2+ xf /2)

= 2σ 2
A/4

2σ 2
z /4

= σ
2
A

σ 2
z

. (17.3b)
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This ratio of the additive genetic variance to the phenotypic variance is usually denoted
h2 and is called the (narrow-sense) heritability. Thus, the midparent–offspring regression
is given by

zo = µ+ h2(zmp − µ) = µ+ h2
(
zm + zf

2
− µ

)
; (17.3c)

this is the expected value for an offspring. The actual value for any particular offspring
is given by

zo = µ+ h2(zmp − µ)+ e, (17.4a)

where the residual e has mean value zero and variance

σ 2
e =

(
1− h

4

2

)
σ 2
z . (17.4b)

17.1.2.2 Selection Differentials and the Breeders’ Equation

The parent–offspring regression allows us to predict the response to selection. Suppose
the mean of parents that reproduce (µ∗) is different from the population mean before
selection µ. Define the directional selection differential as S = µ∗ − µ (S is often simply
called the selection differential). From (17.3c), the difference R between the offspring
mean of these parents and the original mean of the population before selection is

R = h2S. (17.5)

This is the breeders’ equation which transforms the between-generation change in the
mean (the selection response R) into the within-generation change in the mean (S ). Notice
that strong selection does not necessarily imply a large response. If the heritability of a
trait is very low (as occurs with many life-history traits), then even very strong selection
results in very little (if any) response. Hence, selection (nonzero S ) does not necessarily
imply evolution (nonzero R).

17.1.3 Multiple Trait Parent–Offspring Regressions

The (single-trait) parent–offspring regression can be generalized to a (column) vector of
n trait values, z = (z1, . . . , zn)

T. Letting zo be the vector of trait values in the offspring,
zmp the vector of midparent-trait values (i.e., the i th element is just (zf,i + zm,i)/2), and
µ be the vector of population means, then the parent–offspring regression for multiple
traits can be written as having expected value

zo = µ+H(zmp − µ) (17.6)

where the (i,j )th element in the matrix H is the weight associated with the value of trait
i in the offspring and trait j in the midparent.

17.1.3.1 The Genetic and Phenotypic Covariance Matrices

In order to further decompose H into workable components, we need to define the
phenotypic covariance matrix P whose (i,j )th element is the phenotypic covariance
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between traits i and j. Note that P is symmetric, with the diagonal elements corresponding
to the phenotypic variances and off-diagonal elements corresponding to the phenotypic
covariances. In a similar manner, we can define the symmetric matrix G, whose (i, j )th
element is the additive genetic covariance (covariance in breeding values) between traits
i and j . Using similar logic to that leading to (17.3b) (the slope of the single-trait
regression), it can be shown that

H = GP−1, (17.7a)

giving the multitrait parent–offspring regression as

z0 = µ+GP−1(zmp − µ). (17.7b)

17.1.3.2 The Multivariate Breeders’ Equation

Letting R denote the column vector of responses (so that the i th element is the between-
generation change in the mean of trait i ), and S the vector of selection differentials, then
(17.7b) allows us to generalize the breeders’ equation to multiple traits,

R = HS = GP−1S; (17.8)

this equation forms the basis for discussions about selection on multiple characters
(Section 17.6).

17.2 SELECTION RESPONSE UNDER THE INFINITESIMAL MODEL

17.2.1 The Infinitesimal Model

The breeders’ equation predicts the change in mean following a single generation of
selection from an unselected base population. The only assumption required is that the
parent–offspring regression is linear, but the question remains as to when this linearity
holds. Further, the breeders’ equation focuses only on the change in mean, leaving
open the question of what happens to the variance. The latter concern is of special
relevance in evolutionary quantitative genetics, as stabilizing selection (which reduces
the variance without necessarily any change in the mean) is thought to be common in
natural populations. The infinitesimal model, introduced by Fisher (1918), provides a
framework to address these issues.

17.2.1.1 Allele Frequency Changes under the Infinitesimal Model

Under the infinitesimal model, a character is determined by an infinite number of unlinked
and nonepistatic loci, each with an infinitesimal effect. A key feature of the infinitesimal
model is that while allele frequencies are essentially unchanged by selection, large changes
in the mean can still occur by summing infinitesimal allele frequency changes over a large
number of loci. To see this feature, consider a character determined by n completely
additive and interchangeable loci, each with two alleles, Q and q (at frequencies p and
1− p), where the genotypes QQ, Qq, and qq contribute 2a, a, and 0 (respectively) to
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the genotypic value. The resulting mean is 2nap and the additive variance (ignoring the
contribution from gametic-phase disequilibrium) is σ 2

A = 2na2p(1− p). For σ 2
A to remain

bounded as the number of loci increase, a must be of order n−1/2. The change in mean
due to a single generation of selection is easily found to be �µ = 2na�p. Assuming the
frequency of Q changes by the same amount at each locus, �p = �µ/(2na). Since a
is of order n−1/2,�p is of order 1/(n · n−1/2) = n−1/2, approaching zero as the number
of loci becomes infinite. Thus the infinitesimal model allows for arbitrary changes in the
mean with (essentially) no change in the allele frequencies at underlying loci.

What effect does this very small amount of allele frequency change have on the
variance? Letting p′ = p +�p denote the frequency after selection, the change in the
additive genic variance is

�σ 2
A = 2na2p′(1− p′)− 2na2p(1− p)
= 2na2�p(1− 2p −�p)
≈ a(1− 2p)�µ.

Since a is of order n−1/2, the change in variance due to changes in allele frequencies is
roughly 1/

√
n the change in mean. Thus, with a large number of loci, very large changes

in the mean can occur without any significant change in the variance. In the limit of
an infinite number of loci, there is no change in the genic variance (�σ 2

A = 0), while
arbitrary changes in the mean can occur.

17.2.1.2 Linearity of Parent–Offspring Regressions under the Infinitesimal Model

Under the infinitesimal model, genotypic values (G) are normally (or multivariate
normally if G is a vector) distributed before selection (Bulmer, 1971; 1976). Assuming
environmental values (E ) are also normal, then so is the phenotype z(as z = G+ E) and
the joint distribution of phenotypic and genotypic values is multivariate normal. In this
case, the regression of offspring phenotypic value zo on parental phenotypes (zf and zm
for the father and mother’s values) is linear and homoscedastic.

17.2.2 Changes in Variances

As mentioned, under the infinitesimal model (in an infinite population) there is essentially
no change in the genetic variances caused by allele frequency change. Changes in
allele frequencies, however, are not the only route by which selection can change
the variance (and other moments) of the genotypic distribution. Selection also creates
associations (covariances) between alleles at different loci through the generation of
gametic-phase (or linkage) disequilibrium, and such covariances can have a significant
effect on the genetic variance. Disequilibrium can also change higher-order moments of
the genotypic distribution, driving it away from normality and hence potentially causing
parent–offspring regressions to deviate from linearity.

17.2.2.1 The Additive Variance under Disequilibrium

The additive genetic variance σ 2
A in the presence of linkage disequilibrium can be

written as
σ 2
A = σ 2

a + d (17.9)
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where σ 2
a is the additive genetic variance in the absence of disequilibrium and d the

disequilibrium contribution. To formally define σ 2
a and d, let a(k)1 and a(k)2 denote average

effects of the two alleles at locus k from a random individual. Since σ 2
A is the variance

of the sum of average effects over all loci,

σ 2

(
n∑
k=1

(
a
(k)
1 + a(k)2

))
= 2

n∑
k=1

σ 2(a(k))+ 4
n∑
k<j

σ (a(j), a(k)) (17.10a)

= 2
n∑
k=1

Ckk + 4
n∑
k<j

Cjk, (17.10b)

where n is the number of loci and Cjk = σ(a(j), a(k)) is the covariance between allelic
effects at locus j and k. Thus σ 2

a = 2
∑
Ckk is the additive variance in the absence of

gametic-phase disequilibrium and the disequilibrium contribution d = 4
∑
j<k Ckj is the

covariance between allelic effects at different loci. The component of the additive genetic
variance that is unaltered by changes in gametic-phase disequilibrium, σ 2

a , is often referred
to as the additive genic variance (or simply the genic variance) to distinguish it from the
additive genetic variance σ 2

A.
Under the infinitesimal model, selection does not change the Ckk (as this requires

changes in the allele frequencies), and hence does not alter σ 2
a . However, selection does

generate correlations between loci (Cik �= 0), and this can result in significant changes
in the overall additive variance σ 2

A. Changes in the covariances Cij between loci i and
j (for i �= j ) are roughly of order n−2 (Bulmer, 1980; Turelli and Barton, 1990). Since
there are n2 terms contributing to d, the total disequilibrium is of order one (n2 · n−2)
and does not necessarily approach zero as the number of loci becomes infinite. The same
reasoning holds for changes in the higher-order moments, which are caused by higher-
order associations between groups of loci, and can also be nontrivial (Turelli and Barton,
1990).

17.2.2.2 Dynamics of Disequilibrium

Recall that the total genetic variance is the sum of the additive and dominance variances
(plus any epistatic variances), so that σ 2

G = σ 2
A + σ 2

D. Under the infinitesimal model,
disequilibrium changes the additive genetic, but not the dominance, variance (Walsh and
Lynch, 2003). Hence, the phenotypic variance in generation t of selection is

σ 2
z (t) = σ 2

E + σ 2
D + σ 2

A(t) = σ 2
z + d(t), (17.11a)

where σ 2
z = σ 2

z (0) is the phenotypic variance before selection in the initial (unselected)
base population. The resulting heritability in generation t becomes

h2(t) = σ
2
A(t)

σ 2
z (t)

= σ
2
a + d(t)
σ 2
z + d(t)

. (17.11b)

Assuming that the parent–offspring regression remains linear, the selection response in
generation t becomes R(t) = h2(t)S(t). Assuming unlinked loci, Bulmer (1971) showed
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that the change in disequilibrium is given by

d(t + 1) = d(t)
2
+ h

4(t)

2

(
σ 2
z∗(t) − σ 2

z(t)

)
, (17.12)

where σ 2
z∗(t) − σ 2

z(t) is the within-generation change in the phenotypic variance. The first
term represents the removal of disequilibrium by recombination, while the second is
the generation of disequilibrium by selection. Note that (17.12) is the variance analog
of the breeders’ equation, relating the between- (d(t + 1)− d(t)) and within-generation
(σ 2
z∗(t) − σ 2

z(t)) changes in the variance.
Starting with an unselected base population (where d(0) = 0), iterating (17.12) gives

the disequilibrium (and hence the heritability, phenotypic variance, and response) in any
desired generation. Under directional selection (selection only on the mean), most of the
disequilibrium is generated in the first three to five generations, after which d is very
close to its equilibrium value d̃ . Once selection stops, the current disequilibrium is halved
each generation, with the additive variation rapidly returning to its value before selection.
This occurs because under the infinitesimal model, all changes in variances are due to
disequilibrium, which decays via recombination in the absence of selection.

An important point regarding (17.12) is that there can be no change in the mean (S = 0)
and yet selection can still act on the variance. Stabilizing selection, which removes
extreme individuals and reduces the variance, is widely thought to be widespread in
nature. The within-generation reduction in variance generates negative disequilibrium,
which in turn reduces the additive variance. Under the infinitesimal model, once stabilizing
selection stops, the variance returns (increases) to its initial value after a few generations.
Likewise, under disruptive selection, individuals of intermediate value are selected against,
increasing the variance. This generates positive d, increasing the additive variance. Again,
when selection is stopped, the variance decays back to its initial (pre-selection) value.

Iteration of (17.12) allows any form of selection to be analyzed. For modeling purposes,
it is often assumed that the within-generation change in the phenotypic variance can be
written as

σ 2
z∗(t) = (1− κ)σ 2

z(t), (17.13)

where κ is a constant that does not change over time. Noting that σ 2
z(t) = σ 2

A(t)/h
2(t) and

substituting (17.13) into (17.12) recovers the result of Bulmer (1974),

d(t + 1) = d(t)
2
− κ

2
h2(t)σ 2

A(t) =
d(t)

2
− κ

2

[σ 2
a + d(t)]2

σ 2
z + d(t)

. (17.14)

Again, simple iteration allows one to compute the variance in any generation.

17.2.2.3 Equilibrium Variances

The equilibrium variances, and hence the asymptotic rate of response under directional
selection or the equilibrium variance under stabilizing or disruptive selection, are easily
obtained. At equilibrium, (17.14) implies

d̃ = −κh̃2σ̃ 2
A = −κ

(σ 2
a + d̃)2
σ 2
z + d̃

. (17.15a)
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Solving for d̃ gives the equilibrium additive genetic variance as

σ̃ 2
A = σ 2

z θ, where θ = 2h2 − 1+√
1+ 4h2(1− h2)κ

2(1+ κ) , (17.15b)

and the resulting heritability at equilibrium is

h̃2 = σ̃
2
A

σ̃ 2
z

= σ̃ 2
A

σ 2
z + (σ̃ 2

A − σ 2
A)
= θ

1+ θ − h2
. (17.15c)

The simple picture that emerges from directional selection under the infinitesimal model
is that while the heritability may decrease slightly from its initial value (due to generation
of linkage disequilibrium), the response to selection continues without limit. Biological
reality, of course, places limits on the character values that can be obtained by selection
response. For example, selection may move the mean phenotype to a region on the fitness
surface where stabilizing selection dominates (see Section 17.4). Likewise, selection on
one character may be opposed by selective constraints imposed by other characters also
under selection, and a limit can be reached despite significant additive variance and a
nonzero S in the character being followed (Section 17.6).

17.2.3 The Roles of Drift and Mutation under the Infinitesimal Model

While selection does not change allele frequencies under the infinitesimal model, genetic
drift (due to finite population size) and mutation can play very important roles in shaping
the genetic variance. Inclusion of these two forces allows the infinitesimal model to be
modified into a much more biologically realistic description of selection response.

17.2.3.1 Drift

Assuming no dominance or epistasis, with drift (assuming an effective population size of
Ne) the expected genic variation σ 2

a declines each generation from its initial value σ 2
a (0),

with the genic variance in generation t being

σ 2
a (t) = σ 2

a (0)
(

1− 1

2Ne

)t
. (17.16)

If dominance (or epistasis) is present, the additive variation can actually increase (at least
while the level of inbreeding is moderate) before it ultimately declines to zero (Walsh and
Lynch, 2003). Under the infinitesimal model, selection is so weak on any given underlying
locus that the allele frequency dynamics are entirely governed by drift, and the change in
the genic variance is given by (17.16).

Keightley and Hill (1987) show that, under drift, the change in the amount of
disequilibrium is given by

�d(t) = −d(t)
2

(
1+ 1

Ne

)
− 1

2

(
1− 1

Ne

)
κh2(t)σ 2

A(t). (17.17)

Joint iteration of (17.16) and (17.17) allows for modeling of response with a finite
population size. During the course of selection, genetic drift removes the initial variation,
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driving the genic (and hence additive genetic) variance to zero. With directional selection
a limit is reached, as the response stops as the heritability approaches zero. Robertson
(1960) showed that the total change in the mean in this case is approximately 2NeR(1),
with R(1) the response in the first generation. It takes approximately 1.4Ne generations
for half this total response to occur.

17.2.3.2 Mutation

Balancing the removal of genetic variation by genetic drift is the introduction of
new variation by mutation. The mutation variance σ 2

m is defined as the per-generation
contribution by mutation to the additive variance, with the average value of σ 2

m/σ
2
E

typically around 0.005 (Lynch and Walsh, 1998). When both mutation and drift occur,
the additive variance eventually attains an equilibrium value of

σ̃ 2
A = 2Neσ

2
m. (17.18)

Assuming the infinitesimal model, completely additive loci, a base-population additive
variance of σ 2

A(0) and ignoring any effects of gametic-phase disequilibrium, the expected
additive genetic variance at generation t is given by

σ 2
A(t) � 2Neσ

2
m + [σ 2

A(0)− 2Neσ
2
m] exp(−t/2Ne). (17.19a)

Setting σ 2
A(0) = 0 gives the additive variance contributed entirely from mutation as

σ 2
A,m(t) � 2Neσ

2
m[1− exp(−t/2Ne)]. (17.19b)

Hence, the rate of response at generation t from mutational input is

Rm(t) = i
σ 2
A,m(t)

σz
� 2Nei

σ 2
m

σz
[1− exp(−t/2Ne)], (17.19c)

with i = S/σz (the selection intensity, which is discussed below). For t � 2Ne, the per-
generation response approaches an asymptotic limit of

R̃m = 2Nei
σ 2
m

σz
= i σ̃

2
A

σz
. (17.19d)

A full treatment allowing for mutation, drift, and disequilibrium under the infinitesimal
model is given by simply adding a σ 2

m term to (17.16) and then jointly iterating (17.16)
and (17.17).

17.3 FITNESS

Predicting the selection response under the infinitesimal model requires knowledge of
the change in mean and variance after an episode of selection. In an artificial selection
program, the breeder or experimentalist can not only measure these components, but also
largely set their values. In nature, the currency of selection is fitness, and the change



EVOLUTIONARY QUANTITATIVE GENETICS 543

in the phenotypic distribution is computed by first weighting individuals by their fitness
values. Discussion of selection response in nature thus starts by trying to assign fitness
values to particular character states. This is the linking step that allows use of the above
machinery for prediction of selection response.

17.3.1 Individual Fitness

Loosely stated, the lifetime (or total ) fitness of an individual is the number of descendants
it leaves at the start of the next generation. When measuring the total fitness of an
individual, care must be taken not to cross generations or to overlook any stage of the life
cycle in which selection acts. To accommodate these concerns, lifetime fitness is defined
as the total number of zygotes (newly fertilized gametes) that an individual produces.
Measuring total fitness from any other starting point in the life cycle (e.g., from adults
in one generation to adults in the subsequent generation) can result in a very distorted
picture of true fitness of particular phenotypes (Prout, 1965; 1969). If generations are
crossed, measures of selection on a particular parental phenotype in reality are averages
over both parental and offspring phenotypes, which may differ considerably.

Systems for measuring lifetime fitness have been especially well developed for labo-
ratory populations of Drosophila (reviewed by Sved, (1989)). Measurements of lifetime
fitness in field situations are more difficult and (not surprisingly) are rarely made. Atten-
tion instead is usually focused on particular episodes of selection or particular phases of
the life cycle. Fitness components for each episode of selection are defined to be multi-
plicative. For example, lifetime fitness can be partitioned as (probability of surviving to
reproductive age)·(number of mates)·(number of zygotes per mating). Number of mates
is a measure of sexual selection, while the viability and fertility components measure
natural selection. A commonly measured fitness component is reproductive success, the
number of offspring per adult, which confounds natural (fertility) and sexual selection
(in males, the number of matings per adult). Clutton-Brock (1988) reviews estimates of
reproductive success from natural populations.

Fitness components can themselves be further decomposed. For example, fertility in
plants might be decomposed as (seeds per plant) = (number of stems per plant)·(number
of inflorescences per stem)·(average number of seed capsules per inflorescence)·(average
number of seeds per capsule). Such a decomposition allows the investigator to ask
questions of the form: do plants differ in number of seeds mainly because some plants
have more stems, or more flowers per stem, or are there tradeoffs between these?

Estimates of fitness can be obtained from either longitudinal or cross-sectional studies.
A longitudinal study follows a cohort of individuals over time, while a cross-sectional
study examines individuals at a single point in time. Cross-sectional studies typically
generate only two fitness classes (e.g., dead versus living, mating versus unmated), and
their analysis involves a considerable number of assumptions (Lande and Arnold, 1983;
Arnold and Wade, 1984b). While longitudinal studies are preferred, they usually require
far more work and may be impossible to carry out in many field situations. Age-structured
populations pose further complications in that proper fitness measures require knowledge
of the population’s demography; see Charlesworth (1994), Lande (1982), Lenski and
Service (1982), and Travis and Henrich (1986) for details.
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17.3.2 Episodes of Selection

As mentioned, individuals are often measured over more than one episode of selection.
Imagine that a cohort of n individuals (indexed by 1 ≤ r ≤ n) is followed through several
episodes. Let Wj(r) be the fitness measure for the j th episode of selection for the r th
individual. For example, for viability Wj is either zero (dead) or one (alive) at the census

period. Let Wj denote the mean fitness of a random individual following the j th episode

of selection. Relative fitness components wj(r) = Wj(r)/Wj will turn out to be especially
useful. At the start of the study, the frequency of each individual is 1/n, giving for the
first (observed) episode of selection

W 1 =
1

n

n∑
r=1

W1(r). (17.20a)

Caution is in order at this point as considerable selection may have already occurred prior
to the life cycle stages being examined. Following the first episode of selection, the new
fitness-weighted frequency of the r th individual is w1(r)/n, implying

W2 =
n∑
r=1

W2(r) · w1(r) ·
(

1

n

)
. (17.20b)

In general, for the j th episode of selection,

Wj =
n∑
r=1

Wj(r) · wj−1(r) · wj−2(r) . . . w1(r) ·
(

1

n

)
. (17.20c)

Note that if Wj(r) = 0, further fitness components for r are unmeasured.
Letting pj (r) be the fitness-weighted frequency of individual r after j episodes of

selection, it follows that p0(r) = 1/n and

pj(r) = wj(r) · pj−1(r) =
1

n

j∏
i=1

wi(r). (17.21a)

Thus, (17.20c) can also be expressed as Wj =
∑
Wj(r) · pj−1(r). Using these weights

allows fitness-weighted moments to be calculated, e.g., the mean of a particular character
following the j th episode is computed as

µz(j) =
∑
z(r) · pj(r), (17.21b)

where z (r) is the value of the character of individual r.
The directional selection differential S is computed as the difference between fitness-

weighted means before and after an episode of selection, with the differential Sj for the
j th episode given by

Sj = µz(j) − µz(j−1). (17.22a)
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Selection differentials are additive over episodes, so that the total differential S following
k episodes of selection is

S = µz(k) − µz(0) = (µz(k) − µz(k−1))+ . . .+ (µz(1) − µz(0)) = Sk + . . .+ S1. (17.22b)

17.3.3 The Robertson–Price Identity

As first noted by Robertson (1966), and greatly elaborated on by Price (1970; 1972a), the
directional selection differential equals the covariance of phenotype and relative fitness,

S = σ(w, z). (17.23)

This identity is quite useful for obtaining the selection differential in complex selection
schemes and (as detailed below) forms the basis for a number of useful expressions
relating selection and fitness.

To obtain the Robertson–Price identity, let µs be the fitness-weighted mean after
selection and µ the mean before selection,

S = µs − µ =
n∑
r=1

z(r)w(r) · p(r)− µ

= E[zw]− 1 · E[z]

= E[zw]− E[w] · E[z]

= σ(w, z),
where we have used the fact that (by construction) E[w] = 1.

17.3.4 The Opportunity for Selection

How does one compare the amount of selection acting on different episodes and/or
different populations? At first thought, one might consider using the standardized selection
differential,

i = S

σz
, (17.24)

which is just the directional selection differential scaled in terms of character standard
deviations (i is often called the selection intensity and is widely used in breeding). The
drawback with i as a measure of overall selection on individuals is that it is character-
specific. Hence, i is appropriate if we are interested in comparing the strength of selection
on a particular character, but inappropriate if we wish to compare the overall strength
of selection on individuals. Two populations may have the same i value for a given
character, but if that character is tightly correlated with fitness in one population and only
weakly correlated in the other, selection is much stronger in the latter population. Further,
considerable selection can occur without changing the mean (e.g., stabilizing selection).
Standardized (quadratic) differentials also exist for the variance (Section 17.4.3), but the
problem of character specificity still remains.
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A much cleaner measure (independent of the characters under selection) is I, the
opportunity for selection, defined as the variance in relative fitness:

I = σ 2
w =

σ 2
W

W
2 . (17.25)

This measure was introduced by Crow (1958; reviewed in Crow (1989)), who referred
to it as the index of total selection. Crow noted that if fitness is perfectly heritable
(e.g., h2(fitness) = 1), then I = �w, the scaled change in fitness. Following Arnold and
Wade (1984a; 1984b), I is referred to as the opportunity for selection, as any change
in the distribution of fitness caused by selection represents an opportunity for within-
generation change. A key feature of I is that it bounds the maximal selection intensity
i for any character. From the Robertson–Price identity (17.23), the correlation between
any character z and relative fitness (which is bounded in absolute value by one) is

|ρz,w| =
|σz,w|
σzσw

= |S|
σz

√
I
= |i|√

I
≤ 1,

implying
|i| ≤ √I (17.26)

Thus, the most that the mean of any character can be shifted within a generation is
√
I

phenotypic standard deviations.
The usefulness of I as a bound of i depends on the correlation between relative

fitness and the character being considered. Figure 17.1 shows scatterplots of relative
fitness against two characters (z1 and z2) measured in the same set of individuals. The
marginal distributions of fitness are identical for both characters (since the same set of
individuals was measured for both traits), and hence both traits have the same opportunity

Marginal
distribution
of fitness

Relative
fitness

w

Variance = I

z1

Marginal
distribution
of fitness

Relative
fitness

w

Variance = I

z2

Figure 17.1 The fraction of the opportunity for selection I that is translated into a change in the
mean depends on the correlation between relative fitness and the character. Characters z1 and z2

have the same marginal distribution of fitness, but only the regression of w on z1 is significant.
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for selection. The association between relative fitness and trait z1 is fairly strong, while
there is no relationship between relative fitness and z2, so that z1 realizes much, while z2
realizes none, of the opportunity for change.

17.3.5 Some Caveats in Using the Opportunity for Selection

Despite its usefulness, there are some subtle issues in the interpretation of I. To begin with,
even though I appears to remove scaling effects due to different types of fitnesses, for
estimates of I to be truly comparable, they must be based on consistent measures of fitness
(Trail, 1985). Second, if the variance in fitness is not independent of W , comparisons of
I values between populations are compromised. Such a lack of independence occurs in
cross-sectional studies that measure sexual selection by simply counting the number of
mating pairs. If the time scale is such that only single matings are observed, the fitness
of any individual is either 1 (mating) or 0 (not mating). The resulting fitness of randomly
drawn individuals is binomially distributed with mean p (the mean copulatory success for
the sex being considered) and variance p(1− p), hence

I = p(1− p)
p2

� 1

p
if p � 1. (17.27)

The mean and variance in individual fitness are not independent, and the opportunity for
selection depends entirely on mean population fitness. As the time window for observing
mating pairs decreases, fewer matings are seen and p decreases, increasing I. Thus the
opportunity for selection is often inflated if the observation period is short relative to the
total mating period. Likewise, if one is only comparing viability selection (alive or dead
after an episode of selection), (17.27) also holds.

Another example of the lack of independence between W and σ 2
W was given by

Downhower et al. (1987), who assumed that the number of mates for any given male
follows a Poisson distribution. In this case, the variance in number of mates equals the
mean number of mates, giving

I = W

W
2 = W

−1
, (17.28)

where W is the mean number of mates per male. Thus, differences in I between
populations do not necessarily indicate biological differences in male mating ability.
For example, in a population of 100 males, if only 5 females mate, average male mating
success is W = 0.05, while if 50 females mate, W = 0.5. For this example, differences in
I come solely from variation in the number of mating females, not biological differences
between males in their ability to acquire mates. Downhower et al. conclude from this
example that comparing I values with the Poisson prediction (I = 1/W), or some other
appropriate random distribution, may help clarify the interpretation of I. For this case,
values of I less than the Poisson prediction indicate a more uniform distribution of fitness
than expected if mate choice is random, while values in excess of this expectation indicate
disproportionately high fitness among a limited set of individuals.

The Poisson mating example further points out that random variation (differences in
individual fitness not attributable to intrinsic differences between individuals) reduces
the correlation between phenotypic value and relative fitness. For this reason, measures
of selection based entirely upon variance in mating success have been criticized (Banks
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and Thompson, 1985; Sutherland 1985a; 1985b; Koenig and Albano, 1986). Although
carefully controlled studies can reduce the error variance induced by chance (e.g., Houck
et al., 1985), accounting for inflation of the opportunity for selection by random effects
remains a problem.

17.4 FITNESS SURFACES

17.4.1 Individual and Mean Fitness Surfaces

W (z ), the expected fitness of an individual with phenotype z, describes a fitness surface
(or fitness function), relating fitness and character value. The relative fitness surface
w(z) = W(z)/W is often more convenient than W (z ), and we use these two somewhat
interchangeably. The nature of selection on a character in a particular population is
determined by the local geometry of the individual fitness surface over that part of
the surface spanned by the population (Figure 17.2). If fitness is strictly increasing (or
decreasing) over some range of phenotypes, a population having its mean value in this
interval experiences directional selection. If W (z ) contains a local maximum, a population
with members within that interval experiences stabilizing selection. If the population
is distributed around a local minimum, disruptive selection occurs. As is illustrated
in Figure 17.2(d), when the local geometry of the fitness surface is complicated (e.g.,
multimodal) the simplicity of description offered by these three types of selection breaks
down, as the population can experience all three simultaneously.

Stabilizing
selection

w (z)

mz z

Directional
selection

w (z)

mz z

Combination

w (z)

z

Disruptive
selection

w (z)

mz z

(a) (b)

(c) (d)

Figure 17.2 Selection is usually classified into three basic forms depending on the local geometry
of W (z ): stabilizing (a), directional (b), and disruptive (c). As (d) illustrates, populations can
simultaneously experience multiple forms of selection.
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W (z ) may vary with genotypic and environmental backgrounds. In some situations
(e.g., predators with search images, sexual selection, dominance hierarchies, truncation
selection) the fitness of a phenotype depends on the frequency of other phenotypes in the
population. In this case, fitnesses are said to be frequency-dependent.

Mean population fitness W is also a fitness surface, describing the expected fitness of
the population as a function of the distribution p(z ) of phenotypes in that population,

W =
∫
W(z)p(z) dz. (17.29)

Mean fitness can be thought of as a function of the parameters of the phenotypic
distribution. For example, if z is normally distributed, mean fitness is a function of the
mean µz and variance σ 2

z for that population.
To stress the distinction between the W (z ) andW fitness surfaces, the former is referred

to as the individual fitness surface, the latter as the mean fitness surface. Knowing the
individual fitness surface allows one to compute the mean fitness surface for any specified
p(z ), but the converse is not true. The importance of the mean fitness surface is that it
provides one way of describing how the population changes under selection – under
the infinitesimal model, the derivative of W with respect to µz describes the change in
mean (17.31b).

17.4.2 Measures of Selection on the Mean

A general way of detecting selection on a character is to compare the (fitness-weighted)
phenotypic distribution before and after some episode of selection. Growth or other
ontogenetic changes, immigration, and environmental changes can also change the
phenotypic distribution, and great care must be taken to account for these factors. Another
critical problem in detecting selection on a character is that selection on phenotypically
correlated characters can also change the distribution. Keeping this important caveat in
mind, we first examine measures of selection on a single character, as these form the
basis for our discussion in Section 17.5 on measuring selection on multiple characters.
Typically, selection on a character is measured by changes in the mean and variance,
rather than changes in the entire distribution. While often only the mean is examined,
considerable selection can occur without any significant change in the mean (e.g.,
stabilizing selection).

Two measures of within-generation change in phenotypic mean have been previously
introduced: the directional selection differential S and the selection intensity i. A third
measure is the directional selection gradient

β = S

σ 2
z

. (17.30)

As detailed in Section 17.4.6, β is the slope of the linear regression of fitness on pheno-
type. These three measures (i, S, β) are interchangeable for selection acting on a single
character, but their multivariate extensions have very different behaviors (Section 17.5).
In particular, the multivariate extension of β is the measure of choice, as it measures
the amount of direct selection on a character, while S (and hence i) confounds direct
selection with indirect effects due to selection on phenotypically correlated traits (17.48).
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Recalling that h2 = σ 2
A/σ

2
z , the response is often written by breeders as

R = h2σzi = σAhi. (17.31a)

The response can also be expressed in terms of the directional selection gradient,

R = σ 2
Aβ. (17.31b)

17.4.3 Measures of Selection on the Variance

Similar measures can be defined to quantify the change in the phenotypic variance. At
first glance this change seems best described by σ 2

z∗ − σ 2
z , where σ 2

z∗ is the phenotypic
variance following selection. The problem with this measure is that directional selection
reduces the variance. Lande and Arnold (1983) showed that

σ 2
z∗ − σ 2

z = σ [w, (z − µz)2]− S2, (17.32)

implying that directional selection decreases the phenotypic variance by S2. With this in
mind, Lande and Arnold suggest a corrected measure, the stabilizing selection differential,

C = σ 2
z∗ − σ 2

z + S2, (17.33)

that describes selection acting directly on the variance. As we will see below, the term
‘stabilizing selection’ differential may be slightly misleading, so following Phillips and
Arnold (1989) we refer to C as the quadratic selection differential. Correction for the
effects of directional selection is important, as claims of stabilizing selection based
on a reduction in variance following selection can be due entirely to reduction in
variance caused by directional selection. Similarly, disruptive selection can be masked
by directional selection. Provided that selection does not act on characters phenotypically
correlated with the one under study, C provides information on the nature of selection on
the variance. Positive C indicates selection to increase the variance (as would occur with
disruptive selection), while negative C indicates selection to reduce the variance (as would
occur with stabilizing selection). As we discuss shortly, C < 0 (C > 0) is consistent with
stabilizing (disruptive) selection, but not sufficient. A further complication in interpreting
C is that if the phenotypic distribution is skewed, selection on the variance changes the
mean. This causes a nonzero value of S that in turn inflates C (Figure 17.3).

Analogous to S equaling the covariance between z and relative fitness, (17.32) implies
that C is the covariance between relative fitness and the squared deviation of a character
from its mean,

C = σ [w, (z− µ)2]. (17.34)

As was the case with S, the opportunity for selection I bounds the maximum possible
within-generation change in variance (Arnold, 1986). Expressing C as a covariance and
using the standard definition of a correlation gives C = ρw,(z−µ)2σwσ [(z− µ)2]. Since
ρ2
w,(z−µ)2 ≤ 1, we have

C2 ≤ σ 2
wσ

2[(z − µ)2] = I · (µ4,z − σ 4
z ).

Thus,

|C| ≤
√
I (µ4,z − σ 4

z ). (17.35a)
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Figure 17.3 Even when a population is under strict stabilizing selection, the mean can change
if the phenotypic distribution is skewed. A standard fitness function for stabilizing selection is
W(z) = 1− b(θ − z)2. O’Donald (1968) found that, even if the population mean is at the optimum
value (µz = θ), S is nonnegative if the skew is nonzero (µ3,z �= 0) as S = −(bµ3,z)/(1− bσ 2

z ).
(a) If phenotypes are distributed symmetrically about the mean (µ3,z = 0), the distribution after
selection (stippled) has the same mean when µz = θ . (b) If, however, the distribution is skewed,
more of the distribution lies on one side of the mean than the other. Since the distribution is
‘unbalanced’, the longer tail experiences more selection than the shorter tail, changing the mean.

If z is normally distributed, the fourth central moment µ4,z = 3σ 4
z , giving

|C| ≤ σ 2
z

√
2I . (17.35b)

The quadratic analog of β, the quadratic (or stabilizing) selection gradient γ , was
suggested by Lande and Arnold (1983),

γ = σ [w, (z − µ)2]

σ 4
z

= C

σ 4
z

. (17.36)

As with β, γ is the measure of choice when dealing with multiple characters
because it accounts for the effects of (measured) phenotypically correlated characters
(Section 17.5.5).

17.4.4 Gradients and the Geometry of Fitness Surfaces

A conceptual advantage of β and γ is that they describe the average local geometry of the
fitness surface when phenotypes are normally distributed. When z is normal and individual
fitnesses are not frequency-dependent, β can be expressed in terms of the geometry of
the mean fitness surface,

β = ∂ lnW

∂µz
= 1

W

∂W

∂µz
, (17.37a)

so that β is proportional to the slope of the W surface with respect to population mean.
β can also be expressed as a function of the individual fitness surface. Lande and Arnold
(1983) showed, provided z is normally distributed, that

β =
∫
∂w(z)

∂z
p(z) dz, (17.37b)
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implying that β is the average slope of the individual fitness surface, the average being
taken over the population being studied. Likewise, if z is normal,

γ =
∫
∂2w(z)

∂z2
p(z) dz, (17.37c)

which is the average curvature of the individual fitness surface (Lande and Arnold, 1983).
Thus, β and γ provide a measure of the geometry of the individual fitness surface averaged
over the population being considered.

A final advantage of β and γ is that they appear as the measures of phenotypic
selection in equations describing selection response. Recall from (17.31b) that under the
assumptions leading to the breeders’ equation, R = �µ = σ 2

Aβ. Similarly, for predicting
changes in additive genetic variance under the infinitesimal model, the expected change
in variance from a single generation of selection is

�σ 2
A = σ 4

A

2 (γ − β2), (17.38)

which decomposes the change in variance into changes due to selection on the variance
(γ ) and changes due to directional selection (β2).

While the distinction between differentials and gradients seems trivial in the univariate
case (only a scale difference), when considering multivariate traits, gradients have the
extremely important feature of removing the effects of phenotypic correlations.

17.4.5 Estimating the Individual Fitness Surface

We can decompose the fitness W of an individual with character value z into the sum of
its expected fitness W (z ) and a residual deviation e,

W = W(z)+ e.
The residual variance in fitness for a given z, σ 2

e (z), measures the variance in fitness
among individuals with phenotypic value z. Estimation of the individual fitness surface is
thus a generalized regression problem, the goal being to choose a candidate function for
W (z ) that minimizes the average residual variance Ez[σ

2
e (z)]. Since the total variance in

fitness σ 2
W equals the sum of the within-group (phenotype) and between-group variance

in fitness,
σ 2
W − Ez[σ

2
e (z)]

σ 2
W

is the fraction of individual fitness variation accounted for by a particular estimate of
W (z ), and provides a measure for comparing different estimates. In the limiting case
where fitness is independent of z (and any characters phenotypically correlated with z ),
W(z) = W , so that the between-phenotypic variance is zero while σ 2

e (z) = σ 2
W .

There are at least two sources of error contributing to e. First, there can be errors in
measuring the actual fitness of an individual (these are almost always ignored). Second,
the actual fitness of a particular individual can deviate considerably from the expected
value for its phenotype due to chance effects and selection on other characters besides
those being considered. Generally, these residual deviations are heteroscedastic, with
σ 2
e often depending on the value of W (z ) (Mitchell-Olds and Shaw, 1987; Schluter,
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1988). For example, suppose fitness is measured by survival to a particular age. While
W(z) = pz is the probability of survival for an individual with character value z, the
fitness for a particular individual is either 0 (does not survive) or 1 (survives), giving
σ 2
e (z) = pz(1− pz). Unless pz is constant over z, the residuals are heteroscedastic. Note

in this case that even after removing the effects attributable to differences in phenotypes,
there still is substantial variance in individual fitness.

Inferences about the individual fitness surface are limited by the range of phenotypes in
the population. Unless this range is very large, only a small region of the fitness surface
can be estimated with any precision. Estimates of the fitness surface at the tails of the
current phenotypic distribution are extremely imprecise, yet potentially very informative,
suggesting what selection pressures populations at the margin of the observed range of
phenotypes may experience. A further complication is that the fitness surface changes
with the environment, so that year-to-year estimates can differ (e.g., Kalisz, 1986) and
cannot be lumped together to increase sample size.

17.4.6 Linear and Quadratic Approximations of W (z )

The individual fitness surface W (z ) can be very complex and a wide variety of functions
may be chosen to approximate it. The simplest and most straightforward approach is to
use a low-order polynomial (typically linear or quadratic).

Consider first the simple linear regression of relative fitness w as a function of
phenotypic value z. Since the directional selection gradient is

β = S

σ 2
z

= σ(w, z)
σ 2
z

, (17.39a)

it follows from regression theory that β is the slope of the least-squares linear regression
of relative fitness on z,

w = a + βz+ e. (17.39b)

Hence the best linear predictor of relative fitness is w(z) = a + βz. Since the regression
passes through the expected values of w and z (1 and µz, respectively), this can be
written as

w = 1+ β(z − µz)+ e, (17.39c)

giving w(z) = 1+ β(z − µz). Assuming the fitness function is well described by a linear
regression, β is the expected change in relative fitness given a unit change in z. The
fraction of variance in individual fitness accounted for by this regression is

r2
z,w =

cov2(z, w)

var(z) · var(w)
= β̂2 var(z)

Î
. (17.40)

If the fitness surface shows curvature, as might be expected if there is stabilizing
selection or disruptive selection, a quadratic regression,

w = a + b1z+ b2(z − µz)2 + e, (17.41a)

is more appropriate. Since the regression passes through the mean of all variables,

w = 1+ b1(z− µz)+ b2[(z − µz)2 − σ 2
z ]+ e. (17.41b)
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The regression coefficients b1 and b2 nicely summarize the local geometry of the fitness
surface. Evaluating the derivative of (17.41) at z = µz gives

∂w(z)

∂z

∣∣∣∣∣
z=µz

= b1 and
∂2w(z)

∂z2

∣∣∣∣∣
z=µz

= 2b2. (17.42)

Hence b1 is the slope and 2b2 the second derivative (curvature) of the best quadratic fitness
surface around the population mean. b2 > 0 indicates that the best-fitting quadratic of the
individual fitness surface has an upward curvature, while b2 < 0 implies the curvature is
downward. Lande and Arnold (1983) suggest that b2 > 0 indicates disruptive selection,
while b2 < 0 indicates stabilizing selection. Their reasoning follows from elementary
geometry in that a necessary condition for a local minimum is that a function curves
upward in some interval, while a necessary condition for a local maximum is that the
function curves downward. Mitchell-Olds and Shaw (1987) and Schluter (1988) argue that
this condition is not sufficient. Stabilizing selection is generally defined as the presence of
a local maximum in w (z ) and disruptive selection by the presence of a local minimum,
while b2 indicates curvature, rather than the presence of local extrema.

Recalling the covariances given by (17.23) and (17.34), the least-squares values for
b1 and b2 become

b1 =
(µ4,z − σ 4

z ) · S − µ3,z · C
σ 2
z · (µ4,z − σ 4

z )− µ2
3,z

, (17.43a)

b2 =
σ 2
z · C − µ3,z · S

σ 2
z · (µ4,z − σ 4

z )− µ2
3,z

. (17.43b)

Provided z is normally distributed before selection, the skew µ3,z = 0 and the kurtosis
µ4,z − σ 4

z = 2σ 4
z . In this case, b1 = β and b2 = γ/2, giving the univariate version of the

Pearson–Lande–Arnold regression,

w = 1+ β(z − µz)+ γ

2 ((z − µz)2 − σ 2
z )+ e, (17.44)

developed by Lande and Arnold (1983), motivated by Pearson (1903). The
Pearson–Lande–Arnold regression provides a connection between selection differentials
(directional and stabilizing) and quadratic approximations of the individual fitness surface.

An important point from (17.43a) is that if skew is present (µ3,z �= 0), b1 �= β and
the slope term in the linear regression (the best linear fit) of w (z ) differs from the
linear slope term in the quadratic regression (the best quadratic fit) of w (z ). This
arises because the presence of skew generates a covariance between z and (z − µz)2.
The biological significance of this can be seen by reconsidering Figure 17.3, in which
the presence of skew in the phenotypic distribution results in a change in the mean
of a population under strict stabilizing selection (as measured by the population mean
being at the optimum of the individual fitness surface). Skew generates a correlation
between z and (z− µz)2, so that selection acting only on (z − µz)2 generates a correlated
change in z. From the Robertson–Price identity (17.23), the within-generation change
in mean equals the covariance between-phenotypic value and relative fitness. Since
covariances measure the amount of linear association between variables, in describing
the change in mean, the correct measure is the slope of the best linear fit of the individual
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fitness surface. If skew is present, using the linear slope b1 from the quadratic regression to
describe the change in mean is incorrect, as this quadratic regression removes the effects
on relative fitness from a linear change in z due to the correlation between z and (z− µz)2.

17.5 MEASURING MULTIVARIATE SELECTION

Typically, investigation of the effects of natural selection involves measuring a suite of
characters for each individual. In this setting, the phenotype of an individual is a vector
z = (z1, z2, . . . , zn)

T of the n measured character values. The major aim of a multivariate
character analysis is to partition the total change in a trait into the effect from direct
selection and the change due to selection on phenotypically correlated characters. Indeed,
an unstated assumption of a univariate analysis is that there is no indirect selection on the
trait induced by direct selection on unmeasured correlated characters. This assumption
is also required for a multivariate analysis, as one cannot correct for the effects of any
unmeasured selected characters phenotypically correlated to one (or more) of the traits
under consideration.

Our development is based on the multiple regression approach of Lande and Arnold
(1983). Similar approaches based on path analysis have also been suggested (Maddox
and Antonovics, 1983; Mitchell-Olds, 1987; Crespi and Bookstein, 1988). We denote the
mean vector and covariance matrix of z before selection by µ and P, and after selection
(but before reproduction) by µ∗ and P∗.

17.5.1 Changes in the Mean Vector: The Directional Selection Differential

The multivariate extension of the directional selection differential is the vector

S = µ∗ − µ, (17.45a)

whose i th element is Si , the differential for character zi . As with the univariate case, the
Robertson–Price identity (17.23) holds, so that the elements of S represent the covariance
between character value and relative fitness, Si = σ(zi, ω). This immediately implies
(17.26) that the opportunity for selection I bounds the range of Si ,

|Si |
σzi

≤ √I . (17.45b)

As is illustrated in Figure 17.4, S confounds the direct effects of selection on a character
with the indirect effects due to selection on phenotypically correlated characters. Suppose
that character 1 is under direct selection to increase in value while character 2 is not
directly selected. As Figure 17.4 shows, if z1 and z2 are uncorrelated, there is no within-
generation change in µ2 (the mean of z2). However, if z1 and z2 are positively correlated,
individuals with large values of z1 also tend to have large values of z2, resulting in
a within-generation increase in µ2. Conversely, if z1 and z2 are negatively correlated,
selection to increase z1 results in a within-generation decrease in µ2. Hence, a character
not under selection can still experience a within-generation change in its phenotypic
distribution due to selection on a phenotypically correlated character (indirect selection).
Fortunately, the directional selection gradient β = P−1S accounts for indirect selection
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Figure 17.4 Selection on a character can result in a within-gene-
ration change in the mean of other phenotypically correlated charac-
ters not themselves under direct selection. Assume that character 1
is under simple truncation selection so that only individuals with
z1 > T reproduce. (a) When z1 and z2 are uncorrelated, S2 = 0. (b)
When z1 and z2 are negatively correlated, S2 < 0. (c) When z1 and
z2 are positively correlated, S2 > 0.
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due to phenotypic correlations, providing a less biased picture of the nature of directional
selection acting on z.

17.5.2 The Directional Selection Gradient

From regression theory, the vector of partial regression coefficients for predicting the
value of y given a vector of observations z is P−1σ(z, y), where P is the covariance
matrix of z, and σ(z, y) is the vector of covariances between the elements of z and the
variable y. Since S = σ(z, ω), it immediately follows that

P−1σ(z, ω) = P−1S = β (17.46)

is the vector of partial regression for the best linear regression of relative fitness ω on
phenotypic value z, viz.,

ω(z) = 1+
n∑
j=1

βj (zj − µj) = 1+ βT(z− µ). (17.47)

Since βj is a partial regression coefficient, it represents the change generated in relative
fitness by changing zj while holding all other character values in z constant – a one-unit
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increase in zj (holding all other characters constant) increases the expected relative fitness
by βj . Provided all characters under selection are measured (i.e., we can exclude the
possibility of unmeasured characters influencing fitness that are phenotypically correlated
with z), a character under no directional selection has βj = 0 – when all other characters
are held constant, the best linear regression predicts no change in expected fitness as
we change the value of zj . Thus, β accounts for the effects of phenotypic correlations
only among the measured characters. Provided we measure all characters under selection
and there are no confounding environmental or genetic effects, β provides an unbiased
measure of the amount of directional selection acting on each character.

Since S = Pβ, we have

Si =
n∑
j=1

βjPij = βiPii +
n∑
j �=i
βjPij , (17.48)

illustrating that the directional selection differential confounds direct selection on that
character (βi) with indirect contributions due to selection on phenotypically correlated
characters (βj ). Equation (17.48) implies that, if two characters are phenotypically
uncorrelated (Pij = 0), selection on one has no within-generation effect on the phenotypic
mean of the other.

17.5.3 Directional Gradients, Fitness Surface Geometry, and Selection Response

When phenotypes are multivariate normal (MVN), β provides a convenient descriptor of
the geometry of both the individual and mean population fitness surfaces. Lande (1976;
1979) showed that

β = ∇µ[lnW(µ)] = W−1 · ∇µ[W(µ)], (17.49)

which holds provided fitnesses are frequency-independent. Here ∇µ is the gradient (or
gradient vector) with respect to the vector of population means,

∇µ[f ] = ∂f

∂µ
=


∂f

∂µ1
...
∂f

∂µn

 .
The gradient at point µ0 corresponds to a vector indicating the direction of steepest

ascent of the function at that point (the multivariate slope of f at the point µ0). Thus β is
the gradient of mean population fitness with respect to the mean vector µ. Since β gives
the direction of steepest increase in the mean population fitness surface, mean population
fitness increases most rapidly when the change in the vector of means �µ = β. If fitnesses
are frequency-dependent (individual fitnesses change as the population mean changes),
then for z ∼ MVN,

β = ∇µ[lnW(µ)]+
∫
∇µ[ω(z)]φ(z) dz, (17.50)

where the second term accounts for the effects of frequency-dependence and φ is the MVN
density function (Lande, 1976). Here β does not point in the direction of steepest increase
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in W unless the second integral is zero. If we instead consider the individual fitness
surface, we can alternatively express β as the gradient of individual fitnesses averaged
over the population distribution of phenotypes,

β =
∫
∇z[ω(z)]φ(z) dz, (17.51)

which holds provided z ∼ MVN (Lande and Arnold, 1983). Equation (17.51) holds
regardless of whether fitness is frequency-dependent or frequency-independent.

Kingsolver et al. (2001) and Hoekstra et al. (2001) reviewed estimates of β (the
univariate elements of β) from selection in natural populations. They observed that the
distribution for |β| is close to exponential, with estimated selection gradients tending to
be small (they found the median value for |β| was 0.15). Interestingly, they found that
the selection gradients for sexual selection (mate choice) tend to be larger than those
for viability selection (survivorship). Most of the difference was due to a much higher
frequency of values of |β| < 0.1 for viability selection. They further noted that estimated
β values are highly correlated with their estimated selection intensities, i. Since i is a
univariate measure that incorporates both direct and indirect effects of selection, while
β removes any indirect effects from measured characters, they concluded that indirect
selection is generally modest at best. The caveat with this conclusion is that correlated
character under direct selection, but not included in the study, can falsely create an
impression of direct selection on the actual traits measured.

17.5.4 Changes in the Covariance Matrix: The Quadratic Selection Differential

Motivated by the univariate case (17.34), define the multivariate quadratic selection
differential to be a square (n× n) matrix C whose elements are the covariances between
all pairs of quadratic deviations (zi − µzi )(zj − µzj ) and relative fitness w :

Cij = σ [w, (zi − µzi )(zj − µzj )]. (17.52a)

Lande and Arnold (1983) showed that

C = σ[w, (z− µ)(z− µ)T] = P∗ − P+ SST. (17.52b)

If no quadratic selection is acting, the covariance between each quadratic deviation and
fitness is zero and C = 0. In this case (17.52b) gives

P ∗ij − Pij = −SiSj , (17.53)

demonstrating that the SiSj term corrects Cij for the change in covariance caused by
directional selection alone.

As was the case for S, the fact that Cij is a covariance immediately allows us to bound
its range using the opportunity for selection. Since σ 2(x, y) ≤ σ 2(x) σ 2(y),

C2
ij ≤ Iσ 2[(zi − µzi )(zj − µzj )]. (17.54a)

When zi and zj are bivariate normal, then (Kendall and Stuart, 1983)

σ 2[(zi − µzi )(zj − µzj )] = P 2
ij + PiiPjj = P 2

ij (1+ ρ−2
ij ), (17.54b)
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where ρij is the phenotypic covariance between zi and zj . Hence, for Gaussian-distributed
phenotypes, ∣∣∣∣∣CijPij

∣∣∣∣∣ ≤ √I√1+ ρ−2
ij , (17.55)

which is a variant of the original bound based on I suggested by Arnold (1986).

17.5.5 The Quadratic Selection Gradient

Like S, C confounds the effects of direct selection with selection on phenotypically
correlated characters. However, as was true for S, these indirect effects can also be
removed by a regression. Consider the best quadratic regression of relative fitness as a
function of multivariate phenotypic value,

w(z) = a +
n∑
j=1

bjzj +
1

2

n∑
j=1

n∑
k=1

γjk(zj − µj)(zk − µk) (17.56a)

= a + bTz+ 1

2
(z− µ)Tγ(z− µ). (17.56b)

Using multiple regression theory, Lande and Arnold (1983) showed that the matrix γ of
quadratic partial regression coefficients is given by

γ = P−1σ[w, (z− µ)(z− µ)T]P−1 = P−1CP−1. (17.57)

This is the quadratic selection gradient and (like β) removes the effects of phenotypic
correlations, providing a more accurate picture of how selection is operating on the
multivariate phenotype.

The vector b of linear coefficients for the quadratic regression need not equal the
vector β of partial regression coefficients obtained by assuming only a linear regression.
As was true for the univariate case (17.43) when skew is present in at least one of the
components of the phenotypic distribution, b is a function of both S and C, while β is
only a function of S. When skew is absent, b = β, recovering the multivariate version of
the Pearson–Lande–Arnold regression,

w(z) = a + βT z+ 1

2
(z− µ)Tγ(z− µ). (17.58)

Since the γij are partial regression coefficients, they predict the change in expected
fitness caused by changing the associated quadratic deviation while holding all other
variables constant. Increasing (zj − µj)(zk − µk) by one unit in such a way as to hold
all other variables and pairwise combinations of characters constant, relative fitness is
expected to increase by γjk for j �= k and by γjj /2 if j = k (the difference arises because
γjk = γkj , so that γjk appears twice in the regression unless j = k). The coefficients of γ

thus describe the nature of selection on quadratic deviations from the mean for both single
characters and pairwise combinations of characters. γii < 0 implies fitness is expected
to decrease as zi moves away (in either direction) from its mean. As was discussed
previously, this is a necessary, but not sufficient, condition for stabilizing selection on
character i. Similarly, γii > 0 implies fitness is expected to increase as zi moves away
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from its mean, again a necessary, but not sufficient, condition for disruptive selection.
Kingsolver et al. (2001) examined the distribution of estimated γii values reported in the
literature. Surprisingly, they found this distribution to be symmetric about zero, implying
that disruptive selection (γii > 0) is reported as often as stabilizing selection (γii < 0),
which is quite contrary to the widely hide view that stabilizing selection is perhaps the
most common mode of selection in natural populations. Further, most of the estimated γii
values are small, with the median value for |γ | being 0.10. Thus, the widely held notion
of strong stabilizing selection being common in nature is (presently) not supported by the
published data.

Turning to combinations of characters, nonzero values of γjk(j �= k) suggest the

z1
z1

z2

z2

+

(a)

g12 = 0.25

l1 = −2.06

l2 = −0.94

z1

z1

z2

+

+

+

−

−
(b)

z2

g12 = 1.41

l1 = −3.00

l2 = 0.00

z1
z1

z2

−

−
(c)

z2

g12 = 4.00

l1 = 2.53

l2 = −5.53

+

+

Figure 17.5 Three quadratic fitness surfaces, all of which have γ11 = −2, γ22 = −1 and b = 0.
On the left are curves of equal fitness values, with peaks being represented by + and valleys by −.
Axes of symmetry of the surface (the canonical or principal axes of γ) are denoted by the thick
lines. These axes correspond to the eigenvectors of γ. On the right are three-dimensional plots of
individual fitness as a function of the phenotypic values of the characters z1 and z2. (a) γ12 = 0.25.
This corresponds to stabilizing selection on both characters, with fitness falling off more rapidly
(as indicated by the shorter distance between contour lines) along the z1 axis than along the z2

axis. (b) γ12 =
√

2 � 1.41, in which case γ is singular. The resulting fitness surface shows a ridge
in one direction with strong stabilizing selection in the other. (c) When γ12 = 4, the fitness surface
now shows a saddlepoint, with stabilizing selection along one of the canonical axes of the fitness
surface and disruptive selection along the other.
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presence of correlation selection: γjk > 0 suggests selection for a positive correlation
between characters j and k, while γjk < 0 suggests selection for a negative correlation.
Although it seems straightforward to infer the overall nature of selection by looking at
these various pairwise combinations, this can give a very misleading picture about the
geometry of the fitness surface (Figure 17.5). We discuss this problem and its solution in
Section 17.5.8.

Finally, we can see the effects of phenotypic correlations on the quadratic selection
differential. Solving for C by post- and premultiplying γ by P gives C = PγP, or

Cij =
n∑
k=1

n∑
�=1

γk�PikP�j , (17.59)

showing that within-generation changes in phenotypic covariance, as measured by C, are
influenced by quadratic selection on phenotypically correlated characters.

17.5.6 Quadratic Gradients, Fitness Surface Geometry, and Selection Response

When phenotypes are multivariate normally distributed, γ provides a measure of the
average curvature of the individual fitness surface,

γ =
∫

Hz[w(z)]φ(z) dz, (17.60a)

where Hz[f ] denotes the Hessian of the function f with respect to z and is a multivariate
measure of the quadratic curvature of a function (recall that the (i, j )th element of the
Hessian is ∂2f/∂zi∂zj ). This result, due to Lande and Arnold (1983), holds for both
frequency-dependent and frequency-independent fitnesses. When fitnesses are frequency-
independent (again provided z ∼ MVN), γ provides a description of the curvature of the
log mean population fitness surface, with

Hµ[lnW(µ)] = γ − ββT. (17.60b)

This result is due to Lande (cited in Phillips and Arnold, (1989)) and points out that there
are two sources for curvature in the mean fitness surface: −ββT from directional selection
and γ from quadratic selection.

The careful reader will undoubtedly have noted a number of similarities between
direction and quadratic gradients. Table 17.1 summarizes these and other analogous
features of measuring changes in means and covariances.

17.5.7 Estimation, Hypothesis Testing, and Confidence Intervals

Even if we can assume that a best-fit quadratic is a reasonable approximation of the
individual fitness surface, we are still faced with a number of statistical problems.
Unless we test for, and confirm, multivariate normality, β and γ must be estimated
from separate regressions – β from the best linear regression, γ from the best quadratic
regression. In either case, there are a large number of parameters to estimate – γ

has n(n+ 1)/2 terms and β has n terms, a total making of n(n+ 3)/2. With 5, 10,
and 25 characters, this corresponds to 20, 65, and 350 parameters. The number of
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Table 17.1 Analogous features of directional and quadratic differentials and gradients.

Changes in means (directional selection) Changes in covariances (Quadratic selection)

Differentials measure the covariance between relative fitness and phenotype
Si = σ [w, zi] Cij = σ [w, (zi − µi)(zj − µj )]

The opportunity for selection bounds the differential
|Si |
σ(zi)

≤ √I
∣∣∣∣CijPij

∣∣∣∣ ≤ √I√1+ ρ−2
ij

for any distribution of z provided z ∼ MVN

Differentials confound direct and indirect selection
S = µ∗ − µ = Pβ C = P∗ − P+ SST = PγP

Gradients measure the amount of direct selection
β = P−1S γ = P−1CP−1

Gradients describe the slope and curvature of the mean population fitness surface, provided
z ∼ MVN and fitnesses are frequency-independent

βi = ∂ lnW(µ)

∂µi
γij = ∂

2 lnW(µ)

∂µi∂µj
+ βiβj

Gradients describe the average curvature of the individual fitness surface, provided
z ∼ MVN (with p(z) the density function),

βi =
∫
∂w(z)
∂zi

p(z) dz γij =
∫
∂2w(z)
∂zi∂zj

p(z) dz

Gradients appear as coefficients in fitness regressions

w(z) = a + βT(z− µ)

β = slope of best linear fit

w(z) = a + bT(z− µ)+ 1
2 (z− µ)Tγ (z− µ)

γ = the quadratic coefficient of the best

quadratic fit; b = β when z ∼ MVN

Gradients appear as coefficients in evolutionary equations when (z, g) ∼ MVN
�µ = Gβ G∗ −G = G(γ − ββT)G

observations should greatly exceed n(n+ 3)/2 in order to estimate these parameters with
any precision.

A second problem is multicollinearity – if some of the characters being measured are
highly correlated with each other, the phenotypic covariance matrix P can be nearly
singular, so that small errors in estimating P result in large differences in P−1, which in
turn gives a very large sampling variances for the estimates of β and γ. One possibility
is to use principal components (PCs) to extract a subset of the characters that explains
most of the phenotypic variance of P. Fitness regressions using the first few PCs as
the characters can then be computed. This approach also reduces the problem of the
number of parameters to estimate, but risks the real possibility of removing the most
important characters. Further, PCs are often difficult to interpret biologically. While
the first PC for morphological characters generally corresponds to a general measure
of size, the others are typically much more problematic. Finally, this technique can
spread the effects of selection on one character over several PCs, further complicating
interpretation.

Another statistical concern with fitness regressions is that residuals are generally not
normal – viability data typically have binominally distributed residuals, while count data
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are often Poisson. Hence, many of the standard approaches for constructing confidence
intervals on regression coefficients are not appropriate. Mitchell-Olds and Shaw (1987)
suggest using the delete-one jackknife method for approximating confidence intervals
in this case. Randomization tests and cross-validation procedures are other approaches.
Multivariate tests of the presence of a single mode in the fitness surface are discussed by
Mitchell-Olds and Shaw (1987).

17.5.8 Geometric Interpretation of the Quadratic Fitness Regression

In spite of their apparent simplicity, multivariate quadratic fitness regressions have a rather
rich geometric structure. Scaling characters so that they have mean zero, the general
quadratic fitness regression can be written as

w(z) = a +
n∑
i=1

b1zi +
1

2

n∑
i=1

n∑
j=1

γij zizj = a + bTz+ 1

2
zTγz. (17.61)

If z ∼ MVN, then b = β (the vector of coefficients of the best linear fit). Note that if
we regard (17.61) as a second-order Taylor series approximation of w (z ), b and γ can be
interpreted as the gradient and Hessian of individual fitness evaluated at the population
mean (here µ = 0 by construction). The nature of curvature of (17.61) is determined by
the matrix γ. Even though a quadratic is the simplest curved surface, its geometry can
still be very difficult to visualize.

We start our exploration of this geometry by considering the gradient of this best-fit
quadratic fitness surface, which is

∇z[w(z)] = b+ γz. (17.62)

Thus, at the point z the direction of steepest ascent on the fitness surface (the direction
in which to move in phenotype space to maximally increase individual fitness) is given
by the vector b+ γz (when µ = 0). If the true individual fitness surface is indeed a
quadratic, then the average gradient of individual fitness taken over the distribution of
phenotypes is ∫

∇z[w(z)]p(z) dz = b
∫
p(z) dz+ γ

∫
zp(z) dz = b (17.63)

as the last integral is µ (which is zero by construction). Hence, if the true fitness function
is quadratic, the average gradient of individual fitness is given by b, independent of the
distribution of z.

Solving ∇z[w(z)] = 0, a point z0 is a candidate for a local extremum (stationary point)
if γz0 = −b. When γ is nonsingular,

z0 = −γ−1b (17.64a)

is the unique stationary point of this quadratic surface. Substituting into (17.61), the
expected individual fitness at this point is

w0 = a +
1

2
bTz0 (17.64b)
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as obtained by Phillips and Arnold (1989). Since ∂2w(z)/∂zi∂zj = γij , the Hessian of
w (z) is just γ. Thus z0 is a local minimum if γ is positive definite (all eigenvalues are
positive), a local maximum if γ is negative definite (all eigenvalues are negative), or
a saddlepoint if the eigenvalues differ in sign. If γ is singular (has at least one zero
eigenvalue) then there is no unique stationary point. An example of this is seen in
Figure 17.5(b), where there is a ridge (rather than a single point) of phenotypic values
having the highest fitness value. The consequence of a zero eigenvalue is that the fitness
surface has no curvature along the axis defined by the associated eigenvector. If γ has k
zero eigenvalues, then the fitness surface has no curvature along k dimensions. Ignoring
fitness change along these dimensions, the remaining fitness space has only a single
stationary point, which is given by (17.64a) for γ and b reduced to the (n− k)-dimensional
subsurface showing curvature. While the curvature is completely determined by γ, it is
easy to be misled about the actual nature of the fitness surface if one simply tries to infer
it by inspection of γ, as Figure 17.5 illustrates.

17.5.8.1 Canonical Form of the Quadratic Fitness Surface

As Figure 17.5 shows, visualizing the individual fitness surface (even for two characters)
is not trivial and can easily be downright misleading. The problem is that the cross-
product terms (γij for i �= j ) make the quadratic form difficult to interpret geometrically.
Removing these terms by a change of variables so that the axes of new variables coincide
with the axes of symmetry of the quadratic form (its canonical axes) greatly facilitates
visualization of the fitness surface. Motivated by this, Phillips and Arnold (1989) suggest
using two slightly different versions of the canonical transformation of γ to clarify
the geometric structure of the best-fitting quadratic fitness surface. If we consider the
matrix U whose columns are the eigenvalues of γ, the transformation y = UTz (hence
z = Uy since U−1 = UT as U is orthonormal, and UTγU = �, a diagonal matrix whose
elements correspond to the eigenvalues of γ) removes all cross-product terms in the
quadratic form,

w(z) = a + bTUy+ 1

2
(Uy)Tγ(Uy)

= a + bTUy+ 1

2
yT(UTγU)y

= a + bTUy+ 1

2
yT�y

= a +
n∑
i=1

θiyi +
1

2

n∑
i=1

λiy
2
i , (17.65)

where θi = bTei , yi = eT
i z, with λi and ei the eigenvalues and associated unit eigenvectors

of γ. Alternatively, if a stationary point z0 exists (e.g., γ is nonsingular), the change
of variables y = UT(z− z0) further removes all linear terms (Box and Draper, 1987),
so that

w(z) = w0 +
1

2
yT�y = w0 +

1

2

n∑
i=1

λiy
2
i , (17.66)
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where yi = eT
i (z− z0) and w0 is given by (17.64b). Equation (17.65) is called the A

canonical form and (17.66) the B canonical form (Box and Draper, 1987). Both forms
represent a rotation of the original axis to the new set of axes (the canonical axes of γ)
that align them with axes of symmetry of the quadratic surface. The B canonical form
further shifts the origin to the stationary point z0. Since the contribution to individual
fitness from bTz is a hyperplane, its effect is to tilt the fitness surface. The B canonical
form ‘levels’ this tilting, allowing us to focus entirely on the curvature (quadratic) aspects
of the fitness surface.

The orientation of the quadratic surface is determined by the eigenvectors of γ, while
the eigenvalues of γ determine the nature and amount of curvature of the surface along
each canonical axis. Along the axis defined by yi , the individual fitness function has
positive curvature (is concave) if λi > 0, has negative curvature (is convex) if λi < 0,
or has no curvature (is a plane) if λi = 0. The amount of curvature is indicated by the
magnitude of λi : the larger |λi | the more extreme the curvature.

Returning to Figure 17.5, we see that the axes of symmetry of the quadratic surface are
the canonical axes of γ. For γ12 = 0.25 (Figure 17.5a), λ1 = −2.06 and λ2 = −0.94, so
that the fitness surface is convex along each canonical axis, with more extreme curvature
along the y1 axis. When γ12 =

√
2 (Figure 17.5b), one eigenvalue is zero while the other

is −3, so that the surface shows no curvature along one axis (it is a plane), but is strongly
convex along the other. Finally, when γ12 = 4 (Figure 17.5c), the two eigenvalues differ in
sign, being −5.53 and 2.53. This generates a saddlepoint, the surface being concave along
one axis and convex along with other, with the convex curvature being more extreme.

If λi = 0, the fitness surface along yi has no curvature, so that the fitness surface is
a ridge along this axis. If θi = bTei > 0 this is a rising ridge (fitness increases as yi
increases), if θi < 0 it is a falling ridge (fitness decrease as yi increase), and if θi = 0 it is
flat. Again returning to Figure 17.5 the effect of b is to tilt the fitness surface. Denoting
values on the axis running along the ridge by y1, if θ1 > 0 the ridge rises so that fitness
increases as y1 increases. Even if γ is not singular, it may be nearly so, with some of the
eigenvalues being very close to zero. In this case, the fitness surface shows little curvature
along the axes given by the eigenvectors associated with these near-zero eigenvalues. The
fitness change a particular axis (here given by ei) is θiyi + (λi/2)y2

i . If |θi | � |λi |, the
curvature of the fitness surface along this axis is dominated by the effects of linear (as
opposed to quadratic) selection. Phillips and Arnold (1989) present a nice discussion of
several other issues relating to the visualization of multivariate fitness surfaces, while Box
and Draper (1987) review the statistical foundations of this approach.

17.5.9 Unmeasured Characters and Other Biological Caveats

Even if we are willing to assume that the best-fitting quadratic regression is a reasonable
approximation of the individual fitness surface, there are still a number of important
biological caveats to keep in mind. For example, the fitness surface can change in both
time and space, often over short spatial/temporal scales (e.g., Kalisz, 1986; Stewart and
Schoen, 1987; Scheiner, 1989; Jordan, 1991), so that one estimate of the fitness surface
may be quite different from another estimation at a different time and/or location. Hence,
considerable care must be used before pooling data from different times and/or sites to
improve the precision of estimates. When the data are such that selection gradients can
be estimated separately for different times or areas, space/time by gradient interactions
can be tested for in a straightforward fashion (e.g. Mitchell-Olds and Bergelson, 1990).
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Population structure can also influence fitness surface estimation in other ways. If the
population being examined has overlapping generations, fitness data must be adjusted to
reflect this (e.g. Stratton, 1992). Likewise, if members in the population differ in their
amount of inbreeding, measured characters and fitness may show a spurious correlation
if both are affected by inbreeding depression (Willis, 1996).

Perhaps the most severe caveat for the regression approach of estimating w (z ) is
unmeasured characters – estimates of the amount of direct selection acting on a character
are biased if that character is phenotypically correlated to unmeasured characters also
under selection (Lande and Arnold, 1983; Mitchell-Olds and Shaw, 1987). Adding one
or more of these unmeasured characters to the regression can change initial estimates of
β and γ. Conversely, selection acting on unmeasured characters that are phenotypically
uncorrelated with those being measured has no effect on estimates of β and γ.

17.6 MULTIPLE TRAIT SELECTION

17.6.1 Short-Term Changes in Means: The Multivariate Breeders’ Equation

By combining (17.8) and (17.46), we can express the multivariate breeders equation as

R = GP−1S = Gβ. (17.67)

Presented in this form, the equation nicely demonstrates the relationship between the two
main complications with selection on multiple characters: the within-generation change
due to phenotypic correlations and the between-generation change (response to selection)
due to additive genetic correlations. Cheverud (1984) makes the important point that
although it is often assumed that a set of phenotypically correlated traits responds to
selection in a coordinated fashion, this is not necessarily the case. Since β removes all the
effects of phenotypic correlations and R = Gβ, phenotypic characters will only respond
as a group if they are all under direct selection or if they are genetically correlated.

17.6.2 The Effects of Genetic Correlations: Direct and Correlated Responses

While the use of β removes any further evolutionary effect of phenotypic correlations,
additive genetic correlations strongly influence the response to selection. If n characters
are under selection, and gij is the additive genetic covariance between traits i and j, then
the response in character i to a single generation of selection is

Ri = �µi =
n∑
j=1

gijβj = giiβi +
∑
j �=i
gijβj , (17.68)

so that the response has a component due to direct selection on that character (giiβi) and
an additional component due to selection on all other genetically correlated characters.

If direct selection only occurs on character i, a genetically correlated character also
shows a correlated response to selection. For example, for trait j, its response when only
trait i is under selection is

Rj = gijβi . (17.69a)
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Thus, the ratio of the expected change in two characters when only one is under direct
selection is

Rj

Ri
= gij
gii
= ρgij

√
gjj

gii
. (17.69b)

If both characters have the same additive genetic variance (gii = gjj ), the ratio of response
simply reduces to ρgij , the correlation between additive genetic values.

17.6.3 Evolutionary Constraints Imposed by Genetic Correlations

One immediate consequence of (17.67) is that a character under selection does not
necessarily change in the direction most favored by natural selection. For example, fitness
may maximally increase if µ2 decreases, so that β2 < 0. However, if the sum of correlated
responses on z2 is sufficiently positive, then µ2 will increase. Thus, a character may be
dragged off its optimal fitness trajectory by a correlated response generated by stronger
selection on other traits. As these other characters approach their equilibrium values, their
β values approach zero, reducing their indirect effects on other characters, eventually
allowing β2 to dominate the dynamics (and hence ultimately µ2 decreases).

Recall that the direction the mean vector must be changed to give the greatest change in
mean fitness is β (as β is the gradient of W with respect to the mean vector; see (17.49)).
However, generally R �= β, and thus the effect of the additive genetic covariance matrix
G is to constrain the selection response from its optimal value. The mean vector changes
in the direction most favored by selection if and only if

Gβ = λβ, (17.70)

which only occurs when β is an eigenvector (with associated eigenvalue λ) of G. Note that
even if G is a diagonal matrix (there is no correlation between the additive genetic values
of the characters under selection), (17.70) is usually not satisfied. In fact, only when we
can write G = σ 2

AI is (17.70) satisfied for arbitrary β. Thus, only when all characters have
the same additive genetic variance and there is no additive genetic covariance between
characters is the response to selection in the directional most favored by natural selection.
Differences in the amounts of additive genetic variances between characters, in addition
to nonzero additive genetic covariances, also impose constraints on character evolution.

17.6.4 Inferring the Nature of Previous Selection

Providing the breeders’ equation holds over several generations, the cumulative response
to m generations of selection is just

R(m) =
m∑
t=1

R(t) =
m∑
t=1

G(t)β(t). (17.71a)

In particular, if the genetic covariance matrix remains constant, then

R(m) = G

(
m∑
t=1

β(t)

)
. (17.71b)
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Hence, if we observe a total response to selection of Rtotal, then we can estimate the
cumulative selection differential as

βtotal =
∑

β(t) = G−1Rtotal. (17.71c)

For example, if one observes a difference in the mean multivariate phenotype between
two diverged populations, then provided we can assume that the genetic covariance matrix
remains roughly constant, the history of past selection leading to the divergence (assuming
it is entirely due to selection) can be inferred from (17.71c).

17.6.5 Changes in G under the Infinitesimal Model

17.6.5.1 Within-Generation Change in G

If the vector of breeding values g is multivariate normal with covariance matrix G before
an episode of selection, then it can be shown (e.g., Lande and Arnold, 1983) that the
covariance matrix G∗ of breeding values after selection (but before reproduction) satisfies

G∗ −G = GP−1(P∗ − P)P−1G. (17.72a)

We show in (17.75) that
G∗ −G = G(γ − ββT)G. (17.72b)

Thus, when the breeders’ equation holds, γ and β are sufficient to describe how phenotypic
selection changes (within a generation) the additive genetic covariance matrix. Equation
(17.72b) shows that the within-generation change in G has a component from directional
selection and a second due from quadratic selection, as

G∗ −G = −GββTG+GγG = −RRT +GγG. (17.72c)

In terms of the change in covariance for two particular characters, this can be factored as

G∗ij −Gij = −
(

n∑
k=1

βkGik

)(
n∑
k=1

βkGjk

)
+

n∑
k=1

n∑
�=1

γk�GikG�j

= −�µi ·�µj +
n∑
k=1

n∑
�=1

γk�GikG�j . (17.73a)

Thus the within-generation change in the additive genetic variance of character i is
given by

G∗ii −Gii = −(�µi)2 +
n∑
k=1

n∑
�=1

γk�GikGi�. (17.73b)

17.6.5.2 The Response (Between-Generation Change) in G

While (17.72) and (17.73) describe how the covariance structure of breeding values
changes within a generation, the between-generation change must consider how recom-
bination alters any gametic-phase disequilibrium generated by selection. Recall our
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treatment of the change in the additive variance in the univariate case (Section 17.2.2),
in which all changes in variances occur due to gametic-phase disequilibrium dt changing
the additive variance. In this case, σ 2

A(t) = σ 2
A(0)+ dt , and hence σ 2

z (t) = σ 2
z (0)+ dt .

Moving to multiple characters, disequilibrium is now measured by the matrix Dt =
Gt −G0. Thus Dij is the change in the additive genetic covariance between charac-
ters i and j induced by disequilibrium. Likewise, the phenotypic covariance matrix is
given by Pt = P0 + Dt . Tallis (1987) and Tallis and Leppard (1988) extend Bulmer’s
result to multiple characters, showing that

�Dt = 1
2 (GtP

−1
t (P

∗
t − Pt )P

−1
t Gt − Dt ). (17.74)

The first term represents the within-generation change in G, the second the decay in D
due to recombination.

We can also express (17.74) in terms of the quadratic and directional selection gradients,
γ and β. Recalling the definitions of C, β, and γ, we have

P∗ − P = C− ssT.

Hence

P−1(P∗ − P)P−1 = P−1(C− ssT)P−1

= P−1CP−1 − (P−1s)(P−1s)T

= γ − ββT. (17.75)

Substituting into (17.74) gives

�Dt = 1
2 (Gt (γt − βtβ

T
t )Gt − Dt ). (17.76a)

Finally, recalling (17.72b), we can also express this as

�Dt =
1

2
(G∗

t −Gt )−
Dt
2
. (17.76b)

Equation (17.76b) shows that only half of the disequilibrium deviation in G from the
previous generation (Dt ) is passed on to the next generation, as is half the within-
generation change induced by selection in that generation. This is expected since the
infinitesimal mode assumes unlinked loci and hence each generation recombination
removes half of the present disequilibrium. The disequilibrium component converges to

D̂ = Ĝ(γ̂ − β̂β̂T)Ĝ = (G0 + D̂)(γ̂ − β̂β̂T)(G0 + D̂), (17.77)

where have place carets over γ and β to remind the reader that these depend on P, and
hence on D.
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17.6.6 Effects of Drift and Mutation

17.6.6.1 Drift

If Gt changes strictly by drift, the multivariate analog to (17.16) is

Gt =
(

1− 1

2Ne

)t
G0. (17.78)

This assumes that only additive genetic variance is present. Hence, ignoring the effect of
disequilibrium, under the infinitesimal model the expected change after t generations of
selection and drift is

µt − µ0 =
t∑
k=0

Gtβ = G0β

t∑
k=0

(
1− 1

2Ne

)k
� 2Ne(1− et/2Ne)G0β. (17.79)

17.6.6.2 Mutation

Let U be the matrix of per-generation input from mutations to the additive genetic
variances and covariance. The expected equilibrium covariance matrix under drift and
mutation becomes

Ĝ = 2NeU. (17.80)

Under the assumptions of the infinitesimal model (selection is sufficiently weak that the
dynamics of changes in allele frequencies are completely driven by drift and mutation),
the additive genetic variance–covariance matrix at generation t is

Gt = Ĝ+ (G0 − Ĝ)e−t/2Ne , (17.81)

giving the cumulative response to t generations of constant directional selection β as

Rt = µt − µ0 = [tĜ+ 2Ne(1− e−t/2Ne)(G0 − Ĝ)]β. (17.82a)

Note if there is no mutational input U = 0, then the total response by generation t is
given by

Rt = 2Ne(1− e−t/2Ne )βG0 = 2Ne(1− e−t/2Ne)R0, (17.82b)

giving, at the limit,
R∞ = 2NeR0, (17.82c)

2Ne times the initial response, as was found (Robertson, 1960) for univariate selection.

17.7 PHENOTYPIC EVOLUTION MODELS

The above machinery for selection response has been widely used by evolutionary
biologists to model the dynamics of complex traits under selection. Under the assumptions
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of the infinitesimal model, one only needs to specify the nature of selection, the starting
mean and the initial covariance matrix. Further genetic details do not enter (unless one
wishes to include mutation, when the additional composite parameter, σ 2

m, enters). Such
analyses are often called phenotypic evolution models, given that the genetic details can
be handed with a few composite parameters. As with the entire field of evolutionary
quantitative genetics, this is a rather large enterprise. We will concern ourselves here with
two applications: testing whether an observed pattern seen in the fossil record is due
to selection or drift, and examining the consequences of stabilizing selection on mean
population fitness. The goal is to give the reader a feel for the flavor of such modeling.
A much more detailed treatment can be found in Walsh and Lynch (2003).

17.7.1 Selection versus Drift in the Fossil Record

One of the more interesting applications of phenotypic selection models is in trying
to make inferences about the forces that shaped morphological evolution on extinct
organisms. Obviously, one cannot perform the required crosses to estimate heritabilities
on traits of interests. However, one might reasonably use the average heritability values
for similar traits in (hopefully close) relatives of the extinct species. A variety of tests for
whether an observed pattern of morphological change in the fossil record is consistent
with drift (as opposed to having to invoke selection) have been proposed, and we briefly
discuss a few here. An excellent overview of the many pitfalls of this general approach is
given by Reyment (1991). Despite these concerns, this approach offers a powerful method
of analysis to gain insight into the evolution of species long extinct.

17.7.1.1 Lande’s Test

Lande (1976) offered the first test for whether an observed amount of morphological
divergence was consistent with simple random genetic drift. If the mean is changing
strictly under genetic drift, then if the distribution of breeding and environmental values
is bivariate normal, the resulting distribution for the mean at generation t , µ(t), is normal
with mean µ(0) (the initial mean) and variance tσ 2

A/Ne. Letting the observed divergence
in means be �µ = µ(t)− µ(0), then the largest effective population size consistent (at
the 5 % level) with this divergence being due strictly to drift is

N∗e =
(1.96)2h2t

(�µ/σz)
2
= 3.84

th2

(�µ/σz)
2
. (17.83)

This follows since the probability that a unit normal exceeds 1.96 is just 5 %, and we
have written σ 2

A = h2σ 2
z . Thus, provided that the heritability remains roughly constant,

one can apply (17.83) to see if the maximal effective population size required for this
amount of drift is exceeded by our reasonable estimate of the actual population size. If
this is the case, then we can rule out drift as the sole agent for the observed divergence.

17.7.1.2 The Turelli–Gillespie–Lande and Bookstein Tests

Turelli et al. (1988) noted that Lande’s test has the hidden assumption that the additive
genetic variance is independent of the population size. Recall from (17.18) that the
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equilibrium additive genetic variance under mutation and drift is σ 2
A = 2Neσ

2
m, where

σ 2
m is the polygenic mutation rate. Hence, after a sufficient number of generations, the

additive variance should scale with Ne (if no other evolutionary forces are acting), in
which case the drift variance becomes

σ 2[µ(t)] = t σ
2
A

Ne
= t 2Neσ

2
m

Ne
= 2tσ 2

m. (17.84)

The variance expression given by (17.84) transforms Lande’s test from a critical maximal
effective population size to one based on a critical minimum mutational variance. In
particular, (17.83) is replaced by

σ 2
m =

(�µ)2

2t (1.96)2
= 0.130

(�µ)2

t
. (17.85)

Drift is rejected at the 5 % of the suspected value of σ 2
m is less than this value.

Turelli et al. also make the important point that the test for drift is really a two-sided
test. While the tests (17.83) and (17.85) ask whether the observed divergence is too large
under drift (as might be expected under directional selection), we can also ask if the
observed divergence is too small under drift, as would be expected if stabilizing selection
constrains the change on the mean. Noting that for a unit normal random variable U that
Pr(|U | < 0.03) = 0.025 and Pr(|U | > 2.24) = 0.025 suggests the following two-sided
test: if

σ 2
m <

(�µ)2

2t (2.24)2
= 0.0858

(�µ)2

t
(17.86a)

the rate of evolution is too fast to be explained by drift, while if

σ 2
m >

(�µ)2

2t (0.03)2
= 509

(�µ)2

t
(17.86b)

the rate of divergence is too slow for drift.
If one has access to a sample of generation means (as opposed to a starting and end

points), then Bookstein (1989) notes that a more powerful test can be obtained (from
the theory of random walks) by considering �µ∗, the largest absolute deviation from the
starting mean anywhere along the series of t generation means. Here, the rate of evolution
is too fast for drift if

σ 2
m <

(�µ∗)2

2t (2.50)2
= 0.080

(�µ∗)2

t
, (17.87a)

while it is too slow for drift when

σ 2
m >

(�µ∗)2

2t (0.56)2
= 1.59

(�µ∗)2

t
. (17.87b)

Note by comparison with (17.86) that the tests for too fast a divergence are very similar,
while Bookstein’s test for too slow a divergence (a potential signature of stabilizing
selection) is much less stringent than the Turelli–Gillespie–Lande test.
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17.7.2 Stabilizing Selection

17.7.2.1 The Nor-Optimal Fitness Function

A widely used fitness function in the evolutionary genetics literature is the nor-optimal
or normalizing fitness function,

W(z) = exp
(
− z2

2ω2

)
. (17.88)

This is proportional to a normal density function with mean zero and variance ω2, and
implies that fitness decreases with increasing values of z2, with the maximal fitness
occurring for an individual with trait value z = 0. Typically, one scales the trait so that the
optimal value occurs as zero, but more generally we can replace z2 with (z − µ0)

2, where
the optimal fitness now occurs at µ0. Besides being a reasonable model for stabilizing
selection, the main reason for the popularity of (17.88) in the literature is that if the
phenotypic distribution is normal (with mean µ and variance σ 2) before selection, then
the distribution of trait values after selection is normal with mean and variance

µ∗ = ω2µ

σ 2 + ω2
and σ 2

∗ =
ω2σ 2

σ 2 + ω2
. (17.89a)

The expected response to selection (measured by the change in mean) in generation t is

R(t) = h2(t)S(t) = h2(t)[µ∗(t)− µ(t)] = −h2(t)
µ(t)σ 2(t)

σ 2(t)+ ω2
. (17.89b)

Selection thus drives the mean toward the optimal value of µ = 0. When µ is nonzero,
there is both directional selection (nonzero S ) and stabilizing selection.

Turning to the dynamics of the variance, the change in the phenotypic variance (due
to stabilizing selection generating disequilibrium) is given by (17.12),

�d(t) = d(t + 1)− d(t)

= −
(
d(t)

2
+ h

2(t)

2
[σ 2(t)− σ 2

∗ (t)]
)

= −
(
d(t)

2
+ h2(t)σ 4(t)

2(σ 2(t)+ ω2)

)
. (17.89c)

Recalling from (17.11) that σ 2
A(t) = σ 2

a + d(t) and σ 2
z (t) = σ 2

z + d(t), at equilibrium
(�d(t) = 0) (17.89c) reduces to a quadratic equation whose admissible solution is
given by

σ̂ 2
z = σ 2

z

1−
2+ h2 + ω2/σ 2

z −
√

8h2 + (2+ h2 + ω2/σ 2
z )

2

4

 . (17.89d)

Here σ 2
z and h2 are the values for the base population before selection. Figure 17.6 shows

the reduction in the phenotypic variance at equilibrium. As expected, the reduction is more
severe with higher heritabilities and/or stronger selection (smaller values of ω2/σ 2).
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Figure 17.6 The equilibrium reduction in phenotypic variance under the infinitesimal model with
nor-optimal selection (17.88). The curves correspond to initial heritability values ranging from 0.1
to 0.7. Stabilizing selection creates negative disequilibrium which reduces the additive genetic (and
hence phenotypic) variance below its initial value. The reduction in phenotypic variance is greatest
when the initial heritability is large and/or selection is strong (the width of the selection function
is narrow relative to the initial width of the phenotypic distribution, i.e., ω2 � σ 2).

17.7.2.2 The Cost of Stabilizing Selection

Charlesworth (1984) examined the so-called cost of stabilizing selection by computing
the selective load – the reduction in the mean fitness from the maximal value (W = 1 in
this case). The load is given by L = 1−W and measures the fraction of the population
suffering selective mortality in a particular generation. The mean population fitness is
obtained by integrating the fitness function over the distribution of phenotypes,

W =
∫
p(z)W(z) dz =

√
ω2

σ 2 + ω2
exp

[
− µ2

2(σ 2 + ω2)

]
, (17.90a)

as found by Charlesworth. After selection has driven the phenotypic mean to zero, the
load becomes

L = 1−
√

ω2

σ 2 + ω2
= 1−

√
�

1+�, where � = ω2/σ 2. (17.90b)

Charlesworth’s expression for the load (17.90b) ignores the reduction in the phenotypic
variance due to the generation of linkage disequilibrium (17.89c). A more precise
expression for the load (when the population is at equilibrium) is

L = 1−
√

ω2

σ 2∗ + ω2
= 1−

√
�

σ 2∗ /σ 2 +�, (17.90c)



EVOLUTIONARY QUANTITATIVE GENETICS 575

1010.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.9

0.7
0.5

0.3

w2/s 2

S
el

ec
tiv

e 
lo

ad

Figure 17.7 The selective load for an equilibrium population under nor-optimal selection. The
solid upper curve is Charlesworth’s approximation, while the four lower curves correspond to initial
heritabilities ranging from 0.3 to 0.9.

where σ 2∗ is the equilibrium phenotypic variance. Figure 17.7 plots the corrected load
for various values of initial heritability and different strengths of selection ω2/σ 2. As
expected, the selective loads are reduced when the disequilibrium is taken into account,
as the negative disequilibrium generated by selection reduces the phenotypic variance,
and this narrowing of the phenotypic variance increases the mean fitness. The reduction
in the load is most dramatic for strong selection (ω2 � σ 2) and high heritabilities.

17.8 THEOREMS OF NATURAL SELECTION: FUNDAMENTAL AND
OTHERWISE

Our final comments in this brief overview of evolutionary quantitative genetics concern
the ultimate quantitative trait: individual fitness. What general statements, if any, can
we make about the behavior of multilocus systems under selection? One oft-quoted is
Fisher’s fundamental theorem of natural selection, which states that ‘the rate of increase
in fitness of any organism at any time is equal to its genetic variance in fitness at that
time’. This simple statement from Fisher’s (1930) has generated a tremendous amount
of work, discussion, and sometimes heated arguments. Fisher claimed his result was
exact, a true theorem. The common interpretation of Fisher’s theorem, that the rate of
increase in fitness equals the additive variance in fitness, has been referred to by Karlin
as ‘neither fundamental nor a theorem’ as it requires rather special conditions, especially
when multiple loci influence fitness.
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Since variances are nonnegative, the classical interpretation of Fisher’s theorem
(namely, �W = σ 2

A(W)/W ) implies that mean population fitness never decreases in a
constant environment. As we discuss below, this interpretation of Fisher’s theorem holds
exactly only under restricted conditions, but is often a good approximate descriptor.
However, an important corollary holds under very general conditions (Kimura, 1965;
Nagylaki, 1976; 1977b; Ewens, 1976; Ewens and Thomson, 1977; Charlesworth, 1987):
in the absence of new variation from mutation or other sources such as migration, selection
is expected to eventually remove all additive genetic variation in fitness. If the population
is at equilibrium, the average excess (in fitness) for each allele is zero as all segregating
alleles have the same marginal fitness and hence σ 2

A = 0 (Fisher, 1941).

17.8.1 The Classical Interpretation of Fishers’ Fundamental Theorem

We first review the ‘classical’ interpretation and then discuss what Fisher actually seems
to have meant.

To motivate Fisher’s theorem for one locus, consider a diallelic (alleles A and a) locus
with constant fitnesses under random mating. Let p denote the frequency of A, and denote
the fitnesses for the three genotypes as WAA, WAa , and Waa . The mean population fitness
is given by

W = p2WAA + 2p(1− p)WAa + (1− p)2Waa, (17.91a)

and the change in allele frequency can be expressed in terms of Wright’s formula as

�p = p(1− p)
2W

dW

dp
= p(1− p)

2

d lnW

dp
. (17.91b)

Turning now to fitness, if the allele frequency change �p is small, a first-order Taylor
series approximation gives

�W = W(p +�p)−W(p) � W(p)+ ∂W
∂p
�p −W(p) (17.92a)

Applying (17.91b),

�W � ∂W
∂p
�p = p(1− p)

2W

(
∂W

∂p

)2

. (17.92b)

From (17.91a),

∂W

∂p
= 2pWAA + 2(1− 2p)WAa + 2(p − 1)Waa

= 2[p(WAA −WAa)+ (1− p)(WAa −Waa)] = 2(αA − αa),
where the last equality follows the average effects of alleles A and a on fitness,

αA = pWAA + (1− p)WAa −W and αa = pWAA + (1− p)WAa −W.
The quantity α = αA − αa is the average effect of an allelic substitution; the difference
in the average effects of these two alleles gives the mean effect on fitness from replacing
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a randomly chosen a allele with an A allele. The additive genetic variance is related to α
by σ 2

A = 2p(1− p)α2, giving

�W � p(1− p)(2α)
2

2W
= σ

2
A(W)

W
. (17.93)

Hence, the change in mean population fitness is proportional to the additive genetic
variance in fitness.

As an example of the implication of Fisher’s theorem, consider a diallelic locus with
overdominance in fitness (WAA = 1,WAa = 1+ s,Waa = 1), giving the additive and
dominance variance in fitness as

σ 2
A(W) = 2p(1− p)s2(1− 2p)2 and σ 2

D(W) = [2p(1− p)s]2.

As plotted in Figure 17.8, these variances change dramatically with p. The maximum
genetic variance in fitness occurs at p = 1/2, but none of this variance is additive, and
heritability in fitness is zero. It is easily shown that �p = 0 when p = 1/2, and at this
frequency σ 2

A(W) = 0, as the corollary of Fisher’s theorem predicts. Thus, even though
total genetic variation in fitness is maximized at p = 1/2, no change in W occurs as the
additive genetic variance in fitness is zero at this frequency.

Even if Fisher’s theorem holds exactly, its implication for character evolution can often
be misinterpreted, as the following example illustrates. Suppose that locus A completely
determines a character under stabilizing selection. Let the genotypes AA, Aa, and aa have
discrete phenotypic values of z = −1, 0, and 1, respectively (so that this locus is strictly
additive), and let the fitness function be W(z) = 1− sz2. If we assume no environmental
variance, this generates very nearly the same fitnesses for each genotype as those given
above, as the fitnesses can be normalized as 1 : (1− s)−1 : 1, where (1− s)−1 � 1+ s for
small s. The additive genetic variance for the trait z is maximized at p = 1/2, precisely
the allele frequency at which the additive genetic variance in fitness σ 2

A(W) = 0. This
stresses that Fisher’s theorem concerns additive genetic variance in fitness, not in the
character. In this example, the transformation of the phenotypic character value z to
fitness W takes a character that is completely additive and introduces dominance when
fitness is considered.

The above derivation of Fisher’s theorem was only approximate. Under what conditions
does the classical interpretation actually hold? While it is correct for a single locus with
random mating, a single locus with no dominance under nonrandom mating (Kempthorne,
1957), and multiple additive loci (no dominance or epistasis: Ewens, 1969), it is generally
compromised by nonrandom mating and departures from additivity (such as dominance
or epistasis). Even when the theorem does not hold exactly, how good an approximation
is it? Nagylaki (1976; 1977a; 1977b; 1991; 1992; 1993) has examined ever more general
models of fitnesses when selection is weak (the fitness of any genotype can be expressed
as 1+ as, with s small and |a| � 1) and mating is random. Selection is further assumed to
be much less than the recombination frequency cmin for the closest pair of loci (s � cmin).
Under these fairly general conditions, Nagylaki shows that the evolution of mean fitness
falls into three distinct stages. During the first t < 2 ln s/ ln(1− cmin) generations, the
effects of any initial disequilibrium are moderated, first by reaching a point where the
population evolves approximately as if it were in linkage equilibrium and then reaching a
stage where the linkage disequilibria remain relatively constant. At this point, the change
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Figure 17.8 Genetic variances in a model with overdominance. Here, the heterozgyote has fitness
1+ s, while both homozygotes have fitness 1. As (a) shows, the additive genetic variance is zero
at allele frequency 0.5, but this is also the value where the total genetic variance is maximized.
(b) shows that the heritability goes to zero as the allele frequency approaches 0.5. Thus, even though
the genetic variance in fitness has maximal value at allele frequency 0.5, there is no response to
selection, as none of the genetic variance is additive.

in mean fitness is

�W = σ
2
A(W)

W
+O(s3), (17.94)

where O(s3) means that terms of order s3 have been ignored. Since additive variance is
expected to be of order s2, Fisher’s theorem is expected to hold to a good approximation
during this period. However, as gametic frequencies approach their equilibrium values,
additive variance in fitness can be much less than order s2, in which case the error terms
of order s3 can be important. During the first and third phases, mean fitness can decrease,
but the fundamental theorem holds during the central phase of evolution.

17.8.2 What did Fisher Really Mean?

Fisher warned that his theorem ‘requires that the terms employed should be used strictly
as defined’, and part of the problem stems from what Fisher meant by ‘fitness’. Price
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(1972b) and Ewens (1989; 1992) have argued that Fisher’s theorem is always true, because
Fisher held a very narrow interpretation of the change in mean fitness (see also Edwards,
1990; 1994; Frank, 1995; Lessard and Castilloux, 1995). Rather than considering the
total rate of change in fitness, they argue that Fisher was instead concerned only with
the partial rate of change, that due to changes in the contribution of individual alleles
(specifically, changes in the average excesses/effects of these alleles). In particular, Ewens
(1994) states:

I believe that the often-made statement that the theorem concerns changes in mean fitness,
assumes random-mating populations, is an approximation, and is not correct in the multi-locus
setting, embodies four errors. The theorem relates the so-called partial increase in mean fitness,
makes no assumption about random mating, is an exact statement containing no approximation,
and finally is correct (as a theorem) no matter how many loci are involved.

What exactly is meant by the partial increase in fitness? A nice discussion is given by
Frank and Slatkin (1992), who point out that the change in mean fitness over a generation
is also influenced by the change in the ‘environment’, E. Specifically,

�W = (W ′|E′)− (W |E), (17.95a)

where the prime denotes the fitness/environment in the next generation, so that the change
in mean fitness compounds both the change in fitness and the change in the environment.
We can partition out these components by writing

�W = [(W
′|E)− (W |E)]+ [(W

′|E′)− (W ′|E)], (17.95b)

where the first term in brackets represents the change in mean fitness under the initial
‘environment’ while the second represents the change in mean fitness due to changes
in the environmental conditions. Fisher’s theorem relates solely to changes in the first
component, (W

′|E)− (W |E), which he called the change in fitness due to natural
selection. Price (1972b). notes that Fisher had a very broad interpretation of ‘environment’,
referring to both physical and genetic backgrounds. In particular, Fisher

regarded the natural selection effect on fitness as being limited to the additive or linear
effects of changes in gene (allele) frequencies, while everything else – dominance, epistasis,
population pressure, climate, and interactions with other species – he regarded as a matter of
the environment.

Hence the change in fitness referred to by Fisher is solely that caused by changes in allele
frequencies and nothing else. Changes in gamete frequencies caused by recombination
and generation of disequilibrium beyond those that influence individual allele frequencies
are consigned to the ‘environmental’ category by Fisher. Given this, it is perhaps not
too surprising that the strict interpretation of Fisher’s theorem holds under very general
conditions as nonrandom mating and nonadditive effects generate linkage disequilibrium,
changing gametic frequencies in ways not simply predictable from changes in allele
frequencies.

Nagylaki (1993) suggests that the statement �W = σ 2
A(W)/W be referred to as the

asymptotic fundamental theorem of natural selection, while Fisher’s more narrow (and
correct) interpretation be referred to as the Fisher–Price–Ewens theorem of natural
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selection. This distinction seems quite reasonable given the considerable past history
of confusion.

17.8.3 Heritabilities of Characters Correlated with Fitness

The corollary of Fisher’s theorem, that selection drives the additive variance in fitness
to zero, makes a general prediction. Characters strongly genetically correlated with
fitness should thus show reduced h2 relative to characters less correlated with fitness
(Robertson, 1955), reflecting the removal of additive variance by selection (which is partly
countered by new mutational input). Because of the past action of natural selection, traits
correlated with fitness are expected to have reduced levels of additive variance, while
characters under less direct selection are expected to retain relatively greater amounts of
additive variance. How well does this prediction hold up? Many authors have noticed that
characters expected to be under selection (e.g., life-history characters, such as clutch size)
tend, on average, to have lower heritabilities than morphological characters measured in
the same population/species (reviewed by Robertson, 1955; Roff and Mousseau, 1987;
Mousseau and Roff, 1987; Charlesworth, 1987). However, some notable exceptions are
also apparent (Charlesworth, 1987). The difficulty with these general surveys is knowing
whether a character is, indeed, highly genetically correlated with lifetime fitness. Clutch
size, for example, would seem to be highly correlated with total fitness, but if birds
with large clutch sizes have poorer survivorship, the correlation with lifetime fitness may
be weak. Negative genetic correlations between components of fitness allow significant
additive variance in each component at equilibrium, even when additive variance in total
fitness is zero (Robertson, 1955; Rose, 1982).

17.8.4 Robertson’s Secondary Theorem of Natural Selection

While the fundamental theorem predicts the rate of change of mean population fitness,
we are often more interested in predicting the rate of change of a particular char-
acter under selection. Using a simple regression argument, Robertson (1966; 1968; see
also Crow and Nagylaki, 1976; Falconer, 1985) suggested the secondary theorem of
natural selection,

R = µ′z − µz = σA(z,w),
namely, that the rate of change in a character equals the additive genetic covariance
between the character and fitness (the covariance between the additive genetic value of
the character and the additive genetic value of fitness). If this assertion holds, it provides
a powerful connection between the fundamental theorem and the response of a character
under selection. For example, it predicts that the character mean should not change when
additive variance in fitness equals zero, regardless of the additive variance in the character.

To examine the conditions under which the secondary theorem holds, we first examine
a single–locus model in some detail before considering what can be said for increasingly
general multilocus models. Assuming random mating, a single generation of selection
changes the frequency of allele Ai from pi to p′i = pi(1+ si), where si is the average
excess in relative fitness for allele Ai . To map these changes in allele frequencies
into changes in mean genotypic values, decompose the genotypic value of AiAj as
Gij = µG + αi + αj + δij , where αi is the average effect of Ai on character value and
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δij the dominance deviation. Putting these together, the contribution from this locus to
the change in mean after a generation of selection is

R =
∑
i,j

Gijp
′
ip
′
j −

∑
i,j

Gijpipj

=
∑
i,j

Gijpi(1+ si)pj (1+ sj )−
∑
i,j

Gijpipj

=
∑
i,j

(αi + αj + δij )pjpisi +
∑
i,j

(αi + αj + δij )pipj sisj . (17.96)

The careful reader will note that we have already made an approximation by using Gij
instead of G′ij in the very first sum. Since αi and δij are functions of the allele frequencies,
they change as pi changes, but we assume these are much smaller than the change in pi
itself (so we have assumed α′i � αi and δ′ij � δij ). A little more algebra (Nagylaki, 1989;
1991) simplifies the two sums in (17.96) to give the expected contribution to response as

R =
∑
j

αj sjpj +
∑
i,j

δijpisipj sj . (17.97)

The first sum is the expected product of the average effect αj of an allele on character
value times the average excess si of that allele on relative fitness. Since (by definition),
E[αj ] = E[si] = 0, the first sum is just the covariance between the average effect on
the character with the average excess on fitness, in other words, the additive genetic
covariance between relative fitness and character. Hence we can express (17.96) as

R = σA(z,w)+ B =
σA(z,W)

W
+ B. (17.98)

If the character has no dominance (all δij = 0), the correction term B vanishes, recovering
Robertson’s original suggestion. If σ 2

D(z) denotes the dominance variance in the trait value,
Nagylaki (1989) shows that

|B| ≤ σD(z) · σ
2
A(w)

2
, (17.99)

where σ 2
A(w) is the additive variance in relative fitness. Assuming no epistasis, Nagylaki

(1989; 1991) shows that (17.98) holds for n loci, with the error term being

B =
n∑
k=1

nk∑
i,j

δij (k)pi(k)si(k)pj (k)sj (k), (17.100)

where k indexes the loci, the k th of which has nk alleles. This also holds when linkage
disequilibrium is present, but the dominance deviations and average excesses in fitness
are expected to be different than those under linkage equilibrium. Nagylaki (1991) shows
that (17.100) is bounded by

|B| ≤
(

n∑
k=1

σD(k)(z)

)
· σ

2
A(w)

2
(17.101a)
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where σ 2
D(k)(z) is the dominance variance in the character contributed by locus k. If all loci

underlying the character are identical (the exchangeable model ), this bound reduces to

|B| ≤ σD(z) · σ
2
A(w)

2
√
n

. (17.101b)

Hence, for fixed amounts of genetic variances, as the number of loci increases, the error
in the secondary theorem becomes increasingly smaller.

Finally, the most general statement on the validity of the secondary theorem is due to
Nagylaki (1993) for weak selection and random mating, but arbitrary epistasis and linkage
disequilibrium. Similar to the weak selection analysis of Fisher’s theorem discussed above,
after a sufficient time the change in mean fitness is given by

R = σA(z, w)+O(s2). (17.102)

As with the fundamental theorem, when gametic frequencies approach their equilibrium
values, terms in s2 can become significant and mean response can differ significantly from
Robertson’s prediction.

17.9 FINAL REMARKS

Quantitative genetics is a very broad enterprise, comprising a number of distinct
subfields – plant breeding, animal breeding, human genetics, and evolutionary quanti-
tative genetics. The focus of this review has been on some of the unique aspects of
evolutionary quantitative genetics that are likely to be less well known, but nonetheless
potential very useful, to practitioners of these other subfields. For example, methods for
estimating the nature of natural selection on traits are certainly of interest to plant and
animal breeders, as they try to account for natural selection in the face of artificial selec-
tion. Likewise, evolutionary quantitative geneticists are also starting to draw upon some
of the machinery developed in other subfields (such as best linear unbiased predictor esti-
mation of breeding values). This is an encouraging trend, as each subfield of quantitative
genetics has developed much useful machinery that deserves to be much more widely
known (e.g. Walsh, 2002).
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Quantitative traits result from the influence of multiple genes (quantitative trait loci) and environ-
mental factors. Detecting and mapping the individual genes underlying such ‘complex’ traits is a
difficult task. Fortunately, populations obtained from crosses between inbred lines are relatively
ideal for this – at least far more ideal than livestock and human populations – and true multigenic
models are now available and have been applied successfully. In this chapter we will introduce the
reader to statistical tools for segregation analysis and genetic mapping with the aid of molecular
markers.

18.1 INTRODUCTION

18.1.1 Mendelian Factors and Quantitative Traits

The breeding experiments of Mendel in the late nineteenth century led to the foundation
of modern genetics. He crossed white- and purple-flowering pea plants, and proposed a
simple theory to explain the observed frequencies of white- and purple-flowering plants
from generation to generation. With today’s knowledge, we can conclude that one gene
with qualitative effect encoded the flower colour studied by Mendel. If many genes and/or
genes with quantitative effects encode a trait of interest, then the effects of the individual
genes can hardly be distinguished. Therefore dissection of truly quantitative variation into
the underlying ‘Mendelian factors’ is difficult on the basis of phenotypic information only.
In this chapter we will see what modern statistical and molecular tools we have in our
toolbox for studying quantitative or complex traits in inbred line crosses. These tools are of
prime importance for plant breeding, livestock improvement and medical research using
model organisms, because application of advanced tools offers great opportunities for
understanding and manipulation of complex biological processes. Genes underlying quan-
titative or complex traits are commonly called quantitative trait loci (hereafter QTLs).
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We start with a very limited description of inbred line genetics and breeding – all
you need to know about inbred lines, seen through a statistician’s spectacles – and the
reader can generalise if he or she wishes. The next sections deal with what we think are
the essentials for proper statistical modelling and analysis, first for so-called segregation
analysis and second for genetic mapping of QTLs with the aid of genetic markers. The
reader will see that similar statistical models and algorithms will be used for segregation
analysis as for QTL mapping with the aid of molecular markers. We will introduce much
of the relevant statistical machinery in the section on the simpler ‘marker-free’ case of
segregation analysis.

There is a large amount of literature, and within the scope of this chapter it is hardly
possible to refer to all statistical methods and applications published. The author has
made his own selection, but hopes that this text, the bibliography and references give the
reader sufficient entries to find his own favourite way in the world of QTLs in inbred
lines. We sometimes get the feeling that the statistical theory of genetics is presented with
a semblance of mystery, as if it were very special and complex. We believe there is no
reason for this in the case of QTLs in inbred lines – almost all the theory is closely related
to standard analysis of variance (ANOVA) and regression analysis. Nevertheless, we will
make numerous cautionary remarks – standard methods can still be greatly abused.

18.1.2 The Genetics of Inbred Lines

In order to understand the genetics of inbred lines, we first need to define what one
commonly understands by the terms inbred and line, and then we can discuss what ‘sort of
genetics’ is involved. Here, we consider only inbred line crosses of diploid organisms. The
reader may generalise to similar theoretical results for polyploid organisms and biparental
crosses between outbreeding lines. In all cases we start with two parental lines, say
P1 and P2, and intercross them in order to generate new genetic combinations.

In the genetics literature a line is a set of genetically related individuals, which
are maintained under one and the same breed identification and/or commercial name.
Chromosomes occur in homologous pairs, one originating from the mother, the other
from the father. A line P1 is homozygous if at any given gene the maternal and paternal
states or alleles are identical, say a1a1. Thus, any offspring from crossing or mating within
the P1 pool will have the same P1 genotype. The genotype of P2 is denoted by a2a2. How
do you get a line to become homozygous? For instance, in plants by following a single-
seed-descent strategy over multiple generations: each generation you randomly take, grow
and self a single individual in order to generate the seeds of the next generation of the line.
By expectation, the number of heterozygous loci, a1a2, will be halved each generation.
After eight to ten generations one can stop as the breeding process has led to an (almost)
homozygous ‘inbred line’. Of course, this scheme is typical of plants and cannot be used in
animals. For model animals (mice, rats, hamsters) and livestock animals (chickens) simple
designs of brother–sister mating can be used. Various plant species (apple, strawberry,
pine) and most animal species (cattle, horses) can hardly be manipulated this way, because
it would take too much time and money, because the organism would suffer from severe
inbreeding depression, and, last but not least, because it would be immoral (humans).
Although we focus here on biparental crosses between divergent inbred lines, most of the
theory also applies to the case of a biparental cross between divergent outbreeding lines.
In the latter case, there can be up to four different alleles per locus. We present theory for
the simpler two-allele situation and thus leave the extension to four alleles to the reader.
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There follows a short description of a number of mating designs. All start with a cross
between two divergent inbred lines P1 and P2, which generates heterozygous filial F1-
offspring (a1a1 × a2a2 → a1a2). In the backcross (BC) design, the F1 is (back)crossed
to one of the parents, say female F1 to male P1 (a1a2 × a1a1 → a1a2 and a1a1 for each
locus). In the doubled haploids (DH) design, either male or female gametes of the F1 are
artificially doubled by some kind of treatment, giving rise to homozygous recombinant
offspring in one step (a1a2 → a1a1 and a2a2 per locus). In the BC and DH design one
can only trace segregation and recombination events in either the male or the female F1
gamete. In the filial F2 design, the F1 is selfed or two F1 individuals are crossed, in order
to generate offspring, resulting from recombination events in both male and female gamete
production (a1a2 × a1a2 → a1a1, a1a2 and a2a2 in the ratio 1 : 2 : 1 per locus). Finally, in
the recombinant inbred line (RIL) design one first generates the F2 progeny and then each
F2 enters individually a single-seed-descent inbreeding programme (a1a2 × a1a2 → a1a1
or a2a2 per locus). From here on we us the notation A, H and B for a1a1, a1a2 and a2a2,
respectively.

18.1.3 Phenotype, Genotype and Environment

The basic model of quantitative genetics is

P = G+ E,
or, in words, the phenotype (trait) is the sum of genetic and environmental factors. By
taking two divergent lines, we have a high chance that the two lines have different
states (alleles) at all the genes underlying the traits of interest. Unfortunately, the trait
difference between the two parents reflects the total effect of the their genes and not
their individual gene effects. In statistical terms, the effects of the genetic factors are
confounded, the factors are aliased or collinear. The genetic reproduction mechanism will
yield us offspring with new allele combinations, generated by independent segregation
of different chromosomes and by recombination within chromosomes. Therefore in the
offspring, genes on different chromosomes are independent stochastic variables (unlinked
genes). In contrast, the genes on the same chromosome will show statistical dependence or
linkage association, although this may be negligible if they are far apart, and we speak of
linked genes. Unlinked genes will become orthogonal factors (in infinite populations) and
closely linked genes become factors with a high degree of collinearity. Any recombination
between two flanking genes increases our chance of dissecting their effects. The distance
between two loci is usually reported in units of morgans (M) or centimorgans (cM)
using Haldane’s mapping function. According to Haldane, a recombination frequency of
r between two loci corresponds to a map distance of m morgans, with

m = −1

2
ln(1− 2r);

conversely, a distance of m morgans corresponds to a recombination frequency r of

r = 1

2
(1− exp(−2m)).

For small distances the relation is more or less proportional (m = 0.01 M ∼ r = 0.01, in
which case one in 100 individuals of a DH population will show up as recombinant).
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18.2 SEGREGATION ANALYSIS

18.2.1 Visualisation of Quantitative Variation in a Histogram

Our first step, once we have collected the phenotypic data, will most probably be to
rank the data and draw a histogram to visualise the results for the trait under study.
This is ‘just’ descriptive statistics, but it is an important step, as conclusions drawn
from descriptive statistics often have more practical impact than those from inferential
statistics.

Figure 18.1 shows typical histograms. What can we learn from these pictures? And,
are there any pitfalls? What we know from lessons in genetics is that homologous
chromosomes segregate randomly, creating opportunity for 2n different egg or sperm
cells per meiosis and an equal amount of possible homozygous genotypes for an organism
with n chromosomes pairs. Nature is even cleverer than that, and devised the crossover
mechanism as the result of which the total number of possible genotypes is much bigger
even than 2n so that usually no two individuals in the population have the same genotype.
What we see in Figure 18.1 is a ‘mixture’ of as many different genotypes as there are
individuals.

Figure 18.1(a) clearly shows a bimodal distribution for a segregating DH population. If
this is the case for our trait, we will probably be excited! We recognise that the mixture
of genotypes falls into two different groups, which can be labelled A and B, respectively.
Of course, it is likely that the two labels correspond to the two genotypes A and B at a
yet unmapped major gene. One might say that the action of this gene is semiqualitative or
semiquantitative, i.e. somewhere between pure qualitative, as with Mendel’s pea genes,
and pure quantitative, as with many complex traits such as body weight or crop yield. The
action of our major gene may or may not be modified by other genes of minor effect, but
the information in the histogram is too limited for us to come to conclusions on this aspect.
In some cases trait values of a number of individuals for each of the parents are available.
If a parent line is homozygous, all individuals of that line are genetically identical and
any variation observed among them must therefore be environmental in origin. This
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Figure 18.1 Mixture distributions plotted on top of the histograms (a) for a DH population, (b–c),
for F2 populations. The component distributions for each of the genotypes A, H and B are also
plotted in (b) and (c).
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would make it possible to compare within-parents variation, which is supposed to be
environmental and not genetic, to within-A and within-B variation, which is the sum of
environmental and possibly residual genetic variation.

Figure 18.1(b) shows a histogram with a unimodal distribution for a segregating F2
population. It is not unlikely that our first reaction will be ‘a real pity, my trait is complex,
probably encoded by many genes of small action’. If many genes encode our trait, then we
would expect a ‘normal’ distribution, as shown in Figure 18.1(b). Again, comparing with
parental data, we can get an idea of the amount of genetic variation relative to environ-
mental variation. However, our questions ‘how many genes of what sizes of effects’, will
not be answered unless we invoke the aid of molecular techniques – this will be the topic
of the next sections. Are there any potential pitfalls? The reader may feel misled, but the
histogram in Figure 18.1(b) actually represents the case of a single additive major gene
explaining half of the total variation! The segregating population consists of a mixture
of genotypes A, H (heterozygote) and B in the ratio 1 : 2 : 1. Thus even if we observe a
unimodal distribution, we may still hope that the underlying genetics is not too complex.

Figure 18.1(c) shows another histogram with a unimodal distribution for a segregating
F2 population, but this time the distribution is skewed. This may give us a hint of dominant
major gene action! Suppose individuals with genotypes A and H group together (i.e. have
the same mean value) and underlie the main body of the distribution. The other individuals,
with genotype B, underlie the ‘shoulder’ of the distribution. There is little by way of a
proof in the picture, but we may think there is a lot of evidence for our hypothesis of a
single dominant gene. Again, there is a chance of a serious pitfall. We may have made the
implicit assumption that the error distribution or ‘component distribution’ is symmetric or
even ‘normal’. Many traits have a natural lower bound (often zero), and variances often
increase with the mean. In reality our histogram was generated under a (polygenic) model
with a skewed residual error distribution. Thus, seeing a skewed distribution may lead us
to believe erroneously that there is a dominant major gene. Some researchers are aware
of this pitfall and transform their data, for instance they take the natural logarithm of all
trait values, thereby changing the scale of the x axis to a logarithmic scale on which the
distribution looks more symmetrical. Is this a good procedure? Not necessarily, because
there is the danger of throwing out the baby with the bathwater: we may loose power
for detecting dominant gene action. However, there may sometimes be good biological
reasons to log transform. To check the type of distribution one can best look at parental
(non-mixture) data and use standard statistical techniques to help find an optimal data
transformation – see Atkinson (1985), Jansen and Den Nijs (1993) and Jansen et al. (1993)
for illustrative examples in the case of mixture models. Choice of mixing distribution
becomes more critical when the model becomes more complex (e.g. if models include
gene interactions). It is well known, for instance, that significant interactions can arise
as statistical artefacts: the interactions try to compensate for wrong model assumptions.
Still, distribution checks are only occasionally reported in genetic analysis.

Quantitative data are not always continuous data. Typically, quantification of disease
scores may lead to count data (e.g. number of spots on a leaf), categorical or ordinal data
(e.g. a disease score 1–5) or proportions (e.g. number of affected individuals per DH line
being tested on multiple seedlings). In many cases the distribution is close to normal after
appropriate data transformation (e.g. log, square root, or probit). The type of transforma-
tion should preferably be chosen on the basis of non-mixture data. See McCullagh and
Nelder (1989) for generalised linear models (GLMs) for many types of distribution.
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Finally we refer the readers to Allard (1999) for several illustrative graphs (his
Figures 18.1 and 18.2), showing qualitative and quantitative variation resulting from
segregation for one, two, or more genes with or without dominance and/or in the presence
or absence of environmental noise.

18.2.2 Plotting Mixture Distributions on Top of the Histogram

Histograms may show bimodality or skewness and as such they can indicate segregation of
major genes. Still we cannot unambiguously assign individuals to genotypes. In statistical
terms, a QTL is a latent unobserved categorical variable. Let us look again at Figure 18.1.
How can we model, fit and plot the mixture distributions on top of the histogram?

Let us start with a relatively simple model for Figure 18.1(b): a model with a single QTL
with additive allele effect and normal error in an F2. Let yi denote the trait value of the ith
individual. We do not know its QTL genotype. There are three possible genotypes, each
with its own probability of occurrence and component probability density function (PDF):

P PDF

1 yi A 0.25 φ(yi;µA, σ 2)

2 yi H 0.50 φ(yi;µH, σ 2)

3 yi B 0.25 φ(yi;µB, σ 2)

Here

φ(y;µ, σ 2) = 1√
2πσ 2

exp(−(y − µ)2/2σ 2),

is the PDF of the normal (Gaussian) distribution with mean µ and variance σ 2, and

µH = 1
2 (µA + µB),

because we assumed additivity of allele effects. Taking the weighted sum over the three
components, we get the mixture PDF

fmix(yi) =
1

4
φ(yi;µA, σ 2)+ 1

2
φ

(
yi;
µA + µB

2
, σ 2

)
+ 1

4
φ(yi;µB, σ 2).

The simultaneous mixture likelihood of observations y1, y2, . . . , yn is the product of the
individual likelihood contributions:

L =
n∏
i=1

fmix(yi).

In order to shorten the notation we will often use φA(·), φH (·) and φB(·) to denote the
distributions for genotypes A, H and B, respectively.

Suppose – for the moment – that we know the parameter values. How do we show
the fit of the model to the data? That is fairly easy: calculate fmix(·) for values ranging
from the minimum to the maximum trait value, multiply by the number of individuals n,
and by the width w of the groups of the histogram to account for scaling, and finally
plot this on top of the histogram. It will become a little more complicated if we want to
show the histogram on the original scale of measurement, while we think that it is more
appropriate to fit the mixture of normal distributions on a different scale. Suppose that
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we fit the normal mixture model to the transformed trait values T (yi), i.e. on a different
scale than the original scale of measurement. The protocol is now as follows: calculate
fmix(T (·)) for values ranging from the minimum to the maximum trait value on the orig-
inal scale of measurement, multiply by the Jacobian T ′(·) to calculate the likelihood on
the original scale of measurement, next multiply by n and by w, and finally plot this on
top of the histogram. The Jacobian T ′(·) is the first-order derivative of the transformation
function – e.g. if T (y) = ln(y), then T ′(y) = 1/y.

18.2.3 Fitting Mixture Distributions

What remains is the question of how we estimate the parameters of the finite (normal)
mixture distribution. The standard maximum likelihood (ML) approach consists of finding
the parameter values which maximise the simultaneous (log) likelihood. To achieve this
we can take the first-order derivatives of the log likelihood l and set these to zero:

0 = ∂

∂θ
l = ∂

∂θ
log

(
n∏
i=1

fmix(yi)

)
=

n∑
i=1

∂

∂θ
log fmix(yi).

We continue with our example of a single QTL with additive effect in an F2. Now
note that

∂

∂θ
log fmix(yi) =

1

fmix(yi)

∂

∂θ
[0.25φA(yi)+ 0.50φH (yi)+ 0.25φB(yi)]

= 0.25

fmix(yi)

∂

∂θ
φA(yi)+

0.50

fmix(yi)

∂

∂θ
φH (yi)+

0.25

fmix(yi)

∂

∂θ
φB(yi)

= 0.25φA(yi)

fmix(yi)

∂

∂θ
logφA(yi)+

0.50φH (yi)

fmix(yi)

∂

∂θ
logφH (yi)

+ 0.25φB(yi)

fmix(yi)

∂

∂θ
logφB(yi)

= P(A|yi)
∂

∂θ
logφA(yi)+ P(H |yi)

∂

∂θ
logφH (yi)+ P(B|yi)

∂

∂θ
logφB(yi),

which you can recognise as a sum of weighted ‘normal’ likelihood contributions, where
the weights are conditional probabilities of the genotype given the observed phenotype
P(A|y), P (H |y) and P(B|y), which depend on the unknown θ (to shorten the notation
we write P(·) instead of Pθ(·)). Unfortunately the likelihood equations cannot be solved
analytically. But there is a simple – thus popular – algorithm, called the expectation-
maximisation (EM) algorithm – for short the EM algorithm. Dempster et al. (1977)
considered the mixture problem as one of many examples in which data are incomplete.
They interpreted mixture data as incomplete data by regarding an observation on the
mixture as missing its component of origin. See their Section 4.3 on finite mixtures.
In our context the information on QTL genotype is missing (with three components
A, H and B). The basic idea of the iterative EM algorithm is to replace the incomplete
observation yi by its three complete observations (yi , A), (yi ,H ) and (yi , B), weighting the
three complete observations by specified or updated (conditional) probabilities. Iteration
consists of two steps:



596 R.C. JANSEN

(E step) Specify or update weights P(A|yi), P (H |yi) and P(B|yi).
(M step) Update estimates of µA, µB and σ 2.

In the E step, conditional probabilities are calculated by using the current parameter
estimates. The M step consists of weighted regression analysis on the triplicate data set,
which can be done with most statistical packages, and which requires no more than a
routine for weighted least squares. The explicit solution of the M step can be written as

µ̂A =

n∑
i=1

[
P(A|yi)yi + P(H |yi)

1

2
yi

]
n∑
i=1

[
P(A|yi)+ P(H |yi)

1

2

] , µ̂B =

n∑
i=1

[
P(B|yi)yi + P(H |yi)

1

2
yi

]
n∑
i=1

[
P(B|yi)+ P(H |yi)

1

2

] ,

and

σ̂ 2 = 1

n

[
P(A|yi)(yi − µ̂A)2 + P(H |yi)

(
yi −

1

2
(µ̂A + µ̂B)

)2

+ P(B|yi)(yi − µ̂B)2
]
.

Setting parameters equal to (well-chosen) initial values conveniently starts the algorithm.
We will now use the above rather simple example to introduce the general concept

of data completion (augmentation) and parameter estimation via iterative reweighted
least squares. Hopefully this will help the reader to understand the more compli-
cated cases that will appear in later sections. Let y(c) denote the 1× 3n vector
of augmented trait data (y1, y1, y1, y2, y2, y2, . . . , yn, yn, yn)

′, where the superscript
(c) is used for ‘complete’. Furthermore, let β denote the 1× p vector of regres-
sion parameters, X(c) the corresponding design matrix of size 3n× p, e(c) the vector
or residuals, and finally W(c) is the diagonal matrix of conditional probabilities
(P (A|y1), P (H |y1), P (B|y1), P (A|y2), P (H |y2), P (B|y2), . . . , P (A|yn), P (H |yn), P (B|yn))′.
Note that for the ith individual the model is(

yi
yi
yi

)
=
[ 1 0

0.5 0.5
0 1

](
µA
µB

)
+
(
ei1
ei2
ei3

)
, weighted by

(
P(A|yi)
P (H |yi)
P (B|yi)

)
,

or in matrix notation y(c) = X(c)β+ e(c) with weight matrix W(c). The M step is

β̂ = (X(c)′W(c)X(c))−1X(c)′W(c)y(c)

and

σ̂ 2 = 1

n
(Y(c) − X(c)β̂)′W(c)(y(c) − X(c)β̂).

18.2.4 Wanted: QTLs!

We want to discover all about the QTLs underlying quantitative variation for our trait(s)
of interest. How many genes are involved? Where are they located on the chromosomes?
What type of (inter)action do they show? It is clear from the Figure 18.1(b), that for truly
quantitative variation the effects of the individual genes can hardly be distinguished. But
there are clever ways to tackle this problem: use molecular markers, and this is the topic
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of the following sections! Thus, we now proceed to apply the mixture model tools in a
new context where we have partial information, provided by molecular markers, on the
underlying genotypes.

18.3 DISSECTING QUANTITATIVE VARIATION WITH THE AID
OF MOLECULAR MARKERS

18.3.1 Molecular Markers

Since the early 1980s new ways to unravel complex traits have emerged (Botstein et al.,
1980; Beckmann and Soller, 1983). The magic phrase is ‘molecular marker’. Remember
that a QTL is – in a statistical sense – a categorical variable whose values remain
unobserved. A molecular marker is also a locus on the genome, but the genotype can
be observed with molecular tools. From the statistical point of view it hardly matters how
this molecular technique works; the only important point is that a marker is a categorical
variable with observable state. Nowadays hundreds, not to say thousands, of molecular
markers are available or will become available over the next few years, all with more
or less known positions on the genome. In this chapter the focus will be on dense or
ultradense marker maps. Which means that there is almost always a marker almost on top
of any QTL. By ‘on top’ we mean that in the segregating population no recombination
events between the given marker and QTL have appeared.

Markers are often just non-functional or selectively neutral sites. So why should it help
to collect information about such loci? It will not help if our population is similar to a
random mating population in linkage equilibrium, which means that genotypes at different
loci are statistically independent. But in this chapter we deal with inbred line crosses
for which linkage disequilibrium is at its maximum, i.e. there is maximum statistical
correlation between the genotypes at linked loci. For example, between an observable
marker that does not affect the phenotype and an unobservable QTL that does affect the
trait. Say the homozygous parents P1 and P2 have marker-QTL genotype m1a1//m1a1
and m2a2//m2a2, respectively (chromosomes occur in pairs, and the symbol ‘//’ separates
the alleles of the first and second chromosome of the pair; the marker has alleles
m1 and m2; the QTL has alleles a1 and a2). The F1 genotype is m1a1//m2a2. It will
produce a mixture of non-recombinant gametes (m1a1 or m2a2) with probability 1− r , and
recombinant gametes (m1a2 or m2a1) with probability r . Figure 18.2 is based on the same
data as shown in Figure 18.1(a), and shows the effect of tight linkage between marker and
QTL on the mixture distribution (r = 0.01). There would be weak or no association if the
marker and QTL were far apart. Thus, if the marker is close to or on top of a QTL, then
the two marker genotype groups (say, A for m1m1 and B for m2m2) will clearly show
different means for the trait. The basic and simple idea is to reverse this statement – if the
two marker classes clearly show different means, then there is evidence for ‘QTL activity’
in the neighbourhood. Note that we have made the reverse statement a little less strong,
i.e. we cannot claim that there is only one isolated QTL involved – there is much more
to say about this, but we will postpone this to one of the later sections of this chapter.

Whether two marker classes indeed show different means (or not) can be tested with
standard Analysis Of Variance ANOVA and regression tools. Suppose that we fit a single
QTL at a fully informative marker in an F2 population. The one-way classification model
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Figure 18.2 Mixture distributions plotted on top of the histograms per marker genotype for the
same data as shown in Figure 18.1(a). The marker is close to a QTL, but a few recombinations
have occurred. Therefore, the distribution given the marker genotype is a mixture over recombinant
(probability r) and non-recombinant individuals (probability 1− r).

reads yij = µ+ βi + εij for the j th individual of the ith genotype (i = 1, 2, 3; A, H
and B at the marker). This model can easily be extended to two or more marker factors
(Cowen, 1989; Stam, 1991). Assuming that all scores of marker factors are known –
i.e. their data are complete – the general model for regression on multiple markers is
y(c) = X(c)β+ e(c). A characteristic of ANOVA and regression models is that they often
are overparameterised, containing more parameters than needed to represent the effects.
Usually, setting the sum of allele effects to zero or, equivalently, working in terms of main
effect and allele substitution effects compensates for this. The parameters are commonly
estimated by the least-squares method, i.e.

β̂ = (X(c)′X(c))−1X(c)′y(c)

and

σ̂ 2 = 1

n− p(y
(c) − X(c)β̂)′(y(c) − X(c)β̂).

Note that in the latter formula one divides by n− p, the degrees of freedom (df) of
the residual error, and not by n; n is the population size, p is the number of regression
parameters in β.

18.3.2 Mixture Models

What happens if some marker scores are missing? ANOVA and regression models do not
allow for missing values in the explanatory variables. We could eliminate any individual
with one or more missing marker scores and then perform an analysis on the remainder
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of the data set. But in real experiments most individuals are missing at least some marker
scores, so this approach does not seem to be very attractive. Of course, we can think
of filling in the gaps prior to ANOVA analysis by using the map information. How does
this work? Look at the markers flanking the marker with a missing score. If the markers
are close together, we can be pretty sure how to fill in the score and then we can apply
ANOVA and regression! This is an ad hoc procedure, which works well for ultradense
maps, but there are more sophisticated methods available for sparse maps. As we have
seen in Section 18.2, data completion can be integrated with analysis of quantitative
variance – and the type of models we need are mixture models.

We should not be surprised if up to 5 % of the marker scores are missing in a real exper-
iment. Often some markers or some individuals are difficult to score. This can be caused
by various technical failures such as a given individual’s bad DNA sample or problems
with the fingerprint image. The statistician assumes that the scores are missing at random,
or at least that there is no tendency that one score, say A, is relatively more frequently
missing than B or H . Another type of incomplete data occurs when one or more markers
are dominant and scored in, for instance, an F2 population. Such a dominant marker still
has three different states A, H and B, like a codominant marker. However, for technical
reasons either A and H cannot be discriminated, which is often labelled as ‘not-B’ or just
D, or H and B cannot be discriminated, labelled as ‘not-A’ or just C. A dominant marker
is, in statistical terms, an observable categorical variable with two observable states. We
can therefore use such a variable straightforwardly in ANOVA. On the other hand, we
may want to complete the marker data by again using information from neighbouring
markers. For instance, a ‘not-A’ observation means that the genotype is B or H , and the
first one is more likely if we know that an adjacent marker has score B. How successfully
can we complete data? This can be quantified by what one calls the multilocus information
content; this will be defined later. We finish by remarking that the distinction between
dominant and codominant markers is not always so absolute. Some types of marker may
yield A, H , B, C and D, that is there are five categories (e.g. AFLP markers).

Currently, marker maps are still not ultradense, and this brings us to the third type of
incomplete data. Suppose that we have complete marker data, but that our marker map is
sparse, that is the markers are spread coarsely over the genome. Our data will show many
recombinants between any pair of flanking markers and, if there is a QTL in between,
then it is likely that none of the markers is ‘on top’ of the QTL. In other words, a flanking
marker can have the same genotype as the QTL, but not for all individuals at the same time.
Therefore, ANOVA on a flanking marker is no longer identical to ANOVA on the QTL.
ANOVA may still work relatively well, but the results are biased or less powerful, because
we have built-in errors by ignoring one or more recombinations between the marker and
the QTL. Does statistics offer a solution to this problem? Any locus with incomplete data
can be added to the model, whether it is a marker (as discussed above) or a QTL (which
is a locus with all its scores missing). The statistical trick of data completion will work in
any case, and it will help us to exploit the full multilocus information content. Basically,
there is no obstacle to using multiple-QTL models. Over the past decade most theoretical
papers on QTL mapping have been devoted to the sparse map situation. The older papers
dealt with single-QTL mixture models only (see Weller, 1986; Jensen, 1989; Lander
and Botstein, 1989; Simpson, 1989), methods that became known as interval mapping
(IM). Jansen (1992) developed a general approach for fitting multiple-QTL models, an
approach that became later known as MQM (multiple-quantitative trait loci mapping), and



600 R.C. JANSEN

was elaborated in a number of papers (Jansen, 1993b; 1994b; Jansen and Stam, 1994).
Zeng (1994) published a similar strategy and called it composite interval mapping (CIM).

Let us now work out an example. For convenience, but without loss of generality, we
will zoom in on one F2 individual with trait value yi and five loci with scores

A A D U A,

where D means not-B and U means genotype unknown. We suppose that the loci 1, 2, 3
and 5 are markers, and that the fourth locus is a QTL, which is located at a map position
within the interval between loci 3 and 5. All genotype scores of the QTL are unknown.
The observed data can be completed for the missing locus information, giving rise to six
different complete genotypes:

1 2 3 4 5 Simultaneous genotype probability Component density

1 yi A A A A A 1
4 (1− q)2(1− r)2(1− s)2(1− t)2 φA(yi)

2 yi A A A H A 1
4 (1− q)2(1− r)2 2(1− s)s(1 − t)t φH (yi)

3 yi A A A B A 1
4 (1− q)2(1− r)2s2t2 φB(yi)

4 yi A A H A A 1
4 (1− q)2 2(1− r)r(1− s)s(1 − q)2 φA(yi)

5 yi A A H H A 1
4 (1− q)2 2(1− r)r((1− s)2+s2)(1− t)t φH (yi)

6 yi A A H B A 1
4 (1− q)2 2(1− r)r(1− s)st2 φB(yi)

Suppose you know the frequencies of recombination q, r , s and t between the loci.
The multilocus genotype probabilities can be derived straightforwardly: 1

4 for ‘genotype
A at the first locus, then (1− q)2 for no recombination between A on the first locus
and the A at the second locus, etc. For the moment, our model will include only
one explanatory variable – the fourth locus is a QTL – and we can assign component
densities φA(yi), φH (yi) and φB(yi). By multiplying each of the six genotype probabilities
with the corresponding component densities, and then summing these products over the
six genotypes, we can see that the contribution of this individual to the multilocus or
multipoint simultaneous likelihood is

fmix(yi, AADUA) = P(AAAAA)φA(yi)+ P(AAAHA)φH (yi)+ P(AAABA)φB(yi)
+ P(AAHAA)φA(yi)+ P(AAHHA)φH (yi)+ P(AAHBA)φB(yi).

The crux is that we complete the explanatory variable(s), here the fourth locus, so that
we can perform an ANOVA-like analysis. There is no need to complete the data for the
other non-explanatory loci, and we can rewrite the above expression as

fmix(yi, AADUA) = [P(AAAAA)+ P(AAHAA)]φA(yi)
+ [P(AAAHA)+ P(AAHHA)]φH (yi)
+ [P(AAABA)+ P(AAHBA)]φB(yi).
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The genotype probabilities can easily be calculated recursively. The regression model for
the ith individual is(

yi
yi
yi

)
=
[ 1 0

0.5 0.5
0 1

](
µA
µB

)
+
(
ei1
ei2
ei3

)
, weighted by

(
P(A|yi)
P (H |yi)
P (B|yi)

)
,

in which

P(A|yi) =
[P(AAAAA)+ P(AAHAA)]φA(yi)

fmix(yi)
,

and P(H |yi) and P(B|yi) are calculated analogously. It is easy to add extra QTLs to the
model. For instance, we can insert a second QTL (a locus with only U scores) in the first
marker interval. Doing so, the PDF of the ith individual is

fmix(yi, AUADUA) =
∑

u=A,H,B
v=A,H,B

[P(AuAAAvA)+ P(AuAAHvA)]φuv(yi).

The general regression model, for all individuals together and for any number of markers
and QTLs, reads y(c) = X(c)β+ e(c), with weight matrix W(c). The parameters can be
conveniently estimated via the EM algorithm by iterating in two steps, similar to what
we have seen for the marker-free case of segregation analysis:

(E step) Specify or update weights P (multilocus genotype |yi).
(M step) Update estimates of β and σ 2.

In the E-step conditional multipoint genotype probabilities are calculated by using the
current parameter estimates. The M step is

β̂ = (X(c)′W(c)X(c))−1X(c)′W(c)y(c)

and

σ̂ 2 = 1

n
((y(c) − X(c)β̂)′W(c)(y(c) − X(c)β̂).

In our small example presented above, data augmentation for the given individual gave
rise to six different complete genotypes. However, different individuals may have different
amounts of missing genetic (QTL and marker) information. In this augmentation approach
there is no restriction on multiplying any other individual with any other value (3, 6,
10, 100, etc.) within the same analysis. For instance, ‘triplicate’ the j th individual
with observed data (yj , AAAUA) to complete data {(yj , AAAAA), (yj , AAAHA),
(yj , AAABA)}.

Use of the EM algorithm (generally) yields Maximum Likelihood (ML) estimates
β̂ and σ̂ 2. Jansen (1994b) proposed to use restricted ML, i.e. adjust the ML estimate
σ̂ 2 for the df used. Divide by the df of residual error instead of by n, just as in ANOVA
and regression analysis:

σ̂ 2 = 1

n− p(y
(c) − X(c)β̂)′W(c)(y(c) − X(c)β̂).
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As we will see in a later section, this can lead to several appealing advantages during
selection and inference, at least if multipoint linkage information is high.

We would like to emphasise that we model the simultaneous likelihood of the trait
and of multiple markers and QTLs. Genotypes are multilocus and genotype probabilities,
are unconditional (Jansen, 1992; 1993b; 1994b). This is in contrast to most literature on
inbred line analysis, in which one usually calculates the likelihood of the trait conditional
on the two markers flanking the interval study (e.g. Lander and Botstein, 1989). If the
flanking marker scores are missing or incomplete for a given individual, then the nearest
informative marker in the same direction is taken. This ‘conditional marker-QTL-marker
approach’ works well for simple single-QTL models, but is definitely less ‘transparent’
for multiple-QTL models. Only unconditional multilocus likelihoods can form the basis
for direct comparison of the fit of several competing models.

How do we define multilocus information content at a given map location? In the ideal
case, one of the conditional probabilities P(A|yi), P (H |yi), or P(B|yi) is 1 and the two
others are 0. This happens only if the QTL is on top of a complete-data marker. In the
worst case of no marker data, the three probabilities are 0.25, 0.50 and 0.25. One simple
way to visualise the quality of the data works as follows. Take for each individual the
most likely genotype and average the corresponding probabilities over all individuals.
If the average is close to 1, then our data are excellent at the given map position. If
it is close to 0.5, then the multimarker information is really poor. This is just our own
definition of information content, and others exist. See, for instance, the definition, based
on variances of conditional probabilities, in Spelman et al. (1996). Is it a major problem
if the information content is substantially lower than 1? This has not been studied in
much detail in the QTL literature, but it may not be much of a problem: Redner and
Walker (1984) pointed out that small to moderate proportions of completely informative
individuals are sufficient for good ML estimation in mixture problems.

18.3.3 Alternative Regression Mapping

Let us look again at our simple example in which the fourth locus was the QTL and

fmix(yi, AADUA) = [P(AAAAA)+ P(AAHAA)]φA(yi)
+ [P(AAAHA)+ P(AAHHA)]φH (yi)
+ [P(AAABA)+ P(AAHBA)]φB(yi).

Note that fmix(yi, AADUA) = fmix(yi |AADUA)P(AADUA). Conditional on observed
genotype, the expected trait value of the ith individual, µi , is given by

P(AADUA)µi = [P(AAAAA)+ P(AAHAA)]µA
+ [P(AAAHA)+ P(AAHHA)] 1

2 (µA + µB)
+ [P(AAABA)+ P(AAHBA)]µB

= [P(AAAAA)+ P(AAHAA)+ 1
2P(AAAHA)+ 1

2P(AAHHA)]µA

+ [P(AAABA)+ P(AAHBA)+ 1
2P(AAAHA)+ 1

2P(AAHHA)]µB,

which we can write as
µi = p1µA + p2µB.
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Haley and Knott (1992) and Martinez and Curnow (1992) proposed to use the regression
model for the ith individual

yi = [p1p2]
(
µA
µB

)
+ εi,

and parameters can be estimated easily by the least-squares approach, if p1 and p2 are
assumed to be known. Here we refer to this method as ‘regression mapping’. In an ML
framework, their approach would be equivalent to approximating the mixture density
fmix(yi) by a normal distribution φ(yi;µi, τ 2). Figure 18.2 visualises the worst case of a
major QTL for which the approximation can only be poor. In many cases, however, this
approach works reasonably well. Where the EM algorithm often requires five to seven
iterations of iterative weighted least squares, the regression approach obviously only needs
one step.

18.3.4 Highly Incomplete Marker Data

Let us now briefly discuss problems with highly incomplete genetic data (e.g. if many
marker scores are missing or if we postulate multiple QTLs). The PDF is then a sum
over many different candidate genotypes, in which case computation may become time
consuming. In the above example, the complete genotypes AAABA (no. 3) and AAHBA
(no. 6) have negligibly small probabilities compared to the most likely genotype AAAAA.
We can set some threshold for simply ignoring relatively unlikely genotypes, to save us
a lot of computer time in genuine multilocus problems. An alternative approach is to use
so-called Markov Chain Monte Carlo (MCMC) sampling techniques. Such techniques
have been developed for the more complex situation of outbred line crosses (e.g. Jansen,
1996). The basic MCMC idea is simple: if you cannot enumerate all possible genotypes,
then just sample a representative set. We refer to our Bibliographic Notes (Section 18.5)
and to Chapters 19 and 26 for more details.

18.3.5 ANOVA and Regression Tests

Now suppose that we fit a single QTL at a fully informative marker in an F2 population. As
before, the one-way classification model reads yij = µ+ βi + εij for the j th individual of
the ith genotype (i = 1, 2, 3; A, H and B). The ANOVA table is shown in Table 18.1. We
refer to Soller et al. (1976) and Soller and Genizi (1978) for some of the early references.

The test statistic

FQTL =
MS between

MS within
,

Table 18.1 Analysis of variance table for a single QTL at a fully informative marker in an F2

population.

Source df SS MS E(MS)

Between 2
∑3
i=1 ni(ȳi − ȳ) s2

QTL σ 2
e + 1

2

∑3
i=1 niβ

2
i

QTL genotypes
Within

∑3
i=1(ni − 1) = n− 3

∑3
i=1 ni(yij − ȳi )2 s2

e σ 2
e

QTL genotypes

Total
(∑3

i=1 ni

)
− 1 = n− 1

∑3
i=1

∑ni
j=1(yij − ȳ)2
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has an F distribution with 2 and n− 3 df under the null hypothesis of no segregating
QTL (i.e. a ratio of two independent χ2 variables, (χ2

2 /2)/(χ
2
n−3/(n− 3))). The ANOVA

model can easily be extended to two or more factors, but the interpretation of the table is
now complicated by the possible collinearity of the putative QTLs. Each sum of squares
represents the variation accounted for by the given QTL, having eliminated all the effects
of the QTLs above it in the table, but ignoring any terms of QTLs below it (e.g. McCullagh
and Nelder, 1989). Thus, in the case of strong collinearity the order of fitting terms in
the model may affect the sum of squares value of a given QTL. Alternatively, we can
tabulate sum of squares values representing the variation accounted for by a given QTL
having eliminated all the effects of the other QTLs postulated in the model (no matter
whether they are tabulated above or below the given QTL).

18.3.6 Maximum Likelihood Tests

Let us now look at the same one-way QTL classification, but use ML procedures for
estimation of the parameters of the normal distributions involved. We still assume that
we fit a single QTL at a fully informative marker. The full model (fitting the QTL) reads
yij = µ+ βi + εij with residual variance σ 2

full, whereas the reduced model (omitting the
QTL) simply reads yij = µ+ εij with residual variance σ 2

reduced. Suppose that the marker
data are complete. ML estimates can be obtained via least-squares analysis as usual.
Note that

σ̂ 2
full =

SS within

n

and

σ̂ 2
reduced =

SS total

n
.

Then, the log likelihood of the full model, lfull, is

lfull =
∑log

1√
2πσ̂ 2

full

− (yij − x
′
i β̂)

2

2σ̂ 2
full

 = −1

2
n log(2πσ̂ 2

full)−
1

2
n;

and the log likelihood of the reduced model, lreduced, is

lreduced =
∑log

1√
2πσ̂ 2

reduced

− (yij − µ̂)
2

2σ̂ 2
reduced

 = −1

2
n log(2πσ̂ 2

reduced)−
1

2
n.

The likelihood ratio (LR) test statistic is

LR = 2 log
Lfull

Lreduced
= 2(lfull − lreduced) = n log

σ̂ 2
reduced

σ̂ 2
full

= n log
SS total

SS within
.

It is asymptotically χ2 distributed with 2 df (Wilks, 1938). In general, in a combined
test for p parameters, the LR test is χ2 distributed with p df. The models can easily be
extended to two or more factors (QTLs). In all cases one tests on the basis of LR between
a full model and a reduced model.
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Some readers may not be familiar with the calculation of LR test statistic values on a
natural logarithm scale. In applied genetics literature one frequently uses the logarithm
with 10 as base, in which case one uses the notation log-odds (LOD) instead of LR. It is
defined as

LOD = log10
Lfull

Lreduced

.

We can easily convert a score on one scale to a score on the other scale via

LR = 2× loge(10)× LOD ≈ 4.6× LOD .

For large n the F test is approximately distributed as χ2(2)/2 under the null hypothesis
of no QTL (Lynch and Walsh, 1998), in which case 2LR ∼ F . Thus, in general QTL
detection via ANOVA/regression is not identical to QTL detection via ML – slightly
different outcomes may be expected, even for complete data!

18.3.7 Analysis-of-deviance Tests

We will now describe a procedure which can be used for complete data and also for
incomplete data, i.e. all cases in which we do not fit a QTL at a fully informative marker
(Jansen, 1994b). We refer the readers to the textbook by McCullagh and Nelder (1989)
on Generalized Linear Models Generalized Linear Models for more information.

In comparing a sequence of models, an unbiased estimate of the residual variance can
be obtained from the full ‘most complex’ model. This estimate is used for all models
in the sequence to make the comparison fair, between the full model and any reduced
model and amongst reduced models. We can then generate an ANOVA-like table, which
in the GLM literature is commonly called an analysis-of-deviance table, where the term
deviance is used for the difference 2(lfull − lreduced). The procedure has three steps (Jansen,
1994b):

1. Calculate ML estimates β̂full and σ̂ 2
full. Adjust σ̂ 2

full for bias, i.e. divide by the residual
df and not by n.

2. Calculate ML estimates β̂reduced given ‘known’ residual error as estimated in the full
model (σ̂ 2

full in step 1).

3. Calculate the deviance (LR test statistic).

Let us look again at the simple one-way ANOVA for complete data. The log likelihood
of the full model (QTL model) reads, as before,

lfull =
∑log

1√
2πσ̂ 2

full

− (yij − x
′
i β̂)

2

2σ̂ 2
full

 .
The real difference comes for the log likelihood of the reduced model (the no-QTL
model), which now reads

lreduced =
∑log

1√
2πσ̂ 2

full

− (yij − µ̂)
2

2σ̂ 2
full

 .
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Next we calculate the deviance

Deviance = 2(lfull − lreduced) =
SS total− SS within

σ̂ 2
full

= 2× MS between

MS within
,

where the LR test has an F distribution with 2 and n− 3 df. In general,

Deviance = p × MS between

MS within
= pF,

where p is the difference between the parameter numbers in the two models being
compared. The maximum achievable likelihood is

lmax = −0.5n log(2πσ̂ 2
full),

which we obtain if we use as many parameters as we have individuals. If our model
contains all the important parameters, the deviance 2(lmax − lmodel) will be close to the
difference between the number of individuals, n, and the number of parameters in the
model, p. One can use this as a measure for goodness of fit (McCullagh and Nelder,
1989).

We have described the analysis-of-deviance approach for a simple one-factor model,
but this can easily be extended to two or more factors. The analysis-of-deviance approach
is a unified approach, which can be applied to many types of data (McCullagh and Nelder,
1989). It can also be applied to incomplete data, provided that at least a proportion of
the individuals are completely informative at the region under study (Jansen, 1994b).
Of course, with rather incomplete information the fitting of many parameters becomes
dangerous and therefore undesirable; one can then use the ML approach. We close this
section with a remark on the use of non-segregating data. If we have data from parental
or F1 populations, we can estimate the environmental variance, σ̂ 2

e, in the non-segregating
populations. It could be an option to use σ̂ 2

e instead of σ̂ 2
full during the selection procedure,

or at least to define the maximum achievable likelihood as

lmax = −0.5n log(2πσ̂ 2
e).

18.3.8 How Many Parameters Can We Fit Safely?

To obtain a good estimate of the residual error variance in ANOVA and regression analysis,
it is necessary to have at least 10 residual error df, and many statisticians would take 12–20
df as their preferred lower limit. Increasing the residual error df makes little difference
to the significance threshold in F tests. Say we have a DH population of 100 individuals
and suppose our organism has 10 chromosomes of length 200 cM each (e.g. maize). We
can then spend as many as 80 df on explanatory variables, for instance by postulating
eight QTLs per chromosome equally spaced every ∼20 cM.

How many parameters can we fit in the ML approach? In the case of large numbers
of parameters, residual error variance can be severely underestimated and asymptotic
relations such as the χ2 approximations do not necessarily hold. Therefore the number
of parameters should not be too large, preferably less than 2√(number of observations)
(Jansen and Stam, 1994). In a DH population of 100 individuals, we have df for fitting
approximately 2

√
100 = 20 QTLs, considerably less than in the ANOVA and regression

framework. A critic could well state that we are wasting our resources by not asking
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enough questions of our data. Fortunately, this serious disadvantage of the ML approach
can be overcome by the general analysis-of-deviance approach described above, by which
we can fit up to 80 QTLs (Jansen and Stam, 1994).

18.4 QTL DETECTION STRATEGIES

18.4.1 Model Selection and Genome Scan

Having read the previous sections you have almost all the statistical tools in hand for
building the QTL model and for estimating its parameters. You may think the major
hurdles have been overcome, and that all that remains – mapping of all QTLs – must be
more or less straightforward from the statistical point of view. Here are some cautionary
remarks. There are several different statistical techniques for mapping and they do not
necessarily all lead to the same answer. Moreover, by no means should the results from
statistical analysis be considered as a proof of how nature shaped our trait – any model
is wrong because it is a simplification and the possibility of ending up with erroneous
conclusions must be kept in mind. The more complex the model, the greater the dangers.

Suppose that we have formulated and fitted a number of different models; which one
should we adhere to? Probably the model with a good fit to the data and the lowest
number of parameters. In statistics this is called the principle of parsimony. Unfortunately
there is no general theory for testing one model against another, and as such no claim
such as ‘this is the significantly best model at a confidence level of 95 %’ is possible.

In the ideal case all genetic variance of the trait is explained by detected QTLs only.
In practice, a number of QTLs may be missed (error type 2) and at the same time a
number of false positives may occur, indicating QTLs at map positions (or regions)
where actually no QTLs are present (error type 1). The actual balance between the cost
of false positives and the benefit of detected QTLs depends on the aim of the experiment
(e.g. map-based cloning or marker-assisted breeding). Nevertheless, one often strives to
keep the probability of a type 1 error below 5 %. At the same time one should minimise
the probability of an error of type 2. Approaches for QTL mapping generally comprise
one or both of the following two steps:

• Model selection: Compare different QTL models and select the best one(s).

• Genome scan: Plot QTL likelihood along the genome using the selected model.

In our opinion the first step is the more critical one, whereas the second step is merely a
good way of visualising QTL results along the genetic map.

In the model selection step we will try to relate the trait variable to one or more
explanatory loci (possibly at marker positions) or ‘factors’. Different sets of factors can
be considered as competing statistical models and many statistical criteria and selection
approaches can be used. It is important to note that in genetic mapping one has a major
advantage over many other model selection applications. In most applications there is no
theory explaining the fact that two or more factors are correlated. But markers and QTLs
are known to be located on the genome map, and thus genetic linkage theory tells us that
we can replace one factor in the model by another one from the same region without
much changing the fit of the model. When two or more explanatory factors are strongly
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correlated to one other, it is difficult to disentangle their individual effects – this is known
as multicollinearity – but this is less of a problem in QTL analysis and in some sense
simplifies the difficult task of model selection.

In this section we will review several major techniques in use for model selection
and inference in QTL mapping: single-marker analysis; IM; CIM and MQM. With our
cautionary remarks in mind, one can safely apply the procedures as given, without being
too concerned with the actual significance levels.

18.4.2 Single-marker Analysis and Interval Mapping

We have depicted QTL mapping as a problem of selection among many possible
models. Despite the potential benefits of genuine multifactor approaches, its statistical
complications lead some users to adopt single-factor ANOVA analyses. How does it
work? Suppose we have our known map with markers covering part or all of the genome.
We then calculate the QTL likelihood (F or LR score) at each marker position and plot it
along the map. In statistical terms, we produce the likelihood profile along the map. Next
we look at our plot and we think there is evidence for QTL activity in regions where the
QTL likelihood peaks and exceeds a significance threshold. If the markers are sparse, we
can also calculate QTL likelihood at any position within a marker interval to get a smooth
QTL likelihood curve, by using IM (see our Figure 18.3; Lander and Botstein, 1989) or
the regression mapping approach (Haley and Knott, 1992; Martinez and Curnow, 1992).
In this section we will discuss several features of this single-factor type of analysis.

What can we do in order to avoid reporting too many false positives (i.e. non-existing
QTLs)? The significance of an effect plays a dominant role in the genetics literature. The
common rule is that reviewers will accept a QTL which is significant at a 95 % experimen-
twise confidence level (α = 0.05). We do multiple tests, and what we obviously need is
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Figure 18.3 QTL likelihood profile obtained with interval mapping for the case of an isolated
QTL. Marks below the x axis indicate positions of markers along the chromosome under study.
The bar indicates the 2 LOD support interval for the QTL. The genome-wide significance threshold
is ∼14.
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therefore a chromosome-wide or genome-wide significance threshold. Test scores at linked
markers are strongly correlated. No unifying analytical solutions for the genome-wide
distribution of the test statistic in a general inbred line cross are known. Several authors
developed (complex) formulae for specific cases (Lander and Botstein, 1989; Rebaı̈ et al.,
1994; Doerge and Rebaı̈, 1996), while others published tables resulting from extensive
simulations (van Ooijen, 1999). We can also use simple permutation strategies (Churchill
and Doerge, 1994) or bootstrap strategies (Jansen, 1993b; 1994b; Visscher et al., 1996b).
Suppose that we use one of these methods. Let us briefly look at permutation and the boot-
strap. In both approaches new sets of data will be generated and analysed over many runs.
In each run the ‘old’ marker data will be completed with ‘new’ trait data. The artificial
data set is then analysed for QTLs and the maximum test score over the genome is calcu-
lated and stored. The entire procedure is repeated many (say, 1000–10 000) times in order
to generate an empirical cumulative distribution for the test statistic. In the permutation
approach, observed trait data are reshuffled over the individuals under the null hypothesis
of no QTL, thereby breaking down any existing marker – QTL associations. Under the
null hypothesis any of the trait data for any of the individuals could have come equally
well from either of the marker or QTL classes. In the parametric bootstrap approach new
trait data are generated from a standard normal distribution postulating no QTL.

Suppose that we have detected a ‘genuine’ QTL. If we replicated the experiment,
the gene’s location would of course remain identical, but the size of its effect can easily
change significantly due to QTL by environment interaction. Therefore we believe that the
gene’s location and the sign of its effect are probably the most relevant parameters. Thus,
we question the value of putting standard errors on effects, but we would certainly like to
report a 95 % confidence region for the QTL location. The inverse of Fisher’s information
matrix is the standard tool in a statistician’s ML toolbox for calculation of standard errors.
Computation of this matrix is a difficult task in the case of mixture models, but at relatively
low cost the matrix can be approximated by using first – order partial derivatives, which
are directly available from the EM algorithm (Redner and Walker, 1984; Jansen and Stam,
1994). But there is a more direct way to construct a confidence region for the QTL location.
We usually calculate and plot the QTL likelihood profile at each map position along the
map. A clear peak in this profile is taken as the most likely QTL position. Suppose we have
a clear peak in the profile. According to standard ML theory, a 95 % confidence region for
QTL location is then bounded by the map positions where the profile is χ2

0.05(1) = 3.84
less than at the peak (equivalent to 0.84 LOD). Let us call this region a support region
(Figure 18.3). This region is a 95 % confidence region if and only if the confidence interval
falls within one marker interval. What is the critical problem? If the confidence region
spans more than one interval, then we actually compare several different statistical models.
But ML properties only hold within one model and not across models. In other words, we
have no general theory to guarantee that the support interval is a 95 % confidence region.
Various simulation studies have shown that a 2 LOD support interval is a safe choice in
most cases yielding at least 95 % confidence regions (e.g. van Ooijen, 1992).

Here are some more warnings. Most of them are pretty obvious from the statistical
point of view, knowing that what can go wrong in ANOVA and regression analysis is
often due to multicollinearity. Suppose that you have used the appropriate genome-wide
significance threshold and detected a significant QTL at a certain map position where the
test score peaks highest. You may yell ‘Hurray, I have found a QTL!’. But you have
only found a statistical association and not a gene, and there are at least four traps that
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may lead you to erroneous inference. The first trap is that there are actually two or more
linked QTLs with effects of equal sign (QTLs are in coupling phase), in which case it
is not unlikely that the analysis will reveal a single QTL in the middle of the two true
QTLs. This is known as the detection of a ghost QTL (Martinez and Curnow, 1992), an
error of type 1. The second trap is that an unlinked major QTL has inflated the test score.
Incidental association can arise due to deviations from expected segregation ratios for any
pair of loci on the genome. This is especially probable in the case of severe segregation
distortion, or in small populations where larger deviations from expected segregation ratios
may arise as the result of natural sampling variation. Of course, this is another example
of a ghost QTL, but the general user less often anticipates it. The third trap is even nastier
than the other two, although it can be considered as the multi-QTL extension. What we
test with IM is nothing more or less than an average effect of all QTLs in the region
under study. With IM there is no way to dissect their effects; any effect detected can be
the sum of many possibly small QTL effects instead of the effect of an isolated QTL. If
we repeat our experiment, the effects of the QTLs can be modulated in different ways
and therefore the average effect may give rise to a peak of the test score at another map
location. Furthermore, if two or more QTLs have effects of different sign (QTLs are in
repulsion phase), then the joint effect can be close to zero. In other words, in such cases
(major) QTLs will remain undetected. Finally, the fourth trap has to do with variable
information content. Suppose that the information content is relatively low in a region
containing a QTL. What may happen is that the peak is shifted towards more informative
regions (Knott and Haley, 1992).

18.4.3 Composite Interval Mapping

Is there a way to avoid the traps described above? In fact we have already seen almost all
the essentials for such an approach. In Section 18.3 we mentioned the solution: tabulate
the variation accounted for by a given QTL, having eliminated all the effects of the other
QTLs postulated in the model. (Recall the DH example, in which we postulated up to
eight QTLs per chromosome, equally spaced every ∼20 cM.) As in Section 18.4.2, we
calculate the QTL likelihood at each marker position, plot it along the map and look for
peaks. If the marker map is sparse, we can calculate QTL likelihood at multiple positions
within a marker interval to get a smooth QTL likelihood profile. In principle we can
postulate QTLs at any position we like – on top of markers or inside marker intervals
(Jansen, 1992; Kao et al., 1999). In the practice of working with dense maps we often
place them on top of markers. We perform a genome scan by moving a QTL along
the chromosomes while using a pre-identified set of markers as cofactors (Jansen, 1992;
1993b; Zeng, 1994). Or, in other words, for the sparse map case, we combine IM with
multiple regression on markers. Stam (1991), and later Rodolphe and Lefort (1993) and
Zeng (1993), demonstrated that in regression the effect of a QTL is absorbed only by its
flanking cofactors, at least if progeny size is large. So, suppose we test for the presence of
a QTL at a certain map position with a cofactor at some distance on the left and one on
the right-hand side of the QTL. The test is now asymptotically unaffected by any QTLs
located to the left of the left cofactor and to the right of the right cofactor (Stam, 1991).

Let us first pay some attention to what is known about setting the genome-wide
significance threshold. Zeng (1994) studied the sparse map case and proposed to use
all markers as cofactors, except the ones flanking the interval under study. Thus, the
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model for the ith individual in a DH population is

yi = µ+
M∑
j=1

xijβj + xi0β0 + εi,

where summation is over M marker cofactors not flanking the interval under study, xij
are 0–1 indicator variables and βj are substitution effects for the j th marker cofactor
(j = 1, . . . ,M), or for the QTL (j = 0). Zeng (1994) used ML and called the method
composite interval mapping. Simulation work with BC populations demonstrated that
χ2
α/M (2) can be used as an upper bound for the 100α% genome-wide threshold on a

genome with M marker intervals, unless the number of parameters is too large (Zeng,
1994; see his Figure 1). The χ2

α/M (2) relation does not hold if the number of parameters
exceeds 2

√
(number of observations) (Jansen and Stam, 1994). With the analysis-of-

deviance approach (Jansen and Stam, 1994), however, there is no limitation on the number
of parameters and 2Fa/M (2, df) can be used as an upper bound, where df are the degrees
of freedom for estimating the residual error variance.

Although attractive in properly disentangling the effects of multiple (linked) QTLs, the
precision mapping approach has some serious drawbacks. Suppose there is a QTL located
in the interval currently under study. What can happen? First, any linked cofactor in the
(wide) neighbourhood of our testing position will absorb at least part of the effect of the
QTL, because we use conditional tests. Second, in models with many cofactors it is even
likely that a linear combination of unlinked cofactors explains a considerable part of the
variation of our QTL (Jansen, 1994b). Third, the genome-wide threshold is a function of
the number of intervals M , which means that the significance threshold increases with
the number of cofactors. Putting the pieces together, the conclusion is that with too many
cofactors we will simply end up with high precision (we will make no type 1 errors), but
no power (we will miss most QTLs). In a later paper Kao et al. (1999) proposed an alter-
native version of CIM, which they called multiple-interval mapping (MIM), and which
included a stepwise selection phase. Such strategies will be discussed in more detail in
the next subsection.

18.4.4 Multiple-QTL Mapping

Parsimony of parameters is one of the basic paradigms in statistics. A parsimonious model
does not include parameters which are unnecessary or which (even worse) decrease the
chance (power) of reaching our goals (Draper and Smith, 1981; McCullagh and Nelder,
1989). In our context, we do not want the model to include cofactors in regions where
there are no QTLs. There is no unique best statistical method for finding the ‘impor-
tant’ cofactors, but there are several good and general criteria, penalising the use of
extra parameters (e.g. Akaike’s information criterion (AIC)). But selection of a useful set
of cofactors from a large set of possible cofactors to form a parsimonious model is a
non-trivial task with both statistical and computational problems. Below we will discuss
forward selection, backward elimination and stepwise regression. We think that selection
is the most important step in QTL analysis. Subsequent to cofactor selection, we perform
a genome scan by moving a QTL along the chromosomes while using a preselected set
of markers as cofactors (Jansen, 1993b; 1994b; Jansen and Stam, 1994). If the moving
QTL gets close to a cofactor, say within a preset window of 10 or 20 cM, then we drop
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Figure 18.4 QTL likelihood (deviance) profile obtained with MQM mapping for the case of
two linked QTLs. Marks below the x axis indicate positions of markers along the chromosome
under study. Triangles indicate positions of selected cofactors. Different tests for the presence of
a QTL are performed in regions indicated by ‘1’, ‘2’ and ‘3’, respectively. In region ‘1’ the test
is conditional on the cofactors at 36 and 76 cM. In region ‘2’ it is conditional on the cofactor at
76 cM, and in region ‘3’ it is conditional on the cofactor at 36 cM. Regions ‘2’ and ‘3’ are chosen
(i) symmetrically around their respective cofactor, and (ii) wide enough to span their respective
2LOD support interval for the QTL (support intervals not shown). The genome-wide significance
threshold is ∼14.

the cofactor (Figure 18.4). This approach is called multiple-QTL mapping. Zeng (1994)
also suggested the use of a thinned set of cofactors (e.g. via stepwise regression), and
elaborated on it in detail in Kao et al. (1999).

We mentioned three selection strategies: forward, backward and stepwise. In the forward
selection approach, at each stage the best new cofactor satisfying the selection criterion
is added until no further candidates remain. This approach is often used in QTL analysis,
on top of the IM approach. Once we have found one or more QTLs with IM, we add
them to our model and rerun the genome scan. Although a natural procedure, we do not
recommend it for two reasons. First, because we do not avoid the traps described above
for the single-QTL analysis. Second, the approach does not exploit power to the full:
each test is based on the ratio between variance explained by the factor under study and
the unexplained variance. In a forward selection approach unexplained variance contains
environmental plus as yet unexplained genetic variance, which decreases power relative
to a backward elimination procedure.

The backward elimination procedure starts with a multiple regression model, using a full
set of cofactors (putative QTLs/markers) evenly spread over the genome. The unimportant
or least important cofactors are dropped one by one until all remaining cofactors are
essential given the selection criterion. This is a satisfactory approach, especially if we wish
to see all the variables in the model in order ‘not to miss any QTL’. The full model gives
an unbiased estimate of the maximum amount of variance explainable by (non-interacting)
cofactors (QTLs). In order to exclude redundant cofactors, the selection criterion should
be stringent, but not so stringent that important cofactors (those flanking the QTLs) are
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thereby excluded. We can use one of the two approaches that we described above: the
ML approach (Jansen, 1993b; Zeng, 1994; Kao et al., 1999) or the analysis-of-deviance
approach (Jansen and Stam, 1994; Jansen, 1994b).

For the ML approach, Jansen (1993b) proposed to maximise the log likelihood (l) minus
the number of free parameters (k) in the model; this is equivalent to minimising AIC,
given by −2(l − k). In general, a penalty in the range of k to 3k may provide plausible
initial models (McCullagh and Nelder, 1989). In ‘ordinary’ regression with adequate df to
estimate σ 2, a penalty of k is equivalent to the use of (about) the 16 % point of the F test
for the comparison of two nested models, which differ only by the inclusion of one free
parameter; a penalty of 3k is equivalent to the use of (about) the 2 % point (McCullagh
and Nelder, 1989). Note that we can also compare non-nested models by using the AIC.
And we can even compare several models fitted on different scales, having multiplied
fmix(T (·)) by its Jacobian T ′(·). Finally, we recall here that there are two disadvantageous
features of the ML approach. First, the number of parameters should remain relatively
small – less than 2

√
(number of observations). Second, there is the danger of overfitting

and thereby underestimating the error variance.
In the analysis-of-deviance approach, one can use partial F -tests conditional on the other

cofactors in the current model. Note that the same approach is valid for regression mapping
(Haley and Knott, 1992; Martinez and Curnow, 1992). The partial F -test values are
calculated for each cofactor. The cofactor with the lowest partial F -test value is removed
if its effect is less significant than a preset significance level. This process is repeated until
all remaining cofactors have a partial F -test value exceeding the threshold. Jansen (1994b)
used a 2 % threshold in simulations. It was demonstrated that this penalty is stringent, since
no or only a few cofactors are generally selected in the case of no QTLs segregating.
Moreover, it was shown that this penalty is still not too stringent, since cofactors are
selected for those QTLs that considerably affect the test statistic in their nearby region;
the effects of such QTLs are satisfactorily eliminated by selected cofactors. Because of this
feature, the IM thresholds, which were obtained for the case that no QTLs are segregating,
are also suitable for MQM mapping. These thresholds can be used when no QTLs are
segregating, since in that case no or only a few cofactors will be selected; moreover,
these thresholds can still be used when there are QTLs segregating, the effects of which
are eliminated by cofactors. Detection and unravelling of the separate QTL effects in the
case of linked loci is much easier in MQM mapping than in IM (Jansen, 1994b).

One of the disadvantages of the backward elimination procedure is that for a cofactor
‘once out’ means ‘always out’. Backward elimination followed by a stepwise procedure,
including new cofactors and dropping old ones, may help to overcome this – at the cost of
more computation. Alternatively, replacing important cofactors by neighbours, not present
in the initial set of cofactors, can also help in fine-tuning the model.

We emphasise one important difference between MQM, on the one hand, and IM and
CIM, on the other hand, that arises because of MQM’s use of a fixed residual error for
both full and reduced models. Suppose we compare two nested models, in the simplest
case a model with a QTL versus a model with no QTL. In regression mapping and MQM
the LR test or the equivalent F test is based on the fit of the full model versus that of a
reduced model with the residual error fixed at the value estimated from the full model.
If the QTL has a major effect, then the no-QTL model will fit badly and the test score
will be high. If the (putative) QTL has a minor or no effect, then the residual variance
estimate of the full model is fully satisfactory for the no-QTL model. What happens in
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CIM? The residual error variance in the no-QTL model is not fixed, but it is estimated
and it will absorb the QTL variation. As a result the test score will not be as high as in
the MQM and regression mapping approaches. A minor detail? Not really, because the
effect on the test score can be considerable. For instance, in Figure 18.3 the test score is
50 for IM and 66 for MQM (the latter is not shown). Only one QTL was simulated on
the whole genome. Thus in this case the difference between IM and MQM is solely due
to the way the residual variance is treated.

18.4.5 Uncritical use of Model Selection Procedures

We would like to emphasise the following warning often posted in the statistical literature:
the uncritical use of the results of selection procedures can be very dangerous. Here is one
example of what can go wrong. Suppose we fit two cofactors, which are not far apart on
the map; say that there is only one recombinant individual in a DH population. What can
happen? The model for the ith individual is

yi = µ+ x1iβ1 + x2iβ2 + εi,
where xki and βki are the 0–1 indicator variables and effect variables for the two closely
linked cofactors, respectively. For all individuals but one, x1i = x2i , that is either

yi = µ+ εi
or

yi = µ+ β1 + β2 + εi
holds. In the latter case only the sum β = β1 + β2 is relevant. Suppose the single
recombinant individual has x1i = 0 and x2i = 1, in which case

yi = µ+ β2 + εi .
For a given value of µ and β, we can obtain a perfect fit for the ith individual by setting

β2 = yi − µ,
β1 = β − β2.

If there are no real QTLs in this region, then one would expect that β = β1 + β2 = 0.
But we can still get large values β1 = −β2, which we might take as evidence for two
linked QTLs with opposite effects. In some cases this may be true, but more frequently
we probably just misinterpret what is actually no more than a statistical artefact. Other
artificial patterns of near collinearity between sets of cofactors can arise. Moreover,
any real data set will contain erroneous trait and marker scores (genotypic misscores,
phenotypic outliers and so forth), for which our models may want to compensate for by
an increase in the number of parameters. Several things can be done to avoid serious
problems – on the biological and on the statistical side of the problem. First, make sure
that the trait and marker data are very well checked! We prefer that labels U , C or D
replace suspicious marker scores. Second, avoid simultaneous fitting of closely linked
cofactors. For instance, in a DH population of 100 individuals we should make sure
that simultaneously fitted cofactors stay at least 10–20 cM apart. If we do so, then there
are 10–20 recombinants expected between any pair of cofactors. Third, we can set the
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genome-wide significance threshold by an empirical (permutation or bootstrap) strategy,
in which we mimic the complete selection protocol at each run. See also Piepho and
Gauch (2001), Hwang and Nettleton (2002), Broman and Speed (2002), Jansen et al.
(2002) and Bogdan et al. (2004) for further discussions about the best criterion for model
selection (e.g. AIC or Bayesian information criterion). .

18.4.6 Final Comments

What if the trait is encoded by many QTLs, say 40, each of small effect? It will definitely
be hard to decompose the phenotypic variation into the underlying QTL components. The
number of recombinants is the limiting factor, and the only way out is to generate more
of them by increasing the population size or by choosing another type of cross with more
informative meioses. See Beavis (1996) and Visscher et al. (2000) for some illustrative
examples of the hard job of dissecting polygenic variation.

Last but not least, we would like to state that the proof of the QTL pudding is not in
the eating of the results from statistical QTL analysis. It is in the eating of results from
cross-validation and/or new biological experiments.

18.5 BIBLIOGRAPHIC NOTES

18.5.1 Statistical Approaches

During the past two decades, a number of important papers have been published on
QTL analysis with sparse marker maps. We list some of the early and most influential
papers: Lander and Botstein (1989), in which the name ‘interval mapping’ was coined;
Haley and Knott (1992) and Martinez and Curnow (1992), with the ‘regression mapping’
approach; Jansen (1992; 1993b; 1994b) and Jansen and Stam (1994), in which he general
GLM framework for QTL analysis and the MQM approach was developed; Zeng (1993;
1994) and Kao et al. (1999), with CIM and MIM; and finally, Churchill and Doerge
(1994) and Doerge and Churchill (1996), with the permutation test for setting the genome-
wide significance threshold. There are various software packages available, for example,
Map Manager, MapMaker/QTL, MapQTL, Multi-QTL, PlabQTL, QTL Cartographer, and
MCQTL (further information can easily be found on the Worldwide Web). The textbook
Genetics and Analysis of Quantitative Traits by Lynch and Walsh (1998) also provides a
wealth of information for the interested reader. The book brings together basic biology
and many methods of statistical analysis. From a statistical viewpoint, there is not much
special to QTL modelling in inbred lines. If we look in our statistical toolbox, we will
see, for instance, tools for interaction models, for mixed models with random and fixed
effects, for multivariate instead of univariate analysis, and for Bayesian analysis. In this
chapter, QTL analysis in inbred lines is accomplished by embedding it in a more or
less standard statistical framework of GLMs. For general discussion of linear models,
refer to the textbook Applied Regression Analysis by Draper and Smith (1981), and the
textbook Generalized Linear Models by McCullagh and Nelder (1989). GLMs provide a
unified analysis of diverse types of trait data (e.g. normal, binary, ordinal) via a simple
approach of iterative reweighted least squares. Jansen (1993a; 1994a) embedded mixture
models in the GLM framework, which is of prime importance to segregation analysis
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and QTL analysis, where one deals with mixtures of different genotypes. For extensive
rigorous statistical treatment of mixture models, we refer to the review by Redner and
Walker (1984), the textbook by Titterington et al. (1985) and Dempster et al.’s (1977)
paper on the EM algorithm. Here we have focused on QTL analysis in inbred lines for
normally distributed traits; see, for instance, Hackett and Weller (1995) for QTL analysis
in inbred lines with ordinal trait data and Visscher et al. (1996a) for QTL analysis with
binary data. In most experiments, two or more traits are scored on the same individual.
Jiang and Zeng (1995), Korol et al. (1995) and Lange and Whittaker (2001) are good
entries for multitrait QTL analysis. For correlated traits, a higher resolution can be
obtained by multitrait analysis than by separate univariate analyses. Bayesian modelling
of mixtures with an unknown number of underlying components has made enormous
progress (Richardson and Green, 1997) and is beginning to have an impact on various
applications, including genetics. Undoubtedly, the popularity is largely due to the (MCMC)
algorithms that enable the estimation of complex genetic models. Bayesian methods are
particularly good for missing data augmentation (which we have emphasised here for the
EM and MCEM algorithm). With ultradense maps, we can obtain nearly complete data,
and the use of Bayesian methods in the relatively simple case of inbred line genetics is
perhaps overkill. However, we have seen that model selection – how many QTLs and
on which map positions – is still a hard problem, and Bayesian methods are becoming
more prominent in this regard. We refer to Green (1995), certainly one of the pioneering
papers on Bayesian model selection. Satagopan et al. (1996) described the first Bayesian
method for inbred line crosses. In their approach, models with different (fixed) numbers
of QTLs were compared via Bayes factors (similar to the LR test). Sillanpää and Arjas
(1998) allowed for a variable number of linked QTLs on the chromosome under study.
The effects of unlinked QTLs were taken into account by fixed preselected cofactors (as
in CIM and MQM). Stephens and Fisch (1998) allowed for a variable number of linked
and unlinked QTLs. See Boer et al. (2002) for a semi-Bayesian and Xu (2003) and Ter
Braak et al. (2005) for Bayesian methods, estimating polygenic QTL effects with the aid
of all markers of the entire genome. There is much more to be said about the potential
of Bayesian methodology, and we refer the interested reader to Chapters 19 and 20 for
further details.

18.5.2 Learning More about Important Genetic Parameters

The advent of the molecular markers and the development of statistical QTL tools have
opened up new ways for studying the complexity of traits in more detail. Several issues
are of prime importance to plant breeders, mouse geneticists and others studying inbred
line crosses: how do the genes talk to each other (interaction between QTLs)? are they
influenced by the environment (interaction between QTL and environment)? and are
QTL findings consistent across multiple crosses (interaction between QTL and genetic
background)? Here we list a number of key papers. QTL by QTL epistatic interaction
is the first important type of interaction. See, for instance, Chase et al. (1997), Fijneman
et al. (1996), Kao et al. (1999), Carlborg et al. (2000) and Carlborg and Andersson (2002).
One of the major obstacles with epistatic interactions is the increase in the number of
parameters, which is generally not compensated by a similar increase in the population
size. Jannink and Jansen (2001) developed a one-dimensional genome search strategy for
detecting epistatic QTL in diallel crosses; by combining information from the different
crosses, QTL of high interaction with genetic background can be identified in a first
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step, and QTL by QTL interaction in a second step. Boer et al. (2002) developed a
one-dimensional genome strategy for searching QTL by QTL interaction in a single
population, bounding the dimension of the search via penalised likelihood methods.
Yi et al. (2003) use Bayesian methodology and variable selection methods to develop
strategies for searching for multiple QTLs with complex interaction patterns. QTL by
environment interaction is the second important type of interaction. In breeding programs,
this interaction needs to be characterised so that target QTLs can be effectively utilised in
them. We refer to Jansen (1992), Jansen et al. (1995), Tinker and Mather (1995) and Jiang
and Zeng (1995) for early work on QTL by environment. Wang et al. (1999) combine
QTL by environment and additive QTL by QTL interaction and propose the use of fixed
effect terms for the QTL, and random effect terms for cofactors and interactions. A
wide range of models for ‘traditional’ genotype by environment interaction (GEI) had
been developed in quantitative genetics, e.g. modelling the interaction as products of
genotype sensitivities and environmental characterisations (e.g. van Eeuwijk et al., 1996).
These traditional models and the QTL models were later integrated by several authors
e.g. Korol et al. (1998), Malosetti et al. (2004) and Piepho and Pillen (2004). The third
important type of interaction is that between QTL and genetic background. In a single
cross, inferences about QTLs and their estimated effects are limited to the particular cross.
A breeder, however, usually produces many crosses instead of one. A multipopulation
analysis would allow us to extend inferences across populations. Rebaı̈ and Goffinet (1993)
dealt with QTL analysis of diallel crosses between inbred lines, Xu (1998) with multiple
unrelated families, and Liu and Zeng (2000) with diverse cross designs involving multiple
inbred lines. Jansen et al. (2003) developed an approach based on haplotyped putative
QTL alleles, where the haplotype information was recovered from the marker data. A
similar approach was taken by Crepieux et al. (2004). Recent studies in mouse (Li et al.,
2005) and in maize (Blanc et al., 2006) illustrate the potential benefits of analysing the
different populations jointly: one can extract a lot more relevant QTL information from
the whole than from the individual parts. We refer the readers to Chapter 19 for a more
general theory about QTL analysis in complex populations.

18.5.3 QTL Analysis in Inbred Lines on a Large Scale

We conclude by pointing out a booming field of application for QTL mapping: genetical
genomics (Jansen and Nap, 2001). Recent biomolecular technologies allow for the high-
throughput profiling of thousands of transcripts, proteins and/or metabolites. Costs have
already dropped down to a level where it is possible to profile hundreds of individuals.
A logical step – at least for a quantitative geneticist – is then to profiling segregation
of populations. The abundance of each of thousands of genes, proteins and metabolites
can be treated as a quantitative trait. Therefore, the statistical analysis tools described
in this chapter are useful to map eQTLs underlying variation in expression of genes,
pQTLs underlying variation in protein abundance, and mQTLs underlying variation in
metabolite abundance. Running thousands of QTL analyses imposes new challenges,
e.g. how to handle the dramatically increased problem of multiple testing that may
lead to many false positive QTLs, or how to exploit the results of all these QTL
analyses to narrow down organisms-level phenotypic QTLs to the genes and to reconstruct
regulatory, developmental and metabolic pathways. Storey and Tibshirani (2003) proposed
the ‘q value’ to control the false discovery rate (FDR). De la Fuente et al. (2004), Zhu
et al. (2004) and Bing and Hoeschele (2005) have developed methods to uncover gene
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regulatory networks in genetical genomics studies, from either expression profiles or QTL
profiles. Schadt et al. (2003), Klose et al. (2003) and Keurentjes et al. (2006) reported
the first detailed studies of eQTL, pQTL and mQTL in inbred line crosses, respectively.
We refer the readers to Doerge (2002), Jansen (2003) and Rockman and Kruglyak (2006)
for reviews, and to Chapter 9 for more general theory about eQTL analysis of gene
expression on a large scale.
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In this chapter, we present statistical methods for mapping quantitative-trait loci (QTLs) in outbred
or complex pedigrees. Such pedigrees exist primarily in livestock populations, also in human
populations, and occasionally in experimental animal or plant populations. The main focus of
this chapter is on linkage mapping, but methods for linkage disequilibrium (LD) and combined
linkage/LD mapping are also discussed. We describe least-squares and maximum likelihood (ML)
methods for estimating QTL effects, and variance-components analysis by approximate (residual)
ML for estimating QTL variance contributions. We describe Bayesian QTL mapping, its prior
distributions and other distributional assumptions, its implementation via Markov chain Monte
Carlo (MCMC) algorithms, its inferences, and contrast it with frequentist methodology. Genotype
sampling algorithms using genotypic peeling, allelic peeling or descent graphs are described.
Genotype samplers are a critical component of MCMC algorithms implementing ML and Bayesian
analyses for complex pedigrees. Lastly, fine-mapping methods including chromosome dissection
and LD mapping using current and historical recombinations, respectively, are outlined, and recently
developed methods for joint LD and linkage mapping of disease genes and QTL are discussed.

19.1 INTRODUCTION

In this chapter, the focus is on statistical methods for mapping of quantitative-trait loci
(QTLs) in populations which have not been formed recently by line crossing, and which
have pedigree information available over multiple generations. Methods suitable for QTL
mapping in (inbred) line crosses are described in Chapter 18. Pedigrees are used for
QTL mapping in livestock and human populations, where the development and crossing
of inbred lines is not feasible. Therefore, the methods discussed here have applications
primarily in mapping genes for quantitative traits of economic importance in livestock
and complex disease risk factors in humans. Examples include milk production in dairy
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cattle and cholesterol measures in humans. Occasionally, complex pedigrees also arise in
experimental animal populations and plants.

In outbred populations, which have not been formed recently, and for a moderate-
resolution marker map (e.g. a 10 cM map), disequilibrium measures between markers and
QTLs must be expected to be zero. For a moderate-resolution map, distances between
QTLs and markers often exceed 1 cM, and therefore any disequilibrium resulting from
an event in the not very recent history of a population will have eroded over time. As a
consequence, QTL effects cannot be estimated across the population but rather must be
estimated within parents, or phase-known QTL genotypes must be inferred for each parent.
Consider a parent which is heterozygous at marker M with alleles M1 and M2. Suppose
we have a large number of offspring from this parent (a half-sib design in cattle). Then if
we compare the phenotypes of the two offspring groups inheriting the alternative marker
alleles, we may find (1) that M1 offspring have a higher average phenotype, (2) that M2
offspring have a higher average phenotype or (3) that there is no detectable difference
between the two offspring groups. If we assume that there is a biallelic QTL located near
this marker, then in case (1) the allele increasing the phenotype is linked with the M1
allele, while in (2) it is linked with M2. In case (3), the parent is homozygous at the QTL.
In several of the QTL mapping methods – maximum likelihood (ML), Bayesian – to be
presented later, QTLs are often assumed to be biallelic. Although in outbred populations
the number of QTL alleles is unknown and may exceed two, the assumption of a biallelic
QTL is often invoked because it is difficult to infer the exact number of QTL alleles,
and because it may be a good approximation. The latter conjecture results from the fact
that a QTL must be detectable, and therefore must have at least one allele with an effect
on phenotype clearly distinguishable from the effects of the other alleles. Other QTL
mapping methods, such as least-squares (LS) or variance-components analyses, do not
make any specific assumption about the number of QTL alleles.

The power of detecting a QTL is limited in outbred pedigrees by the degree of
informativeness of the markers and of the QTL. The informativeness of a single marker is
measured by its polymorphism information content (PIC) (Botstein et al., 1980; Dekkers
and Dentine, 1991; Hoeschele and Romano, 1993). PIC combines heterozygosity of
parents with fraction of offspring for which the inheritance at a marker is known.
Inheritance is unknown if an offspring has the same marker genotype as both of its parents,
or as one of the parents with the other parent unknown. Moreover, these considerations
apply to a single marker only. When using multiple linked markers, phases or haplotypes
will be unknown and will have to be inferred. For example, a base or founder individual
with observed genotype 12/45 at two linked markers (‘/’ separating the loci) may have
phases 1− 4/2− 5 or 1− 5/2− 4 (‘/’ now separates haplotypes across loci); that is
to say, the founder’s haplotype pair is either 1− 4 and 2− 5 or 1− 5 and 2− 4. If an
individual is a descendant, then we need to know not only phase but also parental origin of
its haplotypes, i.e. its paternal and maternal haplotypes. These are known if the individual
has a known, ordered genotype at each locus. A single-locus genotype is ordered if the
parental origin of its two alleles is known (it is 12 (45) if 1 (4) was inherited from the
father, or 21 (54) if 2 (5) was inherited from the father).

The degree of heterozygosity at a QTL is also influential in its detection. When the
frequency of a detectable QTL allele is very low or very high, a pedigree is likely to
contain only families which are not segregating for this allele, and hence the QTL will
not be detected. On the other hand, with the additive variance at a biallelic QTL being
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2p(1− p)a2 (p is allele frequency, a is substitution effect), the same amount of variance
is explained with p near 0.5 and a smaller a value, and with p low or high and a larger a
value, and this may improve the detection of a QTL due to the larger a effect.

When analyzing a pedigree consisting of multiple families, we have two options:
(1) analyze each family separately; or (2) analyze all families jointly. Option (1) is not
available when family size is small, as is the case in human populations. In certain
livestock populations (dairy cattle), however, a single half-sib family may have several
hundreds or even thousands of members. However, selecting just one or a few very large
families may prevent us from detecting a QTL, unless this QTL happens to be segregating
in these few families. Furthermore, analysis of single families limits sample size and hence
power of QTL detection.

The complexity of statistical methods for QTL mapping in outbred populations depends
on the structure of the population. For analysis of individual large families, or for joint
analysis of a small number of such families and when ignoring genetic ties among
families, simpler methods used for analysis of (inbred) line crosses (see Chapter 18)
can be adapted quite easily, e.g. by choosing only informative markers and allowing
for offspring with uncertain marker allelic inheritance. In contrast, multigenerational
pedigrees, potentially with substantial amounts of missing data, require much more
sophisticated methods of analysis.

19.2 LINKAGE MAPPING VIA LEAST SQUARES OR MAXIMUM
LIKELIHOOD AND FIXED EFFECTS MODELS

19.2.1 Least Squares

In least-squares (LS) analysis, QTL allelic or genotypic effects are treated as fixed effects.
Here we consider LS analysis for half-sib designs. Different markers will be informative
in different families. However, different families can be analyzed jointly if a marker map
and all-marker interval mapping are used, where a certain QTL position is evaluated in
all families irrespective of where the flanking markers are located (i.e. different flanking
markers may be selected in different families as the markers must be informative). For
an analysis across half-sib families, the following linear regression models have been
employed (see also Knott et al., 1994):

yij = µi + pijαi1 + (1− pij )αi2 + eij = µ∗i + pijαi + eij , eij ∼ iidN(0, σ 2
e ),

(19.1)

where

αik =
∑
m

qmµik,m for k = 1, 2; αi = αi1 − αi2; µ∗i = µi + αi2,

in which αik is the additive effect of allele k (k = 1, 2) in parent i, µik,m is the expected
phenotypic deviation of individuals with genotype QikQm, qm is the population frequency
of allele m, pij is the probability that offspring j of parent i inherited QTL allele 1 given
the marker information or pij = E(xij |Mobs) with xij = 1 (0) if Qi1(Qi2) was inherited,
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Mobs is a vector of observed marker data, and µi and µ∗i represent (fixed) within-family
means for different reparameterizations of the model. The normality assumption in (19.1)
is often not explicitly stated, but is needed for the derivation of test statistics and is
further discussed below. Model (19.1) can also be reparameterized using the restriction
αi1 = −αi2 for all i, or

yij = µ∗∗i + (1− 2pij )α
∗
i + eij , (19.2)

where
α∗i = 0.5(αi2 − αi1); µ∗∗i = µi + 0.5(αi1 + αi2).

Note that |(1− 2pij )| = 1 if pij = 1 or pij = 0, and 0 ≤ |(1− 2pij )| < 1 otherwise.
Consequently, the average (over all offspring) |(1− 2pij )| should be calculated as a
measure of the informativeness of the flanking markers.

The pij are calculated by assuming a certain map position of the QTL on a chromosome,
using informative flanking markers in each family i, considering all possible linkage
phases of the parent in family i, and all possible haplotypes of the offspring. For example,
suppose we have a pair of flanking markers and a founder parent (i) with observed
genotype M1/M2 = 12/34. The two possible phase-known (or ordered) genotypes for this
parent are denoted by Gi = 1− 3/2− 4 and Gi = 1− 4/2− 3. The probability of phase-
known genotype (G) of i, given observed marker genotypes on i and on ni offspring, is
computed as

Pr(Gi |M) =
Pr(Gi)Pr(Mi |Gi)

ni∏
j=1

∑
Gij

Pr(Gij |Gi)Pr(Mij |Gij )
/∑

Gi

numerator

 ,
(19.3)

where Gi is the multilocus, phase-known marker genotype of parent i, Mi is its observed
marker genotype (M1/M2 = 12/34), Gij is the multilocus, ordered marker genotype of
offspring j of i, ni is the number of offspring of i, Pr(Mi |Gi) is 1 or 0 depending
on whether Gi is consistent with Mi or not, and Pr(Mij |Gij ) is 1 or 0 depending on
consistency of Gij with Mij . Also, Pr(Gi) is equal to the population frequency of Gi ,
and Pr(Gij |Gi) is equal to the product of the transmission probability of the haplotype
that offspring j inherited from parent i and the population frequency of the other haplo-
type of j . The Gi with the highest probability from (19.3) is chosen and treated as the
true linkage phase of parent i, which can be justified only if the number of offspring is
sufficiently large so that most likely the correct phase has been identified.

Consider now an offspring j with observed marker genotype 12/35 with possible
paternal haplotypes 1− 3 and 2− 3. Assuming that the phase-known genotype of
parent i is Gi = 1− 3/2− 4, the probabilities of the offspring’s ordered, multi-
locus genotypes are Pr(Gij = 1− 3/2− 5|Gi,Mij ) = 0.5(1− r)q12q25/c and Pr(Gij =
2− 3/1− 5|Gi,Mij ) = 0.5rq11q25/c, respectively, assuming that the other parent of j
offspring has no genotype data, letting r denote the recombination rate of the two markers
and qmk frequency of allele k at locus m, and with c = 0.5(1− r)q12q25 + 0.5rq11q25.
Now we postulate the presence of a QTL between the markers. Let Q1

i (Q
2
i ) be the QTL

allele in parent i associated with marker haplotype 1− 3 (2− 4). Let Qfj be the QTL

allele that offspring j inherited from father i. The probability that Qfj is a copy of Q1
i ,
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conditional on observed marker genotypes and i’s phase-known genotype, is the pij value
required in (19.1) and (19.2), and is computed as

Pr(Qfj ⇐ Q1
i |Gi,M) =

∑
Gij

Pr(Gij |Gi,Mij )Pr(Qfj ⇐ Q1
i |Gi,Gij )

= (1− r)q12

(1− r)q12 + rq11
· (1− r1q)(1− r2q)

1− r

+ rq11

(1− r)q12 + rq11

· r1q(1− r2q)
r

, (19.4)

where rkq denotes recombination rate between marker k (k = 1, 2) and the QTL. For
calculating the offspring’s ordered marker genotype probabilities, additional, informative
markers should be used, if any of the flanking markers are not fully informative.
For example, there is an additional marker to the left of the first marker (marker 1),
and the QTL is still postulated between the other markers (markers 2 and 3). Parent
i has genotype Mi = 12/12/34, and assume that its phase-known genotype is Gi =
1− 1− 3/2− 2− 4. The offspring has genotype Mij = 13/12/35, which implies two
possible ordered genotypes, Gij = 1− 1− 3/3− 2− 5 and Gij = 1− 2− 3/3− 1− 5.
Now we consider all three markers for calculating pij instead of only markers 2 and 3 as
above. The probabilities of the two Gij are (1− r12)(1− r23)q22/c and r12r23q21/c, with
c = (1− r12)(1− r23)q22 + r12r23q21. For pij values calculated with these probabilities,
the quantity

∑
ij |1− 2pij | is maximized. Note that if the qmk were unknown or both

parents were genotyped at marker 2 with their genotypes equal to that of the offspring,
markers 1 and 3 (both informative) would be used as flanking markers instead of 2 and 3.
As an example, letting marker recombination rates equal 0.1, q22 = 0.1 and q21 = 0.3,
the pij values are 0.75 and 0.25 when using only markers 2 and 3, and 0.964 and 0.036
when using markers 1, 2 and 3 as described above.

The null hypothesis of no QTL, H0 : α1 = . . . = αm = 0 for m families, is tested against
the alternative, HA : αi �= 0 for some i, using the test statistic {α̂′Cααα̂/m}/{SSE/(n−
f )}, where SSE is residual sum of squares, n is number of offspring across families, f
is number of estimable fixed effects in the model (f = 2m), α is a vector containing
the αi , α̂ is a subvector of LS estimates of the estimable fixed effects (within-family
means and α), and Cαα is the submatrix of the inverse of the coefficient matrix of the
normal equations, used to compute the LS estimates, pertaining to α. The distribution
of this test statistic is either assumed to be a standard F distribution with m and n− f
degrees of freedom (df), or preferably is found using data permutation (Churchill and
Doerge, 1994). The F statistic can be converted into an approximate likelihood-ratio
statistic using the equation LR = n loge(SSEred/SSEfull), where red (full) indicates the
model under H0(HA), to obtain a likelihood profile for the chromosome.

Such regression models are approximate, because residuals in models (19.1) and
(19.2) are not truly iidN(0, σ 2

e ). Although this assumption is typically made in analyses
based on models similar to (19.1) and (19.2), estimation and testing of QTL effect
and position appears to be little affected (e.g. Xu, 1995), even if the standard F or t
distribution is invoked for testing. Rather than relying on this finding, however, it is
prudent to perform data permutation for estimating the exact threshold. A first reason
why residual variance is heterogeneous is that it increases with a decrease in the quantity



628 I. HÖSCHELE

|1− 2pij |. Residual variance in models (19.1) and (19.2) equals σ 2
ε + var(xij |Mobs), where

var(xij |Mobs) = pij (1− pij )α2
i . Xu (1998a) used iteratively reweighted LS to account

for heterogeneous variance, but found little difference between LS and this modification.
Residual variance is also larger in families with more than average and/or larger than
average other QTLs segregating (if these are not accounted for in the model). Next,
models (19.1) and (19.2) do not account for the maternally inherited QTL alleles, which
causes residuals to have a mixture distribution rather than a single normal distribution.
Finally, models (19.1) and (19.2) do not separate polygenic effects out of the residual
term. Since the half-sib family means are included as fixed effects, the residual variance
contains 75 % of the additive genetic variance. If offspring are not related through their
dams, residuals are uncorrelated.

The LS analysis, as described above, fits a single marked QTL. Extension to multiple
linked or unlinked QTLs is straightforward and has been described by Spelman et al.
(1996), Uimari et al. (1996) and Zhang et al. (1998).

19.2.2 Maximum Likelihood

With QTL effects treated as fixed, one usually assumes a biallelic QTL (although the allele
number at any QTL which cannot be genotyped is unknown). We now denote marker
information by M and the vector of QTL genotypes on a pedigree by G. Considering a
single QTL and polygenic background, the most general likelihood can be written as

L(y|M) =
∑

G

Pr(G|M)f (y|G), y ∼ N(µ,V), V = ZAZ′σ 2
u + Rσ 2

e , (19.5)

where u is vector of polygenic effects with var(u) = Aσ 2
u , A is the known, additive

genetic relationship matrix, σ 2
u is polygenic variance, var(e) = Rσ 2

e is the residual
variance–covariance matrix with R being a known, diagonal matrix, σ 2

e is residual
variance, and Z is an incidence matrix relating phenotypes in y to individuals. The
difficulty with this likelihood is the summation over G and the evaluation of the
multivariate normal density f (y|G), as V is not diagonal in the presence of polygenic
effects. In an alternative formulation of the likelihood,

L(y|M) =
∑

G

Pr(G|M)
∫
f (u)f (y|u,G) du, (19.6)

there is the problem of performing jointly summation with respect to G and integration
with respect to u. Note that for likelihoods (19.5) and (19.6), when marker genotypes are
only partially known, Pr(G|M) is replaced by Pr(MG|Mobs), where Mobs is a vector of
observed marker data, and MG is a vector of complete, multilocus marker-QTL genotypes.
Deterministic evaluation of likelihood (19.6) becomes tractable only for simple designs
such as the half-sib design with each offspring having a different mother and all parents
unrelated. Then,

L(y|M) =
F∏
i=1

∑
Gi

Pr(Gi)
∫ ∞

−∞
f (ui)

Ni∏
j=1

∑
Gij

Pr(Gij |Gi,Mi,Mij )f (yij |ui,Gij ) dui,

(19.7)
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where F is the number of fathers, Gi andMi are QTL genotype and marker data on father
i respectively, Ni is the number of offspring of father i, ui is the polygenic effect of father
i, and Gij and Mij are QTL genotype and marker data on offspring j of father i. This
likelihood can be evaluated deterministically using numerical integration (e.g. Morton and
MacLean, 1974; Knott et al., 1991). Alternatively, polygenic effects of fathers have been
treated as fixed, e.g. by Weller (1986) and by Jansen et al. (1998), who use deterministic
and stochastic expectation–maximization algorithms to compute ML parameter estimates.
With polygenic effects of fathers treated as fixed, the likelihood simplifies to

L(y|M) =
F∏
i=1

∑
Gi

Pr(Gi)
Ni∏
j=1

∑
Gij

Pr(Gij |Gi,Mi,Mij )f (yij |ui,Gij ). (19.8)

Marker information M may be on a single marker (e.g. Weller, 1986; Knott and Haley,
1992), or preferably on multiple linked markers to obtain more accurate estimates of QTL
effects and location.

Several approximations to likelihoods (19.5), (19.6) and (19.7) have been proposed,
e.g. modal estimation (Hoeschele, 1988; Le Roy et al., 1989; Elsen and Le Roy, 1990;
Knott et al., 1991; Elsen et al., 1997). In modal estimation, the joint probability density
of the vector of phenotypes (y) and the vector of polygenic effects (u) is maximized
with respect to u and other unknowns. For complex pedigrees, likelihood (19.6) can be
evaluated using Markov chain Monte Carlo (MCMC) algorithms for sampling genotypes
and/or polygenic effects. For details, see Chapter 33 and Section 19.6 below.

19.3 LINKAGE MAPPING VIA RESIDUAL MAXIMUM LIKELIHOOD
AND RANDOM EFFECTS MODELS

In this method, QTL genotype and allelic effects are treated as random, and variance
components due to QTL and polygenic effects are estimated. This variance-components
method is not restricted to the analysis of individual large families, or to the joint
analysis of several large families without relationship ties across families. It is therefore
much more general than the regression analysis, and in theory it can be applied to
any complex pedigree. In some sense, it is approximate and does not fully utilize the
available information. For a discussion on the random treatment of QTL effects and the
approximations involved; see Section 19.3.4 below. The variance-components method is
based on fewer parametric assumptions than other methods such as ML and Bayesian
analyses (often assuming biallelic QTLs), as it does not require us to specify the number
of alleles and to estimate their frequencies, and it has been shown to be quite robust to the
actual number of alleles at a QTL (Xu and Atchley, 1995; Grignola and Hoeschele, 1997).
It has been recognized as a very useful QTL mapping method not only for livestock but
also for human pedigrees, in particular with the development of computer packages such
as SOLAR (Almasy and Blangero, 1998).

19.3.1 Identity-by-descent Probabilities of Alleles

Random effects at an individual QTL can either be effects of genotypes or of alleles.
When random allelic effects are considered, then the covariance matrix among the 2n
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allelic effects at a QTL of the n individuals in a pedigree is needed, which is equal to an
identity-by-descent (IBD) matrix times the QTL allelic variance or half of the additive
variance contributed by this QTL. An element of the IBD matrix is Pr(Qki ≡ Qk′i′ |G),
where Qki is allele k (k = 1, 2) in individual i, G is a set of observed genotypes on
the pedigree, and ≡ denotes IBD. These IBD probabilities can be computed recursively,
and recursive rules have been stated for various situations, including (1) no observed
genotypes available (e.g. DeBoer and Hoeschele, 1993), (2) (partially) observed genotypes
available (Davis et al., 1996), and (3) (partially) observed genotypes available for a single
locus linked to the locus under consideration (Wang et al., 1995). In all three cases, we
have two boundary conditions, which apply to any founder individuals i and i′. These are

Pr(Qki ≡ Qki |G) = 1,

Pr(Qki ≡ Qk
′
i′ |G) = 0, for i �= i′ or k �= k′. (19.9)

For case (1) and for allele Q1
i in descendant i with father f , where we define k = 1 (2)

as the allele inherited from the father (mother), we have the recurrence equation

Pr(Q1
i ≡ Qk

′
i′ ) = Pr(Q1

i ⇐ Q1
f )Pr(Q1

f ≡ Qk
′
i′ )+ Pr(Q1

i ⇐ Q2
f )Pr(Q2

f ≡ Qk
′
i′ ), (19.10)

where i′ is an individual which is not a direct descendant of i, Pr(Q1
i ⇐ Q1

f ) is the
probability that parent f passed on allele Q1

f to offspring i, and Pr(Q1
i ⇐ Q1

f ) =
Pr(Q1

i ⇐ Q2
f ) = 0.5. Note that in general and with inbreeding, Pr(Q1

i ⇐ Q1
f ) is not equal

to Pr(Q1
i ≡ Q1

f ), as the latter equals Pr(Q1
i ⇐ Q1

f )+ Pr(Q1
i ⇐ Q2

f )Pr(Q1
f ≡ Q2

f ).
If all individuals are genotyped, which is a special case of cases (2) and (3), Davis et al.

(1996) and Wang et al. (1995) expand recurrence (19.10) to also include the alleles in the
mother (m), because the parental origins of the alleles in an offspring may be unknown
(both parents and the offspring have the same genotype; one parent and the offspring
have the same genotype with the other parent untyped). Then the recurrence becomes

Pr(Qki ≡ Qk
′
i′ )

= Pr(Qki⇐Q1
f |G)Pr(Q1

f ≡ Qk
′
i′ |G)+ Pr(Qki ⇐ Q2

f |G)Pr(Q2
f ≡ Qk

′
i′ |G)

+ Pr(Qki⇐Q1
m|G)Pr(Q1

m ≡ Qk
′
i′ |G)+ Pr(Qki ⇐ Q2

m|G)Pr(Q2
m ≡ Qk

′
i′ |G). (19.11)

For case (2), probabilities of the type Pr(Qki ⇐ Q1
f |G) can be evaluated simply by first

evaluating the two probabilities that allele Qki was inherited from the father or the mother
respectively, or Pr(Qki ⇐ (Q1

f ,Q
2
f )|G) and Pr(Qki ⇐ (Q1

m,Q
2
m)|G). When all individuals

are typed, then these parental origin probabilities take on one out of only three pairs of
values, which are (0,1), (1,0), and (0.5, 0.5). Next, the probabilities of either parental allele
being passed on to offspring i, given thatQki originated from this parent (f ), are evaluated,
e.g. Pr(Qki ⇐ Q1

f |Qki ⇐ (Q1
f ,Q

2
f ),G). These probabilities again take on one of only

three pairs of values, (0,1), (1,0), or (0.5, 0.5). Then if all individuals are genotyped,
Pr(Qki ⇐ Q1

f |G) = Pr(Qki ⇐ (Q1
f ,Q

2
f )|G)Pr(Qki ⇐ Q1

f |Qki ⇐ (Q1
f ,Q

2
f ),G).

For case (3), and still assuming that all individuals are typed (in this case for markers,
not for the locus of interest), probabilities in (19.11) now pertain to a QTL. Equation
(19.11) still holds with G replaced by M to indicate that genotype data are now available
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on a marker. Then, for example, Pr(Qki ⇐ Q1
f |G)Pr(Q1

f ≡ Qk′i′ |G) in (19.11) is replaced

by Pr(Qki ⇐ Q1
f |M)Pr(Q1

f ≡ Qk′i′ |M), where

Pr(Qki ⇐ Q1
f |M) = Pr(Qki ⇐ Q1

f |Mk
i ⇐ M1

f ,M)Pr(Mk
i ⇐ M1

f |M)
+ Pr(Qki ⇐ Q1

f |Mk
i ⇐ M2

f ,M)Pr(Mk
i ⇐ M2

f |M)
= (1− r)Pr(Mk

i ⇐ M1
f |M)+ rPr(Mk

i ⇐ M2
f |M), (19.12)

and r is the recombination rate between the marker locus and the QTL. Note that to
apply (19.11) with (19.12) QTL alleles are identified by their linkage with marker alleles
rather than by their parental origin. Consider a mating between individuals 2 (father) and
1 producing offspring 4, and a mating between individuals 2 and 3 producing offspring 5.
Assume that all five individuals have marker genotype M1

i M
2
i = 12 (i = 1, . . . , 5). Then,

the additive relationship between individuals 4 and 5 at the QTL is

covQTL(4, 5) = 0.5[Pr(Q1
4 ≡ Q1

5|M)+ Pr(Q1
4 ≡ Q2

5|M)
+ Pr(Q2

4 ≡ Q1
5|M)+ Pr(Q2

4 ≡ Q2
5|M)], (19.13)

where, e.g.

Pr(Q1
4 ≡ Q1

5|M) = Pr(Q1
4 ⇐ Q1

2|M1
4 ⇐ M1

2 )Pr(M1
4 ⇐ M1

2 |M)Pr(Q1
5 ≡ Q1

2|M)
+ Pr(Q1

4 ⇐ Q2
2|M1

4 ⇐ M1
2 )Pr(M1

4 ⇐ M1
2 |M)Pr(Q1

5 ≡ Q2
2|M),

Pr(Q1
5 ≡ Q1

2|M) = Pr(Q1
5 ⇐ Q1

2|M1
5 ⇐ M1

2 )Pr(M1
5 ⇐ M1

2 |M)
+ Pr(Q1

5 ⇐ Q2
2|M1

5 ⇐ M1
2 )Pr(M1

5 ⇐ M1
2 |M)Pr(Q2

2 ≡ Q1
2|M).

In (19.13), QTL alleles in descendants 4 and 5 are identified by marker alleles; e.g. allele
Q1

4 (Q2
4) is the QTL allele linked with marker allele M1

4 = 1 (M2
4 = 2) in individual

4, where the marker allele is of unknown parental origin. Alternatively, we can identify
QTL alleles in descendants by parental origin (Qf=1

4 , Qm=2
4 ). Then we need to distinguish

four cases: (a) marker allele 1 in individual 4 is paternal and marker allele 1 in 5
is paternal; (b) marker allele 1 in individual 4 is paternal and marker allele 1 in 5 is
maternal; (c) marker allele 1 in individual 4 is maternal and marker allele 1 in 5 is
paternal; and (d) marker allele 1 in individual 4 is maternal and marker allele 1 in 5
is maternal. Each case has probability 0.25. Then

covQTL(4, 5) = 0.5[Pr(Qf4 ≡ Qf5 |(a),M)Pr((a)|M)+ Pr(Qf4 ≡ Qf5 |(b),M)Pr((b)|M)
+ Pr(Qf4 ≡ Qf5 |(c),M)Pr((c)|M)+ Pr(Qf4 ≡ Qf5 |(d),M)Pr((d)|M)],

(19.14)

where, e.g.

Pr(Qf4 ≡ Qf5 |(a),M) = Pr(Qf4 ⇐ Q1
2|M1

4 ⇐ M1
2 )Pr(Qf5 ≡ Q1

2|(a),M)
+ Pr(Qf4 ⇐ Q2

2|M1
4 ⇐ M1

2 )Pr(Qf5 ≡ Q2
2|(a),M),

Pr(Qf5 ≡ Q1
2|(a),M) = Pr(Qf5 ⇐ Q1

2|M1
5 ⇐ M1

2 )

+ Pr(Qf5 ⇐ Q2
2|M1

5 ⇐ M1
2 )Pr(Q2

2 ≡ Q1
2|M).

Both (19.13) and (19.14) lead to the same result, which is 0.5[(1− r)2 + r2]+ r(1− r).
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When parent f is not genotyped, (19.11) no longer holds (Wang et al., 1995).
Independence of events in (19.9) and (19.11) such as Qki ⇐ Q1

f and Q1
f ≡ Qk′i′ no

longer holds, implying that the corresponding component in (19.11) must be replaced
with Pr(Qki ⇐ Q1

f ,Q
1
f ≡ Qk′i′ |M). For a numerical example showing the discrepancy

between (19.11) modified as just described and the original (19.11) for the single-marker
case, see Wang et al. (1995).

In general, if some pedigree members are not genotyped, the matrix of IBD probabilities
pertaining to the 2n alleles or meioses of the n pedigree members at the QTL, conditional
on observed marker data, is (Wang et al., 1995)

QMobs
=
∑
Mi

QMi
Pr(Mi |Mobs), (19.15)

where Mobs is the observed, incomplete marker data, Mi is a particular set of phase-known
(ordered) marker genotypes on the pedigree, which is consistent with Mobs, and QMi

is
the IBD matrix conditional on Mi . Note that QMi

can be evaluated recursively with QTL
alleles of descendants identified by parental origin as in (19.10).

When flanking markers, or more generally multiple linked markers, are used to trace
inheritance at the QTL, the independence assumption used in (19.9) and (19.11) does not
hold even if parent f is genotyped for all markers, but the linkage phase of the markers is
unknown. Consider an example with two linked marker loci flanking a QTL. The father
has genotypes 12/12 with possible linkage phases Lf = 1− 1 and Lf = 1− 2. A first
offspring (O1) has genotypes 13/13 with paternal haplotype 1− 1, and a second offspring
(O2) has genotypes 13/23 with paternal haplotype 1− 2. We are interested in computing
Pr(QfO1 ≡ QfO2|M) or the IBD probability for the paternally inherited QTL alleles of the
offspring:

Pr(QfO1 ≡ QfO2|M) = Pr(QfO1 ⇐ Q1
f ,Q

f

O2 ≡ Q1
f |M)+ Pr(QfO1 ⇐ Q2

f ,Q
f

O2 ≡ Q2
f |M)

= Pr(QfO1 ⇐ Q1
f ,Q

f

O2 ⇐ Q1
f |M)+ Pr(QfO1 ⇐ Q2

f ,Q
f

O2 ⇐ Q2
f |M)

(because individual 2 is noninbred)

= Pr(QfO1 ⇐ Q1
f ,Q

f

O2 ⇐ Q1
f |Lf = 1− 1,M)Pr(Lf = 1− 1|M)

+ Pr(QfO1 ⇐ Q1
f ,Q

f

O2 ⇐ Q1
f |Lf = 1− 2,M)Pr(Lf = 1− 2|M)

+ Pr(QfO1 ⇐ Q2
f ,Q

f

O2 ⇐ Q2
f |Lf = 1− 1,M)Pr(Lf = 1− 1|M)

+ Pr(QfO1 ⇐ Q2
f ,Q

f

O2 ⇐ Q2
f |Lf = 1− 2,M)Pr(Lf = 1− 2|M) (19.16)

where, e.g.

Pr(QfO1 ⇐ Q1
f ,Q

f

O2 ⇐ Q1
f |Lf = 1− 1,M)

= Pr(QfO1 ⇐ Q1
f |Lf = 1− 1,M)Pr(QfO2 ⇐ Q1

f |Lf = 1− 1,M).

The recombination rate between markers is r = 0.16484, the recombination rate between
left (right) marker and QTL is r1 = 0.08 (r2 = 0.101), and probabilities of linkage phases
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are taken as Pr(Lf = 1− 1|M) = 0.8 and Pr(Lf = 1− 2|M) = 0.2. Then,

Pr(QfO1 ≡ QfO2|M)

= (1− r1)(1− r2)
1− r · (1− r1)r2

r
· 0.8+ (1− r1)r2

r
· (1− r1)(1− r2)

1− r · 0.2

+ r1r2

1− r ·
r1(1− r2)

r
· 0.8+ r1(1− r2)

r
· r1r2

1− r · 0.2 = 0.562 465 5. (19.17)

However, now let, e.g.

Pr(QfO1 ⇐ Q1
f |M) = Pr(QfO1 ⇐ Q1

f |Lf = 1− 1,M)Pr(Lf = 1− 1|M)
+ Pr(QfO1 ⇐ Q1

f |Lf = 1− 2,M)Pr(Lf = 1− 2|M); (19.18)

then

Pr(QfO1 ≡ QfO2|M) = 0.562 465 5 �= Pr(QfO1 ⇐ Q1
f |M)Pr(QfO2 ⇐ Q1

f |M)
+ Pr(QfO1 ⇐ Q2

f |M)Pr(QfO2 ⇐ Q2
f |M). (19.19)

When parental linkage phases are unknown, IBD probabilities are in the form of (19.16)
irrespective of whether QTL alleles are identified by parental origin or by linkage with
alleles at one of the markers. Consequently, in the presence of multiple linked markers
with unknown phases of parents, the QTL IBD matrix must generally be evaluated using
the form of (19.15). Equation (19.15) must usually be approximated via a Monte Carlo
method using samples (Mi) from the conditional distribution Pr(Mi |Mobs). Consequently,
efficient genotype sampling algorithms for complex pedigrees and partial genotype data
are required (see Section 19.6 below).

19.3.2 Mixed Linear Model with Random QTL Allelic Effects

The residual likelihood is based on a linear mixed model including allelic effects at q
QTLs and residual polygenic effects, or

y = Xβ+ Zu+ ZT
q∑
i=1

wi + e, (19.20)

with

u ∼ N(0,Aσ 2
u ), wi ∼ N(0,Qiσ

2
wi
), e ∼ N(0,Rσ 2

e ),

cov(wi ,w
′
j ) = 0 ∀i, j, cov(wi ,u

′) = 0∀i,

E(y) = Xβ, var(y) = V = ZAZ′σ 2
u + ZT

q∑
i=1

QiT
′Z′σ 2

wi
+ Rσ 2

e ,

where y is vector of m phenotypic observations, X is a design-covariate matrix, β is a
vector of fixed effects, Z is an incidence matrix relating phenotypes to individuals, u
is a vector of n(n ≤ m) residual polygenic effects, T is an incidence matrix relating
an individual to its two allelic effects at a QTL, q is the number of QTLs fitted



634 I. HÖSCHELE

simultaneously, wi is vector of 2n allelic effects at QTL i, and e is vector of m residuals.
The assumptions of zero covariances between u and w vectors above rely on (1) fitting at
most one QTL per marker interval, (2) defining the polygenic effects in u as the sum of
the (very small) allelic effects at all loci that are not fitted as marked QTLs in the model
and that are not linked with the marked QTLs and (3) assuming that there is linkage
equilibrium with respect to all QTLs in the population.

The residual likelihood is the likelihood of a vector of error contrasts (Patterson and
Thompson, 1971), K′y (K′X = 0, rank(K) = m− rank(X)). Use of the likelihood of error
contrasts instead of the likelihood of y is advantageous in situations where the model
contains many fixed effects. For y ∼ N(Xβ,V) and K′y ∼ N(0,K′VK), the likelihood
of K′y is

log f (K′y|σ) ∝ −0.5 log |K′VK| − 0.5(K′y)′(K′VK)−1(K′y)

∝ −0.5 log |V| − 0.5 log |X′V−1X| − 0.5(y− Xβ̂)′V−1(y− Xβ̂), (19.21)

where
β̂ = (X′V−1X)−1X′V−1y,

assuming that X is reparameterized to full rank. This likelihood can be evaluated very
efficiently for simple designs, e.g. half-sib families (Grignola et al., 1996; Xu, 1998b). For
large complex pedigrees, likelihood evaluation is more challenging and requires the use
of algorithms such as derivative-free (e.g. Graser et al., 1987, Grignola and Hoeschele,
1997) or derivative-intense (e.g. Meyer and Smith, 1996; Neumaier and Groeneveld,
1999) methods. In residual or restricted maximum likelihood (REML), likelihood (19.21)
is maximized with respect to all variance components. More information about the REML
method is given in Chapter 20.

19.3.3 Mixed Linear Model with Random QTL Genotypic Effects

A mixed model fitting QTL genotypic effects represents an alternative to the allelic effects
model. While the latter has been developed in animal genetics, the former model is utilized
in the field of human genetics and has been implemented in the computer package SOLAR
(Almasy and Blangero, 1998). It includes dominance and two-locus epistasis, although
the covariance structure is approximate under inbreeding. The genotypic effects mixed
model with Q QTLs is

y = Xβ+ Zu+ Z
Q∑
i=1

gi + e, (19.22)

where gi is a vector of genotypic effects of the n members of the pedigree for QTL i.
Under this model a typical element of V = var(y) is (ignoring epistasis)

cov(yj , yk) = Vjk =
Q∑
i=1

(πi,jk(Mobs)
σ 2
a(i) + φi,jk(Mobs)

σ 2
d(i))+Ajkσ 2

u , (19.23)

where σ 2
a(i) and σ 2

d(i) are additive and dominance variance at QTL i, σ 2
u is polygenic

variance, Ajk is the additive genetic relationship between relatives j and k for the
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unmarked portion of the genome, and πi,jk(Mobs)
and φi,jk(Mobs)

are additive and dominance
relationships for QTL i conditional on observed marker data. More specifically,

πi,jk(Mobs)
= 0.5(Pr(Q1

i,j ≡ Q1
i,k|Mobs)+ Pr(Q2

i,j ≡ Q2
i,k|Mobs) (19.24)

+ Pr(Q1
i,j ≡ Q2

i,k|Mobs)+ Pr(Q2
i,j ≡ Q1

i,k|Mobs)),

φi,jk(Mobs)
= Pr(Q1

i,j ≡ Q1
i,k,Q

2
i,j ≡ Q2

i,k|Mobs)+ Pr(Q1
i,j ≡ Q2

i,k,Q
2
i,j ≡ Q1

i,k|Mobs).

(19.25)

With inbreeding, additional coefficients and components of covariance arise (e.g. a
covariance between additive and dominance effects), which are typically ignored (e.g.
DeBoer and Hoeschele, 1993).

In matrix notation and assuming single records or Z = I in (19.22) for simplicity,

var(y) = V =
Q∑
i=1

(�i(Mobs)
σ 2
ai
+�i(Mobs)

σ 2
di
)+ Aσ 2

u + Rσ 2
e , (19.26)

where
�i(Mobs)

= [πi,jk(Mobs)
],�i(Mobs)

= [φi,jk(Mobs)
]. (19.27)

Two-QTL epistasis can formally be incorporated in a straightforward manner. For
example, for QTLs i and i′ and additive-by-additive epistasis, we add the component
�i(Mobs)

��i′(Mobs)
σaaii′ , where � denotes the Hadamard product (with typical element

equal to the product of the two elements in the same position in the original two matrices).
The log-likelihood function of the phenotypes, assuming multivariate normality and a

set of map locations of the QTLs, is:

ln f (y|β, (σ 2
ai
, σ 2
di
, σaaii′ ; i, i′ = 1, . . . ,Q; i < i′), σ 2

u , σ
2
e ;

(�i(Mobs)
,�i(Mobs)

; i = 1, . . . ,Q),A,R). (19.28)

Estimation of �i(Mobs)
, i = 1, . . . ,Q, at a specific, marked location in the genome

requires (1) estimation of �m for a number (M) of linked markers (m = 1, . . . ,M),
and (2) estimation of the elements of �i(Mobs)

using multiple regression. For step (1), if
marker genotypes are observed on all individuals, �m is estimated with the algorithm of
Davis et al. (1996). If some marker genotypes are missing, these are imputed using Monte
Carlo, �m is computed for each imputed vector, and subsequently a weighted average of
the �m matrices is computed (Almasy and Blangero, 1998).

For step (2), Fulker et al. (1995) developed a method performing approximate multi-
point calculations for sib pairs. This method was generalized by (Almasy and Blangero,
1998) to other types of relatives. For a given relationship R (e.g. half-sibs), the correla-
tion between IBD values of marker q and QTL m, for a given QTL location (determining
recombination rate r with the marker), is calculated using the following results:

ρqm(R, r) =
cov(πq, πm)√

var(πq) var(πm)
= cov(πq, πm)

var(π)
,

E(π) = E(πq) = E(πm), (19.29)
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var(π) = var(πq) = var(πm) = E(π2)− [E(π)]2,

cov(πq, πm) =
∑
i,j

Pr(πq = i, πm = j)[i − E(π)][j − E(π)].

As an example, for half-sibs, probabilities of sharing genes IBD are

Pr(πq, πm) πq = 0(iq = 0) πq = 0.5(iq = 1) Pr(πm)

πm = 0 (im = 0) 0.5− r + r2 r − r2 0.5
πm = 0.5 (im = 1) r − r2 0.5− r + r2 0.5

Pr(πq) 0.5 0.5 1

with E(π) = 0.5× 0+ 0.5× 0.5 = 0.25, var(π) = 0.5(0− 0.25)2 + 0.5(0.5− 0.25)2 =
0.0625, and cov(πq, πm)= (0.5−r + r2)(0− 0.25)2 + 2(r − r2)(0− 0.25)(0.5−0.25)+
(0.5− r + r2)(0.5− 0.25)2 = 0.0625− 0.25(r − r2). Note that cov(πq, πm) = 0.0625−
0.25(r − r2) = 0.0625(1− 2r)2 = var(π)(1− 2r)2 (analogous results hold for other
types of relatives, as shown by Almasy and Blangero (1998)). As an example, Pr(πm =
0,πq = 0) = 0.5− r + r2 = (2× 0.5× 0.5)(1− r)2 (both half-sibs nonrecombinant for
different alleles) + (2× 0.5× 0.5)r2 (both half-sibs recombinant for different alleles).
Then, multiple regression with M markers is used to estimate the IBD value at a QTL
for a given location, or

πq = α +
M∑
m=1

βmπm, (19.30)

where

β =
 β1
...

βη

 =
 var(π1) · · · cov(π1, πη)

...
...

...

cov(πη, π1) · · · var(πη)


−1  cov(π1, πq)

...

cov(πη, πq)


and

α = E(πq)−
η∑
m=1

βmE(πm).

In reality, the πm values are unknown and estimated in step 1. For each marker, from
the estimated πm values for a particular type of relatives (e.g. half-sibs), var(π) can be
estimated empirically and used to obtain an empirical estimate of cov(πm, πq). These are
then used to estimate β in (19.30). Subsequently, α is evaluated using the mean of the
unobserved true values of πq for a given relative type, and the empirical mean of the
estimated πm values for each marker m.

19.3.4 Relationship with Other Likelihood Methods

In the REML method as described, a likelihood of error contrasts is maximized condition-
ally on predetermined covariance matrices for each QTL, which depend on the observed
marker data and QTL positions. Hence we denote the logarithm of the likelihood by
L(K′y|QMobs

). This likelihood is an approximation, which does not fully capture all the
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available information. A major source of approximation is that the complete marker data
are inferred conditionally on observed marker data, but not on phenotypic data (if markers
are linked to QTLs, their genotype probabilities depend on phenotypes). Therefore, other
log likelihoods need to be considered. A first alternative log likelihood is

L∗(K′y) = log

(∑
M

P(M)P (Mobs|M)eL(K
′y|QM)

)
, (19.31)

which takes account of the distribution of the complete multilocus marker genotypes given
the phenotypes and observed marker data. This likelihood is similar to the likelihood of
Schork (1993). In Schork’s method, originally proposed by Goldgar (1990), a covariance
matrix is constructed for a chromosomal region (as opposed to a specific QTL point) based
on the proportion of IBD sharing of two sibs in this region. This proportion depends on
the combination of IBD and recombination states at a number of markers. While Goldgar
replaces the IBD proportion for the region with its expected value given the observed
marker data (analogous to L(K′y|QMobs

)), Schork takes account of the distribution of
the indicator variable representing the combination of IBD and recombination states,
pertaining to two sibs, of the markers in the region. Another, alternative log likelihood is

L∗∗(K′y) = log

∑
M,G

P(M,G)P (Mobs|M)eL(K
′y|G)

 , (19.32)

where G is a matrix of ordered QTL genotypes on the pedigree. Likelihood (19.32) takes
account of the distribution of the complete marker-QTL genotypes given the phenotypes
and in that sense fully utilizes the available information. While likelihood (19.31) is based
on wi ∼ N(0,Qi|Mσ 2

wi
), with Qi|M being the covariance matrix for QTL i conditional on

a complete marker genotype configuration M on the pedigree (19.32) is a likelihood
conditional on a particular QTL genotype configuration on the pedigree. Likelihood
(19.32) assumes that there are 2nb alleles (nb is the number of founders of the pedigree)
with wik ∼ N(0, σ 2

wi
) for founder allele k at locus i, and all possible ways in which

the founder alleles can be passed on to offspring are considered (e.g. Hoeschele et al.,
1997; Xu, 1996). It may also assume any other number of alleles (if there are two alleles
and their effects are treated as fixed, then the likelihood described in Section 19.3 is
obtained). The likelihood described by Xu (1996), which he refers to as the full likelihood
or the distribution method, can be considered as an exact or approximate (e.g. in the
accounting for inbreeding) reparameterization of log likelihood (19.32). We may describe
log likelihood (19.32) as the distribution log likelihood, while log likelihood L(K′y|QMobs

)

may be described as the expectation log likelihood (Gessler and Xu, 1996).
In contrast to log likelihood (19.32), log likelihood L(K′y|QMobs

) does not require
us to specify the number of alleles at a QTL. The vector of allelic (w) or genotypic
(g) QTL effects for all individuals in the pedigree may be written as (R. Fernando,
personal communication) w = Swa or g = Sga, where, e.g. for the case of additive gene
action, a is a vector of (fixed) effects of the different allelic forms at the QTL, and
Sw and Sg are matrices of random design variables relating effects of allelic forms to
effects of alleles or genotypes of individuals (e.g. for a biallelic QTL, a = [a,−a]′, Sw
has two columns, with each row being either [1,0] or [0,1], and Sg has two columns,
with each row being either [2,0] or [1,1], or [0,2]). This is analogous to the random
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residual term in, e.g. a completely randomized design, which is a function of fixed
experimental unit effects and design random variables. In this setting, QTL allelic (w)
or genotypic effects (g) are random because the association of allelic forms with alleles
and genotypes of individuals is random. The distributional assumption wi ∼ N(0,Qiσ

2
wi)

in (19.20) is based on recurrence equations of the type (dropping subscript i for QTL)
w1
o = Pr(Q1

o ⇐ Q1
f )w

1
f + Pr(Q1

o ⇐ Q2
f )w

2
f + ε1

o , where w1
o is the effect of allele Q1

o,
which offspring o inherited from its father f . Because either w1

o = w1
f or w1

o = w2
f ,

residual ε1
o is discrete and hence not normally distributed. Consequently, the normality

assumption is another source of approximation in the variance-components method. In
conclusion, the expectation log likelihood L(K′y|QMobs

) is less parametric and hence more
robust than the distribution log likelihood (19.32), while the distribution log likelihood
may have slightly more power when its assumptions are not violated.

19.4 LINKAGE MAPPING VIA BAYESIAN METHODOLOGY

19.4.1 General

In Bayesian analysis, we first set up a probability model by defining the joint distribution
of all observed and unobserved (or known and unknown) quantities in a problem. For
the simpler problem of mapping a Mendelian disease gene, observed quantities (data)
are observed genotypes at a marker and at the disease gene, and an unknown quantity
is the recombination rate between these two loci. Obtaining inferences about unknown
quantities is based on Bayes’s theorem, or

Pr(unknown quantities | known quantities) = Pr(unknown quantities, known quantities)

Pr(known quantities)

= Pr(unknown quantities)Pr(known quantities | unknown quantities)

Pr(known quantities)
. (19.33)

In (19.33), Pr(.) represents a probability for a discrete quantity (e.g. genotype) and a
probability density for a continuous quantity (e.g. recombination rate). In the frequentist
setting, probability refers to hypothetical repeated sampling and is a long-run frequency;
e.g. the Type I error rate represents the long-run frequency of incorrectly rejecting a null
hypothesis over repeated experiments in which the null hypothesis is true. In contrast,
in the Bayesian framework, probability refers to the uncertainty attached to the true
values of the unknown quantities (note that unknown quantities can be parameters,
random effects and missing data in the frequentist setting), unconditionally (prior)
or conditionally (posterior) on the observed data. In (19.33), Pr(unknown quantities)
represents the probability density of the prior distribution of the unknowns, while
Pr(unknown quantities | known quantities) represents the probability density of the
posterior distribution of the unknowns. The prior describes the degree of uncertainty
about or belief in any values of the unknowns unconditionally on the current, observed
data, while the posterior reflects the degree of uncertainty about or belief in any values
of the unknowns conditionally on the current, observed data.

One criticism of Bayesian analysis focuses on the prior distribution of the unknowns,
with the argument that different investigators, using the same data but their own different
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priors, may arrive at different inferences about the unknowns. One may disagree with this
criticism for the following reasons. First, if priors are chosen carefully (so that they do not
lead to improper posterior distributions), use of different priors often leads to practically
identical inferences, if there is sufficient information in the data about the unknowns. If
different priors lead to different answers, we learn that we must collect more data to obtain
strong and reliable inferences. Therefore, a careful analyst will conduct a robustness study
evaluating the effect of different priors on the posterior inferences. Secondly, Bayesian
analysis provides us with the opportunity to incorporate biologically meaningful prior
information. In linkage analysis, frequentist inferences are based on the null hypothesis
that there are no QTLs segregating in the entire genome. However, this null hypothesis
is usually irrelevant, because we know from the heritability of a trait and from previous
QTL mapping experiments that there are QTLs segregating. We can construct a prior
reflecting this information (see below) and vary this prior to investigate whether it impacts
our results. Another example of prior biological information is the knowledge from an
annotated genome sequence and mutation database (Rannala and Reeve, 2001).

19.4.2 Bayesian Mapping of a Monogenic Trait

Vieland (1998) provides a nice introduction to Bayesian linkage analysis for the case of
a single-marker and a single trait gene. The Bayesian analysis summarizes evidence in
favor of linkage between two loci by the posterior probability of linkage (PPL), or the
probability of linkage given the data. For this simpler problem, the data (D = [M,T])
consist of the observed genotypes at the marker (M) and at the trait locus (T), and we are
asking whether these two loci are linked. Let H0 : r = 0.5 represent the null hypothesis
of no linkage and HL : 0 ≤ r < 0.5 the alternative hypothesis of linkage. Then

PPL = Pr(HL|D) =
Pr(HL)Pr(D|HL)

Pr(HL)Pr(D|HL)+ [1− Pr(HL)]Pr(D|H0)]
,

where

Pr(HL)Pr(D|HL) = Pr(HL)
∫ r<0.5

r≥0
Pr(D|r)Pr(r|HL) dr. (19.34)

The prior probability of linkage is obtained as the product Pr(M and T locus on the
same chromosome) Pr(δ < δmin), where δ represents genetic distance related to r by a
mapping function, and δmin represents the minimum distance for which r = 0.5. The two
probabilities are derived under the assumption that both loci can be located anywhere
in the genome with equal probability. If all Nc chromosomes were of equal length, then
Pr(M and T locus on the same chromosome) = 1/Nc, but unequal length of chromosomes
can be incorporated (e.g. Hoeschele and VanRaden, 1993). Then, given that both loci are
on the same chromosome c, �M ∼ U(0, Lc) and �T ∼ U(0, Lc), where � denotes a map
position. From the joint probability density Pr(�M, �T ) being equal to the product of the
two uniform densities, Pr(�M, δ) is obtained by change of variables, Pr(δ) by integration,
and Pr(δ < δmin) and Pr(r) are obtained via a mapping function (for details, see Hoeschele
and VanRaden, 1993).

Evidence in favor of linkage can be accumulated using Bayes’s theorem. Let D1 and
D2 represent a first and a later data set, which are distributed independently of each
other. Then, in (19.34), D is replaced by D2, and the priors Pr(HL) and Pr(r|HL) are
replaced by the posteriors Pr(HL|D1) and Pr(r|HL,D1). These replacements follow from
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the equations

PPL = Pr(HL|D1,D2) =
Pr(HL)Pr(D1,D2|HL)

Pr(HL)Pr(D1,D2|HL)+ [1− Pr(HL)]Pr(D1,D2|H0)

= Pr(HL|D1)Pr(D2|HL)
Pr(HL|D1)Pr(D2|HL)+ [1− Pr(HL|D1)]Pr(D2|H0)

,

(19.35)

where

Pr(HL)Pr(D1,D2|HL) ∝ Pr(HL|D1)Pr(D2|HL)

= Pr(HL|D1) ·
∫ r<0.5

r≥0
Pr(D2|r)Pr(r|HL) dr.

Vieland (1998) also relates PPL to the standard logarithm of odds (LOD) score (Barnard,
1949). The antilog of the LOD score is the frequentist likelihood ratio LR

LR = Pr(D|r = rsup)

Pr(D|r = 0.5)
, (19.36)

where rsup is the value of r which maximizes Pr(D|r). LR represents the relative
probabilities of the data D given the two different r values. The corresponding posterior
odds ratio is equal to the prior odds ratio times the likelihood ratio, or

Pr(r = rsup|D)
Pr(r = 0.5|D) =

Pr(r = rsup)

Pr(r = 0.5)
· Pr(D|r = rsup)

Pr(D|r = 0.5)
, (19.37)

and it represents the likelihood of the two different r values given the data. Consider the
alternative, composite posterior odds ratio,

Pr(r < 0.5|D)
Pr(r = 0.5|D) =

Pr(HL|D)
Pr(H0|D)

= Pr(HL)

Pr(H0)
· Pr(D|HL)

Pr(D|H0)
, (19.38)

with Pr(HL|D) defined in (19.34). LR does not involve the prior distribution of r , while
the composite odds ratio does. LR (or the odds ratio in (19.37)) does not use all the
available information in situations where a meaningful prior distribution can be specified,
while the composite odds ratio in (19.38) does.

PPL should not be confused with another quantity, which is the probability of actual
linkages among all significant results, or 1 minus the false positive rate (Genin et al.,
1995; Vieland, 1998; Southey and Fernando, 1998; Morton, 1955; 1998). If linkage is
declared whenever LOD > 3, then

Pr(HL|LOD ≥ 3) = Pr(HL)Pr(LOD ≥ 3|HL)
Pr(HL)Pr(LOD ≥ 3|HL)+ [1− Pr(HL)]Pr(LOD ≥ 3|H0)

= Pr(HL)(1− β)
Pr(HL)(1− β)+ [1− Pr(HL)] · α

, (19.39)

where α and β are Type I and Type II error probabilities. This quantity is called the
reliability in statistics (e.g. Stuart and Ord, 1987). Note that PPL is the posterior
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probability of linkage or the probability of linkage given the observed data, while
reliability is a frequentist quantity representing the long-run frequency or probability
of linkage given that a particular action has been taken (acceptance of linkage), which
depends on a preset value for α but not on the number of tests performed. Southey and
Fernando (1998) discuss this quantity in the context of multiple QTL mapping, and Weller
et al. (1998) attempt to control the false positive rate, or 1 minus the probability of linkage
given acceptance of linkage.

19.4.3 Bayesian QTL Mapping

19.4.3.1 General

Mapping QTLs is much more complex than mapping Mendelian disease genes, because
multiple QTLs, polygenic background and gene interactions may all act on the trait
under consideration, because the number of QTLs is unknown, and because genotypes
at the QTLs are not observed but rather phenotypes, pedigree and marker genotypes
are used to infer QTL genotypes. For the mapping of QTLs via Bayesian analysis,
we begin by defining the known and unknown quantities in this problem. The known
quantities include the vector of phenotypes (y) and the observed marker genotypes
(Mobs) at multiple linked markers on one or several chromosomes (and the pedigree).
The unknown quantities include the number of QTLs (q); the ordered genotypes of
all individuals at all QTLs (G); the ordered genotypes of all individuals at all markers
(M); QTL locations modeled as linkage status (�Q = {�i}i=1,...,q) (representing whether
QTL i is located on a particular marked chromosome (�i = c), or in the residual,
unmarked genome (�i = 0)); map positions (tQ = {ti(Q)}i=1,...,q); map positions of markers
if treated as unknown (conditional or unconditional on order) (tM ); allele frequencies at
the QTLs (pQ = {pi(Q)}i=1,...,q) and at the markers if treated as unknown (pM ); QTL
genotypic effects (additive effects a = {ai}i=1,...,q ; dominance effects d = {di}i=1,...,q ; gene
interactions); systematic environmental effects (b); parameters of the residual distribution
of the phenotypes (te); and parameters of the polygenic background variation (u).
Inferences about all unknown quantities are based on the joint posterior probability
density, or

Pr(q,G,M, �Q, tQ, tM,pQ,pM, a, d, b, te,u|y,Mobs)

∝ Pr(q)Pr(�Q|q)Pr(tQ|�Q, q)Pr(tM)Pr(pQ|q)Pr(pM)

Pr(G,M|q, �Q, tQ, tM,pQ, pM)Pr(Mobs|M)
Pr(a, d|pQ, q)Pr(b)Pr(te)Pr(u)Pr(y|G, a, d, b, te,u). (19.40)

Details on current implementations of the Bayesian analysis can be found in several
contributions (e.g. Heath, 1997; 1999; Hoeschele, 1999; Satagopan et al., 1996; Satagopan
and Yandell, 1996; Sillanpää and Arjas, 1998; 1999; Stephens and Smith, 1993; Stephens
and Fisch, 1998; Thomas et al., 1997; Thomas and Cortessis, 1992; Uimari and Hoeschele,
1997). In the posterior probability density (19.40) and in the list of unknowns in the
Bayesian QTL mapping problem, we have left out one set of unknowns of importance,
the number of alleles at each QTL. In all current implementations of the Bayesian
analysis, the number of alleles at a QTL is not treated as an unknown, but rather as
a predetermined number na, set equal to the extreme values of either na = 2 (biallelic
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QTL) or na = 2nf, with nf being the number of founders in the pedigree (e.g. Hoeschele
et al., 1997). Although the number of alleles should be treated as unknown, doing so adds
another level of complexity to the analysis. Next we describe briefly the most important
features of the sampling scheme, the prior distributions, the conditional distributions of
the knowns and the inferences.

Inferences about the unknowns are based on samples of all unknowns obtained from
the joint posterior distribution via Markov chain Monte Carlo MCMC algorithms (e.g.
Gilks et al., 1996). Groups of unknowns are sampled jointly and conditionally on all other
groups of unknowns. The sampling scheme depends somewhat on how the genotypes are
sampled (see Section 19.6). If genotypes are sampled one locus at a time, then a rough
outline of the sampling scheme is as follows:

1. For each marker locus (one locus at a time), sample ordered genotypes, map positions
(if treated as unknown) and allele frequencies (if treated as unknown).

2. For each QTL, sample linkage status and map position, additive and dominance
effects, ordered QTL genotypes and allele frequency.

3. Sample polygenic effects.

4. Sample classification effects and regression parameters.

5. Sample parameters of the error distribution of phenotypes.

6. Sample QTL number (i.e. attempt move to a different QTL number).

Most of these steps are either Metropolis–Hastings (MH) or Gibbs steps, while step (6)
requires a reversible jump step (e.g. Green, 1995; Heath, 1997; 1999; Hoeschele, 1999;
Satagopan and Yandell, 1996; Stephens and Smith, 1993). In some implementations, the
reversible jump steps are facilitated by proposing to add or drop a QTL unconditionally
on its genotypes, and by proposing QTL effects from their prior distributions, where small
effects are more likely than large effects.

19.4.3.2 Metropolis–Hastings Algorithm and the Composite Model Space Framework

Very briefly, the Metropolis–Hastings MH (e.g. Chib and Greenberg, 1995) algorithm
works as follows. Let θi be subvector i of unknowns. Its conditional distribution is
Pr(θi |θ−i , y,Mobs), where θ−i contains all unknowns except those in θi , which are
evaluated at their current sample values. Let x be a candidate for the new sample value
of θi drawn from a proposal or candidate generating distribution with probability density
q(x; θi). Proposal x is accepted with probability α(x; θi ) = min(1, R), where

R = Pr(x|θ−i , y,Mobs)q(θi; x)

Pr(θi |θ−i , y,Mobs)q(x; θi)
. (19.41)

If the proposal is accepted, the new sample vector is θi = x, else it is set equal to
the previous sample vector. As an example, q(x; θi ) is a univariate uniform or normal
distribution centered at the previous sample value and with its spread chosen by trial and
error to result in a suggested, moderate acceptance rate of, say, 15–40 % (to minimize
autocorrelations between sample values: too high an acceptance rate results from a very
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small spread, too low an acceptance rate from a high spread, and both lead to high
autocorrelations, as in the latter case the new sample value is often equal to the old one).
Note that the Gibbs sampler is a special case of the MH algorithm, where each sample
is accepted, as it is drawn directly from Pr(θi |θ−i , y,Mobs), which can be done easily if
this conditional distribution is standard and low-dimensional.

The MH algorithm is suitable for problems with fixed dimension of the parameter
space or problems with a fixed model, i.e. for QTL mapping models with a fixed
number of QTLs (usually a single QTL) and without epistasis. However, the number
of QTLs should be treated as an unknown, because this is a parameter of interest, to
avoid biases in the inference about QTL positions and effects that may occur in a single
QTL model when there are truly multiple linked QTL, and to improve detection power by
explaining more of the trait variability. Adding an additional QTL into a current model
increases the dimension of the parameter space, as there are additional parameters for QTL
position, effects and genotypes. The reversible jump algorithm of Green (1995; 2003) was
developed as a general extension of the MH algorithm for Bayesian model selection by
varying the dimension of the space of the unknowns. This algorithm has been successfully
applied to QTL mapping with an unknown number of QTLs with applications including
outbred populations (e.g., Heath, 1997; Uimari and Hoeschele, 1997; Thomas et al., 1997;
Uimari and Sillanpää, 2001; Yi and Xu, 2001; Narita and Sasaki, 2004). However, the
reversible jump algorithm is complicated, and consequently it can be difficult to design
effective move types (from the current model to one with a QTL added or dropped)
producing good mixing, and the computational demand can be high.

Fortunately, Godsill (2001; 2003) established the composite model space framework, a
modification of the product space approach of Carlin and Chib (1995). In this framework,
MCMC simulations are performed on a space of fixed dimension. Application of standard
Gibbs samplers to this space produces several Bayesian variable selection methods for
linear models, e.g. the method of Kuo and Mallick (1998) and the stochastic search
variable selection (SSVS) of George and McCulloch (1993; 1996; 1997), while the
application of MH algorithms produces reversible jump algorithms (see Godsill, 2001;
2003; Green, 2003; Yi, 2004 for details). Application of the composite model space
framework to QTL mapping is straightforward when only the markers are considered as
potential QTL positions. If the QTL positions are unknown, then the QTL model is still
a linear model conditional on a set of QTL positions. For this case, Yi (2004) provides a
general discussion about how to apply the composite model space framework to multiple
QTL mapping in inbred line crosses, and it should be equally useful when applied to
outbred populations.

Representing a QTL model as a linear regression model with each of Q regressors (xiq)
corresponding to a marker or QTL position, assuming for simplicity only one (additive)
effect per QTL (βq), and introducing a zero/one indicator variable for each effect (λq)
representing inclusion/exclusion in the model (as is commonly done in Bayesian variable
selection for linear models), we have

yi = µ+
Q∑
q=1

λqxiqβq + ei; ei ∼ (0, σ2).

The vector of unknown parameters (θ) includes the λq’s, the xiq’s (if nonmarker QTL
positions are allowed), the βq’s, µ, σ 2, and the QTL positions pq (if not restricted
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to markers). The number of QTL (Q) is fixed at a chosen value (see Yi, 2004 for a
discussion). For a given QTL model as specified by a set of λq values, we partition θ

into θλ=0 and θλ=1 corresponding to parameters excluded and included in the current
model, respectively, and with prior independence assumptions (about the parameters
at different QTL and other parameters) the parameter prior is partitioned into f (θ) =
f (θλ=0) · f (θλ=1), where f (θλ=0) is a “pseudoprior”. Because the parameters in θλ=0 do
not contribute to the likelihood function of the data, or f (y|θ) = f (y|θλ=1), the posterior
of θλ=0 equals its prior. Samplers, which simply update the model indicator variables
conditional on all parameters, require sampling from pseudopriors, and these samplers are
suboptimal as the pseudopriors do not contain current knowledge about the corresponding
parameters. Alternatively, λq and βq can be updated jointly using a Gibbs sampler, and in
a linear model such as marker regression, indicators λq can be sampled from their marginal
posterior with all parameters integrated out (Broman and Speed, 2002). While it is
therefore simple to design an efficient sampler for linear (marker) models, for QTL models
(with nonmarker QTL positions allowed) there is the added difficulty of having to generate
genotypes and position for a QTL currently not in the model. These unknowns are typically
sampled from their priors, which may lead to inefficient mixing. Yi (2004) provides some
discussion of this problem, and the reader should consult Godsill (2001; 2003) and Yi
(2004) for further discussion of alternative samplers for the composite model space.

Lastly, the prior chosen for the βq may influence the mixing of the sampler, and it
requires hyper-parameters to be fixed at prespecified values, estimated empirically, or
treated as additional unknowns (theoretically preferable but possibly causing convergence
problems). For a discussion of alternative priors and their relationship to standard model
selection criteria in the context of linear (fixed) models, see, e.g. Chipman et al. (2001).
Briefly, we can formulate a prior for all Q parameters in the maximal (full) model,
or f (β) = NQ(0, σ2	), coupled with an inverse gamma (IG) prior for σ2, or f (σ2) =
IG(ν/2, νξ/2), where in the absence of prior knowledge we can obtain a ‘noninformative’
prior for σ 2 by setting ν = 3 and ξ to the sample variance (or ν and ξ can be chosen such
that the prior assigns most of its probability to the interval between the variance under the
full model and the total sample variance). In this normal-inverse-gamma prior, the prior
for β is dependent on σ 2 and instead, we may set f (β) = NQ(0,	). The usual choices for
	 are c(X′X)−1 or cI, or a compromise where all or some of the off-diagonal elements
of X′X are set to 0. Frequently, priors of the form f (βλ, λ) = f (βλ|λ)f (λ) are used,
where βλ is of dimension Qλ = �qλq . Then f (βλ) = NQλ(0,	λ) with 	λ = c(X′λXλ)−1

or cIQλ. As noted by several authors (e.g. George and Foster, 2000), this prior provides
a consistent description of uncertainty in the sense that it is the conditional distribution
of the nonzero elements of β given λ when f (β) = NQ(0,	). For f (λ), usually an
independence prior of the form f (λq |w) = wQλ(1− w)Q−Qλ is chosen (see Yi, 2004;
Yi et al., 2005 for details on this prior in the context of multiple QTL mapping).
Another alternative prior specification is the SSVS prior f (β|λ) = NQ(0,DλRDλ) with
Dλ diagonal and its qth diagonal element equal to v0q when λq = 0 or 1 when λq = 1.
With R = cIQ, f (βq |λq) = λq · N(0, c)+ (1− λq) ·N(0, cv0q). The obvious problem
with any of the above priors is the necessary specification of values for the hyper-
parameters including c, v0q and w. Choices of values are discussed by various authors,
e.g. Chipman et al. (2001), who also discuss the connection between choices of values
for c and w and standard model selection criteria including BIC, AIC and RIC.
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19.4.3.3 Prior Distributions

Concerning the prior distributions, different types of unknowns are independent a priori,
as shown in (19.40). The prior distribution for the number of QTLs, q, is usually Poisson
with predetermined mean λ chosen to reflect the belief that there is a relatively small
number of QTLs, which can be separated from the polygenic background. The analysis is
performed for different values of λ to evaluate its effect on the number of QTLs detected.
The joint probability of the ordered genotypes (G,M) is discussed in Section 19.6. The
linkage indicators �i of different QTLs are independent a priori, Pr(�i = c) = tc/T , where
T is the total genetic length of the genome, tc is the length of marked chromosome c,
Pr(�i = 0) = 1−∑C

c=1 tc/T is the prior probability that QTL i is unlinked (i.e. located
in the unmarked portion of the genome), and C is the number of marked chromosomes in
the analysis. QTL positions, conditional on linkage status, are independent a priori, and
uniform on [0, tc] if �i = c. QTL allele frequencies are independent beta(αq, βq) with
αq = βq = 1 resulting in the U (0,1) distribution as a noninformative prior. Similarly,
allele frequencies at different markers are independent Dirichlet(α1, . . . , αm) for m alleles
and with αk = 1, k = 1, . . . , m, as an uninformative prior. Priors for b and te are standard
in the linear mixed model framework and under the assumption of normality where
te = [σ 2

e ] (e.g. Wang et al., 1993). Priors for the ai and di in a and d should be chosen
to reflect that QTLs with large effects are less likely than QTLs with small effects. Such
priors can be put either on the QTL effects themselves or on the QTL variances. For the
former, possible choices include independent truncated normal (on [0,∞]) or exponential
priors (Pong-Wong et al., 1999; Du and Hoeschele, 2000a). For the latter, independent
exponential priors can be placed on the additive and dominance variances of a QTL,
and from this prior a prior for the additive and dominance effects can be derived. More
specifically,

Pr(pQ, a, d|q) =
q∏
i=1

Pr(ai, di |pi)Pr(pi), (19.42)

where Pr(pi) is uniform as described above, and Pr(ai, di |pi) is derived from the
prior distribution of the QTL additive and dominance variances, Pr(σ 2

ai , σ
2
di), where

Pr(σ 2
ai , σ

2
di) = Pr(σ 2

ai)Pr(σ 2
di) and Pr(σ 2

ai ) = e−σ 2
ai
/λa /λa , λa is the mean of the expo-

nential distribution, and Pr(σ 2
di) = e−σ 2

di
/λd /λd . Next, given σ 2

ai and σ 2
di , there are four

sets of (xa, xd ) values which are equally likely: (xa, xd) = (σai , σdi), (−σai , σdi),
(σai , −σdi), and (−σai , −σdi). Therefore, the probability density of a particular set
is f (xa, xd) = 0.25f (σ 2

ai = x2
a , σ

2
di = x2

d )|∂(σ 2
ai , σ

2
di)/∂(xa, xd)|, where | · | is the Jaco-

bian of the transformation from (σ 2
ai, σ

2
di) to (xa, xd) = (σai , σdi). Then Pr(ai, di |pi) =

Pr(xa = ha(ai, di, pi), xd = hd(ai, di, pi))|∂(xa, xd)/∂(ai, di)|, where ha(·) and hd(·) are
deterministic functions obtained by solving xa =

√
2pi(1− pi)[ai + di(1− 2pi)] and

xd = 2pi(1− pi)di for ai and di given pi , and | · | is the Jacobian of the one-to-one
transformation from (xa, xd ) to (ai, di) for a given pi . Finally, we find that Pr(ai, di |pi) =
Pr(σ 2

ai = [ha(ai, di, pi)]
2, σ 2

di = [hd(ai, di, pi)]
2)[8p3

i (1− pi)3[aidi + d2
i (1− 2pi)]].

19.4.3.4 Modeling of Polygenic and QTL Effects

The residual polygenic variation can be described with an infinitesimal model by letting
u consist of a vector of additive polygenic effects and additive polygenic variance. Under
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the infinitesimal model, polygenic variation is assumed to be due to the very small
effects of many unlinked genes, and hence polygenic values have a continuous, usually
normal distribution. In inbred pedigrees with epistatic interactions involving dominance,
the covariance between relatives depends on many parameters, resulting in inaccurate
estimation and computational inefficiency (e.g. DeBoer and Hoeschele, 1993). Therefore,
a finite polygenic model (FPM) has recently been considered as an alternative to the
infinitesimal model. In an FPM, the distribution of polygenic values is discrete, and
polygenic variation is explained with n unmarked loci, which are unlinked and biallelic.
The FPM assumes additive gene action and a constant additive effect across loci, resulting
in the fitting of polygenic number (the number of plus or favorable alleles across loci that
an individual carries) instead of individual genotypes. Two versions of the FPM exist,
the model of Thompson and Skolnick (1977), expanded upon by Cannings et al. (1978)
and Lange (1997), and the model of Fernando et al. (1994). While the former model is
not consistent with Mendelian inheritance (an offspring inherits a random sample of size
n out of a pool of 2n alleles, not one allele per locus), in both models the conditional
independence of sibs and ancestors given parents does not strictly hold (Stricker and
Fernando, 1998).

Recently and with the advancement of MCMC and genotype sampling algorithms,
finite locus models (FLMs) fitting individual genotypes rather than polygenic number
have been investigated. These FLMs may include additive, dominance and two-locus
epistatic interactions. Furthermore, FLMs differ in the number of loci, the treatment of
additive, dominance and epistatic effects as constant or variable across loci, the number of
two-locus interactions, and the prior distributions of the effects (Du et al., 2000; Du and
Hoeschele, 2000a; Pong-Wong et al., 1999). Particularly in the presence of dominance
or epistasis, estimates of the genetic variance components have been found to depend on
the number of loci in the FLM, probably a small-sample problem, and this dependency
is affected by the prior distribution of effects and the genotype sampling scheme (Du and
Hoeschele, 2000a; Du et al., 2000; Pong-Wong et al., 1999). Modeling polygenic varia-
tion with an FLM seems more suitable in particular for linkage analysis, where an existing
QTL is allowed to become unlinked and hence a member of the group of polygenic loci.

Returning to the QTLs, a first alternative to the biallelic QTL model is a model with 2nf
alleles, where nf is the number of founders of the pedigree. Any Bayesian analysis, which
specifies the number of alleles and considers all possible genotype configurations on a
pedigree, may be referred to as a distribution Bayesian analysis, analogous to the distri-
bution log likelihood of Section 19.3.4. Alternatively, the Bayesian analysis may be based
on a model with 2n alleles, where n is the size of the pedigree, which have correlated
effects (as described in Section 19.3). This analysis may be described as the expectation
Bayesian method, analogous again to the expectation log likelihood of Section 19.3.4.
Allelic effects in the latter model can be sampled jointly and efficiently using peeling (see
Section 19.6) or data resampling (Garcia-Cortes et al., 1995; Garcia-Cortes and Sorensen,
1996). While the biallelic QTL model may seem less realistic than the others, given that
QTLs tend to occur in tight clusters, it greatly facilitates the incorporation of dominance
and epistatic effects in complex pedigrees.

19.4.3.5 Conditional Distributions of the Knowns

We begin with the distribution of the observed marker data conditional on a sample of
ordered marker genotypes. Pr(Mobs|M) is 1 if M is consistent with Mobs and 0 otherwise.
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Pr(y|G, a, d,b, te,u) is the penetrance function, which, conditional on the QTL geno-
types (G) and polygenic values (u), factors into a product over individuals, or

Pr(y|G, a, d,b, te,u) =
N∏
i=1

Pr(yi |Gi, a, d,b, te, ui). (19.43)

For a continuous trait (e.g. high-density lipoprotein (HDL) cholesterol level or protein
yield), the typical assumption is that

yi |Gi, a,d, b, te, ui ∼ N
(

x′ib+
q∑
k=1

w′kigk + ui, σ 2
e

)
, (19.44)

where gk = [ak, dk]
′, w′ki = [−1,−0.5], [0, 0.5], or [1,−0.5] corresponding to genotypes

qq, Qq (or qQ) and QQ at QTL k, ei is a residual, and σ 2
e is residual variance.

However, the assumptions of normality and homoskedasticity of residual variance may
not hold, and an analysis based on these assumptions is then not optimum (Coppieters
et al., 1998). A nonparametric QTL interval mapping approach for line crosses was
developed by Kruglyak and Lander (1995) and extended to unrelated half-sibships
(Coppieters et al., 1998). Performing a power transformation of phenotypes prior to
analysis may reduce the power of QTL detection (Demenais et al., 1986). Common power
transformations also have limited applicability. Therefore, George and Elston (1988)
proposed a generalized modulus power transformation, performed simultaneously with
QTL detection and estimation, capable of removing both skewness and kurtosis, and
inducing normality from a wide range of distributions, at the expense of estimating two
additional parameters. von Rohr and Hoeschele (2002) use an alternative approach, where
the normal distribution is replaced with a skewed student t distribution. This method
is based on Fernández and Steel (1998), who showed how to introduce skewness into
any continuous, unimodal and symmetric distribution. This approach, when applied to
t distributions, also requires the inclusion of two additional parameters or unknowns, one
for skewness and one for the Degrees of Freedom df of the t distribution.

Most of the properties of the multivariate normal distribution also hold for the
multivariate t distribution, except that uncorrelated random variables are not independent
for the multivariate t distribution. If all residual phenotypes were assigned to a single
multivariate t distribution, then the df parameter would not be estimable. The df parameter
is estimable if phenotypes are assigned to multiple (more than one) clusters, with the k
observations in a given cluster having a k-variate t distribution, and with the same df and
spread parameters across clusters. Observations in the same cluster may be uncorrelated
but are not independent. Observations in different clusters are independent. Lange et al.
(1989) and von Rohr and Hoeschele (2002) assign each residual phenotype to a different
cluster, i.e. residual phenotypes have univariate t distributions with the same df and spread
parameters, or

ei = yi − x′ib−
q∑
k=1

w′kigk − ui ∼ t1(0, σ 2
e , νe). (19.45)

Then the joint probability of the residual phenotypes, or the penetrance, still factors into
a product over individuals. When ei has a t distribution with νe df, then
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f (ei |σ 2
e , νe) = f (yi |Gi, a, d,b, ui, σ 2

e , νe) =
�

(
νe + 1

2

)
�
(νe

2

)
ν0.5
e π0.5σe

[
1+ e2

i

σ 2
e νe

]−0.5(νe+1)

,

(19.46)
and when ei has a skewed t distribution with skewness parameter γ , then

fγ (ei |σ 2
e , νe) =

2

γ + γ−1

[
f (eiγ )I(−∞,0) + f (eiγ−1)I(0,∞)

]

= 2

γ + γ−1
·

�

(
νe + 1

2

)
�
(νe

2

)
ν0.5
e π0.5σe

×
[(

1+ e2
i

σ 2
e νe

) (
γ 2I(−∞,0) + γ−2I(0,∞)

)]−0.5(νe+1)

, (19.47)

where I(−∞,0) = 1 if −∞ < ei ≤ 0 and 0 otherwise, and I(0,∞) = 1 if 0 < ei <∞ and 0
otherwise. To incorporate the skewed t distribution in the Bayesian analysis, the normal
penetrance function is replaced with the skewed t penetrance, the Gibbs-based sampling
steps for the regression parameters and classification effects are replaced with MH steps,
and additional MH steps for νe and γ are added (von Rohr and Hoeschele, 2002).
This MH-based scheme is anticipated to provide faster mixing than the alternative of
a Gibbs sampler with data augmentation. Data augmentation results from writing the
t distribution as the integral of a normal distribution for the residual phenotypes and a
gamma distribution for the missing data wi , or

f (ei |σ 2
e , νe) =

∫ ∞

0
f (wi |νe)f (ei |σ 2

e /wi) dwi. (19.48)

Inclusion of the missing data wi into the sampling scheme leads to standard distributions
for the regression and classification parameters, the residual variance, and for the wi (γ ),
which can be sampled from with Gibbs steps (e.g. Fernández and Steel, 1998).

When y follows some other, possibly discontinuous (e.g. binomial, multinomial or
Poisson) distribution, generalized linear (mixed) models can be used to replace the normal
penetrance function (McCullagh and Nelder, 1989; see also Chapter 18).

19.4.3.6 Bayesian Inference

Inferences about unknowns of interest are based on the (dependent) samples of the
unknowns obtained from their joint posterior distribution via an MCMC sampling
scheme. Typical inferences are obtained as follows. Pr(q|y,Mobs) q = 1, . . . , qmax, or the
probability of q QTLs on all marked chromosomes, is obtained by counting the number
of samples in which the number of QTLs with �i > 0 is q, divided by the total number
of samples. Pr(qc|y,Mobs) or the probability that there are qc QTLs on chromosome
c, or in a specific region of chromosome c, is obtained similarly. The probability that
interval Ic on chromosome c contains at least one QTL is obtained as the number of
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−| − − − | − − X − − | − − − − X − − − −| − − − | − − − | − −X − − | − − − − − | −   16000
−| − − − | − − X − − | − − − − X − − − −| − − − | − − − | − −X − − | − −X − − | −      2000
−| − − − | − − X − − | − − − − − − − − −| − − − | − − − | − −X − − | − − − − − | −        600
−| − − − | − − X − − | − − − − X − − − −| − − − | − − − | − − − − − | − −X − − | −      1000
−| − − − | − − X − − | − − − − − − − − − | − − − | − − − | − −X − − | − −X − − | −       400
−| − − − | − − 1 − − | − 0.95 − | − − − | − − − | − 0.95 − | − 0.17 − | −     Intervals
            −| − − − − − |2: 0.95, 1: 0.05 | − − − | − − − |1: 0.88, 2: 0.12| −   Regions
Chromosome: 2 QTL: 0.03; 3 QTL: 0.87; 4 QTL: 0.10

Figure 19.1 Number of samples (total of 20 000) with certain QTL patterns on a chromosome,
with vertical lines depicting (eight) marker locations and X indicating the presence of a QTL
in any of the seven marker intervals (lines 1–5); marginal posterior probabilities of a QTL in a
marker interval (line 6); marginal posterior probabilities of q (q = 1 or q = 2) QTLs in a region
(line 7); marginal posterior probabilities of q QTLs on the chromosome (line 8); marginal posterior
probabilities are estimated from sample counts.

samples with at least one QTL in this interval over the total number of samples. These
inferences are illustrated in Figure 19.1, which depicts results from a typical run for a
single chromosome. For example, in 16 000 out of 20 000 cycles, marker intervals 2, 3
and 6 contained QTLs; marker interval 2 contained a QTL in each sample, while marker
interval 3 contained a QTL in 95 % of all samples. With a (marginal posterior) probability
of 0.95, there are two QTLs in the region formed by marker intervals 2 and 3. With a
(marginal posterior) probability of 0.87, the chromosome contains three QTLs. Note that
in this analysis we did not allow for multiple QTLs in the same marker interval, although
in principle this could be done.

For any marker interval, region on a marked chromosome, marked chromosome or
marked genome we can obtain the marginal posterior mean and distribution of the additive
(and dominance, etc.) genetic variance explained by all QTLs in this region by summing,
in each cycle, the additive variances of all QTLs in the region and estimating mean
and distribution of these values. For unknowns such as overall (or chromosomal or
regional) QTL variance, polygenic variance, and residual variance, posterior variances and
correlations and highest posterior density regions can be estimated from the samples, and
the corresponding empirical marginal posterior distributions can be depicted. For marginal
posterior density plots, see, e.g. Uimari and Hoeschele (1997). If an unknown is sampled
from a standard conditional distribution (Gibbs sampler), its marginal density can be
estimated as the average density of the conditional distributions across cycles (referred to
as Rao–Blackwellization). If the sampling distribution is not standard, various techniques
are available for density estimation using the sample values for this unknown, e.g. average
shifted histograms (Scott, 1992). Marginal posterior densities are asymptotically normal,
so lack of normality indicates insufficient sample size. These quantities are Bayesian
counterparts of frequentist standard errors and confidence intervals, and are computed to
evaluate the precision of the inferences.

Why should a Bayesian approach be used for the linkage mapping of QTLs? Firstly,
because it accounts for all uncertainties in the system (e.g. unknown number of QTLs,
unknown genotypes, unknown QTL locations). Inferences about particular unknowns of
interest are obtained conditionally on the observed data (y,Mobs) but not on particular
values of any of the other unknowns (e.g. the additive genetic variance due to QTLs
on a particular chromosome does not depend on QTL number and positions). In
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addition to point estimates, marginal posterior distributions, which are exact small-sample
distributions, can be obtained for any unknown of interest, as well as posterior summary
statistics such as posterior variances and correlations. Secondly, the Bayesian mean
estimator of the QTL variance in a marker interval can be interpreted as a multiple
shrinkage estimator. Multiple shrinkage estimators have been shown to exhibit excellent
mean-squared error performance in other problems such as wavelet estimation (Clyde
et al., 1997). In Bayesian linkage analysis, multiple shrinkage occurs because, the mean
of the prior Poisson distribution of QTL number q is typically chosen to be much smaller
than the number of marker intervals, implying that a priori many marker intervals do
not contain a QTL. Moreover, QTL effects or variances are assumed to have exponential
or truncated normal distributions, with values near zero much more likely than large
values. Thirdly, Bayesian analysis provides a formal mechanism for the incorporation of
meaningful, biological prior information as discussed earlier.

The Bayesian analysis provides us directly with any desired probability statement,
conditional only on the observed data, from the joint posterior distribution of all unknowns.
Examples include the probability of any number of detectable QTLs on all marked
chromosomes, on a specific chromosome or in a specific chromosomal region, and the
probability of at least one QTL in a specific marker interval. Recently, there has been
some concern about the interpretation of QTLs (in a frequentist setting), which can be
summarized as follows. A stringent Type I error rate is a necessary but not sufficient
condition for most QTL findings to be real. This is so, because the proportion of false
positives among all QTL findings, or 1 minus the reliability, depends on Type I error rate,
Type II error rate or power, and the prior probability of the null hypotheses (a single null
hypothesis may state that a given marker interval is empty). This is shown in (19.39), as
reliability is also the probability that the QTL is real given a significant test. Moreover,
reliability is equal to t/(t + f ), where f is the expected number of false positives (prior
probability of null hypothesis× Type I error rate), and t is the expected number of true
QTLs detected (prior probability of alternative hypothesis× power of test). If power is
low, then the proportion of false positives may exceed the Type I error rate. Attempts to
take this relationship into consideration in frequentist analyses are difficult, because the
calculation of reliability seems infeasible due to too many assumptions pertaining to the
definition and prior probability of the null hypotheses and power, which in turn depend
on number and effects of QTLs. In the Bayesian analysis, there is no need a priori to
specify a null hypothesis, and it provides us directly with any desired probability (belief)
statement conditional only on the observed data, from the joint posterior distribution of
all unknowns.

For additional information on Bayesian analysis, see Chapter 20 as well as Box and
Tiao (1973) and Berger (1985).

19.5 DETERMINISTIC HAPLOTYPING IN COMPLEX PEDIGREES

Haplotyping in a pedigree refers to the reconstruction of haplotypes from observed
(marker) genotype data within the pedigree. It is an important computational step in
the QTL analysis of outbred, pedigreed populations (e.g. (19.15)). A consistent haplotype
configuration is an assignment of haplotypes to all individuals in the pedigree, which is
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consistent with all the observed genotype data and the pedigree structure. The maternal
and paternal haplotypes of an individual comprise its multilocus ordered genotype. For
large, complex pedigrees and with a large number of linked loci, the number of consistent
haplotype configurations is usually too large for an exhaustive search to be feasible.
Methods that are capable of handling a larger number of loci are not guaranteed to find
the most probable configuration (Lin and Speed, 1997).

Various algorithms for haplotyping in pedigrees have been developed. Some of these
algorithms are purely logical and rule-based (Wijsman, 1987; O’Connell, 2000; Tapadar
et al., 2000; Qian and Beckmann, 2002), while others are based on likelihood or
conditional probability computations (Lander and Green, 1987; Sobel and Lange, 1996;
Sobel et al., 1996; Lin and Speed, 1997; Thomas et al., 2000; Abecasis et al., 2002). The
rule-based procedures are deterministic and fast, and hence applicable to large pedigrees
and large numbers of linked loci, but they do not use the distance between markers and
are not suitable for situations with substantial amounts of missing data. The likelihood or
conditional probability–based algorithms are typically stochastic (Sobel and Lange, 1996;
Sobel et al., 1996; Lin and Speed, 1997; Thomas et al., 2000), and although they can be
applied to complex pedigrees, their computing time requirements can be unacceptable.

In the space of all consistent haplotype configurations on a pedigree (SACHC), typically
most configurations have very small probabilities conditional on the observed genotype
data, so that only a relatively small subset of configurations is relevant. Gao et al.
(2004) and Gao and Hoeschele (2006) developed a deterministic method that identifies
a subset of haplotype configurations with high conditional probabilities in SACHC. This
(approximate) method uses information from the closest informative flanking markers and
close relatives (parents, offspring). It is not guaranteed to find the most probable or the
true configuration. This conditional enumeration haplotyping method is briefly described
below.

We call the combination of a specific individual and a specific marker locus a person-
marker. The genotypes of some person-markers in nonfounders can be ordered on the
basis of their parents’ genotypes. Let U denote all remaining person-markers in a pedigree
with unordered heterozygous genotype. Assume that the size of U is t . Reconstructing a
haplotype configuration for the entire pedigree consists of assigning an ordered genotype
to each person-marker in U. Let {M1,M2, . . . ,Mt } be a specific order of the person-
markers in U. Let mi denote an ordered genotype assigned to person-marker Mi . The
joint probability of a haplotype configuration for U, (m1,m2, . . . , mt), conditional on the
observed data (D) is

Pr(m1, m2, . . . , mt |D) = Pr(m1|D)Pr(m2|m1,D) · · · Pr(mt |m1, . . . , mt−1,D). (19.49)

Let pi = Pr(mi |m1, . . . ,mi−1,D). Also, mi is one of the ordered genotypes m1
i and m2

i ,
where m1

i (m
2
i ) has the larger (smaller) conditional probability p1

i (p
2
i ) at person-marker

Mi , and pji = Pr(mji |m1, . . . , mi−1,D) for j = 1, 2, with p1
i ≥ 0.5 and pi ≤ p1

i . The

conditional probabilities (pji ) are calculated using information from informative flanking
markers in the individual and its parents and offspring. The conditional probability of the
haplotype configuration (m1,m2, . . . mt ) can then be written as

Pr(m1, m2, . . . , mt |D) =
t∏
i=1

pi.
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Let T denote the largest conditional probability of all haplotype configurations for U,
and let R denote the ratio of the conditional probability of haplotype configuration

(m1, m2, . . . , mt ) to T . For any k ≤ t , let Qk =
k∏
j=1

pj

p1
j

. Because pj ≤ p1
j and T ≥

t∏
i=1
p1
j

is very likely true, the following inequality is very likely to hold:

R = Pr(m1,m2, . . . , mt)

T
≤

t∏
j=1

pj

p1
j

≤ Qk. (19.50)

Given a relatively small threshold 10α(α < 0, e.g. α = −3), if we can find some k ≤ t
such that Qk ≤ 10α , then R ≤ 10α and Pr(m1, m2, . . . mt |D) is very small relative to T .
Then this configuration is deleted from SACHC.

Given a user-determined threshold λ for the conditional probabilities of ordered
genotypes at individual loci, and a threshold 10α for the conditional probabilities of
haplotype configurations (α < 0 and 10α < (1− λ)/λ), the conditional enumeration
method is implemented as follows: After the first i − 1 person-markers have been assigned
ordered genotypes, for each assignment combination pertaining to the i − 1 person-
markers, m1,m2, . . . , mi−1, we find the person-marker Mi with the highest conditional
probability p1

i among all remaining person-markers in U. We assign ordered genotypes
to person-marker Mi as described below (i = 1, 2, . . . , t):

1. When p1
i ≥ λ(λ ≥ 0.5; e.g. λ = 0.90), then assign only m1

i to person-marker M−i.
2. When p1

i < λ, then if assigning m2
i to person-markerMi produces Qi ≤ 10α , we only

assign m1
i ; otherwise, we retain both ordered genotypes, m1

i and m2
i , for person-marker

Mi .

After all person-markers in U have been processed with this algorithm, a set of
haplotype configurations for the pedigree has been retained, and a smaller subset of
configurations with highest likelihood can be obtained by eliminating additional config-
urations, if desired. When λ approaches 1, and α approaches −∞ (10αapproaches 0),
then the conditional enumeration haplotyping method approaches an exhaustive (exact)
enumeration method.

This new haplotyping method was shown to be faster and to provide more information
than existing methods (Gao et al., 2004; Gao and Hoeschele, 2006). Gao and Hoeschele
(2005) applied this method to the calculation of IBD matrices used in QTL analysis based
on variance-components models by summing over a subset of haplotype configuration with
high conditional probabilities instead of the exhaustive summation in (19.15). Simulated
pedigree data were analyzed with the variance-components QTL analysis of George et al.
(2000). The required IBD matrices were computed with our deterministic conditional
enumeration method and with the MCMC method implemented in Loki (Heath, 1997;
Thompson and Heath, 1999). Both methods gave essentially the same estimates of QTL
positions and variance components, while the deterministic method was computationally
much more efficient. It also allows the incorporation of linkage disequilibrium (LD)
using the method of Meuwissen and Goddard (2000; see Section 19.7.2), which is not
possible with Loki. The current implementation of the enumeration haplotyping method
(Gao et al., 2004; Gao and Hoeschele, 2006) does not allow for (substantial amounts of)
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missing marker data, for which we have work under way that also needs to consider LD
among dense markers in the founders of a pedigree.

19.6 GENOTYPE SAMPLING IN COMPLEX PEDIGREES

In this section, we consider the distribution of genotypes on a pedigree. In the most
general case, these genotypes are multilocus, ordered genotypes including linked markers
and QTLs. We are interested in obtaining genotype samples from the joint distribution of
the genotypes of all pedigree members and at all loci, conditional on observed genotype
data (on marker loci) (M) and phenotypic data (y). Such genotype samples are needed in
implementations of ML and Bayesian QTL mapping methods when applied to complex
pedigrees. The probability of a genotype configuration G (including the genotypes of all
pedigree members at all loci) on the pedigree is

Pr(G|M, y) ∝ Pr(G)Pr(M|G)f (y|G), (19.51)

where Pr(G) is the joint probability of all genotypes in genotype configuration G, Pr(M|G)
is 1 for any G that is consistent with M and 0 otherwise, and f (y|G) is the conditional
probability density of the phenotypes. Conditional on G, and assuming that polygenic
effects are either absent or also conditioned on G, the yi are independent, or

f (y|G) =
N∏
i=1

f (yi |Gi), (19.52)

where yi is the phenotype and Gi is the vector of ordered genotypes of individual i.
Furthermore, the probability of the multilocus genotypes can be factored into

Pr(G) =
Nf∏
i=1

Pr(Gi )

N∏
i=Nf+1

Pr(Gi |Gfi
,Gmi

), (19.53)

where Nf is the number of founders, and fi (mi) is the father (mother) of i. The probability
of the multilocus genotype of a founder can be factored into

Pr(Gi ) =
L∏
j=1

Pr(Gij ), (19.54)

where L is the number of loci and Pr(Gij ) is typically set equal to the Hardy–Weinberg
frequency of the genotype of individual i at locus j . The genotype probability for a
descendant is factored into the first-order Markov chain

Pr(Gi |Gfi
,Gmi

) = Pr(Gi1|Gfi1,Gmi1)

×
L∏
j=2

Pr
(
Gij |Gi(j−1),Gfij ,Gfi(j−1),Gmij ,Gmi(j−1)

)
. (19.55)
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As Gij represents an ordered genotype, its conditional probability can be further parti-
tioned into

Pr
(
Gij |Gi(j−1),Gfij ,Gfi(j−1), Gmij ,Gmi(j−1)

)
= Pr

(
H
f

ij |Hf

i(j−1), Gfij ,Gfi(j−1)

)
Pr
(
Hm
ij |Hm

i(j−1),Gmij ,Gmi(j−1)

)
, (19.56)

where Hf

ij (Hm
ij ) is the paternally (maternally) inherited allele of Gij .

The fully conditional distribution of Gij , given the observed data (M, y) and all other
genotypes (G−ij ), is obtained from the distribution of G in (19.51), using the factorizations
in (19.52) through (19.55), and retaining all terms that depend on Gij , or

Pr(Gij |G−ij ,M, y) =
[

Pr(Gij |Gi(j−1),Gfij ,Gfi(j−1), Gmij ,Gmi(j−1))

× Pr(Gi(j+1)|Gij ,Gfi(j+1),Gfij ,Gmi(j+1), Gmij )

×
∏
oi

Pr(Goij |Goi(j−1)
, Gij ,Gi(j−1), Gmoi j

,Gmoi (j−1))

× Pr(Goi(j+1)
|Goij , Gi(j+1),Gij ,Gmoi (j+1),Gmoi j

)

× Pr(Mij |Gij )f (yi |Gi )

]/∑
Gij

numerator, (19.57)

where oi is offspring o of individual i, and moi is the mate of individual i of the marriage
producing oi (note that the numerator extends over the entire right-hand side in (19.57)).

The conditional distribution of Gij , given the observed data (M, y) and all other
genotypes except those of i’s final offspring (ofi) at locus j , is also easily obtained
from the distribution of G in (19.51) by retaining all terms that depend on Gij and on
the Gofij of final offspring ofi (final offspring are offspring which are not parents). Then
in (19.57) the contribution of final offspring to the product over oi is replaced by∏

ofi

∑
Gofi j

[Pr(Gofij |Gofi(j−1), Gij ,Gi(j−1), Gmofi j
,Gmofi (j−1))

× Pr(Gofi(j+1)|Gofij ,Gi(j+1), Gij ,Gmofi (j+1), Gmofi j
)Pr(Mofij

|Gofij )f (yofi |Gofi
)].

(19.58)

The simplest genotype sampling scheme is a Gibbs sampler, which samples one
genotype (of one individual at one locus) from the univariate, fully conditional distribution
in (19.57), referred to as person-by-person and locus-by-locus sampling by Kong (1991).
This sampler often does not work (well), because transitions between certain subsets of
genotype configurations on a pedigree are performed infrequently. While the sampler
is theoretically irreducible for a biallelic locus, it can be reducible for loci with more
than two alleles (theoretical (practical) reducibility: from some genotype configuration,
certain other configurations can never (cannot in acceptable CPU time) be reached;
mating ??×?? → AB, 00, with parental genotypes missing, has two parental genotype
configurations: (A0, B0) and (B0, A0), with no transitions possible using the univariate
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Gibbs sampler). In animal populations with parents having multiple progeny, the univariate
Gibbs sampler is very sticky, and therefore modification (19.58) to (19.57) is performed.
While Janss et al. (1995b) perform marginalization with respect to final offspring only for
fathers (who typically have more offspring than mothers in animal populations), Du et al.
(2000) and Du and Hoeschele (2000b) marginalized the genotype sampling distribution
for fathers and mothers after observing stickiness of the sampler when mothers had 10
offspring on average.

A number of techniques have been proposed to obtain a genotype Gibbs sampler,
which is theoretically and practically irreducible, including blocking or joint sampling
of genotypes (Ott, 1989; Janss et al., 1995b; Jensen and Kong, 1996; Heath, 1997;
1999; Hoeschele, 1999), sampling with modified transmission probabilities (Sheehan and
Thomas, 1993), sampling from a series of distributions including the desired distribution
and others which allow faster mixing (heated companion chains or Metropolis-coupled
chains of Lin et al. (1993); simulated tempering of Geyer and Thompson (1995)),
and a hybrid algorithm mixing the Gibbs cycles with Metropolis jumping steps (Lin,
1995; 1996), requiring the identification of noncommunicating subsets of genotype
configurations in the sampling space of G using the method of Lin et al. (1994), which
fails in certain, not uncommon situations (Lin, 1996; Jensen, 1997). Joint sampling is most
general and most promising for the hardest problems (large complex pedigrees with loops
and substantial amounts of missing genotype data on linked loci). Ideally, the genotypes
of all individuals at all (linked) loci are sampled jointly, and different strategies to achieve
or move toward that goal are currently under investigation.

Joint sampling of genotypes is relatively simple to perform in two cases: joint sampling
of the genotype of a parent and its final offspring (Janss et al., 1995b; Du et al., 2000;
Du and Hoeschele, 2000b); and joint sampling of the genotypes on a pedigree without
loops at a single locus using peeling (Elston and Stewart, 1971; Fernando et al., 1993)
and ‘reverse peeling’ (Ott, 1989; Heath, 1997).

Joint sampling of genotypes for a pedigree without loops via reverse peeling is based
on partitioning the probability of genotype configuration G given observed data (y) via
the method of composition (Tanner, 1993), or

Pr(G|y) = Pr(G1|y)Pr(G2|G1, y)Pr(G3|G2,G1, y) . . .Pr(Gn|G1, . . . ,Gn−1, y)

= Pr(G1|y)Pr(G2|G1, y2, . . . , yn)

× Pr(G3|G2,G1, y3, . . . , yn) . . .Pr(Gn|G1, . . . ,Gn−1, yn). (19.59)

We sample from this distribution by first sampling G1 from its marginal distribution, then
G2 given G1, etc. Computation of the conditional probabilities in (19.59) is described
next for a pedigree without loops. For an arbitrary individual i, we can partition the joint
probability of the genotypes as follows:

Pr(G|y) ∝ Pr(G)Pr(y|G)
= [Pr(GA)Pr(yA|GA)Pr(Gi |GA)]f (yi |Gi)[Pr(GP |Gi)Pr(yP |GP )],

(19.60)

where Gi is genotype of individual i, GA (GP ) is the set of genotypes on all individuals
anterior (posterior) to i, and y is partitioned accordingly. Anterior (posterior) to i are all



656 I. HÖSCHELE

individuals connected to i through its parents and full-sibs (offspring and mates). Based
on this partitioning, we find the following marginal and partially conditional distributions
of Gi :

Pr(Gi |y)=
∑

GA

Pr(GA)Pr(yA|GA)Pr(Gi |GA)

f (yi |Gi)
∑
GP

Pr(GP |Gi)Pr(yP |GP )

 ,
Pr(Gi |GA, y)= [Pr(GA)Pr(yA|GA)Pr(Gi |GA)]f (yi |Gi)

∑
GP

Pr(GP |Gi)Pr(yP |GP )

 ,
Pr(Gi |GP , y)=

∑
GA

Pr(GA)Pr(yA|GA)Pr(Gi |GA)

f (yi |Gi)[Pr(GP |Gi)Pr(yP |GP )].

(19.61)

In peeling, the conditional probabilities in (19.61) are calculated in a particular order (a
‘peeling sequence’), for which all conditionals simplify such that each depends on the
genotypes of at most two other individuals in the same nuclear family (a nuclear family
consists of a pair of parents and their offspring). This computation is illustrated using the
pedigree (without loops) in Table 19.1.

For pedigree 1 (without loops), we partition Pr(G|y) as follows:

Pr(G|y) = Pr(G1|y)Pr(G2|G1, y)Pr(G6|G1,G2, y)Pr(G5|G1,G2, y)

× Pr(G7|G1,G2,G5,G6, y)Pr(G9|G1,G2,G5,G6,G7, y)

× Pr(G3|G1,G2,G5,G6,G7,G9, y)Pr(G4|G1,G2,G5,G6,G7,G9,G3, y)

× Pr(G8|G1,G2,G5,G6,G7,G9,G3,G4, y) (19.62)

= Pr(G1|y)Pr(G2|G1, y−1)Pr(G6|G1,G2, y−1,2,5)Pr(G5|G1,G2, y5)

× Pr(G7|G6, y−1,2,5,6)Pr(G9|G6,G7, y9)Pr(G3|G7, y3, y4, y8)

× Pr(G4|G7,G3, y4, y8)Pr(G8|G3,G4, y8).

Table 19.1 Example pedigree without loops.

Individual Father Mother

1 0 0
2 0 0
3 0 0
4 0 0
5 1 2
6 1 2
7 3 4
8 3 4
9 6 7
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This pedigree consists of three nuclear families, (1,2,5,6), (6,7,9) and (3,4,7,8). Individuals
6 and 7 are connectors, i.e. members of multiple nuclear families. Any family with only
one connector can be peeled. Therefore, a peeling sequence for this pedigree starts either
with the first or the last family. Here we start with the last family, (3,4,7,8). Then,
conditional probabilities are computed in the reverse order of (19.62). Specifically, we
obtain

Pr(G8|G3,G4, y8) ∝ p(G8|G3,G4)f (y8|G8) ∀ G3,G4,G8,

Pr(G4|G7,G3, y4, y8) ∝ p(G4)f (y4|G4)p(G7|G3,G4)

×
∑
G8

Pr(G8|G3,G4, y8) ∀ G3,G4,G7,

Pr(G3|G7, y3, y4, y8) ∝ p(G3)f (y3|G3)
∑
G4

Pr(G4|G7,G3, y4, y8) ∀ G3,G7;

(19.63a)

at the end of family store for connector 7,

p(G7|y3, y4, y8) =
∑
G3

Pr(G3|G7, y3, y4, y8) ∀ G7

Pr(G9|G6,G7, y9) ∝ p(G9|G6,G7)f (y9|G9) ∀ G6,G7,G9

Pr(G7|G6, y−1,2,5,6) ∝ p(G7|y3, y4, y8)f (y7|G7)
∑
G9

Pr(G9|G6,G7, y9) ∀ G6,G7;

(19.63b)

at the end of family store for connector 6,

p(G6|y−1,2,5,6) =
∑
G7

Pr(G7|G6, y−1,2,5,6) ∀ G6

Pr(G5|G1,G2, y5) ∝ p(G5|G1,G2)f (y5|G5) ∀ G1,G2,G5

Pr(G6|G1,G2, y−1,2,5) ∝ p(G6|y−1,2,5,6)p(G6|G1,G2)f (y6|G6) ∀ G1,G2,G6

Pr(G2|G1, y−1) ∝ p(G2)f (y2|G2)
∑
G5

Pr(G5|G1,G2, y5)

×
∑
G6

Pr(G6|G1,G2, y−1,2,5) ∀ G1,G2

Pr(G1|y) ∝ p(G1)f (y1|G1)
∑
G2

Pr(G2|G1, y−1) ∀ G1, (19.63c)

where Pr(·) denotes a conditional probability in (19.62), and p(·) denotes Hardy–
Weinberg, transmission or other intermediate probabilities of genotypes. Sampling from
these probabilities is performed in the reverse order of (19.63a–c).

A pedigree with loops is not peelable in the sense that a peeling sequence with only
one connector for each nuclear family cannot be found. Some conditional sampling
probabilities will then depend on the genotypes of more than two individuals. For such a
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Table 19.2 Example pedigree with
inbreeding loop.

Individual Father Mother

1 0 0
2 0 0
3 1 2
4 1 3

pedigree, after peeling a number of nuclear families, a core of unpeelable families remains,
with each family containing more than one connector. There are inbreeding loops and
marriage loops. The former exist when there are inbred individuals in the pedigree, and
the latter exist when several individuals from one family are mated with individuals
from another family. The pedigree in Table 19.2 represents an inbreeding loop, while
the pedigree in Table 19.3 represents a marriage loop, which are common in livestock
species with large, extended families. An optimal peeling sequence can be found with
the method of Fernández and Fernando (2002), which uses algorithms for determining an
optimal order of elimination in sparse systems of equations. Given an optimal sequence,
the conditional sampling probabilities will depend on the genotypes of a minimal number
of individuals, but this approach is not feasible in large pedigrees with complex loops.
Therefore, other approaches are taken.

The pedigree in Table 19.3, e.g. consists of four nuclear families, (1,2,5∗,6∗), (3,4,7∗,8∗),
(5∗,8∗,9) and (7∗,6∗,10), where connectors are marked with ∗. Note that if the genotype
of individual 5 (or 6, 7 or 8) was known, the pedigree would be peelable with one
connector per nuclear family. In approximate peeling via loop cutting (e.g. Wang et al.,
1996), one individual (e.g. 5) is selected, and the pedigree is modified such that individual
5 in family (5,8,9) is replaced with 5′, an individual with the same phenotype as 5, but
unrelated to it. With this change the pedigree becomes peelable; however, likelihood
evaluation based on peeling of the modified pedigree is approximate. To improve the
degree of approximation, Wang et al. (1996) suggest several strategies, including the
introduction of artificial families rather than individuals into the pedigree to break loops
(here family (1′,2′,5′,6′) rather than just 5′), which is shown to be equivalent to iterative

Table 19.3 Example pedigree with
marriage loop.

Individual Father Mother

1 0 0
2 0 0
3 0 0
4 0 0
5 1 2
6 1 2
7 3 4
8 3 4
9 5 8

10 7 6
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peeling. Genotype sampling can be performed exactly by iterative peeling, followed by an
MH step using the distribution of the sample as a proposal probability and the probability
of the genotype sample under the exact pedigree (Fernández et al., 2001). Alternatively,
the genotypes of different individuals can be fixed (treated as known) in different cycles
of sampling, with individuals being selected such that all loops are broken (Hoeschele,
1999; Heath, 1999). In the example, in one cycle the genotype of individual 5 is fixed, in
another that of 6, then that of 7, etc., so that the genotypes of all individuals are sampled,
but not in each cycle. It appears that this scheme cannot be guaranteed to be irreducible
for loci with more than two alleles.

An alternative to genotypic peeling is allelic peeling. To derive allelic peeling, we first
consider the anterior and posterior genotype probabilities of individual i (Fernando et al.,
1993). From (19.61), the anterior (A) and posterior (P ) probabilities are

A(Gi) = Pr(yA,Gi) =
∑
GA

Pr(GA)Pr(yA|GA)Pr(Gi |GA),

P (Gi) = Pr(yP |Gi) =
∑
GP

Pr(GP |Gi)Pr(yP |GP ). (19.64)

Assuming temporarily that there are no full-sibs (i.e. that each nuclear family contains
only one offspring), the anterior set of genotype Gi can be partitioned into anterior sets
for the two meioses or alleles that Gi is comprised of, paternal meiosis Qfi and maternal
meiosis Qmi , so that A(Gi) = A(Qfi )A(Qmi ) as shown below, where f and m are the
parents of i, and A(Qfi ) is the anterior probability of the paternal meiosis of individual i,
Q
f

i . Formulae for recursive calculation of A(Gi) and P(Gi) for a pedigree without loops
were given by Fernando et al. (1994). Their anterior probability can be rewritten as (in
the absence of full-sibs)

A(Gi) =
[∑
Gf

A(Gf )f (yf |Gf )p(Qfi |Gf )
]∑

Gm

A(Gm)f (ym|Gm)p(Qmi |Gm)


= Pr(y
A
f

i

,Q
f

i )Pr(yAm
i
,Qmi ) = A(Qfi ) · A(Qmi ), (19.65)

where Afi represents the set of all meioses anterior to the paternal meiosis of i or Qfi ,
and y

A
f

i

is the set of all phenotypes pertaining to individuals with genotypes consisting

of meioses, which are anterior to Qfi . Similarly, the posterior probability of Gi can be
rewritten as

P(Gi) =
∏
j

Pij (Gi) =
∏
j

Pr(yij |Gi)

=
∏
j

0.5[Pr(yij |Qij = Qfi )+ Pr(yij |Qij = Qmi )]

=
∏
j

0.5[Pji(Q
f

j = Qfi )+ Pji(Qfj = Qmi )], (19.66)
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where j is an offspring of i (we assume here that i is a father), yij is the set of phenotypes
of all individuals posterior to i through offspring j (including the other parent of j ),
Pji(Q

f

j = Qfi ) denotes the posterior probability of the meiosis ji or Qfj (the paternal

meiosis of j ), with Qfj evaluated at Qfi . Note that for equation (19.66) to hold we are

assuming that Pr(Qfj ⇐ Q
f

i ) = Pr(Qfj ⇐ Qmi ) = 0.5, which would be straightforward to
generalize.

Formulae for recursive calculation of A(Qfi ) and Pis(Q
f

i ) for a pedigree without loops
are obtained next. Let s and d denote father and mother of i. The set of meioses anterior
to Qfi includes Qfs and Qms , all meioses anterior to Qfs , all meioses anterior to Qms , and
all meioses posterior to Qfs and Qms except for those meioses through i. Then

A(Q
f

i ) =
∑
Q
f
s

[∑
Q
A
f
s

Pr(Q
A
f
s
)Pr(y

A
f
s
|Q
A
f
s
)Pr(Qfs |QA

f
s
)

×
∑
Qms

[∑
QAms

Pr(QAms
)Pr(yAms |QAms

)Pr(Qms |QAms
)Pr(ys |Qfs ,Qms )Pr(Qfi |Qfs ,Qms )

×
∏

o∈Cs,o �=i

[∑
Q
f
o

Pr(Qfo |Qfs ,Qms )Pos(Qfo )
]]]

=
∑
Q
f
s

[
A(Qfs )

∑
Qms

[
A(Qms )Pr(ys |Qfs ,Qms )Pr(Qfi |Qfs ,Qms )

×
∏

o∈Cs,o �=i

[∑
Q
f
o

Pr(Qfo |Qfs ,Qms )Pos(Qfo )
]]]

= 0.5

[
A(Qfs = Qfi )

∑
Qms

[
A(Qms )f (ys |Qfs ,Qms )

×
∏

o∈Cs,o �=i
0.5

[
Pos(Q

f
o = Qfs )+ Pos(Qfo = Qms )

]]

+A(Qms = Qfi )
∑
Q
f
s

[
A(Qfs ) · f (ys |Qfs ,Qms )

×
∏

o∈Cs,o �=i
0.5

[
Pos(Q

f
o = Qfs )+ Pos(Qfo = Qms )

]]]
, (19.67)

where Cs is the set of all offspring of s, and A(Qmi ) is defined analogously to (19.67).
Note that A(Qfs = Qfi ) denotes that the anterior probability of meiosis Qfs is evaluated at
Q
f
s = Qfi . From (19.67), the anterior probability ofQfi can be computed once the anterior

probabilities of Qfs and Qms and the posterior probabilities of the meioses pertaining to
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all offspring of s other than i have been computed. Note that the last equality in (19.67)
again only holds as a special case, where Pr(Qfi ⇐ Q

f
s ) = Pr(Qfi ⇐ Qms ) = 0.5, and

represents the average of the joint probabilities of the meioses anterior to Qfi and of Qfi
conditional on Qfi = Qfs and on Qfi = Qms , respectively.

The set of meioses posterior to meiosis is, or Qfi , includes all meioses anterior to
meiosis id or Qmi , all paternal (i is father) or maternal (i is mother) meioses of the
offspring of i, and all meioses posterior to the latter. Then, assuming that i is a father,
e.g.

Pis(Q
f

i ) =
∑
Qm
i

∑
QAm

i

Pr(QAm
i
)Pr(yAm

i
|QAm

i
)Pr(Qmi |QAm

i
)

× Pr(yi |Qfi ,Qmi )
∏
o∈Ci

∑
Q
f
o

Pr(Qfo |Qfi ,Qmi )Pr(yPoi |Qfo )

=
∑
Qm
i

A(Qmi )Pr(yi |Qfi ,Qmi )
∏
o∈Ci

∑
Q
f
o

Pr(Qfo |Qfi ,Qmi )Pr(yPoi |Qfo )

=
∑
Qm
i

A(Qmi )Pr(yi |Qfi ,Qmi )
∏
o∈Ci

0.5[Poi(Q
f
o = Qfi )+ Poi(Qfo = Qmi )],

(19.68)

where the last equality again holds only as a special case.
For genotypic reverse peeling, the conditional genotype probabilities in (19.59) are

computed based on a genotypic peeling sequence for the nuclear families comprising
the pedigree. The joint probability of all meioses in a pedigree can be partitioned
analogously to (19.59), and the resulting conditional probabilities of the meioses can be
computed using a peeling sequence for nuclear meiosis groups. A nuclear meiosis group
consists of the two meioses of a father (mother) and all paternal (maternal) meioses of its
offspring. The two meioses of an individual, which has a phenotype but no offspring, also
form a nuclear meiosis group. Consider the example pedigree in Table 19.4 and assume
that individuals 8 and 9 have phenotypes. This pedigree consists of nine nuclear meiosis
groups, and in a particular peeling sequence, these are (3f , 3m, 6f ∗), (4f , 4m, 6m∗),
(6f , 6m, 8m∗), (8f ∗, 8m), (7f , 7m, 9m∗), (9f ∗, 9m), (2f , 2m, 5m∗), (5f ∗, 5m, 8f , 9f ),

Table 19.4 Example pedigree for allelic peeling.

Individual Father Mother Meioses

1 0 0 1f , 1m
2 0 0 2f , 2m
3 0 0 3f , 3m
4 0 0 4f , 4m
5 1 2 5f , 5m
6 3 4 6f , 6m
7 0 0 7f , 7m
8 5 6 8f , 8m
9 5 7 9f , 9m
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(1f , 1m, 5f ), where connector meioses are marked with∗. Conditional probabilities are
computed in this sequence, e.g., for meiosis group (3f , 3m, 6f ∗),

Pr(Qm3 |Qf3 ,Qf6 , y3) ∝ p(Qm3 )f (y3|Qf3 ,Qm3 )p(Qf6 |Qf3 ,Qm3 )

=


0.5p(Qm3 )f (y3|Qf3 ,Qm3 ) ∀ Qf3 = Qf6
0.5p(Qm3 = Qf6 )f (y3|Qf3 ,Qm3 = Qf6 ) ∀ Qf3 �= Qf6 ,Qm3 = Qf6
0 ∀ Qf3 �= Qf6 ,Qm3 �= Qf6

,

Pr(Qf3 |Qf6 , y3) ∝ p(Qf3 )
∑
Qm3

p(Qm3 )f (y3|Qf3 ,Qm3 )p(Qf6 |Qf3 ,Qm3 )

=


0.5p(Qf3 = Qf6 )
∑
Qm3

p(Qm3 )f (y3|Qf3 = Qf6 ,Qm3 ) ∀ Qf3 = Qf6

0.5p(Qf3 )p(Q
m
3 = Qf6 )f (y3|Qf3 ,Qm3 = Qf6 ) ∀ Qf3 �= Qf6 ;

(19.69a)

at end of meiosis group store for connector 6f ,

p(Q
f

6 |y3) = 0.5p(Qf3 = Qf6 )
∑
Qm3

p(Qm3 )f (y3|Qf3 = Qf6 ,Qm3 )

+
∑

Q
f

3 �=Qf6

0.5p(Qf3 )p(Q
m
3 = Qf6 )f (y3|Qf3 ,Qm3 = Qf6 )∀ Qf6 ;

(19.69b)

for meiosis group (9f ∗, 9m),

Pr(Qm9 |Qf9 , y9, y7) = p(Qm9 |y7)f (y9|Qf9 ,Qm9 ) ∀ Qf9 ,Qm9 ; (19.69c)

at end of this meiosis group store for connector 9f ,

p(Q
f

9 |y9, y7) =
∑
Qm9

p(Qm9 |y7)f (y9|Qf9 ,Qm9 ) ∀ Qf9 ; (19.69d)

and for meiosis group (1f , 1m, 5f ),

Pr(Qf5 |Qf1 ,Qm1 , y−1) = p(Qf5 |y−1)p(Q
f

5 |Qf1 ,Qm1 )

=
{

0.5p(Qf5 |y−1) ∀ Qf5 = Qf1 or Qf5 = Qm1
0 otherwise,

Pr(Qm1 |Qf1 , y) = p(Qm1 )f (y1|Qf1 ,Qm1 )
∑
Q
f

5

p(Q
f

5 |y−1)p(Q
f

5 |Qf1 ,Qm1 )

= p(Qm1 )f (y1|Qf1 ,Qm1 )0.5[p(Qf5 = Qf1 |y−1)

+ p(Qf5 = Qm1 |y−1)] ∀ Qf1 ,Qm1 ,
Pr(Qf1 |y) = p(Qf1 )

∑
Qm1

p(Qm1 )f (y1|Qf1 ,Qm1 )
∑
Q
f

5

p(Q
f

5 |y−1)p(Q
f

5 |Qf1 ,Qm1 )
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= p(Qf1 )
∑
Qm1

p(Qm1 )f (y1|Qf1 ,Qm1 )0.5[p(Qf5 = Qf1 |y−1)

+ p(Qf5 = Qm1 |y−1)] ∀ Qf1 . (19.69e)

Both genotypic and allelic peeling, as described above, do not work for pedigrees
with loops. Moreover, allelic peeling does not work for pedigrees with full-sibs, that
is to say, the presence of full-sibs creates loops for allelic peeling. For illustration,
consider father 1 (1f , 1m), mother 2 (2f , 2m), and their joint offspring 3 (3f , 3m)
and 4 (4f , 4m), which have phenotypes. This pedigree consists of four nuclear meiosis
groups, (1f , 1m, 3f ∗, 4f ∗), (2f , 2m, 3m∗, 4m∗), (3f ∗, 3m∗) and (4f ∗, 4m∗), and each
group contains more than one connector, hence allelic peeling cannot be performed.
Earlier results such as (19.65) do not hold in the presence of full-sibs. Iterative genotypic
peeling (Janss et al., 1995a; Kerr and Kinghorn, 1996) provides an approximate approach
to peeling in pedigrees with loops. Thallmann et al. (2001a,b) presented allelic peeling
formulae in matrix notation, and Thallmann et al. (2001b) proposed iterative allelic peeling
for pedigrees with full-sibs and loops. In the presence of full-sibs, it is expected that
the iterative allelic peeling algorithm often produces results that are very close to the
exact calculation. As pointed out by Thallmann et al. (2001b), allelic peeling produces
exact results unless at least two full-sibs in a nuclear family have ambiguous ordered
genotypes, and (nearly) exact results if one of the parents has a known unordered genotype.
Computational efficiency is greatly improved by allelic peeling relative to genotypic
peeling: Assuming a pedigree without full-sibs, for most calculations in allelic peeling,
the number of computing operations is proportional to α2, where α is the number of
alleles, while it is proportional to (α2)3 = α6 for genotypic peeling.

An alternative to genotype sampling based on genotypic or allelic peeling is descent
graph sampling. With genotypic or allelic peeling, we sample on the space of genetic
descent states, which specify the paths of gene flow and actual founder alleles dropped
down each path. Thompson (1994) suggested that a better (smaller) sampling space is that
of descent graphs (also referred to as segregation patterns or sets of meioses indicators).
Consider the example pedigree in Table 19.5 with partial genotype data, where {·} denotes
an observed, unordered genotype and {00} a missing genotype.

A particular descent graph for this pedigree can be represented graphically as shown
in Figure 19.2, where pairs of circles represent pairs of alleles of individuals (individuals
1 and 2 at the top, 3 to 5 below and 6 at the bottom), and arrows indicate the gene flow.
A numerical representation of this descent graph is [0,0,0,1,0,0], pertaining to the alleles
in descendants 3, 4 and 6. A value of 0 (1) indicates grandpaternal (grandmaternal)

Table 19.5 Example pedigree with partial genotype data.

Individual Father Mother Observed genotype

1 0 0 {00}
2 0 0 {00}
3 1 2 {12}
4 1 2 {12}
5 0 0 {00}
6 4 5 {11}
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Figure 19.2 Descent graph for the pedigree in Table 19.5.

inheritance. Computationally, a descent graph can be stored and manipulated most
efficiently using bit representation, with one 32-bit integer word encoding the meiosis
indicators of 16 individuals, as suggested by Tier and Henshall (2001). For single (Tier
and Henshall, 2001) or multiple unlinked loci (Du and Hoeschele, 2000a) with no genotype
information available, genotype sampling can be performed by proposing small changes
to the founder alleles and/or the descent graph in each cycle, and accepting or rejecting
these in an MH step. Changes to the founder alleles are proposed by resampling a few
alleles according to allele frequencies, and changes to the descent graph are proposed by
swapping a few inheritance states. Typically, many MH steps would be performed before
other unknowns are updated.

When genotype data are available as in the example pedigree, the goal is to obtain many
descent graph samples, which are consistent with the observed data. Given a complete
descent graph (a descent graph with each meiosis indicator specified), Sobel and Lange
(1996) propose an algorithm to determine the founder origin of each meiosis in the
pedigree and to obtain a list of permissible alleles for each founder meiosis. The genotype
elimination algorithm of Lange and Goradia (1987) is based on checking the consistency
of genotypes within nuclear families. In a pedigree without loops, repeated processing
of the set of nuclear families eliminates all inconsistent genotypes and creates for each
individual a list of consistent (with observed genotype data) genotypes. From the genotype
lists, lists of consistent alleles for each meiosis in the pedigree can be obtained. Genotype
elimination can be used to determine whether a descent graph is consistent with the
observed genotype data. Du and Hoeschele (2000b) modify genotype elimination so that
every inconsistent, complete or incomplete descent graph is detected in a pedigree without
loops (an incomplete descent graph has some but not all meiosis indicators specified).
These authors also provide two modifications of genotype elimination, one being more
efficient computationally and the other also eliminating more inconsistent genotypes in
the presence of loops. Lastly, Du and Hoeschele (2000b) describe an allele elimination
algorithm which is based on checking the consistency of alleles within each nuclear
meiosis group and creates for each meiosis a list of alleles directly. Allele elimination is
computationally more efficient than genotype elimination and is identical to the method
of Sobel and Lange (1996) for a complete descent graph, but it does not detect every
illegal, incomplete descent graph, even in a pedigree without loops.

Sobel and Lange (1996) presented a descent graph sampler for pedigrees with partial
genotype data, where meiosis indicators are sampled from their marginal distribution
(not conditional on genotypes of the founders) using a Metropolis sampler with block-
updating based on half- or full-sib relationship and with multiple updating steps through
illegal transmission patterns to achieve an irreducible chain. Descent graph samplers,
which perform meiosis grouping based on genetic relationship and observed genotype
data to produce groups with very small descent graph spaces given observed data, and
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block-updating should improve mixing by allowing larger updates relative to the sampler
of Sobel and Lange (Stricker et al., 2002).

19.7 FINE MAPPING OF QUANTITATIVE TRAIT LOCI

19.7.1 Fine Mapping Using Current Recombinations

Initial genome-wide linkage analysis typically assigns a QTL to a 10–20 cM region. To
further reduce the region of likely QTL location using current recombinants, additional
markers need to be placed in the initial region at, say, 0.5–2 cM intervals. Such an
approach utilizes recombinant chromosomes from a heterozygous parent and has been
termed the chromosome dissection method (Thoday, 1961; Soller and Andersson, 1998).
Considering QTL position refinement in large half-sib families existing in some species
(e.g. dairy cattle, fish, trees) by typing offspring, which are recombinant for the original
marker bracket with additional markers, Thaller and Hoeschele (2000) proposed simple
statistics for assigning a QTL to a marker subinterval of 1–5 cM using contrast mapping
and substitution mapping. Simple statistics were proposed, because the goal was to assign
a QTL to a subinterval within the original interval, but not to obtain a position estimate
within that subinterval, due to the conjecture that such an estimate would be rather
inaccurate.

Offspring are assigned to haplotype groups based on the subinterval containing the
recombination event in their paternal haplotype (the father is the common parent). For
contrast mapping, the contrast for a particular marker subinterval is obtained as the
difference in average phenotype between all haplotype groups with grandpaternal origin
of the subinterval and those with grandmaternal origin. The largest contrast is expected
for the subinterval containing the QTL, and this approach is equivalent in power to sliding
three-marker regression of haplotype group means (or individual phenotypes) on paternal
(or maternal if mother is the common parent) marker alleles (Thaller and Hoeschele,
2000). Confidence in the identified subinterval was evaluated by bootstrapping (Thaller
and Hoeschele, 2000).

In substitution mapping, the occurrence of a certain pair of haplotypes is sufficient
for QTL assignment to a specific subinterval, if the pair of haplotypes has a certain
segregation status combination. Offspring in the case of dairy cattle are sons of a father
with many daughters, which are genotyped to determine whether a son is segregating
(i.e. heterozygous) at the QTL. Assuming that the son did not inherit the mutant QTL
allele from its mother, segregation indicates that the QTL allele was inherited from its
father. Let ‘1’ indicate a marker allele linked with the mutant QTL allele and ‘0’ a marker
allele linked with the normal QTL allele in the father. Consider two sons with paternal
haplotypes 111000 and 000111. Both are recombinant in subinterval 3. If both sons are
not segregating (i.e. did not inherit the mutant QTL allele from the father), then the QTL
can be assigned to subinterval 3 (Thaller and Hoeschele, 2000).

19.7.2 Fine Mapping Using Historical Recombinations

Positional cloning or candidate positional cloning requires the assignment of a gene to a
region of 0.3 cM or less (Falconer and Mackay, 1996), which will often not be feasible
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with chromosome dissection methods due to the limited number of current recombinations
in livestock or human populations. Positional cloning of monogenic diseases has been
successful after assignment of the gene to such a small region by methods utilizing
historical recombinations or Linkage Disequilibrium LD (more precisely, gametic phase
disequilibrium: Falconer and Mackay, 1996; Crow and Kimura, 1970). For a (statistical)
description of LD, see Weir (1996), and for simple disequilibrium measures and their
application to the fine mapping of monogenic diseases, see Devlin and Risch (1995). For
details on association analyses between a binary trait and genotype, see Chapter 34.
There are different types of LD, and LD is influenced by multiple factors (such as
selection, admixture, genetic drift, mutation, migration, coancestry, population expansion;
e.g. Xiong and Guo, 1997). LD fine-mapping methods assume that LD is primarily due to
the introduction of a variant on an ancestral haplotype via mutation (or migration), which
is partially preserved in descendants of the current generation.

For linkage mapping, pedigree information is available on all members of the pedigree,
except for founders which are assumed to be unrelated, and marker and phenotype data
may be available across multiple generations. For fine mapping using historical recombi-
nations, marker and phenotypic data are available only on the current generation(s), and
there is no pedigree information relating current generation individuals or haplotypes back
to one or multiple ancestral haplotypes carrying a unique, mutant trait allele. Similar to
the first linkage mapping methods, the earliest LD methods used single-marker statistics.
More recent methods utilize multiple linked markers (e.g. Terwilliger, 1995; Xiong and
Guo, 1997; McPeek and Strahs, 1999; Service et al., 1999; Lam et al., 2000; Meuwissen
and Goddard, 2000; 2001; Morris et al., 2000; Farnir et al., 2002; Garner and Slatkin,
2002; Liu et al., 2001; Meuwissen et al., 2002). Some methods consider, to some extent,
the evolutionary history of the population (e.g. McPeek and Strahs, 1999; Xiong and Guo,
1997; Lam et al., 2000; Service et al., 1999), while others do not (e.g. Terwilliger, 1995;
Meuwissen and Goddard, 2000; 2001; Morris et al., 2000; Liu et al., 2001). Modeling
the population history allows some haplotypes to be more recently related than others.
Assuming independent recombinational histories of all haplotypes in the current gener-
ation represents the limiting case of a rapidly growing population carrying the mutant
allele, due to selection or chance (e.g. McPeek and Strahs, 1999), referred to as a star-
shaped genealogy. Nearly all methods have been applied to relatively young and very
rare diseases, where marker allele frequencies on normal chromosomes can be assumed
to be constant across generations (and roughly equal to the population frequencies), and
all the information about gene location is contained in the disease-causing chromosomes.
This is clearly not true for a quantitative-trait gene, which may substantially increase in
frequency due to selection or chance.

An imperfect relationship between genetic distance and LD leads to potential drawbacks
common to all LD mapping methods. A trait locus may be in disequilibrium with some
but not all markers in its vicinity. Therefore, methods utilizing multiple linked markers
and combining linkage and LD seem to be required for obtaining reliable inferences
in fine mapping of QTLs. Terwilliger (1995) therefore proposes to adapt his likelihood
model to emulate the transmission/disequilibrium test (e.g. Spielman et al., 1993) for
qualitative traits; Allison, 1997 for quantitative traits), which, given an appropriate
population structure (Sham, 1998), can be considered as a test for both linkage and
LD. For analysis of nuclear families, a test combining linkage and LD has been proposed
by Abecasis et al. (2000). Other methods combining LD and Linkage for QTL mapping
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(LDL mapping) include Zhao et al. (1998), Allison et al. (1999), Almasy et al. (1999),
Fulker et al. (1999), Wu and Zeng (2001), Farnir et al. (2002), Meuwissen et al. (2002)
and Fan and Jung (2003). Methods for LDL mapping that are more general and applicable
to a wider range of experimental designs and population structures including (at least in
principle) complex pedigrees have recently been developed (e.g. Perez-Enciso, 2003; Lou
et al., 2005; Gao and Hoeschele, 2005).

The ML methodology of Terwilliger (1995) and Xiong and Guo (1997) can in
principle be extended to quantitative traits. The joint likelihood of phenotypes and marker
haplotypes observed on the current generation is a weighted sum over the possible QTL
alleles on the marker haplotypes and over all possible ancestral marker haplotypes. Indeed,
Farnir et al. (2002) extended Terwilliger’s ML method to a biallelic QTL mapped in a half-
sib design. Unfortunately, Terwilliger’s method does not account for dependencies among
the tightly linked markers in a haplotype and employs a composite log likelihood (CL),
which is the sum of the log likelihoods of the individual markers. A CL-based method
can overstate the evidence and hence underestimate confidence intervals for position,
it can give biased results, and asymptotic likelihood-ratio theory does not apply when
the CL ignores dependencies (Garner and Slatkin, 2002). Dependencies among tightly
linked markers in a haplotype can be accounted for as described by McPeek and Strahs
(1999), Service et al. (1999), Morris et al. (2000), Perez-Enciso (2003) and Sillanpaa and
Bhattacharjee (2005). In analogy with linkage multipoint mapping, LD or LDL multipoint
mapping is performed by evaluating the likelihood over a fine grid of QTL positions along
the chromosomal segment investigated, assuming known marker positions (note the need
for reliable ordering of tightly linked markers and accurate position estimation). While
some likelihood methods were developed for mapping disease genes (e.g. Terwilliger,
1995; McPeek and Strahs, 1999), others were devised to map QTL in a specific population
type (Farnir et al., 2002) or in a general setting not restricted to a specific experimental
design or population (Lou et al., 2005).

The likelihood methods have the disadvantage of making inferences about QTL position
conditional on the values for the other (nuisance) parameters (e.g. allele and haplotype
frequency parameters, QTL effects, ancestral haplotype, etc.) fixed at their ML estimates.
Bayesian methods have been developed for LD mapping of disease genes (Morris et al.,
2000; Liu et al., 2001), for LDL mapping of QTL (Perez-Enciso, 2003) and for LD
fine mapping of QTL and disease genes in short chromosomal regions (Sillanpaa and
Bhattacharjee, 2005). The Bayesian methods fully account for the uncertainty associated
with the true values of the nuisance parameters, but they require implementation with
MCMC algorithms, which may be slow to converge and computationally expensive.
For ML LDL mapping of QTL, closed form solutions for parameter estimation exist;
however, the quantification of uncertainty is based on the large sample, asymptotic
variance–covariance matrix of the parameter estimates (Lou et al., 2005). Another strong
advantage of Bayesian methods is their ability to incorporate external genomic information
into the prior distribution of gene location (Rannala and Reeve, 2001). While the method
of Lou et al. (2005) integrates LD mapping with interval (linkage) mapping by considering
haplotypes consisting of a QTL position and its flanking markers, the method of Perez-
Enciso (2003) considers the entire multimarker haplotype by adapting the population
model for LD decay of Morris et al. (2000). Both methods assume a biallelic QTL,
i.e. they do not allow for more than a single ancestral mutation (while the number of
alleles at a QTL cannot be reliably inferred via linkage mapping, it might be possible to
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estimate this parameter via LDL mapping). Sillanpaa and Bhattacharjee (2005) consider
each marker in a small, dense chromosomal segment as a potential QTL position with
two or more alleles depending on the marker type. They incorporate covariances among
consecutive markers via the prior for the indicator variables of the markers (which control
inclusion/exclusion of each marker in a multiple regression model).

In analogy with linkage mapping, ML and Bayesian LDL mapping of QTL can be
implemented as distribution or expectation methods (see Sections 19.3.4 and 19.4.3),
with the expectation methods requiring no assumption or inference about the number
of QTL alleles and no estimation of allele and haplotype frequencies pertaining to the
QTL, but possibly at the expense of slightly reduced power in some situations. While
the LDL QTL mapping methods of Farnir et al. (2002), Perez-Enciso (2003) and Lou
et al. (2005) are distribution methods assuming biallelic QTLs in outbred pedigrees,
the method of Almasy et al. (1999) for a single marker, Meuwissen et al. (2002) for
multiple linked markers in a half-sib design, and Gao and Hoeschele (2005) for multiple
linked markers and complex pedigrees are all expectation methods. Distribution methods
require more assumptions and are more highly parameterized, which may inversely affect
their robustness, although somewhat more flexible and robust implementations have been
proposed for disease genes (Liu et al., 2001) and for QTL (Sillanpaa and Bhattacharjee,
2005). In the LDL expectation methods, IBD probabilities in founders are no longer taken
to be 0 but rather are estimated on the basis of similarity among marker haplotypes, either
by Monte Carlo simulation (Meuwissen and Goddard, 2000) or deterministically using
approximate coalescence theory (Meuwissen and Goddard, 2001). While Meuwissen et al.
(2002) assume that marker haplotypes are known or inferred with certainty in a half-sib
design, Gao and Hoeschele (2005) allow for marker haplotype uncertainty in complex
pedigrees. However, the last method does not yet allow for (substantial amounts of)
missing marker data and does not yet incorporate marker LD in the pedigree founders.
It is a two-step procedure consisting of marker haplotype inference followed by QTL
mapping conditional on the haplotype information, which may be suboptimal in the case of
missing data relative to methods inferring marker haplotypes and ordered QTL genotypes
simultaneously (e.g. Perez-Enciso, 2003), but it is likely computationally more feasible
and possibly more robust.

The development of LD and LDL QTL mapping methods is still an active area
of research. Systematic comparisons among the different LD and LDL QTL mapping
methods in different settings (e.g. population histories) would clearly be beneficial. Most
methods map only a single QTL and should be extended to multiple QTLs, while some
methods already map several QTLs simultaneously (e.g. Sillanpaa and Bhattacharjee,
2005). LDL QTL mapping methods should also allow for multiple ancestral mutations or
genetic heterogeneity (Liu et al., 2001; Morris et al., 2002) allow for multiple ancestral
mutations in LD mapping of disease genes). Lastly, existing methods should be extended
to multiple traits as in Meuwissen and Goddard (2004).

19.8 CONCLUDING REMARKS

Much progress has been achieved in the development of statistical methods and software
for linkage mapping of QTL in outbred populations and recently for LD and joint LD and
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linkage (LDL) mapping, in particular with the development of the Bayesian methodology,
its MCMC implementations, and with the development of software packages such as
SOLAR. This work is, however, not yet completed and likely will not be completed
in the near future, or ever (?), in particular with the advances in high-throughput
phenotyping technologies including physiological traits, expression profiles or etraits,
proteomic profiling, metabolic traits and high-throughput cell-based assays (Williams,
2006). We have begun analyzing these high-dimensional phenotype data with existing
methods for linkage, LD and LDL QTL mapping methods with success, but some
innovative methods or modifications of existing methods will be required to extract the
most information from these data (e.g. Kulp and Jagalur, 2006; Liu et al., 2007). We
will capitalize on these techniques in the highly promising fields of genetical genomics
(e.g. Jansen and Nap, 2001; Bing and Hoeschele, 2005; Drake et al., 2006). Further
improvements and innovations should include the incorporation of epistasis along more
traditional lines (Yi et al., 2005) that are limited (not in theory but in practice) to two-
locus interactions and via novel approaches providing a more general approach to epistasis
without limitation to low order (e.g., Hanlon and Lorenz, 2005), extensions of peeling and
descent graph genotype samplers to multiple linked loci (in the presence of missing data),
and systematic performance comparisons among methods in different settings (population
histories and structures, etc.) via genetic analysis workshops and other venues.

Acknowledgments

This work was supported by the US National Science Foundation (grant DBI-9723022)
and by the US Department of Agriculture’s National Research Initiative Competitive
Grants Program (grant 96-35205-3662). I am grateful to R. Fernando, R. Jansen and
B. Yandell for stimulating and helpful comments.

REFERENCES

Abecasis, G.R., Cardon, L.R. and Cookson, W.O.C. (2000). A general test of association for
quantitative traits in nuclear families. American Journal of Human Genetics 66, 279–292.

Abecasis, G.R., Cherny, S.S., Cookson, W.O. and Cardon, L.R. (2002). Merlin-rapid analysis of
dense genetic maps using sparse gene flow trees. Nature Genetics 30, 97–101.

Allison, D.B. (1997). Transmission- disequilibrium tests for quantitative traits. American Journal
of Human Genetics 60, 676–690.

Allison, D.B., Heo, M., Kaplan, N. and Martin, E.R. (1999). Sibling-based tests of linkage and
association for quantitative traits. American Journal of Human Genetics 64, 1754–1763.

Almasy, L. and Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general
pedigrees. American Journal of Human Genetics 62, 1198–1211.

Almasy, L., Williams, J.T., Dyer, T.D. and Blangero, J. (1999). Quantitative trait locus detection
using combined linkage/disequilibrium analysis. Genetic Epidemiology 17(Suppl. 1), S31–S36.

Barnard, G.A. (1949). Statistical inference. Journal of the Royal Statistical Society, Series B 11,
115–139.

Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York.
Bing, N. and Hoeschele, I. (2005). Genetical genomics analysis of a yeast segregant population for

transcription network inference. Genetics 170, 533–542.



670 I. HÖSCHELE
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George, E.I. and McCulloch, R.E. (1996). Stochastic search variable selection. In Markov Chain
Monte Carlo in Practice, W.R. Gilks, S. Richardson and D.J. Spiegelhalter, eds. Chapman &
Hall, London, pp. 203–214.

George, E.I. and McCulloch, R.E. (1997). Approaches for Bayesian variable selection. Statistica
Sinica 7, 339–373.

George, A.W., Visscher, P.M. and Haley, C.S. (2000). Mapping quantitative trait loci in complex
pedigrees: a two-step variance component approach. Genetics 156, 2081–2092.

Gessler, D.D.G. and Xu, S. (1996). Using the expectation or the distribution of identical- by-descent
for mapping quantitative trait loci under the random model. American Journal of Human Genetics
59, 1382–1390.

Geyer, C.J. and Thompson, E.A. (1995). Annealing Markov chain Monte Carlo with applications
to ancestral inference. Journal of the American Statistical Association 90, 909–920.

Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (eds) (1996). Markov Chain Monte Carlo in
Practice. Chapman & Hall, London.

Godsill, S.J. (2001). On the relationship between MCMC model uncertainty methods. Journal of
Computational and Graphical Statistics 10, 230–248.

Godsill, S.J. (2003). Proposal densities and product space methods. In Highly Structured Stochastic
Systems, P.J. Green, N.L. Hjort and S. Richardson, eds. Oxford University Press, London, New
York, Oxford, pp. 199–203.

Goldgar, G.E. (1990). Multipoint analysis of human quantitative genetic variation. American Journal
of Human Genetics 47, 957–967.

Graser, H.-U., Smith, S. and Tier, B. (1987). A derivative-free approach for estimating variance
components in animal models by restricted maximum likelihood. Journal of Animal Science 64,
1362–1370.

Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika 82, 711–732.

Green, P.J. (2003). Trans-dimensional Markov chain Monte Carlo. In Highly Structured Stochastic
Systems, P.J. Green, N.L. Hjort and S. Richardson, eds. Oxford University Press, London, New
York, Oxford, pp. 179–198.

Grignola, F. and Hoeschele, I. (1997). Mapping linked quantitative trait loci via residual maximum
likelihood. Genetics, Selection, Evolution 29, 529–544.

Grignola, F.E., Hoeschele, I. and Tier, B. (1996). Residual maximum likelihood to map quantitative
trait loci: methodology. Genetics, Selection, Evolution 28, 479–490.

Hanlon, P. and Lorenz, A. (2005). A computational method to detect epistatic effects contributing
to a quantitative trait. Journal of Theoretical Biology 235, 350–364.

Heath, S. (1997). Markov chain Monte Carlo segregation and linkage analysis for oligogenic models.
American Journal of Human Genetics 61, 748–760.

Heath, S. (1999). The problems of large human pedigrees: the application of MCMC methods
to an island pedigree. In Invited Lecture at the Highly Structured Stochastic Systems Work-
shop on Bayesian and MCMC Methods in Gene Mapping, Lammi, Finland, March 24–27.
http://www.rni.Helsinki.fi/biometry/seminars.html.

Hoeschele, I. (1988). Statistical techniques for detection of major genes in animal breeding data.
Theoretical and Applied Genetics 76, 311–319.

Hoeschele, I. (1999). Mapping complex trait genes in a dairy cattle pedigree for milk
production and health and in a human pedigree for cholesterol, using Bayesian and
other methods. In Invited Lecture at the Highly Structured Stochastic Systems Workshop
on Bayesian and MCMC Methods in Gene Mapping, Lammi, Finland, March 24–27.
http://www.rni.Helsinki.fi/biometry/seminars.html.

Hoeschele, I. and Romano, E.O. (1993). On the use of marker information from granddaughter
designs. Journal of Animal Breeding and Genetics 110, 429–429.

Hoeschele, I. and VanRaden, P.M. (1993). Bayesian analysis of linkage between genetic markers
and quantitative trait loci. I. Prior knowledge. Theoretical and Applied Genetics 85, 953–960.



MAPPING QUANTITATIVE TRAIT LOCI IN OUTBRED PEDIGREES 673

Hoeschele, I., Uimari, P., Grignola, F.E., Zhang, Q. and Gage, K.M. (1997). Advances in statistical
methods to map quantitative trait loci in outbred populations. Genetics 147, 1445–1456.

Jansen, R.C., Johnson, D.L. and van Arendonk, J.A.M. (1998). A mixture model approach to the
mapping of quantitative trait loci in complex populations with an application to multiple cattle
families. Genetics 148, 391–399.

Jansen, R.C. and Nap, J.P. (2001). Genetical genomics: the added value from segregation. Trends
in Genetics 17, 388–391.

Janss, L.L.G., van Arendonk, J.A.M. and van der Werf, J.H.J. (1995a). Computing approximate
monogenic model likelihoods in large pedigrees with loops. Genetics, Selection, Evolution 27,
567–579.

Janss, L.L.G., Thompson, R. and van Arendonk, J.A.M. (1995b). Application of Gibbs sampling for
inference in a mixed major gene-polygenic inheritance model in animal populations. Theoretical
and Applied Genetics 91, 1137–1147.

Jensen, C.S. (1997). Blocking Gibbs sampling for inference in large and complex Bayesian networks
with applications in Genetics. Ph.D. thesis, Department of Computer Science, Aalborg University,
Denmark.

Jensen, C.S. and Kong, A. (1996). Blocking Gibbs sampling for linkage analysis in large pedigrees
with loops. Technical Report R-96-2048, Aalborg University, Department of Computer Science,
Denmark.

Kerr, R.J. and Kinghorn, B.P. (1996). An efficient algorithm for segregation analysis in large
populations. Journal of Animal Breeding and Genetics 113, 457–469.

Knott, S.A., Elsen, J.M. and Haley, C.S. (1994). Proceedings of the Fifth World Congression
Genetics Applied to Livestock Production, Vol. 21, Department of Animal and Poultry Science,
University of Guelph, Guelph.

Knott, S.A. and Haley, C.S. (1992). Maximum likelihood mapping of quantitative trait loci using
full-sib families. Genetics 132, 1211–1222.

Knott, S.A., Haley, C.S. and Thompson, R. (1991). Methods of segregation analysis for animal
breeding data: a comparison of power. Heredity 68, 299–311.

Kong, A. (1991). Efficient methods for computing linkage likelihoods of recessive diseases in
inbred pedigrees. Genetic Epidemiology 8, 81–103.

Kruglyak, L. and Lander, E.S. (1995). A nonparametric approach for mapping quantitative trait
loci. Genetics 139, 1421–1428.

Kulp, D.C. and Jagalur, M. (2006). Causal inference of regulator-target pairs by gene mapping of
expression phenotypes. BMC Genomics 7, 125.

Kuo, L. and Mallick, B. (1998). Variable selection for regression models. Sankhya. Series B 60,
65–81.

Lam, J.C., Roeder, K. and Devlin, B. (2000). Haplotype fine-mapping by evolutionary trees.
American Journal of Human Genetics 66, 659–673.

Lander, E.S. and Green, P. (1987). Construction of multilocus genetic linkage maps in humans.
Proceedings of the National Academy of Sciences of the United States of America 84, 2363–2367.

Lange, K.L. (1997). Mathematical and Statistical Methods for Genetic Analysis. Springer-Verlag,
New York.

Lange, K.L. and Goradia, T.M. (1987). An algorithm for automatic genotype elimination. American
Journal of Human Genetics 40, 250–256.

Lange, K.L., Kittle, R.J.A. and Taylor, J.M.G. (1989). Robust statistical modeling using the
t-distribution. Journal of the American Statistical Association 84, 881–896.

Le Roy, P., Elsen, J.M. and Knott, S.A. (1989). Comparison of four statistical methods for detection
of a major gene in a progeny test design. Genetics, Selection, Evolution 21, 341–357.

Lin, S. (1995). A scheme for constructing an irreducible Markov chain for pedigree data. Biometrics
51, 318.

Lin, S. (1996). Multipoint linkage analysis via Metropolis jumping kernels. Biometrics 52, 1417.



674 I. HÖSCHELE
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Inferences from Mixed Models in
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D. Gianola
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and Department of Dairy Science, University of Wisconsin, Madison, WI USA

Statistical methods that have been applied for inferring genetic values in animal breeding
are reviewed. Landmarks include statistical genetic models; best linear unbiased prediction;
Henderson’s mixed model equations and associated computing techniques; variance and covari-
ance component estimation, with emphasis on likelihood-based methods; Bayesian procedures;
methods for categorical responses, longitudinal data and survival analysis. The problem caused by
the effects of selection on inferences and semiparametric procedures for massive genomic data are
discussed. An inventory of some available computing software is presented. Finally, some areas
for future development are discussed.

20.1 INTRODUCTION

Genetic selection programs of livestock or plants aim to maximize the rate of increase of
some merit function (e.g. economic value of a cultivar) expected to have a genetic basis.
Typically, animals with the highest merit are kept as parents of the subsequent generation
and those with the lowest merit are culled. Merit can be a linear or nonlinear function
of genetic values for several traits considered to be important from the perspective of
producing economic returns or benefits to mankind. The genetic component of merit
cannot be observed, so it must be inferred from data on the candidates for selection or
on their relatives. Here, there are at least three types of statistical problems: (1) assessing
whether the traits intervening in the merit function have a genetic basis; (2) developing
reasonably accurate methods for inferring merit (‘genetic evaluation’), and (3) deciding
what to do with the animals having the ‘best’ such evaluations, e.g. designing mating plans
that are optimal in some sense. Problem 1 is usually known as ‘estimation of genetic
parameters’. The second problem is referred to as estimation (prediction) of breeding
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values, and is conceptually inextricable from the first; loosely speaking, breeding value
is a function of the deviation of the progeny of an individual from the population mean.
The third problem will not be dealt with here. What follows is motivated primarily by
problems in animal breeding, but a great portion of the theory is applicable to plant
improvement as well.

The information available for assessing the genetic basis of traits and for inferring merit
consists of records of performance. Examples are records on growth rate, milk yield,
and composition; records on diseases such as mastitis in dairy cattle; egg production in
layers, litter size in pigs, calving difficulty in cattle, and survival or length of productive
life in dairy cows. Some traits are recorded on a ‘continuous’ scale (e.g. milk yield) and
some are discrete, such as counts (litter size) or categorical assignments. Hence, adequate
probability modeling must often go beyond a normal distribution, although this assumption
may be convenient and even useful. In the last decade, data on molecular markers has
become increasingly available, but its use in marker-assisted genetic improvement is still
at early stages. Furthermore, the analytical paradigm is changing, in the light of the
explosive amount of postgenomic data.

Many observable traits (continuous or discrete) seem to have a polygenic mode of
inheritance, and are subject to strong environmental influences. Also, there are sex-limited
traits, such as milk production (observed in females only) and scrotal circumference in
bulls, which is believed to have a positive genetic correlation with fertility in cows.
In dairy cattle, it is more relevant to infer the genetic merit of males, because of the
impact these can have on the rate of improvement. For example, as a result of artificial
insemination and of widespread availability of frozen semen and embryos, some dairy
bulls produce thousands of daughters in several countries, creating, thus, an opportunity
for international sire evaluation, albeit at the expense of more complicated statistical
modeling and implementation (Schaeffer, 1985).

Animal breeding data sets can be large (e.g. millions of lactation records in dairy cattle
breeding), multivariate (several traits may need to be modeled simultaneously), seemingly
Gaussian in some instances (e.g. logarithm of concentration of somatic cells in milk, an
indication of udder disease), or decidedly nonnormal in others, such as with the discrete
traits mentioned above. Data structure can be cross-sectional or longitudinal (e.g. growth
curves in broilers), extremely unbalanced, and perhaps exhibiting a pattern of nonrandom
missingness. For example, not all first lactation cows produce a second lactation, due to
sequential selection for higher production, reproductive failure, or disease. Also, some
sires are used more intensively than others, because of perceived differences in genetic
value, so there is genetic selection as a consequence of variation in their contribution to
offspring born in the following generation.

Given the preceding, it is not surprising that statistics has been so important in
animal breeding. Examples of some of the more relevant statistical methods and prob-
lems discussed in animal breeding in the last 35 years or so are in Hill (1974;
1980); Henderson (1977); Thompson (1977; 1979; 1982); Dempfle (1982); Gianola et al.
(1986); Schaeffer and Kennedy (1986); Meyer (1990); Ducrocq (1990); Gianola and
Hammond (1990); Sorensen et al. (1994); Foulley and Quaas (1994); Bidanel (1998);
Tempelman and Firat (1998); Wang (1998); Sorensen and Gianola (2002) and Gianola
(2006).

Our objectives are to describe some of the statistical methods for inferring breeding
values that have been applied in animal breeding. Some specific historical landmarks are
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described in Section 20.2. Section 20.3 discusses several specific problems, and offers
conjectures about possible additional developments.

20.2 LANDMARKS

20.2.1 Statistical Genetic Models

The models for quantitative genetic analysis employed in animal breeding consist of
the following components: (1) a mathematical function relating observations to location
parameters and ‘random’ effects (Bayesians view all unknowns as being random, in
the sense of possessing a subjective uncertainty distribution). The ‘random’ effects may
include genetic components, such as additive genetic values (Falconer and Mackay, 1996),
dominance and epistatic deviations (from additivity) and permanent environmental effects.
All these contribute to correlations between relatives or between longitudinal records of
performance. (2) Genetic and environmental dispersion parameters, such as components
of variance and covariance (the latter appear in multivariate models, or in situations where
a multivariate structure must be embedded in a model for a single response variate), and
(3) assumptions about the form of the joint distribution of the observations and of the
random effects (in a Bayesian context, the assumptions apply to the joint distribution of
all unknowns and of the data).

Most often, functional forms employed in (1) above have been linear. Although
convenient, this is not always a sensible specification. Concerning (3), the most widely
used and abused assumption has been that of multivariate normality. This is because it
is often postulated that traits are inherited in a multifactorial manner, i.e. that there is
a large number of genes acting additively, and that the effects of gene substitutions are
infinitesimally small. Molecular information is beginning to suggest that the assumption
of many genes acting together on quantitative traits may not be unreasonable, at least in
some instances. For example, a study in dairy cattle (Zhang et al., 1998) using genetic
markers suggested the presence of ‘quantitative trait loci (QTL)’ affecting fat percentage
in milk in chromosomes 2, 6, 14, 26, 28, and this type of investigation is still at early
stages. If alleles act additively and have small effects, their sum produces a normal process
rapidly. In this context, it is not always clear how much it is gained using such marker
information modelwise, at least from a statistical point of view. Some statistical models for
marker-assisted genetic evaluation require knowledge of map distances. This introduces
more parameters in the model, and additional sources of uncertainty.

Fisher (1918) gave the foundations of the infinitesimal model, and his seminal paper
discussed the implications of Mendelian inheritance at the phenotypic level. He posited:

observation = genetic value + residual,
and gave a precursor of the analysis of variance, by proposing a partition of the genetic
variance into additive and dominance components. From these, the expected correlations
between different types of relatives follow more or less readily. The additive model,
in particular, has been extremely useful and has stood the test of time fairly well.
Further, it constituted the statistical genetic point of departure for the development of
predictors of breeding value, eventually leading to fairly precise evaluation of dairy sires.
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It continues being used, albeit in a more sophisticated, vectorial, manner; this will be
discussed subsequently.

Independently of Fisher, Wright (1921), arrived at similar results (at least for the
additive part) using a method known as path coefficients. The method consists of
describing a system of correlations with standardized random effects linear models, where
each variate has null mean and unit variance. This procedure, although powerful in the
hands of Wright, faded away in animal breeding, except at the classroom level. This is
because ‘path diagrams’ convey visually relations of causality or of covariation assumed in
a model. Reasons for the ‘fall’ of path coefficients include lack of generality, i.e. inability
to take into account interactions and nuisance parameters, and unattractiveness from the
point of view of computer implementation. However, the method has been revived and
expanded in the social sciences, in the context of what are called structural equation
models (Fox, 1984).

Although Fisher had described how some interactions between alleles at different loci
could be taken into account, it was not until Cockerham (1954) and Kempthorne (1954)
that the total variance from such interactions could be partitioned into what are called
epistatic components, assuming a large panmictic population in linkage equilibrium.
Kempthorne (1954) used the concept of probability of identity by descent developed
by Malécot (1948), and disentangled the epistatic variance into several components,
depending on the number of loci involved in the expression of the trait. For example,
with two loci, the epistatic genetic variance can be expressed as the sum of ‘additive x
additive’, ‘additive x dominance’, and ‘dominance x dominance’ components of variance
His development allowed expressing the covariance between traits measured in relatives
in a random mating population in terms of genetic components of variance and covariance.
Results were used subsequently by Henderson (1985; 1988) for inferring dominance and
epistatic genetic effects via best linear unbiased prediction (BLUP), a topic to be discussed
later.

Additional extensions of statistical genetic models have accommodated, e.g. maternal
effects (Falconer, 1965; Willham, 1963; Koerkhuis and Thompson, 1997), cloning and
cytoplasmic inheritance (Kennedy and Schaeffer, 1990). Statistically, the model of
Willham is interesting because it embeds a multivariate within an univariate structure.
This is because it includes covariances between direct genetic effects (expressed in the
individual measured) and maternal genetic effects (expressed if the individual becomes a
mother having a measured offspring).

20.2.2 Best Linear Unbiased Prediction (BLUP)

20.2.2.1 General

The problem of ‘predicting’ or ‘estimating’ genetic merit in candidates for selection is
very important in animal breeding. This semantic distinction has created considerable
confusion because, statistically, it is nonsensical to speak about ‘estimation’ of random
effects. On the other hand ‘prediction’ has a futuristic connotation, whereas in animal
breeding one is often interested in ranking candidates (e.g. bulls) that already exist.
Further, it is more sensible to think in terms of ‘inferring’ genetic merit, because the
problem goes beyond one of merely producing an estimate of location. Often, one may be
interested in obtaining a measure of uncertainty or, perhaps, in computing the probability
of ordered events involving candidates for selection.
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Lush (1931), using path coefficients, gave formulae for assessing the genetic merit of
dairy sires, assuming that means and genetic and environmental components of variance
were known. It was found that some regression to the mean, i.e. shrinkage, was needed.
Robertson (1955) showed that Lush’s statistic can be obtained from a weighted average
between ‘population’ information and data, anticipating a Bayesian interpretation. To
illustrate, consider the simple model:

yij = µ+ si + eij , (20.1)

where yij is an observation taken on progeny j of sire i, µ is a constant common to
all observations, si ∼ N(0, vs) is the transmitting ability (half of the additive genetic
value) of sire i, and eij ∼ N

(
0, ve

)
is an independently distributed residual peculiar to

individual ij. Suppose that µ and the variance components vs (variance between sires)
and ve (variance within sires) are known ‘population’ parameters. Here, there are two
pieces of information about sire i: (1) what is known about the population and (2) the
average performance yi of its n offspring. It would seem ‘natural’ combining these two
pieces in a weighted average between the population mean, 0, and the progeny group
mean deviation yi − µ, with the weights being the ‘population precision’

(
v−1
s

)
and the

precision brought by the data
(
n
ve

)
, respectively. That is:

ŝi =
(

1

vs
+ n

ve

)−1 [ 1

vs
.0+ n

ve

(
yi − µ

)]
= n

n+ ve
vs

(
yi − µ

)
. (20.2)

Likewise, a measure of variance is the reciprocal of the total precision:

v̂i =
(

1

vs
+ n

ve

)−1

= vs
(

1− vs

vs + ve
n

)
. (20.3)

It can be shown that ŝi and v̂i are the mean and variance of the conditional distribution[
si |µ, vs, ve, yi1, yi2, . . . , yin

]
, under normality assumptions. This is also a posterior

distribution in a Bayesian setting in which all parameters are known without error, this
being an unrealistic assumption in practice. At any rate, probabilistic inference about the
transmitting ability of the sire is completed using the conditional distribution with mean
ŝi and variance v̂i . For example, if one has two genetically unrelated sires with data
represented by vectors y1 and y2, one may wish to compute the following probability:

Pr
(
s1 > s2|y1, y2, µ, vs, ve

) = Pr (z > 0) ,

where z is a normally distributed random variable with mean ŝ1 − ŝ2 and variance:

vz = vs
[

2− vs
(

1

vs + ve
n1

+ 1

vs + ve
n2

)]
.

Note that as ni →∞, vz → 0, illustrating how uncertainty dissipates asymptotically.
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20.2.2.2 The Mixed Model Equations

It was not until Henderson (e.g. 1950, 1963, 1973, 1984) that the problem of ‘prediction’
of breeding value could be formulated in a more general framework, by deriving what
later was known to be BLUP. Henderson et al. (1959), posed the linear (univariate or
multivariate) mixed effects model:

y = Xβ + Zu+ e, (20.4)

where β is a fixed (over repeated sampling) vector, and u ∼ N(0,G) and e ∼ N(0,R)
are uncorrelated random vectors; X and Z are known incidence matrices, and G and R
are variance–covariance matrices, which are function of (known) dispersion parameters.
The vector of random effects u can include herd effects, breeding values, permanent
environmental deviations common to all records of the same (or of a set) of animals, etc.
The joint density of u and y is:

p (u, y|β,G,R) ∝ p (y|u, β,R) .p (u|G)
∝ exp

{
−1

2

[
(y− Xβ − Zu)′ R−1 (y− Xβ − Zu)+ u′G−1u

]}
. (20.5)

Maximization of (20.5) with respect to β and u simultaneously leads to Henderson’s
mixed model equations (MME):

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+G−1

] [
β̂

û

]
=
[

X′R−1y
Z′R−1y

]
. (20.6)

Henderson thought he was maximizing a likelihood function, so he termed β̂ and û as
‘maximum likelihood (ML)’ estimators of β and of u, respectively. It turns out that β̂
is indeed the ML estimator of β under normality assumptions but, technically, u cannot
be ‘estimated’, as this vector is random. Today, it is known that the objective function
maximized by Henderson is a joint posterior density, in a certain Bayesian setting, or a
‘penalized’ or ‘extended’ likelihood in some ad hoc sense. However, this ‘error’ had a
happy ending, as Henderson and Searle proved in several subsequent papers that even
without the normality assumption, β̂ is the generalized least-squares estimator of β and û
is the best linear unbiased predictor of u; the inverse of the coefficient matrix in (20.6)
yields the covariance matrices of β̂ and of û− u. This holds both for multivariate and
univariate settings. Golberger (1992) derived BLUP independently of Henderson.

When β is known, û is the best linear predictor and, under normality, û is the minimum
mean squared error predictor, i.e. the best, in the mean squared error sense (Henderson,
1973; Searle, 1974). In a multivariate context, with known β, the predictor gives the
‘selection index’ evaluation derived by Smith (1936) and Hazel (1943) in less general
settings (Henderson, 1963).

Bulmer (1980) pointed out, pertinently, that was unclear whether ranking animals with
BLUP would maximize expected genetic progress in a single round of selection, and
suggested an alternative predictor. The latter was shown to be equal to BLUP by Gianola
and Goffinet (1982); Fernando and Gianola (1986) give a discussion of some of the issues.

Animal breeders often misinterpret the unbiasedness property of BLUP. It cannot be
overemphasized that BLUP is unbiased over conceptual repeated sampling from the
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distribution
[
y, u|β,G]

, but not over
[
y|u, β, G

]
. The latter is the distribution that

‘practitioners’ tend to have in mind, i.e. one where u is a vector of realized breeding
values. It is easy to show that:

E (̂u|u) = (
Z′PZ+G−1)−1

Z′PZu,

where P = I− X
(
X′X

)−1 X′ is the usual projection matrix. This indicates that BLUP
gives biased predictions of specific breeding values, although the bias vanishes asymp-
totically (as per-animal information increases). Paradoxically, in the limit, it is no longer
possible to predict breeding values uniquely as a degeneracy in rank occurs.

20.2.2.3 Solving the Mixed Model Equations

The MME algorithm for calculating BLUE and BLUP has been employed worldwide for
genetic evaluation of livestock. The order of the linear system in (20.6) can be in the
million of equations, specially for models, univariate or multivariate, where a random
additive genetic effect is fitted for each animal with a record of production as well as
for animals without records in the genealogy, but that need to be included to account
properly for genetic covariances between relatives. Hence, iterative methods must be used
for solving the MME (e.g. Schaeffer and Kennedy, 1986; Misztal and Gianola, 1987),
although approximations are needed to assess the uncertainty of the predictions. The MME
appeared in the statistical theory literature late and somewhat sparingly (e.g. Patterson
and Thompson, 1971; Harville, 1977; Wolfinger, 1993; Lee and Nelder, 1996; Nelder,
1996). This is surprising because the MME can be used to advantage in connection
with computing algorithms for several methods of variance component estimation in
generalized mixed effects linear models (Harville and Mee, 1984; Gilmour et al., 1985;
Foulley et al., 1987a).

An obvious difficulty, at least in animal breeding, was inverting G (unless the matrix has
an exploitable pattern, such as block-diagonality) when the order of u was in the hundreds
of thousands, or millions, as in the routine genetic evaluation of dairy cows in the United
States. Again, Henderson (1976) made a remarkable breakthrough. Let u be a vector of
breeding values, and suppose that G = G0 ⊗ A, where G0 has order equal to the number
of traits (a dozen, say) and A is a matrix of ‘additive genetic relationships’ (reflecting the
probabilities that related individuals carry identical copies of the same allele). Henderson
discovered that A−1 can be written directly from a list of parents of the animals. This
enabled using all available relationships in genetic evaluation, which leads to more precise
inferences about genetic values and, also, to the possibility of correcting biases due to
ignoring many relationships in otherwise naive variance component analyses.

20.2.3 Variance and Covariance Component Estimation

From the preceding, it follows that ‘prediction’ of breeding values depends nontrivially on
knowledge of variance and covariance components. Many methods have been developed,
but only a few ones stood the test of time. Hofer (1998) gave a review of essentially
all methods of estimation that have been applied so far. Because the data sets in animal
breeding can be large, unbalanced, and the models have a sizable number of nuisance
location parameters, simple, ANOVA-type methods, seldom work well. Henderson (1953),
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in a classical paper, described three methods for unbalanced data. The most general,
Method 3, uses quadratic forms based on least squares, and yields unbiased estimators.
Harvey (1960; 1970) incorporated it in software for variance and covariance component
estimation, and this was used amply in animal breeding. Searle (1968; 1971) and his
students clarified Henderson’s methods, and presented these in matrix form.

Subsequently, Rao’s (1971) and LaMotte’s (1973) minimum norm quadratic unbiased
estimation and its minimum variance version (under normality), respectively, entered
into the picture. These estimators can be formulated in terms of solutions to the MME.
However, attaining optimality with these procedures requires knowledge of the true
parameters and, also, the sampling distributions of the estimators admit negative values of
the variance components with nonnull probability. In fact, their multivariate counterparts
can lead to embarrassing estimates of covariance matrices. Hence, animal breeders became
seduced by ML, assuming normality, where these problems do not occur, at least in point
estimation. Here, papers by Hartley and Rao (1967) and Harville (1977) were influential.
Many algorithms for ML estimation can be derived using the MME (Harville, 1977;
Henderson, 1984; Harville and Callanan, 1990). It is unclear whether the move toward
likelihood-based methods was either a consequence of the availability of something new
that could be computed with the MME algorithm (here used iteratively, as ML estimators
cannot be written explicitly for most models), or of the appeal of the asymptotic properties
of the method.

The well-known bias of the ML estimator of the residual variance led to widespread
interest in a method called restricted maximum likelihood (REML). The basic ideas are in
Anderson and Bancroft (1952) and Thompson (1962). However, Patterson and Thompson
(1971) gave a more general description, suitable for a mixed effects model. REML can
be viewed as an attempt of accounting for the ‘loss of degrees of freedom’ incurred in
estimating the fixed effects. Patterson and Thompson (1971) noted that maximization of
the location invariant part of the likelihood leads to estimating equations that are similar
to those in ANOVA, in the balanced setting. Their objective was to reduce bias, but it is
pertinent to ask whether this occurs at the expense of precision. Patterson and Thompson
(1971) and Harville (1977) argued that no information is lost by using such ‘restricted’
likelihood, whereas Foulley (1993) seemed unconvinced.

We explore this issue a bit further. Consider the sampling model:

y ∼ N [Xβ,V (θ)] , (20.7)

where V (θ) is a dispersion matrix, this being a function of variance and covariance
components θ . The ‘full’ likelihood is:

l [β, θ ] ∝ |V (θ)|− 1
2 exp

[
−1

2
SSE

]
∝ |V (θ)|− 1

2 exp
[
−1

2
ŜSE

]
. exp

{
−1

2
SSB

}
, (20.8)

where:

SSE = (y− Xβ)′ V−1 (θ) (y− Xβ) ,

ŜSE = (
y− Xβ̂

)′
V−1 (θ)

(
y− Xβ̂

)
,
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and

SSB =
(
β−β̂

)′ [
X′V−1 (θ)X

] (
β−β̂

)
,

for

β̂ = [
X′V−1 (θ)X

]−1
X′V−1 (θ) y.

Harville (1974) showed that REML is the mode of the posterior distribution of the
variance parameters after integrating the fixed effects (over an improper, uniform, prior)
out of the joint posterior distribution, this being proportional to the likelihood function.
The probability calculus takes uncertainty about fixed effects into account automatically,
at least from a Bayesian perspective. The integrated (‘restricted’) likelihood is then
proportional to:

lI [θ ] ∝ |V (θ)|− 1
2 exp

[
−1

2
ŜSE

] ∫
!β

exp
{
−1

2
SSB

}
dβ

∝ |V (θ)|− 1
2 exp

[
−1

2
ŜSE

] ∣∣X′V−1 (θ)X
∣∣− 1

2 . (20.9)

This follows because the integral above involves a Gaussian kernel, so it can be expressed
in closed form. Maximization of lI [θ ] with respect to θ gives the REML estimates of
the dispersion parameters (Harville, 1974). Ignoring constants that do not depend on the
parameters, then:

log l [β, θ ] = log lI [θ ]− 1

2
SSB + 1

2
log

∣∣X′V−1 (θ)X
∣∣ 1

2 . (20.10)

The next step is quantifying ‘information’. Suppose one adopts Fisher’s information
measure, which is a natural choice in likelihood inference. Recall that information is
the expected value over sampling model (20.7) of minus the second derivatives of the
log likelihood with respect to the parameters. To illustrate, consider a simple situation,
amenable to analytical treatment. In a fixed effects or regression model with p identifiable
location parameters and variance θ, the Fisherian information about θ is N

2θ2 in the full

likelihood, whereas that from the restricted likelihood is N−p
2θ2 . This is not surprising when

the restricted likelihood is viewed from a Bayesian perspective, as less information is to
be expected in a marginal than in a joint distribution. Lacking evidence to the contrary,
similar ‘losses of information’ ought not be surprising in more complex models

In hierarchical or variance component models, both ML and REML are biased, so it
would be unfair to focus the discussion on bias only. In general, whatever favors REML
in this sense may be compensated by a loss of precision of this estimator. Simulations of
Corbeil and Searle (1976) give ambiguous results. Searle et al. (1992) give a discussion
of the relative merits of the two methods but, in our opinion, fail to include a strong
logical argument favoring REML over ML: its Bayesian interpretation, which indicates
clearly how uncertainty about fixed effects (acting as nuisance parameters in this case) is
accounted for via integration, as shown earlier.

It must be pointed out that representations of the restricted likelihood alternative to
(20.9) can be arrived at. Using the notation employed in connection with mixed effects
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model (20.4):

lI [θ ] ∝
∫
!β
l [β, θ ] dβ ∝

∫
!β
p (y|β, θ) dβ

∝
∫
!β

[∫
!u
p (y|β, u,R (θ)) p (u|G (θ)) du

]
dβ.

After algebra involving combining quadratic forms within exponential functions, followed
by integrating a Gaussian kernel, one obtains:

lI [θ ] ∝ |R (θ)|− 1
2 |G (θ)|− 1

2 exp
(
−1

2
SSR

)
|C (θ)| 1

2 , (20.11)

where:
SSR = y′R−1 (θ) y− β̂ ′X′R−1 (θ) y− û′Z′R−1 (θ) y,

and:

C (θ)−1 =
[

X′R−1 (θ)X X′R−1 (θ)Z
Z′R−1 (θ)X Z′R−1 (θ)Z+G−1 (θ)

]
.

is the coefficient matrix of the MME. Alternative representations of the restricted
likelihood lead to different algorithms for computing REML, each having its advantages
and disadvantages.

20.2.4 BLUP and Unknown Dispersion Parameters

BLUP exists only when the dispersion parameters θ are known (at least to proportionality
in variance component models), so an important question is what method of estimation
of θ should be used when the end-point is predicting breeding values? Conceivably, a
method deemed best (in some sense) for estimating variance components may not be the
best to use in the context of inferring breeding values. Gianola and Fernando (1986) and
Gianola et al. (1986) employed a Bayesian idea to answer this question. They argued
that using BLUE and BLUP with the unknown (co)variance parameters evaluated at the
REML estimates corresponds to an approximate integration of the dispersion parameters
out of a certain posterior distribution. This leads to an approximate Bayesian solution to
the problem of making inferences about breeding values when genetic and environmental
variances are unknown. However, the restricted likelihood must be sharp enough for this
to work well.

Harville and Carriquiry (1992) studied the problem in some detail. The approximation
was found to be excellent in a data set consisting of milk yields of more than 0.5 million
cows sired by about 1000 bulls, but less so in another data set on birth weights of
62 lambs, progeny of 23 sires. The latter data set is not representative of what animal
breeders encounter with field records, but it is not atypical of experimental settings.
Then, how should one carry finite sample inference about genetic values in the absence
of sharp knowledge about dispersion parameters? Regrettably, this problem does not have
an elegant frequentist solution, conceptually, and analytical treatment is impossible or, at
best, algebraically awkward (e.g. Kackar and Harville, 1981).

The current ‘state of the art’ in animal breeding data analysis is precisely the
REML+ BLUP ‘tandem’. Interestingly, REML has a likelihood justification, as noted,
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but lacks a frequentist one. Conversely, BLUP has a frequentist lineage, but it does not
arise from a likelihood formalism. Hence, the ‘tandem’ does not fall in any sharply defined
school of ‘classical’ inference. Does this ‘recombinant’ correspond to the highest possible
state of statistical fitness? The answer seems to be negative, as illustrated by the study of
Harville and Carriquiry (1992). We elaborate further on this below.

20.2.5 Bayesian Procedures

Frequentist and likelihood-based approaches dominated the statistical views in animal
breeding during most of the century. To a large extent, this is because many animal
breeders had been trained in universities such as Cornell, Edinburgh, Iowa State, and
North Carolina State, where the teaching of statistics focused on such approaches. What
would have happened if animal breeding had been taught in Chicago (Zellner), London
(Lindley), Lyon (Malécot) or Yale (Savage)? However, the field did not remain insensitive
to the Bayesian revival taking place in the mid 60’s. Papers such as Lindley and Smith
(1972) provided a clear link between mixed models and hierarchical Bayesian approaches,
and Box and Tiao (1973) presented the technical details. Seemingly, a seminar given at
Cornell by Solomon (Henderson, personal communication), instigated Ronningen (1971)
to investigate connections between BLUP and Bayesian ideas. This was pursued further
by Dempfle (1977).

Consider first, the Bayesian view of BLUP. Suppose, as in a BLUP setting, that the
dispersion matrices G and R associated with the mixed effects linear model (20.4) are
known. In a Bayesian context (see Gianola and Fernando, 1986), if the prior distribution
of β is taken to be uniform over !p, with p being the order of β, and the prior distribution
of the random effects is u ∼ N(0,G), with the two location vectors being independent
a priori, the joint posterior distribution can be shown to be:[

β

u

]
|y,G,R ∼ N

([
β̂

û

]
,

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+G−1

]−1
)
. (20.12)

Because the joint posterior distribution is Gaussian, so are the marginals or any induced
conditional distribution. It also follows that any linear combination of β and u must have a
Gaussian posterior distribution as well. For example, suppose one wishes to infer a vector
of merits or of ‘aggregate genetic values’ (in the sense of Hazel, 1943) h = Mu, of a
set of candidates. Here, M is a constant matrix reflecting the relative economic importance
of traits, and u is a vector of multitrait genetic values. Then, the posterior distribution of
h has mean vector ĥ = Mû and covariance matrix MCuM

′, where Cu is the submatrix
pertaining to u of the inverse in (20.12).

A related problem is that of inferring nonlinear merit. To illustrate, consider a second-
order merit function. Suppose now that the aggregate genetic value of a candidate has the
form:

h = m′u+ u′Qu,

where m′ is a known row vector and Q is a known matrix, assumed to be symmetric
without loss of generality. The posterior distribution of h does not have a closed form,
but it can be estimated by Monte Carlo methods by drawing samples of u from the
normal posterior distribution (20.12) and, thus, obtaining samples of h from the preceding
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expression. However, the mean and variance of the posterior distribution of h can be
calculated analytically as:

E (h|y,G,R) = m′̂u+ û′Qû+ tr (QCu
)
,

and

V ar (h|y,G,R) = V ar (m′u
)+ V ar (u′Qu

)+ 2m′Cov
(
u,u′Qu

)
= m′Cum+ 2tr

(
QCu

)2 + 4̂u′QCuQû+ 2m′CuQû.

Bulmer (1980) and Gianola and Fernando (1986) showed that the conditional or posterior
mean is an optimum ranking rule when all parameters are known. Contrary to the case
of a linear merit function, as seen above, the posterior precision of the candidate or,
equivalently, the reliability of its evaluation enters nontrivially when inferring second-
order merit. In fact, for some simple forms of the merit function, it can be shown that if
two candidates have the same posterior mean (genetic evaluation) one would choose the
one with the largest posterior variance. For more complex forms of the merit function,
prediction of breeding value needs to proceed almost entirely using Monte Carlo methods.

Gianola and Fernando (1986) suggested the Bayesian approach as a general inferential
method for solving a large number of animal breeding problems, linear or nonlinear,
even in situations where there is uncertainty about all location and dispersion parameters.
The first applications of the paradigm used Gaussian approximations to joint or partially
marginalized posteriors, because of the technical difficulties. It was not until the advent
of Markov chain Monte Carlo (MCMC) methods, however, that the power and flexibility
of the Bayesian approach could be exploited in full. There are many MCMC methods,
such as the Metropolis–Hastings algorithm, Gibbs sampling, reversible jump, simulated
tempering, coupling from the past, etc. For a review of some of the algorithms, see Robert
(1996). Undoubtedly, the most popular one has been the Gibbs sampler, although it can
be used only under certain conditions. The basic idea in Gibbs sampling is as follows.
Suppose that one wishes to infer a parameter (scalar or vector) λ , breeding values,
say, from its posterior distribution. Further, suppose that the statistical model requires
specifying additional, ‘nuisance’, parameters δ, e.g. in a mixed effects linear model these
would be the fixed effects and the dispersion components. The joint posterior density is
then:

p (λ, δ|y) .
Typically, the marginal densities p (λ|y) and p (δ|y)are difficult or impossible to arrive
at by analytical means. An alternative is to estimate features of the posterior distribution
of breeding values having density p (λ|y) by sampling methods, and the Gibbs sampler
is one of such procedures. Here, one needs to form the fully conditional distributions:[

δ|λ, y][
λ|δ, y] .

Subsequently, a sample is drawn from
[
δ|λ, y] , and the value is used to update the

nuisance parameters in
[
λ|δ, y] ; next, draw λ from the updated distribution, use the

draws to update
[
δ|λ, y] , and repeat the process a large number of times, say m. This

creates a Markov chain having the joint posterior
[
λ, δ|y] as equilibrium distribution. At



690 D. GIANOLA

point m (it is said that the sampler has ‘converged’) any subsequent draw belongs to the
joint posterior, the implication being that the λ – component of the draw is an extraction
from the marginal posterior distribution of interest. Collecting a reasonably large number
of samples, such that inferences have a small Monte Carlo error, one can estimate, say,
the posterior mean, median, variance, order statistics, or the marginal posterior density
of any breeding value at regions of interest in the space of λ. A key aspect of the Gibbs
sampler is that the fully conditional distributions must be recognizable and easy to sample
from (Gianola et al., 1994). Otherwise, one needs to resort to other sampling methods,
such as Metropolis–Hastings or rejection sampling, to produce the necessary draw.

Early applications of Gibbs sampling in animal breeding were those of Wang et al.
(1993; 1994a), and many papers using MCMC have been published thereafter. An impor-
tant development was the introduction of Bayesian measures for assessing uncertainty in
response to genetic selection from designed experiments (Sorensen et al., 1994; Wang
et al., 1994b), this being a problem in animal breeding where the likelihood-frequentist
‘tandem’ approach can be regarded only as an approximation, even under normality
assumptions. The Bayesian method resides in estimating the posterior distribution of
measures of genetic change, with these being functions of the unobservable breeding
values. The latter are drawn from their posterior distributions via MCMC and from these
samples, one constructs draws from the posterior distribution of, say, response to selec-
tion. From the entire collection of draws, the posterior distribution of the unobservable
genetic change is estimated. Sorensen et al. (2001) proposed a method for monitoring the
evolution of additive genetic variance in the course of selection.

20.2.6 Nonlinear, Generalized Linear Models, and Longitudinal Responses

20.2.6.1 Categorical Data

Limited-information-dependent variables are pervasive in the analysis of fertility and
disease data. Animal breeders did not hesitate (and still do not) to use linear models for
such variables, even if this at the expense of causing consternation among statisticians.
For example, Thompson (1979) stated:

“I have some unease at using linear models for these dichotomous traits.”

and suggested some intuitively appealing approaches to mixed model analysis of binary
data.

Gianola and Foulley (1983) addressed inferences about fixed and random effects in
generalized mixed linear models for ordered categorical responses, a problem that was
also studied by Harville and Mee (1984). The two methods give the same answer for
predicting breeding values and estimating fixed effects, and yield BLUP when the data are
Gaussian, rather than discrete. Their approach is similar to that used by Henderson in his
early derivation of BLUP, although viewed in a Bayesian framework. For categorical data,
it is assumed that there is an underlying, unobservable, variate called liability that follows
a mixed effects linear model. Suppose, for simplicity, that a binary random variable is
scored, e.g. presence or absence of mastitis in a dairy cow. If liability is larger than a
conceptual threshold, mastitis is observed; the cow is nonmastitic otherwise. Since liability
cannot be observed, the residual standard deviation in the underlying scale is taken as
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unit of measurement. To simplify, suppose that the underlying distribution of liability is
logistic, so the conditional probability that datum i is scored as ‘mastitis’ is:

Pi =
exp(x′iβ + z′iu)

1+ exp(x′iβ + z′iu)
,

where x′i and z′i are the ith rows of X and Z, respectively. The logic is defined to be:

ln
(

Pi

1− Pi

)
= x′iβ + z′iu.

It can be seen that Pi increases as β or u increase. As in the linear model, take u ∼ N(0,G)
as prior distribution of the random effects, with an uniform prior adopted for β. If the
variance of the random effects is known, the mode of the joint posterior distribution of
β and u can be found iterating with:[

X′W[t]X X′W[t]Z
Z′W[t]X Z′W[t]Z+G−1

] [
β̂[t+1]

û[t+1]

]
=
[

X′W[t]y[t]

Z′W[t]y[t]

]
, (20.13)

where the superscript indicates iterate number, W = {
Pi

(
1− Pi

)}
is a diagonal matrix

with order equal to the number of observations, and:

y[t] = Xβ[t] + Zu[t] + (
W[t])−1 (

y− P[t]) ,
is a pseudodata vector. If a normal distribution with variance 1, instead of the logistic,
is adopted for liability (thus leading to a mixed effects probit model), the estimating
equations are as in (20.13), except that W is slightly more difficult to calculate. Inferences
are completed by employing a Gaussian approximation centered at the modal value and
with dispersion matrix equal to the inverse of the coefficient matrix in (20.13), evaluated
at the modal values.

This method was extended by Foulley et al. (1983) to models with Gaussian and
categorical responses, by Höschele et al. (1986) to multivariate binary responses, and
by Foulley et al. (1987b) to hierarchical models where a categorical response variables
depends on a count having a Poisson conditional distribution. Harville and Mee (1984),
Foulley et al. (1987a; 1990), Tempelman and Gianola (1996; 1999) and Tempelman and
Firat (1998) discussed estimation of dispersion components in such settings. In particular,
Harville and Mee (1984) and Foulley et al. (1987a) employed a Gaussian approximation
with the expectation-maximization algorithm employed for calculating ‘quasi-REML’ or,
in a better terminology, ‘quasimarginal ML’ estimates. For categorical data, Gilmour et al.
(1985) described a different procedure, based on quasilikelihood; their variance component
estimators and predictors of random effects lack formal justification, but reduce to REML
and BLUP with Gaussian responses. Sorensen et al. (1995) presented a fully Bayesian
solution for ordered polychotomies based on Gibbs sampling. In view of the computing
power available today, there is not much justification for continued use of linear models
or of approximations to the analysis of categorical data.

20.2.6.2 Linear and Nonlinear Models for Longitudinal Data

In the animal and veterinary sciences, there has been a renewed interest in the analysis
of longitudinal records of performance. This is, perhaps, a consequence of more intensive
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recording systems (for instance, in dairy cattle production it is possible to monitor
instantaneous milk flow) and of better statistical methods for the analysis of longitudinal
mixed effects models. In particular, linear random regression models or similar approaches
have been applied in animal breeding, where there is a large body of literature in
connection with the analysis of ‘test-day’ yields in dairy cattle. Similar applications have
been made in meat producing species.

Briefly, the problem of analyzing longitudinal data can be posed as follows. Envisage
a setting where, in a randomly drawn sample, each individual is measured longitudinally.
For example, male and female rabbits from several breeds may be weighted at several
phases of their development, from near birth to the adult stage. Suppose the objective
is to study growth patterns of the two sexes in each of the breeds, while taking into
account interindividual variability. Typically, there will be variation in the number of
measurements per individual, leading to longitudinal unbalancedness. A hierarchical or
multistage model consists of a series of nested functional specifications, together with
the associated distributional assumptions. In the context of longitudinal data, at the first
stage of the model, a mathematical function is used to describe the expected trajectory
of individuals, and a stochastic residual having some distribution reflects the departure
of the observations from such trajectory. At the second stage, a submodel is used to
describe interindividual variation of parameters of the first-stage specification. A second-
stage residual reflects the inability of the sub-model to explain completely the variation
of the parameters. Additional stages can be imposed in a Bayesian context to describe
uncertainty about the parameters.

At the first stage, it is assumed that the trajectory (body weights of the same animal,
e.g.) can be described with the parametric model:

yi = fi
(
θi, ti

)+ εi; i = 1, 2, . . . ,M, (20.14)

where yi =
{
yij

}
(i = 1, 2, . . . ,M; j = 1, 2, . . . , ni) is an ni x 1 vector of records on the

trajectory of individual i; fi
(
θi, ti

)
is its expected trajectory (e.g. expected growth curve)

given a vector of animal-specific parameters θi , of order r x 1, and ti is an ni x 1 vector
of known times of measurement. In (20.14), the ni x 1 residual vector εi represents the
inability of the function fi

(
θi, ti

)
of reproducing the observed body weights yi exactly.

An observation on individual i at time j is then:

yij = fij
(
θi, tij

)
+ εij , (20.15)

so the parameters θi dictate the form of the expected trajectory of individual i. The
relationship between observed body weights and the parameters may be linear or
nonlinear. In a linear specification, the derivatives of the model with respect to the
parameters do not depend on θi. The entire vector of records can be represented as:

y = f (θ, t)+ ε, (20.16)

where θ is the Mr x 1 vector of parameters of all individuals, t contains times of

measurement and ε is the
M∑
i=1
ni x 1 vector of residuals. In general, it is reasonable

to assume that the first-stage residuals are independent between individuals, but some
dependence within trajectories may exist. Possible dependencies between individuals,
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such as genetic or environmental relatedness, can be introduced in the next stage of
the model. Assuming normality of the residuals (sometimes, a thick-tailed distribution,
such as Student’s-t, may be a more sensible specification), the density of the first-stage
distribution is expressible as:

yi | θi, γ ∼ N
[
fi
(
θi, ti

)
,Ri (γ )

] ; i = 1, 2, . . . ,M, (20.17)

with yi being conditionally independent of yj , for all such pairs. In (20.17), Ri (γ ) is an
ni x ni first-stage variance–covariance matrix, which depends on γ, a vector of dispersion
parameters. For example, if residuals are independently and identically distributed within
individuals, then Ri (γ ) = Ini γ , where γ is the variance about the expected trajectory,
so γ would be a scalar parameter here. The form of the matrix Ri (γ ) depends on the
dispersion assumptions needed.

The second stage is a statement of how individual-specific parameters vary according
to explanatory factors, these perhaps representing genetic sources of variation. In order
to facilitate implementation, it may be convenient to assume that the second stage of the
model is linear on the effects of the explanatory variables. However, at least in theory,
there is no reason for precluding a nonlinear specification, particularly if this is dictated
by mechanistic considerations. If a linear model is adopted, the structure becomes:

θi = Xiβ + ui + ei; i = 1, 2, . . . ,M. (20.18)

Above, the vector β represents the effects of p explanatory variables contained in the r
x p matrix Xi ; ui are subject-specific effects on each of the r parameters, and ei is a
vector of second-stage residuals. Similarly to the errors in the first stage, these residuals
represent discrepancies between the second-stage explanatory structure Xiβ + ui and the
‘true values’ θi. In animal breeding applications, e.g. the vector ui may be additive genetic
effects on trajectory parameters, and these may or may not be identifiable separately from
the residual vector ei , depending on the genetic relationship structure.

The second-stage distributional assumptions pertain to the uncertainty induced by the
presence of ei in model (20.18), given β and ui . It is often convenient to postulate that:

θi | β, ui , �e ∼ N
(
Xiβ + ui , �e

)
, (20.19)

implying that ei | �e ∼ N
(
0, �e

)
, where the second-stage variance–covariance matrix

has the form:

�e =


σ 2

1 σ12 . . σ1r
σ21 σ 2

2 . . σ2r
. . . . .

. . . . σr−1,r

σr1 σr2 . σr,r−1 σ 2
r

 . (20.20)

Here, the diagonals elements are the variances of the second-stage residuals and the
off-diagonals are corresponding covariances. In some instances, one may wish to assign
a thick-tailed or robust distribution to the residuals, e.g. an r − variate t-distribution.
In this situation, one would write ei | νe, �e ∼ tr

(
0, �e, νe

)
to denote a t-distribution of

dimension r , having a null mean vector, variance–covariance �e, and degrees of freedom
νe. It must be noted that in a multivariate t-distribution, �e = νe

νe−2 Se, where Se is a scale
matrix, so νe > 2 is a necessary condition for existence of the variance–covariance matrix
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(Zellner, 1971). Often, it is assumed that second-stage residuals are mutually independent
across individuals. Then, the joint density of all parameters at the second stage can be
expressed as:

p
(
θ1, θ2, . . . , θM | β, u1, u2, . . . , uM, �e

) = M∏
i=1

p
(
θi | β, ui , �e

)
. (20.21)

Compactly, all parameters are expressible as:

θMr x 1 = XMr x pβp x 1 + uMr x 1 + eMr x 1.

This indicates that the second-stage distribution of all parameters of all individuals is:

θ | β,u,�e ∼ N
(
Xβ + u, I⊗�e

)
. (20.22)

An alternative formulation can be obtained by arranging individuals within parameters;
here, X must be redefined accordingly, and the covariance matrix of the process would
then be �e ⊗ I. The choice between the two alternative orderings is entirely a matter of
computational convenience.

In a Bayesian model, prior distributions must be assigned to all unknown quantities in
the statistical system posited. Thus, priors must be stated for β, u, �e and γ. Let the
vector u represent additive genetic effects on the trajectory parameters, in which case a
classical (and convenient) assumption made in quantitative genetics is that:

u | G0 ∼ N
(
0,A⊗G0

)
, (20.23)

where it is implied that parameters are ordered within individuals. Above, A is the additive
genetic relationship matrix between the M individuals, and G0 is an r x r additive genetic
variance–covariance matrix between parameters, i.e.:

G0 =


σ 2
u1

σu12
. . σu1r

σu21
σ 2
u2

. . σu2r

. . . . .

. . . . σu(r−1)r

σur1 σur2 . σur(r−1)
σ 2
ur

 .
If G0 is unknown, a prior distribution must be elicited for this matrix as well. Uncertainty
about all unknowns would be in the joint prior density:

p
(
β, u,G0, �e, γ

)
. (20.24)

After data are combined with the prior by formal use of Bayes theorem, inference can
proceed. The preceding prior distribution can be bounded, based on prior knowledge of
parameter values or on theoretical considerations. It must be emphasized that an advantage
of the Bayesian approach resides in the possibility of incorporating external stochastic
information into the analysis.

Prior to the advent of MCMC, approximate methods needed to be used. For example,
Gianola and Kachman (1983) and Kachman and Gianola (1984) suggested empirical
Bayes and REML-type estimators of breeding values and (co)variance components,
respectively, for nonlinear functions (the linear model being a particular case) describing
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longitudinal trajectories, e.g. lactation or growth. These are identical to those developed
later by Lindstrom and Bates (1990) and Laird (1990), for what has been termed random
regression models. Rekaya (1997); Rodriguez-Zas (1998) and Chang (1999) described
fully Bayesian implementations of nonlinear lactation curves via MCMC (rejection
sampling, Metropolis–Hastings) including, in the last case, heavy-tailed distributions.
A seemingly different approach has been that of ‘covariance’ functions (Kirkpatrick
and Lovsfold, 1989), where the covariance between records of individuals is viewed
as a continuous function of time. Meyer (1998) describes a REML implementation of
covariance functions, but it is unclear how this can be extended, within the paradigm
employed, to a situation where the trajectory dictates an intrinsically nonlinear model.

20.2.6.3 Survival Analysis

An area that has received increased attention in animal breeding has been survival analysis
applied to productive lifespan or herd life (Smith and Allaire, 1986; Ducrocq and Casella,
1996; Sorensen et al., 1998, and Korsgaard et al., 1999). As in the medical sciences,
‘proportional hazard’ models have been employed in animal genetics as well. Here, the
two basic concepts are: (1) the probability that an individual will survive beyond time t ,
or survival function, and (2) the hazard function, i.e. the ‘instantaneous probability’ that
an individual surviving up to time t , will die right after that. A common feature of survival
analysis is the presence of censored observations. For example, it may be known that a
certain cow was present in the herd at some time, but that she was sold thereafter to
another herd for production purposes, with no information about the date of termination
of her career. The density of all observations, given the parameters, has two components:
one for censored observations, depending on the parameters through the survival function,
and another (for uncensored data) where the parameters enter through the hazard function.
In these models, the hazard of an individual can be expressed as the product of a baseline
hazard and of a proportional hazard that depends on fixed and random effects. Here,
empirical Bayes approaches have been used for inferring breeding values (e.g. Ducrocq
and Casella, 1996), although fully Bayesian analyses are technically feasible.

A challenge was how to embed a survival analysis within a multitrait setting. This
problem is easy to deal with if a linear censored model is employed (Korsgaard et al.,
1999), although at the expense of flexibility and realism of the assumptions. Recently,
Damgaard and Korsgaard (2006) proposed a bivariate quantitative genetic model for a
Gaussian trait and a time-to-event variate. Their statistical treatment is fully Bayesian.

Likewise, there are situations where a multivariate hazard function may need to be
modeled. For example, Guo (1999) studied herd life and lifetime prolificacy in sows.
Both traits can be subject to censoring, and a bivariate survival analysis would be needed
if one wishes to infer the genetic and environmental correlation between the traits. A
more complete discussion is in Guo (2006).

20.2.7 Effects of Selection on Inferences

As noted earlier, animal breeding data seldom arise from a truly random mechanism.
Except in designed experiments, the ‘history of the selection process’ is known incom-
pletely, leading to missing data in some statistical sense. A question of importance is the
extent to which inferences are distorted when, e.g. selection and assortative mating are
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ignored. Important contributions here have been those of Kempthorne and von Krosigk in
Henderson et al. (1959), Curnow (1961) and, notably, Henderson (1975). Im et al. (1989)
discussed the inferential problems from a ‘missing data’ point of view, and Gianola and
Fernando (1986) and Fernando and Gianola (1990) gave the Bayesian perspective.

Kempthorne and von Krosigk in Henderson et al. (1959) and Curnow (1961), employing
normality assumptions, found that the ML estimator of a parameter has the same form with
and without selection, provided that all data used for selection decisions are used in the
analysis. Im et al. (1989) presented the result in more general form, for any distribution.
However, this does not imply that the asymptotic distribution of the ML estimator remains
unaffected by selection. In order to arrive at the information matrix under selection, one
needs to take expectations under the marginal distribution of the observations under
selection, rather than under random sampling. Failing to do this, interestingly, leads
to correct point estimation, but inadequate interval inferences, over repeated sampling.
Hence, selection is not completely ignorable if one wishes to go beyond obtaining a point
estimate. Gianola et al. (1989) review some of the issues.

Henderson (1975), assuming that dispersion parameters were known, derived best
linear unbiased predictors of breeding value under a specific selection model. Here, upon
conceptual repeated sampling, incidence matrices and the relationship matrix must remain
constant from replication to replication. Henderson’s model holds only when the animals
are exchangeable, in the sense that any permutation of items yields the same distribution
and relationship matrix. This is unrealistic. At any rate, and within these restrictions, he
gave conditions for unbiasedness, which have been largely quoted and followed by the
animal breeding community. One of these, e.g. states that if selection is based on linear
functions of the unobservable breeding values, some random elements in the model (e.g.
herds) must be treated as fixed in order to obtain unbiased predictors of the breeding
values. First, it is obvious that if one could observe the breeding values for constructing
the linear functions on which selection is based, there would be no point in predicting
anything, as the state of nature would be known. Second, this does not describe the type
of selection encountered in practice. Interestingly, this selection model has been received
rather uncritically by animal breeders, with the notable exception of Thompson (1979). At
any rate, Henderson (1975) probably constitutes the best frequentist attempt of tackling
unbiased prediction of random effects under selection.

In a Bayesian setting, Gianola and Fernando (1986) showed that if all data are used
for constructing the joint posterior distribution of the unknown parameters, selection
can be ignored. This was elaborated further by Fernando and Gianola (1990) and
extended by Gianola et al. (1999). This holds at the level of the marginal posteriors
for any unknown quantity, irrespective of whether this is a breeding value, a genetic
correlation in a multivariate threshold model or the degrees of freedom of a t-distribution.
These results, however, should not be interpreted from a frequentist point of view. For
example, under normality assumptions and known dispersion structure, the mean of the
posterior distribution of the breeding values under this type of selection is equal to BLUP
ignoring selection. However, ‘regular’ BLUP is biased under ‘location variant’ selection
(Henderson, 1975). Here, we have a situation where the Bayesian solution cannot cure a
frequentist malaise.

Unfortunately, there are situations in which selection is not ignorable. For example, it
is to be expected that an analysis of carcass traits in beef cattle ignoring concomitant
selection for growth rate would lead to incorrect inference. Here, it is essential to
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attempt modeling the ‘missing data’ or selection process or, alternatively, one perhaps
should consider using robust methods of inference. For example, if selection (natural or
artificial) moves a population toward some intermediate optimum, this must be taken
into account somehow. If such selection is according to a Gaussian fitness functions,
the distribution after selection remains normal, but parameters change (e.g. Bulmer,
1980). A precise statement of the problem of inference under selection is in Sorensen
et al. (2001).

20.2.8 Massive Molecular Data: Semiparametric Methods

20.2.8.1 Motivation

Massive quantities of genomic data are now available, with potential for enhancing
accuracy of prediction of genetic value of, e.g. candidates for selection in animal and
plant breeding programs, or for molecular classification of disease status in subjects
(Golub et al., 1999). For instance, Wong et al. (2004) reported a genetic variation map of
the chicken genome containing 2.8 million single-nucleotide polymorphisms (SNPs), and
demonstrated how the information can be used for targeting specific genomic regions.
Likewise, Hayes et al. (2004) found 2507 putative SNPs in the salmon genome that could
be valuable for marker-assisted selection in this species.

The use of molecular markers as aids in genetic selection programs has been discussed
extensively. Important early papers are Soller and Beckmann (1982) and Fernando and
Grossman (1989), with the latter focusing on BLUP of genetic value when marker
information is used. Most of the literature on marker-assisted selection deals with the
problem of locating one or few QTL using flanking markers. However, in the light
of current knowledge about genomics, the widely used single-QTL search approach is
naive, since there is evidence of abundant QTLs affecting complex traits, as discussed,
e.g. by Dekkers and Hospital (2002). This would support the infinitesimal model of
Fisher (1918) as a sensible statistical specification for many quantitative traits, with
complications being the accommodation of nonadditivity and of feedbacks (Gianola and
Sorensen, 2004). Dekkers and Hospital (2002) observe that existing statistical methods
for marker-assisted selection do not deal well with complexity posed by quantitative
traits. Some difficulties are: specification of ‘statistical significance’ thresholds for multiple
testing, strong dependence of inferences on model chosen (e.g. number of QTLs fitted,
distributional forms), inadequate handling of nonadditivity and ambiguous interpretation
of effects in multiple-marker analysis, due to collinearity.

In this section, we discuss how large-scale molecular information, such as those
conveyed by SNPs, can be employed for marker-assisted prediction of genetic value
for quantitative traits in the sense of, e.g. Meuwissen et al. (2001), Gianola et al. (2003)
and Xu (2003). The focus is on inference of genetic value, rather than detection of QTL. A
main challenge is that of positing a functional form-relating phenotypes to SNP genotypes
(viewed as thousands of possibly highly colinear covariates), to polygenic additive genetic
values, and to other nuisance effects, such as sex or age of an individual, simultaneously.
A more detailed presentation is in Gianola et al. (2006).

Standard quantitative genetics theory gives a mechanistic basis to the mixed effects
linear model, treated either from classical or Bayesian perspectives. Meuwissen et al.
(2001) and Gianola et al. (2003) exploit this connection and suggest highly parametric
structures for modeling relationships between phenotypes and effects of hundreds or
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thousands of molecular markers. A first concern is the strength of their assumptions
(e.g. linearity, multivariate normality, proportion of segregating loci, spatial within-
chromosome effects); it is unknown if their procedures are robust. Secondly, colinearity
between SNP or marker genotypes is bound to exist, because of the sheer massiveness of
molecular data plus cosegregation of alleles. While adverse effects of colinearity can be
tempered when marker effects are treated as random variables, statistical redundancy is
undesirable.

The genome seems to be much more highly interactive than what standard quantitative
genetic models can accommodate. In theory, genetic variance can be partitioned into
orthogonal additive, dominance, additive × additive, additive × dominance, dominance ×
dominance, etc., components, only under highly idealized conditions. These include
linkage equilibrium, absence of natural or artificial selection, and no inbreeding or
assortative mating. Arguably, these conditions are violated in nature and in breeding
programs. Actually, marker-assisted selection exploits existence of linkage disequilibrium,
and even chance creates disequilibrium. Further, estimation of nonadditive components of
variance is notoriously difficult, even under standard assumptions. Therefore, it is doubtful
whether standard quantitative genetic approaches can model fine-structure relationships
between genotypes and phenotypes adequately, unless either departures from assumptions
have mild effects, or statistical constructs turn out to be more robust that what is expected
on theoretical grounds. These considerations suggest that a nonparametric treatment of
the data could be valuable. On the other hand, application of the additive genetic model in
selective breeding of livestock has produced remarkable dividends, as shown in Dekkers
and Hospital (2002). Hence, a combination of nonparametric modeling of effects of
molecular variables (e.g. SNPs) with features of the additive polygenic mode of inheritance
is appealing.

20.2.8.2 Kernel Regression on SNP Markers

Consider a stylized situation in which each of a series of individuals possesses a
measurement for some quantitative trait denoted as y, as well as information on a possibly
massive number of genomic variables, such as SNP ‘genotypes’, represented by a vector x.
In the main, x is treated as a continuously valued vector of covariates, even though SNP
genotypes are discrete (coding is done via dummy variates). Also, x could represent gene
expression measurements from microarray experiments; here, it would be legitimate to
regard this vector as continuous. Although gene expression measurements are typically
regarded as response variables, there are contexts in which this type of information could
be used in an explanatory role (Mallick et al., 2005).

Let the relationship between y and x be represented as

yi = g
(
xi
)+ ei; i = 1, 2, . . . , n, (20.25)

where:

• yi is a measurement, such as plant height or body weight, taken on individual i;

• xi is a p × 1 vector of dummy SNP or microsatellite covariates observed on i, and
g (.) is some unknown function relating these ‘genotypes’ to phenotypes. Define
g
(
xi
) = E (

yi | xi
)

as the conditional expectation function, i.e. the mean phenotypic



INFERENCES FROM MIXED MODELS IN QUANTITATIVE GENETICS 699

value of an infinite number of individuals, all possessing the p-dimensional geno-
type xi .

• ei ∼
(
0, σ 2

)
is a random residual, distributed independently of xi and with variance

σ 2.

The conditional expectation function is

g(x) =
∫
yp (x, y) dy
p (x)

. (20.26)

Following Silverman (1986), consider a nonparametric kernel estimator of the
p-dimensional density of the covariates:

p̂ (x) = 1

nhp

n∑
i=1

K

(
xi − x
h

)
, (20.27)

where K
( xi−x
h

)
is a kernel function and h is a window width or smoothing parameter.

In (20.27), x is the value (‘focal point’) at which the density is evaluated and xi
(i = 1, 2, . . . , n) is the observed p-dimensional SNP genotype of individual i in the
sample. Hence, (20.27) estimates population densities (or frequencies). If p̂ (x) is to
behave as a multivariate probability density function, then it must be true that the kernel
function is positive and that it integrates to 1. A nonparametric estimator of g(x) is given
by

ĝ(x) =
n∑
i=1

wi (x) yi, (20.28)

where

wi (x) =
K
( xi−x
h

)
n∑
i=1
K
( xi−x
h

) ,
is a weight that depends on the kernel function and window width chosen, and on the
xi (i.e. genotypes) observed in the sample. The linear combination of the observations
(20.28) is called the Nadaraya–Watson estimator of the regression function. As seen in
(20.28), the fitted value at coordinate x is a weighted average of all data points, with
the value of the weight depending on the ‘proximity’ of xi to x and on the value of the
smoothing parameter h. For instance, if the kernel function has the Gaussian form:

K

(
xi − x
h

)
= 1

(2π)
p

2

exp
[
−1

2

(
xi − x
h

)′ (xi − x
h

)]
,

this has a maximum value of (2π)−
p

2 when x = xi , and tails off to 0 as the distance
between x and xi increases. The values of wi (x) decrease more abruptly as h→ 0.
Observations with xi coordinates closer to the focal point x are weighted more strongly
in the computation of the fitted value Ê (y | x).
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20.2.8.3 Discrete Kernels

For a biallelic SNP, there are three possible genotypes at each ‘locus’, as in stylized
Mendelian situations. In a standard (parametric) analysis of variance representation,
incidence situations (or additive and dominance effects at each of the loci) are described
via two dummy binary variables per locus, and all corresponding epistatic interactions
can be assessed from effects of cross-products of these variables. This leads to a highly
parameterized structure and to formidable model selection problems.

Consider now the nonparametric approach. For an x vector with p coordinates, its
statistical distribution is given by the probabilities of each of the 3p combinations of binary
outcomes. With SNPs, p can be very large (possibly much larger than n), so it is hopeless
to estimate the probability distribution of genotypes accurately from observed relative
frequencies, and smoothing is required (Silverman, 1986). Kernel estimation extends as
follows: for binary covariates the number of disagreements between a focal x and the
observed xi in subject i is given by

d
(
x, xi

) = (
xi − x

)′ (xi − x
)
,

where d (.) takes values between 0 and p. For binary covariates, Silverman (1986)
suggests the ‘binomial’ kernel

K
(
x, xi , h

) = hp−d(x,xi ) (1− h)d(x,xi ) ,
with 1

2 ≤ h ≤ 1. It follows that the kernel estimate of the probability of observing the
focal value x is

p̂ (x) = 1

n

n∑
i=1

hp−d(x,xi ) (1− h)d(x,xi ) . (20.29)

If h = 1, the estimate is just the proportion of cases for which xi = x; if h = 1
2 , every focal

point gets an estimate equal to
( 1

2

)p
, irrespective of the observed values x1, x2 . . . , xn.

The nonparametric estimator of the regression function is

ĝ(x) =

n∑
i=1
hp−d(x,xi ) (1− h)d(x,xi ) yi
n∑
i=1
hp−d(x,xi ) (1− h)d(x,xi )

.

20.2.8.4 Semiparametric Kernel Mixed Model

Consider now a situation for which there might be an operational or mechanistic basis
for specifying at least part of a model. For instance, suppose y is a measure on some
quantitative trait, such as milk production of a cow. Animal breeders have exploited to
advantage the infinitesimal model of quantitative genetics (Fisher, 1918). In this section,
we combine features of the infinitesimal model with a nonparametric treatment of genomic
data, and present semiparametric implementations.

Model (20.25) is expanded as

yi = w′iβ + z′iu+ g(xi)+ ei; i = 1, 2, . . . , n, (20.30)
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where β is a vector of nuisance location effects and u is a q × 1vector containing additive
genetic effects of q individuals (these effects are assumed to be independent of those of the
markers), some of which may lack a phenotypic record; w′i and z′i are known nonstochastic
incidence vectors. As before, g(xi) is some unknown function of the SNP data. It will
be assumed that u ∼ N (

0,Aσ 2
u

)
, where σ 2

u is the ‘unmarked’ additive genetic variance
and A is the additive relationship matrix. Let e = {

ei
}

be the n× 1 vector of residuals,
and assume that e ∼ N (

0, Iσ 2
e

)
, where σ 2

e is the residual variance. Note that the model
implies that

yi − g(xi ) = w′iβ + z′iu+ ei, (20.31)

and
yi − w′iβ − z′iu = g(xi )+ ei. (20.32)

The preceding means that: (1) the offset yi − g(xi ) follows a standard mixed effects
model, and (2) if β and u were known, one could use (20.28) to estimate g(xi) employing
yi − w′iβ − z′iu as ‘observations’.

One possible strategy is to carry out a mixed model analysis. This follows from
representation (20.31). First, estimate g(xi), for i = 1, 2, . . . , n, via ĝ(xi ), as in (20.28).
Then, carry out a mixed model analysis using the ‘corrected’ data vector and pseudomodel

y∗ = {
yi − ĝ(xi )

} = Wβ + Zu+ e,

where W = {
w′i
}

and Z = {
z′i
}

are incidence matrices of appropriate order. The pseu-
domodel ignores uncertainty about g (x) , since ĝ(xi ) is treated as if it were the true
regression (on SNPs) surface.

Under the standard multivariate normality assumptions of the infinitesimal model, one
can estimate the variance components σ 2

u and σ 2
e from y∗ via REML, and form empirical

best linear unbiased estimators (BLUE) and predictors of β and u, respectively, by solving
the Henderson MME [

W′W W′Z
Z′W Z′Z+ A−1 σ

2
e

σ 2
u

] [
β̂

û

]
=
[

W′y∗
Z′y∗

]
. (20.33)

The ratio σ 2
e

σ 2
u

is evaluated at REML estimates of the variance components. Solving system

(20.33) is a standard problem in animal breeding even for very large q, since A−1 is easy
to compute. The two stage procedure could be iterated several times, i.e. use the solutions
to (20.33), to obtain a new estimate of g (x) using yi − w′i β̂ − z

′
i
û as ‘data’, then update

the pseudodata y∗, etc. A Bayesian approach can be used instead, using the corrected
data yi − ĝ(xi ) as observations. Under standard assumptions made for the prior and the
likelihood, one can draw samples j = 1, 2, . . . , m from the pseudo posterior distribution[
β, u,σ 2

u , σ
2
e |y∗

]
via Gibbs sampling, and then form ‘semiparametric’ draws of the total

genetic value. Irrespective of whether classical or Bayesian viewpoints are adopted, this
approach ignores the error of estimation of g(x), as noted earlier.

20.2.8.5 Reproducing Kernel Hilbert Spaces Mixed model

What follows is inspired by developments in Mallick et al. (2005) for classification of
tumors using microarray data. The underlying theory is outside the scope of the paper.
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Only essentials are given here, and foundations are in Wahba (1990; 1999). Using the
structure of (20.30), consider the penalized sum of squares

SS
[
g(x), h

] = n∑
i=1

[
yi − w′iβ − z′iu− g(xi)

]2 + h ‖g(x)‖ , (20.34)

where, as before, h is a smoothing parameter (possibly unknown) and ‖g(x)‖ is some
norm or ‘stabilizer’. For instance, in smoothing splines, ‖g(x)‖ is a function of the second
derivatives of g(x) integrated between end-points that comprise the data. The second term
in (20.34) acts as a penalty: if the unknown function g(x) is rough, in the sense of having
slopes that change rapidly, the penalty increases. The main problem here is that of finding
the function g(x) that minimizes (20.34). Since SS

[
g(x), h

]
is a functional on g(x), this

is a variational or calculus of variations problem over a space of smooth curves. The
minimizer admits the representation

g(.) = α0 +
n∑
j=1

αjK
(
., xj

)
,

where K (., .) is called a reproducing kernel. A possible choice for the kernel is the single
smoothing parameter Gaussian function

Kh

(
x, xj

)
= exp

−
(

x− xj
)′ (

x− xj
)

h

 .
We embed these results into (20.30), leading to the specification

yi = w′iβ + z′iu+
n∑
j=1

exp

−
(

xi − xj
)′ (

xi − xj
)

h

αj + ei, (20.35)

with the intercept parameter α0 included as part of β. Note that there are as many
regressions αj as there are data points. However, the roughness penalty in the variational
problem leads to a reduction in the effective number of parameters in reproducible kernel
Hilbert spaces regression (RKHS), as it occurs in smoothing splines.

Define the 1× n row vector

t′i (h) =
exp

−
(

xi − xj
)′ (

xi − xj
)

h


 , j = 1, 2, .., n;

the n× 1 column vector α =
{
αj

}
, j = 1, 2, . . . , n; and the n× n matrix

T (h) =


t′1 (h)
t′2 (h)
.

.

.

t′n (h)

 .
Then (20.35) can be written in matrix form as

y = Wβ + Zu+ T (h) α + e.
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Suppose, further, that the αj coefficients are exchangeable according to the distribution
αj ∼ N

(
0, σ 2

α

)
. Hence, for a given smoothing parameter h, we are in the setting of a

mixed effects linear model.
Given h, σ 2

u , σ
2
e , and σ 2

α (at a given h, the three variance components may be estimated
by, e.g. REML) one can obtain predictions of the polygenic breeding values u and of the
coefficients α from the solutions to the system W′W W′Z W′T (h)

Z′W Z′Z+ A−1 σ
2
e

σ 2
u

Z′T (h)

T′ (h)W T′ (h)Z T′ (h)T (h)+ I σ
2
e

σ 2
α

[
β̂

û
α̂

]
=
[ W′y

Z′y
T′ (h) y

]
. (20.36)

At least in animal breeding, it is not feasible to have all individuals genotyped for
SNPs. On the other hand, the number of animals with phenotypic information available
is typically in the order of hundreds of thousands, and genotyping is selective, e.g. young
bulls that are candidates for progeny testing in dairy cattle production. Animals lacking
molecular data are not a random sample from the population, and ignoring this issue
may lead to biased inferences. Unless missingness of molecular data is ignorable, the
procedures given below require modeling of the missing data process, which is difficult
and may lack robustness. Here, it is assumed that missingness is ignorable, enabling use
of likelihood-based or Bayesian procedures as if selection had not taken place. Consider
the following two ad hoc procedures.

Let the vector of phenotypic data be partitioned as y = [
y′1 y′2

]′
, where y1 (n1 × 1),

consists of records of individuals lacking SNP data, whereas y2 (n2 × 1) includes
phenotypic data of genotyped individuals. Often, it will be the case that n1 > p >> n2.
We adopt the model[

y1
y2

]
=
[

W1
W2

]
β +

[
Z1
Z2

]
u+

[
0

T2 (h)

]
α+

[
e1
e2

]
. (20.37)

For the sake of flexibility, assume that e1 � N
(
0, In1

σ 2
e1

)
and e2 � N

(
0, In2

σ 2
e2

)
are

mutually independent but heteroscedastic vectors. In short, the key assumption made here
is that the random effect α affects y2 but not y1, or equivalently, that it gets absorbed
into e1. With this representation, the mixed model equations take the form

2∑
i=1

1
σ 2
ei

W′
iWi

2∑
i=1

1
σ 2
ei

W′
iZi

1
σ 2
e2

W′
2T2 (h)

2∑
i=1

1
σ 2
ei

Z′iWi

2∑
i=1

1
σ 2
ei

Z′iZi + A−1 1
σ 2
u

1
σ 2
e2

Z′2T2 (h)

1
σ 2
e2

T′2 (h)W2 T′2 (h)Z 1
σ 2
e2

T′2 (h)T2 (h)+ I 1
σ 2
α


[
β̂

û
α̂

]

=


2∑
i=1

1
σ 2
ei

W′
iyi

2∑
i=1

1
σ 2
ei

Z′iyi
1
σ 2
e2

T′2 (h) y2

 . (20.38)

If SNP data are missing completely at random and h, σ 2
u , σ

2
e and σ 2

α are treated as known,
then β̂ is an unbiased estimator of β, and û and α̂ are unbiased predictors of u and α,
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respectively. They are not ‘best’, in the sense of having minimum variance or minimum
prediction error variance, because the smooth function g (x) of the SNP markers is missing
in the model for individuals that are not genotyped (Henderson, 1974).

An alternative consists of writing the bivariate model[
y1
y2

]
=
[

W1
W2

]
β +

[
Z1 0
0 Z2

] [
u1
u2

]
+
[

0
T2 (h)

]
α+

[
e1
e2

]
,

and then assign to the polygenic component, the multivariate normal distribution[
u1
u2

]
∼ N

([
0
0

]
,

[
Aσ 2

u1
Aσu12

Aσu12
Aσ 2

u2

])
.

Here, σ 2
u1

and σ 2
u2

are additive genetic variances in individuals without and with molecular
information, respectively, and σu12

is their additive genetic covariance. Computations
would be those appropriate for a two-trait linear model analysis.

Gianola et al. (2006) simulated phenotypic and genotypic values for a sample of N
unrelated individuals, for each of two situations. The trait was determined by either five
biallelic QTL, having additive gene action, or by five pairs of biallelic QTL, having
additive by additive gene action. Under nonadditive gene action, the additive genetic
variance was null, so all genetic variance was of the additive × additive type. Heritability
(ratio between genetic and phenotypic variance) in both settings was set to 0.5. Genotypes
were generated for a total of 100 biallelic markers, including the ‘true’ QTL; all loci were
simulated to be in gametic-phase equilibrium. Since all individuals were unrelated and all
loci were in gametic-phase equilibrium, only the QTL genotypes and the trait phenotypes
would provide information on the genotypic value. In most real applications, the location
of the QTL will not be known, and so many loci that are not QTL will be included in the
analysis. An RKHS mixed model was used to predict genotypic values, given phenotypic
values and genotypes at the QTL and at all other loci. The model included a fixed intercept
α0 and a random RKHS regression coefficient αi for each subject; additive effects were
omitted from the model, as individuals were unrelated, precluding separation of additive
effects from residuals, in the absence of knowledge of variance components. The genetic
value gi of a subject was predicted as

ĝi = α̂0 + t′i(h)α̂,

where α̂0 and α̂ were obtained by solving (20.36) for this model, using a Gaussian kernel
at varying functions of h. The mean squared error of prediction (MSEP) of genetic value
was calculated as

MSEP(h, σ 2
e /σ

2
α ) =

∑
i

(gi − ĝi)2, (20.39)

and a grid search was used to determine the values of h and σ 2
e /σ

2
α that minimized (20.39).

To evaluate the performance of ĝi as a predictor, another sample of 1000 individuals
(prediction) was simulated, including genotypes, genotypic values and phenotypes. This
was deemed preferable to doing prediction in the training sample, to reduce dependence
between performance and (h, σ 2

e /σ
2
α ), whose values were assessed in the training sample

The genotypic values of the subjects in prediction were predicted, given their genotypes,
using ĝi . Genotypic values were also predicted using a multiple linear regression (MLR)
mixed model with a fixed intercept and random regression coefficients on the linear effects
of genotypes.
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When gene action was strictly additive, the two methods (each fitting k = 100 loci)
had the same accuracy, indicating that RKHS performed well even when the parametric
assumptions were valid. On the other hand, when inheritance was purely additive ×
additive, the parametric MLR was clearly outperformed by RKHS, irrespective of the
number of loci fitted. An exception occurred at k = 100 and N = 1000; here, the
two methods were completely inaccurate. However, when N was increased from 1000
to 5000, the accuracy of RKHS jumped to 0.85, whereas MLR remained inaccurate.
The accuracy of RKHS decreased (with N held at 1000) when k increased. We
attribute this behavior to the use of a Gaussian kernel when, in fact, covariates are
discrete.

Our expectation is that the nonparametric function of marker genotypes, g (x) , would
capture all possible forms of interaction, but without explicit modeling. The procedures
should be particularly useful for highly dimensional regression, including the situation in
which the number of SNP variables (p) exceeds amply the number of data points (n).
Instead of performing a selection of a few ‘significant’ markers based on some ad hoc
method, information on all molecular polymorphisms is employed, irrespective of the
degree of colinearity. This is because the procedures should be insensitive to difficulties
caused by colinearity, given the forms of the estimators, e.g. (20.28). It is assumed that
the assignment of genotypes to individuals is unambiguous, i.e. x gives the genotypes for
SNP markers free of error.

20.2.9 Computing Software

Because of the sheer size of animal breeding data sets, much effort has been devoted
to making BLUP and REML computationally feasible, even in multivariate models. A
comparison of packages is in Misztal (1998); see Hofer (1998) for additional discussion.
The most widely used packages for mixed effects linear models are DFREML (Meyer,
1991), DMU (Jensen and Madsen, 1994), MTDFREML (Kriese et al., 1994), VCE
(Groeneveld, 1994) and ASREML (Gilmour and Thompson, 1998). Some packages
include MCMC implementations (Van Tassel and Van Vleck, 1996; Groeneveld and
Garcia Cortes, 1998; Janss, 1998). Janss and de Jong (1999) fitted an univariate mixed
effects model with about 1.4 million location effects including about 700 000 additive
genetic values (with a relationship matrix, A, of corresponding order) to milk yield of
Dutch Cattle, and used Gibbs sampling. They estimated the posterior distributions of
heritability in a precise manner. This illustrates a situation where the MCMC machinery
allows estimating a complete distribution, whereas deterministic likelihood computations
are seemingly not feasible. Some software for nonlinear models, survival analysis and
limited dependent variables is available, but it is far from general. An example is the
SURVIVAL KIT, for analysis of survival models (Ducrocq and Sölkner, 1998), and the
Danish DMU, which now has some finite mixture model capabilities. Animal breeders are
increasingly using R, a free software environment for statistical computing and graphics
(http://www.r-project.org).

20.3 FUTURE DEVELOPMENTS

Animal breeders have taken up new statistical ideas and technology at a fairly rapid pace.
Some expected developments and issues are outlined below.
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20.3.1 Model Development and Criticism

It is just not sensible to expect that all quantitative traits in animal breeding can
be described suitably by a linear model with the ‘herd-year + animal + permanent
environment + residual’ standard specification under Gaussian assumptions. Given the
continued growth in computer power and algorithms, there is flexibility for fitting
more realistic functional forms and distributions, as well as for challenging models
stringently, this being an area that has not received enough attention. One rela-
tive measure of model adequacy, at least in a Bayesian framework, consists of
assessing the posterior probabilities of each one in a set of competing models. This
requires computing Bayes factors or using reversible jump methods to estimate the
posterior probability distribution of the models. For example, Strandén and Gianola
(1997) found strong evidence against a model with Gaussian errors. A specifica-
tion assuming a t-distribution for the residuals, was at least 105 times more prob-
able than its Gaussian counterpart; this would correspond to a value of about 23 in
the scale of the likelihood ratio test. An interesting and comprehensive assessment
of model for describing litter size in pigs is given by Sorensen and Waagepetersen
(2003).

Analysis of residuals is an important diagnosis tool. For instance, in a multitier
hierarchical model for longitudinal data (e.g. milk yield) one may examine the fit of
different specifications at the level of the trajectory, at the level of variation of the
parameters describing the trajectory and at the level of the different sub-populations
embedded in the analysis. Strandén (1996) undertook a Bayesian analysis of residuals of
models describing cross-sectional milk yield data. He examined the posterior distributions
of residuals, detected outliers, and found how a robust distribution led to a better fit.
Similarly, Rodriguez-Zas (1998) used MCMC for criticizing several longitudinal models
for describing somatic cell scores in Holsteins, and detected several aberrant observations
within individuals. Further, she looked at posterior distributions of Mahalanobis distance
measures for multivariate outliers, this being done for detecting individuals whose vector
of ‘random regression’ parameters depart from what the model predicts. This type of
analysis extends naturally to discrete data in a Bayesian framework, so this may be in the
agenda for further work.

20.3.2 Model Dimensionality

A second domain of interest is related to the danger of making too strong assumptions
concerning the dimension of a model. Animal breeders would seem to believe that an
analysis with a highly dimensional model is necessarily better, or that it provides a ‘gold
standard’, than a model based on less ambitious assumptions. In the absence of knowledge
about the state of nature, there is no reason to expect why a more highly parameterized
model should provide the ‘best’ description of reality (Malécot, 1947). For example,
suppose that one has traits A,B,C, . . . , Z, and that a multiple-trait Gaussian model with
as many dimensions as there are letters in the alphabet is fitted for predicting breeding
values and estimating genetic parameters. This is equivalent to constructing a probability
model of the type:

Pr(A) x Pr(B | A) . . . x Pr(Z | Y,X, . . . , B,A).
This can be seen as a ladder, but what happens if one or more of the steps are false?
There may be good reason for believing that there is approximate Gaussianity at the
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margins. Unfortunately, this is not a sufficient condition for defining a jointly Gaussian
process, as all conditional distributions must be also Gaussian for this to hold. Strandén
and Gianola (1997), e.g. using Bayes factors, found that univariate repeatability models
(with either Gaussian or t-distributed errors) were much more plausible than bivariate
models for describing first and second lactation milk yield in Ayrshire cattle. Even if
one adopts a high-dimensional model, Rekaya et al. (1999) illustrate how a parsimonious
parameterization of a genetic variance–covariance matrix can lead to dramatically more
precise inferences about genetic correlations, relative to a standard multitrait approach.
Factor analytic representations for reducing the number of parameters in a model are
receiving an increased attention (De los Campos, 2005).

20.3.3 Robustification of Inference

There has been some work in fitting thick-tailed distributions (Strandén and Gianola, 1999;
Rodriguez-Zas, 1998; Rodriguez-Zas, et al., 1998; Rosa, 1998), Bayesian nonparametrics
(Saama, 1999) and use of splines (White et al., 1999). Concerning heavy-tailed distribu-
tions, Strandén (1996) and Strandén and Gianola (1999) described how univariate and
multitrait mixed effects linear models could be extended to accommodate t-distributions,
to attain a more robust analysis. Strandén and Gianola (1997) found that models with
independent and identically distributed univariate or bivariate t-errors were more plau-
sible than their Gaussian counterparts when describing milk yield in cattle. In this study,
the posterior distribution of the degrees of freedom concentrated between values of
6 and 10, pointing away from the validity of the Gaussian assumption. On the other
hand, Rodriguez-Zas (1998) found that the posterior means of the degrees of freedom
ranged between 20 and 24 when using nonlinear ‘random regressions’ for describing
somatic cell scores in Holstein cows. Here, Bayes factors were not decisive against
the Gaussian assumption. Rosa (1998) pointed out that the t-models could be extended
easily (at least from a Bayesian point of view) to accommodate lack of symmetry in
the distribution of random effects. This had been suggested by Fernandez and Steel
(1998a; 1998b) for the first tier of a hierarchical model. Rosa et al. (1998; 2003)
fitted seven distributions (Gaussian; univariate and multivariate t; univariate and multi-
variate slash; univariate and multivariate contaminated normals) to birth weight data in
mice. The Gaussian and the three multivariate robust distributions received the least
degree of support. Within the three univariate robust distributions, the slash and the
contaminated normal led to models that were between five and six times more prob-
able (a posteriori) than the univariate-t. The Gaussian model was about 10−26 times less
likely than the univariate contaminated normal. This suggests that analyses based on
Gaussian assumptions are dangerous for entire probabilistic inference. While assuming
normality (linearity) may not be cause serious problems from the point of view of point
prediction of breeding values, it may be create difficulties when calculating probabili-
ties of ordered events. For example, using Norwegian binary mastitis data, Heringstad
et al. (1999, unpublished), estimated via MCMC in a Bayesian threshold model, the
posterior probability that at least 10 of the sires out of the top 25 (posterior means)
would be those with the largest transmitting abilities in the liability scale; the analysis
involved 257 young sires and about 12 000 records. This type of probabilistic computa-
tion can be used to screen among models, choosing those that give the highest probability
that the ranking of true values, corresponds to the rankings from the evaluation, given
the data. Clearly, using a Gaussian assumption for 0− 1 data would lead to spurious
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probabilities. Calculating the probability of correctly ordering random variables that are
neither independent not identically distributed is an old problem in animal breeding
(Henderson, 1973).

20.3.4 Inference Under Selection

Dealing with data derived from cryptic selection processes remains one of the biggest
challenges in animal breeding. Hence, developing selection models is an area that should
received more attention beyond ad hoc simulations conducted to see what happens
under narrow conditions. For example, Gianola and Hill (1999, unpublished) derived
best linear unbiased prediction under nor-optimal stabilizing selection. Inferences depend
on knowledge of the optimum toward which the population is being moved, and of a
sharpness parameter matrix. In principle, this parameter can be estimated by comparing
data before and after selection. However, if one had the data observed before selection
takes place, such selection is ignorable from the point of view of Bayesian or likelihood
inference. As mentioned, Sorensen et al. (2001) developed an approach that allows
inferring the trajectory of additive genetic variance (under an infinitesimal model) in
the course of selection. Using simulated data, they showed that the posterior distribution
of the additive genetic variance at any generation covered well the true value. Their
Bayesian analysis was much more precise than regression of offspring on parents, this
being a form of conditional likelihood inference that has been advocated for selected
data. An obvious extension consists of studying the dynamics of the genetic correlation
between traits, and this is straightforward.

20.3.5 Mixture Models

Finite mixture models, used in biology and in genetics since Pearson (1894),will probably
play an increasing role in animal breeding. These models can uncover heterogeneity
due to hidden structure or incorrect assumptions. Unknown loci with major effects can
create ‘bumps’ in a phenotypic distribution, and this heterogeneity may be resolved by
fitting a mixture, i.e. by calculating conditional probabilities that a datum is drawn from
one of the several potential, yet unknown, genotypes. Concealed heterogeneity produces
curious phenomena. For instance, the offspring–parent regression depends on the mixing
proportions, and the genetic correlation between a ‘mixture trait’ and a Gaussian character
is a function of the mixing proportions and of the ratio of genetic variances between
mixture components. Ignoring this can give a misleading interpretation of the genetic
structure of a population, and of expected response to selection when applied to a
heterogeneous trait.

Many QTL detection procedures are based on ideas from mixture models, and inference
about some quantitative genetic effects via finite mixture models may be warranted in
practice. For example, consider mastitis, an inflammation of the mammary gland of
cows and goats associated with bacterial infection. Genetic variation in susceptibility
exists, and selection for increased resistance is feasible. However, recording of mastitis
events is not routine in most nations, and milk somatic cell count (SCC) is used as
a proxy in genetic evaluation of sires (via mixed effects linear models), because an
elevated SCC is associated with mastitis. SCC is both an indicator of mastitis and a
measure of response to infection It is not obvious how the SCC information should be
treated optimally in genetic evaluation. It is reasonable to expect that SCC observations
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taken on healthy and diseased animals display different distributions, which are ‘hidden’
in the absence of disease recording. Finite mixture models were suggested in this
context by Detilleux and Leroy (2000), Ødegård et al. (2003; 2005) and Boettcher et al.
(2005). Although software for running mixture models with random effects (Bayesian
perspective) already exists, such as the Danish DMU, it not feasible to carry out a
national genetic evaluation, at least at present. An option (perhaps crude) is to use the
good old conditional posterior mode (also know as penalized likelihood estimation),
dating back to the procedure leading to the discovery of the MME by Henderson.
Assuming that the variance of the random effects is known, a stationary point of the
density (conditional posterior mode) can be located by iterating with a reweighted
system of mixed model equations, where the weights enter via a diagonal matrix
containing the conditional probabilities that the records belong to the first component of
the mixture, given the current values of the parameters. The additive genetic variance
could be inferred using a pseudo-ML or pseudo-REML step, as in Foulley et al.
(1987a). Formulae for updating the probabilities and the residual variances of the two
components of the mixture are simple, but are not presented here. The approach can
be made more complex by introducing a mixture for the random effects. Ødegård
et al. (2005) gave a structure in which the probability of membership is modeling
hierarchically, producing a prediction of breeding value for putative resistance to mastitis
using SCC data; their computations are not (yet) feasible at the level of national genetic
evaluation.

When dealing with counts, e.g. number of episodes of a disease, the number of observed
0’s is often larger than what could be expected under some distribution, such as Poisson.
In the context of disease, one can think of a population consisting of two components: a
‘perfect one’ (animals that never get the disease because they are resistant), and a ‘liable’
one, consisting of individuals that may get the disease. The probability of observing a
zero is contributed by two sources. If the liable component is Poisson, then the mixture
is called a zero-inflated Poisson (ZIP) model. More generally, the idea is to construct a
hierarchical model where a transform (probit, logit) of the probability of perfection is
governed by genetic effects, while a transform of the Poisson parameter is under genetic
control as well. The two random effects might be correlated, as in a maternal effects
model. Rodrigues-Motta (2006) and Rodrigues-Motta et al. (2006) have developed a
fully Bayesian analysis via MCMC of a ZIP model, with application to number of mastitis
episodes in Norwegian dairy cattle. If the model fits, it would be possible to select animals
on the basis of the chance of being truly resistant to the disease, but one cannot rule out
lack of exposure.

It is clear that the statistical use of molecular information in inferences about genetic
values, and in resolving genetic complexity is an area of great importance. Höschele et al.
(1997) present some developments. Chapters 26 and 27, as well as others in this book,
deal with this problem.
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Rosa, G.J.M. (1998). Análise Bayesiana de Moldeos Lineares Mistos Robustos via Amostrador de
Gibbs. Dr. Agr. Thesis, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba: S∼ao Paulo.

Rosa, G.J.M., Gianola, D. and Padovani, C.R. (1998). Bayesian analysis of some robust mixed
linear models with an application to birth weight in mice In Sixth Valencia International Meeting
on Bayesian Statistics Abstracts Alcossebre, Spain, p. 122.

Rosa, G.J.M., Padovani, C.R. and Gianola, D. (2003). Robust linear mixed models with
normal/independent distributions and Bayesian MCMC implementation. Biometrical Journal 45,
573–590.

Saama, P. (1999). Posterior exploration of Markov chains in a bayesian analysis of discrete finite
mixture models. Computational Cattle Breeding 99. MTT, Helsinki.

Schaeffer, L.R. (1985). Model for international evaluation of dairy sires. Livestock Production
Science 12, 105–115.

Schaeffer, L.R. and Kennedy, B.W. (1986). Computing solutions to mixed model equations.
Proceedings of the Third World Congress on Genetics Applied to Livestock Production, Vol. XII,
Agricultural Communications, University of Nebraska, Lincoln, pp. 382–393.

Searle, S.R. (1968). Another look at Henderson’s methods of estimating variance components.
Biometrics 24, 749–778.

Searle, S.R. (1971). Topics in variance component estimation. Biometrics 27, 1–76.



716 D. GIANOLA

Searle, S.R. (1974). Prediction, mixed models and variance components. In Reliability and Biometry,
F. Proschan and R.J. Serfling, eds. Society for Industrial and Applied Mathematics, Philadelphia.

Searle, S.R., Casella, G. and McCulloch, C.E. (1992). Variance Components. John Wiley & Sons,
New York.

Silverman, B.W. (1986). Density estimation for statistics and data analysis. Chapman and Hall,
London.

Smith, F.H. (1936). A discriminant function for plant selection. Annals of Eugenics 7, 240–250.
Smith, S.P. and Allaire, F.R. (1986). Analysis of failure times measured on dairy cows: theoretical

considerations in animal breeding. Journal of Dairy Science 69, 217–227.
Soller, M. and Beckmann, J.S. (1982). Restriction fragment length polymorphisms and genetic

improvement. Proceedings of the 2nd World Congress on Genetics Applied to Livestock Produc-
tion 6, 396–404.

Sorensen, D., Andersen, S. Gianola, D. and Korsgaard I. (1995). Bayesian inference in threshold
models using Gibbs sampling. Genetics, Selection, Evolution 27, 229–249.

Sorensen, D.A., Andersen, S., Jensen, J., Wang, C.S. and Gianola, D. (1994). Inferences about
genetic parameters using the Gibbs sampler. Proceedings of the Fifth World Congress on Genetics
Applied to Livestock Production, Vol. 18, University of Guelph, Guelph, pp. 321–328.

Sorensen, D.A., Fernando, R.L. and Gianola, D. (2001). Inferring the trajectory of genetic variance
in the course of artificial selection. Genetical Research 77, 83–94.

Sorensen, D. and Gianola, D. (2002). Likelihood, Bayesian and MCMC methods in quantitative
genetics. Springer, New York.

Sorensen, D.A., Gianola, D. and Korsgaard, I.R. (1998). Bayesian mixed effects model analysis of a
censored normal distribution with animal breeding applications. Acta Agriculturae Scandinavica
A48, 222–229.

Sorensen, D. and Waagepetersen, R. (2003). Normal linear models with genetically structured
residual variance heterogeneity: a case study. Genetical Research 82, 207–222.

Sorensen, D.A., Wang, C.S., Jensen, J. and Gianola, D. (1994). Bayesian analysis of genetic change
due to selection using Gibbs sampling. Genetics, Selection, Evolution 26, 333–360.

Strandén, I. (1996). Robust mixed effects linear models with t-distributions and application to dairy
cattle breeding. Ph.D. Thesis, University of Wisconsin-Madison.

Strandén, I. and Gianola, D. (1997). Gaussian versus student-t mixed effects linear models for milk
yield in Ayrshire cattle. European Association for Animal Production. 48th Annual Meeting,
Vienna, Austria, pp. 16.

Strandén, I. and Gianola, D. (1999). Mixed effects linear models with t-distributions for quantitative
genetic analysis: a Bayesian approach. Genetics, Selection, Evolution 31, 25–42.

Tempelman, R.J. and Firat, M.Z. (1998). Beyond the linear mixed model: perceived versus real
benefit. Proceedings of the Sixth World Congress on Genetics Applied to Livestock Production,
Vol. 25, Animal Genetics and Breeding Unit, Armidale, pp. 605–612.

Tempelman, R.J. and Gianola, D. (1996). A mixed effects model for overdispersed count data in
animal breeding. Biometrics 52, 265–279.

Tempelman, R.J. and Gianola, D. (1999). Genetic analysis of fertility in dairy cattle using negative
binomial mixed models. Journal of Dairy Science 82, 1834–1847.

Thompson, W.A. (1962). The problem of negative estimates of variance components. Annals of
Mathematical Statistics 33, 273–289.

Thompson, R. (1977). Estimation of quantitative genetic parameters, Proceedings of the Interna-
tional Conference on Quantitative Genetics, 639–657 E. Pollak, O. Kempthorne and T.B. Bailey,
eds. The Iowa State University Press.

Thompson, R. (1979). Sire evaluation. Biometrics 35, 339–353.
Thompson, R. (1982). Methods of estimation of genetic parameters. Proceedings of the Second

World Congress on Genetics Applied to Livestock Production, Vol. V, Neografis, Madrid, pp.
95–103.



INFERENCES FROM MIXED MODELS IN QUANTITATIVE GENETICS 717

Van Tassel, C.P. and Van Vleck, L.D. (1996). Multiple-trait Gibbs sampler for animal models;
flexible programs for Bayesian and likelihood based (co)variance component inference. Journal
of Animal Science 74, 2586–2597.

Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Wahba, G. (1999). Support vector machines, reproducing kernel Hilbert spaces and the randomized
GAVC. In Advances in Kernel Methods, B. SCHÖLKOPF, C. BURGES and A. SMOLA, eds.
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Good maps of molecular markers now exist for many species. In this chapter, we discuss the
statistical methodology that has been developed to facilitate the exploitation of these maps in
commercial breeding programs. Methods appropriate both for populations derived from inbred
line crosses and outbred populations, particularly dairy cattle populations, are considered, and
the possible utility of such methods discussed. There is a consensus that incorporating marker
information into breeding programs can increase selection response, but the value of such schemes
once marker-typing costs are allowed for is less clear-cut.

21.1 INTRODUCTION

A great deal of effort has been put in recent years to develop ways in which molecular
marker information can be exploited in identifying, locating and estimating the effect of
loci underlying quantitative traits (quantitative trait loci (QTLs)): see Chapter 18 and
Chapter 19 for reviews of this work. One goal of this work is to answer fundamental
scientific questions regarding, for instance, the number of loci affecting quantitative
traits and the effect of these loci on the trait, as a step toward dissecting the genetic
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architecture of complex traits. Another is that the identification of QTLs raises the
possibility of exploiting these loci directly in breeding programs, and this is potentially of
great economic value. Discussion of the possible uses of molecular marker information
to accomplish this sort of goal goes back at least to Neimann-Sorenson and Robertson
(1961), but has been given renewed impetus in recent years by rapid advances in molecular
biology. There are a number of ways in which marker information might be used for these
purposes, but we shall consider two broad areas here.

Firstly, we may have identified a gene with desirable properties in a donor population,
which we want to move into a recipient population; typically, the recipient is a
commercial, elite line, while the donor is not, and the donor is therefore inferior at
most loci to the recipient. We therefore wish to produce a population in which the desired
allele is fixed or very common but the proportion of donor genome is low. This has
become known as introgression, or when marker information is used, marker-assisted
introgression (MAI) and is typically accomplished by way of repeated backcrosses.

Secondly, suppose we have a population in which one or, more usually, many QTLs
are segregating. We wish to increase the value of some trait in subsequent generations by
selecting certain individuals from the population to form the next generation. Traditionally,
this has been done solely on the basis of phenotypic information on individuals and
their relatives, but incorporating information on the marker genotypes of individuals in
marker-assisted selection (MAS) has the potential to improve the rate of progress.

The above division is not entirely clear-cut, but seems to have become reasonably
widely accepted in the literature and forms a convenient basis for the present chapter. In
both cases, different approaches are required for inbred and outbred populations; in each
case, we shall begin by considering populations resulting from inbred line crosses before
tackling the more complex problems raised by outbred populations.

21.2 MARKER-ASSISTED SELECTION: INBRED LINE CROSSES

21.2.1 Lande and Thompson’s Formula

The seminal paper here is Lande and Thompson (1990), and the description below in the
main follows their development. The key idea is that crossing two inbred lines generates
linkage disequilibrium between markers and QTLs; this is exploited by the QTL mapping
methods for inbred lines described in Chapter 18. However, Lande and Thompson (1990)
pointed out that it is not necessary to map the QTL if our aim is to perform MAS. We
need only identify the markers that are correlated with the trait or traits of interest and
estimate the correlation between each of these selected markers and the trait; we can then
base our selection criteria upon this marker information. For Gaussian traits, this is most
simply done by regression of phenotype on marker-type.

More formally, consider an F2 population derived from a cross between two inbred
lines, with each line assumed homozygous for different alleles at all loci under consid-
eration. We label the alleles at the kth QTL in the first line Qk , and the alleles at the
j th marker locus Mj . The corresponding alleles in the second line are labelled qk and
mj . For each individual in the F2 population, we know the phenotype y and the number
of Mj alleles at the j th marker locus, xj , where xj = 1 if the individual has genotype
MjMj , xj = 0 if the individual has genotype Mjmj and xj = −1 if the individual has
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genotype mjmj . Supposing there are l markers, the marker genotype of the ith individual
is thus described by x = (x1, x2, . . . , xl). To simplify the discussion, we shall make the
additional assumption that QTL effects combine additively both within and between loci,
i.e. the genetic value z is given by

z =
n∑
k=1

akgk, (21.1)

where n is the number of QTLs, ak is the effect of the kth QTL and gk the number of
Qk alleles at the kth QTL. We shall also assume that y is related to the genetic value by

y = z+ ε, (21.2)

where ε ∼ N(0, σ 2
e ).

We wish to identify the individuals that should be selected to produce the next
generation. Typically, this is done indirectly by estimating the genetic value of the
individuals in the population and choosing individuals to reproduce based on these
estimates in such a way as to maximise selection response over the desired period. One
obvious approach is to regress phenotype on marker-type, i.e. to use the estimator ẑs ,
where

ẑs =
∑
j∈A
âj xj (21.3)

and A is the set of markers for which effects âj have been fitted. The predicted values
ẑs are often known as the molecular scores. In principle, fitting this model by maximum
likelihood rather than least squares might be preferred because, for a finite number of
QTLs, the errors in the above model follow a mixture of Gaussians rather than a Gaussian
distribution (see Chapter 18, for more on mixture models and QTLs), but, in practice, the
difference is barely noticeable and least-squares estimation has considerable computational
advantages (Martı́nez and Curnow, 1992; Haley and Knott, 1992). We thus have a standard
linear regression prediction problem; the only difficult element of this is the choice of A.
The problem of choosing a linear model so as to trade off the variance and bias of the
estimator of interest (here ẑ), which increase and decrease respectively as the number of
variables included in the model increases, and thus to minimise prediction error, has been
much discussed in the statistical literature (Miller, 1990). Several regression techniques
and criteria for declaring markers as significant can be used and might influence MAS
efficiency. See below for a discussion on this point.

We could base selection on ẑs alone, but as ẑs only explains part of the genetic variation,
Lande and Thompson (1990) suggested combining it with y using the usual theory on
selection indices for multiple correlated traits (e.g. Bulmer, 1980) to give

ẑ = b0y + b1ẑs , (21.4)

with
b = P−1G, (21.5)

where

P =
[

var(y) cov(y; ẑs )
cov(y; ẑs ) var(ẑs)

]
(21.6)
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and

G = (cov(z; y), cov(z; ẑs ))T
= (var(z), cov(z; ẑs))T. (21.7)

For this to be of use, we need estimates of var(z) and cov(z; ẑs ). Some authors (e.g.
Lande and Thompson, 1990; Gimelfarb and Lande, 1994a) have suggested estimating
cov(z; ẑs ) by cov(y; ẑs), arguing that all the phenotypic variance explained by the markers
is by definition genetic. With this assumption, cov(z; ẑs ) = cov(y; ẑs) = var(ẑs). Hence
the weighted coefficients are equal to

b =
(
by

bm

)
=
( var(z)−var(ẑs )

var(y)−var(ẑs )
var(y)−var(z)
var(y)−var(ẑs )

)
=
(
h2−R2

1−R2

1−h2

1−R2

)
, (21.8)

where h2 = var(z)/ var(y) is equal to the trait heritability and R2 is the percentage of
phenotypic variance explained by the markers (i.e. the R2 of the regression of phenotype
on marker-type). Clearly, this assumption cannot be true since marker effects are estimated
on the basis of the performances, so var(ẑs) is not equal to var(zs) and, moreover, markers
are selected because they explain a high proportion of the phenotypic variance; therefore,
using the same data to select markers and to estimate marker effects clearly leads to
cov(y; ẑs ) overestimating cov(z; ẑs) and hence to overestimation of the weight to be
placed on molecular score in the selection index. Indeed, this can lead to all weight being
placed on the molecular score (Whittaker et al., 1995; Gimelfarb and Lande, 1994a;
Hospital et al., 1997) and also, in some cases (if the estimated R2 is higher than h2), to
put a negative weight on the phenotype.

A number of solutions to this problem have been proposed. Lande and Thompson
(1990) suggest that in generations after the first, variable selection be done on the previous
generation and model fitting on the current generation so as to give unbiased estimates
of regression coefficients. Zhang and Smith (1992; 1993) generate two independent sets
of F2 data from the same population, applying their marker selection procedure to one
to give A and then obtaining unbiased marker effects for this A from the other set of
data. The same set of markers A is then used in all subsequent generations, so that bias
in estimates due to the marker selection procedure is eliminated. However, this is clearly
not an efficient use of data: much of the information from the first of these F2 data sets
is wasted. Also, Gimelfarb and Lande (1994a) have shown that MAS is more efficient if
the marker selection procedure is repeated every generation.

Cross-validation approaches have been proposed to correct for the model selection
bias (Whittaker et al., 1997; Utz et al., 2000). Whittaker et al. (1997) developed a cross-
validation-based estimate of cov(z; ẑs ), and showed that this gave performance almost
equivalent to using the actual value of cov(z; ẑs), despite the estimation of cov(z; ẑs )
being rather poor in, for example, mean square error terms. This suggests that selection
is reasonably robust to errors in the selection index weights. Perhaps this should not be
surprising, as the position is similar to selection indices involving information on relatives,
where it is known (Sales and Hill, 1976) that selection is reasonably robust to errors in the
selection index weights. Finally, note that care must be taken to avoid over fitting the data
and so overestimating the total proportion of genetic variance explained by the markers.
The key requirement seems to be to always maintain some weight on y in the selection
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index to allow discrimination between individuals with identical ẑs values (Hospital et al.,
1997). Such individuals can be quite common, particularly in later generations as many
markers become fixed.

Once the genetic values of candidates are predicted using Lande and Thompson’s index,
the best individuals are chosen and randomly intercrossed in order to produce the next
generation. The same whole process is then repeated in the subsequent generations: new
individuals are marker-typed and phenotyped, a new selection of markers is performed
before predicting the genetic values of candidates. Hence, this strategy of marker-assisted
recurrent selection requires at each generation to phenotype all individuals and to genotype
them for markers covering the entire genome. Thus, MAS using this strategy is more
costly than purely phenotypic selection. This raises the question of the economic interest
of MAS compared to phenotypic selection.

21.2.2 Efficiency of Marker-assisted Selection

Much effort has been put into attempting to compare MAS with purely phenotypic selec-
tion by theory or by computer simulation. Theoretical assessment is difficult because
of the complexity of the process that must be modelled, particularly over a number
of generations. The prediction of MAS genetic gain requires the prediction of linkage
disequilibrium between markers and QTL. This can be easily done in the initial unse-
lected population, but, in subsequent generations, selection modifies allele frequencies and
creates linkage disequilibrium even between unlinked chromosomes, which makes predic-
tion hardly possible for complex genetic models. So deterministic models were used to
predict genetic gains in the first generation (Lande and Thompson, 1990; Moreau et al.,
1998) or in subsequent ones but using a simplified model with only one marker linked to
one QTL (Luo et al., 1997).

Assuming large sample sizes as well as the normality of ẑ and ẑs , Lande and Thompson
(1990) predicted the relative efficiency (RE) of one cycle of marker-assisted selection
compared to conventional phenotypic selection. They showed that the relative efficiency
of MAS depends on two factors: the trait heritability, h2, and the proportion of additive

genetic variance explained by the markers, p = R
2

h2
. Finally, they get

RE =
√
p

h2
+ (1− p)

2

1− h2 p
, (21.9)

for selection combining molecular score and phenotype, and

RE =
√
p

h2
, (21.10)

for selection based on the molecular score alone.
Considering these equations, it can be shown that MAS combining molecular score and

phenotype is expected to be more efficient than phenotypic selection and than selection
based on the molecular score alone. The advantage of MAS over phenotypic selection
increases when the percentage of genetic variance explained by the markers increases
and when the trait heritability decreases. Indeed, if the heritability is high, phenotypic
selection is already very efficient and markers are of little use. However, if h2 is low,
the power of detection of marker effects is low (unless the sample size used for QTL
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detection is large) and p cannot be expected to be very high. Hence, there is an optimum
in RE (Hospital et al., 1997; Moreau et al., 1998) that does not show up in Lande and
Thompson’s equations. Moreover, Lande and Thompson’s formulas are only valid for
large samples and ignore the overestimation of marker effects when the same sample is
used both for marker selection and for marker effect estimation. Moreau et al. (1998)
derived a finite-population expression for the relative efficiency in the first generation
of selection, by assuming that all markers are unlinked, so that the estimated regression
coefficients for the markers are uncorrelated. Despite this simplification, their results are
reasonably consistent with simulation results using more realistic genetic models and
show that the Lande and Thompson formula overstates the relative efficiency of MAS
considerably especially because of the overestimation of marker effects. Other studies
dealing with the efficiency of MAS were based on stochastic simulations (e.g. Hospital
et al., 1997; 2000; Whittaker et al., 1995; 1997; Gimelfarb and Lande, 1994a; 1994b;
1995; Zhang and Smith, 1992; 1993; Edwards and Page, 1994; Bernardo, 2004; Bernardo
and Charcosset, 2006; Bernardo et al., 2006). We briefly review several factors affecting
MAS efficiency before discussing some alternatives to the Lande and Thompson’s index
that have been proposed.

21.2.2.1 Model Selection Process

Several strategies of model selection can be used to select markers to be included in the
model. A common, but in some ways unsatisfactory (e.g. Breiman, 1995), solution is to
choose the number of variables to be included using criterion such as Akaike’s information
criterion (AIC) or Mallow’s Cp (Miller, 1990). A scheme based on Mallow’s Cp was
implemented in Whittaker et al. (1995). Other work (e.g. Gimelfarb and Lande, 1994a;
Zhang and Smith, 1992; 1993) used a predetermined number of markers, whilst Hospital
et al. (1997) used a stepwise variable selection scheme based on F tests using pre-specified
significance thresholds. The choice of the number of markers or significance thresholds can
be problematic, and AIC (or related criteria) are to be preferred on theoretical grounds,
though, in practice, differences between the approaches tend to be minor (Whittaker
et al., 1995; Hospital et al., 1997). Whatever the method, a compromise must be found
between the power of detection and the risk of false positives and of over fitting the
predictive model. Several studies found that there is an optimum type I error risk for
MAS efficiency. Moreau et al. (1998) showed that this optimum is higher when the trait
heritability is lower and advocated to use to rather permissive type I error risk (at least
5 % for low trait heritability). This is a much higher risk than the ones usually considered
in QTL detection experiments (0.1 %). This was confirmed by simulations by Hospital
et al. (1997) and Bernardo (2004). The latter even advocated the use of a permissive
type I error risk between 0.1 and 0.2, depending on trait heritability.

In QTL detection (see Chapters 18, 19, and 37), it has been suggested that false
discovery rate (FDR, Fernando et al., 2004; Benjamini and Yekutieli, 2005), i.e. the
proportion of false association detected over all the detected associations, might be a
better parameter to consider instead of the type I error risk. Bernardo (2004) showed that
optimal type I error for MAS corresponded to large FDR. So, increasing power is more
important than the risk of including false positive in the selection index. Moerkerke et al.
(2006) presented a method to balance type I and type II error risk in MAS experiments.
However, they did not test the efficiency of their method by simulation.
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21.2.2.2 Experimental Design

The simulation results described above clearly highlight the key effect on MAS efficiency
of the sample size used for detection of marker effects. A large sample size increases
the power of detection, increases the accuracy of marker-effects estimates and reduces
the FDR. At least 100 or more individuals are needed at this step for MAS to be more
efficient than phenotypic selection (Moreau et al., 1998; Hospital et al., 1997). Using
large sample sizes is far from standard practice in plant breeding where breeders usually
prefer to derive a smaller number of progenies per cross but develop a larger number of
different crosses to increase the chance of obtaining superior genotypes. For many crop
species, genotype by environment interaction effects can be as important as the additive
variance (Moreau et al., 2004). To limit the impact of QTL by environment interaction,
and to correct for spatial heterogeneities, segregating populations are usually evaluated
at several locations with several replicates per location. Increasing the total number of
replicates increases the broad sense heritability of the trait and consequently increases the
efficiency of conventional selection. In this context, using markers in selection means that
experimental design must be reconsidered. Moreau et al. (2000) showed that, for a given
cost, the optimal design for MAS is to evaluate a population of larger sample size than
that for phenotypic selection in a smaller number of trials. Taking marker-genotyping cost
into account reduces the relative benefit of MAS compared to phenotypic selection. MAS
appears interesting only for traits with low heritability provided the investment is high
enough to genotype and phenotype a large sample size.

In a related way, simulations showed that it is not beneficial to use a high marker
density. First, this increases the cost of MAS. Second, even without considering cost, it is
not necessary to have a high marker density for MAS to be useful in inbred line crosses,
presumably because most of the benefits of the marker information arise in the early few
generations of selection when linked markers are highly correlated. Gimelfarb and Lande
(1995) found that increasing the marker density could even reduce response to selection,
though this might be partly dependent upon the variable selection process used.

21.2.3 Refinements

So far, we have described the basic MAS procedure for inbred line crosses using Lande
and Thompson’s index. A number of enhancements or alternative approaches have been
developed, some of which we describe now.

21.2.3.1 Mixed Model Formulation

Instead of estimating the molecular score in a first step, then combining it with the
phenotype in a second step, Moreau et al. (1999) proposed to analyse the performances
using the following mixed model:

y = µ+ zs + z∗ + e, (21.11)

where zs corresponds to the fixed effect of the markers (i.e. the molecular score as defined
by Lande and Thompson (1990)), and z∗ to the random genetic effect not explained by
the markers (zs − z), e being the residual experimental error. As discussed by Gianola
et al. (2003), z∗ and e cannot be distinguished in a case where there is only one record
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per individual and no family structure. However, in many crop species, the phenotypic
evaluation of an individual is often replicated (using clones or progeny testing), which
makes it possible to distinguish between z∗ and e. The genetic value z can thus be
directly predicted by the sum of the estimated molecular score and the best linear unbiased
predictor (BLUP) of the residual genetic variance.

ẑ = ẑs + ẑ∗. (21.12)

This is equivalent to the Lande and Thompson’s index except that the genetic value is
decomposed into two parts that are jointly estimated and does not require us to explicitly
compute the weight that must be given to each genetic term (that depends on h2 and
R2). Unlike Lande and Thompson’s index, this formulation allows one to not only take
into account that some individuals may have fewer performances than others but also to
include some effects related to the experimental design (‘block effects’, etc). It is also
possible to take into account that error terms of genotypes sown in neighbour plots in
a given field trial are not independent and correlations between errors can be modelled
(Cullis and Gleeson, 1991). Moreau et al. (1999) showed that modelling spatial trend using
autoregressive integrated moving average (ARIMA) models corrected the predictions of
genetic value for spatial heterogeneity within trial and increased the accuracy of MAS.
Smith et al. (2002) proposed to extend this to multiple trials.

A further improvement could be to consider marker effects as random instead of fixed
and to take into account covariances (when they exist) between polygenic values. Doing
this, the above model becomes equivalent to the marker-BLUP model used for outbred
populations (Goddard, 1992, see below) but with a very simple population structure. In
such a model, the regression coefficients are treated as random effects: as a consequence,
estimated genetic values are shrunk back towards zero. This is more attractive than treating
the regression coefficients as fixed effects, since it avoids the tendency of fixed effect
models to overestimate the effect of large QTL (see Gianola et al., 2003 for a discussion).
In their simulations, Zhang and Smith (1993) used Lande and Thompson’s index but
considered marker effects either as random or as fixed. They showed that considering
them as random led to better predictions of breeding value.

After the first generation of selection, a family structure appears in the population that
might be used to increase the accuracy of breeding prediction. Lande and Thompson
(1990) considered full and half sib families and showed how to incorporate information
on relatives into their selection index. In the mixed model described above, a matrix
of variance–covariances between relatives can be included to predict residual polygenic
value. Taking information on relatives into account increases the efficiency of phenotypic
selection and might also increase the efficiency of MAS but probably to a less extent.
Indeed, marker effects, especially when treated as random, already take into account
similarities between individuals. Zhang and Smith (1992; 1993) used simulation to
compare MAS with BLUP and found that combining marker information and BLUP on
phenotype in a selection index as described above gave superior performance to selection
on phenotypic BLUP alone.

21.2.3.2 Shrinkage Estimation, an Alternative to Model Selection

We have commented earlier on the problems involved in selecting A, the subset of markers
to be included in the model. An alternative approach, often argued to be superior to subset
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selection (e.g. Breiman 1992; 1995), would be to include all variables in the regression
model, but to shrink the regression coefficients back towards zero, for instance, by using
ridge regression. The usual least-squares estimates would then be replaced by

β̂ = (XTX+ λI)−1XTy, (21.13)

where I is the identity matrix. This perhaps makes most sense in a Bayesian frame-
work, where the shrinkage is then towards a Gaussian prior with zero mean and
variance–covariance matrix σ 2

pI, with λ reflecting the strength of our confidence in the
prior distribution relative to the amount of information in the data. Whittaker et al. (2000)
showed that such an approach can give slightly improved performance to subset selection
in MAS, increasing mean response slightly and reducing the variance in response substan-
tially. As we would expect, ridge regression is favoured relative to subset selection for
dense marker maps and relatively uniform distributions of QTL effect sizes (Whittaker
et al., 2000). Note a further advantage of ridge regression: the addition of the λI term
reduces collinearity and prevents the matrix XTX from becoming singular or near-singular.
Singular XTX often occur after several generations of selection as the population becomes
increasingly inbred, so this is potentially important here.

Gianola et al. (2003) and Xu (2003), argued that ridge regression might not be optimal
especially where the number of markers exceeds the number of individuals. From a
Bayesian point of view, ridge regression implies that the regression coefficients are
independent and identically distributed and are thus all shrunk towards a common mean
(zero). This may be questionable since a marker linked to QTL does not deserve to
be shrunk as much as if it was unlinked. Xu (2003) adapted the Bayesian approach
of Meuwissen et al. (2001), initially developed for outbred populations, to populations
derived from inbred crosses. Though he did not test by simulation if this method could
increase MAS efficiency compared to using a ridge regression, results in terms of QTL
detection seem promising.

21.2.3.3 Non-Gaussian Traits

So far, we have assumed that traits have a Gaussian distribution: this is true for many traits
of interest, and often transformation of non-Gaussian traits to approximate normality is
possible. For QTL mapping, good results have also been obtained using linear regression
for non-Gaussian traits (Visscher et al., 1996a), and the same might be expected to hold
for MAS. Nevertheless, a method that allows MAS for non-Gaussian traits would be
useful. It is clearly possible to develop a generalised linear model (McCullagh and Nelder,
1989) version of the linear models used above to do this, but this does not seem to have
been done, possibly because work on non-Gaussian responses has suggested that least-
squares-based approaches are often adequate (Visscher et al., 1996a). A related approach
was implemented by Lange and Whittaker (2001), who developed a MAS method using
quasi-likelihood (Heyde, 1997) and generalised estimating equation (Liang and Zeger,
1986) approaches. See Thomson (2003) for a related GEE approach. The great advantage
of such models is that, rather than specifying a probability model for the data as we must
with likelihood approaches, we merely need to make suitable first- and second-moment
assumptions to obtain consistent parameter estimates, regardless of the true underlying
distribution of the data.
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21.2.3.4 Selection for Multiple Traits

Often, we wish to improve several traits simultaneously. For Gaussian traits, the above
theory is easily extended to consider a vector of phenotypic values y and a corresponding
vector of molecular scores ẑs (Lande and Thompson, 1990). Writing

P =
[

Pyy Pys
Pys Pss

]
(21.14)

for the phenotypic variance–covariance matrix,

G =
[

Gyy Gys
Gys Gss

]
(21.15)

for the corresponding additive genetic variance–covariance matrix, and d for the vector
of relative economic weights of the traits, standard theory gives the weights (by,bs) for
y and ẑs as (

by

bs

)
=
[

Pyy Pys
Pys Pss

]−1
(

Gyyd
Gysd

)
. (21.16)

The problems of estimating the required variances and covariances remain, but, assuming
that populations are sufficiently large to allow these problems to be ignored, MAS again
outperforms selection on phenotype alone (Lande and Thompson, 1990; Xie and Xu,
1998).

There has been surprisingly little work done on multiple traits in more realistic
settings. Lange and Whittaker (2001) considered the above scheme and a version of
the ridge regression approach used in Whittaker et al. (2000) extended to multivariate
phenotypes using results from Brown and Zidek (1980). They also tested a method based
on generalised estimating equations (Liang and Zeger, 1986; McCullagh and Nelder,
1989) that deals with multivariate non-Gaussian traits. In both cases, results were broadly
similar to the univariate case in terms of comparisons between MAS and phenotypic
selection. Methods based on multivariate Gaussian data are often adequate, but, for some
situations, particularly where responses are highly skewed, the generalised estimating
equation approach, which allows for non-normality of the traits, can give improvements
compared to the usual approach of marginal transformation of the traits to approximate
normality followed by use of the standard Gaussian theory. It seems that the transformation
of the traits to approximate normality destroys the correlation structure between the traits,
whilst the proper modelling of correlation structure allowed by the estimating equation
approach can give considerable improvements in efficiency.

Although it is possible to reduce selection on multiple traits to a univariate analysis of
total economic value, the multivariate analysis is in general more efficient. This is easily
seen by noting that, for example, the relative weights on the molecular scores are not
proportional to the corresponding economic values in (21.16).

21.2.3.5 Unrecorded Phenotypes

Once the regression coefficients in (21.3) have been estimated, it is possible to use zs as an
estimate of genetic value even if no phenotypic information is available for that individual.
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The most obvious application is to sex-limited traits such as milk production, but two-stage
selection schemes have also received considerable attention (Tanksley et al., 1981; Soller
and Beckmann, 1983; Lande and Thompson, 1990; Xie and Xu, 1998). The idea here
is to perform selection on immature individuals (seedlings, embryos, or juveniles) based
on ẑs , followed by phenotypic selection or MAS of the selected individuals on reaching
adulthood. Selection response is of course reduced relative to a single stage of selection
on all individuals as adults, but costs are also greatly reduced. Xie and Xu (1998) argued
that two-stage MAS schemes are always more effective than one-stage MAS, though
they assumed that populations were infinite and that the regression coefficients in (21.3)
were known without error. There is clearly considerable cost involved in estimating these
regression coefficients. Hospital et al. (1997) considered several schemes where an initial
cycle of index selection was followed by one or two generations of selection using the
regression coefficients estimated in the initial generation. Hospital et al. (1997) found
that the genetic gains from such schemes were roughly comparable to the gains given by
same number of generations of phenotypic selection. Costs would be considerably less
than those incurred in using index selection in every generation because the phenotypes
of the individuals are only required in the first generation, whilst genotyping is only
necessary for the markers in A. There is also an important saving in time over index or
phenotypic selection. Hospital et al. (1997) suggest that this sort of approach makes MAS
viable for medium- or high-heritability traits; indeed, because selection response is more
variable under MAS than under phenotypic selection for low heritability, they argue that
these may be the situations where MAS is of most interest.

This approach to MAS has been applied experimentally with success on maize (Johnson,
2004). However, it has to be noted that its efficiency relies on the stability of the marker
effects estimated at an earlier generation of selection. As selection proceeds, markers get
fixed for favourable alleles at some QTL, and recombination events may occur between
markers and QTL. Hence, the markers initially selected become less and less predictive of
the breeding value of candidates. It then becomes necessary to re-detect new associations
after several generations of selection on markers alone as advocated by Hospital et al.
(1997). Other sources of instability of the marker effects might come from interactions
between QTL effects and environmental conditions (that might differ between the time of
marker-effects detection and the time of genetic gain evaluation) and also from epistatic
interactions effects between QTL. More specifically, in the case of ‘less than additive’
epistasis (as found in tomato by Eshed and Zamir, 1996), the effects of favourable alleles
at QTL are reduced when favourable alleles at other QTL become fixed by selection.
This reduces the interest of MAS compared to what could be expected on the basis of
marker effects estimated prior to selection. These two phenomena that can be important
for complex traits (see Moreau et al., 2004; Blanc et al., 2006 for examples on maize grain
yield) are often ignored in simulations studies that usually assume a rather simple genetic
model where there is no interaction between QTL and the environmental conditions and
no (Hospital et al., 1997) or limited interactions between QTL (Bernardo, 2004; Bernardo
et al., 2006). This leads to an overestimation of the efficiency of selection on markers
alone. Indeed, non-additive effects were often found to be responsible for the lack of
success of some MAS selection experiments (Moreau et al., 2004). These non-additive
effects have a lower impact when marker effects are re-estimated at each generation since
new predictions take into account changes in the environmental conditions and the genetic
background. In this case, the simple additive model, even if it is false, behaves quite well.
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Podlich et al. (2004) carried out simulations of MAS efficiency using a genetic model
where QTL were assumed to be involved in a complex network of epistatic interactions
also depending on environmental factors. They clearly showed that, when non-additive
effects are important, the best strategy (called mapping as you go) is to continually revise
estimates of marker effects.

The assumption of additivity within and between QTL in Lande and Thompson’s index,
though convenient, is not essential. Dominance can be included in the model of prediction
as well as digenetic interactions between markers or interactions with environmental
covariates. The main limitation is that these non-additive effects are hardly detectable and
estimable. Using cycles of MAS without re-estimating marker effects calls for a better
knowledge of the genetic architecture of quantitative traits and efficient ways of estimating
non-additive effects to better anticipate the results of such a selection.

21.2.3.6 Optimisation of the Efficiency of MAS over Several Generations

Several simulation results draw the conclusion that, even in a simple additive case, when
effects are re-estimated regularly, MAS combining phenotype and markers gives improved
response over phenotypic selection in early generations but the advantage declines with
time, and phenotypic selection may overtake MAS in later generations. As already
mentioned, part of the explanation comes from the recombination events that accumulate
between markers and QTL, reducing linkage disequilibrium. However, Hospital et al.
(1997) showed that the long-term superiority of phenotypic selection over MAS was
due to the higher level of fixation of unfavourable alleles at QTL of small effect with
MAS than with phenotypic selection. The high efficiency of MAS for fixing favourable
alleles at major QTL results in involuntarily fixing unfavourable alleles at other QTL of
minor effects by ‘hitchhiking’. The truncation selection of candidates based on Lande and
Thompson’s index and followed by random mating of the selected individuals optimises
the genetic response in the next generation but not necessarily in the subsequent ones. In a
specific case, where all the QTL are known, Hospital et al. (2000), proposed an empirical
strategy of selection that consists in giving equal weights to all the QTL and taking into
account complementarity between selected individuals to avoid losing favourable alleles.
They showed that this was more efficient than selecting on the molecular score only.

Other authors (van Berloo and Stam; 1998; 2001; Charmet et al., 1999; Bernardo et al.,
2006) suggested the use of complementarities between individuals for QTL not only to
select the best individuals but also to choose the best couples between selected individuals
that are more likely to produce superior genotypes in the next generation. van Berloo and
Stam (1998; 2001) and Charmet et al. (1999) used this strategy to predict the values
of the best inbred lines that can be derived from each couple. Bernardo et al. (2006)
simulated four generations of MAS and compared different intensities of selection and
different strategies of intercrossing including the one based on the expected probability
of obtaining superior genotypes in the next generation. They found that this strategy was
only slightly better than random mating of the selected genotypes; their major conclusion
was that the intensity of selection was the most important factor. Compared to other
studies on MAS optimisation, they did not consider that QTL were known without error
but based their selection on QTL detected with a high type I error risk. In such a case,
the estimation of the expected progeny variances were certainly very poor, which might
explain the lack of efficiency of this approach. There is clearly a need, especially in plant
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breeding, to move from the recurrent selection of populations as defined in Lande and
Thompson’s paper to a ‘genotype building’ strategy that aims to assemble as quickly as
possible favourable alleles to create superior varieties.

21.2.3.7 Broadening Genetic Variability

As previously mentioned, MAS does not fit with usual breeding practices. Each year,
breeders derive tens of populations of small sample sizes from different crosses to
cover a large genetic diversity and increase the probability of finding superior genotypes.
Conversely, MAS leads to high investment in a few specific populations. Moreover, as
marker-QTL associations are specific to each population, the detection and estimation
of marker effects must be re-run in each population with no benefit from previous
results. To overcome this, one solution is to perform QTL detection and MAS jointly
on different biparental populations. Among all the multi-parental designs that can be
considered, connected biparental populations (populations that have one parental line
in common) are particularly interesting. Connections between populations increase the
power and the accuracy of QTL detection compared to single-population analyses, they
enable one to estimate simultaneously the different parental alleles that segregate and
to identify the most favourable ones for selection and in some cases they allow one to
test for epistasis interaction effects between the QTL and the genetic background (Rebai
and Goffinet, 2000; Jannink and Jansen, 2001; Blanc et al., 2006). Such designs were
found by simulations to increase the efficiency of MAS compared to single–biparental
population (Blanc et al., 2006).

In breeding programs, however, populations are often not directly connected, but can be
connected to each other to a certain extent by using (as parents) related lines that are both
derived from an ancestral elite inbred line. Even if the number of inbred lines involved
in such a pedigree can be large, the actual number of different alleles that segregate
can be much lower. For those complex pedigree structures, fixed models considering one
parameter per marker and per parental line are no longer suitable. Random models derived
from those developed for outbred populations have recently been proposed to identify
QTL in complex plant breeding pedigrees (Crepieux et al., 2004). Other strategies have
been proposed to reduce the number of parameters to be estimated, such as using marker
haplotypes (Jansen et al., 2003) or phenotypic values (Jannink and Wu, 2003) to infer the
actual number of different alleles that need to be estimated. In such a multi-allelic context,
models recently proposed are very often adapted from those used for association-mapping
studies and those initially developed for outbred populations.

21.3 MARKER-ASSISTED SELECTION: OUTBRED POPULATIONS

Inbred populations have the great advantage that we can assume initial complete asso-
ciation between QTL and markers in the founding lines. This is not true of outbred
populations, and so a number of additional complications must be faced when trying to
implement MAS schemes in outbred populations. Most of the work on outbred populations
has been motivated by possible application to animal breeding, and we shall concentrate
on that context, but related problems arise in other areas, such as tree breeding (e.g.
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Strauss et al., 1992). Two main approaches have been suggested. In the first, MAS is
performed within families: this is the simplest approach as we need then only ascertain
the preferred marker types in the founding individuals and select accordingly. Selection
on a population level across families, although more difficult, has the potential to give
greater increases in genetic response and can be done by incorporating marker information
into the standard BLUP procedure (see Chapter 20, for more detail on BLUP). In both
cases, it is usual to assume that the QTL has been mapped, or at least that the markers
flanking the QTL have been identified. We discuss these approaches in turn, starting with
the marker-assisted BLUP approach.

21.3.1 MAS via BLUP

Fernando and Grossman (1989) showed how information on a single marker believed to
be linked to a QTL could be incorporated into the standard BLUP estimate of expected
breeding value. This method was then extended to deal with multiple markers by Goddard
(1992). We shall concentrate on the variant of this approach described in Meuwissen and
Goddard (1996). To simplify notation, we describe the model for a single marked QTL,
but this can easily be extended to any number of QTLs linked to markers.

Suppose y is a vector of phenotypic records for the trait in question, β is a vector of fixed
effects, u is a vector of random polygenic effects, e a vector of random environmental
effects, q a vector of random QTL effects and X, Z and Q are incidence matrices. Then
we fit the mixed model:

y = Xβ+ Zu+ ZQq+ e. (21.17)

The variance matrices of the random effects are written as

var(e) = VeI,
VqG = var(q),

VuA = var(u), (21.18)

where the scalars Ve, Vu and Vq are the environmental variance, variance of polygenic
effects and variance of the QTL effect for a single gamete respectively. To simplify the
exposition, we treat the variance components Ve, Vu and Vq as known, perhaps, from the
same QTL mapping experiment that produced the estimate of QTL location. Alternatively,
they could be estimated using REML, as described in Chapter 20.

Note that the incidence matrices X, Z and Q link fixed effects to records, animals to
records and QTL effects to records respectively. Thus, every row of Q has two elements
equal to 1, with all other elements equal to 0. Of course, QTL alleles cannot be observed
directly, but must be inferred from marker information. We assume that all alleles of
founding individuals are distinct; thus, the number of QTL alleles in the base population
is twice the number of base animals. In the next generation, inference on marker haplotype
is used to follow the transmission of QTL alleles, with Q linking the transmitted QTL
allele to the progeny’s phenotype. Where there is uncertainty about which QTL allele
has been transmitted, either because a recombination has occurred between the markers
flanking the QTL or because marker haplotypes were uninformative, a new QTL allele
is formed. This allele is linked to the progeny phenotype through the Q matrix and the
effect of the new allele is linked to its parent’s alleles by assuming that the expected value
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of the new QTL effect is the mean of the parental QTL effects. The following example,
based on Meuwissen and Goddard (1996), is instructive.

Consider two individuals in the base generation and write the effects of their QTL
alleles as (q1, q2) and (q3, q4), respectively. Suppose the individuals are mated to produce
a third individual and that this individual receives the marker haplotype corresponding
to the QTL allele with effect q1 from one parent, but that a recombination between
the flanking markers makes the QTL allele transmitted from the other parent uncertain.
A new allele is therefore formed with a value of q5, where

E(q5) = 0.5(q3 + q4),

var(q5) = Vq,
and

cov(q5; q4) = cov(0.5q4; q4) = 0.5Vq,

cov(q5; q3) = cov(0.5q3; q3) = 0.5Vq, (21.19)

since the effects of founding alleles are assumed independent. This gives

Qq =
[ 1 1 0 0 0

0 0 1 1 0
1 0 0 0 1

]
q1
q2
q3
q4
q5

 (21.20)

and

G =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0.5
0 0 0 1 0.5
0 0 0.5 0.5 1

 . (21.21)

Thus, this procedure produces a ‘pedigree’ of QTL alleles, so that G has the structure of
a numerator relationship matrix. The inverses A−1 and G−1 can thus be obtained using
the results in Henderson (1976).

Putting λ = Ve/Vu and α = Ve/Vq , we can therefore get estimates of β and u by solving
the usual mixed model equations (see Chapter 20):[ XTX XTZ XTZQ

ZTX ZTZ+ A−1λ ZTZQ
QTZTX QTZTZ QTZTZQ+G−1α

][
β̂

û
q̂

]
=
[ XTy

XTy
QTZTy

]
. (21.22)

21.3.2 Comments

The scheme described above does not attempt to use information about QTL location
to make probabilistic statements about the most likely source of QTL alleles where a
recombination has prevented certain identification of the QTL allele transmitted. We have
also ignored the possibility of double recombination between flanking markers. The model
could easily be extended to incorporate these phenomena (e.g. van Arendonk et al., 1994),
but this would add considerably to the computational complexity and seems unlikely to
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make much difference in practice unless markers are very widely spaced, and then MAS
will probably not be effective in any case. In addition, Meuwissen and Goddard (1999)
comment that when the flanking markers are closely spaced so that the probability of
double recombination is small, attempting to incorporate double recombinants leads to a
set of mixed model equations, which is almost singular and therefore difficult to solve.

A further drawback of this BLUP approach is that the random effects q are unlikely to
have Gaussian distributions; although the derivation of BLUP estimates does not depend
on normality, some of the desirable properties of BLUP estimators do. However, Goddard
(1992) argues that departures from normality should not decrease the accuracy with which
breeding values are estimated.

As we have already stated, this approach extends easily to multiple QTLs; indeed,
Goddard (1992) explicitly assumed multiple QTLs. However, analyses quickly become
very computationally expensive as the number of marked QTLs or the number of animals
in the pedigree increase, since for each animal we have an equation for the polygenic
effect plus two equations for each marked QTL. This has motivated a number of attempts
to produce methods in which some of these equations can be eliminated. For example,
a reduced animal model can be used to eliminate equations for animals which are not
parents, QTL effects for non-genotyped individuals can be absorbed into the polygenic
effect, or marked QTL effects can be combined with the polygenic effect to give total
genetic merit (Bink et al., 1998; Cantet and Smith, 1991; Saito and Iwaisaki, 1997).
The most general and effective approach to reducing the number of equations is due to
Hoeschele (1993); however, because of its generality, this approach is not straightforward
to use. Several authors have therefore developed simpler, though less effective, methods
for use in particular circumstances. Examples include Meuwissen and Goddard’s (1999)
approach for use where many of the animals in the pedigree have not been marker-typed,
for example in commercial dairy cattle populations where the size of the population
(more than 1 million cows) makes exhaustive genotyping impracticable and Saito et al.’s
(1998) consideration of carcass traits, where phenotypic information is only available on
slaughtered animals, which therefore never become parents.

Simulation studies indicate that these MAS schemes can be substantially more effective
than conventional (phenotypic) selection, particularly where selection occurs before
phenotypic values for the trait are recorded (an example would be fertility) or for carcass
traits (Meuwissen and Goddard, 1996). The increased selection response given by MAS
is particularly marked for low- heritability traits, and, as we would expect, when marked
QTLs contribute a large proportion of genetic variance. Most studies have assumed a
single marked QTL, but Spelman and Bovenhuis (1998b) found similar results where two
marked QTLs were considered. They noted that the benefits of MAS were most apparent
in the early generations of selection when the two QTLs were on the same chromosome,
explaining this result in terms of the covariance between the two QTLs. They also found,
again as we would expect, that decreasing the interval between the two markers flanking
the QTL increased the efficiency of MAS by increasing the accuracy with which QTL
effects can be estimated.

Clearly, the initial QTL mapping stage is crucial to the success of MAS programs
of this type. This is an area of concern because the precision of estimates from QTL
mapping programs is typically rather low. In particular, confidence intervals for QTL
location tend to be wide. Choosing the wrong pair of flanking markers can lead to serious
losses of genetic gain, compared to the use of the correct interval. It is therefore tempting
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to use widely spaced markers to increase the chance that the selected interval contains
the true QTL location, but Spelman and van Arendonk (1997) show that this can be
counterproductive by comparing 20- and 5-cM intervals: the extra accuracy gained by
using a 5-cM marker interval when that interval does contain the QTL outweighs the
increased chance that the 20-cM interval contains the QTL. Of course, this must be
strongly dependent on assumptions about the precision of the initial estimation of QTL
location.

Moreover, estimates of QTL effect are both variable and biased upwards because
of the stringent significance thresholds used in these experiments. The effect of errors
in the estimates of QTL location and the variance due to the QTL, i.e. the variance
component Vq , has been considered by Spelman and van Arendonk (1997). They found
that overestimation of Vq , in their case assuming that Vq was equal to 10 or 15 % of the
phenotypic variance when the actual value was 5 %, had little effect in early generations
of the MAS program but did give a noticeable decline in long-term response, relative to
use of the correct value, because the overestimation of Vq leads to too much weight being
applied to QTL genotype and so to a loss of polygenic variation, which becomes important
in later generations of the selection program. This is consistent with the above discussion
on ‘hitchhiking’. Severe overestimation of Vq , for example, selection on a non-existent
QTL because of type I error, gives inferior performance relative to purely phenotypic
BLUP schemes, as we might expect. Spelman and van Arendonk (1997) comment that
the loss in response can be reduced if Vq is re-estimated during the selection program.

However, even when the QTL effect is assumed to be known without error, several
authors showed that rapid fixation of favourable allele at QTL resulted in a lower response
on the polygenic value so that after several generations MAS becomes less efficient than
purely phenotypic BLUP. This effect, often referred to as the Gibson effect (Gibson, 1994),
is similar to the lack of long-term efficiency of Lande and Thompson’s index found by
simulation in inbred populations. Using an approach based on the optimal control theory,
Dekkers and van Arendonk (1998) showed that the weight given to the QTL in early
generations should be decreased to maintain long-term efficiency of MAS. This approach
was later extended to multiple QTL (Dekkers et al., 2002; Chakraborty et al., 2002).
Results showed that the best strategy is to select equally on all the QTL, regardless
of the percentage of variance they explain. However, this strategy of optimisation is
computationally demanding and requires the prediction of the selection response over
the time horizon. It relies on some strong assumptions, such as an infinite sample size
and normal distribution of the polygenic genetic value, and cannot usually be applied
in the case of finite populations or to large number of QTL selected simultaneously.
Another concern in outbred populations is that selecting on markers may increase the
rate of inbreeding in the population and thus affect the long-term efficiency of selection.
Several strategies were proposed to also control the contributions of selected individuals
(Manfredi et al., 1998; Villanueva et al., 2002; Meuwissen and Sonessen, 2004).

21.3.3 Within-family MAS

The BLUP method described above is attractive conceptually, but is complex and
computationally demanding. For dairy cattle populations, family sizes are sufficiently
large, and therefore some of the benefits of MAS may be achieved by using simpler
alternatives based on selection within families. Two such schemes have been suggested,
termed top-down and bottom-up approaches. Both suppose that a QTL has been identified
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in a previous QTL mapping program; the basic idea is to select individuals with good
alleles at this locus for progeny testing. In the absence of marker information, this would
be done using expected breeding value calculated using BLUP.

The top-down scheme (Kashi et al., 1990) is based on the granddaughter design. Let
the current generation of elite sires be generation 0. Now consider the progeny-tested sons
of a given generation 0 sire. The progeny-tested sons are grouped according to the QTL
allele inherited from the generation 0 sire, determined from their marker haplotype, and if
a significant difference exists between the alleles, then it is deemed that the generation 0
sire is heterozygous for the QTL. Typically, marker haplotype here means a single marker
assumed to be tightly linked to the QTL of interest, so this grouping is straightforward,
although it is not obvious how to choose the significance threshold to be used. Now,
the generation 1 sires have already been progeny tested, so MAS cannot be applied to
these individuals. Instead, the marker information is used to select which of the sons of
the progeny-tested sons (grandsons of the generation 0 sire) are progeny tested. Where
sires have received the favoured marker haplotype, grandsons with this haplotype are
selected; where sires have received the unfavoured haplotype, grandsons with the sires
maternal haplotype are selected. Note that this assumes the following ordering on marker
haplotypes:

favoured grandsire > dam population > unfavoured grandsire. (21.23)

This is reasonable if there are only two QTL haplotypes, so that the favoured QTL
haplotype has value aQ, the unfavoured haplotype value aq and the dam population has
mean aq + P(Q)(aQ − aq), but becomes more doubtful with larger numbers of QTL
haplotypes.

A similar scheme could be used to identify maternal grandsires heterozygous for the
QTL. Grandsons would then be progeny tested only if they had inherited the favoured
allele from the paternal grandsire and the favoured allele from the maternal grandsire.

The bottom-up (Mackinnon and Georges, 1997) approach is fundamentally similar but
is based on the daughter design. Daughters of a generation 0 sire are used to test for an
effect of the paternal marker inherited on phenotype. If this test is significant, a QTL is
judged to be segregating in the generation 0 sire. Sons who inherit the favoured allele
from this sire are progeny tested; sons who inherit the unfavoured paternal allele are
not. Note that dams in general have too few offspring to allow identification of dams
heterozygous for the QTL, so selection cannot be applied to maternally inherited alleles
using this scheme. However, it may be possible to use this scheme for paternally inherited
alleles and the top-down scheme for maternally inherited alleles.

Spelman and Garrick (1998) showed by simulation experiments based on the New
Zealand breeding scheme for Holstein–Friesian cows that these within-family schemes
could increase genetic gain by 1–5 %, and argued that these relatively modest figures
would be sufficient to make MAS economically viable assuming current genotyping costs.
They found the bottom-up selection to be more effective than the top-down selection, with
the highest gains being obtained when the bottom-up selection was used for paternal alleles
and the top-down selection was used for maternal alleles. Interestingly, both Spelman and
Garrick (1998) and Mackinnon and Georges (1997) found that the greatest genetic gains
were obtained from the bottom-up scheme when the threshold at which we declare a
grandsire to be heterozygous is rather low. This is presumably because the cost of a
false positive (falsely declaring a sire to be heterozygous) is low compared to the cost of
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assuming a sire to be homozygous when a QTL is in fact segregating in his descendants.
Again, this is consistent with the above discussion on ‘hitchhiking’.

21.4 MARKER-ASSISTED INTROGRESSION

Different plant or animal lines have different genes of commercial value. The previous
section on MAS is concerned with crossbreeding, where existing lines are crossed to
create a hybrid variety superior to the parental lines. We now consider the situation where
one of the parental lines is broadly superior to the other, but the inferior line contains a
small number of genes of interest, or, in the extreme case, a single valuable gene. Our
objective is to transfer these genes into the other, superior, parental line whilst leaving
the rest of that line’s genome unchanged. Accordingly, we speak of moving genes from
the donor line to the recipient line. An example would be the transfer of a gene for
increased litter size (Rothschild et al., 1996) from the slow-growing and fat Meishan
pig into commercial lines. Where markers are used, this process has become known as
Marker-Assisted Introgression (MAI). Typically, repeated backcrosses to the recipient line
are made, with markers used to identify the allele which is to be introgressed and to select
against the remainder of the donor genome, followed by intercrossing or selfing of the
final backcross population to generate individuals homozygous for the introgressed allele.
Markers can thus be used in two ways (Hospital and Charcosset, 1997). In foreground
selection, markers are used to detect the presence of the introgressed gene where direct
phenotypic ascertainment would be impossible or too costly (Tanksley, 1983; Melchinger,
1990). In background selection (Hillel et al., 1990; 1993), markers are used to accelerate
recovery of the recipient genome.

Of course, all this assumes that the genes to be introgressed actually exist and will
exhibit the anticipated effect in the recipient background. This is far from certain when
the introgressed gene is a QTL, given the low power of QTL mapping. However, we
ignore this problem here, assuming that an introgression program will only be initiated if
the existence of a QTL has been ‘confirmed’ in some way.

21.4.1 Inbred Line Crosses

Here, we can assume that the parental lines are initially homozygous for different alleles,
so that there is no ambiguity about the parental origin of marker alleles. Early work
in this area assumed that the introgressed gene can be detected with certainty, i.e.
there is a marker synonymous with the introgressed gene. Foreground selection is then
straightforward and we can concentrate on background selection, specifically on how
efficient MAI is in recovering the recipient genome, typically measured in terms of
genomic proportion, the relative proportion of an individual’s genome that originates
from the recipient line.

A considerable amount is known about the speed at which the recipient genome is
recovered in the absence of selection (Stam and Zeven, 1981; Hospital et al., 1992;
Hill, 1993; Visscher et al., 1996b). Dealing with selection on markers is more difficult,
but some results have been obtained and a number of simulation studies have been
performed (Hospital et al., 1992; Visscher et al., 1996b; Frisch et al., 1999b; Hospital,
2001; 2002). The general conclusion is that, depending on selection intensity, selecting
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on markers recovers the recipient genome approximately two generations faster than if
marker information was not used. More optimistic forecasts of the speed of recovery using
markers have been made (Hillel et al., 1990; Markel et al., 1997), but these papers ignore
some important aspects of the selection process (Hospital et al., 1992; Visscher, 1999).
For instance, they assume that linked chromosomal segments segregate independently;
they therefore underestimate the variance in genomic proportion during backcrossing and
overestimate the speed at which the recipient genome is recovered (Visscher, 1999).

After selection on markers is performed, the genotype of the selected individuals at
non-marker loci is never completely known, unless very dense marker maps are used,
which is very costly. Hence, it is better to use few markers, but optimise their positions,
not only to increase the mean genomic proportion but also to control the variance of this
proportion among individuals. The variance in genomic composition of backcross progeny
sharing the same genotype at selected molecular markers at the end of the programme
was used as a criterion for the number of individuals that should be genotyped (Visscher,
1996; Servin, 2005), based on earlier developments from Hill (1993). Using a different
computation for the reduction of the variance in the donor genome proportion due to
selection, Frisch and Melchinger (2005) adapted standard normal distribution selection
theory to MAI.

We now consider the case where introgressed genes cannot be detected with certainty;
indeed, we may only have an estimate of the gene’s location, for instance from a
QTL mapping program. Background selection on the non-QTL-bearing chromosomes
can proceed as above, but foreground selection must now be based on the genotype at
markers close to the estimated QTL location. The question then is how to optimise the
number and location of markers used in foreground selection, in order to best control the
presence of a gene of uncertain location. Denote by M and Q respectively the events that
a given individual has the desired donor marker genotype and QTL genotypes. Consider a
chromosome of length L; if we knew that the location of a QTL was ρ ∈ (0, L) and that
the left and right flanking markers of the QTL were at locations ρL and ρR respectively,
then writing r(·, ·) for the recombination fraction between two points, we have that in the
t th generation of backcrossing

P(Q|M,ρ) = [1− r(ρL, ρ)]t [1− r(ρ, ρR)]t
[1− r(ρL, ρR)]t

. (21.24)

Therefore, if we have obtained a density P(ρ) for the location of the QTL from, for
example, a previous QTL mapping experiment,

P(Q|M) =
∫ L

0

[1− r(ρL, ρ)]t [1− r(ρ, ρR)]t
[1− r(ρL, ρR)]t

P (ρ) dρ. (21.25)

There is a slight problem here in that many QTL mapping approaches do not provide P(ρ).
In fact, as most of the QTL mapping methodology works within the frequentist framework,
it is not strictly possible to consider ρ as having a density. Ad hoc approaches have
been suggested, however. Both Visscher et al. (1996b), who did this calculation for two
markers, and Hospital and Charcosset (1997), who extended the approach to any number
of markers, suppose that P(ρ) is Gaussian, centred on the true QTL location and with
variance obtained, for example, from the confidence interval for QTL location given by the
QTL mapping experiment. Hospital and Charcosset (1997) go on to maximise P(Q|M)
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with respect to marker location. They show that even where considerable uncertainty about
the QTL location exists, a small number of markers (2–4) gives values of P(Q|M) close
to 1 at t = 3, when foreground selection alone is used on the QTL-carrying chromosome.
They also showed that the population sizes needed to give at least one individual with
the desired marker genotype with high probability are reasonable.

We also wish to perform background selection on the donor gene-carrying chromosome
(whether the target donor gene to introgress is a known gene or a QTL). This raises the
interesting question of where to switch from selection for donor marker alleles (at marker
loci that control the donor target, herein called central markers) to selection for recipient
marker alleles (at marker loci that flank the target region on each side, herein called
flanking marker).

For simplicity, let us say that an individual is ‘R1’ if it has donor genotype at the
central markers but recipient genotype at only one of the flanking markers (and donor
genotype at the flanking markers on the other side), and ‘R2’ if it has donor genotypes at
the central markers and recipient genotypes at both of the flanking markers (i.e. on both
sides). Genotypes R1 and R2 are sometimes called single and double recombinants. Note
that here the recombinations leading to ‘R2’ do not necessarily take place at the same
generation, which gives space for optimisation. Intuitively, for close flanking markers, R2
genotypes are highly unlikely to be obtained in one single generation (BC1) so that at least
two BC generations should be performed, with selection for a R1 genotype in BC1 (with
recombination on one side of the target), and an R2 genotype in BC2 with a recombination
on the other side (Young and Tanksley, 1989). The underlying mathematics has been
worked out recently. Hospital and Charcosset (1997) were the first to formalise this
problem, together with the optimisation of central marker positioning in the case of QTL
introgression. The above approach can then be applied to optimise marker location, though
this requires some compromise between background and foreground selection efficiency.
The solution derived by Hospital and Charcosset (1997) was used by Frisch et al. (1999a)
with numerical applications in the context of ‘next-generation’ optimisation (population
size at generation BC(n+1) is optimised given that the genotype selected at generation BCn
is known). However, Hospital (2001) showed that a better optimisation is obtained when
considering all the planned generations simultaneously because the optimal population size
at each BC generation depends on the total duration of the breeding scheme. Optimising
population sizes over several successive generations requires some numerical calculations.
Hospital and Decoux (2002) designed a computer program (popmin) that performs these
calculations easily.

One can run the popmin program to investigate any particular situation. However, the
general conclusions are as follows. First, planning to perform a total of more than two
BC generations is in general recommended. Second, it is often preferable to genotype
more individuals in advanced BC generations than in early BC generations (e.g. for a BC
scheme lasting two generations, genotype more individuals in BC2 than in BC1, not the
reverse). The latter result is counter intuitive. A hand-waving explanation is that, because
at each generation an average 50 % of donor genes return to recipient type by chance
due to normal backcross process, it is better to wait until chance events have occurred,
before screening favourable genotypes in the remains. This reduces the average number of
genotyping over the entire BC scheme. Hence, a typical marker-assisted backcross scheme
should involve three to four BC generations in most cases, unless rapid success is sought
for particular reasons. Planning to perform three or more BC generations has two main
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advantages: first, it permits a more drastic reduction of linkage drag while reducing the
genotyping effort. Second, it increases the probability of success (obtaining a R2 genotype)
in advanced BC generations. Several studies of the optimisation of such programs have
been performed using simulations (Frisch et al., 1999b; Frisch and Melchinger, 2001; van
Berloo et al., 2001; Hospital, 2002; Ribaut et al., 2002; Stam, 2003).

Hospital (2001) computed the mean and variance of the length of the intact donor
segment around the target gene, for R2 individuals, in any BC generation. This gives
the efficacy of background selection for the reduction of linkage drag. The numerical
results indicate that the expected length of donor segment on each side of the target
gene is approximately half the distance between the target and the flanking marker in
BC1. This length does not decrease much in more advanced BC generations, except for
long distances (markers 20 cM from the target or more). Then, using very close markers
is the only way to reduce linkage drag substantially. And for short marker distances,
optimisation of population sizes as described above becomes very important.

One may also wish to introgress multiple target genes at a time. Hospital and Charcosset
(1997) considered the possibility of introgressing multiple QTL. Frisch and Melchinger
(2001) studied the case of two known genes. The above discussion extends easily, the
main complication being that large population sizes may be required to give a reasonable
probability of having at least one individual with the desired marker genotype, and so the
intensity of background selection that is possible is rather limited. Hospital and Charcosset
(1997) instead suggest a ‘pyramidal design’ where QTLs are first introgressed one at a
time into the recipient in a number of simultaneous but separate backcross programs to
produce lines fixed for one of the desired QTL, and these lines are then intercrossed to
accumulate QTLs in the same genotype. They suggest that this design will allow more
intense background selection than attempting to introgress the same number of QTLs in a
single large backcross program. The ‘pyramiding’ design is described later in this chapter.

21.4.2 Outbred Populations

Where the parental lines are not completely inbred, a number of complications arise.
Firstly, the same marker alleles can exist in both donor and recipient lines, so that markers
identify neither the introgressed allele nor the desired background genotype with certainty.
Ignoring this problem and simply using the methods described above for inbred lines can
lead to a dramatic reduction in the efficiency of introgression (van Heelsum et al., 1997a).
Results can be improved by properly allowing for the uncertainty about the presence of
the introgressed allele, or founding individuals can be selected in such a way as to ensure
that markers are fully informative, i.e. that no marker allele found in the founding donor
individuals is found in the founding recipient individuals and vice versa (van Heelsum
et al., 1997b). We might also expect this problem to become less acute as the density of
marker maps increases, leading to more informative marker haplotypes.

Considering the efficiency of MAI is also more complicated in outbred populations. By
definition, outbred populations vary for the traits of interest, and therefore phenotypic
selection can be performed on the population. The value of an MAI program must
therefore be judged relative not to the initial population, but to the population which would
have resulted had phenotypic selection been performed instead of the MAI program. The
MAI program produces a population, which is superior at the introgressed locus, but
inferior elsewhere. This genetic lag arises owing to a number of reasons. Firstly, the
selection to ensure that individuals have the appropriate marker alleles at the introgressed
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locus means that fewer individuals are available for use in the phenotypic selection
programme; secondly, older individuals tend to be used in the backcross program; finally,
it is likely that the recipient population had considerably higher average genetic merit
than the donor population (Gama et al., 1992; Visscher and Haley, 1999).

Visscher and Haley (1999) investigated the efficiency of background selection using
markers and by selection on phenotype alone in introgression experiments and showed
that marker-based selection was valuable where the initial breed difference was large,
in terms of the within-breed phenotypic variance. If the initial breed difference is small,
then phenotypic selection gives lower genetic lag than selection on markers. This makes
intuitive sense because markers explain only between-breed variation and so selection on
markers is most effective when this is large relative to the within-breed variance. Wall
et al. (2005) included the prediction of linkage drag and recipient individuals’ genomic
contributions to the carrier chromosome in the prediction of genetic lag, which turned out
to be even higher than that predicted by Gama et al. (1992) or Visscher and Haley (1999).
This can be reduced by using larger offspring size, if permitted by the species. Else, one
should rely on reproductive technology. More generally, marker-assisted introgression
is less easy in animals than it is in plants, in particular because of reduced offspring
per parent (Koudande et al., 1999; van der Waaij and van Arendonk, 2000). Genetic
lag relative to a continuously selected elite population is between 1 and 3 generations,
suggesting that for introgression programmes to be viable the introgressed allele must
have a value of 1 to 3 generations of genetic gain. This implies that MAI is best suited
to the introgression of loci of large effect.

21.5 MARKER-ASSISTED GENE PYRAMIDING

MAI as described above is limited to introgression of very few genes at a time because,
when backcrossing for multiple genes, very few individuals are available that carry all the
targets after the foreground selection step, leaving little intensity for a possible background
selection. In the MAS strategies described earlier in this chapter, possibly more genes
were monitored, but the genetic background was not controlled. Moreover, most MAS
strategies were studied in the context of classical recurrent selection with random mating
of the selected individuals. Here, we want to briefly review some methods that bridge
the gap between MAS and MAI. These are sometimes called genotype building strategies
because favourable alleles are seen as ‘building blocks’ which one wants to assemble as
quickly as possible to create superior varieties. Here, we assume that an ideal genotype
(ideotype) has been previously defined at a collection of loci (either known loci, or
quantitative trait loci). It is assumed that gene effects are well estimated, and sustainable,
so that the selection is only at the molecular level and simply consists in screening the
products of meioses (recombination) taking place in successive generations in order to
obtain the ideotype as fast as possible.

When several favourable genes are originally hosted by two different parents, the
simplest strategy involves production of an F2, F3, or (if possible) recombinant inbred
lines (RIL) or doubled-haploid (DH) population. Then, screen the population based on
molecular markers for individuals homozygous at the requested loci (van Berloo and Stam,
1998). If all the genes cannot be fixed in a single step of selection, it is necessary to cross
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again selected individuals with incomplete, but complementary, sets of homozygous loci
(Charmet et al., 1999). However, such strategies are limited to small numbers of target
loci because the population size necessary to fix the target genes increases exponentially
with the number of loci: for example, in a RIL population, the frequency of homozygote
is (1/2)k for k unlinked target loci, i.e. less than 1/1000 individuals for 10 target loci.

For even more loci, recurrent selection should be used. Hospital et al. (2000) studied
a selection of 50 QTL flanked by marker pairs. The breeding scheme involved selection
and random mating of the selected individuals for several generations. The best strategy
was to select at each generation a set of individuals that is complementary for their
genotypes at the QTL. With this strategy, selection of 3 to 5 individuals among a total of
200 for 10 generations increased the frequency of favourable alleles at the 50 QTL up to
100 % when markers are located exactly on the QTL, but only to 92 % when marker-QTL
distance is 5 cM because of recombination taking place between the markers and the QTL.
The authors conclude that the only way to accelerate the response to selection, so that
favourable QTL alleles are fixed before marker-QTL linkage disequilibrium vanishes, is
to replace random mating by pair-wise mating of individuals based on their genotypes.

When the target genes are originally hosted by multiple parents, one can perform a
marker-assisted gene pyramiding scheme, involving several initial crosses between the
parents. For example, if four genes are present in four different lines (L1–L4), one can
combine the four genes into a single line in a two-step procedure, crossing e.g. L1 to L2
and L3 to L4, then crossing the hybrids (L1× L2) to (L3× L4). This has been applied
with some success, for example, in rice (Steele et al., 2006; Ashikari and Matsuoka,
2006). However, if we extend this problem to more loci, possibly linked on the same
chromosome, then it is not trivial to decide in which order the pair-wise crosses must be
performed, and there is currently no theory available to solve this problem. Yet, a first
step in the optimisation of gene pyramiding schemes was provided by Servin et al. (2004)
as follows.

Assuming that individuals can be selected and mated according to their genotype, the
best procedure corresponds to an optimal succession of crosses over several generations
(pedigree). Assuming that a collection of parents Pi is available, such that each Pi is
homozygous for a given target gene Gi , there are several ways to cross those parents to
get finally the ideal genotype I combining all target genes. Actually, for n genes, the total
number of possible pedigrees is as follows:

A(n) =
n∏
k=2

(2k − 3) = (2n− 3) (2n− 5) · · · 1, (21.26)

which increases very quickly with n: 105 pedigrees for n = 5, 135 for n = 8, 3.4× 107

for n = 10 and so on.
Servin et al. (2004) provide an algorithm that generates all possible pedigrees. For

each pedigree, they compute the probability to obtain the desired genotype from the
known recombination fractions between the target loci. Then they deduce the number of
individuals (population sizes) that should be genotyped over successive generations until
the desired genotype is obtained. The different pedigrees can then be compared on the basis
of the population sizes they require and on their total duration (in number of generations)
to find the best gene pyramiding scheme. As an example, the optimal gene pyramiding
schemes for eight target genes are compared with the reference genotype selection method
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with random mating of Hospital et al. (2000) described above. The results indicate that
optimal gene pyramiding methods can combine the eight targets in three generations
less, or with far fewer genotyped individuals than the reference method. An important
practical conclusion is that intermating of selected individuals at each generation should
be performed in two steps: rather than directly crossing selected genotypes (e.g.G1 ×G2),
it is better to perform a ‘double-cross’ hybrid (G1 ×X)× (G2 ×X) to avoid the large
sample sizes requested by double recombination (Servin et al., 2004), see Figure 21.1.

There is now a growing awareness, at least in the plant community, that exotic genetic
resources may hide genes for agriculturally important traits of larger effects than those
already segregating in the commercial populations, which was indeed shown in some
plants (Eshed et al., 1996). On the basis of this fact, there is a need to use molecular
markers to ‘unlock the genetic potential from the wild’ (Tanksley and McCouch 1997).
This will require expensive community resources (Gur and Zamir, 2004; Fernie et al.,
2006). At the breeding level, it is likely that use of these resources may be best achieved
by the development of numerous ‘introgression lines libraries’ as has already started in
many species (e.g. Liu et al., 2006; Tian et al., 2006; Canady et al., 2005) combined with
new selection methods able to ‘pyramid’ rapidly all detected QTL into new improved
genetic material.

21.6 DISCUSSION

All the MAS approaches discussed here exploit the correlation, or in genetic terms linkage
disequilibrium or allelic association, between marker loci and QTL. It is quite clear that
one of the limits of MAS is that the genes underlying QTL are usually unknown. Recent
advances in positional cloning led to the identification of some of those QTL and one
might reasonably assume that the huge efforts in sequencing and functional genetics will
result in the identification of many other QTL in the next few years. Once QTL are
known, it will be possible to define markers totally linked to the causal polymorphism
and use them in selection. This will remove the risk of recombination between markers
and QTL and increase the efficiency of MAS. However, as highlighted by Bernardo and
Charcosset (2006), even if some of the QTL were known, one would still need to test and
estimate the allelic effects within the population of interest. Knowing the genes removes
some of the statistical hazards related to model selection, but does not remove the risk
of model overfitting, especially if the number of known QTL is high compared to the
number of individuals.

It has been suggested (Smith, 1967; Smith and Smith, 1993) that, if marker maps are
sufficiently dense, markers in nearly complete association with QTL could be identified,
even in outbreeding populations, without knowing the genes underlying the QTL. This is
clearly closely related to the association-mapping approaches currently popular in human
genetics; further details can be found in Chapter 19 and Chapter 36, but see also Risch
and Merikangas (1996). In humans, very large numbers of markers are needed: current sets
of 300–500 K have been estimated to capture around 80 % of common genetic variation
(Barrett and Cardon, 2006; Pe’er et al., 2006, Chapter 37). New technologies allowing
marker sets of this size to be genotyped simultaneously at relatively low cost are currently
revolutionizing association studies in humans. These technologies also open exciting
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Figure 21.1 The two-step hybridisation procedure for obtaining an intermediate genotype carrying
favourable alleles at four loci (1, 2, 3, 4) from two parents carrying favourable alleles at loci (1, 2)
and (3, 4). The first step is performed by crossing each parent with a blank genotype (not represented
here). The resulting offspring, carrying the corresponding target genes in coupling phase on one of
their chromosomes, are then mated to obtain the desired genotype, H (1, 2)(3, 4). [Reproduced by
permission of the Genetics Society of America.]
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new prospects for MAS, especially as the forces generating allelic association, notably
hybridisation and selection, are more prevalent in animal or plant populations than in
humans, and so it should be easier to capture the relevant genetic variation. New methods
of QTL detection have already been proposed using dense maps. Meuwissen et al. (2002)
proposed a method of fine mapping combining classical QTL detection method and the use
of high marker density in animal populations. When detecting QTL in a population that
assembles a large genetic diversity, it is important to take the structure of the population
into account. Contrary to human populations, plant and animal populations have often been
strongly selected and experienced several bottlenecks so drift could generate associations
between marker haplotypes and traits. Admixture can be high and may result, if not
correctly accounted for, in false associations between marker polymorphism and traits of
interest.

It is reasonable to assume that when the marker map is dense enough, all QTL
are in linkage disequilibrium with markers at the population level, so the prediction
of the polygenic value of individuals can be based on the whole marker data set. In
such a case, the number of markers is likely to exceed the number of individuals. The
most promising current approach in such a context is the implementation of Bayesian
approaches via Markov Chain Monte Carlo. This has the advantage of treating QTL effects
as random and so shrinking back towards a prior distribution, providing natural ways
of dealing with missing marker or phenotypic information and allowing genetic values
to result from integration over different models, so that the model selection problems
described above are avoided (see a discussion on that point in Gianola et al. (2003)).
Some work has been done for outbred populations (Bink et al., 1997; 1998) mainly using
Gibbs samplers, and later extended to inbred populations (Xu, 2003). Other related work
includes the use of reversible jump Metropolis–Hastings samplers for QTL mapping in
inbred lines (e.g. Sillanpää and Arjas, 1998). Meuwissen et al. (2001) compared several
approaches, including least-squares estimates of marker effects, BLUP models and a
Bayesian approach, and showed that the Bayesian approach implemented using Markov
Chain Monte Carlo provided good predictions of the genetic values. However, in contrast
to least-squares or BLUP approaches that can be easily implemented, Bayesian approaches
can be extremely computationally demanding, and monitoring convergence in the complex
parameter spaces required is not easy. Ter Braak et al. (2005) highlighted that inadequate
priors in Xu (2003) yielded to improper posterior distribution, slow convergence and thus
incorrect results.

A key advantage of these Bayesian approaches is in removing the need to choose
a subset of markers associated with the trait on which to apply selection. As noted
earlier, this model selection step is problematic statistically; moreover, for high throughput
genotyping methods, there is no or little reduction in cost by reducing the number of
markers used in this way. Even if the cost per marker data point is low, the genotyping
cost per individual remains high. So the economic interest of such approaches needs to
be addressed.

For all these reasons, methods relying on family level associations will certainly remain
important. Even here, increased density of marker maps is of course helpful, for instance,
in increasing the informativeness of marker haplotypes. Those marker haplotypes could be
a way to make the link between different results obtained in association studies or in QTL
detection experiments. In many species, a large number of QTL results have now been
published for a given trait using different genetic backgrounds, different environments,
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etc. The crucial point in the next few years will be to integrate all this information to better
understand the genetic architecture of quantitative traits. This would help us in anticipating
results of MAS better and thus in defining new efficient strategies of selection. Dense
marker techniques are certainly useful tools but raise new questions. So, the development
of theory for MAS and MAI will still remain an active area. It is striking to note the
convergence between approaches developed recently for inbred and outbred populations.
Even if some specific issues remain, this convergence might facilitate the development of
general MAS methods that would benefit to both animal and plant breeders.

The work summarised in this chapter is almost unanimous in concluding that appro-
priately designed MAS programs can increase selection response compared to purely
phenotypic selection, but it is less clear that MAS is economically viable once the addi-
tional costs of marker genotyping are allowed for. This will change as genotyping costs
are reduced, but, at present, the most attractive applications of MAS are in situations in
which the use of MAS allows a corresponding decrease in phenotyping costs, for example,
by reduction of the generation interval, or for introgression of, or selection for, a single
major gene. In the latter case, the efficiency of MAS is critically dependent on the accu-
racy of the mapping programme, which identified the QTL. In particular, it is essential
that the identified QTL is genuine and not a false positive. In many cases, this will require
an initial positive result to be confirmed in a second, independent study (Spelman and
Bovenhuis, 1998a).
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Throughout the history of population genetics, mathematical models have played an important role
in elucidating the effects of mutation and selection on the genetic diversity of organisms. Mathe-
matical models provided the theoretical foundation of neo-Darwinism; sophisticated mathematical
tools aided Kimura in establishing the neutral molecular theory. Mathematical models in population
genetics today are crucial in the development of statistical tools for analyzing molecular data.

This chapter emphasizes models for selection, but also includes the discussion of neutral
models. After a brief history of the role of selection in evolution, basic mathematical models are
introduced together with the diffusion approximation. A discussion of coalescent theory follows,
with primary focus on selection. A short discussion on how to detect selection concludes the chapter.

22.1 A BRIEF HISTORY OF THE ROLE OF SELECTION

This preservation of favourable variations and the rejection of injurious variations, I call
Natural Selection. Variations neither useful nor injurious would not be affected by natural
selection, and would be left a fluctuating element, as perhaps we see in the species called
polymorphic. (Darwin, 1985)

Charles Darwin was the first to formulate the concept of natural selection and to apply it to
evolution and adaptation. Darwin developed his theory of evolution without a knowledge
of the source of variation. Today we know that the hereditary information of most
organisms is encoded in deoxyribonucleic acid (DNA) and that variation is caused by
mutations; the definition of natural selection remains the same, namely the differential
reproductive success of different genotypes.

When Darwin first proposed his theory of natural selection, he believed that genetic
diversity was primarily driven by natural selection and that variations accumulated
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gradually over time, as expressed in the quote Natura non facit saltum (‘Nature makes
no leaps’). The concept of gradual evolution met immediately with criticism since the
fossil record had not yielded transitional forms at that time that would indicate a gradual
change from one species to another, as would be expected under gradual evolution.

Shortly after Darwin’s proposal of the nature of evolution, an Austrian monk, Gregor
Mendel, carried out experiments on peas in 1865 and discovered the basic rules of
inheritance. The importance of Mendel’s discoveries was only realized in 1900 when the
plant breeders de Vries, Correns, and Tschermak independently obtained plant breeding
data that could be interpreted by Mendel’s rules of inheritance. The cause of variation,
namely mutations, was first described by Hugo de Vries. Based on plant breeding
experiments, de Vries concluded that mutations caused drastic, nongradual changes.

The relative importance of mutations versus selection as the driving forces of evolution
was a matter of dispute. Proponents of the Darwinian Theory asserted that evolution
proceeds by small steps, namely selection operating on small variations; whereas
proponents of the Mendelian theory believed that evolution proceeds by large leaps caused
by mutations.

This controversy continued until the early 1930s when Fisher (1930), Haldane (1932),
and Wright (1931) synthesized the Mendelian theory of inheritance and the Darwinian
theory of evolution; this synthesis, called the neo-Darwinism or synthetic theory of
evolution, formed the foundation of the modern theory of population genetics. It
emphasizes the importance of natural selection acting on variations caused by mutations
in the course of evolution.

When protein sequences became available in the 1960s, it soon became clear that
genetic diversity was far greater than had been expected. This prompted Kimura (1968a),
and King and Jukes (1969) to question the importance of natural selection as the driving
force of evolution. Instead, they proposed that most variation was selectively neutral. This
started a heated debate between the proponents of the neutral theory and the selectionists.
In subsequent work (Kimura, 1968b; 1977; 1979; 1983; Kimura and Ohta, 1973) devel-
oped this idea much further; the controversy has not been resolved. A principal conclusion
of the neutral theory is that genetic diversity is largely caused by random genetic drift,
implying that the genetic diversity seen in populations is a transient phenomenon: Muta-
tions are introduced at random and they either go to fixation or are lost solely due to
stochastic forces.

22.2 MUTATION, RANDOM GENETIC DRIFT, AND SELECTION

Mutant alleles that have little effect on the phenotype of the organism may remain in
the population until they either become fixed or lost due to stochastic forces. Other
alleles are maintained in or quickly eliminated from a population by selective forces.
Mathematical models that are based on the laws of inheritance can illuminate the role and
relative importance of stochastic and selective forces. An excellent reference for classical
mathematical population genetics is Ewens (2004); many of the models discussed here
(and much more) can be found in his book.

The simplest mathematical models track allele frequencies in a randomly mating,
monoecious population. Changes in allele frequencies are caused by mutation, random
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genetic drift, and selection. To understand their effects, we discuss each factor separately
at first.

22.2.1 Mutation

Consider a locus with two alleles A1 and A2, and let p(n) and q(n) = 1− p(n) be the
frequencies of A1 and A2, respectively, at generation n. We assume that generations are
nonoverlapping, i.e. in each generation the entire population undergoes random mating;
furthermore, A1 mutates to A2 at rate u and A2 to A1 at rate v, and an allele can mutate at
most once per generation. In an infinitely large population, the dynamics can be described
by a deterministic equation. In the absence of selective forces and under random mating,
the gene frequency of A1 in the next generation is obtained in the following way: An A1
allele in generation n+ 1 could have been either an A1 allele in generation n that did
not mutate (with probability 1− u), or an A2 allele that mutated from A2 to A1 (with
probability v). Therefore, the gene frequency of A1 in generation n+ 1 is given by

p(n+ 1) = (1− u)p(n)+ v(1− p(n)). (22.1)

This can be solved in terms of the initial gene frequency of A1, p(0), and one finds

p(n) = v

u+ v +
(
p(0)− v

u+ v
)
(1− u− v)n. (22.2)

The mutation probabilities u and v are typically quite small (of order 10−6 or 10−5). In the
long run (i.e., when n is very large), the term (1− u− v)n approaches zero. For instance,
assume u = v = 10−6; then (1− u− v)n is equal to 0.1353 when n = 106 and equal to
2.061× 10−9 when n = 107. This indicates that changes caused by mutations alone might
be quite slow, a realization that prompted population geneticists in the 1930s (Wright,
1931; Haldane, 1932) to suggest that, though mutations are the source of variation, their
role in evolution might be limited – see Nei (1987) for a discussion.

Eventually – i.e. in the limit as n tends to infinity – the right-hand side of (22.2)
approaches the value v/(u+ v). This value is called an equilibrium. The equilibrium
is also characterized by p(n+ 1)− p(n) = 0, which means that the gene frequencies
do not change over time. If we denote the equilibrium frequency of A1 by p̂, set
p(n) = p(n+ 1) = p̂ in (22.1), and solve for p̂, we find (as before)

p̂ = v

u+ v .

If q̂ = 1− p̂ denotes the equilibrium frequency of A2, then q̂ = u/(u+ v). Provided u
and v are both positive, we conclude that mutation allows for the maintenance of the two
alleles in the population.

22.2.2 Random Genetic Drift

The assumption of an infinite population allowed us to use a deterministic formulation
when we investigated the effects of mutation. In a finite population, the random sampling
of gametes alone causes changes in gene frequencies. This process is known as random
genetic drift. To investigate the consequences of random genetic drift, we again look at a
single locus with two alleles, A1 and A2.
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Assume a randomly mating diploid population of size N (or, which is the same in this
case, a haploid population of size 2N ) with nonoverlapping generations. Each generation,
2N gametes are sampled at random from the parent generation. If Y (n) denotes the
number of gametes of type A1 at generation n, then, in the absence of mutation and
selection, the number of A1 alleles at time n+ 1 is given by the binomial distribution.
Namely, the probability that there are j gametes of type A1 at generation n+ 1, given
that there were i gametes of type A1 at generation n, is

P(Y (n+ 1) = j | Y (n) = i) =
(

2N
j

)
pj(1− p)2N−j , (22.3)

where p = i/2N . This model is known as the Wright–Fisher model. If we follow a
population that evolves according to the model defined in (22.3), we will observe that its
behavior is quite unpredictable due to the stochastic nature of the model. In particular,
this means that if we follow different populations, all of equal size and each following
the dynamics described in (22.3), they will follow different trajectories over time (see
Figure 22.1). This discrete-time stochastic process is an example of a Markov chain; we
will discuss Markov chains in more detail below. An elementary reference on Markov
processes is, for instance, Karlin and Taylor (1975).
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Figure 22.1 Ten trajectories for the neutral Wright–Fisher model when the population size
N = 20 and the initial gene frequency of A1 is 0.5.
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Since there are no mutations in the model, eventually one of the two alleles will be
lost (and the other one fixed), as can be seen in Figure 22.1. The larger the population
size, the longer this process of fixation takes. Regardless of the population size, if initially
the frequency of A1 alleles is π1, then one can show that the probability of fixation of
allele A1 is π1 (and consequently, the probability of fixation of A2 is 1− π1). This can
be understood intuitively, following an argument by Ewens (1972). Namely, after a long
enough time, all individuals in the population must have descended from just one of the
individuals present at generation 0. The probability that this common ancestor was of
type A1 is equal to the relative frequency of A1 alleles at generation 0, which is π1.

22.2.3 Selection

We now turn to the third component, selection. Selection can act on different parts of
the life history of an organism; differential fecundity and viability are just two examples.
The simplest model of viability selection assumes that selection affects survival between
the zygote and adult stage of a diploid organism in a randomly mating population of
infinite size, in which generations do not overlap. It is assumed that each genotype
has a fixed, specified fitness. Since the population size is infinite, changes in allele
frequencies can be described by deterministic equations. In the case of one gene with
two alleles, A1 and A2, there are three genotypes: A1A1, A1A2, and A2A2. We denote
their respective fitnesses by w11, w12, and w22. In the case of viability selection, the fitness
wij reflects the relative survival chances of zygotes of genotype AiAj . If the population
is in Hardy–Weinberg equilibrium and the frequencies of A1 and A2 in generation n are
p(n) and q(n) = 1− p(n), respectively, then, ignoring mutations, the gene frequencies
at the next generation are

p(n+ 1) = p(n)[p(n)w11 + q(n)w12]

w̄
and

q(n+ 1) = q(n)[p(n)w12 + q(n)w22]

w̄
,

where w̄, the average fitness, is chosen so that p(n+ 1)+ q(n+ 1) = 1, i.e.

w̄ = p2(n)w11 + 2p(n)q(t)w12 + q2(n)w22.

The predictions of this model are straightforward. If w11 > w12 > w22 (or w11 < w12 <

w22), the case of directional selection, A1(A2) becomes fixed in the population. If
w11, w22 < w12, the case of overdominance, a stable polymorphism results. If w12 <

w11, w22, the case of underdominance, the polymorphism is unstable and depending on
the initial gene frequencies, either A1 or A2 becomes fixed.

22.2.4 The Wright–Fisher Model

The Wright–Fisher model is the basic model for reproduction in a finite population
that can utilize several mutation models and selection schemes and is at the heart of
many models that describe how gene frequencies evolve in the presence of random drift,
mutation, and selection (the neutral version of this model was introduced in (22.3)).

The model for a diploid population is defined as follows. Generations are nonoverlap-
ping and the population size N is held constant. As before, we consider a single locus with
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two alleles, A1 and A2, with genotypes A1A1, A1A2, and A2A2 and respective fitnesses
w11, w12, and w22. Furthermore, we assume that the population is randomly mating and
in Hardy–Weinberg equilibrium. Suppose there are i genes of type A1 and 2N − i genes
of type A2. Then, assuming selection affects survival between the zygote and adult stage
as before, and denoting by p(n) = i/2N the gene frequency of A1 at generation n, the
gene frequency of A1 after selection becomes

φ1(n) =
p(n)[p(n)w11 + (1− p(n))w12]

w̄(n)
,

where w̄(n) = p(n)2w11 + 2p(n)(1− p(n))w12 + (1− p(n))2w22 is the average fitness.
If mutation follows selection, then, assuming symmetric mutation with probability u, the
gene frequency of A1 after mutation becomes

ψ1(n) = φ1(n)(1 − u)+ (1− φ1(n))u.

The N individuals of the next generation are formed by sampling 2N independent gametes
from the pool according to a binomial resampling scheme. That is, if ψ1 is the frequency
of A1 after selection and mutation, then the probability that there are j genes of type A1
in the following generation is (

2N
j

)
ψ
j

1 (1− ψ1)
2N−j . (22.4)

The gene frequency at generation n+ 1 is then j/2N .
This is another example of a discrete-time Markov chain; expression (22.4) is called

the transition probability of this chain since it describes how the chain evolves from
generation to generation. An important feature of this process is that its future depends
only on the present state; this property makes this stochastic process a Markov process.
The transition probabilities do not depend explicitly on time, and the chain is therefore
called time-homogeneous. Even for Markov chains with such simple-looking transition
probabilities as in (22.4), it is difficult to compute quantities of biological interest exactly,
such as the expected time until fixation. For large populations, however, it is often possible
to approximate such a chain by a diffusion process. This method was first used by
Fisher (1922) and Wright (1931), and later greatly extended by Kimura (1964). (The
mathematically rigorous treatment of diffusion processes is due to Kolmogorov, 1931.)

22.3 THE DIFFUSION APPROXIMATION

A diffusion process is a continuous-time stochastic process that tracks a quantity that
changes continuously in time and whose future depends only on the present state (the
precise definition is somewhat more technical but not needed in the following). An
excellent introduction to diffusion processes at an elementary level is Chapter 15 in
Karlin and Taylor (1981).

The idea behind using a diffusion process as an approximation of genetic models for
large but finite populations is that for many finite-size models, when viewed on a suitable
time scale, in the limit as the population size tends to infinity, the change in relative gene
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frequencies is continuous and results in a well-defined process. The limiting process is
typically easier to study than the original process.

We denote the diffusion process by {X(t) : t ≥ 0}. We think of t as representing time
and refer to X(t) as the state at time t ; for instance, X(t) could be the relative gene
frequency of a particular allele at time t . A diffusion process is characterized by two
quantities, the mean and the variance of the infinitesimal displacement, called drift and
diffusion, respectively. The displacement during the time interval (t, t + h) is denoted by
�hX(t) = X(t + h)−X(t). Then the drift parameter is defined as

a(x, t) = lim
h→0

1

h
E[�hX(t) | X(t) = x].

The diffusion parameter is defined as

b(x, t) = lim
h→0

1

h
E[(�hX(t))

2 | X(t) = x].

The meaning of these quantities is as follows: For small h, a(x, t)h is approximately the
mean of the displacement �hX(t) during the time interval (t, t + h) since

E[�hX(t) | X(t) = x] = a(x, t)h+ o(h).
The quantity b(x, t)h is approximately the variance of the displacement �hX(t) during
the interval (t, t + h) for small h since

var[�hX(t) | X(t) = x] = E[(�hX(t))
2 | X(t) = x]− (

E[�hX(t) | X(t) = x]
)2

= b(x, t)h− (a(x, t)h)2 + o(h) = b(x, t)h+ o(h).
In all of our examples, the infinitesimal drift and diffusion parameters will not depend

on t ; this is so since the underlying Markov chains will be time homogeneous. In such
cases, we can simply write a(x) and b(x) instead of a(x, t) and b(x, t).

As a first example, we consider the neutral Wright–Fisher model with symmetric
mutation for a randomly mating diploid population of size N (i.e. 2N gametes). We
assume a one-locus model with two alleles, A1 and A2, with mutation probability u, and
denote by Y (n) the number of A1 gametes at generation n. The transition probabilities
are given by

P(Y (n+ 1) = j | Y (n) = i) =
(

2N
j

)
ψ
j

1 (1− ψ1)
2N−j ,

where
ψ1 =

i

2N
(1− u)+ 2N − i

2N
u.

To compute the drift and diffusion parameter, we define the scaled process

XN(t) =
Y ("2Nt#)

2N
, t ≥ 0,

where "2Nt# is the largest integer less than or equal to 2Nt . To find the infinitesimal
drift parameter, we compute

2NE
[
XN

(
t + 1

2N

)
−XN(t)

∣∣∣∣XN(t) = i

2N

]
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= E [Y ("2Nt# + 1)− i | Y ("2Nt#) = i]
= 2Nψ1 − i = i(1− u)+ (2N − i)u− i = 2Nu

(
1− i

N

)
.

We set h = 1/2N , implying that we measure time in units of 2N generations, and let N
tend to infinity (or h tends to 0). To do this, we also need to scale the mutation parameter,
namely, we assume that limN→∞ 4Nu = θ . We then find, with x = i/2N ,

a(x) = lim
h→0

1

h
E
[
XN(t + h)−XN(t) | XN(t) = x

] = θ
2
(1− 2x).

To find the infinitesimal diffusion parameter, we compute

2NE

[(
XN

(
t + 1

2N

)
−XN(t)

)2 ∣∣∣∣XN(t) = i

2N

]

= 1

2N
E
[
(Y ("2Nt#)− i)2 | Y ("2Nt#) = i]

= 1

2N
2Nψ1(1− ψ1),

since 2Nψ1(1− ψ1) is the variance of a binomial distribution with parameters ψ1 and 2N .
With x = i/2N and limN→∞ 4Nu = θ , we see that ψ1 → x as N →∞. Hence the
infinitesimal diffusion parameter is

b(x) = x(1− x).
To obtain nontrivial limits of the drift and diffusion parameters, we needed to assume

that limN→∞ 4Nu exists (we denoted the limit by θ ). Of course, the mutation probability
per gene per generation, u, does not depend on the population size but rather is a fixed
number. We therefore cannot expect that this limit exists in reality (though we can stipulate
that it exists in a mathematical model). How, then, should we interpret this limit? First,
the diffusion limit is an approximation to the real model when the population size is fixed
but finite. Second, we mentioned earlier that the mutation probability is typically quite
small, namely of the order of 10−5 or 10−6. We should therefore interpret the existence
of the limit limN→∞ 4Nu as a guide to when the approximation might be good; namely,
we expect the approximation to be good when the population size is of the order of the
reciprocal of the mutation probability.

In the literature, one typically finds 4Nu = θ instead of limN→∞ 4Nu = θ . Both are to
be interpreted in the same way. In the following, we will adopt the convention of writing
4Nu = θ instead of limN→∞ 4Nu = θ .

Below, we will need the diffusion limit of a haploid Wright–Fisher model with
mutations and selection. It is a one-locus model with two alleles A1 and A2 for a haploid
population of size N . Mutations occur at birth with probability u; i.e. the offspring of
an individual is of the same type with probability 1− u and of the other type with
probability u. Furthermore, allele A2 has a selective advantage with selection parameter s.
Let Y1(n) denote the number of individuals of type A1 at generation n. Then the transition
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probabilities are given by

P [Y1(n+ 1) = j | Y1(n) = i] =
(
N

j

)
ψ
j

1 (1− ψ1)
N−j , (22.5)

where

ψ1 =
p(1− u)+ (1− p)(1+ s)u

p + (1− p)(1+ s) , p = i

N
.

If we set θ = 2Nu and σ = 2Ns, measure time in units of N generations, and let N tend
to infinity, then

a(x) = −σ
2
x(1− x)+ θ

2
(1− 2x), (22.6)

b(x) = x(1− x). (22.7)

(Recall that for a haploid population of size N , there are only N gametes; so instead of
the factor 2N , we only have a factor of N in the above scaling.)

The selection parameter s is scaled in the same way as the mutation parameter u.
This has an important implication: The diffusion limit for a model with selection can
only be carried out provided the selection intensity is of the order of the reciprocal of
the population size. Since the diffusion limit is only a good approximation for large
populations, the diffusion limit is only useful for weak selection.

What is the advantage of using the diffusion limit? As mentioned earlier, it is rarely
possible to obtain exact results of biological interest for the original Markov chain. Using
the diffusion limit allows one to take advantage of a number of analytical tools that
facilitate the computation of various quantities. We provide two such applications, namely
the computation of quantities associated with fixation, and the Kolmogorov forward
equation, which can be used to find the stationary distribution.

22.3.1 Fixation

The diffusion approximation can be used to compute certain functionals associated with
the process, such as the probability of fixation or the mean time to fixation.

Suppose X(t) denotes the gene frequency at time t . We define T (y) as the (random)
time until X(t) reaches y. For 0 ≤ x1 < x < x2 ≤ 1, we define the probability that the
process reaches x2 before x1 when starting at x,

u(x) = P [T (x2) < T (x1) | X(0) = x],

and the average time until the process reaches either x1 or x2,

v(x) = E[min(T (x1), T (x2)) | X(0) = x].

One can show that, for 0 ≤ x1 < x < x2 ≤ 1, u(x) satisfies the differential equation

0 = a(x) du

dx
+ 1

2
b(x)

d2u

dx2
, with u(x1) = 0 and u(x2) = 1,

and v(x) satisfies

−1 = a(x) dv

dx
+ 1

2
b(x)

d2v

dx2
, with v(x1) = v(x2) = 0;
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see Karlin and Taylor (1981) for more detail.
We will apply this to the diffusion approximation of the neutral Wright–Fisher model

of genetic drift considered in (22.3), which has no mutation and which is called the
random drift model; in this case, a(x) = 0 since u (and hence θ ) is equal to 0, and
b(x) = x(1− x). In the random drift model, eventually, one of the two alleles will be lost.
We assume that the initial frequency of one of the alleles is x. By solving the respective
differential equations, one can show that the probability of fixation of a particular allele
is equal to its initial frequency, and that the mean time until fixation in the diffusion limit
is v(x) = −2[x ln x + (1− x) ln(1− x)], 0 < x < 1. For instance, when x = 0.5, v(x) is
equal to 1.39; since time is measured in units of 2N generations, this means that it takes
approximately 2.78N generations until fixation when the population size N is large.

22.3.2 The Kolmogorov Forward Equation

One can show that in the diffusion limit, the conditional probability density that the gene
frequency is x at time t given that it was p at time 0, denoted by χ(p, x; t), satisfies the
Kolmogorov forward equation or Fokker–Planck equation

∂χ(p, x; t)
∂t

= 1

2

∂2

∂x2
[b(x, t)χ(p, x; t)]− ∂

∂x
[a(x, t)χ(p, x; t)].

This equation is analytically much more tractable and is the starting point for many
investigations of quantities of biological interest. In the time-homogeneous case, we
simply replace a(x, t) and b(x, t) by a(x) and b(x).

Solving the Fokker–Planck equation for a given initial gene frequency allows one to
study how gene frequencies change over time. A particular important case is when the
distribution of gene frequencies reaches an equilibrium. In this case, we expect that as
t tends to infinity the limit of the conditional probability density χ(p, x; t) converges,
and that the limit does not depend on the initial state p. We denote this limit by ρ(x)
(if it exists), which is then called a stationary density. In the time-homogeneous case,
ρ(x) would then satisfy

0 = 1

2

d2

dx2
[b(x)ρ(x)] − d

dx
[a(x)ρ(x)]. (22.8)

The haploid Wright–Fisher model with mutation and selection introduced earlier has
an equilibrium. Using a(x) and b(x) in (22.6) and (22.7), we can compute the stationary
density by integrating (22.8). This yields

ρ(x) = Kxθ−1(1− x)θ−1e−σx, 0 ≤ x ≤ 1, (22.9)

where K is a normalizing constant so that
∫ 1

0 ρ(x) dx = 1. The density in (22.9) is a
special case of Wright’s formula (Wright, 1949) and was derived by Kimura (1956) using
the diffusion approximation method.

22.3.3 Random Genetic Drift Versus Mutation and Selection

As emphasized above, when a population is finite, the random sampling of gametes
introduces a stochastic component into the model. However, the importance of this
stochastic component, which we called genetic drift, depends on the strength of mutation
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Figure 22.2 The stationary density when 2Nu = 0.5 and 1.5.

and selection relative to the population size. In general, genetic drift is the more important
component in smaller populations.

Let us compare mutation and genetic drift in a population of size N , which evolves
according to the one-locus, two-allele haploid Wright–Fisher model with symmetric
mutation probability u per gene per generation defined in (22.5). We assume no selection.
The stationary density is given by (22.9) when we set 2Nu = θ and σ = 0. The graph of
this function is U -shaped when 2Nu ≤ 1 and unimodal with a peak at 1

2 when 2Nu ≥ 1
(see Figure 22.2). We see that if Nu� 1, the population is typically fixed for one or the
other allele, meaning that genetic drift is the dominant force; whereas, if Nu� 1, both
alleles will be simultaneously present, meaning that mutational forces are dominant.

To compare random genetic drift versus selection, we again assume the one-locus two-
allele Wright–Fisher model with symmetric mutation defined in (22.5), as above, but
now we allow allele A2 to have a selective advantage 1+ s over allele A1. The stationary
density is given by (22.9) with θ = 2Nu and σ = 2Ns. One can show that if Ns � 1,
selection does not have much of an effect, and the population behaves almost as neutral;
whereas if Ns � 1, selection strongly biases the distribution of alleles towards the favored
type, implying that selective forces are dominant (see Figure 22.3).

22.4 THE INFINITE ALLELE MODEL

The models considered so far have a simple genetic structure: One locus with two alleles
and mutation changing one allele into the other type and back. This is not a realistic
assumption since a gene consists of a large number of nucleotides and thus a mutation
occurring at one nucleotide site will likely not result in a type already present in the
population, but rather in a novel allele. This prompted Kimura and Crow (1964) to
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Figure 22.3 The stationary density when 2Nu = 1.5, 2Ns = 0.5 and 5.

introduce a new model, the model of infinitely many alleles, or (for short) the infinite
allele model.

22.4.1 The Infinite Allele Model with Mutation

The population consists of N diploid individuals and evolves according to a one-locus,
neutral Wright–Fisher model with nonoverlapping generations. Mutations occur with
probability u per gene per generation, but now every mutation results in a new allele
not previously seen in the population.

It is interesting to note that this model was introduced before Kimura proposed his
neutral theory; in fact, Kimura and Crow point out that ‘[i]t is not the purpose of this
article to discuss the plausibility of such a system’. Their goal was rather to determine
the number of alleles that can be maintained in a population under the extreme case that
each mutation would generate a novel allele. This would then provide an upper bound
for situations in which mutations could also result in alleles that are already present in
the population.

A frequently used measure of genetic diversity is the probability of sampling two alleles
of the same type. In the infinite allele model, each allele arises only once, and, therefore,
genes in a homozygous individual are identical by descent. If we denote by F(m) the
probability that two gametes are identical by descent at generation m, then

F(m+ 1) =
[

1

2N
+
(

1− 1

2N

)
F(m)

]
(1− u)2.

In equilibrium, F(m) does not depend on m. Denoting the equilibrium by F̂ , we find

F̂ = (1− u)2
2N − (1− u)2(2N − 1)

.
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The infinite allele model is best studied in the diffusion limit when time is measured in
units of 2N generations. We set θ = 4Nu and let N tend to infinity. We find

F̂ = 1

θ + 1
.

We conclude from this that in equilibrium the frequency of homozygotes is a decreasing
function of mutation pressure.

Since new alleles are constantly introduced into the population and other alleles get
lost due to random drift, the actual alleles present are changing over time – even in
equilibrium. That is, in equilibrium, the distribution of a particular gene is not stable, but
rather the number of alleles attains a steady state. In addition, if we look at the most
common allele (whose type will change over time), the second most common allele, and
so on, we would find that their frequencies are stable in equilibrium.

22.4.2 Ewens’s Sampling Formula

Ewens (1972) investigated the equilibrium properties of samples taken from a population
that evolves according to the infinite allele model. He defined the allelic partition of
a sample: Denote by ai the number of alleles present exactly i times in a sample.
The vector (a1, a2, . . .) then denotes the allelic partition. If the sample size is n, then
an+1 = an+2 = · · · = 0. The number of different alleles in a sample of size n, Kn, is then

Kn =
n∑
i=1

ai,

and the sample size n =∑n
i=1 iai . Ewens obtained the distribution of the allelic partition

of a sample in equilibrium in the diffusion limit,

Pθ(a1, a2, . . . , an) =
n!

θ(n)

n∏
j=1

(
θ

j

)aj 1

aj !
,

where θ = 4Nu and θ(n) = θ(θ + 1) · · · (θ + n− 1). (Karlin and McGregor, 1972, gave
a formal derivation of this formula.)

An interesting conclusion of this formula is that under neutrality, alleles are not equally
likely in equilibrium, but rather the partition is quite lopsided, with a few common alleles
and all others relatively uncommon.

Ewens’s sampling formula allows one to find the probability distribution of the number
of alleles in a sample of size n. Let Kn denote the random variable that counts the number
of alleles in a sample of size n in equilibrium; then

E[K]n =
n∑
j=1

θ

θ + j − 1
.

For large n, this is asymptotically θ ln n. Furthermore, the variance of Kn for n large is
asymptotically θ ln n as well.

22.4.3 The Infinite Allele Model with Selection and Mutation

Ethier and Kurtz (1987; 1994) gave a general version of the infinite allele model with
selection. Again, the population is diploid and of size N (2N gametes). To distinguish
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alleles from each other, we assign each allele a number chosen at random from the interval
(0, 1). (This also ensures that each mutation results in a novel allele.) Denote the type
of the ith gene by xi . In each generation, 2N gametes are chosen in pairs so that the
probability that the ith and the j th gene are selected is

P(i, j) = wN(xi, xj )∑
1≤l,m≤2N

wN(xl, xm)
,

where

wN(x, y) = 1+ 1

2N
σ(x, y),

and σ(x, y) is a symmetric function of x and y. In the next step, one of the two genes
is chosen at random and subjected to mutation; it remains the same type with probability
1− u and mutates to a novel type with probability u, chosen at random from (0,1). This
gene is then one of the 2N gametes in the next generation.

Ethier and Kurtz (1994) showed that the stationary density of the infinite allele model
with selection described above is absolutely continuous with respect to the stationary
density of the neutral infinite allele model. Joyce (1995) used this result to show that, for
large sample sizes, the allele counts and the total number of alleles under this selection
scheme are nearly the same as under neutrality. This convergence, however, is rather
slow, and, for small sample sizes, selection has a substantial effect (Li, 1977).

22.5 OTHER MODELS OF MUTATION AND SELECTION

We include three more frequently used models which include mutation and/or selection.
The last model mentioned here is a model with overlapping generations.

22.5.1 The Infinitely Many Sites Model

This model was introduced by Watterson (1975) as a model to approximate DNA
sequences (see also Ethier and Griffiths, 1987; Griffiths, 1989). Each individual is
described by a string of infinitely many, completely linked sites. The mutation probability
per site is assumed to be very small so that the total number of mutations per individual
per generation is finite and one can assume that no backmutations occur. It is enough to
keep track of the segregating sites since none of the other sites carries any information.
Each individual is thus represented by just a finite string of sites. The assumption of
complete linkage means that there is no recombination between different strings. This
assumption is typically made for mitochondrial DNA, which is haploid and maternally
inherited.

22.5.2 Frequency-dependent Selection

The fitness of a genotype depends on its frequency (and possibly on the frequen-
cies of other genotypes). An example of this type of selection is gametophytic
self-incompatibility, found in many flowering plants. A simple model for a haploid
population with minority-advantage frequency-dependent selection is as follows (Wright
and Dobzhansky, 1946; Clarke, 1976; Takahata and Nei, 1990): We assume one locus
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with infinitely many alleles. The fitness of allele Ak is 1− axk , where xk is the frequency
of Ak in the population and a is a positive constant. If F =∑∞

k=1 x
2
k , then the allelic

type Ak contributes a fraction xk/(1− aF ) to the next generation. Offspring are of the
same type with probability 1− u and of a novel type with probability u. If θ = 2Nu and
α = 2Na, then in the diffusion scaling, the drift term is a(x) = −[αx(x − F)+ θx]/2
and the diffusion term is b(x) = x(1− x). Frequency-dependent selection of this form is
a powerful mechanism for the maintenance of a polymorphism.

22.5.3 Overlapping Generations

The Wright–Fisher model assumes that generations are discrete (or nonoverlapping). To
model overlapping generations, we need to allow individuals to reproduce asynchronously.
Moran (1958; 1962) introduced a haploid model in which reproduction occurs continu-
ously in time: Each individual produces an offspring at an exponential rate depending
on its fitness. The offspring then undergoes mutation according to a specified mutation
process. To keep the population size constant, the offspring then chooses one of the
individuals in the population at random and replaces it. In this way, one can define
continuous-time analogs for each discrete-time model. It turns out that the corresponding
models have the same diffusion limits under suitable scaling of the parameters in the
respective processes.

There are many other models that address various aspects of population dynamics.
For instance, there is a large amount of literature on population genetic models that take
geographic substructure into account (see Chapter 28).

22.6 COALESCENT THEORY

22.6.1 The Neutral Coalescent

Looking at the genealogical relationships of a sample of genes is a powerful way to
study population dynamics and to infer population parameters, such as the mutation
parameter. This method was introduced by Kingman (1982a; 1982b) for neutral models
(see Chapter 25). A typical genealogy is shown in Figure 22.4. When going back in
time, the ancestral lines coalesce until only one line is left; this is the line of the most
recent common ancestor.

An important feature of this process is that the family tree and the mutation process
can be treated separately under neutrality. We discuss this for a haploid population of
size N . Under neutrality, each individual in generation n chooses one parent at random
from the previous generation. The ancestral lines of individuals who choose the same
parent coalesce.

The dynamics of this genealogical process is not difficult to derive. We will again take
advantage of the diffusion approximation, which will allow us to obtain exact results in
the limit as the population size goes to infinity. Under neutrality, to simulate the family
tree of a sample of size n, we follow the ancestral line of each individual back in time.
Suppose now that there are j ≤ n ancestral lines left at some time in the past. Each
line will choose one ancestor at random from the population. If the population size is
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Figure 22.4 The genealogical relationship of a sample of genes.

N , then the probability that the j genes will have no common ancestors in the previous
generation is

j−1∏
i=1

(
1− i

N

)
= 1−

(
j

2

)
N

+O
(

1

N2

)
.

To prepare for the diffusion limit, we will measure time in units of N generations. If
T (j) denotes the time between the coalescing events where the size of the genealogy
goes from j to j − 1 measured in units of N generations. Then for any t > 0,

P(T (j) > t) =
j−1∏
i=1

(
1− i

N

)Nt −−−→ exp
[
−
(
j

2

)
t

]
,

as N tends to infinity. We find that in the diffusion limit only pairwise coalescence events
occur, and that T (j) is exponentially distributed with parameter

(
j

2

)
. The resulting process

is called the coalescent (Figure 22.4).
An important quantity is the time it takes until a sample of size n is traced back to its

most recent common ancestor (MRCA). If we denote this (random) time by TMRCA(n),
then

TMRCA(n) = T (n)+ T (n− 1)+ · · · + T (2).
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Since T (j) is exponentially distributed with parameter
(
j

2

)
, the expected value of T (j) is

1/
(
j

2

)
, and hence,

E[TMRCA](n) =
n∑
j=2

E[T (j)] =
n∑
j=2

2

j (j − 1)

= 2
n∑
j=2

(
1

j − 1
− 1

j

)
= 2

(
1− 1

n

)
.

From
E[T (2)] = 1 and lim

n→∞E[TMRCA(n)] = 2,

we conclude that, on average, the amount of time it takes to reach the MRCA for a very
large sample is only about twice that for a sample of size 2.

Using independence, we can compute the variance of TMRCA(n). We find

var(TMRCA(n)) =
n∑
j=2

var(T (j)) =
n∑
j=2

(
2

j (j − 1)

)2

= 8
n−1∑
j=1

1

j 2
− 4

(
1− 1

n

)(
3+ 1

n

)

−−−→ 8π2

6
− 12 ≈ 1.16 as n→∞.

Since var(T (2)) = 1, we see that the coalescence time T (2) has by far the biggest
contribution to the variance.

The mutation process is superimposed on the coalescent. Using the same scaling as in
the previous section, namely θ = 2Nu, and measuring time in units of N generations, the
mutation process can be described by a Poisson process that puts down mutation events
independently on all branches at rate θ/2. It is straightforward to include other mutation
schemes in the model. For instance, the coalescent for the neutral infinite allele model
has the same structure but we stipulate that at mutation events a novel allele is created.

To simulate a sample of size n, we thus first simulate the genealogical tree, then put
mutations on the tree, and finally assign a type to the MRCA and run the process down
the tree to obtain a sample of size n. For further details on the neutral coalescent theory,
see Chapter 25.

It is important to realize that simulating samples of a given size is different from making
inferences of population parameters based on a given sample. The coalescent is used for
statistical inference; this is described in Chapter 26.

22.6.2 The Ancestral Selection Graph

The argument above relied crucially on the assumption that individuals choose their
offspring at random in the previous generation. This no longer holds under selection.
Initial attempts to include selection in the genealogical approach assumed that the gene
frequencies were known at all times in the past (Hudson and Kaplan, 1988; Hudson
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et al., 1988); this is covered in detail in Chapter 25. This approach is successful if the
population is in equilibrium and the stationary distribution is known. It turns out, however,
that this assumption is not needed when selection is weak. The ancestral selection graph
(Neuhauser and Krone, 1997; Krone and Neuhauser, 1997) provides a framework that
allows one to study genealogies of samples under selection without knowing the gene
frequencies at all times in the past.

We will show how to obtain genealogies for samples under selection using the haploid
model for a population of size N , which was defined in (22.5). We follow one locus with
two alleles, A1 and A2, and assume symmetric mutation with mutation probability u per
gene per generation. One of the alleles (A2) has a selective advantage s.

The genealogy under selection is embedded in a graph, called the ancestral selection
graph, which has both coalescing and branching events (see Figure 22.5). The coalescing
events have the same interpretation as in the neutral case, namely, two ancestral lines join
together at the time of their common ancestor. The branching events result in additional
ancestral lines. Since the number of actual ancestral lines cannot increase, they constitute
potential ancestral lines, reflecting the fact that individuals with a higher fitness have more
offspring.

Figure 22.6 illustrates ancestral lines and explains why branching events occur in the
presence of selection. If 3 has a selective advantage, then 2′ and 3′ have a common
ancestor, namely 3; whereas if 3 does not have a selective advantage, then 2 is the ancestor
of 2′ and 3 is the ancestor of 3′. Since, when constructing genealogies, the gene frequencies
in the past are not known, both possibilities need to be carried back until all ancestral lines
coalesce and one ancestor, called the ultimate ancestor (UA), results. Knowing the type
of the UA then allows one to extract the genealogy from the ancestral selection graph.
This is illustrated in Figure 22.7, where type 2 has a selective advantage over type 1. We
stipulate that a selectively advantageous type on an incoming branch displaces the type on
the continuing branch. We see from Figure 22.7 that the MRCA is not necessarily the UA.

Incoming
branch

Continuing
branch

Branching
event

Coalescing
event

Past

Present

Figure 22.5 The ancestral selection graph with its coalescing and branching structure.
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1′ 2′ 3′ 4′

Parent
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Figure 22.6 Branching events come from differential reproductive success.

MRCA = UA = 1 UA = 2

MRCA

Figure 22.7 Extracting the embedded genealogy from the ancestral selection graph.

The ancestral selection graph can be defined for a large class of models (Neuhauser
and Krone, 1997; Neuhauser, 1999), but only in the diffusion limit do we obtain a graph
that has a simple structure. The diffusion limit requires that selection is weak, i.e. s is of
the order of the reciprocal of the population size (more precisely, limN→∞ 2Ns = σ ). In
this limit, the ancestral selection graph for the model defined in (22.5) has the following
dynamics. If there are j branches, then

coalescing: j → j − 1 at rate
(
j

2

)
;

branching: j → j + 1 at rate
σ

2
j.

It follows that coalescing events occur at the same rate as in the neutral coalescent, but,
in addition, branching events occur.

The ancestral selection graph allows one to separate the mutation process from the
genealogical process as in the neutral case provided the mutation parameter scales with
the reciprocal of the population size (i.e, limN→∞ 2Nu = θ ). The mutation process is
superimposed on the graph: Mutation events occur according to a Poisson process with
rate θ/2 independently along each branch of the ancestral selection graph.
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The ancestral selection graph described here is for the simplest case of a one-locus
two-allele model with symmetric mutation. It can be extended to many other models
of selection, including diploid models (Neuhauser and Krone, 1997) and frequency
dependent selection (Neuhauser, 1999). The graphs are somewhat more complicated in
their branching structure, but have straightforward and intuitive interpretations.

Straightforward simulations of this process are computationally intensive. Recent
advances (Slade, 2000a; 2000b; Stephens and Donnelly, 2003; Barton et al., 2004) have
led to algorithms that are much less computationally intensive. These advances rely on
modeling genealogies conditioned on allele frequencies in the sample.

22.6.3 Varying Population Size

So far, we have always assumed that the population size is constant. There is ample
evidence, for instance, that the human population underwent a large expansion in the
past. The literature on changing populations sizes, and in particular on bottlenecks,
is extensive (Nei et al., 1977; Watterson, 1984; 1989; Slatkin and Hudson, 1991;
Rogers and Harpending, 1992; Marjoram and Donnelly, 1994; random environment
models are discussed in Donnelly, 1986). It is not difficult to incorporate a changing
population size into the coalescent. This was done for the neutral coalescent in
Griffiths and Tavaré (1994) and extended to the selection case in Neuhauser and Krone
(1997).

To derive the coalescent with varying population size, we begin with the neutral
Wright–Fisher model for a haploid population whose size at time 0 (the present) is
equal to N = N(0). Denote by TN(2) the coalescence time of two genes. Then

P(TN(2) > τ) =
τ∏
j=1

(
1− 1

N(j)

)
,

where N(j) is the population size j generations in the past. Measuring time in units of
N generations, we find, in the limit as N tends to infinity,

lim
N→∞P(TN(2) > "Nt#) = lim

N→∞

"Nt#∏
j=1

(
1− 1

N(j)

)

= exp
[
−
∫ t

0
λ(u) du

]
,

where λ(u), the coalescent intensity function, is defined as follows: For N(j) large,

"Nt#∑
j=1

log
(

1− 1

N(j)

)
≈ −

"Nt#∑
j=1

1

N(j)
.

If we define fN(x) = N(j)/N for x = j/N , then

lim
N→∞

"Nt#∑
j=1

1

N(j)
= lim
N→∞

t∑
x=1/N

1

fN(x)

1

N
=
∫ t

0
λ(u) du.
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That is, λ(u) = 1/f (u) with f (u) = limN→∞ fN(u). If we define

�(t) =
∫ t

0
λ(u) du,

then, as N →∞, TN(2)/N converges in distribution to a random variable T (2) with

P(T (2) > t) = exp[−�(t)].
We can now define the coalescent with varying population size. We conclude from the

above calculation that at the rescaled time t in the past, each pair of branches coalesces
at rate λ(t), where λ(t) is the coalescent intensity function defined above. If there are j
branches present at time t in the past, then a coalescing event occurs at rate

(
j

2

)
λ(t). Note

that if the population size is constant, i.e. N(j) = N for all j ≥ 0, then λ(t) = 1 for all
t ≥ 0, and we obtain the neutral coalescent for fixed population size. A population that
expanded rapidly leads to a star-shaped genealogy.

Mutation and selection are not affected by varying population sizes. As in the case of
fixed population size, mutation events occur at rate θ/2 along each branch, and branching
events occur at rate jσ/2 if j branches are present.

22.7 DETECTING SELECTION

Explaining molecular differences between individuals and determining the causes of
molecular evolution remain a challenging task. Darwin emphasized the role of natural
selection as the driving force of evolution, whereas Kimura championed the neutral theory.
The availability of molecular data makes it possible to study genetic diversity directly,
which should help to resolve the neutrality–selectionist controversy.

A number of statistical tests have been devised to detect selection. This section
focuses on tests that are based on coalescent theory, or can at least be understood using
coalescent theory. Chapter 12 discusses statistical methods for phylogenetic analysis of
protein coding DNA sequences; this method relies on the ratio of synonymous versus
nonsynonymous substitutions.

The null hypothesis for statistical tests of selection typically assumes that the population
is neutral. If the observed data deviate too much from what is expected under neutrality, the
hypothesis of neutrality is rejected. However, this does not tell one what type of selection
acted on the population or if the deviation from the neutral expectation resulted from
selection or other forces – for instance, changes in population size, temporally varying
environments, or other factors.

One of the first tests was Watterson’s (1978) homozygosity test of neutrality. This is
based on Ewens’s sampling formula and tests whether the observed homozygosity in the
sample agrees with that predicted by Ewens’s sampling formula. Neither population size
nor the mutation parameter needs to be known to apply this test since sample size and
the number of distinct alleles in the sample are sufficient to compute the probability of
a particular allelic composition given the number of alleles observed in the sample. This
test, however, is not very powerful (Gillespie, 1991).

Watterson’s test works for allozyme data, which were the prevalent data available then.
As DNA sequence data became widespread, there was a need for statistical tests based
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on this type of data. Hudson et al. (1988) developed a test, the HKA test that compares
regions of the genome of two species. This test was developed to detect polymorphism
that is maintained by balancing selection.

Tajima (1989) developed a test for DNA sequence data that compares the number
of segregating sites and the average number of pairwise nucleotide differences. Under
neutrality, the expected number of segregating sites S in a sample of size n is given by
(Watterson, 1975)

E[S] = θ
n−1∑
k=1

1

k
, (22.10)

where θ = 4Nu, N is the (diploid) population size and u is the mutation probability per
gene per generation. The expected number of pairwise nucleotide differences K is given
by (Tajima, 1983)

E[K] = θ, (22.11)

where θ = 4Nu as above.
Selection affects these two quantities differently. The number of segregating sites

ignores allele frequencies but the presence of deleterious alleles, which occur in low
frequencies, affects this number strongly. The number of pairwise nucleotide differences,
on the other hand, is primarily affected by allele frequencies and this is less sensitive to
deleterious alleles, which occur at low frequencies.

Both (22.10) and (22.11) suggest a method for estimating θ under neutrality. If
the neutrality assumption is violated, however, the two methods should yield different
estimates of θ , as explained above. The difference is measured by

d = K̂ − Ŝ

cn
,

where K̂ and Ŝ are the observed pairwise nucleotide differences and the observed
number of segregating sites, respectively, and cn =

∑n−1
k=1 k

−1. Tajima (1989) computed
the variance of d and derived an estimate of var(d), V̂ (d), based on the observed number
of segregating sites. He then proposed the test statistic

D = d√
V̂ (d)

.

Though Tajima did not base his test on the coalescent, properties of both S and K can
be computed using the coalescent. Namely, under the infinite sites model, the number
of segregating sites, S, is equal to the total number of mutations in the genealogy of
the sampled genes. The total branch length of the genealogical tree is Ttot =

∑n
j=2 jT (j),

where T (j) is exponentially distributed with mean 1/
(
j

2

)
. Mutations occur independently

along branches according to a Poisson process with rate θ/2. Hence,

E[S] = θ
2

n∑
j=2

j
1(
j

2

) = θ n∑
j=2

1

j − 1
= θ

n−1∑
k=1

1

k
,
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as in (22.10). The pairwise nucleotide differences can also be derived using the coalescent.
Since a site is affected by a mutation at most once under the infinite site model, a pairwise
difference occurs if a mutation occurs on either lineage to their common ancestor. Hence,

E[K] = θ
2

2E[T (2)] = θ,
as in (22.11).

A test that is directly based on the coalescent is the test by Fu and Li (1993). They
divide the coalescent into external and internal branches (an external branch is a segment
that ends in a tip on the genealogy). External branches correspond to younger parts of
the tree, internal branches to older parts of the tree. In the case of purifying selection,
they expect an excess number of mutations in the external branches since deleterious
alleles occur at low frequencies, whereas in the case of balancing selection they expect
the opposite. In essence, their test is based on the assumption that branch lengths in the
genealogy are affected by selection.

All tests introduced above are based on the assumption that selection will have an
effect on the proposed test statistics. Since it is typically not possible to compute the
statistical properties of the proposed test statistics under alternatives, a frequent approach
is to use simulations to assess the power of proposed tests. This was done, for instance,
in Simonsen et al. (1995) for Tajima’s test statistic and the test proposed by Fu and
Li (1993). They simulated alternative hypotheses, such as selective sweeps, population
bottlenecks, and population subdivision. In general, they found that Tajima’s test was more
powerful.

In Golding (1997) and Neuhauser and Krone (1997) the effects of selection on branch
lengths were investigated. They found that the shape of the genealogy (i.e. both its
topology and the coalescence times) under purifying selection differs only little from that
expected under neutrality. Przeworski et al. (1999) confirmed their results. Slade (2000a)
investigated the effects of selection on branch lengths using the enhanced algorithm of
constructing graphs conditioned on the sample. He found as well that the effect of selection
on branch lengths is weak. Barton and Etheridge (2004) investigated the effects of both
purifying and balancing selection and found that branch lengths are only significantly
altered under selection if selection is very strong and deleterious mutations are common
in the case of purifying selection or mutation is weak in the case of balancing selection.
Overdominant (balancing) selection changes the genealogy (Kaplan et al., 1988). Thus,
when using the shape of the genealogy to construct a statistical test for selection, the
power of the test depends rather crucially on the alternative.
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If we confine our attention to species, such as humans, with two sexes and no selfing, a genealogy
is simply a set of individuals and the specification of two binary relations, mother of and father of.
Of course, each individual has at most one mother and one father specified and the set must observe
the restrictions imposed by the temporal aspects. This can be most conveniently specified as a list
of individual – father – mother triplets with either or both of the latter two fields allowed to be
null. Genealogies lend themselves very naturally to graphical representation and anyone involved
in genealogical work or plant and animal genetics will likely have drawn a pedigree at some stage
to keep track of relationships. These relationships follow a logic that allows us to represent and
quantify correlations between pairs or sets of individuals, or their genes, and thus lets us develop
algebras of relationship that we discuss here. We also consider two representations of genealogies
as graphs that are of primary importance in genetics, discuss their properties and significance and
consider the correspondence between them.

23.1 GENEALOGIES AS GRAPHS

Perhaps the neatest way of representing a genealogy is as a marriage node graph
(Figure 23.1). This is a directed graph G = G(V,E), where the set of nodes V is
partitioned into three subsets: M the marriages, f the females and m the males. The
union of f and m constitutes I, the set of individuals. The edges, E, which are directed,
are similarly partitioned into three subsets, fM with each element from a female to a
marriage, mM with each element from a male to a marriage and R with each element
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1 3 4

5 6 7 8

10 11 12 13 14

15 16 17 18

a b

c d

e f

9

2

Figure 23.1 A marriage node graph with 18 individuals linked by six marriage nodes. Males are
conventionally represented by rectangles, and females by circles. Edges are directed from top to
bottom.

from a marriage to an individual, either a male or a female. The restrictions required to
make this directed graph a valid genealogy (see Figure 23.1) is simply that (1) there are
no cycles, (2) a marriage node may have at most one input edge in fM and at most one
in mM, and (3) an individual node has at most one input in R. This representation is
well suited for use when drawing a genealogy, particularly when it is complex with many
loops. When edges are drawn as angled brackets, instead of straight lines, we see that the
result is a picture in the more familiar traditional format, as shown in Figure 23.2.

The second representation is the moral graph. This is an undirected graph with a vertex
for each individual, edges connecting individuals to their parents, and their parents to each
other, so that it is the union of the triangles connecting offspring – father – mother triplets.
Although not usually as clear as the marriage node graph when drawn, the structure of
the moral graph is important in determining the computational complexity of probability
calculations made on genealogies. The name comes from the graphical modelling field
where, initially, a directed graph is defined with connections to a dependent, or daughter,
variable from the variables on which it depends: the parent variables. This graph is
then moralised by connecting, or marrying, the parents and discarding the information
on direction (Lauritzen and Spiegelhalter, 1988). Although for probability calculations on
pedigrees the vertices represent variables for properties of individuals rather than the indi-
viduals themselves, the parent – offspring analogy used generally in graphical modelling,
in effect, becomes literal for pedigree analysis. An example is given in Figure 23.3.

23.2 RELATIONSHIPS

23.2.1 The Algebra of Pairwise Relationships

It was pointed out earlier that for a genealogy we need only two binary relationships,
mother of and father of, and everything else should follow from that. In practice of
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Figure 23.2 The marriage node graph in Figure 23.1 rendered in the more traditional format. As
pedigrees get more looped and complex, this format quickly becomes unreadable, and the format
in Figure 23.1 is clearer.

Figure 23.3 The moral graph for the pedigree shown in Figure 23.1.

course there are many other relationships which are defined, though these vary greatly
from society to society. The study of relationships, or kinship, is of major import
in anthropology, since many of the obligations in societies of all types are based
on kinship, though the match between terminology and kinship as represented by the
genealogy is not always precise. However, the focus there is often on providing an
explanation of why certain individuals are considered to have a particular kinship
descriptor.
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Here, we briefly comment on the logic of relationships as defined by relative positions
in the directed graph of the genealogy. Following Atkins (1974) and Cannings and
Thompson (1981), suppose that we denote an edge from a marriage A to an individual
B by ARB (R for reproduction) and an edge from an individual B to a marriage A by
BMA (M for marriage) where the direction is important. The relationship between any
two individuals can then be represented by a string of Rs and Ms, together with their
reverses R and M , if the directed graph is a tree, or by a set of such strings if there
are loops within the genealogy. We abstract the string of Rs and Ms to define a type of
relationship.

Ambiguity can arise by virtue of the possibility of retracing edges in the graph.
As a simple example, following Cannings and Thompson (1981), consider a small
genealogy, where A, B ,C and D are individuals, and a and b are marriages as in
Figure 23.4. Now consider the relationship defined with respect to individual A by
RMMR. Following the edges as defined we can go from A to a, and then from a
to D. At this point there is a choice: from D to a or from D to b. If the choice
is D to a, then a further choice will take us to A or B. The possible paths are
therefore AaDaA, AaDaB and AaDbC, so that the relationship defined is self, sib or
half-sib.

It is possible to use this simple system to solve issues of relationship. For example, as
discussed by Kendall (1971), there is a well-known riddle regarding relationships: brothers
and sisters have I none but this man’s father is my father’s son. It is then necessary to
differentiate between males and females. Thus, we split R into S (reproduction producing
a son) and D (reproduction producing a daughter), and M into H , the husband of a
marriage, and W , the wife of a marriage. Thus, this man’s father is SH , while my
father’s son is RHHS, so the relationship between me and this man is summarised by
equating these two expressions. We have SH = RHHS. The relationship between the
man and me is thus SHSHHR, so we have two possible relationships (as derived by
Kendall) (1) the man is the grandson of my father by a different woman to my mother
(I may be male or female), (2) the relationship reduces to SHSR so that, since I have no
siblings, I must be the man’s father.

There are other systems of representation for genealogies used within the anthropo-
logical literature, but the focus is usually different from the biological. The interested
reader is referred to White and Harary (2001), and references therein, for details of the
P-Systems approach and other graph systems used in anthropology.

A B C

D

a b

Figure 23.4 A simple pedigree connecting two sibs and a cousin
to their common ancestor.
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23.2.2 Measures of Genetic Relationship

Here, we discuss measuring and representing the genetic relationship between pairs or
sets of individuals, or the genes within an individual. We shall assume throughout that
each individual is diploid, i.e. has two genes at each locus (we discuss only the autosomal
case, sex-linked genes are treated similarly).

Each individual then has two copies of the gene at any locus of interest. We shall
consider sets of copies of the gene in question taken in some specified way (e.g. one
taken randomly from each of the individuals A, B and C). However, in accordance with
common practice, we shall refer to a set of genes, rather than a set of copies of a gene.

23.2.2.1 Identity by Descent

A set of genes at some locus are said to be identical by descent (IBD) if they are all
copies of some single ancestral gene, having been passed down by reproduction from that
ancestral gene. We shall abbreviate identical by descent by IBD, when appropriate.

Note that identity by descent is an equivalence relation (reflexive, symmetric and
transitive), so the set of genes are partitioned into subsets such that genes in the same
subset are IBD.

Our measures of relationship are all based on this notion and defined in terms of the
probability that the set of genes (at some locus) in question have some specific pattern of
identity by descent. This notion was developed by the early work of Cotterman (1940)
and Malécot (1948).

23.2.2.2 Pairs of Individuals

In the preceding section, we have referred to the genes at some locus, since the definition
of identity by descent is referring to a specific set of genes at a specific locus. We now
move on to defining and calculating probabilities of various quantities relating to IBD.
Here, we can drop the at some locus requirement since the probabilities are identical for
each locus with similar inheritance (i.e. autosomal or sex-linked). The probabilities are
essentially properties of the genealogies.

Definition. The probability that the two distinct genes of an individual A (i.e. that
derived from the individual’s mother and that from the father) are identical by descent is
called the inbreeding coefficient, and is denoted by f(A).

Definition. The probability that a gene randomly selected from individual A and a
gene randomly selected from individual B are identical by descent is called the kinship
coefficient of A and B, and is denoted by K(AB).

It follows immediately that, for A = B, we have

K(AA) = 1

2
+ f(A). (23.1)

Definition. If individuals A and B are related in some specific way, REL say, then
we refer to their kinship coefficient as the kinship coefficient of the relationship REL and
write this as K(REL).

Note that if we say two individuals are related in some specific way then it is assumed
that the original ancestors of the individuals in the defining genealogy are unrelated.
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For example, for a pair of first cousins, which we denote by FC, who share two
grandparents, it is assumed that these two individuals are unrelated. We shall consider
the pair-wise relationships U = unrelated; S = siblings; FC = first cousins; UN = uncle –
niece; DFC = double first cousins. Additionally, we have the pair-wise relationship I of
an individual with himself.

A fundamental identity allows one to develop a calculus of kinship coefficients deriving
that for one relationship in terms of others. Suppose we have a pair of individuals A and
B, where B is not an ancestor of A, whose parents are P(A) (father of A), M(A) (mother of
A), and similarly P(B) and M(B). Then just using the rules of Mendel one can deduce that

K(AB) = K(AP(B))+K(AM(B))

2
. (23.2)

The restriction that B is not an ancestor of A is required in order to ensure that there is
only one route from the parents of A to individual B. A simple counterexample (see e.g.
Lange, 2002) is provided by the case of a three-generation sib mating scheme, where A
is in the third generation and B in the second. In order to use recursion in this case one
should use the parents of A (which of course include B) rather than the parents of B.

In a similar manner, provided B is not an ancestor of A, nor A of B,

K(AB) = K(P(A)P(B))+K(P(A)M(B))+K(M(A)P(B))+K(M(A)M(B))

4
. (23.3)

Hence, for example

K(S) = K(I)+K(U)

2

K(FC) = 3K(U)+K(S)

4

K(DFC) = K(U)+K(S)

2

K(UN) = K(U)+K(S)

2
. (23.4)

We may wish to consider coefficients of kinship for a set W of individuals Ii; i = 1, k,
who may not all be different. Then, provided I1 is not an ancestor of any of the other Iis,
we can write

K(W) = K(WM1)+K(WF1)
2

, (23.5)

where WM1 is formed from W by removing the first individual and replacing with his/her
mother, and WF1 similarly replacing with the father.

23.2.3 Identity States for Two Individuals

As pointed out earlier, the reason that the upward recursion of coefficients of kinship
breaks down is because it (potentially) ignores a route back to the earlier ancestors. This
problem, and many others, can be dealt with by using more complete specification of the
states of sets of individuals.

The simplest non-trivial example of the set of identity states occurs for two individuals.
We label the genes of the first individual as 1 and 2 and those of the second individual as 3
and 4. We then need to identify those genes that are identical by descent, which is done by
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considering the distinct partitions of the four genes into equivalence (by identity) classes.
There are 15 partitions (1234), (123, 4)∗(124, 3), (134, 2)∗(234,1), (12, 34), (13, 24)∗
(14, 23), (12, 3, 4), (13, 2, 4)∗(14, 2, 3)∗(23,1, 4)∗(24,1, 3), (34,1, 2), (1, 2, 3, 4), where
the ∗ indicates that the partitions are equivalent if we do not require to differentiate
between the genes within an individuals. Corresponding to each partition, there is what is
termed an identity state. Thus, the partition (12, 34) is written as state (1, 1, 2, 2) in the
obvious way. For ease of reference, we number the nine states obtained in the latter case as
per Table 23.1. Figure 23.5 shows the usual diagrammatic representation of those states.

Example. Suppose that two individuals (one male and one female) whose genes at a
particular locus have no identity by descent, i.e their identity state is (1, 2, 3, 4), have
two offspring. Now each offspring receives a gene from each parent so that in terms
of the identity of the genes by descent each will be one of (1, 3), (1, 4), (2, 3), (2, 4)
with probabilities 1/4, independently of the other. Collecting up and reducing to their
equivalent identity states, we have that with probabilities 1/4, 1/2 and 1/4 the states
will be (1, 2, 1, 2), (1, 2, 1, 3) or (1, 2, 3, 4) respectively. Note that the values in the final
states do not relate directly to those values in the parents’ states.

23.2.4 More Than Two Individuals

For multiple individuals, Cockerham (1971) generalised to higher-order identities on up
to four individuals, while Thompson (1974) used the methods of group theory to discuss
the case for arbitrary numbers of individuals, giving examples with up to five.

Table 23.1 Canonical expressions for identity
states.

Number State

1 (1,1,1,1)
2 (1,1,1,2)
3 (1,2,1,1)
4 (1,1,2,2)
5 (1,2,1,2)
6 (1,1,2,3)
7 (1,2,3,3)
8 (1,2,1,3)
9 (1,2,3,4)

1

6

5432

987

Figure 23.5 Diagram of the identity states of two individuals. The two left-most circles correspond
to the genes of the first individual.
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Perhaps the neatest treatment is that of Karigl (1981), who generalised the notion
of kinship to apply to arbitrary sets of individuals. Thus, suppose that we have sets
of individuals S1, S2 . . . Sk possibly overlapping. Then, define K(S1, S2, . . . , Sk) as the
probability that a set of genes taken independently one from each of the individuals of
set Si are identical by descent for every i. Note that

K(S1,S2, . . . ,Sk) = K(P1(S1),P2(S2), . . . ,Pk(Sk)), (23.6)

where Pi(Si ) is a permutation of Si , and also

K(S1, S2, . . . , Sk) = K
(

Sρ(1),Sρ(2), . . . ,Sρ(k)
)
, (23.7)

where (ρ(1), ρ(2), . . . , ρ(k)) is a permutation of {1, 2, . . . , k}.
Karigl gave the expressions for small numbers of individuals, up to four, which

we repeat here in our notation. We shall write K(AB,CD) for the case where k = 2,
S1 = {A,B} and S2 = {C,D}.

We have already defined K(AA) and K(AB), and given expressions in terms of the
parents of A, given A is not an ancestor of B.

We have, where A is not an ancestor of B, C or D,

K(ABC) = K(P(A)BC)+K(M(A)BC)
2

K(AAB) = K(AB)+K(M(A)P(A)B)
2

K(AAA) = 1+ 3K(M(A)P(A))
4

K(ABCD) = K(P(A)BCD)+K(M(A)BCD)
2

K(AABC) = K(ABC)+K(P(A)M(A)BC)
2

K(AAAB) = K(AB)+ 3K(P(A)M(A)B)
4

K(AAAA) = 1+ 7K(P(A)M(A))
8

K(AB,CD) = K(P(A)B,CD)+K(M(A)B,CD)
2

K(AA,BC) = K(P(A)M(A),BC)+ BC)
2

K(AB,AC) = 2K(ABC)+K(P(A)B,M(A)C)+K(M(A)B,F(A)C)
4

K(AA,AB) = K(AB)+K(P(A)M(A)B)
2

K(AA,AA) = 1+ 3K(P(A)M(A))
4

. (23.8)
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In fact, it is relatively easy to express a general recurrence relationship for any
K(S1,S2, . . . ,Sk). Supposing that A is not an ancestor of any other individual under
consideration, and Si = Ari ∪ Ti , where Ti contains no As. Then

K(S1,S2, . . . ,Sk) =
1

2R
∑
j

k∏
l=1

K(mjl f rl−jlTl), (23.9)

R being the total number of As, and j = (j1, j2, . . . jk), 1 ≤ ji ≤ ri For neatness of
expression, M(A) has been replaced by m, and P(A) by f . We then replace each
expression mjif ri−ji by m if ji = r1 = 1, by mm if ji = ri > 1, by f if ji = 0, ri = 1,
by ff if ji = 0, ri > 1 and every other expression by mf . We then collect up within each
expression for K() all the terms that have a single m and merge the corresponding Tis.
Similar procedure is adopted for terms with mm, f , ff and fm. Finally, we replace all
the mm and ff terms by A, and collect up; note that this last step does not imply that
a term with mm is equal to one with A, but rather that the two terms with mm and ff
together equal 2 times one with A.

As an example, consider

16×K(AAB,AAC) = K(mmB,mmC)+ 2K(mmB,mfC)+K(mmB, ffC)

+ 2K(mfB,mmC)+ 4K(mfB,mfC)+ 2K(mfB, ffC)

+K(ffB,mmC)+ 2K(ffB,mfC)+K(ffB, ffC), (23.10)

leading to

K(AAB,AAC) = K(AB,AC)+K(AB,mfC)+K(mfB,AC)+K(mfB,mfC)
4

.

(23.11)
Karigl (1981) gives expressions for the nine coefficients of identity in terms of the

above. The main benefit of the extended coefficients is that they readily allow the
recursive derivation of the coefficients of kinship for individuals on a genealogy. Note
that each K-coefficient is expressed in terms of K-coefficients with at most the same
number of entries. This therefore allows the use of these to calculate the coefficients
given above recursively each time taking A as the most recent individual, thus ensuring
that the condition on ancestry is met. Working up through the genealogy finally gives us
expressions involving the founders, which will have known values. Karigl (1981) gives a
more substantial example for a pedigree of 19 individuals with several loops, and made
available programmes to carry out the calculations.

23.2.5 Example: Two Siblings Given Parental States

One often needs to calculate the probabilities of the identity states of a pair of
siblings, particularly as part of genetic counselling when the first sibling has some
particular genetic disorder and the second is a future offspring about whom one
wishes to make a probability statement regarding his/her genetic state. All the infor-
mation is captured in the probabilities of the gene identity states. We could use
Karigl’s expressions or proceed directly. Suppose that the parental pair have proba-
bilities � = (π1, π2, π3, π4, π5, π6, π7, π8, π9), where πi is the probability of the ith
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state. Then, if a pair of offspring have probabilities �∗, we can write �∗ = A�
where

A =



1 1/4 1/4 0 1/8 0 0 1/16 0
0 1/4 1/4 0 1/4 0 0 1/8 0
0 1/4 1/4 0 1/4 0 0 1/8 0
0 0 0 0 1/8 0 0 0 0
0 1/4 1/4 1 1/4 1/2 1/2 3/16 1/4
0 0 0 0 0 0 0 1/16 0
0 0 0 0 0 0 0 1/16 0
0 0 0 0 0 1/2 1/2 3/8 1/2
0 0 0 0 0 0 0 0 1/4


, (23.12)

the columns of A adding to unity, the ninth column corresponding to the example
above.

In passing, observe that the matrix above is of upper block diagonal form with block
sizes 1, 4, 3 and 1, which correspond to the number of distinct identity states with 1, 2, 3
and 4 distinct genes (by descent). Clearly the process of reproduction can only maintain
or reduce the number of distinct genes.

The above matrix can be used as the transition matrix of the Markov chain corre-
sponding to the process of repeated sib mating, see Figure 23.9 (though with columns
adding to unity rather than the more usual rows), which is a scheme sometimes used
in plant and animal breeding. It is possible in this case, and in more complex exam-
ples, to calculate π through time via the eigenvectors and eigenvalues. Fisher (1949)
discusses this case in considerable detail, taking the seven identity states, which are
relevant when there is no need to differentiate between states 2 and 3, or between
6 and 7. It is then straightforward to calculate the seven eigenvalues 1, 1/4, (1±√

5)/4, 1/2,−1/8, 1/4) corresponding to the blocks and to express exactly the value
of π . The dominant eigenvalue is (1+√5)/4 and indicates the rate of approach to
homozygosity.

Consideration of two loci has been addressed by Cockerham and Weir (1968), Weir
and Cockerham (1969) and Dennison (1975) among others, and for two and three loci
by Thompson (1988). These in the main do not add much to our understanding of the
graphical aspects of the genealogies, adding to the complexity but not the conceptual
framework, and so are not discussed further here.

23.3 THE IDENTITY PROCESS ALONG A CHROMOSOME

23.3.1 Theory of Junctions

In reality, it is chromosomes that are passed from parent to offspring through the
genealogy, so ideally we wish to examine the nature of the identity by descent process
along the chromosomes of individuals. This was treated by Fisher (1949) through his
theory of junctions, which we discuss in more detail below. This has become more
relevant as density of information on the human, and other species, genomes has increased
dramatically. Given a set of n individuals, there are 2n copies of each chromosome, so the
identity state for some particular locus is specified in the obvious way described above.
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The description of the identity state of the chromosome as a whole is then given by
specifying the identity state at each point along the chromosome; i.e. by specifying a set
of intervals within each of which there is some specific identity state. The description
of the probabilities associated with the possible realisations is through a random process
along the chromosome. This is a continuous time Markov chain (time here denoting
distance along the chromosome from one end), with the states corresponding to the identity
states.

In Fisher’s theory of junctions, a junction is a point on a chromosome at which, due to
a recombination event, the genetic material on the two sides of the junction has descended
by different routes from the ancestors. If the ancestral origin of these two tracts is different,
then the junction is termed external, and if it is the same, then the junction is termed
internal. The occurrence of junctions is assumed to be driven by a Poisson process at each
segregation, and thus overall by a Poisson process. Whenever a junction occurs, it can
then be treated like a mutation and its persistence or loss is governed by the appropriate
process for that single locus.

Fisher (1949; 1954; 1959), Bennett (1953) and Gale (1964) investigated the expected
number of distinct chromosomal regions (i.e. each separated by a recombination) for a
variety of systems of inbreeding: repeated selfing, repeated sib mating, repeated parent –
offspring mating and others. Various authors, such as Franklin (1977), Guo (1995), have
considered the proportion of the genome which is homozygous by descent in inbred
individuals.

23.3.2 Random Walks

In practice, it is usually necessary to concentrate on genealogies of some specific, and
relatively simple, structure in order to make much progress. For example, Donnelly (1983)
demonstrated that for a pair of first cousins the identity state process along a chromosome
was isomorphic to a random walk on the vertices of a three-cube. The transition rates being
twice the recombination rate (assuming these to be identical in males and females), six
of the vertices corresponding to identity states with zero identity, and two, neighbouring,
vertices corresponding to having identity state (1, 2, 1, 3).

Cannings (2003) discusses a general method of deriving the transitions matrix for
the continuous time (position along the chromosome) process over the set of identity
states. Given the transition matrix for some set of chromosomes at generation n, one can
derive that for some new set derived in some specified (Mendelian) manner from these
incorporating both the segregation and the recombination process. One can then use the
transition matrix to deduce, or estimate numerically, any required variable associated with
that particular set of chromosomes.

23.3.3 Other Methods

Bickeboller and Thompson (1996a; 1996b) provided approximations for an arbitrary
number of half-sibs, using the Poisson clumping heuristic. Stefanov (2000; 2002; 2004)
has provided exact methods for a variety of relationships (grandparent, full- and half-sibs
and great grandparental) and Stefanov and Ball (2005) have refined the method in the
context of half-sibs.
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23.4 STATE SPACE ENUMERATION

23.4.1 Applying the Peeling Method

We now proceed to an enumeration problem on genealogies. We suppose that each
individual in the genealogy is to be labelled with a genotype and we then enumerate
the number of possible such labellings subject to Mendel’s first law.

Camp et al. (1994) demonstrated how one can use the peeling algorithm to count
the number of assignments of genotypes to an arbitrary genealogy that are consistent
with Mendel’s first law. The rates of growth can be illustrated most clearly in regular
mating patterns. At the stage of the peeling algorithm that incorporates the information
at a particular nuclear family, the other sections of the pedigree are said to be below
if connected to the marriage through an offspring and above if connected by a parent.
For zero-loop pedigrees, these sections are disjoint, although they are not in general.
We introduce two functions on these parts, essentially the R-functions of Cannings et al.
(1978),

NUX (i) = number of possible states in genealogy and above X where X has genotype i
(23.13)

and

NLX(i) = number of possible states in genealogy below X given X has genotype i.
(23.14)

Consider the nuclear family shown in Figure 23.6, where it is assumed that there are
further individuals joined at A, B, C and D who are not shown. Then, supposing that there

A B

C ED

Above B

Above A

Below E

Below D

Below C

Figure 23.6 The sections of a pedigree above and below a marriage node and attached individuals.
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are only two alleles a and b, and indexing the genotypes aa = 1, ab = 2 and bb = 2,
then we can write

NLA(1) = NUB (1)NLC (1)NLD(1)NLE(1)
+NUB (2)NLC (1, 2)NLD(1, 2)NLE(1, 2)
+NUB (3)NLC (2)NLD(2)NLE (2), (23.15)

where
NVI (S) = �k∈SN

V
I (k). (23.16)

This is easily seen! For example, A has genotype 1 and B has genotype 2, i.e. the mating
is aa x ab each of the offspring is either aa or ab. Similarly

NLA(2) = NUB (1)NLC (1, 2)NLD(1, 2)NLE(1, 2)
+NUB (2)NLC (1, 2, 3)NLD(1, 2, 3)NLE(1, 2, 3)
+NUB (3)NLC (2, 3)NLD(2, 3)NLE(2, 3), (23.17)

and NLA(3) is obtained from NLA(1) by replacing 1 by 3 everywhere.
We also have

NUC (1) = NUA (1)NUB (1)NLD(1)NLE(1)+NUA (1)NUB (2)NLD(1, 2)NLE(1, 2)
+NUA (2)NUB (1)NLD(1, 2)NLE(1, 2)+NUA (2)NUB (2)NLD(1, 2, 3)NLE(1, 2, 3)

(23.18)
and

NUC (2) = NUA (1)NUB (2)NLD(1, 2)NLE(1, 2)+NUA (2)NUB (1)NLD(1, 2)NLE(1, 2)
+NUA (2)NUB (2)NLD(1, 2, 3)NLE(1, 2, 3)+NUA (1)NUB (3)NLD(2)NLE(2)
+NUA (3)NUB (1)NLD(2)NLE(2). (23.19)

Using expressions of the above form, we can easily peel through any genealogy until
one has all the information, on the number of possibilities, concentrated on one of the
individuals. This then yields the total required.

23.4.2 Recursions

In order to understand the relationship between the shape of a genealogy and the number
of possible genotype assignments, we examine some regular genealogies. These are made
by adding successive nuclear families in a prescribed manner.

Our first example is illustrated in Figure 23.7, where nuclear families with two offspring
are joined as shown (it is assumed that there is nothing attached to the Bs and Cs). Now,
we write NtA = (NLAt (1), NLAt (2)) (there is no need to keep track of NLAt (3) separately
since it equals NLAt (1). Collecting up the necessary terms, we easily obtain

Nt+1
A = MNtA, (23.20)
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C4

B4

C3

B3

B2

B1

C1

C2

A4 = D5

A3 = D4

A2 = D3

A1 = D2

A0 = D1

Figure 23.7 A descending line of regular nuclear families.

where

M =
[

3 3
10 7

]
. (23.21)

Thus, the dominant eigenvalue is λ = 5+√(34) ≈ 10.83, so the number of assign-
ments grows approximately at rate 2.21 per individual.

Our second example is illustrated in Figure 23.8 and leads to

Nt+1
A = MNtA, (23.22)

where

M =
[

2 4
8 9

]
(23.23)

with a dominant eigenvalue of λ = (11+√(177))/2 ≈ 12.15 giving a growth rate of
2.30 per individual.

Camp et al. (1999) prove that the rate 2.30 per individual is the maximum possible
among genealogies constructed by adding a new nuclear family with two offspring at
each stage, no matter how these are joined on. This information could be of importance
in the context of making calculations on a genealogy by, for example MCMC, where
knowledge of the size of the sample space could be useful.

D1 D3D2 D4C4C3C2C1

A1 = B0 A2 = B1 A3 = B2 A4 = B3 A5 = B4

Figure 23.8 A marriage chain.
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23.4.3 More Complex Linear Systems

Figure 23.9 shows a repeated sib mating system sometimes used in animal genetics. Here,
we link our basic nuclear unit to the existing genealogy at two individuals, as shown,
and because the system is growing linearly the recursion is also linear. Here, we switch
to the case where there is an arbitrary number, l, of alleles. We work with the seven
permutationally distinct states for a pair of unordered sibs

(11, 11), (11, 12), (11, 22), (12, 12), (12, 13), (11, 23), (12, 34) (23.24)

(the identity states), noting that these represent respectively

l, 4lC2, 2lC2,l C2, 6lC3, 6lC3, 6lC4, (23.25)

underlying states.
Now, we can again write

Nt+1
S = MNtS, (23.26)

A0 B0

A1 B1

B2A2

B3A3

Figure 23.9 Repeated sib mating.
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where

M =



1 2(l − 1) 0 (l − 1) 2(l−1)C2 0 0
0 2 0 1 2(l − 2) 0 0
0 0 0 1 0 0 0
0 4 2 1 6(l − 1) 4(l − 2) 4(l−2)C2
0 0 0 0 6 2 2(l − 3)
0 0 0 0 2 0 0
0 0 0 0 0 0 4


. (23.27)

Note that the matrix is block diagonal, essentially since one can only move from a state
with the same or fewer distinct elements. Further, the eigenvalues of M are independent of
l. For l = 2, the dominant eigenvalue λ ≈ 3.7785 and for l ≥ 3 λ ≈ 6.60. Thus, since two
individuals are added at each stage the respective rates are≈ 1.944 and 2.569 respectively.

23.4.4 A Non-linear System

As discussed briefly earlier the addition of units in such a way that the number of
individuals increases linearly leads to a linear equation for the number of configurations.
Figure 23.10 shows a simple non-linear case. The basic unit is a mating with a single
offspring A. At each stage, each of the founder members (those who have no parents)
are replaced by one of the basic units. The recursive equations here have a bilinear form,
rather than linear, so the methods as above are not applicable. Application of the theory
of sub-multiplicative sequences, however, gives a rate of growth (for a system with two
alleles) of 1.89.

23.5 MARRIAGE NODE GRAPHS

23.5.1 Drawing Marriage Node Graphs

Since, as mentioned earlier, marriage node graphs are a good format for producing
drawings of pedigrees, it is worth considering methods for positioning the vertices on
a page so as to produce a clear visualisation. Several approaches have been used, for

A0

B0 = A1

B1 = A3 C1 = A4 B2 = A5 C2 = A6

C0 = A2

Figure 23.10 A pedigree growing in a non-linear fashion.
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instance, Thomas (1994) described using simulated annealing to position vertices on
a lattice so as to minimise the total line length, or the amount of ink on a page. A
class of methods that works well for general graphs is that of force-directed methods. In
these schemes, a quantity representing forces acting between vertices is calculated and
minimised, usually using the Newton–Raphson iteration. For example, Fruchterman and
Reingold (1991) minimise the quantity

n∑
i=1

∑
j∼i
d2
i,j + α

n∑
i=1

∑
j �=i

1

di,j
, (23.28)

where di,j is the absolute value of the distance in the plane between the ith and j th
vertices. The first sum is over connected pairs and represents an attractive force between
adjacent vertices. The second sum is a repulsive force pushing apart all pairs.

An attractive feature of this approach is that it lends itself very well to animated graphics
with which we can see the vertices move to their optimal positions, and with a few mouse
clicks and drags even intervene in the process. Seeing how vertices move from an arbitrary
starting point to their final positions is often as informative as the static final picture itself.
The first term of 23.28 requires O(e) time to compute, where e is the number of edges,
and since pedigrees are relatively sparse graphs this is a quick calculation. However, the
second term requires O(n2) time. This can be greatly improved by ignoring the small
repulsions between distant vertices so that the function to minimise becomes

n∑
i=1

∑
j∼i
d2
i,j + α

n∑
i=1

∑
j �=i:|di,j<γ |

1

di,j
, (23.29)

since we can sort vertices into bins depending on their current position and only look for
near neighbours in adjacent bins. Since the vertices near any particular vertex tend to be
those connected to it, the whole of 23.29 can be computed in time approaching O(e),
greatly speeding up calculations. Unfortunately now, the Newton–Raphson scheme does
not converge, but oscillates between solutions as the distances between some vertices
fluctuate around γ . While this is not a problem when trying to produce a static picture,
it leads to an unpleasant flickering effect in animated graphics. We can overcome this by
replacing the repulsion term with a function that goes to zero smoothly, i.e. with zero
derivative, at a finite value γ . The following modified target function achieves this

n∑
i=1

∑
j∼i
d2
i,j + α

n∑
i=1

∑
j �=i:|di,j<γ |

(γ − di,j )2
di,j

. (23.30)

While the above works well for general graphs, for pedigrees and other directed acyclic
graphs, it is nice to have ancestors shown above their descendants. Adding extra terms
penalizing the difference between the vertical distance connecting two adjacent vertices
and an ideal value θ achieves this, giving the final target function:

n∑
i=1

∑
j∼i
d2
i,j + α

n∑
i=1

∑
j �=i:|di,j<γ |

(γ − di,j )2
di,j

+ β
∑

i

∑
j :j�i

(yi − yj − θ)2 +
∑
i

∑
j :i�j

(yi − yj + θ)2
 , (23.31)
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where i � j indicates a directed edge from i to j . Something similar can also be
achieved by giving each vertex a generation number and fixing the vertical coordinate
accordingly. However, for looped pedigrees, this is not a well-defined value as multiple
paths connecting an ancestor to an inbred descendant may be of different lengths.
Moreover, the repulsive force does not allow vertices fixed on the same horizontal line
to cross as it becomes infinite if two vertices coincide exactly.

An animated programme for drawing pedigrees, and also one for general graphs, are
available at Alun Thomas’s Internet site. These allow the user to interactively change
the γ , β and θ parameters and to move and fix specific vertices using mouse controls.
A screen shot of the programme is given in Figure 23.11. The pedigree shown is that
of the population of Tristan da Cunha as collected in 1962 (Roberts, 1971). Although
this contains only 273 people, the multiple, complex relationships between them make it
challenging for any pedigree drawing method.

23.5.2 Zero-loop Pedigrees

A zero-loop pedigree is one in which there are no loops caused by inbreeding, multiple
mating or relative exchange in marriage and corresponds to the case when the marriage

Figure 23.11 A screen shot of the graphical user interface for the ViewPed programme showing
a marriage node graph of the pedigree of Tristan da Cunha collected in the 1960s.
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node graph is a tree or a collection of unconnected trees: a forest. In genetic studies
that focus on relatively small pedigrees involving perhaps three or four generations of
individuals ascertained from a large, out-bred population, zero-loop pedigrees are the
norm. In many cases, when looped pedigrees are found they are either discarded or the
loops are avoided because the additional computational complexity that they introduce
makes it difficult or impossible to analyse the pedigree. Zero-loop pedigrees are, therefore,
of particular interest in genetics.

As discussed below and elsewhere in this book (see Chapter 24), probability calcu-
lations on pedigrees were the first applications of what became graphical modelling
methods. An interesting and non-standard application of graphical modelling can answer
the question: How many ways can the same tree structure be interpreted as a marriage
node graph?. While this may seem an odd question, enumeration is intimately tied up
with simulation and the answer will give us an efficient way to simulate zero-loop
pedigrees.

Given a specific tree, we can assign vertices roles as either individuals or marriages
in only two ways: starting with any vertex designate it an individual, its neighbours as
marriages, their neighbours as individuals and so on. To make the other assignment,
simply change each vertex’s role. Thus, by dealing with each possibility in turn we can
assume that we have the structure of the tree and know which vertices are individuals
and which are marriages and all that remains is to count in how many ways we can
assign individuals as parents or offspring of the marriages. In effect, we have to count
the number of ways in which we can assign direction to the edges while following
the rules that allow us to interpret the graph as a marriage node graph, which are as
follows:

• A marriage node is included only if both parents are specified and there is at least one
offspring from the marriage. This is equivalent to insisting that the first element of a
triplet is non-null, and that either both or neither of the second and third elements are
null.

• An individual must be listed as descended from no more than one marriage node.
Individuals whose parents’ marriage is not listed are the founders of the pedigree.

For any edge (i, j), let yi,j be 1 if it connects an individual down to its own
marriage and 0 if it connects it to its parents’ marriage, and for each vertex i let
Ci = {yk,j : k = i or j = i}, i.e. the set of direction indicators for the edges that are
incident to vertex i. Letting I [. . .] be an indicator function taking the value 1 when
the condition inside the braces is true and 0 when it is false, an allocation of directions
y = {yi,j } makes a proper marriage node graph if and only if

∏
individual i

I

∑
y∈Ci
(1− y) ≤ 1

 ∏
marriage j

I

∑
y∈Cj

y = 2

 I
∑
y∈Cj

(1− y) ≥ 1

 = 1.

(23.32)
This product defines a Markov graph on the indicator variables and so it can be

manipulated using the usual forward – backward methods of graphical modelling. For
example, the forward collect evidence step computes the total number of allocations of y
that result in a valid marriage node graph. If we follow this with a backward simulation
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(c,6)

(a,6)

(c,5)

(c,10) (c,11)

(a,1) (a,2) (b,3) (b,4)

(b,9)

(d,9)

(d,13)

(a,8)

(a,7) (d,8)

(e,12)

(e,15) (e,16)

(e,13)

(f,17) (f,18)

 (f,14)(f,13)

Figure 23.12 The Markov graph for the direction indicators for the edges of the tree structure of
the marriage node graph shown in Figure 23.1. The numbers and letters correspond to the individual
and marriage vertices of the marriage node graph. Each edge is represented by a letter – number
pair reflecting the bipartite structure of the original tree.

step (Dawid, 1992), we sample one of these allocations from a distribution that gives
equal probability to each possible allocation.

Figure 23.12 shows the Markov graph for the edge direction indicators corresponding
to the tree structure of the marriage node graph in Figure 23.1. You might observe that this
graph is triangulated, i.e. it contains no cycles of length 4 or more that are un-chorded.
Triangulated graphs are amenable to graphical modelling methods, and non-triangulated
graphs first have to be made triangulated by inserting additional edges. This triangulation
process consists of adding sufficient new edges – fill-ins – across loops to break them up
into three-cycles. In order to minimise the computations needed to deal with the graphical
model, we would like to find the triangulation that makes the largest clique in the graph
as small as possible. This is, however, in the general case a significant problem which
Markov graphs that are already triangulated avoid.

That the graph in Figure 23.12 is triangulated is not an accident, but is due to the way in
which it was constructed. It is a defining property of triangulated graphs that they can be
represented as the intersection graph of a family of subtrees of a tree (Golumbic, 1980).
That is, each vertex of the triangulated graph corresponds to a contiguous subtree of
some tree and vertices are connected if and only if the corresponding subtrees intersect.
In this case, the subtrees simply comprise the edges of the original tree including the
vertices at each end, so that they intersect only when edges have a common end point. The
consequence of this is that we can read off the computational requirements for performing
the graphical modelling operations described above without having to first triangulate the
graph. In particular, we know that the largest clique in the graph will be equal in size to
the highest degree of any vertex in the original tree, and so the computational time and
storage needed for enumeration and simulation grows as 2maxi |Ci |.

Prüfer’s constructive bijection (Prüfer, 1918) from the set of trees of size n onto a
set of nn−2 vectors (x1, . . . xn−2), where xi ∈ {1, 2, . . . n} can be used to generate trees
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uniformly at random. Thomas and Cannings (2004) modified this slightly to generate
random trees with n individuals and m marriages such that each marriage node has a
degree of at least 3, as required for the above conditions. This also allows controlling
the numbers of offspring per marriage and marriage per individual according to specific
distributions.

23.6 MORAL GRAPHS

23.6.1 Significance for Computation

While a moral graph for a genealogy can be defined without reference to genetic variables,
it is also the Markov graph corresponding to the joint distribution of genotypes at a genetic
locus for all the individuals in a pedigree. These probabilities are functions of the way
that genes arrive at the top of the pedigree, the way they are passed from generation
to generation and the way they are expressed as phenotypes of observed individuals. If
g = {g1, . . . gn} are the genotypes of pedigree members, and x = {x1, . . . xn} is the set of
observed phenotypes

P(x|g) =
∏
i∈F
π(gi)

∏
i∈F̄
τ (gi |gfi , gmi )

n∏
i=1

ρ(xi |gi), (23.33)

where F are the founders of the pedigree and π(gi) is the frequency of genotype gi in
the population from which the founder is drawn, τ(gi |gfi , gmi ) encodes the probabilities
for transmission of genes from parents fi and mi to offspring i and ρ(xi |gi) is the
probability of the individual’s phenotype given the individual’s genotype, usually called
the penetrance function, Each of the three products in this equation assumes conditional
independences. The first assumes that founders are independently sampled from some
population. The factorisation of the overall transmission probability into the second
product is a consequence of the offspring conditionally independent given genotypes of
parents, or OCIGGOP property (Thompson, 1986) for Mendelian inheritance. The third
product assumes that the phenotype is expressed independent of any shared non-genetic
factors. The only terms involving multiple genotypes are in the second product and the
factors involve the triplets specifying the pedigree. Hence, the moralised graph for the
Bayesian network that 23.33 defines is the same as that we have already defined for
the pedigree. Probabilities can be calculated on genealogies using standard graphical
modelling techniques, although it should be noted that much of this methodology was
commonplace in genetics due to the work of Elston and Stewart (1971) and Cannings
et al. (1978) well in advance of general applications of graphical modelling (Lauritzen
and Spiegelhalter, 1988).

The structure of the moral graph is vital in organizing computations efficiently. As
Figures 23.13 and 23.14 shows, moral graphs are not necessarily triangulated graphs
and, in general, it is a significant problem to find a triangulation of the moral graph
with a sufficiently small maximum clique size to make computations feasible, although
simulated annealing and heuristic searches such as the greedy algorithm have proved to
be effective for this (Thomas, 1986). However, the moral graph is not a general graph
and has substantial structure.
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Figure 23.13 A marriage node graph with loops.

23.6.2 Derivation from Marriage Node Graphs

Clearly, starting with a marriage node graph, we can read off the offspring – parent
triplets and hence construct the corresponding moral graph. The converse of this is not
true since the moral graph is undirected so that different pedigrees can have the same
moral graph. However, it is also possible to define the moral graph directly from the
marriage node graph as an intersection graph of subtrees as follows. For each individual,
define a subtree consisting of his/her vertex, the edge up to but not including their parents’
marriage vertex, the edges down to and including each of their own marriages and finally
a portion, say a half, of the edge down from each of their own marriages to each of their
offspring. This is illustrated in Figure 23.15.

The subtree for any individual intersects with the subtree for a spouse at their marriage
node and the upper portion of the edges down from it. Parent and offspring subtrees
intersect on the upper portion of the edge down from the connecting marriage node.
There are no other ways for subtrees to intersect; hence, the intersection graph is the
moral graph.

An immediate consequence of this is that when a pedigree is zero-loop the marriage
node graph is a tree and so, from the characterisation of triangulated graphs used above,
the moral graph must be triangulated. Thus, for the zero-loop pedigrees used in most
genetic studies, no search for an optimal triangulation is necessary. For all but trivial
pedigrees, we know that the graph contains a cliques of three vertices corresponding to
the offspring – parent triplet cliques. If we can show that there are no larger cliques,
then from standard graphical modelling methods we know that the resources required to
compute probabilities on a zero-loop pedigree will be, at worst, proportional to tk3, where
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Figure 23.14 The moral graph corresponding to the looped pedigree shown in Figure 23.13. The
dotted lines are fill-ins needed to make the graph triangulated.

t is the number of triplets and k is the number of possible genotypes. We can do this
using a colouring argument since, for any graph, we know that the size of the largest
clique must be no larger than the smallest number of colours that are needed to colour
each vertex so that no two adjacent vertices have the same colour (Golumbic, 1980). In
fact, it is a property of triangulated graphs that their largest clique size and the smallest
possible colouring number must always be equal.

This can be achieved directly from the intersection graph. Starting with an arbitrary
marriage node, colour the offspring subtrees all colour 1 and the parent subtrees colours
2 and 3. Working away from the starting marriage node to adjacent ones in a recursive
fashion, because the marriage node graph is a tree, at each stage only one of the subtrees
adjacent to the marriage node is coloured. If this is an offspring subtree, colour the other
offspring subtrees the same colour and allocate the parents the two remaining colours in
some order. If it is a parent subtree, allocate the other parent one of the two remaining
colours and all offspring subtree the final colour. In this way, each subtree is coloured so
that any intersecting subtrees are of different colours. Hence, by giving the vertices of the
moral graph the same colour at its corresponding subtree, we can find a three colouring
of the graph. Therefore, we can conclude that probability computations on genetic loci in
zero-loop pedigrees require at worst tk3 resources. If fact, we can usually do better than
this and make computations using resources of order t4k2 since for any pair of parental
genotypes under simple Mendelian inheritance at most four genotypes are possible for
any offspring. This model precludes any probability of germ line mutation.
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Figure 23.15 A small marriage node graph showing the intersecting subtrees from which a moral
graph can be constructed. The colours of the subtrees in the marriage node graph correspond to the
individual vertices in the moral graph. Subtrees that intersect in the marriage node graph correspond
to connected vertices in the moral graph.

23.6.3 Four Colourability and Triangulation

While it seems obvious that moral graphs of zero-loop pedigrees should be three
colourable, it is perhaps surprising at first glance that the moral graph for any pedigree,
however large, complex or inbred, can be four coloured. However, this is also straight-
forward to show. To do this, first notice that if we make the sub graph of the moral graph
consisting of males and the edges between them, then this must be a forest, i.e. a tree
or collection of trees. Similarly, the sub graph of females and connecting edges must
also be a forest. In effect, we have constructed the ancestral graphs of Y-chromosomes
and mitochondria in females respectively. These forests can each be coloured in two
colours by taking each founder and giving it one colour, its offspring the second colour,
their offspring the first colour again and so on. Since the moral graph is the union of
these two forests and a set of edges connecting males to females, these two colourings
of the sub graphs can be combined to give a four colouring of the moral graph. That
four colours are also necessary in general is illustrated in Figure 23.16, which includes
a sib mating that results in a four-clique and which therefore requires four colours. It
should also be noted that genealogies are not necessarily planar so that this result is quite
separate from the classical four-colour theorem. As a counter example, consider three
males each mated with the same three females. The moral graph for this will contain the
complete bipartite graph on two sets of three vertices, which cannot be contained in a
planar graph.

The consequences of this general result are not as straightforward as in the case of
a zero-loop pedigree because a general moral graph needs to be triangulated by adding
fill-ins before the computational steps can be read from it. The addition of these fill-ins in
general requires connecting vertices of the same colour, thus destroying the colourability
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Figure 23.16 A four colouring of the moral graph shown in Figure 23.14. Any genealogy can be
four coloured using the same scheme.

and the constraint we have on the largest clique size. However, the colouring can help
with heuristic rules for preferring some fill-ins to others. For example, fill-ins connecting
males to females never destroy the colourability. Since any loop in the graph must contains
at least one individual of each sex, we can always fill it in so that the largest cycles in
the graph are four cycles. Unfortunately, except for some simple cases, this leaves an
optimisation problem on the same scale as the original.
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In this chapter, graphical models are introduced and used as a natural way to formulate and address
problems in genetics and related areas. Local computational algorithms on graphical models are
presented and their relationship with the traditional peeling algorithms discussed. The potential of
graphical model representations is explored and illustrated using examples in linkage and association
analysis, pedigree uncertainty, forensic identification, and causal inference from observational data.

24.1 INTRODUCTION

Graphs appear in a number of different contexts in genetics to convey information,
e.g. about population development and evolution, and relationships between genes and
individuals. This chapter focuses on the role of probabilistic graphical models (Lauritzen,
1996) within genetics, and in particular, on aspects of genetics which involve pedigree
analysis, i.e. the analysis of genetic information among related individuals.

Probabilistic graphical models have their origin in genetics, in path analysis (Wright,
1921; 1923; 1934), which explicitly studies the propagation of hereditary properties
through a family tree. They form a natural general framework to express and manipulate
a number of important aspects of statistical genetics, e.g. computational algorithms
such as ‘peeling’ (Elston and Stewart, 1971; Cannings et al., 1978; Lander and Green,
1987), but have applications beyond that; e.g. in forensic genetics where complex issues
of identification can be naturally expressed in terms of graphical models, in genetic
epidemiology where the notion of Mendelian instruments helps to identify causal effects
of genes, and in the study of regulatory networks, where graphs are naturally suited
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to represent information about the interaction of genes. The latter area is developing
particularly rapidly at the time of writing.

In this chapter, we describe basic elements of graphical models, especially Bayesian
networks and their use for representing genetic information in pedigrees. We give a
relatively detailed description of local computation algorithms in graphs and their use in
a number of contexts, in particular, forensic applications, quantitative trait locus (QTL) and
linkage analysis, and the handling of pedigree uncertainty. We outline basic elements of
causal inference in graphical models and Mendelian randomization, and finally touch upon
recent developments in using graphical models for genome-wide association studies and
for identifying regulatory networks and patterns of associations in gene expression data.

24.2 BAYESIAN NETWORKS AND OTHER GRAPHICAL MODELS

24.2.1 Graph Terminology

We shall consider a graph G = (V ,E) to consist of a finite set V of vertices or nodes
and a set E of edges or links representing relationships between the nodes. Edges can be
either directed with arrows indicating the direction of the link, or undirected. If there is
an undirected edge between a node a and a node b, we say that a and b are neighbours,
and we say that a is a parent of b and b is a child of a, if there is a directed edge from
a to b. In contrast with the biological interpretation of these terms, a node in a graph can
have more than two parents (e.g. node 7 in Figure 24.1).

A trail in a graph is defined to be a sequence of edges, each having a node in common
with both preceding and succeeding edges. A path is a trail with no edges violating the
direction of the trail. If all edges of the trail are undirected, the path is undirected, and
the path is directed if all edges are directed. If there is a path from node a to node b (i.e.
we can arrive at b by following arrows from a), we say that a is a (graph) ancestor of
b and b is a (graph) descendant of a. A trail beginning and ending with the same node
is a cycle or loop. If all the edges of a graph are directed, it is a directed graph, and if it
has no directed cycles, it is a directed acyclic graph or DAG. An example of a DAG is
displayed in Figure 24.1.

A graph is connected if there is a trail between any pair of nodes. A connected graph
with no cycles is a tree. In this paper, unless otherwise stated, it will be assumed that all
graphs are connected.

24.2.2 Conditional Independence

Graphical models (Lauritzen, 1996) exploit graphs to express assumptions of condi-
tional independence to simplify specification, modelling, and analysis of high dimensional

Figure 24.1 A directed acyclic graph. [Reproduced with
permission from Lauritzen, S. L. (2000). Causal inference from
graphical models. In Barndorff-Nielsen, O. E., Cox, D. R. and
Kluppelberg, C., editors, Complex Stochastic Systems, chapter
2, pages 63–107. Chapman & Hall.]

1

2 4

75

3 6
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problems (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Cowell et al., 1999). The condi-
tional independence assumptions essentially split the problem into smaller manageable
components.

Random variables X and Y are conditionally independent given the random variable
Z if the conditional distribution of X given Y and Z is the same as the conditional
distribution of X given Z alone, i.e.

L(X |Y,Z) = L(X |Z), (24.1)

and we then write X⊥⊥Y |Z. In other words, if X⊥⊥Y |Z, the value of Y cannot be
used to improve the prediction of X once Z is known.

Conditional independence can equivalently be expressed in terms of factorization of
the corresponding probability density or probability mass function as

X⊥⊥Y |Z ⇐%⇒ f (x, y, z)f (z) = f (x, z)f (y, z) (24.2)

⇐%⇒ ∃a, b : f (x, y, z) = a(x, z)b(y, z). (24.3)

24.2.3 Elements of Bayesian Networks

A Bayesian network is a DAG with node set V , where the nodes represent random
variables, X = (Xv)v∈V , having some joint probability distribution function of the form:

f (x) =
∏
v∈V
f (xv | xpa(v)), (24.4)

with pa(v) denoting the set of parent nodes of the node v and xA = (xv)v∈A for any
subset A ⊆ V . It then holds that any node, given the values at its parents, is conditionally
independent of all nodes which are not descendants. This is known as the directed local
Markov property. The local Markov property for the DAG in Figure 24.1 yields, e.g.
4⊥⊥{1, 3, 5, 6} | 2, 5⊥⊥{1, 4} | {2, 3}, and 3⊥⊥{2, 4} | 1.

Further independencies can be deduced from the global directed Markov property which
gives a complete description of independence relationships associated with a Bayesian
network. In fact, the factorization (24.4) is equivalent to either of the local or global
directed Markov properties; see (Section 3.2.2) Lauritzen (1996) for details. Note that
through (24.4), the joint distribution of a Bayesian network is completely specified from
the associated DAG and the conditional distributions of each node, given its parents.

24.2.4 Object-oriented Specification of Bayesian Networks

Bayesian networks involving pedigrees are composed of repeated structures each of
identical composition, making these amenable to object-oriented specification. An object-
oriented Bayesian network (OOBN) (Koller and Pfeffer, 1997) is based on a DAG as
above, but each node in the DAG can itself be an OOBN. Simple nodes inside an OOBN
can be internal, input, or output nodes. Directed links from an OOBN A to another
OOBN B identify output nodes of A with input nodes of B. Each OOBN is typically an
instance of a class of identical OOBNs, thus representing repeated patterns in an efficient
manner. In the next section, we shall show examples of such representations of pedigree
information. We refer to Dawid et al. (2007) for a detailed description of the use of
OOBNs in networks representing problems in forensic genetics.
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24.3 REPRESENTATION OF PEDIGREE INFORMATION

A pedigree is a group of individuals together with a full specification of all the
relationships between them (Thompson, 1986). Individuals without parents in the pedigree
are founders , are unrelated by definition, and can either be recent or belong to some
baseline ancestral generation of interest. Pedigree members with mutual offspring in the
pedigree are spouses and every spouse pairing is a marriage.

24.3.1 Graphs for Pedigrees

A standard diagrammatic representation of a pedigree is shown in Figure 24.2.
A pedigree can also be expressed as a directed graph (Lange and Elston, 1975),

the simplest of which is depicted in Figure 24.3(a), where the nodes denote pedigree
members, and the arcs connect individuals to their offsprings. A natural extension leads
to the marriage node graph of Figure 24.3(b) (Thomas, 1985) which has two kinds of
node, individual and marriage nodes, and two kinds of arc, connecting an individual to
his marriages and connecting a marriage to the offspring of that marriage, respectively
(Lange and Elston, 1975; Cannings et al., 1978). Directions on the arcs can be omitted
since direction is always down from parents to offspring via the relevant marriage node.
Consequently, since an individual cannot be his own biological ancestor or descendant,
pedigree graphs are always DAGs as there are no directed cycles. Undirected cycles
or loops can arise, however. These include inbreeding loops, marriage rings, exchange
loops, multiple marriage loops, and all kinds of interconnecting combinations of the
above (Cannings et al., 1978), where the presence of loops can depend on the partic-
ular graphical representation. For example, the loop 14− 10− 13− 9− 14 formed by
siblings 13 and 14 in the graph of Figure 24.3(a) does not feature in the marriage
node graph representation of Figure 24.3(b), but the marriage loop connecting individuals
6, 10, 14, 15, 12, 7, 11 remains.

1 2 3 4

5 7 8

12

1413

6

15

9 1110

Figure 24.2 A standard representation of a simple pedigree of 14 individuals. As is consistent with
common usage, females are represented by circles and males by squares. Individuals 1, 2, 3, and 4
are the baseline founders, while 5, 8, and 9 are recent founders who have married in. Individuals
11, 13, and 15 are finals in that they have no marriages.
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1 2 4
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6

15
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(a)

1 2 3 4

5 7

12

1413

6

9

15

10

8

11

(b)

Figure 24.3 The pedigree of Figure 24.2 drawn (a) with nodes representing individuals and
directed edges (arcs) connecting individuals to their offsprings and (b) as a marriage node graph
with edge directions omitted.

24.3.2 Pedigrees and Bayesian Networks

The heredity of a trait between individuals in a pedigree has a natural expression as a
Bayesian network with the graph nodes now representing random variables for which a
joint probability distribution satisfying the factorisation in (24.4) can be defined. There
are several ways of designing a Bayesian network for a pedigree and these various
representations have different properties.

24.3.2.1 Segregation Network

Using the pedigree of Figure 24.2 and a single-locus, discrete genetic trait as an example,
we begin with the most direct and complete representation–the segregation network
(Lauritzen and Sheehan, 2003).

For each individual i = 1, . . . ,m, there are two nodes representing the trait genes
inherited from his father and mother, respectively. The underlying random variables can
assume any of the a allelic types in the relevant genetic system. Following common usage
(Thompson, 2001), we will use 0 to label maternal inheritance and 1 for paternal inher-
itance. Thus the node labelled i1 is identified with the random variable Li1 assigning the
allelic type of the gene inherited by the individual i from his father. For each nonfounder,
arcs are directed from the two genes in the father to the paternal gene in the individual and
the individual’s maternal gene is likewise a (graph) child of the two genes in his mother.
An additional node representing the meiosis or segregation indicator (Thompson, 1994;
Sobel and Lange, 1996) is added as a parent to each nonfounder gene node. This is a
binary node assuming the values 1 and 0 according to whether the inherited gene is a copy
of the paternal or maternal gene in the corresponding parent. In this way, the allelic type
of each nonfounder gene is a deterministic function of its (graph) parents. Specifically,

Li1 = f (lp1
i
, lp0

i
, Spi ,i ) =

{
lp1
i

if Spi,i = 1
lp0
i

if Spi,i = 0, (24.5)
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Figure 24.4 The segregation network for the pedigree of Figure 24.2.

for the paternally inherited gene and

Li0 = f (lm1
i
, lm0

i
, Smi ,i) =

{
lm1

i
if Smi,i = 1

lm0
i

if Smi,i = 0, (24.6)

for the maternally inherited gene, where mi and pi are the labels of the mother and father
of the individual i, and Smi,i and Spi,i are binary random variables assigning indicators
for the segregations to i from the mother and father, respectively. The resulting graph is
shown in Figure 24.4.

The laws of inheritance are encoded by letting the segregation indicators be independent
with probabilities

P(Spi ,i = 1) = σ1, and P(Smi,i = 1) = σ0, (24.7)

where σ1 = σ0 = 1/2 if inheritance is Mendelian. The assumption of random union of
gametes, and hence Hardy–Weinberg proportions for founder genotypes, is implied as
the graph clearly indicates that founder genes are independent of each other and of the
segregation indicators.

The segregation network can be given a simple object-oriented specification using
a master network representing each individual in the pedigree as an OOBN, the class
founder representing founders of the pedigree, and schild representing children as in
Figure 24.5. Each instance of the founder class is itself an OOBN having nodes that
represent the allelic types of the founder, chosen at random from the population and
the associated genotype, since this may possibly be observed, see (a) in Figure 24.6.
The OOBNs of the class schild in Figure 24.6(b) represent the transmission of genetic
information from parent to child through yet another OOBN of the class meiosis
displayed in Figure 24.6(c), which directly describes the segregation of alleles from
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founder_9

founder_5 founder_8

founder_4founder_3founder_2

schild_6 schild_7

schild_10 schild_11 schild_12

schild_13 schild_14 schild_15

founder_1

Figure 24.5 The master OOBN for the pedigree of Figure 24.2. There are two OOBN classes:
founder and schild.

genotyp...

allele_2allele_1

mallelepallele

meiosis_2meiosis_1

genotyp...

allele (1) allele (2) allele (5) allele (3)

allele (4) allele (6)

fcoin

mg pg

cg

(a) (b) (c)

Figure 24.6 (a) The founder OOBN has two output nodes determined from the allele class, the
latter representing a random allele from the relevant population; (b) the class schild has parental
alleles as input nodes and represents the transmission of alleles to children via the class meiosis;
(c) the OOBN of class fcoin in the meiosis class represents the segregation indicator.

parent to child using the OOBN of the class fcoin as the segregation indicator. The
latter contains only a single output node with two equally probable values, but defining
it as a class object makes it simple to express that this is repeated throughout the
pedigree.
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Figure 24.7 (a) Allele network representation of the pedigree; (b) the corresponding modification
of the schild object to achild.

24.3.2.2 Allele Network

In some contexts, the full details of the segregation network may not be required. A
convenient reduction is provided by removing the segregation indicators and associated
arcs. Figure 24.7(a) shows the corresponding single-locus network for the pedigree of
Figure 24.2. The conditional probability distribution of the allelic type of the paternally
inherited gene given the (graph) parents, for example, are easily derived from (24.5),
(24.6), and (24.7) to be

P(Li1 = l | lp
i1
, lp

i0
) =

{
σ1 if l = lp

i1

1− σ1 if l = lp
i0

.

The maternally inherited gene is handled analogously. We call this the allele network
(Lauritzen and Sheehan, 2003), but note that it also features in Jensen (1997) and
Thompson and Heath (2000). In the object-oriented representation, the corresponding
reduction is made by replacing the OOBN schild with a simpler object, achild, which
represents the transmission of alleles probabilistically rather than using the explicit process
of meiosis, see Figure 24.7(b).

24.3.2.3 Genotype Network

The visually most parsimonious standard representation, although not necessarily the most
useful, is the genotype network and uses the graph of Figure 24.3(a) as the underlying
DAG with the nodes now representing the genotypes of the individuals rather than the
individuals themselves. This representation features in Heath (2003) and Spiegelhalter
(1990), is the ‘genotype representation’ of Jensen (1997), and is the ‘genotype network’
of Lauritzen and Sheehan (2003). We emphasize that the assumption of Mendelian
inheritance is necessary for this representation to be valid, see Lauritzen and Sheehan
(2003) for further details.
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24.3.2.4 Adding Phenotypic Information

Each of the above networks specifies the inheritance relationships without referring
to the observational situation in any given context. Although the genotypes may be
identifiable from the phenotypes in many cases, they are often not identifiable and only
partial information is available in some situations. To accommodate such data, an extra
node can be added for each individual for whom phenotypic information is available
and, depending on the purpose of the analysis (e.g. genetic counselling where a future
child might be of interest), possibly for some unobserved individuals as well. We let
Yi denote the variable associated with the phenotype of the individual i. In the allele
and segregation networks, the node carrying the phenotype Yi has the two alleles of the
individual i as parents, whereas in the genotype network, Yi has the genotype Gi as its
only parent. The conditional distribution of the phenotype Yi , given its (graph) parents,
is the penetrance distribution and may take the form of a deterministic relationship
(e.g. Yi = Gi) or a more complicated function. If the genotype is itself observable,
i.e. Yi = Gi , then we can omit this extra node in the genotype network. For the most
parsimonious representation (the genotype network), the local Markov property of the
network augmented with phenotypic information is ensured by the phenotype Yi of
any individual being conditionally independent of other variables in the network, given
the genotype Gi of that individual. There are some traits for which this conditional
independence assumption is clearly not reasonable. A woman’s risk of pre-eclampsia is
higher for a first pregnancy than a subsequent pregnancy, for example. Genetic imprinting,
by which paternal and maternal alleles have differential influence on the phenotype also
violates this assumption. In the latter case, one could simply define a network in terms
of ordered genotypes for which the Markov property would then hold. Alternatively, the
augmented allele and segregation networks both contain sufficiently detailed information
for the Markov property to hold for more complex genotype–phenotype relationships.

24.4 PEELING AND RELATED ALGORITHMS

Almost every problem associated with pedigree analysis or other complex genetic appli-
cations involves a difficult computation. This could be the computation of a likelihood,
the probability of an individual having a specific allele, genotype or haplotype, or some
other characteristic of the system under investigation. Superficially, such computations
seem too complex to be feasible at all and indeed many are not. However, there are a
number of related computational algorithms that exploit the local structure of the system.
These algorithms yield drastic reductions in the computational complexity. In genetic
applications, such computation is typically referred to as peeling (Elston and Stewart,
1971; Cannings et al., 1978; Lander and Green, 1987). See also Thompson (2001; 2000),
Heath (2003), and Lauritzen and Sheehan (2003) for further discussion.

The peeling algorithms are special cases, or variants, of general algorithms for so-
called local computation on graphs (Cowell et al., 1999). In this section, we describe and
explain a general algorithm and how it can be applied in this context. The algorithm can
be seen as having two phases. During the first phase, a suitable computational structure
is established. In the second phase, the computations themselves are executed. The first
phase is sometimes referred to as compilation, the latter as propagation.
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24.4.1 Compilation

The compilation process involves the collection of groups of variables into cliques so
that computations can be performed locally, i.e. only involving functions of sets of
variables belonging to the same clique. At the next stage, these cliques are organized
in a tree structure, the junction tree, which is used to coordinate the local computations
in a consistent way to yield the desired correct global result. Finally the numbers to be
used in the calculations are associated with the relevant location in the junction tree. The
various steps of the compilation process are described in further detail below.

24.4.1.1 From Bayesian Network to Undirected Graph

The local computation algorithms are based on undirected graphs. The first step, therefore,
is to transform the Bayesian network structure into an undirected graph. This is done
by removing the directions from the existing edges and adding further undirected edges
between all pairs of graph parents with a common (graph) child node. The latter process is
referred to as moralising the graph, i.e. by ‘marrying’ the (graph) parents. In the resulting
moral graph, all sets of the form {v} ∪ pa(v) are complete in the graph, meaning that
all pairs of elements are connected with edges. The factorization (24.4) can therefore be
written as

f (x) =
∏
v∈V
f (xv | xpa(v)) =

∏
C∈C
φC(xC), (24.8)

where C denotes the set of cliques of the moral graph, i.e. the maximal complete subsets
of nodes, and the functions φ are the potentials. To obtain this factorization, we just
collect factors f (xv | xpa(v)) with {v} ∪ pa(v) in the clique C, so that the potential φC is a
product of these factors. Since {v} ∪ pa(v) is complete in the moral graph, this can always
be done. Heath (2003) uses the term dependency graph for the moral graph.

Figure 24.8(a) shows a Bayesian allele network corresponding to a modification of
the pedigree in Figure 24.2, where the phenotypes of individuals 11 and 15 have been
explicitly represented. The corresponding moral graph is displayed in Figure 24.8(b).

24.4.1.2 Triangulation

Computational difficulties associated with pedigree analysis are related to the cycles of
the moral graph rather than to the loops of the pedigree graph. The next step of the
compilation process is addressing this problem through triangulation of the graph by
adding fill-in edges to the moral graph until all cycles involving more than three nodes
have chords. When this has been done, and only then, the cliques of the resulting graph
can be arranged in a junction tree, see details below.

A triangulation of the graph in Figure 24.8(b) is displayed in Figure 24.9, where six fill-
in edges have been added. Such a triangulation is most often found by using an ordering
for node elimination; when a node is eliminated, fill-in edges are added between any
pairs of the node’s neighbours, which are not already connected by an edge. The node
is then removed together with all its neighbours. The notion of an elimination ordering
is identical to what is known as a peeling sequence, and the term peeling refers to the
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Figure 24.8 (a) Bayesian allele network with phenotypic information on two individuals and (b)
its associated moral graph.
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Figure 24.9 A triangulated graph for the Bayesian allele network of Figure 24.8 with phenotypic
information represented for two individuals. The numbers 1, . . . , 32 indicate the corresponding
node-elimination ordering.

elimination process, where one node is ‘peeled off’ at a time. The factorization (24.8)
clearly implies a similar factorization

f (x) =
∏
C∈C
φC(xC), (24.9)

where C now denotes the set of cliques in the triangulated graph, since cliques in the
moral graph are complete in any graph with more edges.

Figure 24.9 also displays the elimination order used to produce the given triangulation.
A triangulation is not unique and the goal is to generate cliques (maximal sets of pairwise
connected nodes) which are as small as possible. Optimizing this step is known to be
NP (nondeterministic polynomial) complete (Yannakakis, 1981), but Jensen (2002) has
implemented an algorithm which, in most cases, runs at reasonable computational speed
and is guaranteed to return an optimal triangulation. This is based on the work of (Shoiket
and Geiger, 1997; Berry et al., 2000; Bouchitté and Todinca, 2001).

The triangulation step is crucial, as this determines the computational complexity, and
thus whether exact computations are at all feasible or whether approximate methods such
as Markov chain Monte Carlo (MCMC) will be required.

24.4.1.3 Constructing the Junction Tree

Once the graph has been triangulated, the cliques can easily be identified and connected in
what is known as a junction tree. This is a tree having the set C of cliques of a triangulated
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graph as nodes, and satisfying the further property that

C ∩D ⊆ E for all C,D,E ∈ C with E between C and D, (24.10)

where E is between C and D if it lies on the unique path from C to D. A junction tree
for the triangulated graph in Figure 24.9 is displayed in Figure 24.10.

24.4.1.4 Loading the Junction Tree

The next step is to identify the potentials φC in the factorization (24.9). This is done by
collecting factors of the form f (xv | xpa(v)) in (24.8) into cliques which contain both v
and pa(v). For each node v, at least one such clique exists and we choose one of them,
say C, and assign the node v to C. If V (C) denotes the set of nodes which are assigned
to C, we let φC(xC) ≡ 1 for V (C) = ∅, otherwise,

φC(xC) =
∏

v∈V (C)
f (xv | xpa(v)),
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Figure 24.10 Junction tree for the triangulation of the Bayesian allele network shown in
Figure 24.9.
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whereby (24.9) is clearly satisfied with the joint distribution expressible as a product of
potentials over the cliques. This concludes the general part of the compilation process.

24.4.1.5 Incorporating Observations

The compilation process described above has not yet taken account of the data available
for the analysis in question. The representation (24.9) gives the joint probability of an
arbitrary configuration of variables in the network. However, we want the probability of
configurations which are consistent with the observations. This can be obtained if, for all
v where Xv = x∗v is observed, we find a clique C with v ∈ C and modify the potential
there to φ∗C by changing appropriate values to zero. More precisely, we let

φ∗C(xC) =
{
φC(xC) if xv = x∗v
0 otherwise.

(24.11)

This then implies that
∏

C φ
∗
C(xC) is equal to the joint probability of an arbitrary

configuration x which is consistent with the observations. The process of forming φ∗
from φ is often referred to as entering evidence. If we denote the set of observed nodes
with E, we have

f (x | x∗E) =
∏
C∈ C φ∗C(xC)
Z(x∗E)

, (24.12)

where the normalizing constant Z(x∗E) is the probability of the observations, obtained by
summing over all configurations which are consistent with the observations:

f (x∗E) = Z(x∗E) =
∑

x:xE=x∗E

∏
C∈ C

φC(xC) =
∑
x

∏
C∈ C

φ∗C(xC). (24.13)

This also yields the likelihood when comparing different models.

24.4.2 Propagation

In the second part of the algorithm, often referred to as propagation of evidence, the actual
computations with numbers are made, and the probabilities of interest are calculated. In
particular, the sum in (24.13) must be calculated with more sophisticated techniques than
brute force, since the number of terms in the sum grows exponentially with the number
of nodes in the network.

There are several variants of the general algorithm of which we describe the HUGIN
procedure (Jensen et al., 1990), which represents a refinement of the algorithm of
Lauritzen and Spiegelhalter (1988). Another variant, known as the Shafer–Shenoy proce-
dure (Shenoy and Shafer, 1990), is closer to what is known as peeling, but it includes
the more general variant used in Thompson (1981) to derive gene probabilities for all
individuals in the pedigree.

24.4.2.1 The HUGIN Procedure

With every branch of the junction tree between neighbours C and D, we associate a
separator S = C ∩D. The algorithm used in the software HUGIN (Andersen et al., 1989)
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makes specific use of the separators by storing a single potential ψS along every branch
of the junction tree. Initially, all these separator potentials are identically set to be equal
to unity, so the factorization (24.12) implies that

f (x | x∗E) ∝
∏
C∈ C ψC(xC)∏
S∈S ψS(xS)

, (24.14)

where S is the set of separators and, initially, ψC = φ∗C after evidence has been entered.
When a message is sent from C to D via the separator S = C ∩D, the following

operations are performed:

ψ
↓S
C (xC) =

∑
yC\S

ψC(xS, yC\D)

ψ̃D(xD) = ψD(xD)
ψ
↓S
C (xS)

ψS(xS)

ψ̃S(xS) = ψ↓SC (xS),

i.e. first the S-marginal ψ↓SC of ψC is calculated by summing out over all variables not in
S, then the clique potential ψD is modified by multiplication with the ‘likelihood ratio’
ψ
↓S
C /ψS , and finally the separator potential ψS is replaced with ψ↓SC . The potential from

the clique which sends the message is unmodified, i.e. ψ̃C = ψC . Since we have

ψ̃C(xC)ψ̃D(xD)

ψ̃S(xS)
=
ψC(xC)

(
ψD(xD)

ψ
↓S
C (xS)

ψS(xS)

)
ψ
↓S
C (xC)

= ψC(xC)ψD(xD)
ψS(xS)

,

the factorization (24.14) remains valid at all times during the computational procedure.
Messages are now sent between neighbours in the tree according to a specific schedule.

An efficient message passing schedule allows a clique to send exactly one message to
each of its neighbours only after it has already received messages from all its other
neighbours. Such a message passing schedule can be implemented via a local control.
Alternatively, one can use a global control by first choosing a root R, then making an
inward pass through the junction tree, known as COLLECTEVIDENCE, by which messages
are sent from the leaves inwards towards R, and subsequently making an outward pass,
DISTRIBUTEEVIDENCE, which sends messages in the reverse direction from the root
towards the leaves. The first of these phases is illustrated in Figure 24.11.

When exactly two messages have been sent along every branch of the junction tree in
an efficient schedule, it holds that

f (xA | x∗E) = ψA(xA)/Z(x∗E), for all A ∈ C ∪ S. (24.15)

The marginal probability and normaliser Z can therefore be found as

f (x∗E) = Z(x∗E) =
∑
xS

ψS(xS),
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Figure 24.11 The first of the two computational phases in the HUGIN procedure. During
COLLECTEVIDENCE, messages are sent towards the root C21.

from any of the separator potentials ψS . In particular, the separator with the smallest
associated state space can be chosen to calculate this sum.

24.4.3 Random and Other Propagation Schemes

Some generalizations of the message passing schemes described above use different defi-
nitions of the marginalisation operation ↓ and the multiplication in the basic factorization
and message computation, but otherwise work in essentially the same fashion (Shenoy and
Shafer, 1990; Lauritzen and Jensen, 1997). For example, replacing summation with maxi-
mization in (24.13) still yields a valid propagation scheme, known as max-propagation.
Then, after CollectEvidence, the (max) normalisation constant Z is the probability of the
most probable configuration of all variables in the network, and this configuration will be
identified after DISTRIBUTEEVIDENCE (Dawid, 1992). Since the relation (24.14) remains
invariant in the HUGIN procedure (also under max-propagation), one can easily switch
between propagation modes.

Another important generalisation is the random propagate algorithm described by
Dawid (1992). This begins with CollectEvidence to a root R using sum-marginalisation, but
in the reverse step, a Monte Carlo sample is drawn as follows. After COLLECTEVIDENCE,
the potential ψR is proportional to the conditional probability distribution of the variables
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in the root clique, given the evidence, cf (24.15). Hence, a random configuration x̌R
can readily be sampled according to this distribution. The root clique now passes this
configuration on to each of its neighbours C as x̌R∩C = x̌S , where S = C ∩ R is the
separator between C and R. After this has been done, each of the neighbouring cliques C
chooses a random configuration x̌C\S of the remaining variables according to a probability
distribution which is proportional to ψC(xC\S, x̌S). When the neighbouring cliques have
sampled their configurations in this way, they in turn pass on the chosen configuration to
their neighbours, and so on. When the sampling stops at the leaves of the junction tree, a
configuration x̌ has been correctly generated from the conditional distribution f (x | x∗E),
given the evidence. This procedure is the general version of what (Thompson, 2000,
page 95) describes as a variation of the Baum (1972) algorithm, and forms an essential
step in many Monte Carlo based computational schemes which are relevant for genetic
analyses. In particular, any sampling scheme which carries out a block update on several
variables jointly and conditionally on the values of the remaining variables in the network
makes use of the random propagate algorithm.

24.4.4 Computational Shortcuts

Computational issues have been considered by geneticists for a long time. As a result,
a number of shortcuts have been developed which speed up computations beyond the
efficiency intrinsic to the local computation algorithms themselves. These shortcuts are
all associated with pre-processing before the compilation and propagation steps, and have
the purpose of eventually leading to a reduction of the total size of the state spaces
associated with the cliques of the final junction tree. Several of these pre-processing steps
are, for example, described in Sheehan (2000), Fishelson and Geiger (2002), and Heath
(2003). We refer to Lauritzen and Sheehan (2003) for details of these procedures known
as, e.g. trimming, forcing, excluding, allele recoding, and delayed triangulation.

24.5 PEDIGREE ANALYSIS AND BEYOND

We will now use Bayesian network representations for some specific problems involving
pedigree analysis.

24.5.1 Single-point Linkage Analysis

Consider a diallelic dichotomous disease segregating through a population with alleles
D and d , and affected and normal phenotypes. Typically, we will have some observed
phenotypes for the disease and some individuals will be typed at the marker locus. As in
Kong (1991), we assume a recessive model for disease with complete penetrance whereby
dd homozygotes are always affected and are never normal while both other genotypes
are always normal and never affected. Assume that allele frequencies for both loci are
known, segregation is Mendelian, founder genotype frequencies are in Hardy–Weinberg
Proportions, and the founder population is in linkage equilibrium. The only unknown
quantities are the unobserved genotypes and phenotypes, and r , the recombination fraction
between the two loci.

To construct a graphical model for the single-point linkage problem, it suffices to
focus on a nuclear family comprising a father 1, mother 2, and their offspring 3.
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This construction is then replicated for all parent–child triplets in the pedigree, e.g.
using an object-oriented method of specification. We will use the segregation network
representation as we need to explicitly refer to phase information for linkage. Beginning
with the marker locus–the ‘α locus’–for each parent i = 1, 2, we create two nodes, i1α

and i0α , for the paternal and maternal genes of the individual with values drawn from the
marker allele frequency distribution (e.g. multinomial). Note that this random assignment
immediately deals with the fact that phase is unknown in the parents and we have to
integrate it out by summing over all possibilities. We can assume that segregation from
both parents is Mendelian at this ‘first’ locus, i.e.

P(Sα1,3 = 1) = P(Sα2,3 = 0) = 1/2, (24.16)

although this is not necessary. As in Section 24.3, the paternally inherited allele of the
offspring, 31α , is a (graph) child of both alleles in the father, 11α and 10α , and of Sα1,3.
Likewise, the maternally inherited allele of 3 is a (graph) child of both genes of 2 and
Sα2,3. The genotype node is a (graph) child of both genes of individual nodes.

Labelling the disease locus as δ, the graph is extended by adding two nodes i1δ and
i0δ for each parent, 1 and 2, exactly as above. The unobserved disease genotype, Gδ

i ,
is a child node of the corresponding gene nodes and a (graph) parent of the observable
phenotype, Y δ

i with link specified by the penetrance function. In this case, the penetrance
probabilities are either 0 or 1. For the offspring, 3, we have gene nodes and a segregation
indicator exactly as for the marker locus with the difference now being that we must
take account of the linkage between the loci. In particular, the value of the segregation
indicators Sδ

1,3 and Sα1,3 are dependent via the recombination fraction, r . This dependence
can be modelled with an undirected link between the corresponding nodes. Formally this
would lead to a chain graph representation (Lauritzen, 1996) rather than a DAG. However,
for the sake of exposition, we use here the equivalent non-symmetric description through
the conditional distribution of Sδ

1,3, given Sα1,3, specifically:

Sδ
1,3 ∼

{
Ber(1− r) if Sα1,3 = 1
Ber(r) if Sα1,3 = 0, (24.17)

and similarly for Sδ
2,3. To complete the graph in Figure 24.12, we now add nodes Gδ

3 and
Y δ

3 for the offspring’s unobserved genotype and phenotype with links defined exactly as
above.

Note that this is a full specification of the model similar to that described elsewhere
(Kong, 1991; Jensen and Kong, 1999; Thomas et al., 2000). It is important to note that
further derivation of the relevant joint and marginal distributions is not necessary as these
are a direct result of the induced factorisation (24.4). The graph in Figure 24.12 provides
a clear visual representation of the model.

24.5.2 QTL Mapping

Sheehan et al. (2002) extend the linkage scenario described above to the problem of
detecting a QTL from possibly incomplete marker data for a simple example involving two
flanking loci. Two markers are considered with known map positions and it is hypothesised
that there is a diallelic QTL somewhere between the two. The trait of interest is any
trait measured on a continuum with an associated polygenic effect unlinked to the QTL.
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Figure 24.12 The segregation network for two linked loci on individuals 1 (father), 2 (mother),
and 3 (offspring). Note that the information on linkage is contained in the directed edge between
the segregation indicators Sα1,3 and Sδ

1,3 and similarly between Sα2,3 and Sδ
2,3.

Marker data are available on a half-sib design, common in animal breeding applications,
comprising several families each with a single sire and up to 100 offsprings. Trait data
are available only on the offspring. In contrast with the two-locus linkage example above,
no information is given on the mothers (dams) of these offspring and hence the maternal
segregations are all ignored.

The phenotype record on offspring j of sire i is a realisation of the random variable
Yij . The effect of the unobserved genotype at the QTL is qij , where qij can have three
possible values µ1, µ2, µ3 corresponding to each of the three genotypes. A normal linear
mixed model for the data is

Yij = Zi + qij + Eij ,
where Zi represents the average additive genetic effect of the ith sire on the phenotypes of
his offspring, which cannot be explained by the QTL. Let σ 2

a be the total additive genetic
variance unexplained by the QTL and σ 2

e be the environmental variance. We have that
Zi ∼ N(0, σ 2

z )∀i where σ 2
z = 1

4σ
2
a , the sire variance component, since half the genes of

an offspring are shared with its sire (Falconer and Mackay, 1996). The remaining unex-
plained variation is picked up by the residual term, Eij ∼ N(0, 3

4σ
2
a + σ 2

e ). Assuming no
genetic interference, only one of the unknown marker-QTL recombination fractions, or
equivalently the QTL map location λQ, is required to parameterise the problem.

Figure 24.13 shows the graphical model for this trivial QTL-mapping problem for one
sire and two offspring. The marker loci are labelled α and β while the QTL locus is now δ.
The model is essentially an extension of the single-point linkage problem in Figure 24.12
to a two-point problem. Gene nodes are added for the third locus in an analogous fashion
with the segregation indicator for inheritance from the sire linked to the previous value
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Figure 24.13 The graphical model for the QTL-mapping problem depicting a sire, i with two
daughters, ij and ij ′. [Reproduced from Sheehan et al. (2002). International Statistical Review,
68:83–110 with permission from Blackwell Publishing.]

via the recombination fraction between the second and third loci, as described in (24.17)
above. This assumes that there is no genetic interference and that recombinations in
adjacent intervals are independent. Maternal genes in the offspring are randomly drawn
from the population as there is no information on the dams. Sire and offspring have
marker genotype nodes while only offspring have trait genotype and phenotype nodes.
Covariance between the offspring is reflected in the genes they share with their sire, and
they are duly connected by the sire effect node. Note that this creates a cycle in the graph
which becomes increasingly complex computationally when more offspring are added
and, for a typical half-sib design with a sire having up to 100 offspring, the relevant
Bayesian network for this problem features many long cycles despite the simplicity of the
pedigree structure and the mapping problem under consideration (Sheehan et al., 2002).
The half-sib design is a zero-loop pedigree (or tree) and genetic mapping problems do
not get any simpler than this one. The graphical model highlights the computational
complexity implicit in the mixed-model approach to this analysis and clarifies why these
analyses are challenging on more complex problems.

24.5.3 Pedigree Uncertainty

The flexibility of a graphical modelling approach to applications in genetics is powerfully
demonstrated when the pedigree is not fixed and known, or when other circumstances
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should be integrated into the analysis. Hansen and Pedersen (1994) elegantly handle
incomplete paternity information in a two-locus inheritance model for fur colour in foxes
from pedigrees supplied by Scandinavian fur farms where there is uncertainty with some
of the litter paternities. It is common breeding practice to mate a female with two males
in order to increase the chances of fertilisation and hence, it is not always possible
to determine which male actually fathered the resulting pups. Indeed, two males could
father pups in the same litter. The pedigree declares the most likely candidate as the
father (to all pups) and registers the second sire as an alternative whenever there is
doubt.

The phenotypic record on each fox is a subjective classification of fur colour on a scale
from 1− 8. From analogous models for mice and sheep (Adalsteinsson et al., 1987), a
model for genetic inheritance of fur colour was proposed involving two diallelic loci, α
(with alleles A and a) and ε (E, e), possibly on the same chromosome with unknown
recombination fraction.

Although there are some loops, the fox pedigrees are generally small enough for
exact likelihood calculation with simple models (Skjøth et al., 1994). The usual method
for handling paternity uncertainty is to compare the likelihoods for all possible pedi-
grees (Thompson, 1986). There is only one alternative father for each of a small
number of litters, but as each pup in the litter could have been fathered by either
of the two candidates, this problem would require the consideration of 221 pedigrees.
Skjøth et al. (1994) circumvent this problem by estimating paternal genotypes from the
phenotypic information and choosing the most likely individual but this is not very
satisfactory. Although standard statistical genetics programs will not accept a pedi-
gree where an individual can have more than one biological father, this presents no
difficulty for a general graphical model. Hansen and Pedersen (1994) exploit this to
incorporate all the paternity information by defining a binary node, Wi , for each queried
pup:

Wi =
{

1 if stated father is the true father
0 if alternative father is the true father,

and Wi ∼ Ber(pw), where pw is to be estimated.
Again, the graphical model for this problem is essentially the two-locus linkage model

described above (Section 24.5.1) except for those cases where paternity is uncertain. We
thus focus on the quadruplet comprising the mother, 1, declared father, 2, offspring, 3,
and alternative father, 4. For illustration, we have simplified the model by assuming a
known penetrance matrix and known allele frequencies at both loci. As before, paternal
and maternal alleles, i1α, i0α, i1ε, i0ε, are assigned to the founders i = 1, 2, and 4 at
both loci. Mother–offspring segregation indicators are assigned for each locus, Sα1,3, S

ε
1,3,

and indicators for paternal inheritance are Sαf3,3
, Sεf3,3

, where f3 = 2 if W3 = 1 and
f3 = 4, otherwise. In contrast with our representation of Section 24.5.1, Hansen and
Pedersen (1994) consider segregation at both loci jointly, so we have phase indicators for
inheritance, S1,3 and Sf3,3, where

S1,3, Sf3,3 =

(0, 0) with probability (1-r)/2
(0, 1) with probability r/2
(1, 0) with probability r/2
(1, 1) with probability (1-r)/2

.
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Figure 24.14 The graphical model for the fox data depicting a mother, 1, father 2, offspring 3,
and alternative father 4. [Adapted from Hansen and Pedersen (1994).]

Note that this is the same model as described in (24.16) and (24.17), since S1,3 =
(Sα1,3, S

ε
1,3). The earlier parameterisation, involving more nodes with fewer states, is more

flexible when considering more than two loci and is generally better for computational
purposes. All four alleles of individual i are graph parents of the node Gi representing
the two-locus genotype and this, in turn, is a graph parent of Yi , the fur colour phenotype.
Figure 24.14 shows the corresponding graphical model for this problem.

Despite the simplifications, the graph in Figure 24.14 is more complicated than those
shown earlier in this section in that it has many more cycles. The advantage is that
questions about paternity, genetic inheritance, and linkage can all be addressed from this
one graph, whereas these would typically require separate considerations using standard
pedigree software.

An interesting class of questions focuses on the determination of pedigrees from
observable genetic information, see, e.g. Egeland et al. (2000), Cowell and Mostad (2003),
Steel and Hein (2006), and Sheehan and Egeland (2007).

24.5.4 Forensic Applications

Graphical models, or probabilistic expert systems, have been shown to be particularly
useful in forensic applications (Dawid et al., 2002; Cowell, 2003; Taroni et al., 2006) and
have been adapted to handle a wide range of routine problems in forensic inference. The
central problem here is to infer the identity of an individual based on the given evidence
which possibly includes DNA profile information. This can be done by calculating relative
likelihoods for the various competing hypotheses (Dawid and Mortera, 1996), but these
become computationally intensive when information is imperfect or missing (Dawid and
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Figure 24.15 The simple paternity problem of Dawid et al. (2002) represented here (a) by two
marriage node graphs, where individuals shaded in grey denote those for whom DNA evidence
is available, and (b) as a graphical model. The three grey nodes in (b) represent the observed
genotypes and the black node is the ‘query’ node.

Mortera, 1998) and especially when the possibility of observing a mutation from one
generation to the next is considered (Dawid et al., 2001).

Consider the inheritance claim case in Figure 24.15(a) from Dawid et al. (2002), where
a man, 9, claims to be the son of the diseased individual 3 and hence entitlement to part
of his estate. It is known that 3 had a (undisputed) child, 6, and that 6 and 9 had different
mothers. There is no DNA information on 3 since he is dead and buried, nor on either
of the two mothers, but we have DNA profile samples from both offspring 6 and 9, and
from the brother of the diseased, 4. This problem can be formally expressed as a case of
disputed paternity with 3 as the putative father and 9 as the disputed child. As is common
for such applications, attention is on just two competing hypotheses: either the true father,
8, of the disputed child, 9, really is one and the same as the putative father, 3, or the true
father can be considered as randomly drawn from the general population.

Forensic markers are usually selected to be unlinked so we only need a model for a
single marker and the overall likelihood is the product over all markers. Figure 24.15(b)
shows the single marker representation used by Dawid et al. (2002). This uses the
allele network rather than the segregation network but, as indicated earlier, the latter
is superfluous in the absence of linkage. Our notation is as before with the marker labels
omitted, so i0 and i1 represent the random variables assigning maternal and paternal genes
of the individual i, and Gi assigns the genotype of i at the marker. Untyped individuals
who are not directly of interest (i.e. 1, 2, 5, and 7) are only represented by the genes they
contribute to the next generation, which, in the absence of any information, are assumed
on the contrary to be randomly drawn from the population.

The black node in Figure 24.15(b) which is a (graph) parent of both genes in 8, is the
‘query’ or ‘target’ node (Dawid et al., 2002). This is a binary node and is 1 if the true
father of the disputed child is the putative father, i.e. if individual 8 is the same as 3 in
Figure 24.15(a) and the two genes in 8 are hence copies of the corresponding two in 3.
Otherwise, the men are different individuals and the genes of 8 are drawn randomly from
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the population. The advantage of using the query node for this application is that the
quantity of interest to the court–the likelihood ratio in favour of paternity–can be read
off directly. However, we note that despite the different emphasis of the analysis, this
node is essentially the same as the paternity indicator, Wi , in Figure 24.14 determining
which of the two possible alternatives fathered the individual i. For the forensic example,
although a specific alternative is often not available, determination of paternity is crucial:
for the fox example, a genetic model for inheritance of fur colour was the focus and the
uncertain paternity was a nuisance factor that had to be taken into account. The same
graphical modelling approach can be used to address both questions.

The area of forensic genetics yields a variety of problems which can clearly benefit
from the flexibility and modularity of a graphical modelling environment. For example, in
criminal cases such as assault and rape cases, it is not uncommon to observe crime trace
evidence which represents a mixture of DNA from an unknown number of individuals.
Mortera et al. (2003) consider an example where there is a victim 1, a suspect 2, and
exactly two contributors, 6 and 7, to the trace evidence (i.e. there were three alleles
present for at least one marker in the mix). To complicate matters, the suspect has left the
country and is not available for typing. However, his brother 3 has been found and has
given a sample. Figure 24.16 shows the allele network used by Mortera et al. (2003) for
this identification problem, where individuals 4 and 5 are the parents of the two brothers.
Four standard competing hypotheses concerning the makeup of the set contributing to the
mixture (Weir et al., 1997) are as follows:

1. the suspect and victim have both contributed;

2. the suspect and an unknown contributor are represented;

3. the victim and an unknown contributor are represented;

4. both contributors to the mixture are unknown.

Figure 24.16 shows that we have genotype data on 1 and 3. Unobserved genotypes of
the two contributors, 6 and 7, are graph parents of the node representing the observed
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G1 2 = 7 ?
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Figure 24.16 The mixture network of Mortera et al. (2003). The three grey nodes represent
the observed genotypes and the black nodes are the ‘query’ and ‘target’ nodes respectively.
[Reprinted from Theoretical Population Biology, 63(3), Mortera J. et al., Probabilistic expert
systems, 191–205, copyright (2003) with permission from Elsevier.]



832 S.L. LAURITZEN AND N.A. SHEEHAN

mixed trace. We now have two binary query nodes defined exactly as before which
address the two questions: is the victim the first contributor (1 = 6?) and is the suspect
the second (2 = 7?). If the answer is ‘yes’, the genes of the two individuals are identical.
Otherwise, the genes of the contributor are drawn randomly from the population gene
pool. The ‘target’ node is the logical conjunction of these two, and has four states
corresponding to the four hypotheses above. Thus, competing standard hypotheses can
all be considered from the same network and separate pairwise comparisons, as are
routinely performed, are not necessary. In principle, this approach can be extended to
deal with multiple contributors, possible silent alleles in the mixture, and multiple missing
individuals (Mortera et al., 2003), and information on the amount of DNA contributed by
each individual can be exploited for separation of DNA profiles (Cowell et al., 2007).

24.5.5 Bayesian Approaches

These models lend themselves readily to Bayesian analysis and interpretation
(Spiegelhalter, 1998), where all unknown quantities such as data, latent variables, and
model parameters can be regarded as random variables and thus represented as extra nodes
in the graph with their associated distributions. Exact local computation algorithms fail
as more complex distributional types need to be accommodated, so alternative methods
for calculating the quantities of interest, such as MCMC (Hastings, 1970; Metropolis
et al., 1953) must be entertained. It is well known that the popular single-site Gibbs
sampler Geman and Geman (1984) can mix very slowly in complex models involving
both discrete and continuous nodes, even when the sampler is theoretically irreducible
(Janss et al., 1995; Heath, 1997; Jensen and Kong, 1999; Lund and Jensen, 1999). Some
kind of blocking or joint updating of variables is hence required in order to sample more
efficiently. Lund and Jensen (1999), e.g. use graphical models for a Bayesian formulation
of a mixed inheritance model, Sheehan et al. (2002) extend the model in Figure 24.13 to
a full Bayesian analysis for the QTL mapping problem, and Hansen and Pedersen (1994)
take a Bayesian approach to the fox problem of Figure 24.14. They all invoke random
propagation as described in Section 24.4.3 as an essential part of the associated block
update for the discrete part of the model.

24.6 CAUSAL INFERENCE

Graphical models, especially DAGs, have natural causal interpretations and hence provide
a formal framework to discuss causal concepts. We will illustrate this using Mendelian
randomisation, an approach to understanding aetiological relationships in observational
studies, by way of an example. Inferring causation from observed associations is often
a problem with epidemiological data as it is not always clear which of two variables is
the cause, which is the effect, or whether both are common effects of a third unobserved
variable or confounder. In the case of experimental data, causal inference is facilitated
either by using randomisation or experimental control. In many biological settings, it is
not possible to randomly assign values of a hypothesised ‘cause’ to experimental units
for ethical, financial, or practical reasons. In epidemiological applications, for example,
randomised controlled trials (RCTs) to evaluate the effects of exposures such as smoking,
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alcohol consumption, physical activity, and complex nutritional regimes are unlikely to
be carried out.

24.6.1 Causal Concepts

As in Pearl (1995), Lauritzen (2000), and Dawid (2002; 2003), we will regard causal
inference to be about predicting the effect of interventions in a given system. If X is
the cause under investigation and Y the response, the question of interest is whether
intervening on X has an effect on Y . By intervening on X, we mean that we can set X (or
more generally its distribution) to any value we choose without affecting the distributions
of the other variables in the system, except through the resulting changes in X. This is
clearly idealistic and may not always be justifiable. The causal effect of X on Y is a
function of the distributions of Y under different interventions in X. It is well known that
this is not necessarily equal to the usual conditional distribution P(Y |X = x) which just
describes a statistical dependence (Pearl, 2000; Lauritzen, 2000). We will follow Pearl
(2000) and use the notation P(Y |do(X = x)) to clarify that conditioning is on intervention
in X.

The average causal effect (ACE) is defined as the difference in expectations under
different settings of X:

ACE(x1, x2) = E(Y |do(X = x1))− E(Y |do(X = x2). (24.18)

X is regarded as causal for Y if the ACE is non-zero for some values x1, x2. If X
is binary, the unique ACE is given by E(Y |do(X = 1))− E(Y |do(X = 0)). If Y is
continuous, a popular assumption is that the causal dependence of Y on X is linear
(possibly after suitable transformations), i.e. E(Y |do(X = x)) = α + βx. In this case, the
ACE is β(x1 − x2) and can simply be summarised by β, which is now interpreted as
the average effect of increasing X by one unit through some intervention. In the more
general cases of more than two categories and/or nonlinear dependency, the ACE is not
necessarily summarised by a single parameter, and one may want to choose a different
causal parameter altogether (Didelez and Sheehan, 2007).

A causal parameter is identifiable if it can be estimated consistently from obtainable
information on the joint distribution of the observed variables. Mathematically, this
amounts to being able to express the parameter in terms that do not involve the intervention
(i.e. the ‘do’ operation) by only using ‘observational’ terms that can be estimated from
data. In the presence of unknown confounders, e.g. parameters of P(Y |do(X = x)) cannot
be estimated directly from observations that represent P(Y |X = x). In the rare case of
known confounders, it can be shown that the intervention distribution can be re-expressed
in observational terms and can thus be estimated from the observed data by adjusting for
these confounders (Pearl, 1995; 2000; Lauritzen, 2000; Dawid, 2002).

24.6.2 Mendelian Randomisation

Mendelian randomisation has been proposed as a method to test for, or estimate, the
causal effect of an exposure or phenotype on a disease when confounding is believed to
be likely and not fully understood (Davey Smith and Ebrahim, 2003; Katan, 2004). It
exploits the idea that a well-understood genotype, known to affect levels of the exposure,
affects the disease status only indirectly and is assigned randomly (given the parents’
genes) at meiosis, independently of the possible confounding factors. It is well known
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in the econometrics and causal literature (Bowden and Turkington, 1984; Angrist et al.,
1996; Pearl, 2000; Greenland, 2000) that these properties define an instrumental variable
(IV), but they are minimal conditions in the sense that unique identification of the causal
effect of the phenotype on the disease status is possible only in the presence of additional,
fairly strong assumptions.

The core conditions that characterise an IV have been given in many different forms,
using counterfactual variables (Angrist et al., 1996; Robins, 1997), linear structural equa-
tions (Goldberger, 1972; Pearl, 2000, Chapter 7), or conditional independence statements,
as we will use here. Our notation and terminology closely follow Greenland et al. (1999)
and Dawid (2002). We now present these conditions together with a graphical way of
depicting and checking the relevant conditional independencies.

Let X and Y be defined as above with the causal effect of X on Y being of primary
interest. Furthermore, let G be the variable that we want to use as the instrument
(the genotype in our case) and let U be an unobservable variable that will represent
the confounding between X and Y . The ‘core conditions’ that G has to satisfy are the
following

1. G⊥⊥U , i.e. G must be (marginally) independent of the confounding between X and
Y ;

2. G⊥⊥/ X, i.e. G must not be (marginally) independent of X; and

3. Y ⊥⊥G | (X, U), i.e. conditional on X and the confounder U , the instrument and the
response are independent.

Because U is not observable, these assumptions cannot be formally tested and have to
be justified on the basis of subject- matter or background knowledge. Moreover, the
above assumptions do not imply any testable conditional independencies regarding the
instrument G. Figure 24.17 shows the unique DAG involving G,X, Y , and U that satisfies
the core conditions 1–3 with corresponding factorisation

p(y, x, u, g) = p(y|u, x)p(x|u, g)p(u)p(g). (24.19)

Note that DAGs only represent conditional dependencies and independencies: they are
not causal in themselves despite the arrow suggesting a ‘direction’ of dependence. We
say that the DAG has a causal interpretation with respect to the relationship between X
and Y , or, more specifically, the DAG is causal with respect to intervention in X, if we
believe that an intervention in X does not change any of the other factors in the joint

G

U

X Y

Figure 24.17 The directed acyclic graph (DAG) representing the core conditions for G to be an
instrument. [Reproduced from Didelez, V. and Sheehan, N. A. (2007) Mendelian randomisation as
an instrumental variable approach to causal inference. Statistical Methods in Medical Research, by
permission of Sage Publication Ltd.]
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distribution (24.19) (see Pearl, 2000, page 23). This means that

p(y, u, g|do(X = x0)) = p(y|u, x0)p(u)p(g), (24.20)

assuming that p(y|u, x0) = p(y|u, do(X = x0)).
The limitations of Mendelian randomisation, from the perspective of complicating

features leading to poor estimation of the required genotype–phenotype and geno-
type–disease associations, have been discussed in detail in several places in the literature
(Davey Smith and Ebrahim, 2003; 2004; Thomas and Conti, 2004; Davey Smith et al.,
2005). More crucially, biological complications can sometimes violate one or more of
the core conditions 1–3 so that Figure 24.17 no longer applies. In order to understand
what any added complexity implies with regard to meeting these conditions, the rele-
vant conditional independencies can be easily checked using DAGs that are ideally
dictated by the biology. For instance, when our chosen gene G1 is in linkage disequilib-
rium with another gene G2 which has a direct or indirect influence on the disease Y ,
condition 3, Y ⊥⊥G1|(X, U), might be violated as shown in Figure 24.18(a), or else
condition 1, G⊥⊥U , might be violated as shown in Figure 24.18(b).

It is possible that the core conditions may still hold for the chosen instrument G1 in
the presence of genetic heterogeneity, as illustrated in Figure 24.19, if none of the other
genes influence Y in any way other than via their effect on X. If instead, the situation
is similar to Figure 24.18(b), however, the core conditions may be violated as already
explained. Note that in Figure 24.19, genetic heterogeneity could weaken the G1 −X
association and thus G1 would be a poor instrument. If the chosen instrument G has
pleiotropic effects and, in particular, if it is associated with another intermediate phenotype
which also affects the disease Y (Figure 24.20(a)), condition 3, Y ⊥⊥G|(X1, U), is again
violated if we do not also condition on X2. Moreover, a genetic polymorphism under
study might have pleiotropic effects that influence confounding factors like consumption
of tobacco or alcohol, for example, (Davey Smith and Ebrahim, 2003). This is represented
in Figure 24.20(b) and violates condition 1. In the presence of population stratification,
we see in Figure 24.21(a) that condition 3, Y ⊥⊥G1|(X,U), is again violated: we need
to condition on the population subgroup as well. However, if the effect of population
stratification is to cause an association between allele frequencies and phenotype levels,
as in Figure 24.21(b), all conditions for G to be an instrument are still satisfied, and, in
this situation, the G−X association may in fact be strengthened, as a result.

Y

G2 U

G1 X

(b)

G1 YX

G2 U

(a)

Figure 24.18 Linkage disequilibrium where the chosen instrument G1 is associated with another
genotype G2 which directly influences the outcome Y , as in (a), or influences Y indirectly via
the confounder U , as in (b). [Reproduced from Didelez, V. and Sheehan, N. A. (2007) Mendelian
randomisation as an instrumental variable approach to causal inference. Statistical Methods in
Medical Research, by permission of Sage Publication Ltd.]



836 S.L. LAURITZEN AND N.A. SHEEHAN

X Y

G1

G2

G3

U

Figure 24.19 Genetic heterogeneity showing three genes which are all associated with the
intermediate phenotype X, but none of which has an effect on the disease Y except through
X. [Reproduced from Didelez, V. and Sheehan, N. A. (2007) Mendelian randomisation as an
instrumental variable approach to causal inference. Statistical Methods in Medical Research, by
permission of Sage Publication Ltd.]
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Figure 24.20 An example of pleiotropy where the instrument G is associated with both X1 and
X2 and (a) both have a direct effect on the outcome Y of interest, or (b) where X1 has a direct effect
but X2 has an indirect effect via the confounder U . [Reproduced from Didelez, V. and Sheehan,
N. A. (2007) Mendelian randomisation as an instrumental variable approach to causal inference.
Statistical Methods in Medical Research, by permission of Sage Publication Ltd.]
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Figure 24.21 Two examples of population stratification where (a) one of the conditions for G to
be an instrument is violated and (b) all conditions are satisfied. [Reproduced from Didelez, V. and
Sheehan, N. A. (2007) Mendelian randomisation as an instrumental variable approach to causal
inference. Statistical Methods in Medical Research, by permission of Sage Publication Ltd.]

24.7 OTHER APPLICATIONS

24.7.1 Graph Learning for Genome-wide Associations

The above examples all assume that the graphical structure of the problem is known. It is
also possible to learn from the data and estimate the graphical model from observations
of a joint distribution (Cowell et al., 1999). Modelling linkage disequilibrium, or the
tendency for alleles observed at one genetic locus to be correlated with those observed at
another locus, is an important issue in statistical genetics with the increasing availability
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of single nucleotide polymorphism (SNP) data over dense marker maps for large numbers
of individuals. In particular, the search for genetic determinants of complex diseases in
genome-wide association studies is based on the idea that the ancestral disease-bearing
mutations in a population will be flanked by segments of chromosome that will show
less variability amongst those individuals with the disease than amongst those unaffected.
Linkage disequilibrium is a function of physical distance between loci on a chromosome,
but much heterogeneity has been observed in the correlations between adjacent loci, long
range correlations are quite common, and completely uncorrelated loci can be interspersed
between regions of tightly linked loci. Existing methods for multilocus haplotype analysis
exploiting excess sharing amongst affected individuals around a disease locus do not scale
up to the datasets that we can now reasonably anticipate (Verzilli et al., 2006).

Thomas and Camp (2004) suggest the use of undirected graphs to model dependencies
between genetic loci allowing for higher order interactions. Their method assumes
proximal loci (e.g. SNPs within a single gene) and requires haploid data. The space
of decomposable, or triangulated, graphs is searched to find the best-fitting model within
that class using a simulated annealing algorithm, where the objective function is the
maximised log-likelihood penalised according to the number of degrees of freedom. A
simple perturbation rule for searching this space is provided by which two vertices of
the existing graph are selected, and are connected if they are not already connected,
disconnected otherwise. However, the authors acknowledge that mixing properties are
greatly enhanced when other perturbation rules are included. The method is extended
to deal with unphased diploid data (i.e. genotype data) by Thomas (2005), where the
haplotype estimation step is incorporated iteratively with the estimation of the graphical
model. Verzilli et al. (2006) apply these ideas to identify patterns of multilocus genotypes
around a disease locus and thereby avoid the problems inherent in the estimation of
haplotypes for large numbers of loci. They consider case-control data where the unphased
genotypes, together with a binary disease status indicator, form the vertices of the graph.
Edges between genotypes thus reflect the linkage disequilibrium structure, and edges
between genotypes and the disease status indicator would suggest the presence of a disease
susceptibility locus somewhere near these loci. Computational efficiency is achieved by
the restriction of the search space to the set of triangulated graphs and by putting a limit on
the size of the cliques. The set of possible graphs is restricted even further by imposing a
prior that restricts the physical distance between clique members. Proposed moves around
this space act via changes to the set of cliques and separators in the current graph thus
avoiding the need to check that the new proposal is decomposable.

Although some restrictions on the set of graphs connecting over 500 000 genotypes
and a disease status indicator are obviously required to make the graph learning exercise
feasible, the above restrictions, as conceded by all the authors, are mainly driven by
the desire to facilitate the computations and provide a solution in reasonable time.
Consequently, all kinds of configurations are ruled out by these restrictions which may
not be biologically implausible. For example, there does not seem to be any strong reason
to believe that the graph in Figure 24.22(b) is an unreasonable model for four linked
loci, where the locus at each end is associated with the disease. The complexity of the
biology underlying most complex diseases is still not well understood, however, and
it is thus difficult to suggest a more sensible restriction on the set of models to be
explored.
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Figure 24.22 Two graphical models reflecting (a) associations between genotypes and (b) asso-
ciations between genotypes and a disease indicator. Both are disallowed because they are not
decomposable.

24.7.2 Gene Networks

Other recent and important applications of graphical models in genetics are concerned
with inferring regulatory mechanisms involving genes, typically based on expression data
measured using microarray technology. The graphical relationships involved in this type
of model describe regulatory mechanisms, in principle, based on a causal interpretation of
the relevant graphical models , such as those described in Section 24.6. The applications
of graphical models in this context are generally exploratory and serve to exploit the
massive data available to conjecture potential relationships which must subsequently
be investigated further using other forms of biological subject-matter knowledge and
experiments. One direction of research uses relatively sophisticated model specifications
with some simplifying structures (Friedman, 2004; Segal et al., 2003a; 2003b), exploiting
the notion of probabilistic relational models (Friedman et al., 1999) which add repeated
relational structure to the conditional independence structure of graphical models.

Another approach uses less sophisticated models, essentially undirected Gaussian
graphical models, exploiting the simplicity and detailed statistical understanding of these
to make efficient and well-founded search procedures, either using Bayesian ideas (Jones
et al., 2005) or other graphical model selection algorithms (Spirtes et al., 1993) to
conjecture interesting relationships between genes under study. For an early example
of this type of research, we refer to West et al. (2001). The methodology is currently
developing rapidly, see, e.g. Schäfer and Strimmer (2005) and the corresponding software
implementation as described in Schäfer et al. (2006). Markovetz (2006) provides an up-
to-date online bibliography of the area.
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Schäfer, J., Opgen-Rhein, R. and Strimmer, K. (2006). Reverse engineering genetic networks using

the GeneNet package. R News 6, 50–53.
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The coalescent process is a powerful modeling tool for population genetics. The allelic states of all
homologous gene copies in a population are determined by the genealogical and mutational history
of these copies. The coalescent approach is based on the realization that the genealogy is usually
easier to model backward in time, and that selectively neutral mutations can then be superimposed
afterwards. A wide range of biological phenomena can be modeled using this approach.

Whereas almost all of classical population genetics considers the future of a population given a
starting point, the coalescent considers the present, while taking the past into account. This allows
the calculation of probabilities of sample configurations under the stationary distribution of various
population genetic models, and makes full likelihood analysis of polymorphism data possible. It
also leads to extremely efficient computer algorithms for generating simulated data from such
distributions, data which can then be compared with observations as a form of exploratory data
analysis.

25.1 INTRODUCTION

The stochastic process known as ‘the coalescent’ has played a central role in population
genetics since the early 1980s, and results based on it are now used routinely to analyze
DNA sequence polymorphism data. In spite of this, there is no comprehensive textbook
treatment of coalescent theory. For biologists, the most widely used source of information
is probably Hudson’s seminal review (Hudson, 1990), which, along with a few other book
chapters (Donnelly and Tavaré, 1995; Hudson, 1993; Li, 1997) and various unpublished
lecture notes, is all that is available beyond the primary literature. Furthermore, since the
field is very active, many relevant results are not generally available because they have
not yet been published. They may be due to appear sometime in the indefinite future in a
mathematical journal or obscure conference volume, or they may simply never have been
written down. As a result of all this, there is a considerable gap between the theory that
is available, and the theory that is being used to analyze data.
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The present chapter is intended as an up-to-date introduction suitable for a wider
audience. The focus is on the stochastic process itself, and especially on how it can be
used to model a wide variety of biological phenomena. I consider a basic understanding
of coalescent theory to be extremely valuable – even essential – for anyone analyzing
genetic polymorphism data from populations, and will try to defend this view throughout.
First of all, such an understanding can in many cases provide an intuitive feeling for
how informative polymorphism data are likely to be (the answer is typically ‘Not very’ ).
When intuition is not enough, the coalescent provides a simple and powerful tool for
exploratory data analysis through the generation of simulated data. The efficacy of the
coalescent as a simulation tool is also the basis for promising statistical methods that use
rejection algorithms to compute likelihoods (e.g., Weiss and von Haeseler, 1998). Various
more sophisticated inference methods are described in Chapter 26.

25.2 THE COALESCENT

The word ‘coalescent’ is used in several ways in the literature, and it will also be used in
several ways here. Hopefully, the meaning will be clear from the context. The coalescent –
or, perhaps more appropriately, the coalescent approach – is based on two fundamental
insights, which are the topic of Section 25.2.1. Section 25.2.2 then describes the stochastic
process known as the coalescent, or sometimes Kingman’s coalescent in honor of its
discoverer (Kingman, 1982a; 1982b; 1982c). This process results from combining the
two fundamental insights with a convenient limit approximation.

The coalescent will be introduced in the setting of the Wright–Fisher model of neutral
evolution, but it applies more generally. This is one of the main topics for the remainder
of the chapter. First of all, many different neutral models can be shown to converge to
Kingman’s coalescent. Second, more complex neutral models often converge to coalescent
processes analogous to Kingman’s coalescent.

The coalescent was described by Kingman (1982a; 1982b; 1982c), but it was also
discovered independently by Hudson (1983) and by Tajima (1983). Indeed, arguments
anticipating it had been used several times in population genetics (reviewed by Tavaré,
1984).

25.2.1 The Fundamental Insights

The first insight is that since selectively neutral variants by definition do not affect
reproductive success, it is possible to separate the neutral mutation process from the
genealogical process. In classical terms, ‘state’ can be separated from ‘descent’.

To see how this works, consider a population of N clonal organisms that reproduce
according to the neutral Wright–Fisher model, that is to say, generations are discrete, and
each new generation is formed by randomly sampling N parents with replacement from
the current generation. The number of offspring contributed by a particular individual
is thus binomially distributed with parameters N (the number of trials) and 1/N (the
probability of being chosen), and the joint distribution of the numbers of offspring
produced by all N individuals is symmetrically multinomial. Now consider the random
genealogical relationships (i.e. ‘who begat whom’ ) that result from reproduction in this
setting. These can be represented graphically, as shown in Figure 25.1. Going forward in
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Figure 25.1 The neutral mutation process can be separated from the genealogical process. The
genealogical relationships in a particular 10-generation realization of the neutral Wright–Fisher
model (with population size N = 10) are shown on the left. On the right, allelic states of have been
superimposed (so-called ‘gene dropping’).

time, lineages branch whenever an individual produces two or more offspring, and end
when there is no offspring. Going backward in time, lineages coalesce whenever two or
more individuals were produced by the same parent. They never end. If we trace the
ancestry of a group of individuals back through time, the number of distinct lineages will
decrease and eventually reach one, when the most recent common ancestor (MRCA) of
the individuals in question is encountered. None of this is affected by neutral genetic
differences between the individuals.

As a consequence, the evolutionary dynamics of neutral allelic variants can be modeled
through so-called ‘gene dropping’ (‘mutation dropping’ would be more accurate): given a
realization of the genealogical process, allelic states are assigned to the original generation
in a suitable manner, and the lines of descent then simply followed forward in time, using
the rule that offspring inherit the allelic state of their parent unless there is a mutation
(which occurs with some probability each generation). In particular, the allelic states of
any group of individuals (for instance, all the members of a given generation) can be
generated by assigning an allelic state to their MRCA and then ‘dropping’ mutations
along the branches of the genealogical tree that leads to them. Most of the genealogical
history of the population is then irrelevant (cf. Figures 25.1 and 25.2).

The second insight is that it is possible to model the genealogy of a group of individuals
backward in time without worrying about the rest of the population. It is a general
consequence of the assumption of selective neutrality that each individual in a generation
can be viewed as ‘picking’ its parent at random from the previous generation. It follows
that the genealogy of a group of individuals may be generated by simply tracing the
lineages back in time, generation by generation, keeping track of coalescences between
lineages, until eventually the MRCA is found. It is particularly easy to see how this is
done for the Wright–Fisher model, where individuals pick their parents independently of
each other.
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MRCA of the
population

MRCA of the
sample

(a) (b)

Time

Figure 25.2 The genetic composition of a group of individuals is completely determined by the
group’s genealogy and the mutations that occur on it. The genealogy of the final generation in
Figure 25.1 is shown on the left, and the genealogy of a sample from this generation is shown on
the right. These trees could have been generated backward in time without generating the rest of
Figure 25.1.

In summary, the joint effects of random reproduction (which causes ‘genetic drift’ )
and random neutral mutations in determining the genetic composition of a group of
clonal individuals (such as a generation or a sample thereof) may be modeled by
first generating the random genealogy of the individuals backward in time, and then
superimposing mutations forward in time. This approach leads directly to extremely
efficient computer algorithms (cf. the ‘classical’ approach which is to simulate the entire,
usually very large population forward in time for a long period of time, and then to look
at the final generation). It is also mathematically elegant, as Section 25.2.2 will show.
However, its greatest value may be heuristic: the realization that the pattern of neutral
variation observed in a population can be viewed as the result of random mutations
on a random tree is a powerful one, which profoundly affects the way we think about
data.

In particular, we are almost always interested in biological phenomena that affect the
genealogical process, but do not affect the mutation process (e.g. population subdivision).
From the point of view of inference about such phenomena, the observed polymorphisms
are only of interest because they contain information about the unobserved underlying
genealogy. Furthermore, the underlying genealogy is only of interest because it contains
information about the evolutionary process that gave rise to it. In statistical terms, almost
all inference problems that arise from polymorphism data can be seen as ‘missing data’
problems.

It is crucial to understand this, because no matter how many individuals we sample,
there is still only a single underlying genealogy to estimate. It could of course be that
this single genealogy contains a lot of information about the interesting aspect of the
evolutionary process, but if it does not, then our inferences will be as good as one would
normally expect from a sample of size one!
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Another consequence of the above is that it is usually possible to understand how model
parameters affect polymorphism data by understanding how they affect genealogies. For
this reason, I will focus on the genealogical process and only discuss the neutral mutation
process briefly toward the end of the chapter.

25.2.2 The Coalescent Approximation

The previous subsection described the conceptual insights behind the coalescent approach.
The sample genealogies central to this approach can be conveniently modeled using
a continuous-time Markov process known as the coalescent (or Kingman’s coalescent,
or sometimes ‘the n-coalescent’ to emphasize the dependence on the sample size). We
will now describe the coalescent and show how it arises naturally as a large-population
approximation to the Wright–Fisher model. Its relationship to other models will be
discussed later.

Figure 25.2 is needlessly complicated because the identity (i.e. the horizontal position)
of all ancestors is maintained. In order to superimpose mutations, all we need to know
is which lineage coalesces with which, and when. In other words, we need to know the
topology, and the branch lengths. The topology is easy to model: because of neutrality,
individuals are equally likely to reproduce; therefore all lineages must be equally likely to
coalesce. It is convenient to represent the topology as a sequence of coalescing equivalence
classes: two members of the original sample are equivalent at a certain point in time if
and only if they have a common ancestor at that time (see Figure 25.3). But what about
the branch lengths, that is, the coalescence times?

Follow two lineages back in time. We have seen that offspring pick their parents
randomly from the previous generation, and that, under the Wright–Fisher model, they
do so independently of each other. Thus, the probability that the two lineages pick the
same parent and coalesce is 1/N , and the probability that they pick different parents
and remain distinct is 1− 1/N . Since generations are independent, the probability that
they remain distinct more than t generations into the past is (1− 1/N)t . The expected
coalescence time is N generations. This suggests a standard continuous-time diffusion

1 32

T(2)

T(3)
{{1},{2},{3}}

{{1,2},{3}}

{{1,2,3}}
Time

Figure 25.3 The genealogy of a sample can be described in terms of its topology and branch
lengths. The topology can be represented using equivalence classes for ancestors. The branch
lengths are given by the waiting times between successive coalescence events.
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approximation, which is good as long as N is reasonably large (see Chapter 22). Rescale
time so that one unit of scaled time corresponds to N generations. Then the probability
that the two lineages remain distinct for more than τ units of scaled time is(

1− 1

N

)[Nτ ]

−−−→ e−τ , (25.1)

as N goes to infinity ([Nτ ] is the largest integer less than or equal to Nτ ). Thus, in the
limit, the coalescence time for a pair of lineages is exponentially distributed with mean 1.

Now consider k lineages. The probability that none of them coalesce in the previous
generation is

k−1∏
i=0

N − i
N

=
k−1∏
i=1

(
1− i

N

)
= 1−

(
k

2

)
N

+O
(

1

N2

)
, (25.2)

and the probability that more than two do so is O(1/N2). Let T (k) be the (scaled)
time till the first coalescence event, given that there are currently k lineages. By the same
argument as above, T (k) is in the limit exponentially distributed with mean 2/[(k(k − 1))].
Furthermore, the probability that more than two lineages coalesce in the same generation
can be neglected. Thus, under the coalescent approximation, the number of distinct
lineages in the ancestry of a sample of (finite) size n decreases in steps of one back
in time, so T (k) is the time from k to k − 1 lineages (see Figure 25.3).

In summary, the coalescent models the genealogy of a sample of n haploid individuals
as a random bifurcating tree, where the n− 1 coalescence times T (n), T (n− 1), . . . , T (2)
are mutually independent, exponentially distributed random variables. Each pair of
lineages coalesces independently at rate 1, so the total rate of coalescence when there
are k lineages is ‘k choose 2’. A concise (and rather abstract) way of describing the
coalescent is as a continuous-time Markov process with state space En given by the set
of all equivalence relations on {1, . . . , n}, and infinitesimal generator Q = (qξη)ξ,η∈En
given by

qξη :=
{−k(k − 1)/2, if ξ = η,

1, if ξ ≺ η,
0, otherwise,

(25.3)

where k := |ξ | is the number of equivalence classes in ξ , and ξ ≺ η if and only if η is
obtained from ξ by coalescing two equivalence classes of ξ .

It is worth emphasizing just how efficient the coalescent is as a simulation tool. In
order to generate a sample genealogy under the Wright–Fisher model as described in
Section 25.2.1, we would have to go back in time some N generations, checking for
coalescences in each of them. Under the coalescent approximation, we simply generate
n− 1 independent exponential random numbers and, independently of these, a random
bifurcating topology.

What do typical coalescence trees look like? Figure 25.4 shows four examples. It is
clear that the trees are extremely variable, both with respect to topology and branch
lengths. This should come as no surprise considering the description of the coalescent
just given: the topology is independent of the branch lengths; the branch lengths are
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independent, exponential random variables; and the topology is generated by randomly
picking lineages to coalesce (in this sense all topologies are equally likely).

Note that the trees tend to be dominated by the deep branches, when there are few
ancestors left. Because lineages coalesce at rate ‘k choose 2’, coalescence events occur
much more rapidly when there are many lineages (intuitively speaking, it is easier for
lineages to find each other then). Indeed, the expected time to the MRCA (the height of
the tree) is

E

[
n∑
k=2

T (k)

]
=

n∑
k=2

E[T (k)] =
n∑
k=2

2

k(k − 1)
= 2

(
1− 1

n

)
, (25.4)

while E[T (2)] = 1, so the expected time during which there are only two branches is
greater than half the expected total tree height. Furthermore, the variability in T (2)
accounts for most of the variability in tree height. The dependence on the deep branches
becomes increasingly apparent as n increases, as can be seen by comparing Figures 25.4
and 25.5.

The importance of realizing that there is only a single underlying genealogy was
emphasized earlier. As a consequence of the single genealogy, sampled gene copies from
a population must almost always be treated as dependent, and increasing the sample size
is therefore often surprisingly ineffective (the point is well made by Donnelly, 1996).
Important examples of this follow directly from the basic properties of the coalescent.
Consider first the MRCA of the population. One might think that a large sample is needed
to ensure that the deepest split is included, but it can be shown (this and related results can
be found in Saunders et al., 1984) that the probability that a sample of size n contains the
MRCA of the whole population is (n− 1)/(n+ 1). Thus even a small sample is likely to

Figure 25.4 Four realizations of the coalescent for n = 6, drawn on the same scale (the labels
1–6 should be assigned randomly to the tips).

Figure 25.5 Three realizations of the coalescent for n = 32, drawn on the same scale (the labels
1–32 should be assigned randomly to the tips).
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contain it and the total tree height will quickly stop growing as n increases. Second, the
number of distinct lineages decreases rapidly as we go back in time. This severely limits
inferences about ancient demography (e.g. Nordborg, 1998). Third, since increasing the
sample size only adds short twigs to the tree (cf. Figure 25.5), the expected total branch
length of the tree, Ttot(n) grows very slowly with n. We have

E[Ttot(n)] = E

[
n∑
k=2

kT (k)

]
=
n−1∑
k=1

2

k
∼ 2(γ+ log n), (25.5)

as n→∞ (γ ≈ 0.577 216 is Euler’s constant). Since the number of mutations that are
expected to occur in a tree is proportional to E[Ttot(n)], this has important consequences
for estimating the mutation rate, as well as for inferences that depend on estimates of the
mutation rate. Loosely speaking, it turns out that a sample of n copies of a gene often
has the statistical properties one would expect of a random sample of size log n, or even
of size 1 (which is not much worse than logn in practice).

25.3 GENERALIZING THE COALESCENT

This section will present ideas and concepts that are important for generalizing the
coalescent. The following sections will then illustrate how these can be used to incorporate
greater biological realism.

25.3.1 Robustness and Scaling

We have seen that the coalescent arises naturally as an approximation to the Wright–Fisher
model, and that it has convenient mathematical properties. However, the real importance
of the coalescent stems from the fact that it arises as a limiting process for a wide range
of neutral models, provided time is scaled appropriately (Kingman, 1982b; 1982c; Möhle,
1998b; 1999). It is thus robust in this sense.

This is best explained through an example. Recall that the number of offspring
contributed by each individual in the Wright–Fisher model is binomially distributed
with parameters N and 1/N . The mean is thus 1, and the variance is 1− 1/N → 1,
as N →∞. Now consider a generalized version of this model in which the mean number
of offspring is still 1 (as it must be for the population size to remain constant), but the
limiting variance is σ 2, 0 < σ 2 <∞ (perhaps giants step on 90 % of the individuals
before they reach reproductive age). It can be shown that this process also converges to
the coalescent, provided time is measured in units of N/σ 2 generations. We could also
measure time in units of N generations as before, but then E[T (2)] = 1/σ 2 instead of
E[T (2)] = 1, and so on. Either way, the expected coalescence time for a pair of lineages
is N/σ 2 generations. The intuition behind this is clear: increased variance in reproductive
success causes coalescence to occur faster (at a higher rate). In classical terms, ‘genetic
drift’ operates faster. By changing the way we measure time, this can be taken into
account, and the standard coalescent process obtained.

The remarkable fact is that a very wide range of biological phenomena (overlapping
generations, separate sexes, mating systems – several examples will be given below) can
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likewise be treated as a simple linear change in the time scale of the coalescent. This has
important implications for data analysis. The good news is that we may often be able to justify
using the coalescent process even though ‘our’ species almost certainly does not reproduce
according to a Wright–Fisher model (few species do). The bad news is that biological
phenomena that can be modeled this way will never be amenable to inference based on
polymorphism data alone. For example, σ 2 in the model above could never be estimated
from polymorphism data unless we had independent information aboutN (and vice versa).

Of course, we could not even estimate N/σ 2 without external data. It is important to
realize that all parameters in coalescent models are scaled, and that only scaled parameters
can be directly estimated from the data. In order to make any kind of statement about
unscaled quantities, such as population numbers, or ages in years or generations, external
information is needed. This adds considerable uncertainty to the analysis. For example,
an often used source of external information is an estimate of the neutral mutation
probability per generation. Roughly speaking, this estimate is obtained by measuring
sequence divergence between species, and dividing by the estimated species divergence
time (Li, 1997). The latter is in turn obtained from the fossil record and a rough guess of
the generation length. It should be clear that it is not appropriate to treat such an estimate
as a known parameter when analyzing polymorphism data. However, it should also be
noted that interesting conclusions can often be drawn directly from scaled parameters
(e.g. by looking at relative values). Such analyses are likely to be more robust, given the
robustness of the coalescent.

Because the generalized model above converges with the same scaling as a Wright–Fisher
model with a population size ofN/σ 2, it is sometimes said that it has an ‘effective population
size’,Ne = N/σ 2. Models that scale differently would then have other effective population
sizes. Although convenient, this terminology is unfortunate for at least two reasons. First,
the classical population genetics literature is full of variously defined ‘effective population
sizes’, only some of which are effective population sizes in the sense used here. For example,
populations that are subdivided or vary in size cannot in general be modeled as a linear
change in the time scale of the coalescent. Second, the term is inevitably associated with
real population sizes, even though it is simply a scaling factor. To be sure, Ne is always
a function of the real demographic parameters, but there is no direct relationship with the
total population size (which may be smaller as well as much, much larger). Indeed, as we
shall see in Section 25.7, it is now clear that Ne must vary between chromosomal regions
in the same organism!

25.3.2 Variable Population Size

Real populations vary in size over time. Although the coalescent is not robust to variation
in the population size in the sense described above (i.e. there is no ‘effective population
size’ ), it is nonetheless easy to incorporate changes in the population size, at least if
we are willing to assume that we know what they were – that is, if we assume that the
variation can be treated deterministically. Since a rigorous treatment of these results can
be found in the review by Donnelly and Tavaré (1995), also in Chapter 22 this volume,
I will try to give an intuitive explanation.

Imagine a population that evolves according to the Wright–Fisher model, but with
a different population size in each generation. If we know how the size has changed
over time, we can trace the genealogy of a sample precisely as before. Let N(t) be the
population size t generations ago. Going back in time, lineages are more likely to coalesce
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in generations when the population is small than in generations when the population is
large. In order to describe the genealogy by a continuous-time process analogous to the
coalescent, we must therefore allow the rate of coalescence to change over time. However,
since the time scale used in the coalescent directly reflects the rate of coalescence, we
may instead let this scaling change over time. In the standard coalescent, t generations
ago corresponds to t/N units of coalescence time, and τ units of coalescence time ago
corresponds to [Nτ ] generations. When the population size is changing, we find instead
that t generations ago corresponds to

g(t) :=
t∑
i=1

1

N(i)
(25.6)

units of coalescence time, and τ units of coalescence time ago corresponds to [g−1(τ )]
generations (g−1 denotes the inverse function of g). It is clear from equation (25.6) that
many generations go by without much coalescence time passing when the population size
is large, and, conversely, that much coalescence time passes each generation when the
population is small. Let N(0) go to infinity, and assume that N(t)/N(0) converges to
a finite number for each t , to ensure that the population size becomes large in every
generation. It can be shown that the variable population size model converges to a
coalescent process with a nonlinear time scale in this limit (Griffiths and Tavaré, 1994).
The scaling is given by (25.6). Thus, a sample genealogy from the coalescent with variable
population size can be generated by simply applying g−1 to the coalescence times of a
genealogy generated under the standard coalescent.

An example will make this clearer. Consider a population that has grown exponentially,
so that, backwards in time, it shrinks according to N(t) = N(0)e−βt (note that this violates
the assumption that the population size be large in every generation – this turns out not
to matter greatly). Then

g(t) ≈
∫ t

0

1

N(s)
ds = eβt − 1

N(0)β
, (25.7)

and

g−1(τ ) ≈ log(1+N(0)βτ)
β

. (25.8)

The difference between this model and one with a constant population size is shown in
Figure 25.6. When the population size is constant, there is a linear relationship between
real and scaled time. The genealogical trees will tend to look like those in Figures 25.4
and 25.5. When the population size is changing, the relationship between real and scaled
time is nonlinear, because coalescences occur very slowly when the population was large,
and more rapidly when the population was small. Genealogies in an exponentially growing
population will tend to have most coalescences early in the history. Since all branches
will then be of roughly equal length, the genealogy is said to be ‘starlike’.

Models of exponential population growth have often been used in the context of human
evolution (e.g. Rogers and Harpending, 1992; Slatkin and Hudson 1991). Marjoram
and Donnelly (1997) have pointed out that some of the predictions from such models
(e.g. the starlike genealogies) depend crucially on exponential growth from a very small
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Figure 25.6 Variable population size can be modeled as a standard coalescent with a nonlinear
time scale. Here, a constant population is compared to one that has grown exponentially. As the
latter population shrinks backward in time, the scaled time begins to run faster, reflecting the fact
that coalescences are more likely to have taken place when the population was small. Note that the
trees are topologically equivalent and differ only in the branch lengths.

size – unrealistically small for humans. However, other predictions are more robust. For
example, the argument in the previous paragraph explains why it may be reasonable
to ignore growth altogether when modeling human evolution, even though growth has
clearly taken place: if the growth was rapid and recent enough, no scaled time would
pass, and no coalescence occur. In classical terms, exponential growth stops genetic
drift.

Finally, it should be pointed that it is not entirely clear how general the nonlinear scaling
approach to variable population sizes is. It relies, of course, on knowing the historical
population sizes, but it also requires assumptions about the type of density regulation
(Marjoram and Donnelly, 1997).

25.3.3 Population Structure on Different Time Scales

Real populations are also often spatially structured, and it is obviously important to be able
to incorporate this in our models. However, structured models turn out to be even more
important than one might have expected from this, because many biological phenomena
can be thought of as analogous to population structure (Nordborg, 1997; Rousset, 1999a).
Examples range from the obvious, like age structure, to the more abstract, like diploidy
and allelic classes.

The following model, which may be called the ‘structured Wright–Fisher model’, turns
out to be very useful in this context. Consider a clonal population of size N , as before, but
let it be subdivided into patches of fixed sizes Ni , i ∈ {1, . . . ,M}, so that

∑
i Ni = N . In
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every generation, each individual produces an effectively infinite number of propagules.
These propagules then migrate among the patches independently of each other, so that
with probability mij , i, j ∈ {1, . . . ,M}, a propagule produced in patch i ends up in patch
j . We also define the ‘backward migration’ probability, bij , i, j ∈ {1, . . . ,M}, that a
randomly chosen propagule in patch i after dispersal was produced in patch j ; it is easy
to show that

bij =
Njmji∑
k

Nkmki

. (25.9)

The next generation of adults in each patch is then formed by random sampling from the
available propagules.

Thus the number of offspring a particular individual in patch i contributes to the
next generation in patch j is binomially distributed with parameters Nj and bjiN

−1
i .

The joint distribution of the numbers of offspring contributed to the next generation
in patch j by all individuals in the current generation is multinomial (but no longer
symmetric).

Just like the unstructured Wright–Fisher model, the genealogy of a finite sample
in this model can be described by a discrete-time Markov process. Lineages coalesce
in the previous generation if and only if they pick the same parental patch, and the
same parental individual within that patch. A lineage currently in i and a lineage
currently in j ‘migrate’ (backward in time) to k and coalesce there with proba-
bility bikbjkN

−1
k .

It is also possible to approximate the model by a continuous-time Markov process.
The general idea is to let the total population size, N , go to infinity with time scaled
appropriately, precisely as before. However, we now also need to decide how M , Ni ,
and bij scale with N . Different biological scenarios lead to very different choices in this
respect, and it is often possible to utilize convergence results based on separation of time
scales (Möhle, 1998a; Kaj, et al., 1991; Nordborg, 1997; 1999; Nordborg and Donnelly,
1997; Nordborg and Krone, 2002; Wakeley, 1999). This technique will be exemplified in
what follows.

25.4 GEOGRAPHICAL STRUCTURE

Genealogical models of population structure have a long history. The classical work
on identity coefficients (see Chapter 28) concerns genealogies when n = 2, and the
coalescent was also quickly used for this purpose (for early work see Slatkin, 1987;
Strobeck, 1987; Tajima, 1989a; Takahata, 1988).

Since geographical structure is reviewed in Chapter 28, we will mainly use it to
introduce some of the scaling ideas that are central to the coalescent. The discussion will
be limited to the structured Wright–Fisher model (which is a matrix migration model
when viewed as a model of geographic subdivision). Most coalescent modeling has been
done in this setting (reviewed in Wilkinson-Herbots, 1998 and Hudson, 1998). For time-
scale approximations different from the ones discussed below, see Takahata (1991) and
Wakeley (1999). An important variant of the model considers isolation: gene flow which
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stopped completely at some point in the past, for example due to speciation (e.g. Wakeley,
1996). For models of continuous environments and isolation-by-distance, see Barton and
Wilson (1995) and Wilkins and Wakeley (2002).

25.4.1 The Structured Coalescent

Assume that M , ci := Ni/N , and Bij := 2Nbij , i �= j , all remain constant as N goes to
infinity. Then, with time measured in units of N generations, the process converges
to the so-called ‘structured coalescent’, in which each pair of lineages in patch i

coalesces independently at rate 1/ci , and each lineage in i ‘migrates’ (backward in time)
independently to j at rate Bij /2 (Herbots, 1994; Notohara, 1990; Wilkinson-Herbots,
1998). The intuition behind this is as follows (an excellent discussion of how the scaled
parameters should be interpreted can be found in Chapter 22). By assuming that Bij
remains constant, we assure that the backward per-generation probabilities of leaving
a patch (bij , i �= j), are O(1/N). Similarly, by assuming that ci remains constant, we
assure that all per-generation coalescence probabilities are O(1/N). Thus, in any given
generation, the probability that all lineages remain in their patch, without coalescing,
is 1−O(1/N). Furthermore, the probabilities that more than two lineages coalesce,
that more than one lineage migrates, and that lineages both migrate and coalesce, are
all O(1/N2) or smaller. In the limit N →∞, the only possible events are pairwise
coalescences within patches, and single migrations between patches.

These events occur according to independent Poisson processes, which means the
following. Let ki denote the number of lineages currently in patch i. Then the waiting
time till the first event is exponentially distributed with rate given by the sum of the rates
of all possible events, that is,

h(k1, . . . , kM) =
∑
i

(
ki
2

)
ci
+
∑
j �=i
ki
Bij

2

 . (25.10)

When an event occurs, it is a coalescence in patch i with probability(
ki
2

)
/ci

h(k1, . . . , kM)
, (25.11)

and a migration from i to j with probability

kiBij /2

h(k1, . . . , kM)
. (25.12)

In the former case, a random pair of lineages in i coalesces, and ki decreases by one. In
the latter case, a random lineage moves from i to j , ki decreases by one, and kj increases
by one. A simulation algorithm would stop when the MRCA is found, but note that this
single remaining lineage would continue migrating between patches if followed further
back in time.

Structured coalescent trees generally look different from standard coalescent trees.
Whereas variable population size only altered the branch lengths of the trees, population
structure also affects the topology. If migration rates are low, lineages sampled from the
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same patch will tend to coalesce with each other, and a substantial amount of time can
then pass before migration allows the ancestral lineages to coalesce (see Figure 25.7).
Structure will often increase the mean and, equally importantly, the variance in time to
the MRCA considerably (discussed in the context of human evolution by Marjoram and
Donnelly, 1997).

25.4.2 The Strong-migration Limit

It is intuitive that weak migration, which corresponds to strong population subdivision, can
have a large effect on genealogies. Conversely, we would expect genealogies in models
with strong migration to look much like standard coalescent trees. This intuition turns out
to be correct, except for one important difference: the scaling changes. Strong migration
is thus one of the phenomena that can be modeled as a simple linear change in the time
scale of the coalescent. It is important to understand why this happens.

Formally, the strong-migration limit means that limN→∞Nbij = ∞ because the per-
generation migration probabilities, bij , are not O(1/N). Since the coalescence probabili-
ties are O(1/N), this means that, for large N , migration will be much more likely than
coalescence. As N →∞, there will in effect be infinitely many migration events between
coalescence events. This is known as separation of time scales: migration occurs on a
faster time scale than does coalescence. However, coalescences can of course still only
occur when two lineages pick a parent in the same patch. How often does this happen?
Because lineages jump between patches infinitely fast on the coalescence time scale, this
is determined by the stationary distribution of the migration process (strictly speaking,
this assumes that the migration matrix is ergodic). Let πi be the stationary probability that
a lineage is in patch i. A given pair of lineages then co-occur in i a fraction π2

i of the
time. Coalescence in this patch occurs at rate 1/ci . Thus the total rate at which pairs of
lineages coalesce is α :=∑

i π
2
i /ci . Pairs coalesce independently of each other just as in

the standard model, so the total rate when there are k lineages is
(
k

2

)
α. If time is measured

in units of Ne = N/α generations, the standard coalescent is retrieved (Nagylaki, 1980;
Notohara, 1993).

It can be shown that α ≥ 1, with equality if and only if
∑
j �=i Nibij =

∑
j �=i Njbji

for all i. This condition means that, going forward in time, the number of emigrants
equals the number of immigrants in all populations, a condition known as ‘conservative

Figure 25.7 Three realizations of the structured coalescent in a symmetric model with two patches,
and n = 3 in each patch (labels should be assigned randomly within patches). Lineages tend to
coalesce within patches – but not always, as shown by the rightmost tree.
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migration’ (Nagylaki, 1980). Thus we see that, unless migration is conservative, the
effective population size with strong migration is smaller than the total population size.
The intuitive reason for this is that when migration is nonconservative, some individuals
occupy ‘better’ patches than others, and this increases the variance in reproductive success
among individuals. The environment has ‘sources’ and ‘sinks’ (Pulliam, 1988; Rousset,
1999b). Conservative migration models (like Wright’s island model) have many simple
properties that do not hold generally (Nagylaki, 1982; 1998; Nordborg, 1997).

25.5 SEGREGATION

Because everything so far has been done in an asexual setting, it has not been necessary to
distinguish between the genealogy of an organism and that of its genome. This becomes
necessary in sexual organisms. Most obviously, a diploid organism that was produced
sexually has two parents, and each chromosome came from one of them. The genealogy
of the genes is thus different from the genealogy (the pedigree) of the individuals: the
latter describes the possible routes the genes could have taken (and is largely irrelevant –
cf. Figure 25.9). This is simply Mendelian segregation viewed backwards in time, and it
is the topic of this section. It is usually said that diploidy can be taken into account by
simply changing the scaling from N to 2N ; it will become clear from what follows why,
and in what sense, this is true.

The other facet of sexual reproduction, genetic recombination, turns out to have much
more important effects. Genetic recombination causes ancestral lineages to branch, so
that the genealogy of a sample can no longer be represented by a single tree: instead it
becomes a collection of trees, or a single, more general type of graph. We will continue
to ignore recombination until Section 25.6 (it makes sense to discuss diploidy first).

Sex takes many forms: I will first consider organisms that are hermaphroditic and
therefore potentially capable of fertilizing themselves (this includes most higher plants
and many mollusks), and thereafter discuss organisms with separate sexes (which includes
most animals and many plants). Further examples can be found in Nordborg and Krone
(2002).

25.5.1 Hermaphrodites

The key to modeling diploid populations is the realization that a diploid population
of size N can be thought of as a haploid population of size 2N , divided into N

patches of size 2. In the notation of the structured Wright–Fisher model above, M = N ,
Ni = 2, and ci = 2/N . Thus, in contrast to the assumptions for the structured coalescent,
both M and ci depend on N . This leads to a convenient convergence result based on
separation of time scales (Nordborg and Donnelly, 1997; for a formal proof, see Möhle,
1998a), that can be described as follows (cf. Figure 25.8).

If time is scaled in units of 2N generations, then each pair of lineages ‘coalesces’ into
the same individual at rate 2. Whenever this happens, there are two possibilities: either the
two lineages pick the same of the two available (haploid) parents, or they pick different
ones. The former event, which occurs with probability 1

2 , results in a real coalescence,
whereas the latter event, which also occurs with probability 1

2 , simply results in the two
distinct lineages temporarily occupying the same individual. Let S be the probability
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Figure 25.8 The coalescent with selfing. On the coalescent time scale, lineages within individuals
instantaneously coalesce (probability F ), or end up in different individuals (probability 1− F ).

that a fertilization occurs through selfing, and 1− S the probability that it occurs through
outcrossing. If the individual harboring two distinct lineages was produced through selfing
(probability S), then the two lineages must have come from the same individual in the
previous generation, and again pick different parents with probability 1

2 or coalesce with
probability 1

2 . If the individual was produced through outcrossing, the two lineages revert
to occupying distinct individuals. Thus the two lineages will rapidly either coalesce or
end up in different individuals. The probability of the former outcome is

S/2

S/2+ 1− S =
S

2− S =: F, (25.13)

and that of the latter 1− F . Thus each time a pair of lineages coalesces into the same
individual, the total probability that this results in a coalescence event is 1

2 × 1+ 1
2 × F =

(1+ F)/2, and since pairs of lineages coalesce into the same individual at rate 2, the rate
of coalescence is 1+ F . On the chosen time scale, all states that involve two or more
pairs occupying the same individual are instantaneous.

Thus, the genealogy of a random sample of gene copies from a population of
hermaphrodites can be described by the standard coalescent if time is scaled in units of

2Ne =
2N

1+ F (25.14)

generations (cf. Pollak, 1987). If individuals are obligate outcrossers, F = 0, and the
correct scaling is 2N .

It should be noted that a sample from a diploid population is not a random sample of
gene copies, because both copies in each individual are sampled. This is easily taken into
account. It follows from the above that the two copies sampled from the same individual
will instantaneously coalesce with probability F , and end up in different individuals with
probability 1− F . The number of distinct lineages in a sample of 2n gene copies from n
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individuals is thus 2n−X, where X is as a binomially distributed random variable with
parameters n and F . This corresponds to the well-known increase in the frequency of
homozygous individuals predicted by classical population genetics. Note that this initial
‘instantaneous’ process has much nicer statistical properties than the coalescent, and
that most of the information about the degree of selfing comes from the distribution
of variability within and between individuals (Nordborg and Donnelly, 1997).

25.5.2 Males and Females

Next consider a diploid population that consists of Nm breeding males and Nf breeding
females so that N = Nm +Nf . The discussion will be limited to autosomal genes, that
is, genes that are not sex-linked. With respect to the genealogy of such genes, the total
population can be thought of as a haploid population of size 2N , divided into two patches
of size 2Nm and 2Nf , respectively, each of which is further divided into patches of size

2, as in the previous section. Clearly, a lineage currently in a male has probability 1
2

of coming from a male in the previous generation, and probability 1
2 of coming from a

female. Within a sex, all individuals are equally likely to be chosen. The model looks a
lot like a structured Wright–Fisher model with M = 2, cm = Nm/N , cf = Nf /N , and

bmf = bfm = 1
2 , the only difference being that two distinct lineages in the same individual

must have come from individuals of different sexes in the previous generation, and thus do
not migrate independently of each other. However, because states involving two distinct
lineages in the same individual are instantaneous, this difference can be shown to be
irrelevant. Pairs of lineages in different individuals (regardless of sex) coalesce in the
previous generation if and only if both members of the pair came from: (a) the same sex;
(b) the same diploid individual within that sex; and (c) the same haploid parent within
that individual. This occurs with probability

1

4
× 1

Nm
× 1

2
+ 1

4
× 1

Nf
× 1

2
= Nm +Nf

8NmNf
, (25.15)

or, in the limit N →∞, with time measured in units of 2N generations, and cm and cf
held constant, at rate α = (4cmcf )−1 (in accordance with the strong-migration limit result
above). Alternatively, if time is measured in units of

2Ne =
2N

α
= 8NmNf
Nm +Nf

, (25.16)

generations, the standard coalescent is obtained (cf. Wright, 1931). Note that if Nm =
Nf = N/2, the correct scaling is again the standard one of 2N .

25.6 RECOMBINATION

In the era of genomic polymorphism data, the importance of modeling recombination
can hardly be overemphasized. When viewed backward in time, recombination (in the
broad sense that includes phenomena such as gene conversion and bacterial conjugation in
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Figure 25.9 The genealogy of a DNA segment (colored black) subject to recombination both
branches and coalesces. Note also that the genealogy of the sexually produced individuals (the
pedigree) is very different from the genealogy of their genes.

addition to crossing over) causes the ancestry of a chromosome to spread out over many
chromosomes in many individuals. The lineages branch, as illustrated in Figure 25.9. The
genealogy of a sample of recombining DNA sequences can thus no longer be represented
by a single tree: it becomes a graph instead. Alternatively, since the genealogy of each
point in the genome (each base pair, say) can be represented by a tree, the genealogy of
a sample of sequences may be envisioned as a ‘walk through tree space’.

25.6.1 The Ancestral Recombination Graph

As was first shown by Hudson (1983), incorporating recombination into the coalescent
framework is in principle straightforward. The following description is based on the
elegant ‘ancestral recombination graph’ of Griffiths and Marjoram (1996; 1997), which
is closely related to Hudson’s original formulation (for other approaches, see Simonsen
and Churchill, 1997; Wiuf and Hein, 1999b).

Consider first the ancestry of a single (n = 1) chromosomal segment from a diploid
species with two sexes and an even sex ratio. As shown in Figure 25.9, each recombination
event (depicted here as crossing over at a point – we will return to whether this is
reasonable below) in its ancestry means that a lineage splits into two, when going
backward in time. Recombination spreads the ancestry of the segment over many
chromosomes, or rather over many ‘chromosomal lineages’. However, as also shown in
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Figure 25.9, these lineages will coalesce in the normal fashion, and this will tend to bring
the ancestral material back together on the same chromosome (Wiuf and Hein, 1997).

To model this, let the per-generation probability of recombination in the segment be r ,
define ρ := limN→∞ 4Nr , and measure time in units of 2N generations. Then the (scaled)
time till the first recombination event is exponentially distributed with rate ρ/2 in the limit
as N goes to infinity. Furthermore, once recombination has created two or more lineages,
we find that these lineages undergo recombination independently of one another, and that
simultaneous events can be neglected. This follows from standard coalescent arguments
analogous to those presented for migration above. The only thing that may be slightly
nonintuitive about recombination is that the lineages we follow never recombine with each
other (the probability of such an event is vanishingly small): they always recombine with
the (infinitely many) nonancestral chromosomes.

Each recombination event increases the number of lineages by one, and because lineages
recombine independently, the total rate of recombination when there are k lineages is kρ/2.
Each coalescence event decreases the number of lineages by one, and the total rate of
coalescence when there are k lineages is k(k − 1)/2, as we have seen previously. Since
lineages are ‘born’ at a linear rate, and ‘die’ at a quadratic rate, the number of lineages is
guaranteed to stay finite and will even hit one occasionally – there will then temporarily
be a single ancestral chromosome again (Wiuf and Hein, 1997).

A sample of n lineages behaves in the same way. Each lineage recombines indepen-
dently at rate ρ/2, and each pair of lineages coalesces independently at rate 1. The number
of lineages will hit one occasionally. The segment in which this first occurs is known as
the ‘Ultimate’ MRCA, because, as we shall see, each point in the sample may well have
a younger MRCA.

The genealogy of a sample of n lineages back to the Ultimate MRCA can thus be
described by a branching and coalescing graph (an ‘ancestral recombination graph’ ) that
is analogous to the standard coalescent. A realization for n = 6 is shown in Figure 25.10.

What does a lineage in the graph look like? For each point in the segment under study,
it must contain information about which (if any) sample members it is ancestral to. It is
convenient to represent the segment as a (0,1) interval (this is just a coordinate system that
can be translated into base pairs or whatever is appropriate). An ancestral lineage can then
be represented as a set of elements of the form {interval, labels}, where the intervals are
those resulting from all recombinational breakpoints in the history of the sample (Fisher’s
‘junctions’ (Fisher, 1965) for aficionados of classical population genetics) and the labels
denote the descendants of that segment (using the ‘equivalence class’ notation introduced
previously). An example of this notation is given in Figure 25.10. Note that pieces of
a given chromosomal lineage will often be ancestral to no one in the sample. Indeed,
recombination in a nonancestral piece may result in an entirely nonancestral lineage!

So far nothing has been said about where or how recombination breakpoints occur.
This has been intentional, to emphasize that the ancestral recombination graph does not
depend on (most) details of recombination. It is possible to model almost any kind
of recombination (including, for example, various forms of gene conversion) in this
framework. But of course the graph has no meaning unless we interpret the recombination
events somehow. To proceed, we will assume that each recombination event results in
crossing over at a point, x, somewhere in (0,1). How x is chosen is again up to the
modeler: it could be a fixed point; it could be a uniform random variable; or it could be
drawn from some other distribution (perhaps centered around a ‘hotspot’). In any case, a
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Figure 25.10 A realization of an ancestral recombination graph for n = 6. There were four
recombination events, which implies 6+ 4− 1 = 9 coalescence events. Each recombination was
assumed to lead to crossing over at a point, which was chosen randomly in (0, 1). Four breakpoints
(or ‘junctions’ ) implies five embedded trees, which are shown underneath. The tree for a
particular chromosomal point is extracted from the graph by choosing the appropriate path at
each recombination event. I have followed the convention that one should ‘go left’ if the point is
located ‘to the left’ of (is less than) the breakpoint. Note that the two rightmost trees are identical.
The box illustrates notation that may be used to represent ancestral lineages in the graph. The
lineage pointed to is ancestral to: no (sampled) segment for the interval (0, 0.14); segment 6 for
the interval (0.14, 0.61); and segments 5 and 6 for the interval (0.61, 1).



COALESCENT THEORY 863

breakpoint needs to be generated for each recombination event in the graph. We also need
to know which branch in the graph carries which recombination ‘product’ (remember that
we are going backward in time). With breaks affecting a point, a suitable rule is that the
left branch carries the material to the ‘left’ of the breakpoint (i.e. in (0, x)), and the right
branch carries the material to the ‘right’ (i.e. in (x, 1)).

Once recombination breakpoints have been added to the graph, it becomes possible to
extract the genealogy for any given point by simply following the appropriate branches.
Figure 25.10 illustrates how this is done. An ancestral recombination graph contains a
number of embedded genealogical trees, each of which can be described by the standard
coalescent, but which are obviously not independent of each other. An alternative way of
viewing this process is thus as a ‘walk through tree space’ along the chromosome (Wiuf
and Hein, 1999). The strength of the correlation between the genealogies for linked points
depends on the scaled genetic distance between them, and goes to zero as this distance
goes to infinity. The number of embedded trees equals the number of breakpoints plus
one, but many of these trees may (usually will) be identical (cf. the two rightmost trees in
Figure 25.10). Note also that the embedded trees vary greatly in height. This means that
some pieces will have found their MRCA long before others. Indeed, it is quite possible
for every piece to have found its MRCA long before the Ultimate MRCA. A number of
interesting results concerning the number of recombination events and the properties of
the embedded trees are available (see Griffiths and Marjoram, 1996; 1997; Hudson, 1983;
1987; Hudson and Kaplan, 1985; Kaplan and Hudson, 1985; Pluzhnikov and Donnelly,
1996; Simonsen and Churchill, 1997; Wiuf and Hein, 1999a,b).

25.6.2 Properties and Effects of Recombination

It probably does not need to be pointed out that the stochastic process just described is
extremely complicated. At least I have found that whereas it is possible to develop a fairly
good intuitive understanding of the random trees generated by the standard coalescent,
the behavior of the random recombination graphs continues to surprise. It may therefore
be worth questioning first of all whether it is necessary to incorporate recombination. It
would seem reasonable that recombination could be ignored if it is sufficiently rare in
the segment studied (e.g. if the segment is very short). But what is ‘sufficiently rare’?
Consider a pair of segments. The probability that they coalesce before either recombines is

1

1+ 2(ρ/2)
= 1

1+ ρ (25.17)

(cf. equation (25.11)). In order for recombination not to matter, we would need to
have ρ ≈ 0. It is thus the scaled recombination rate that matters, not the per-generation
recombination probability. Estimates based on comparing genetic and physical maps
indicate that the average per-generation per-nucleotide probability of recombination is
of roughly the same order of magnitude as the average per-generation per-nucleotide
probability of mutation (which can be estimated in various ways). This means that the
scaled mutation and recombination rates will also be of the same order of magnitude, and,
thus, that recombination can be ignored when mutation can be ignored. In other words,
as long we restrict our attention to segments short enough not to be polymorphic, we do
not need to worry about recombination!

Of course, both recombination and mutation rates vary widely over the genome,
so regions where recombination can be ignored almost certainly exist. Unfortunately,
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whereas direct estimates of recombination probabilities (genetic distances) are restricted
to large scales, estimates of the recombination rate from polymorphism data are extremely
unreliable (Griffiths and Marjoram, 1996; Hudson, 1987; Hudson and Kaplan, 1985;
Wakeley, 1997; Wall, 2000; Fearnhead and Donnelly, 2001; McVean et al., 2002). The
latter problem is unavoidable. The main reason is the usual one that there is only a single
realization of the underlying genealogy. Thus, for example, numerous recombination
events in a particular region of a gene do not necessarily mean that it is a recombinational
hotspot: it could just be that that region has a deep enough genealogy for multiple
recombination events to have had time to occur. This is the same problem that affects
estimates of the mutation rate.

However, there are also problems peculiar to recombination. It is important to realize
that most recombination events are undetectable (Hudson and Kaplan, 1985). Recom-
bination in sequence data has often been inferred by identifying ‘tracts’ that have
obviously moved from one sequence to another. The presence of such tracts is actu-
ally indicative of low rather than of high recombination rates (Maynard Smith, 1999).
Even a moderate amount of recombination will wipe out the tracts. Recombination can
then only be ‘detected’ through the ‘four-gamete test’ (Hudson and Kaplan, 1985): the
four linkage configurations AB, Ab, aB, and ab for two linked loci can only arise
through recombination or repeated mutation (which is more likely is debatable (Eyre-
Walker et al., 1999; Templeton et al., 2000)). Furthermore, recombination events can
clearly only be detected if there is sufficient polymorphism. However, many recom-
bination events can never be detected even with infinite amounts of polymorphism
(Griffiths and Marjoram, 1997; Hudson and Kaplan, 1985; Nordborg, 2000). Consider,
for example, the two rightmost trees in Figure 25.10. These trees are identical. This
means that the recombination event that gave rise to them cannot possibly leave any
trace.

The phenomenon of undetectable breakpoints turns out to have special relevance for
models with inbreeding. The ‘forward’ intuition that corresponds to undetectable recom-
bination events is that these events took place in homozygous individuals. Inbreeding
increases the frequency of homozygous individuals, and can therefore have a consid-
erable effect on the recombination graph. It turns out that this effect can also be
modeled as a scaling change, but this time of the recombination rate. Thus, for
example, the recombination graph in a partially selfing hermaphrodite reduces to the
standard recombination graph if we introduce an ‘effective recombination rate’, ρe :=
ρ(1− F) (Nordborg, 2000). Recombination breaks up haplotypes much less efficiently
in inbreeders.

So far, we have only discussed the problems associated with recombination. It must
be remembered that recombination is the only thing that allows us to get around
the ‘single underlying genealogy’. Unlinked loci will, with respect to most ques-
tions, provide independent samples. Of course this also applies within a segment: if
ρ were infinite, then each base pair would be an independent locus (Pluzhnikov and
Donnelly, 1996). High rates of recombination are thus an enormous advantage for many
purposes.

Finally, it should be noted that since crossing over is mechanistically tied to gene
conversion, there is reason to question the applicability of the simple model used above
at the intragenic scale (Andolfatto and Nordborg, 1998; Nordborg, 2000). However,
the ancestral recombination graph is quite general, and more realistic recombination
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models have been developed (Wiuf, 2000; Wiuf and Hein, 2000). Models of other kinds
of recombination, such as bacterial transformation (Hudson, 1994) and intergenic gene
conversion (Bahlo, 1998), also exist.

25.7 SELECTION

The coalescent depends crucially on the assumption of selective neutrality, because if the
allelic state of a lineage influences its reproductive success, it is not possible to separate
‘descent’ from ‘state’. Nonetheless, it turns out that it is possible to circumvent this
problem, and incorporate selection into the coalescent framework. Two distinct approaches
have been used. The first is an elegant extension of the coalescent process, known
as the ‘ancestral selection graph’ (Krone and Neuhauser, 1997; Neuhauser and Krone,
1997). The genealogy is generated backward in time, as in the standard coalescent, but
it contains branching as well as coalescence events. The result is a genealogical graph
that is superficially similar to the one generated by recombination. Mutations are then
superimposed forward in time, and, with knowledge of the state of each branch, the
graph is ‘pruned’ to a tree by preferentially removing bad branches (i.e. those carrying
selectively inferior alleles). In a sense, the ancestral selection graph allows the separation
of descent from state by including ‘potential’ descent: lineages that might have lived, had
their state allowed it.

The second approach is based on two insights. First, a polymorphic population may be
thought of as subdivided into allelic classes within which there is no selection. Second,
if we know the historical sizes of these classes, then they may be modeled as analogous
to patches, using the machinery described above. Lineages then ‘mutate between classes’
rather than ‘migrate between patches’. This approach was pioneered in the context of the
coalescent by Kaplan et al. (1988). Knowing the past class sizes is the same as knowing
the past allele frequencies, so it is obviously not possible to study the dynamics of the
selectively different alleles themselves using this approach. However, it is possible to
study the effects of selection on the underlying genealogical structure, which is relevant
if we wish to understand how linked neutral variants are affected.

It is not entirely clear how the two approaches relate to each other. Since the second
approach requires knowledge of the past allele frequencies, it may be viewed as some kind
of limiting (strong selection) or, alternatively, conditional version of the selection graph
(Nordborg, 1999). However, whereas the second approach would be most appropriate for
very strong, deterministic selection, the selection graph requires all selection coefficients
to be O(1/N). This is an area of active research.

The ancestral selection graph is described in Chapter 22, and will not be discussed
here. The second approach, which might be called the ‘conditional structured coalescent’,
will be illustrated through three simple but very different examples.

25.7.1 Balancing Selection

By ‘balancing selection’ is meant any kind of selection that tends to maintain two or more
alleles in the population. The effect of such selection on genealogies has been studied
by a number of authors (Barton and Navarro, 2002; Hey, 1991; Hudson and Kaplan,
1988; Kaplan et al., 1988; Kaplan et al., 1991; Kelly and Wade, 2000; Navarro and
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Barton, 2002; Nordborg, 1997; 1999; Schierup et al., 2001; Takahata, 1990; Vekemans and
Slatkin, 1994). We will limit ourselves to the case of two alleles, A1 and A2, maintained
at constant frequencies p1 and p2 = 1− p1 by strong selection. Alleles mutate to the
other type with some small probability v per generation, and we define the scaled rate
ν := 4Nv. Reproduction occurs according to a diploid Wright–Fisher model, as for the
recombination graph above.

Consider a segment of length ρ that contains the selected locus. Depending on the
allelic state at the locus, the segment belongs to either the A1 or the A2 allelic class.
Say that it belongs to the A1 allelic class. Trace the ancestry of the segment a single
generation back in time. It is easy to see that its creation involved an A2 → A1 mutation
with probability

vp2

vp2 + (1− v)p1
= ν

4N
× p2

p1
+O

(
1

N2

)
, (25.18)

(cf. equation (25.9)), and involved recombination with probability r = ρ/(4N). Thus the
probability that neither happens is 1−O(1/N), and the probability of two events, for
example both mutation and recombination, is O(1/N2) and can be neglected. If nothing
happens, then the lineage remains in the A1 class. If there was a mutation, the lineage
‘mutates’ to the A2 allelic class. If there was a recombination event, we have to know
the genotype of the individual in which the event took place.

Because the lineage we are following is A1, we know that the individual must have
been either an A1A1 homozygote or an A1A2 heterozygote. What fraction of the A1 alleles
was produced by each genotype? In general, this will depend on their relative fitness as
well as their frequencies. Let xij be the frequency of AiAj individuals, and wij their
relative fitness. Then the probability that an A1 lineage was produced in a heterozygote is

w12x12/2

w12x12/2+ w11x11

. (25.19)

If we can ignore the differences in fitness, and assume Hardy–Weinberg equilibrium (see
Nordborg, 1999, for more on this), (25.19) simplifies to

p1p2

p1p2 + p2
1

= p2. (25.20)

Thus the probability that an A1 lineage ‘meets’ and recombines with an A2 segment
is equal to the frequency of A2 segments, which is intuitive. The analogous reasoning
applies to A2 lineages, which recombine with A1 segments with probability p1, and with
members of their own class with probability p2. It should be noted that the above can be
made rigorous using a model that treats genotypes as well as individuals as population
structure (Nordborg, 1999).

What happens when the lineage undergoes recombination? If it recombines in a homo-
zygote, then both branches remain in the A1 allelic class. However, if it recombines in a
heterozygote, then one of the branches (the one not carrying the ancestry of the selected
locus) will ‘jump’ to the A2 allelic class. The other branch remains in the A1 allelic class.

When more than two lineages exist, coalescences may occur, but only within allelic
classes (remember that since mutation is O(1/N) it is impossible for lineages to mutate
and coalesce in the same generation).

If time is measured in units of 2N generations, and we let N go to infinity, the model
converges to a coalescent process with the following types of events:
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Figure 25.11 Selection will have a local effect on genealogies. A realization of the coalescent
with recombination and strong balancing selection is shown. Lineages 1–3 belong to one allelic
class, and lineages 4–6 to the other. The selected locus is located in the middle of the region. The
plot shows how the time to the MRCA varies along the chromosome (the crosses denote cross-over
points). The three extracted trees exemplify how the topology and branch lengths are affected by
linkage to the selected locus. Note that the trees are not drawn to scale (the numbers on the arrows
give the heights).

• each pair of lineages in the Ai allelic class coalesces independently at rate 1/pi ;

• each lineage in Ai recombines with a segment in class j at rate ρpj ;

• each lineage in Ai mutates to Aj , j �= i, at rate νpj/pi .

The process may be stopped either when the Ultimate MRCA is reached, or when all
points have found their MRCA.

This model has some very interesting properties. Consider a sample that contains
both types of alleles. Since coalescence is only possible within allelic classes, the
selected locus (in the strict sense of the word, i.e. the ‘point’ in the segment where
the selectively important difference lies) cannot coalesce without at least one mutation
event. If mutations are rare, then this may have occurred a very long time ago. In other
words, the polymorphism may be ancient. All coalescences will occur within allelic classes
before mutation allows the final two lineages to coalesce. The situation is similar to strong
population subdivision (see Figure 25.7). However, this is only true for the locus itself:
linked pieces may ‘recombine away’ and coalesce much earlier. This will usually result
in a local increase in the time to MRCA centered around the selected locus, as illustrated
in Figure 25.11. Because the expected number of mutations is proportional to the height
of the tree, this may lead to a ‘peak of polymorphism’ (Hudson and Kaplan, 1988).
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25.7.2 Selective Sweeps

Next consider a population in which favorable alleles arise infrequently at a locus, and are
rapidly driven to fixation by strong selection. Each such fixation is known as a ‘selective
sweep’ for reasons that will become apparent. This process can be modeled using the
framework developed above, if we know how the allele frequencies have changed over
time. Of course we do not know this, but if the selection is strong enough, it may
be reasonable to model the increase in frequency of a favorable allele deterministically
(Kaplan et al., 1989).

Consider a population that is currently not polymorphic, but in which a selective
sweep recently took place. During the sweep, there were two allelic classes just as in
the balancing selection model above. The difference is that these classes changed in size
over time. In particular, the class corresponding to the allele that is currently fixed in the
population will shrink rapidly back in time. The genealogy of the selected locus itself (in
the ‘point’ sense used above) will therefore behave as if it were part of a population that
has expanded from a very small size (cf. Figure 25.6). Indeed, unlike ‘real’ populations,
the allelic class will have grown from a size of 1. A linked point must have grown in the
same way, unless recombination in a heterozygote took place between the point and the
selected locus. Whether this happens or not will depend on how quickly the new allele
increased. Typically, it depends on the ratio r/s, where s is the selective advantage of the
new allele, and r is the relevant recombination probability.

The result of such a fixation event is thus to cause a local ‘genealogical distortion’,
just like balancing selection. However, whereas the distortion in the case of balancing
selection looks like population subdivision, the distortion caused by a fixation event looks
like population growth. Close to the selected site, coalescence times will have a tendency
to be short, and the genealogy will have a tendency to be starlike (cf. Figure 25.6).
Note that a single recombination event in the history of the sample can change this, and
that the variance will consequently be enormous (note the variance in time to MRCA
in Figure 25.11). Shorter coalescence times mean less time for mutations to occur, so a
local reduction in variability is expected. This is obvious: when the new allele sweeps
through the population and fixes, it causes linked neutral alleles to ‘hitchhike’ along and
also fix (Maynard Smith and Haigh, 1974). Repeated selective sweeps can thus decrease
the variability in a genomic region (Kaplan et al., 1989; Simonsen et al., 1995; Kim and
Stephan, 2002; Przeworski, 2002). Because each sweep is expected to affect a bigger
region the lower the rate of recombination is, this has been proposed as an explanation
for the correlation between polymorphism and local rate of recombination that is observed
in many organisms (Begun and Aquadro, 1992; Nachman, 1997; Nachman et al., 1998).

25.7.3 Background Selection

We have seen that selection can affect genealogies in ways reminiscent of strong
population subdivision and of population growth. It is often difficult to distinguish
statistically between selection and demography for precisely this reason (Fu and Li,
1993; Tajima, 1989b). It is also possible for selection to affect genealogies in a way
that is completely undetectable, that is, as a linear change in time scale. This appears to
be the case for selection against deleterious mutations, at least under some circumstances
(Charlesworth et al., 1995; Hudson and Kaplan, 1994; 1995; Nordborg, 1997; Nordborg
et al., 1996).
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The basic reason for this is the following. Strongly deleterious mutations are rapidly
removed by selection. Looking backward in time, this means that each lineage that carries
a deleterious mutation must have a nonmutant ancestor in the near past. On the coalescent
time scale, lineages in the deleterious allelic class will ‘mutate’ (backward in time) to the
‘wild-type’ allelic class instantaneously. The process looks like a strong-migration model,
with the wild-type class as the source environment, and the deleterious class as the sink
environment: the presence of deleterious mutations increases the variance in reproductive
success. The resulting reduction in the effective population size is known as ‘background
selection’ (Charlesworth et al., 1993).

More realistic models with multiple loci subject to deleterious mutations, recombination,
and several mutational classes turn out to behave similarly. The strength of the background
selection effect at a given genomic position will depend strongly on the local rate of
recombination, which determines how many mutable loci influence a given point. Thus,
deleterious mutations have also been proposed as an explanation for the correlation
between polymorphism and local rate of recombination referred to above (Charlesworth
et al., 1993). The ‘effective population size’ would thus depend on the mutation, selection,
and recombination parameters in each genomic region.

It should be pointed out that, unlike the many limit approximations presented in this
chapter, the idea that background selection can be modeled as a simple scaling is not
mathematically rigorous. However, we would rather hope that selection against deleterious
mutations can be taken care of this way, because given that amino acid sequences are
conserved over evolutionary time, practically all of population genetics theory would be
in trouble otherwise!

25.8 NEUTRAL MUTATIONS

Not much has been said about the neutral mutation process because it is trivial from a
mathematical point of view. Once we know how to generate the genealogy, mutations
can be added afterwards according to a Poisson process with rate θ/2, where θ is the
scaled per-generation mutation probability. Thus, if a particular branch has length τ units
of scaled time, the number of mutations that occur on it will be Poisson-distributed with
mean τθ/2 (and they occur with uniform probability along the branch). It is also possible
to add mutations while the genealogy is being created, instead of afterwards. This can in
some circumstances lead to much more efficient algorithms (see, for example, the ‘urn
scheme’ described by Donnelly and Tavaré, 1995), although from the point of view of
simulating samples, all coalescent algorithms are so efficient that such fine-tuning does
not matter. However, it can matter greatly for the kinds of inference methods described
in Chapter 26.

It should be noted that the mutation process is just as general as the recombination
process. Almost any neutral mutation model can be used. A useful trick is so-called
‘Poissonization’: let mutation events occur according to a simple Poisson process with
rate θ/2, but once an event occurs, determine the type of event through some kind of
transition matrix which includes mutation back to self (i.e. there was no mutation). This
allows models where the mutation probability depends on the current allelic state.

The only restriction is that in order to interpret samples generated by the coalescent
as samples from the relevant stationary distribution (which incorporates demography,
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migration, selection at linked sites, etc.), we need to be able to choose the type of the
MRCA from the stationary distribution of the mutation process (alone, since demography,
for example, does not affect samples of size n = 1). In many cases, such as the infinite-
alleles model (each mutation gives rise to a new allele) or the infinite-sites model (each
mutation affects a new site), the state of the MRCA does not matter, since all we are
interested in is the number of mutational changes.

25.9 CONCLUSION

25.9.1 The Coalescent and ‘Classical’ Population Genetics

The differences between coalescent theory and ‘classical’ population genetics have
frequently been exaggerated or misunderstood. First, the basic models do not differ.
The coalescent is essentially a diffusion model of lines of descent. This can be done
forward in time, for the whole population (e.g. Griffiths, 1980), but it was realized
in the early 1980s that it is easier to do it backward in time. Second, the coalescent
is not limited to finite samples. Everything above has been limited to finite samples
because it is mathematically much easier, but it is likely that all of it could be
extended to the whole population. Of course, it is essential for the independence of
events that the number of lineages be finite, but in the whole-population coalescent
the number of lineages becomes finite infinitely fast (it is an ‘entrance boundary’,
e.g. Griffiths, 1984). Third, classical population genetics is not limited to the whole
population. A sample of size n = 6 from a K-allele model, say, could be obtained
either through the coalescent, or by first drawing a population from the stationary
distribution found by Wright (1949), and then drawing six alleles conditional on this
population. Note, however, that it would be rather more difficult (read ‘impossible’ )
to use the second approach for most models. Fourth, the coalescent is in no sense
tied to sequence data: any mutation model can be used. The impression that it is
came about doubtless because models for sequence evolution such as the infinite-
sites model are indeed impossibly hard to analyze using classical methods (Ethier and
Griffiths, 1987).

I would argue that the real difference is more philosophical. As has been pointed out
by Ewens (1979; 1990), essentially all of classical population genetics is ‘prospective’,
looking forward in time. Another way of saying this is that it is conditional: given the state
in a particular generation, what will happen? This approach is fine when modeling is done
to determine ‘how evolution might work’ (which is what most classical population genetics
was about). It is usually not suitable for statistical analysis of data, however. Wright
considered how ‘heterozygosity’ would decay from the same starting point in infinitely
many identical populations, that is to say, he took the expectation over evolutionary
realizations. Data, alas, come from a single time-slice of one such realization. The
coalescent forces us to acknowledge this, and allows the utilization of modern statistical
methods, such as the calculation of likelihoods for samples.

25.9.2 The Coalescent and Phylogenetics

If the differences between coalescent theory and classical population genetics have
sometimes been exaggerated, the differences between coalescent theory and phylogenetics
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have not always been fully appreciated. The central role played by trees in both turns out
to be very misleading.

To be able to compare them, we need to model speciation. This has usually been done
using an ‘isolation’ model in which randomly mating populations split into two completely
isolated ones at fixed times in the past. The result is a ‘species tree’, within which we find
‘gene trees’ (see Figure 25.12). The model is quite simple: lineages will tend to coalesce
within their species, and can only coalesce with lineages from other species back in the
ancestral species.

Molecular phylogenetics attempts to estimate the species tree by estimating the
genealogy of homologous sequences from the different species, that is, by estimating
the gene tree. The species tree is assumed to exist and is treated as a model parameter.

In addition, the standard methods rely on all branches in the species tree being very
long compared to within-species coalescence times. This means that the coalescent can
be ignored: regardless of how we sample, all (neutral) gene genealogies will rapidly
coalesce within their species, and thereafter have the same topology as the species tree.
Furthermore, the variation in the branch lengths caused by different coalescence times
in the ancestral species will be negligible compared to the lengths of the interspecific
branches. There is no need to sample more than one individual per species, and
recombination is completely irrelevant. Gene trees perfectly reflect the species tree.

It is of course widely acknowledged that gene trees and species trees may differ (see
Avise, 1994; Avise and Ball, 1990; Hey, 1994; Hudson, 1992; Li, 1997; Nei, 1987;
Takahata, 1989; Wu, 1991; phylogenetic methods are discussed in Chapters 15 and 16).
Nonetheless, phylogenetic methods would not work unless the interspecific branches
usually were long enough for the gene trees to reflect the species tree closely. Indeed,
in many situations, the problem is the opposite: the branches are so long that repeated
mutations have erased much of the phylogenetic information.

Species A Species B Species C

Figure 25.12 A gene tree within a species tree.
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Phylogenetic inference can thus be viewed as a ‘missing data’ problem just like
population genetic inference: polymorphisms contain information about an unobserved
genealogy, which in turn provides information about an evolutionary model. However,
note that in phylogenetics, there is relatively little doubt about what the right model is
(it is typically an isolation model that gives rise to a species tree, as in Figure 25.12).
Furthermore, because of the long branch lengths, the gene genealogies, although random
variables with a coalescent distribution under the model, can be treated as parameters
(which, among other things, means that we do not need to know the sizes of ancestral
populations to estimate divergence times). None of this is true when analyzing population
genetic data (which, strictly speaking, means any data for which the ‘long branch’
assumption above is not fulfilled). Unfortunately, the considerable success and popularity
of phylogenetics (coupled with the ready availability of user-friendly software) has
sometimes led to the inappropriate application of phylogenetic methods. It is important to
remember that a genealogical tree from a population (or several populations that have not
been isolated for a very long time) does not have an obvious interpretation: it certainly
contains information about the process that gave rise to it, but usually less than we would
hope (see Rosenberg and Nordborg, 2002).

25.9.3 Prospects

A theme of this review has been the versatility and generality of the coalescent model.
Considerable theoretical progress is being made, especially in the areas of statistical
inference and modeling selection. At the same time, we are entering the era of genomic
polymorphism data. This wealth of information will make it increasingly possible to
evaluate whether the models constructed by population genetics over the years actually
fit the data. It seems likely that we will find that the data is in many ways much less
informative than imagined (as happened before in population genetics; see Lewontin,
1991); it also seems likely that we will discover new phenomena that require new
models. Either way, the importance of a rigorous statistical approach to analyzing genetic
polymorphism data can hardly be overstated.
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Saunders, I.W., Tavaré, S. and Watterson, G.A. (1984). On the genealogy of nested subsamples

from a haploid population. Advances in Applied Probability 16, 471–491.



876 M. NORDBORG

Schierup, M.H., Mikkelsen, A.M. and Hein, J. (2001). Recombination, balancing selection and
phylogenies in MHC and self-incompatibility genes. Genetics 159, 1833–1844.

Simonsen, K.L. and Churchill, G.A. (1997). A Markov chain model of coalescence with
recombination. Theoretical Population Biology 52, 43–59.

Simonsen, K.L., Churchill, G.A. and Aquadro, C.F. (1995). Properties of statistical tests of neutrality
for DNA polymorphism data. Genetics 141, 413–429.

Slatkin, M. (1987). The average number of sites separating DNA sequences drawn from a subdivided
population. Theoretical Population Biology 32, 42–49.

Slatkin, M. (1996). Gene genealogies within mutant allelic classes. Genetics 143, 579–587.
Slatkin, M. and Hudson, R.R. (1991). Pairwise comparisons of mitochondrial DNA sequences in

stable and exponentially growing populations. Genetics 129, 555–562.
Slatkin, M. and Rannala, B. (1997a). Estimating the age of alleles by use of intraallelic variability.

American Journal of Human Genetics 60, 447–458.
Slatkin, M. and Rannala, B. (1997b). The sampling distribution of disease-associated alleles.

Genetics 147, 1855–1861.
Strobeck, C. (1987). Average number of nucleotide differences in a sample from a single

subpopulation: a test for population subdivision. Genetics 117, 149–153.
Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics 105,

437–460.
Tajima, F. (1989a). DNA polymorphism in a subdivided population: the expected number of

segregating sites in the two-subpopulation model. Genetics 123, 229–240.
Tajima, F. (1989b). Statistical method for testing the neutral mutation hypothesis by DNA

polymorphism. Genetics 123, 585–595.
Takahata, N. (1988). The coalescent in two partially isolated diffusion populations. Genetical

Research, Cambridge 52, 213–222.
Takahata, N. (1989). Gene genealogy in three related populations: consistency probability between

gene and population trees. Genetics 122, 957–966.
Takahata, N. (1990). A simple genealogical structure of strongly balanced allelic lines and trans-

species polymorphism. Proceedings of the National Academy of Sciences (USA) 87, 2419–2423.
Takahata, N. (1991). Genealogy of neutral genes and spreading of selected mutations in a

geographically structured population. Genetics 129, 585–595.
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This chapter introduces some modern statistical methods for inference from molecular population
genetic data. The methods are based on the use of the coalescent to model the genealogy relating
a random sample of chromosomes from a population, and help us to say something about the
demographic and genetic factors that shaped the evolution of populations from which the samples
were taken. The chapter focuses primarily on ‘full-data’ methods, which aim to make full use of the
high resolution of modern genetic data, rather than relying on simple summaries such as pair-wise
differences, or sample heterozygosity. These methods are often somewhat complex, and the aim
of this chapter is to provide practical guidelines for those who wish to apply these methods using
existing software, and sufficient theoretical background to understand how the methods work, at least
in outline. We also include a brief review of other popular approaches that provide computationally
attractive alternatives to full-data methods. In describing these methods, the chapter provides an
introduction to importance sampling and Markov chain Monte Carlo – statistical methods that are
likely to play a major role in the analyses of future genetic data.

26.1 INTRODUCTION

Genetic data collected from populations are potentially useful for answering a variety of
interesting questions. These questions could relate to, for example, the following:

• The genetic forces, such as mutation and recombination, which have affected the
evolution of a particular chromosomal segment or locus.

• The historical relationships amongst different subpopulations. In humans this includes
the relationships amongst different continental groups, and the times and routes of
major migrations.

• The ancestry of the sampled chromosomes, including, for example, the ages of
particular mutations, which are carried by some of the chromosomes.

This chapter describes some modern statistical methods for answering these kinds of
questions.
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Historically, inference in these settings has been based on summaries of the data,
such as pair-wise differences, or sample heterozygosity. In contrast, here we focus
primarily on methods that aim to make use of the full genetic data in order to
provide more accurate inference than is possible using simple summary statistics. These
modern methods make use of a theoretical innovation known as the coalescent (see
Chapter 25 for an introduction). Both methodological and computational advances
have made these ‘full-data’ methods tractable for some problems, although for other
applications, particularly those involving more than a small amount of recombination, full-
data approaches remain computationally intractable. In these cases, inference is generally
performed using summary statistics, or through other recently developed approximate
approaches, some of which we briefly review towards the end of the chapter. Some
of these approximate approaches are based on applying full-data approaches to smaller
subsets of the data, and then combining information across subsets. Thus, even where the
full-data methods themselves are intractable, they can nevertheless help provide a path to
an effective practical solution.

The chapter is intended for those who wish to use and understand full-data coalescent-
based inference methods. We give practical guidelines, with theoretical background and
examples. For ease of exposition, we focus on the simplest models, but most of the
principles we discuss will continue to hold in more complex settings. While the focus of
this chapter is on inference under the coalescent, many of the concepts and ideas discussed
are of more general interest. For example, the next section gives a brief introduction
to the ideas underlying likelihood inference and a discussion of the relative merits of
maximum-likelihood and Bayesian approaches. Later sections include descriptions of
computationally intensive statistical methods, such as importance sampling (IS) and
Markov chain Monte Carlo (MCMC), which have proved useful in a wide range of
statistical applications, including some related to genetics. Most of the comments we make
on these methods apply quite generally, and not only to problems involving the coalescent.

26.1.1 Likelihood-based Inference

Broadly speaking, likelihood-based methods of drawing inference from data proceed by
treating the observed data as having arisen from some random process, or model, certain
aspects of which are unknown. We refer to these unknown quantities as parameters.
Typically, the aim of a statistical analysis is to use the data to estimate the parameters
of the model, and (importantly) to assess the degree of uncertainty associated with these
estimates.

More explicitly, likelihood-based inference requires calculation of the probability,
P(D | ψ), of observing data D if the parameters of the model take the value ψ . The
likelihood L(ψ) is defined to be this quantity considered as a function of ψ :

L(ψ) = P(D | ψ). (26.1)

In the population genetics context, the data D are typically the genetic types of a random
sample of chromosomes.1 from a population Their distribution depends in a complex
way on many unknown parameters, relating to both the demographic history of the
population (e.g. population size, migration rates) and the underlying genetic mechanisms

1 In this chapter, when we refer to chromosomes we typically mean ‘chromosomal segments’.
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(e.g. mutation and recombination rates). It is not usually possible to write down an explicit
expression for the likelihood of these parameters.

For example, consider an idealised population, evolving according to the Wright–Fisher
model (see also Chapter 22). In other words, the population evolves in non-overlapping
generations, with constant size N chromosomes, with the number of offspring of the
chromosomes in each generation being symmetric multinomial, independently of their
genetic types (i.e. evolution is neutral). Assume a simple mutation model with K possible
genetic types, or alleles, with the distribution of the type of the offspring of a parent of
type i being given by

P(offspring of type j | parent of type i) = (1− µ)δij + µpij , (26.2)

where δij = 1 if i = j and 0 otherwise, and P = (pij ) is a known transition matrix (so pij
is the probability that an allele of type i mutates to type j , given that a mutation occurs).
Thus with probability 1− µ the offspring is an identical copy of the parent, but with
probability µ a mutation occurs according to the transition matrix P . Taken together, these
demographic and mutation processes specify a model for the evolution of the population,
with two unknown parameters, N and µ. The models are amongst the simplest imaginable,
avoiding the complications of fluctuating population size, selection or recombination, for
example. Nevertheless, if we examine the genetic types D of a random sample of N
chromosomes taken from the population after it has been evolving for a long period of
time, and ask, ‘how should we calculate the likelihood L(N,µ) = P(D | N,µ)?’ the
answer is far from obvious.

In this case it turns out that the probability P(D | N,µ) actually depends on N and µ
through only their product2 Nµ, and not the individual values of N and µ. As a result, it
is common to define the scaled mutation parameter3 θ = 2Nµ, and write the probability
P(D | N,µ) as P(D | θ). We can then concentrate on calculating the likelihood L(θ) for
the single parameter θ . For concreteness, the remainder of the chapter concentrates on
this problem, though most of the methods described can be extended to more complex
problems with more parameters (see Section 26.4.7 of this chapter).

Although reduction of the model to a single parameter simplifies things slightly, it
is still not possible to write down an explicit expression for the likelihood. However,
using methods described in later sections we can accurately approximate it. Figure 26.1
shows an approximation of the (log) likelihood surface for data on the β-globin gene
from Harding et al. (1997). We now consider how such a likelihood surface can be used
to estimate the parameter θ and to assess the uncertainty associated with this estimate.
There are two common approaches: the maximum-likelihood approach, and the Bayesian
approach.

26.1.1.1 Maximum-likelihood Inference

Perhaps the most common likelihood-based approach to parameter estimation is to esti-
mate θ by the maximum-likelihood estimate, θ̂ , which is that value of θ that maximises

2 Actually this is only an approximation that is derived by assuming N is large, and µ is small, but it is an
extremely accurate approximation in practice.

3 Our definition is based on our earlier definition of N as the number of chromosomes in the population.
An alternative is to define N to be the number of individuals in the population, in which case there are 2N
chromosomes if the individuals are diploid, and θ = 4Nµ.
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Figure 26.1 (a) Estimated log likelihood for the β-globin data from Harding et al. (1997). The
vertical solid line indicates the maximum-likelihood estimate, while the vertical dotted lines indicate
the approximate 95 % confidence interval found by taking values of θ for which the likelihood is
within 2 log likelihood units of the maximum. (b) Posterior density of θ for the same data, with
uniform prior on θ . The vertical solid line indicates the posterior mode, while the vertical dotted
lines indicate a 95 % credible region. In this case, the 95 % confidence interval and the 95 % credible
region are almost identical.

the likelihood L(θ). The uncertainty associated with this estimate is typically expressed
by giving a 95 % confidence region for θ , which is a set of values of θ that has the rather
tricky and non-intuitive interpretation that if you sampled data from the model repeatedly,
and created confidence regions in the same way, for 95 % of datasets, the region would
contain the true value of θ . The trickiness of this interpretation must be the source of
more confusion than almost any other basic statistical concept. Without dwelling on the
issue, we note that it is not correct to say that the probability that θ lies in the confidence
region is 0.95, which is the intuitive interpretation most people would like to place on
the interval: in order to make such statements, one must take a Bayesian approach, as
outlined below.

There is a rather general and elegant statistical theory underlying the maximum-
likelihood approach to inference. The theory states that under suitable conditions θ̂ will
be asymptotically4 normally distributed with mean being the ‘true’ value of θ , and that
the log likelihood ratio statistic

� = −2 log
L(θ0)

L(θ̂ )
, (26.3)

has asymptotically a χ-squared distribution, under repeated sampling from the model, if
θ0 is the ‘true’ value of θ . A useful consequence of this is that an approximate 95 %
confidence interval for a one-dimensional parameter θ may be obtained by considering
those θ for which the log likelihood is within two units of the maximum log likelihood.

4 The term asymptotically here means ‘as the amount of data tends to infinity’. The implicit hope is that
asymptotic results will be good approximations for reasonably large amounts of data. This is, of course, not
always the case.
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The maximum likelihood estimate of θ for the β-globin data (Figure 26.1) is θ = 2.75,
and an approximate 95 % confidence interval found in this way is [1.73, 4.91].

Note that we have emphasised the phrase ‘under suitable conditions’ in the previous
paragraph. This is because in the types of applications considered here, these suitable
conditions often fail to hold, destroying the validity of the asymptotic theory, and
making the construction of valid confidence intervals much more difficult. The reason the
conditions often fail to hold in genetics applications is that, unlike most statistical problems
where observed data are independent, the types of randomly sampled chromosomes are
not independent, owing to the fact that they share ancestry. In the same way that you and
your parents are related, and your genetic types are not independent, randomly sampled
chromosomes are also (more distantly) related, and their types are not independent. These
relationships between sampled chromosomes are of course exactly those that lead to the
coalescent. While this lack of independence does not in itself necessarily preclude the
standard theory from applying, in many settings it is known that the standard theory does
not hold, and in other settings it is unclear. The standard method for obtaining confidence
intervals from the likelihood, and indeed any procedure that relies on the asymptotic
χ-squared distribution of the likelihood ratio statistic, must therefore be used with caution
in population genetics applications.

Proponents of the maximum-likelihood approach sometimes claim that it has the
advantage (over the Bayesian approach described below) of ‘objectivity’, in that the
opinion of the researcher should not affect the results obtained. However, this is
only partially true since specification of the likelihood function itself typically requires
subjective judgements to be made about what to include in the model. For example, is
it plausible to assume that all sites mutate at an equal rate? Should we assume that
the population has grown linearly or exponentially? Can we ignore selection and/or
recombination? The answers to such questions are often unclear, and in practice it
is necessary to make some subjective modelling assumptions in order to proceed.
Furthermore, the maximum-likelihood approach provides no coherent way for making
use of information we have about parameters in the model from sources other than the
data: from archaeological or anthropological sources, or previous genetics studies for
example. The Bayesian approach to inference allows such information to be included in
the analysis.

26.1.1.2 Bayesian Inference

Bayesian methods also make use of the likelihood in performing inference for parameters
in the model, but they allow (indeed require) the incorporation of ‘prior information’ about
the model parameters. Formally, information about the parameters θ must be expressed by
specifying a prior or pre-data distribution P(θ) for θ . The distribution P(θ) is weighted
towards those θ that are considered most likely according to our prior information. This
prior information is then combined with the likelihood by multiplying them together to
give the posterior or post-data distribution P(θ | D):

P(θ | D) = L(θ)P (θ)/P (D). (26.4)

From this equation we see that P(θ | D) will be large for values of θ that are both
well-supported by the data (i.e. have high likelihood) and are consistent with our prior
information (high P(θ)).
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The post-data distribution represents our beliefs about the parameters, taking into
account both our prior information and the observed data. It is often convenient to
summarise these beliefs in some way. For example, it is common practice to report a
point estimate for θ (usually the mode of the post-data distribution) and to specify a 95 %
credible region for θ , which is a set of values 
 satisfying P(θ ∈ 
 | D) = 0.95. Unlike a
confidence region, a 95 % credible region has the natural interpretation that the probability
that θ is in the region is 0.95. Another nice feature is that the Bayesian approach does not
rely on asymptotic arguments, and so is valid in settings where the standard likelihood
theory fails.

For the β-globin data, taking our prior distribution on θ to be uniform in the range
0–10, thus favouring no particular value of θ in that range above any others,5 the posterior
distribution of θ is as shown in Figure 26.1. The mode of the distribution is at θ = 2.75,
and the 95 % credible region with the highest posterior probability is [1.73, 4.82]. Thus,
in this case, the Bayesian and maximum-likelihood approaches provide similar results.
In later examples, results from the two approaches differ rather more than they do
here.

Despite the apparent advantages of the Bayesian approach over the Maximum-
likelihood approach, there is still considerable resistance to it from some quarters.
Concerns are often centred on the ‘subjective’ nature of the Bayesian method. Since the
post-data distribution depends on the specified prior distribution, different researchers with
differing prior beliefs may come to differing conclusions. In some cases, given enough
data, the post-data distribution is dominated by the likelihood, and the conclusions drawn
become relatively insensitive to the prior distribution used. Nevertheless, in practice it is
often the case that conclusions do depend quite sensitively on the prior distribution, and
it is important to recognise this fact. Such a result may seem unsatisfactory, but is simply
a reflection of the fact that there is sometimes insufficient information in the data to make
robust inferential statements.

It may be clear from the above discussion that the author’s preferences lean towards
the Bayesian approach to inference. However, the methods we examine may be used to
compute likelihood surfaces, and thus allow either a Bayesian or maximum-likelihood
approach to be taken.

26.2 THE LIKELIHOOD AND THE COALESCENT

In the following sections, we consider methods for accurately approximating the likelihood
L(θ). These methods make use of ideas from coalescent theory, and those unfamiliar with
these ideas will find it helpful to study the companion Chapter 25, before proceeding.

The coalescent, and related processes, describe the distribution of the unknown tree
T relating a random sample of chromosomes. Here we wish to be deliberately vague
about what we mean by the ‘tree’: it might be simply the genealogy relating the
sampled chromosomes (see, e.g. Figure 26.3 and accompanying text in Chapter 25),
or it might also include the mutations on the branches of the genealogy. What matters

5 This prior is convenient for the purposes of illustration. As we discuss later, rather than placing a prior
distribution on θ = 2Nµ, it makes more sense to consider priors for N and µ separately.
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is that if we knew the tree then we could calculate6 the probability of the data
P(D | T, θ).

We emphasise that although the tree relating the sampled individuals plays a major
role in the computational methods we are considering here, it is a role that is different
to that of the tree in phylogenetic analyses (see for example Huelsenbeck, 2001 this
volume). In population genetics applications, interest typically focuses on the genetic and
evolutionary forces that have affected the evolution of the genetic region under study,
and the tree relating randomly sampled individuals from those populations is of interest
only in so far as it informs us about these parameters. Nevertheless, many population
genetics studies have focused on the problem of estimating quantities relating to the tree
(i.e. ancestral inference). In particular, estimating the time since the most recent common
ancestor, TMRCA, of the sampled chromosomes, and the ages of mutations in the tree, have
become common objectives.7 Formally, these questions involve the post-data distribution8

of the tree, P(T | D), which is often easy to find using methods we describe later. We
anticipate that in the future focus will shift away from estimating the tree, and towards
estimating parameters in a model for the demographic history of populations under study
(e.g. times of major migration events in human history).

In attempting to approximate the likelihood L(θ), it turns out to be helpful to write it
as an average over all possible trees:

L(θ) = P(D | θ) =
∑
T
P(D | T, θ)P (T | θ). (26.5)

This is helpful because every term in this sum is easy to calculate: we noted earlier that
we can calculate P(D | T, θ), and the pre-data distribution of the tree relating the sampled
individuals, P(T | θ), is given by basic coalescent theory (Chapter 25). However, in most
cases (26.5) cannot be directly used to evaluate the likelihood, because the number of
terms in the sum is so huge that it simply cannot be calculated in a reasonable amount of
time. For example, the number of tree topologies relating 10 chromosomes is 2571912000.

In fact, since the branch lengths of the tree T are generally continuous quantities, the
sum above ought really to be written as an integral:

L(θ) = P(D | θ) =
∫
P(D | T, θ)P (T | θ) dT. (26.6)

This makes exact computation of the likelihood even harder, and most of the remainder of
this chapter is spent examining efficient methods of approximating this integral, and others
like it. Note that the integration takes place over the space of all possible T, which is a big
space! Numerical integration methods, such as Gaussian quadrature, which typically work
well for integrals in one or two dimensions, are difficult to apply to problems such as

6 In the case where T is the genealogy of the sampled chromosomes this calculation can be done using the
peeling algorithm (Felsenstein, 1981).

7 As noted by Wilson and Balding (1998), while the TMRCA of a sample of chromosomes may not be the
most important time in human history, it has become central to the interpretation of genetic samples through
its widespread use.

8 In the coalescent framework, the tree T is the result of a random process (the evolution of the population),
and not a parameter in the model. This is true even when taking the maximum-likelihood approach to inference.
Thus, it is technically correct to talk of the distribution of T, rather than the likelihood of T.
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these, and the approximation of such high-dimensional integrals is now most commonly
performed using Monte Carlo (i.e. simulation-based) methods.

A naive Monte Carlo method of approximating (26.6) is based on the idea that, if a
random variable X has density fX(x), then the mean of any function of X, g(X) say, may
be approximated by simulating many values X(1), X(2), . . . , X(M) from the distribution
with density fX, and forming the average:

E(g(X)) =
∫
g(x)fX(x) dx ≈ 1

M

M∑
i=1

g(X(i)). (26.7)

With suitable conditions on the function g, this approximation will be good provided M
is sufficiently large (formally the error tends to 0 as M tends to infinity). Applying this
idea to (26.6) gives

L(θ) =
∫
P(D | T, θ)P (T | θ) dT ≈ 1

M

M∑
i=1

P(D | T (i), θ), (26.8)

where9 T (1), T (2), . . . , T (M) ∼ P(T | θ). The approximation (26.8) is easy to implement,
since P(T | θ) can be simulated from using coalescent methods, and P(D | T (i), θ) is
easily calculated. Unfortunately, the approximation is also almost useless for problems
involving samples of more than a few chromosomes. The reason for this is that
P(D | T (i), θ) will be very small for all but a few of the T (i) we simulate. Only the
few larger values will contribute significantly to the sum (26.8), but almost all of our
effort will be spent calculating the very small terms that contribute negligible amounts to
the sum. Typically, the proportion of trees that actually contribute significantly to the sum
is less than one in a million, and in such cases the method becomes hopelessly inefficient.

26.3 IMPORTANCE SAMPLING

Importance sampling (IS) (see Ripley, 1987, for background) is a standard statistical
method for improving the efficiency of Monte Carlo integration. The idea is simple,
and based on rectifying the inefficiency of the approximation (26.8) by concentrating
simulation and computational effort on the more ‘important’ trees, which are those trees
for which P(D | T, θ) is relatively large, or in other words those trees that are more
consistent with the observed data. IS was first used in this context by Griffiths and Tavaré
(1994a; 1994b; 1994c), though they derived their method in a rather different way, as
a method of solving recursive equations. Similar methods have since been applied, by
themselves and others, to a variety of genetic systems and demographic models (see,
for example, Griffiths and Marjoram, 1996; Griffiths and Tavaré, 1997; 1999; Nielsen,
1997; Bahlo and Griffiths, 2000). The connection between the Griffiths–Tavaré method
and IS was pointed out by Felsenstein et al. (1999), and Stephens and Donnelly (2000)
show how this observation can be exploited to develop substantially more efficient
algorithms.

9 The notation ∼ in what follows means ‘are distributed as’.
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The IS method is based on rewriting the integral (26.6) as

L(θ) =
∫
P(D | T, θ)P (T | θ) dT

=
∫
P(D | T, θ)P (T | θ)

Q(T ) Q(T ) dT, (26.9)

where Q(·) is any distribution satisfying the condition

Q(T ) > 0 whenever P(D | T, θ)P (T | θ) > 0. (26.10)

(This condition is required when multiplying by Q(T )/Q(T ) to obtain (26.9) above, to
avoid multiplying by 0/0, which is undefined.) The distribution Q(·) is referred to as the
IS distribution, or proposal distribution. Straightforward Monte Carlo approximation of
(26.9) gives

L(θ) ≈ 1

M

M∑
i=1

P(D | T (i), θ)P (T
(i) | θ)

Q(T (i)) , (26.11)

where T (1), T (2), . . . , T (M) ∼ Q(T ).
By choosing the distribution Q carefully, this method of approximation is much more

efficient than (26.8). For example, when estimating L(θ) the optimal choice Q∗θ for Q
depends on θ and is the post-data distribution of the tree T given the genetic data D and
the parameter θ :

Q∗θ (T ) = P(T | D, θ) =
P(T | θ)P (D | T, θ)

P (D | θ) = P(T,D | θ)
P (D | θ) . (26.12)

Intuitively this choice of Q directs more sampling and computational effort towards trees
that have larger values of P(D | T, θ), and thus avoids the inefficiency associated with
the naive approximation (26.8) discussed earlier. In fact, for Q = Q∗θ , every term in the
sum (26.11) is the same:

P(D | T (i), θ)P (T (i) | θ)
Q∗θ (T (i))

= P(D, T (i) | θ)
P (D, T (i) | θ)/P (D | θ) = L(θ), (26.13)

and the variance of the estimator (26.11) is 0, or in other words the approximation becomes
exact. This seems almost too good to be true, and in most situations this is indeed the
case, the problem being that we do not know the distribution required in (26.12). In fact,
to implement the estimate (26.11) we must be able to do two things:

1. Simulate (directly) from Q(·).
2. Calculate Q(T (i)) for each T (i).

For Q = Q∗θ we are not able to do either of these things.
Nevertheless, the observation that Q∗θ (T ) = P(T | D, θ) is helpful, as it gives us an

insight into which choices of Q may be sensible. In particular, it seems that when
attempting to estimate L(θ) at a particular value of θ , a good strategy would be to choose
Q to closely approximate Q∗θ . This is the strategy pursued in Stephens and Donnelly
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(2000), who found it to be a very successful way of developing good IS methods in many
cases.

26.3.1 Likelihood Surfaces

The approximation (26.11) allows us to approximate the likelihood surface L(θ) at all
values of θ , using samples from a single Q(T ). However, since the optimal IS function
(26.12) depends on θ , it is clear that no one choice of Q can be optimal for all θ
simultaneously, and that the efficiency of the resulting estimator for L(θ) may vary with
θ . Suppose that we have constructed an IS function Qθ0

(T ) to approximate Q∗θ0
(T ),

for some fixed value θ0, and consider using this IS function to estimate the likelihood
curve L(θ) at all values of θ , using (26.11). A strategy along these lines was adopted in
Griffiths and Tavaré (1994c), which refers to θ0 as the ‘driving value’ for θ , and has since
been frequently employed in implementations of IS schemes. Intuitively we might expect
this IS function to be most efficient in estimating L(θ) for values of θ near θ0, and less
efficient for θ far away from θ0. For reasons discussed in Stephens and Donnelly (2000),
this can tend to cause such methods to underestimate the likelihood for values of θ away
from the driving value θ0. This can have two rather undesirable consequences. First, it
can cause the estimate of the likelihood surface to have its maximum near θ0, even when
the true likelihood surface has its maximum elsewhere. Second, if the driving value θ0
is near the maximum of the true likelihood surface then the estimate of the likelihood
may tend to be more highly peaked about θ0 than the true likelihood.10 The severity of
these effects is rather difficult to predict: in some cases they cause few problems, while
in others the effects can be extreme. It is important to bear this in mind when using these
methods.

In order to avoid such problems we might try using a different IS function to estimate
the likelihood at each value of θ . In other words, we might use an IS function Qθi to
estimate the likelihood L(θi) on a grid of values, θ = θ1, θ2, . . . , θR, say. In order to
obtain efficient estimates at all values of θ we need Qθi to be a good approximation
to the optimal IS function Q∗θi . This ‘point-wise’ approach to estimating the likelihood
surface is somewhat wasteful in that it requires a set of samples from Qθi for each i, but
at each point in the grid it uses only one of these samples to estimate the likelihood. A
more efficient approach, which is in some sense a combination of the ‘point-wise’ and
‘driving value’ approaches, is to use a sample from a single IS function

Q(T ) = 1

R

R∑
i=1

Qθi (T ), (26.14)

to estimate the likelihood surface at a grid of values of θ . A stratified sample from this
IS function could be obtained by pooling samples of equal size from each of the Qθi (T ).
It can be shown that using the IS function (26.14) is guaranteed to be more efficient (by
some reasonable criterion) than using the point-wise approach. However, while this more
efficient approach is straightforward in principle, it needs to be coded into the software
being used. Where this is not the case, it is advisable to at least compare estimates of the
likelihood surfaces using different driving values in order to check that this is not causing

10 This is important because it would cause estimated confidence intervals, or credible regions to be too small.
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difficulties. If the surfaces found using different driving values are very different, then a
‘point-wise’ approach may be safer, if rather time consuming.

26.3.2 Ancestral Inference

IS schemes also provide a straightforward way of approximating the post-data distribution
of the tree P(T | D, θ). Define the weight w(i) associated with tree T (i) by

w(i) = W(i)∑M
j=1W

(j)
, (26.15)

where

W(i) = P(D | T (i), θ)P (T
(i) | θ)

Q(T (i)) . (26.16)

It is easy to show that the distribution with weight w(i) on tree T (i) is an approximation
to the post-data distribution P(T | D, θ). As a result it is straightforward to approximate
quantities of interest relating to the tree by forming a weighted average of these quantities
over the sampled trees. For example, the expected value of TMRCA can be approximated
by

E(TMRCA) ≈
∑
i

w(i)TMRCA(T (i)). (26.17)

26.3.3 Application and Assessing Reliability

One of the most important considerations when applying computationally intensive
methods such as these is whether the results obtained are reliable. When applying IS
methods, this comes down to whether the number of iterations M is sufficiently large for
the approximations being made to be reasonably accurate. Unfortunately the value of M
required varies drastically from problem to problem, and so no simple answer exists to the
question, ‘How many iterations must I use?’. However, a simple and generally effective
procedure is to run the algorithm several times with different seeds for the pseudo-random
number generator, and to check that the same results are obtained each time. If the results
differ greatly with each run then the runs are too short. Here we confine ourselves to a
single illustrative example: a more detailed discussion and more examples can be found
in Stephens and Donnelly (2000), and in Fearnhead and Donnelly (2001), both of which
give illuminating examples of how inaccurate results can be, even with large amounts
of computing time, and how these inaccuracies are often evident in multiple runs of an
algorithm.

Our illustration comes from applying the Griffiths–Tavaré method, implemented in
the program genetree, to the β-globin data from Harding et al. (1997), where a more
comprehensive analysis and discussion of the biological significance of the results can
be found. Five different approximations to the likelihood surface, based on runs of
length M = 10 000, using a driving value11 of θ = 5.0, are shown in Figure 26.2(a). The

11 Earlier we warned that care must be taken when using a ‘driving value’ to approximate the likelihood
surface. In this case we checked that using point-wise estimates, or different driving values, gives very similar
answers. In general using a driving value approach with genetree tends to give reasonable results in models
without migration or growth. However, once growth and migration are included in a model more care may be
required.
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Figure 26.2 Estimated log likelihoods for the β-globin data from Harding et al. (1997). (a)
Five different curves, each obtained using a different seed for the random number generator and
M = 10 000 iterations. (b) Five different curves, each obtained using a different seed for the random
number generator and M = 1 000 000 iterations.

reasonably large differences between the runs indicate that the runs are perhaps rather
too short to give reliable results. Five approximations based on runs of length 1 000 000
shown in part (b) of the figure show much less variation. We conclude that for these data
genetree requires perhaps millions of iterations to deliver reliable results. This sort of
requirement is typical. Indeed for problems involving migration between subpopulations
and/or growth, many more iterations are typically required, which can result in the method
becoming prohibitively time consuming (perhaps months or even years of computer time).
In order to tackle such problems, improved IS methods along the lines of Stephens and
Donnelly (2000) may be required.

A notable feature of the curves in Figure 26.2 is that although many of the curves are
at different heights, they are all a similar ‘shape’, and peak at the same place. It is not
really well understood why exactly this occurs, but it often appears to be the case, at least
in settings not involving population growth, migration or recombination. It is important
to stress that when sufficient iterations have been performed, all curves should in theory
be both the same height and shape. If they are not all the same height, it is a sign that the
algorithm has not been run for long enough. In some cases, as here, the results obtained
when the algorithm has been run long enough do not differ in most practical terms from
the results obtained from a short run. However, in other cases they may differ, and you
can only find out by doing the longer runs!

26.4 MARKOV CHAIN MONTE CARLO

26.4.1 Introduction

MCMC has recently become a very popular technique in computational statistics.
Essentially it is a method for producing samples from a distribution that is not easy
to simulate directly. For example, we noted that to answer questions about the tree
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relating the sampled chromosomes, it would be helpful to simulate from the conditional
distribution of the tree given the data, P(T | D). Although this is difficult to achieve
directly, it is relatively straightforward, at least in principle, using MCMC methods.
Further, as we will also see later, these methods can also be used to approximate
the likelihood surface for θ . However, we begin by explaining the basics of MCMC
techniques.

Suppose we wish to generate trees from some distribution π(T ) that is difficult
(or impossible) to simulate from directly (e.g. π(T ) = P(T | D)). Informally, MCMC
methods achieve this by starting at some initial tree T (0), and moving randomly from
tree to tree in such a way that, in the long run, the frequency with which trees are
visited is proportional to π(T ). The question that MCMC methods answer is how can we
move randomly from genealogy to genealogy so that this is achieved? Here we consider
perhaps the most important and widely used MCMC method: the Metropolis–Hastings
algorithm. The idea is that rather arbitrary methods of moving randomly from genealogy
to genealogy can be modified to create an algorithm with the required properties. Let Q
denote some method of moving randomly from tree to tree, with Q(T→ T ′) being the
probability that, if we start at T then we move to T ′. The following algorithm ensures
that, in the long run, the frequency with which trees are visited is proportional to π(T ).

Starting at some initial point, iterate the following steps:

1. Given the ith genealogy T (i), draw a genealogy T ′ from Q(T (i)→ T ′).
2. With probability A, given by

A = min
(

1,
π(T ′)Q(T ′ → T (i))
π(T (i))Q(T (i)→ T ′)

)
, (26.18)

accept the proposed genealogy, and set T (i+1) = T ′. Otherwise reject the proposed
genealogy and set T (i+1) = T (i).

Note that when a proposed genealogy is ‘rejected’ in the above algorithm, the new tree
is the same as the current tree. It is important that these duplicate trees are counted, and
not simply discarded. The distribution Q is often referred to as the proposal distribution,
and the probability A is referred to as the acceptance probability. Calculating A requires
being able to calculate the transition probabilites Q (which is usually easy) and the ratio
π(T ′ )/π(T ) which is also often easy, even if π(T ) itself cannot be calculated. For
example, in the case π(T ) = P(T | D, θ) we have

π(T ′)
π(T ) =

P(T ′ | D, θ)
P (T | D, θ) =

P(T ′,D | θ)
P (T,D | θ) =

P(T ′ | θ)P (D | T ′, θ)
P (T | θ)P (D | T, θ) , (26.19)

which we can calculate just as we could calculate the terms of the sum (26.5).
Under relatively weak conditions on Q (see Gilks et al., 1996, for example), which are

usually easily satisfied in practice, it is straightforward to show that T (1), T (2), T (3), . . .
form a Markov Chain with stationary distribution π(·), and that T (b), for sufficiently
large b, is approximately a sample from π(·), the distribution we wished to sample
from. Furthermore, for sufficiently large k, T (b), T (b+k), T (b+2k), · · · may be treated as
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approximately independent samples from π(·). The value b is known as the burn-in,
while k is referred to as the thinning interval.

Why does this algorithm work? Some helpful intuition can be obtained by considering
the special case where the proposal distribution Q is symmetric, in that Q(T→ T ′) =
Q(T ′ → T ) for all T and T ′. In this case, the acceptance probability for moving from
T to T ′ becomes A = min(1, π(T ′)/π(T )). Thus, moves that are accepted tend to be to
trees for which π(T ′) is relatively large, and moves that are rejected tend to be from trees
for which π(T ) is relatively large. As a Result, the algorithm tends to spend more time
exploring those trees with large values of π than those with small values, which is at
least a necessary condition for it to work.

26.4.2 Choosing a Good Proposal Distribution

Although in theory the above algorithm works for any choice of proposal distribution
Q that satisfies the required conditions, in practice choice of Q can have a very strong
effect on the efficiency of the method, or in other words on what values of b and k are
‘sufficiently large’. Even for good choices of Q, the values of b and k required can be
large for problems of moderate size: tens of thousands, or millions, for example. For
bad choices of Q, the values of b and k required are so large as to make the approach
infeasible. How to choose a good proposal Q is therefore an important issue.

Unfortunately, it is often difficult to predict in advance whether one particular Q will
perform better than another, although there are some general guidelines. For example,
it is desirable that Q at least occasionally proposes moves to ‘good’ trees, which are
those with a high value for π . Otherwise almost every proposed tree will be rejected,
and the algorithm will remain stuck where it is. Similarly, algorithms that always propose
only small changes to the current tree will tend to explore the set of all possible trees
rather slowly. Algorithms that exhibit this kind of behaviour are sometimes called sticky.
Conversely, algorithms that move freely between very different trees are said to ‘mix well’.
Ideally then we want our proposal distribution to propose moves that (1) are to trees that
are very different from the current tree, and (2) have a high probability of acceptance. It is
typically difficult to find a proposal that achieves both these aims: proposals that propose
big moves tend to have low acceptance rates. A common strategy is to simply experiment
with different schemes, trying various ad hoc modifications until a scheme that performs
well (in that it moves quickly between different plausible trees) is found. This strategy
has practical merit, and is acceptable since in principle these ad hoc modifications do not
affect the validity of the algorithm. Nevertheless it often remains tricky to assess how
well a scheme is performing, even after it has been implemented and the results can be
examined.

26.4.3 Likelihood Surfaces

There are many ways of using MCMC methods to calculate likelihood surfaces for θ , and
we now examine some of these in detail. Although it is possible to use MCMC methods
to estimate the likelihood surface itself, in practice it is much easier to estimate a relative
likelihood surface, that is, a function L̃(θ) that satisfies L̃(θ) = αL(θ) for some unknown
constant α. Knowledge of a relative likelihood surface is sufficient for most applications:
in particular it allows the parameters to be estimated using either the maximum-likelihood
or Bayesian approach. We distinguish between two types of methods here: those that keep
θ fixed and those that allow θ to vary.
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26.4.3.1 θ Fixed

Suppose T (1), T (2), . . . , T (M) is an MCMC sample from P(T | D, θ0) for some fixed θ0.
Then we might attempt to estimate the likelihood surface using P(T | D, θ0) as an IS
distribution:

L(θ) =
∫
P(D | θ, T )P (T | θ) dT

=
∫
P(D | θ, T )P (T | θ)

P (T | D, θ0)
P (T | D, θ0) dT

≈ 1

M

M∑
i=1

P(D | θ, T (i))P (T (i) | θ)
P (T (i) | D, θ0)

. (26.20)

However, this estimator is of little use as we cannot evaluate P(T (i) | D, θ0). In fact we
noted earlier that we could not use P(T | D, θ0) as an IS function since we could neither
simulate from it directly, nor calculate it explicitly. MCMC methods allow us to simulate
from it indirectly, but do not solve the problem of calculating it explicitly. However, by
writing

P(T (i) | D, θ0) =
P(T (i),D | θ0)

P (D | θ0)
= P(T

(i),D | θ0)

L(θ0)
, (26.21)

and substituting into (26.20) we obtain

L(θ)

L(θ0)
≈ 1

M

M∑
i=1

P(D, T (i) | θ)
P (D, T (i) | θ0)

, (26.22)

which we can evaluate, and which gives us an estimate of a relative likelihood surface,
L̃(θ) = αL(θ), where the unknown constant α = [L(θ0)]

−1.
What can be said of the efficiency of the estimate (26.22)? Well, recall that P(T | D, θ0)

was identified as the optimal IS function for estimating L(θ) at θ = θ0, but that this
efficiency will be reduced for other values of θ . Similarly it is the optimal IS function
for estimating L̃(θ) at θ = θ0, and efficiency will be reduced for other values of θ .
However, the value of L̃(θ) at θ = θ0 is known by definition to be L(θ0)/L(θ0) = 1.0, so
‘optimality’ at this point is very easy to achieve. What is of more concern is the potential
lack of efficiency for other values of θ , which can cause severe problems. We repeat the
warning that lack of efficiency in these methods needs to be taken seriously, as it can
easily lead to estimates of the (relative) likelihood that are wrong by orders of magnitude.
In particular, likelihood surfaces estimated in this way may have a peak near θ0 even
when the true likelihood surface has its peak away from θ0, or, if the true likelihood
surface has a peak near θ0, may be more sharply peaked about θ0 than the true surface.
A short theoretical exploration of this problem in a simple context is given in Stephens
(1999).

One approach to addressing this problem is based on the fact that the estimator
(26.22) for L̃(θ) will be most efficient, and hence most reliable, for values of θ that
are ‘close’ to θ0. Suppose we wish to estimate the relative likelihood on a grid of
values of θ = (θ1, θ2, . . . , θR), where θ1 < θ2 < · · · < θR. If θ2 is close enough to θ1
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then we can accurately estimate L(θ2)/L(θ1) using (26.22) and a sample of trees from
P(T | D, θ1). Similarly, if θ3 is close enough to θ2 then we can accurately estimate
L(θ3)/L(θ2) using (26.22) and a sample of trees from P(T | D, θ2). We can then
estimate

L(θ3)

L(θ1)
= (L(θ3)

L(θ2))
× (L(θ2)

L(θ1))
,

and continuing in this way can estimate L(θi)/L(θ1) for i = 1, 2, . . . , R, and thus
construct an estimate of the relative likelihood surface.

Note that the above procedure requires MCMC samples from P(T | D, θi) for i =
1, 2, . . . , (R − 1), and thus requires us to run R − 1 independent Markov chain simu-
lations. In fact, given that we have to generate these samples anyway, there is a more
efficient way of combining them than the naive method we have just described. It is
an iterative method due to Geyer (1991), who named it ‘reverse logistic regression’. Its
implementation in this context is described by Kuhner et al. (1995).

26.4.3.2 θ Varying

MCMC schemes can also be used to produce an MCMC sample

(θ(1), T (1)), (θ (2), T (2)), . . . , (θ (M), T (M)),

from P(θ, T | D) for any given prior distribution on θ . Instead of simply wandering around
different T, now the algorithm must also explore different possible values for θ . One way
to achieve this is to define a proposal distribution Q that proposes a move from the
current pair of values (θ, T ) to a new pair of values (θ ′, T ′), and then accepts or rejects
this proposal in the same way as before (replacing π(T ) with π(T, θ)). More commonly,
methods that alternately propose changing T and changing θ can be developed, as in
Wilson and Balding (1998).

This approach arises most naturally from the Bayesian approach to inference, when
we would be interested in the post-data distribution for θ . However, since the post-
data distribution for θ is proportional to the prior π(θ) times the likelihood L(θ),
it is straightforward to obtain an estimate of a relative likelihood surface from an
estimate of the post-data density, simply by dividing by the prior density (which is
usually easy to calculate). The simplest (though not the best) method of estimating
the post-data density of θ is to plot a histogram of the θ values in an MCMC
sample (θ (1), T (1)), (θ (2), T (2)), . . . , (θ (M), T (M)). Thus these methods can provide a
useful computational tool for likelihood-based inference in general, and need not be
confined to Bayesian analyses. (However, it is worth noting that this approach to obtaining
a likelihood surface is probably practical only if the likelihood involves at most two
parameters–for larger numbers of parameters it will typically be difficult to obtain reliable
estimates of the post-data density from an MCMC sample.)

26.4.4 Ancestral Inference

The use of MCMC methods to perform ancestral inference is relatively straightforward.
For example, if T (1), T (2), . . . , T (M) is an MCMC sample from P(T | D, θ) for some fixed
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value of θ , then the expectation of TMRCA given this value of θ can be approximated by
the straightforward Monte Carlo method:

E(TMRCA | D, θ) =
∫
TMRCA(T )P (T | D, θ) dT (26.23)

≈ 1

M

M∑
i=1

TMRCA(T (i)). (26.24)

Provided the MCMC scheme mixes reasonably well, this approximation will be accurate
for moderate values of M . Other quantities of interest relating to the ancestry of the
sample, such as the expected age of a particular mutation, can be approximated in
a similar way. There is though a slight complication: what value of θ should be
used to make these estimates? In a maximum-likelihood framework, it is natural to
use the maximum-likelihood estimate for θ . However, this approach ignores the fact
that in practice we do not know the true value of θ , and there may be considerable
uncertainty associated with any estimate of θ . There does not seem to be an obvious
way around this problem without moving to the Bayesian framework, which provides a
coherent way of taking into account the uncertainty in our estimate of θ . For example, if
(T (1), θ (1)), (T (2), θ (2)), . . . , (T (M), θ (M)) is an MCMC sample from P(T, θ | D), then

E(TMRCA | D) =
∫
TMRCA(T )P (T | D) dT (26.25)

≈ 1

M

M∑
i=1

TMRCA(T (i)), (26.26)

is an estimate of the expected value of TMRCA that takes into account the uncertainty
associated with θ .

26.4.5 Example Proposal Distributions

As we noted earlier, in principle there is a huge amount of flexibility in the choice of
proposal distribution Q. Not surprisingly then, several different suggestions for the choice
of suitable Q have been made. We examine two of the earliest suggestions here. Examples
of other MCMC schemes include Beaumont (1999), and Nielsen (2000).

The examples we discuss below are illustrated in Figures 26.3 and 26.4. These figures
show trees relating a sample of five individuals, each typed at a single micro-satellite
locus, for which each individual’s genetic type may be represented by an integer (shown
at the bottom of the tree). In what follows, it is worth remembering that alleles that are
closer numerically, are likely to be more closely related (so a ‘7’ is likely to be more
closely related to a ‘6’ than to a ‘3’).

26.4.5.1 The Beerli–Kuhner–Yamato–Felsenstein (BKYF) ‘Conditional Coalescent’ Proposal

This is the proposal described in Beerli and Felsenstein (1999), and Felsenstein et al.
(1999). They refer to it as a ‘conditional coalescent’ proposal, because a new tree is
formed from the current tree, by removing one of the branches, and resimulating it from
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Figure 26.3 Illustration of the BKYF ‘conditional coalescent’ proposal, which is a proposal
distribution for moving from one tree (a) to another (b), as explained in the text.

the appropriate coalescent process, conditional on all the other branches staying fixed.
For the case of samples from a single panmictic population, it proceeds (in outline) as
follows:

1. Choose a node, x, uniformly at random from all nodes other than the root on the
current tree.

2. Remove the parent node of x (marked x ′ in Figure 26.3) from the tree, together with
the lineage joining x to x ′.

3. Starting from x, simulate a lineage towards the root of the tree. At any given time
this lineage coalesces at constant rate with each lineage existing in the tree at that
time. (If necessary, the lineage above the current root is extended backwards in time.)

4. Eventually the branch from x will coalesce with another branch, to create a new node
(marked y in Figure 26.3).

A more detailed description of this proposal, including a natural extension for samples
from several different populations, is given in Beerli and Felsenstein (1999).

26.4.5.2 The Wilson and Balding (WB) ‘Branch-swapping’ Proposal

In order to design their proposal distribution, Wilson and Balding (1998) augmented
their tree to include details of the genetic types at every node. In outline, the proposal
distribution proceeds as follows:

1. Choose a node, x, uniformly at random from all nodes other than the root on the
current tree.
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Figure 26.4 Illustration of the Wilson and Balding ‘branch-swapping’ algorithm, which is a
proposal distribution for moving from one tree (a) to another (b), as explained in the text.

2. Remove the parent node of x (marked x ′ in Figure 26.3) from the tree, together with
the lineage joining x to x ′.

3. Choose a node, y, above which to attach the branch that formerly attached x to the
tree, weighting the choice of y towards nodes that have a type that is similar to the
type at x.

4. Attach the branch leading from x somewhere above y, creating a new node (labelled
y ′ in Figure 26.4) where the join occurs.

5. Choose a type label for the newly created node, weighting this choice towards those
types that are close to the types at both x and y (i.e. favouring types between the
types at x and y).

26.4.5.3 Comparing the BKYF and WB Proposals

The Beerli–Kuhner–Yamato–Felsenstein (BKYF) and Wilson and Balding (WB)
proposal distributions have an important qualitative difference. By augmenting the
genealogy to include the genetic types at the internal nodes, Wilson and Balding were
able to design an ‘intelligent’ proposal distribution that tends to make sensible choices
for destinations to which branches may be moved. In particular, step 3, which tends to
reattach the branch leading to x at a sensible point in the tree, would be impossible
without information on the types at the internal nodes. In contrast, the behaviour of the
BKYF proposal does not even depend on the observed genetic types at the tips of the
tree, and as a consequence moves to very ‘unlikely’ trees may often be proposed (and
will usually be rejected). For example, the move illustrated in Figure 26.3 is to a tree that
is rather inconsistent with the observed data, and so would most likely be rejected. Such
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a move has reasonable probability under the BKYF proposal, but small probability under
the WB proposal. One might wonder whether there is ever a good reason for choosing a
less ‘intelligent’ scheme. The answer is that the intelligence of the WB scheme comes at
a cost: the expanded sample space, which results from including the types at the internal
nodes. In order for the MCMC scheme to explore the space properly it is now necessary
for it to explore not only all plausible trees, but also all plausible configurations for the
internal node types. Another potential drawback of more ‘intelligent’ schemes is that more
computation may be required to propose each move, and so fewer moves are proposed
in a fixed time.

The trick then is to get a good balance between the sizes of the space to be explored,
the computational effort required for each proposal, and the ‘intelligence’ of the proposal
distribution. In the author’s experience the WB proposal seems to strike this balance
nicely for micro-satellite data. In order to apply a similar approach to sequence data, it
might be worth including the types at the internal nodes at the segregating sites only,
as this should allow intelligent proposals to be designed while keeping the sample space
down to a manageable size.

26.4.6 Application and Assessing Reliability

The application of an MCMC scheme is illustrated using the micsat program of Wilson
and Balding (1998), and the example files (cooper.inp and cooper.dat), which
are supplied with micsat. The data is from Cooper et al. (1996), and pertains to 60
males from Nigeria, Sardinia and East Anglia, typed at five micro-satellites on the Y
chromosome. Wilson and Balding (1998) refers to these data as the NSE dataset.

Wilson and Balding (1998) use micsat to provide a Bayesian analysis of these data.
In particular, they estimate the post-data distributions of θ and TMRCA given certain priors
on N and µ. Histograms of these distributions, based on the output obtained from the
example files supplied with micsat, are shown in Figure 26.5. (We show the distribution
of TMRCA measured in units of generations. This can be converted to years by multiplying
by a generation time, as we see later.) As might be expected, the results are very similar
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Figure 26.5 Results of a Bayesian analysis of the NSE data, based on output of micsat using
example files cooper.inp and cooper.dat. (a) Histogram of post-data distribution of θ .
(b) Histogram of post-data distribution of TMRCA.
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Figure 26.6 Estimates of post-data distribution of (a) θ and (b) TMRCA based on output of micsat
with example files cooper.inp and cooper.dat. Each of the four estimates shown is based
on a run using a different seed for the pseudo-random number generator (which is set in the file
cooper.inp). The similarity of the estimates to one another gives grounds for optimism that the
MCMC runs are sufficiently long.

to those in Wilson and Balding (1998), which the reader should consult for a discussion
of their biological significance. Here we concentrate on some of the statistical issues,
the first and most important being how can we be sure that the MCMC scheme has been
run for long enough to give reliable results? This question should always be asked when
results from an MCMC method are being considered. Perhaps the most straightforward
and practical method of investigating this is to re-run the algorithm several times, using
different seeds for the pseudo-random number generator, and different initial trees, and
compare the results obtained. Although more sophisticated diagnostic methods exist (see
Brooks and Roberts, 1998, for example), none are foolproof, and this is the approach the
author would recommend for the novice user. It has the practical advantage that it can
be applied even when the program implementing the MCMC scheme gives the user only
a summary of the results, which is sometimes the case (though micsat allows you to
inspect the raw MCMC sample). Figure 26.6 shows estimated post-data distributions for
θ and TMRCA from four further runs of micsat, each using a different seed. Very similar
results are obtained in each case, giving grounds for optimism that the MCMC runs are
sufficiently long.

Another issue is to what extent the results depend on the use of the Bayesian method,
and choice of prior. Wilson and Balding (1998) show how their results vary with different
choices of prior for the parameters N and µ. It is natural to specify independent priors
for N and µ, rather than a prior for θ directly, in view of the following:

1. There is often information about likely values for µ from sources other than the data
being considered. For example, Wilson and Balding (1998) based their prior for µ
on pedigree studies, in which 3 mutations were observed in 1491 meioses.

2. There is often information about likely values for N from studies at other loci: under
the assumption of neutrality all loci should share the same value for N (except of



INFERENCE UNDER THE COALESCENT 899

course that the X chromosome and Y chromosome should have values for N that are
respectively 3/4 and 1/4 of the value of N for autosomal loci).

Note also that the priors for N and µ affect the distribution of TMRCA, and that TMRCA
cannot be estimated unless there is some information from another source on either
N or µ.

Here we compare the estimated distribution of TMRCA obtained with the ‘high-variance’
priors from Wilson and Balding (1998), with that obtained by a maximum-likelihood
approach. An estimate of the (relative) likelihood for θ can be obtained by taking an
estimate of the post-data density for θ from the histogram in Figure 26.5, and dividing it
by the prior density for θ . Maximising this gives an estimate of the maximum-likelihood
estimate for θ , which for these data is around θ = 11.0. In this case, the maximum
likelihood estimate is very close to the post-data mode (the peak of the post-data density)
for θ , but this is not always the case. On the basis of the observation of 3 mutations in
1491 meioses in a pedigree, the maximum-likelihood estimate of µ is 3/1491 ≈ 0.002,
and substituting these point estimates into θ = 2Nµ gives a point estimate of 2734 for N .
The natural maximum likelihood approach to estimating the distribution of TMRCA is to
take these estimates as given, which can be achieved using micsat by placing priors on
N and µ, which are very peaked about these point estimates.

Finally, in order to convert TMRCA from generations to years, it is necessary to multiply
by what we believe to be the generation time. Opinions differ on what the appropriate
value for generation time should be. Although 20 years has been commonly used, there
is evidence suggesting that the appropriate value may be nearer 27 Weiss (1973) or
even higher Tremblay and Vézina (2000). The uncertainty in this value ought really to be
taken into account in a proper analysis, and in a Bayesian framework this can be achieved
straightforwardly by placing on the generation time. As an illustration, Figure 26.7 shows
the distribution of TMRCA if we assume a uniform prior distribution on generation time
between 25 and 35 years. This distribution is rather less peaked than is obtained using a
point estimate of 27.5 years for the generation time in the maximum-likelihood framework
(same figure). This is a consequence of the maximum likelihood method ignoring the
inherent uncertainty in estimates of N and µ and in the estimated generation time. For
these reasons, the author endorses a Bayesian approach for such questions.

26.4.7 Extensions to More Complex Demographic and Genetic Models

The examples given above have all been restricted to the assumption of a constant-sized
panmictic population. Fortunately, almost everything that we have said about the simple
case also applies to these more complex cases. Typically, the number of parameters
in these more complex models is larger, which makes plotting likelihood surfaces (for
example) rather harder, but the basic principles underlying IS and MCMC are unchanged.
When dealing with these more complex models, some important questions to bear in mind
are as follows:

• Have I run the method long enough to obtain reliable results? As we have stressed,
multiple runs using different seeds and starting points can be a big help here.

• Is my model appropriate, and will it allow me to answer the questions I am interested
in? For example, if you are interested in historical rates of migration between
subpopulations, it makes sense to try to fit a model with migration, rather than a model
in which populations split some time in the past, with no subsequent migration.
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Figure 26.7 Comparison of the post-data distribution of TMRCA for the NSE dataset using
maximum-likelihood and Bayesian approaches. (a) Post-data distribution of TMRCA using the
maximum-likelihood point estimates, θ = 11.0 and µ = 0.02, and a generation time of 27.5 years.
(b) Post-data distribution of TMRCA using a fully Bayesian approach, with the priors on N and µ
used by Wilson and Balding (1998), and a uniform distribution on generation time between 20 and
35 years. The Bayesian approach allows for uncertainty in the estimates of µ, N and the generation
time, and as a result gives a more diffuse distribution for TMRCA.

26.5 OTHER APPROACHES

As noted in the introduction, the full-data methods that are the main focus of this
chapter remain computationally demanding. In many settings they remain computationally
intractable, and in other settings they may be tractable, but no software is available imple-
menting them. As a result, there remains considerable interest in alternative approaches
that are computationally simpler and (often) easier to implement, without sacrificing too
much in the way of accuracy. Here we review some of these methods (see also Marjoram
and Tavaré, 2003).

26.5.1 Rejection Sampling and Approximate Bayesian Computation

Rejection sampling provides a convenient way to perform inference based on summaries
of the observed data – see Tavaré et al. (1997), Li and Fu (1999), and Pritchard et al.
(1999) for examples of this approach within the context of coalescent-based inference.
Rejection sampling has the advantage of being relatively easy to implement, provided one
has the ability to simulate data from models of interest. Several software packages are
now available for simulating population data under a wide range of different modelling
assumptions, including models involving factors such as selection, which can be difficult
to incorporate into full-data inference methods. See the section on software for a selection
of simulation packages.

In outline, the rejection sampling approach is as follows:

1. Simulate a value for the parameter θ from its prior distribution.

2. Simulate data given the value of θ obtained in step 1, from P(D | θ).
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3. Compute a summary, S, of the simulated data, and compare this summary with the
same summary computed for the observed data (Sobs say). If S = Sobs ‘accept’ (i.e.
save) the simulated value of θ ; otherwise reject it.

The values of θ that are saved (rather than rejected) in step 3 provide a sample of draws
from the posterior distribution of θ given Sobs. (The intuition here is that the values
are simulated from the prior distribution, and accepted with probability given by the
likelihood P(Sobs|θ), resulting in samples from the posterior, which is proportional to
the prior times the likelihood.) The above steps are repeated until sufficient samples of θ
have been obtained to perform desired inference.

Note that the statistical efficiency of this approach depends on whether the summary
used contains most of the information in the data regarding θ . In most cases, there is
little theory to guide appropriate choice of summary, and we are left with intuition,
and experimentation, in order to find ‘good’ summaries. Typically the choice of good
summary will depend heavily on which parameters are of primary interest. For example,
the number of polymorphic sites in a region seems likely to contain substantial information
about the mutation rate in the region, but less information about the recombination rate.
In principle, one can use as complex a summary of the data as one would like – it
could involve multiple summary statistics, up to the whole data itself. However, the
computational efficiency of the approach becomes very poor as the summary S becomes
more complex. This is because if the summary is of very high dimension then one will
never obtain S = Sobs in step 3, and so the algorithm will never produce any accepted
values of θ . Computational efficiency also depends on the choice of prior distribution, and
will be greatest when the prior distribution is concentrated on areas of the parameter space
that are consistent with the observed data. Of course, one should not change one’s prior
distribution in order to make it consistent with the observed data: the point of the prior
is that it encapsulates information available before one has observed the data. However,
this consideration does mean that one might want to avoid using simple but unrealistic
prior distributions that include many values that the user would consider implausible.

Depending on the choice of summary statistic, the rejection sampling approach can
be a very simple and effective approach to inference. However, in many cases one will
run into the problem, as noted above, of very rarely accepting any simulated values of θ ,
which makes the approach computationally impractical. One way to alleviate this problem
is to relax the condition in step 3 that S = Sobs, and to accept values of θ where S is
‘close to’ Sobs. In other words, to accept θ when d(S, Sobs) < δ where d(·, ·) is some
measure of distance between two values of the summary statistic, and δ is some threshold
that controls how similar the values need to be in order to accept θ . Typically, one
would choose δ as small as possible while keeping the acceptance rate high enough to
make the algorithm computationally tractable. This modified rejection sampling scheme
is probably more widely used in practice than the standard rejection scheme. Formally,
it provides samples from the distribution P(θ |d(S, Sobs) < δ), rather than the distribution
P(θ |S = Sobs) sampled from by the standard scheme.

Two other approaches to inference, related to the above rejection sampling scheme, are
worth noting. The first, due to Beaumont et al. (2002) (see also Chapter 30), is based on
the ideas of adjusting, and weighting sampled values of θ . The adjustment and weights
are designed both to correct the sample so that it more closely follows the distribution
P(θ |S = Sobs) rather than P(θ |d(S, Sobs) < δ), and to improve computational efficiency
(by weighting the samples, rather than simply accepting or rejecting them). The second,
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from Marjoram et al. (2003), incorporates the accept/reject steps into an MCMC scheme.
One motivation for doing this is to try to avoid problems suffered by rejection sampling in
situations where the prior distribution is very different from the posterior distribution for θ .
In such cases, as noted above, the standard rejection scheme becomes very inefficient,
spending most of its time simulating values of θ from the prior that are completely
inconsistent with the observed data, and then rejecting them. The MCMC version can
avoid this problem because once it has found values of θ that are consistent with the data
it concentrates on proposing (and then accepting or rejecting) near-by values of θ , which
will also tend to be somewhat consistent with the data. However, this MCMC approach
also introduces potentially serious problems of its own: the acceptance rate for proposed
moves can become very small when exploring the tails of the distribution of θ (see Sisson
et al. (2007), who also suggest a way to circumvent this problem).

26.5.2 Composite Likelihood Methods

Composite likelihood methods are being widely used in recent years, particularly for
estimating recombination rates from population data under coalescent-based models. The
use of composite likelihoods in this context was pioneered by Hudson (2001), who
suggested estimating recombination rates in a region by computing likelihoods for all
pairs of available markers, and then multiplying these likelihoods together to form what
is known as a ‘composite’ likelihood. In other words, the composite likelihood for the
population recombination rate, ρ, given observed genotype data G, is

Lcomp(ρ;G) =
∏
i,j

P (Gi,Gj | ρ), (26.27)

where Gi denotes the genotype data at marker i. The great advantage of this approach is
that it requires only the ability to compute the probability of data at two markers, which is
considerably easier than computing the probability of data at several markers. Indeed, with
current computing power, one can accurately estimate the probability of any given sample
configuration at two markers in n individuals (at least if these markers are bi-allelic) by
simply simulating two-marker genotypes in n individuals huge numbers of times, and
measuring how often each configuration is observed (see Hudson, 2001). This kind of
approach is impractical for several markers, because the number of configurations grows
to be too large; but for two markers the number of possible configurations is manageable.

The composite likelihood (26.27) is sometimes referred to as the ‘pair-wise’ composite
likelihood, as it involves a product over all pairs of sites. Alternative composite likelihood
approaches are also possible: for example, Fearnhead and Donnelly (2002) form a
composite likelihood for a region by multiplying together likelihoods obtained from
non-overlapping subregions. Each of these non-overlapping subregions itself contains
multiple markers, and so they use the kind of IS methods described above to approximate
the likelihood for each subregion. The advantage of this approach over simply using
IS to approximate the likelihood for the whole region is that the likelihood for each
subregion is easier to accurately approximate (because it contains fewer markers and less
recombination). Compared to the pair-wise composite likelihood method, this approach
typically requires considerably more computation and is much more complicated to
implement; however, it has the potential advantage that it takes into account information
at multiple markers simultaneously, which could lead to gains in efficiency.
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Both the pair-wise and region-wise composite likelihoods share the property that they
are obtained by multiplying together likelihoods obtained from subsets of the data that
are not actually independent. One consequence of ignoring dependence in this way is that
composite likelihoods are typically more peaked about their maximum than they ‘should’
be (i.e. than they would be if the dependence was taken into account). As a result, it can
be difficult to obtain confidence intervals or other measures of uncertainty for parameter
estimates; however, the parameter estimates themselves appear to perform well in practice
(see Fearnhead, 2003 for a theoretical treatment), and are widely used. See, for example,
McVean et al. (2004), Myers et al. (2005), and Chapter 27.

26.5.3 Product of Approximate Conditionals (PAC) Models

Another approach to inference from population data was introduced by Li and Stephens
(2003), who suggested approximating the likelihood of the observed data D by first
writing this likelihood as a product of conditional distributions, and then developing
approximations to these conditional distributions that are easy to compute. Specifically,
in the context of estimating the population-scaled recombination rate ρ, from observed
haplotypes H1, . . . , Hn, they write

L(ρ) = P(H1, . . . , Hn | ρ) = P(H1|ρ)P (H2|H1, ρ) . . . P (Hn|H1,H2, . . . , Hn−1, ρ),

(26.28)
and then propose approximations to the conditional distributions on the right-hand side
of this equation, which can be used to create an approximate likelihood, which they
call aproduct of approximate conditionals (PAC) likelihood. This can be viewed as an
attempt to approximate inference under a coalescent-like model, in that the approximate
conditional distributions used are motivated by attempting to approximate the true
conditional distributions under a coalescent model. One advantage of this kind of approach
over the composite likelihood methods is that (26.28) is actually based on a probability
distribution, and so, unlike composite likelihoods, the PAC likelihood has about the right
amount of peakedness about its maximum (see Li and Stephens, 2003). This makes it
possible to obtain (approximate) interval estimates for parameters (e.g. confidence or
credible intervals). One disadvantage of the PAC compared with the pair-wise composite
likelihood is that it requires haplotypes to be known, or estimated, and cannot be applied
directly to unphased genotype data. However, actually the PAC model by itself provides
a way to estimate haplotypes from genotype data (Stephens and Scheet, 2005). Further,
and perhaps unexpectedly, the pair-wise composite likelihood appears to be more accurate
when applied to haplotypes estimated using the PAC model than when applied directly
to unphased genotypes (Smith and Fearnhead, 2005).

In addition to estimating recombination rates, the PAC approach has also been used to
estimate the population-scaled mutation rate for micro-satellites (Cornuet and Beaumont,
2007; Chaudhuri and Stephens, 2006), and it seems likely that it could also be helpful in
other contexts involving, for example, migration or selection.

26.6 SOFTWARE AND WEB RESOURCES

Among the methods discussed above, the rejection sampling methods based on summary
statistics are perhaps the only ones that are algorithmically simple enough to be
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implemented, and adapted to specific contexts, by researchers with limited computing
experience. Most of the other methods are more complex, and so choice of method in a
particular context will depend largely on the availability of software that can handle the
types of data and models of interest. Where more than one program is available, a conser-
vative recommendation would be to use all available methods to check that they give the
same answers. This can give a useful check that the software is behaving properly, and
that you are using it correctly.

Here we give a brief selection of the software currently available on the World Wide
Web, implementing some of the methods described in this chapter, and their extensions
to more complex genetic and demographic settings. Some of these packages are also
included in the review by Excoffier and Heckel (2006).

26.6.1 Population Genetic Simulations

Simulating data from coalescent models is a key step in implementing the rejection
sampling approaches outlined above, and can also be useful for testing other more complex
approaches to inference. A number of programs are available.

• ms (Hudson, 2002), available from http://home.uchicago.edu/~rhudson1/
source.html, can perform coalescent-based simulation of sequence data under a
range of neutral models, including models with migration, population expansion and
bottlenecks, with recombination and/or gene conversion.

• FREGENE, available from, http://www.ebi.ac.uk/projects/BARGEN, uses
forwards simulation to simulate data from coalescent-like models.

• cosi, (Schaffner et al., 2005), available from http://www.broad.mit.edu/
~sfs/cosi/, performs coalescent-based simulations. A novel feature is the avail-
ability of parameter values that aim to generate data that match, in certain ways, data
from modern human populations.

• Selsim, (Spencer and Coop, 2004), available from http://www.stats.ox.ac.
uk/~spencer/SelSim/Controlfile.html, simulates data under a coalescent
model with recombination, allowing for the presence of a single bi-allelic site that has
experienced natural selection.

26.6.2 Inference Methods

26.6.2.1 General

• The program micsat (Wilson and Balding, 1998) is available from http://www.
mas.ncl.ac.uk/~nijw/. It is an MCMC scheme for a Bayesian analysis of micro-
satellite data from a constant-sized panmictic population, based on the proposal distri-
bution outlined earlier. A more powerful and flexible MCMC program, batwing, is
also now available from the same address, and can deal with single nucleotide poly-
morphisms as well as micro-satellites, and more complicated demographic models
involving populations splitting from each other some time in the past, with no subse-
quent migration.

• The programs Lamarc, available from http://evolution.genetics.
washington.edu/lamarc.html, implements MCMC approaches for estimating
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population growth rates and recombination and migration rates from both sequence and
micro-satellite data. Earlier versions of the software were based on keeping parameters
of the model fixed, and use methods described in Section 26.4.3.1 to calculate likeli-
hood surfaces. Current versions are also able to perform Bayesian analyses; parameter
estimates obtained using the Bayesian approach may be more reliable in some contexts
(Stephens, 1999; Beerli, 2006).

• The program genetree (see for example Griffiths and Tavaré, 1994a) is available
from http://www.stats.ox.ac.uk/mathgen/software.html. The soft-
ware implements an IS algorithm, and includes options allowing estimation of
migration and growth rates in structured populations.

• The program IM, available from http://lifesci.rutgers.edu/~heylab/,
implements an MCMC approach to the estimation of divergence times and migration
rates between populations.

26.6.2.2 Estimating Recombination Rates

Although some of the above packages (e.g. Lamarc) incorporate recombination, most of
the above packages are most appropriate either for genomic regions that are assumed to
contain little or no recombination (eg mitochondrial DNA, Y chromosome, and possibly
small autosomal regions), or for analysing multiple unlinked loci. In recent years, there
has been considerable interest in estimating fine-scale recombination rates across larger
genomic regions using population data (see Chapter 27). The following list is a selection
of ‘coalescent-based’ software available.

• The programs maxdip and maxhap, available from http://home.uchicago.
edu/~rhudson1/source.html, implement the pair-wise composite likelihood
approach to estimating recombination rates (both crossover and gene conversion)
from unphased and phased single nucleotide polymorphism (SNP) data. These
programs assume that the recombination rates across the region to be analysed are
constant.

• The program LDhat, implementing the composite likelihood approach for esti-
mating (varying) recombination rates from McVean et al. (2004), is available from
http://www.stats.ox.ac.uk/~mcvean/LDhat/.

• The program PHASE, available from http://www.stat.washington.edu/
stephens/software.html, implements a PAC likelihood approach to estimating
(varying) recombination rates and identifying recombination hotspots.

• There are several programs implementing IS and composite likelihood methods for
estimating recombination rates available from Paul Fearnhead at http://www.
maths.lancs.ac.uk/~fearnhea/software/.
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27
Linkage Disequilibrium,

Recombination and Selection

G. McVean

Department of Statistics, Oxford University, Oxford, UK

Every chromosome carries a unique sequence of DNA; however, certain combinations of variants
are shared between individuals. The extent of this sharing is referred to as linkage disequilibrium
and its distribution in natural populations can be informative about diverse processes, from the
distribution of recombination to the influence of adaptive evolution. This chapter aims to provide a
foundation for the empirical analysis of linkage disequilibrium discussing how it can be measured,
how it relates to underlying genealogical processes and how to perform inference about underlying
molecular, historical and evolutionary processes. A central idea is that linkage disequilibrium is most
naturally understood in terms of the genealogical structure underlying a sample of chromosomes.

27.1 WHAT IS LINKAGE DISEQUILIBRIUM?

Every human genome has a unique DNA sequence. This is, in part, because each
individual inherits a few hundred novel mutations that occurred in the germ lines
of their parents (Nachman and Crowell, 2000). But it is also because the meiotic
processes of chromosomal segregation and recombination shuffle existing variation: the
result of mutations in our ancestors’ germ lines. Consequently, while every genome
may be unique, certain combinations of variants are shared: sometimes by just a
few individuals, sometimes by a large fraction of the population. The term linkage
disequilibrium (LD) is broadly used to refer to the non-random sharing (or lack thereof)
of combinations of variants. It would, perhaps, be better to talk about ‘haplotype structure’
or ‘allelic association’ (both terms also used in this chapter). Nevertheless, although LD
neither requires linkage (physical association on a chromosome) nor is particularly a
disequilibrium (e.g. one can discuss the equilibrium level of LD), the term LD has stuck.

To be clear about what LD means here, consider the three example data sets in
Figure 27.1. In each case the marginal allele frequencies at each polymorphic site are
approximately equal; what is different between the data sets is the degree of structuring
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(a) (b) (c)

Figure 27.1 Haplotype patterns with different levels of linkage disequilibrium. Each panel shows
a sample of 100 chromosomes drawn from a population with (a) no, (b) low and (c) high crossover.
Each row is a chromosome and the rarer allele at each site has been shaded black. Data sets all
have approximately the same set of marginal allele frequencies, so the only difference is in terms
of the degree of structuring, or linkage disequilibrium.

of the variation or LD. Specifically, Figure 27.1(a) shows a very high level of structuring,
Figure 27.1(c) shows a very low level of structuring and Figure 27.1(b) shows something
in between. Such differences in how genetic variation is structured point to differences
in the underlying biological processes experienced by the populations from which the
samples are drawn. Here, the primary difference is in the crossing-over rate; the data have
been simulated with zero, some and lots of crossing over respectively. However, other
molecular and historical processes, including mutation, natural selection, geographical
isolation and changes in population size, will also influence the structuring of genetic
variation in populations. It is the goal of population genetics to make inference about such
processes from observations of genetic variation in contemporary populations. Naturally,
we wish to use the relevant information contained in patterns of LD. The aim of this
chapter is to explore how we can understand patterns of LD observed in empirical data.

It is also worthwhile to give a more formal definition of LD. Consider a sample of
chromosomes where polymorphism has been observed at a series of three loci, x, y
and z. For simplicity each locus is assumed to have only two alleles (A/a,B/b and C/c
respectively). The obvious description of the sample is in terms of the number of times
we observe each haplotype, nABC, nabc, etc., or alternatively their sample proportions,
fABC, fabc, etc. However, we can equivalently describe the data in terms of the marginal
allele frequencies at each locus, fA, fa , etc. and a series of terms that reflect the extent to
which combinations of alleles are found more or less frequently than expected assuming
independence. For example:

fABC = fAfBfC + fADBC + fBDAC + fCDAB +DABC, (27.1)

where

DAB = fAB − fAfB
DAC = fAC − fAfC
DBC = fBC − fBfC
DABC = fABC − fADBC − fBDAC − fCDAB − fAfBfC. (27.2)

The D terms, which are referred to as LD coefficients, therefore measure the difference
between the observed frequency of pairs or triples of alleles and that expected from
the marginal allele frequencies and other D terms of lower order (e.g. the D terms for
triples contain the D terms for pairs, etc.). Similar expressions apply to any data set of any
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complexity (in terms of number of loci and number of alleles at each locus). However, the
number of terms clearly explodes as the number of loci increases. Nevertheless, the point
should be clear: patterns of genetic variation can be described in terms of the marginal
allele frequencies and a series of terms relating to the degree of association between pairs,
triples, etc. of alleles. These terms are broadly referred to as LD.

Before progressing, there is a rather subtle (but ultimately profound) point to make.
The previous paragraph deals with how to describe genetic variation within a sample of
chromosomes. Historically, population genetics has focused more on describing genetic
variation within populations: idealised entities consisting of (effectively) infinite numbers
of individuals whose genetic composition can be described in terms of allele frequencies
and coefficients of LD, just as in the sample. While the notion of a population is very
helpful (and is used extensively in this chapter) a focus on the sample has three benefits.
First, the sample is all that we have; although we can of course use the sample to make
inferences about populations. Second, in reality there is no such thing as a population,
just a set of individuals related through a complex and unknown pedigree. Third, thinking
about the history of the sample, specifically the genealogical history, provides a coherent
way of linking what we observe in patterns of genetic variation to underlying biological
and historical processes (Hudson, 1990). For these reasons, this chapter focusses heavily
on the interpretation of LD within a sample.

The rest of this chapter is divided into three parts. In the first, the method of summarising
LD in empirical data is explored. In the second, how simple probabilistic models of
genealogical history can be used to explore the effects of various molecular and historical
processes on patterns of LD is dealt with. Finally, in the third part, the problem of
inference is considered: how we can learn about such processes from empirical data.

27.2 MEASURING LINKAGE DISEQUILIBRIUM

As stated above, our ultimate aim is to make inference about underlying biological and
historical processes from patterns of genetic variation, including the structuring of variants,
or LD. To motivate the problem, consider the three data sets shown in Figure 27.2.
Each panel shows the inferred haplotypes for single nucleotide polymorphism (SNP)
data from the same 100 kb surrounding the Lactase gene on human chromosome 2, but
from three different samples of individuals: individuals of European ancestry living in
Utah (referred to as CEU ), individuals of Yoruba origin from Nigeria (referred to as
YRI ) and a combination of Han Chinese from Beijing and Japanese people living in
Tokyo (referred to collectively as CHB /JPT ); the data is from the International HapMap
Project (The International HapMap Consortium, 2005). This gene is important because a
particular mutation in the promoter, found at high frequencies in Europe, is associated (in
Europe) with the ability to digest lactose in milk persisting until adulthood, whereas in
most non-pastoralist populations from Africa, Asia and the Americas this ability ceases
between 5 and 10 years. The high frequency of this mutation is thought to have been
the result of strong selection for lactose persistence associated with the innovation and
subsequent importance of dairy farming. This hypothesis is strongly supported by the
genetic variation data, which shows European populations dominated by a single haplotype
in marked comparison to the other HapMap populations (Bersaglieri et al., 2004; Hollox
et al., 2001). Such patterns are suggestive of a recent selective sweep (Maynard Smith
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Figure 27.2 Haplotype structure in a 100-kb region surrounding the Lactase gene on human
chromosome 2 for the four HapMap populations (The International HapMap Consortium, 2005).
CEU = Individuals of European origin from Utah; YRI = Yoruba from Nigeria; CHB/JPT = Han
Chinese from Beijing and Japanese from the Tokyo region (60 unrelated individuals in each of
CEU and YRI, 90 in CHB/JPT). The CEU panel is dominated by a single haplotype that extends
over the entire region. Much higher haplotype diversity is found in the other populations (see also
Table 27.1).

and Haigh, 1974) in which the haplotype on which the beneficial mutation arose was also
dragged to high frequency. However, it is worth noting that other pastoralist populations,
such as the Fulani and bedouin, where lactose persistence also occurs at high frequency,
do not show the same patterns and most likely carry other mutations within the Lactase
region (Ingram et al., 2007).

However, suppose we knew nothing about the gene and its function. Faced with such
haplotype data, how might we begin to assemble a coherent picture of the underlying
processes? By way of an aside it should be noted that, throughout, the haplotype ‘phase’ is
typically assumed to be known (i.e. for diploid species the sequence of each chromosome
in an individual is known separately), through a combination of experimental techniques,
genotyping in pedigrees and/or statistical analysis (e.g., Marchini et al., 2006). Our first
approach might be to present the data graphically, as in Figure 27.2. This shows the
marked differences between populations and is clearly the most complete representation
of the genetic variation data. Nevertheless, it would also be useful to have some low-
dimensional summaries of the data that could be used to compare populations, or perhaps
this region to some other region in the genome.

The aim of this section is to introduce a range of low-dimensional summaries of LD that
could be applied to such data. In reality, we would also use low-dimensional summaries
of the data that are functions of the SNP allele frequencies rather than their structuring.
For example, statistics like Tajima’s D (Tajima, 1989), Fay and Wu’s H (Fay and Wu,
2000), Fu and Li’s D (Fu and Li, 1993), FST, etc. Indeed, it doesn’t make much sense
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to separate out the analysis of LD from the analysis of allele frequencies. However, the
diversity of measures of LD is sufficient to justify separate consideration. One thing that
must be stressed, however, is that no single summary of LD is ‘best’ in the sense that
it captures all information about underlying processes (e.g. no single-number summary
is sufficient in the statistical sense that it captures all information about some parameter
of interest). Different summaries are more or less useful for identifying the effects of
different underlying processes. In the analysis of empirical data it is therefore important
to stress the use of multiple summaries, each of which may give some more insight.

27.2.1 Single-number Summaries of LD

A natural starting point in the analysis of LD would be to ask whether there are any
single-number statistics of the data that are informative about LD in the same way that,
for example, the average pairwise diversity or Tajima’s D are used in the analysis of allele
frequency data. If the region is relatively short, one useful summary is simply the number
of unique haplotypes observed (the more LD the fewer haplotypes). Similarly, haplotype
homozygosity (the probability that two haplotypes picked without replacement from the
sample are identical) is an indication of how skewed the haplotype frequencies are.
There is, however, a problem with such summaries. As the length of the region surveyed
increases (or more SNPs are typed), we would eventually expect to reach a point where
every haplotype is unique (and haplotype homozygosity is 0). We might therefore want a
summary whose value is not so arbitrarily determined by the length of the region analysed.

There are many possibilities for such statistics. One approach is to attempt to break
the data up into a series of blocks, each of which represents a region with low numbers
of haplotypes and high haplotype homozygosity (Anderson and Novembre, 2003; Gabriel
et al., 2002; Wang et al., 2002; Zhang et al., 2002). The number of such blocks is therefore
a measure of the degree of structure in the data. However, any choice about how to break
the data up is arbitrary and the concept of such ‘haplotype blocks’ has been little used
in recent years. A related idea, motivated by the design of association studies to map
the genetic basis of phenotypic variation, is to identify ‘tag’ SNPs that capture (in ways
that are discussed below) variation within a region (Carlson et al., 2004; de Bakker et al.,
2005; Johnson et al., 2001). The number of tag SNPs required for a region is therefore
a measure of how structured the variation is (e.g. if only two distinct haplotypes were
observed, only one tag SNP would be required). However, there is no single most useful
measure of how well variation is ‘captured’ and differences in experimental design mean
that estimated numbers of tag SNPs are hard to compare between studies.

Another approach to summarising LD within a region is to estimate the influence
of recombination. For example, non-parametric techniques (Hudson and Kaplan, 1985;
Myers and Griffiths, 2003; Song et al., 2005) can be used to estimate the minimum
number of historical recombination events consistent with the data under the infinite-sites
assumption. Similarly, parametric, coalescent-based techniques (discussed later) can be
used to estimate the ‘population recombination rate’, or more accurately the ‘population
crossover rate’, 4Nec, under the standard neutral model, where c is the genetic distance
across the region and Ne is the effective population size (Stumpf and McVean, 2003).
Broadly speaking, a high crossover rate will tend to result in little genetic structuring (like
Figure 27.1c), while low rates will tend to result in data sets like that in Figure 27.1(a).
However, the association is far from perfect, particularly if the region of interest has
experienced adaptive evolution, the demographic history is not well approximated by a
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randomly mating population of constant size (e.g. there have been dramatic changes in
population size or geographical subdivision) or there is considerable gene conversion.

By way of example, single-number summaries of LD for the Lactase gene region of
Figure 27.2 are presented in Table 27.1. The strong structuring of the CEU sample is
shown clearly in the reduced number of haplotypes, the increased homozygosity and
the smaller number of detectable recombination events relative to the other populations.
The similarity in haplotype numbers and detectable recombination events between YRI
and CHB/JPT is complicated by the larger sample size of the latter; sub-samples of
120 chromosomes from CHB/JPT typically show values intermediate between YRI and
CEU. Interestingly, the parametric estimates of the population crossover rates show the
rate in CEU to be slightly higher than CHB/JPT, a pattern generally seen across the
genome (Myers et al., 2006; The International HapMap Consortium, 2005) and perhaps
not one expected for a gene where natural selection has acted so strongly. It is important
to note that the model-based estimates of the population crossover rate typically assume
neutrality (and a very simple demographic history). The action of natural selection is
just one of many historical forces that can result in different summaries of LD giving
apparently conflicting indications as to the relative amount of LD.

27.2.2 The Spatial Distribution of LD

Any single-number summary of LD will fail to capture heterogeneity in the observed
structuring of variation. Some genomic regions may have greater structuring than others
or there may be systematic patterns in the relationship between genomic location and LD.
For example, crossing over during meiosis will tend to lead to systematically lower levels
of LD for variants at distantly separated loci compared to that for those at closely situated
ones. Alternatively, gene conversion and/or mutational hotspots might create variants that
are much more randomly distributed than their neighbours.

There are two approaches to summarizing the spatial distribution of LD (i.e. how
it changes along the chromosome). One possibility is to make inferences about the
spatial nature of the underlying biological or evolutionary processes (crossing over, gene
conversion, mutation, natural selection, etc.). For example, LD in humans is strongly
influenced by the concentration of meiotic crossing-over events into short regions called
recombination hotspots. Consequently, inferences about the underlying recombination
landscape reflect, at least in part, the distribution of LD along a chromosome (Jeffreys
et al., 2001; 2005; McVean et al., 2005; The International HapMap Consortium, 2005).

Table 27.1 Statistics of LD for the Lactase gene.

YRI CEU CHB/JPT

Number of chromosomes 120 120 180
Number of unique haplotypes 34 18 35
Haplotype homozygosity 0.05 0.53 0.15
Recombination events∗ 23 10 23
Estimated 4Nec/kb† 0.12 0.10 0.07

∗ Lower bound on the minimum number of recombination events estimated by
the method of Myers and Griffiths (2003).
† Estimated using the method of McVean et al. (2002) assuming a constant
crossover rate and θ = 0.001 per site.
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The alternative is to make summaries of LD for subsets of the data (e.g. pairs of sites) and
show, usually graphically, spatial patterns in these summaries. The following discussion
focuses on two-locus summaries of LD as these are the most widely used summaries of
LD for genetic variation data.

Consider a pair of loci, at which exactly two different alleles are observed in the
population; these being A/a at the first locus and B/b at the second. These are most
naturally thought of as SNPs, but they might also be insertion–deletion polymorphisms
or restriction fragment length polymorphism (RFLPs). For the moment assume that the
haplotype phase of the alleles is known. As described above, the standard coefficient of
LD between the alleles at the two loci is defined as

DAB = fAB − fAfB= fABfab − fAbfaB , (27.3)

where fAB is the frequency of haplotypes carrying the A and B alleles and fA is the
marginal allele frequency of allele A. DAB therefore measures the difference between
the frequency of the AB haplotype and that expected if the haplotype frequencies were
simply given by the product of the marginal allele frequencies. Any deviation from this
expectation results in a non-zero value for DAB , with a positive value indicating that the
AB haplotype is found more often than expected assuming independence and a negative
value indicating that it is found less frequently than expected. Although (27.3) focuses on
the AB haplotype, the coefficient of LD for any other haplotype is given by the simple
relationship DAB = −DaB = −DAb = Dab.

As described above, the coefficient is computed from the sample haplotype frequencies.
However, we might also be interested in asking how the sample coefficient relates to
that of the population (if we believe that one exists). If we let DAB be the population
coefficient, the sample coefficient D̂AB has the properties (Hill, 1974)

D̂AB = f̂AB − f̂Af̂B
E
[
D̂AB

]
=
(
n− 1

n

)
DAB

Var(D̂AB) =
1

n
[fAfafBfb + (fA − fa)(fB − fb)DAB −D2

AB]. (27.4)

Here f̂AB means the obvious estimate of fAB (the population frequency) from the sample;
i.e. nAB/n, where nAB is the number of AB haplotypes in the sample. The most important
point about (27.4) is that the variance in the estimate is strongly influenced by the allele
frequencies at the two loci. Furthermore, the range of values D̂AB can take is strongly
influenced by the allele frequencies. If we arbitrarily define the A and B alleles to be the
rarer alleles at each locus and enforce (without loss of generality) f̂B ≤ f̂A, it follows
that −f̂Af̂B ≤ D̂AB ≤ f̂af̂B . (27.5)

The strong dependency on allele frequency of the standard coefficient of LD is an
undesirable property because it makes comparison between pairs of alleles with different
allele frequencies difficult. Consequently, several other measures of LD have been
proposed that (at least in some ways) are less sensitive to marginal allele frequencies
(Hedrick, 1987).

The most useful of these is the r2 measure (Hill and Robertson, 1968). Consider
assigning an allelic value, XA, which is 1 if the allele at the first locus is A and 0 if
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the allele is a. Also assign an allelic value, XB , with equivalent properties at the second
locus. The quantity measured by (27.3) can then be interpreted as the covariance in allelic
value between the loci. A standard way to transform the covariance is to measure the
Pearson correlation coefficient,

rAB =
Cov(XA,XB)√

Var(XA)Var(XB)
= DAB√

fAfafBfb
. (27.6)

In fact, for several reasons (not least because (27.6) has an arbitrary sign depending on
how the allelic values are assigned), it is actually more useful to consider the square of
the correlation coefficient,

r2 = D2

fAfafBfb
. (27.7)

The r2 measure has many useful properties. First, as indicated by the lack of subscripts
for D in (27.7), it has the same value however the alleles at the two loci are labelled.
Second, as described later, there are simple relationships between r2 and two features of
interest, the power of association studies (Chapman et al., 2003; Pritchard and Przeworski,
2001) and properties of the underlying genealogical history (McVean, 2002). Third, there
is a direct relationship between the sample estimate of r2, obtained by replacing population
values by the sample values in (27.7), and the power to detect significant association, i.e.
to reject the null hypothesis H0 : D = 0. An obvious test to consider is the contingency
table test where, under the null hypothesis, the test statistic

X2 =
∑
ij

(Oij − Eij )2
Eij

, (27.8)

is asymptotically χ2 distributed with 1 df as the sample size tends to infinity. Here Oij
and Eij are, respectively, the observed and expected counts of the ij haplotype where
the expectation is calculated assuming independence between the loci. The relationship
between (27.8) and r2 is

X2 = nr̂2. (27.9)

Consequently the null hypothesis of no association can be rejected at a specified level,
α, if nr̂2 is greater than the appropriate critical value of the test statistic. Another test that
might be considered is the likelihood ratio test, where the test statistic

� = 2 log

(
L(D = D̂)
L(D = 0)

)
, (27.10)

is also asymptotically χ2 distributed with 1 df under the null hypothesis. Here L(D)
indicates the likelihood of the LD coefficient calculated using the multinomial distribution
and the specified value of D. Using a Taylor expansion to approximate the logarithm, it
can be shown that

� = 2n
∑
ij

(f̂i f̂j + D̂ij ) log

(
1+ D̂ij

f̂i f̂j

)

= nr̂2 + o(D3). (27.11)
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Consequently the test statistics (and hence the power) of the contingency table and
likelihood ratio tests are approximately equal and a function only of the sample size and
observed r2. Note that for small sample sizes the χ2 approximation is unlikely to hold.
In these circumstances it is possible to use standard permutation procedures or exact tests
to estimate the significance of the observed correlation.

Although r2 has many useful properties, it is far from the only statistic in use. For
example, the |D′| measure (Lewontin, 1964) is defined as the absolute value of the ratio
of the observed D to the most extreme value it could take given the observed allele
frequencies

|D′| =


−D̂AB

min(f̂Af̂B, f̂af̂b)
D̂AB < 0

D̂AB

min(f̂Af̂b, f̂af̂B)
D̂AB > 0

. (27.12)

The main use of |D′| is that it measures the evidence for recombination between the
loci. A feature of (27.12) is that |D′| can only be less than 1 if all four possible
haplotypes are observed in the sample. If the mutation rate is low, such that repeat or back
mutation is unlikely, then if all four possible haplotypes are observed, it can be inferred
that at least one recombination event must have occurred in the history of the sample
(Hudson and Kaplan, 1985). Conversely, if anything less than the four combinations are
observed the data are compatible with a history in which no recombination has occurred.
Furthermore, the greater the rate of recombination between the loci, the more likely the
alleles are to be in linkage equilibrium. So a value of |D′| = 1 can be interpreted as
evidence for no recombination, while a value near 0 can be interpreted as evidence for
considerable recombination. There is, however, a problem with such an interpretation for
rare alleles (Figure 27.3). Even if all four combinations are present in the population,
it may be unlikely to see all four in a finite sample if at least one haplotype is at low
frequency (Devlin and Risch, 1995; Hedrick, 1987; Lewontin, 1988). For this reason, the
interpretation of a |D′| of 1 is highly dependent on the sample allele frequencies and
the construction of confidence intervals for |D′| is highly recommended (Gabriel et al.,
2002). Furthermore, if the primary interest of a study is to learn about recombination, it
makes considerably more sense to use non-parametric or parametric approaches to learn
about recombination directly.

As discussed above, an informative approach to summarising the spatial structure of LD
is to compute two-locus statistics for all pairs of polymorphic loci and to represent these
values graphically. Figure 27.4 shows three example data sets and their corresponding
LD plots that demonstrate how the spatial distribution of LD can vary. In Figure 27.4(a)

Figure 27.3 The relationship between sample configuration and
the r2 and |D′| measures of two-locus LD. Each panel shows a
configuration that corresponds to either high or low values of the
two measures. Each bar is a chromosome and each circle represents
an allele. For the diagonal plots the measures agree. However,
for (b), r2 is near 0 while |D′| is 1, demonstrating how the two
measures focus on different aspects of the sample configuration.

r 2 = 0 r 2 = 1

|D′| = 0

|D′| = 1

(a)

(b) (c)
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(a) (b) (c)

Figure 27.4 The spatial structure of LD. In each panel the upper plot shows the haplotypes and
the lower plot shows a matrix of pairwise r2 (upper left) and |D′| values (bottom right) shaded by
magnitude from black (values near one) to light grey (values near zero). (a) In a region of constant
crossover rate sites close to each other show strong LD, which gradually decreases the further apart
they are (n = 50, θ = 10, C = 30). (b) In a region with a central crossover hotspot, LD appears
blocklike, with regions of very high LD separated by points at which the association breaks down
(n = 50, θ = 10, C = 50 concentrated on a single central hotspot). (c) Where LD is generated by
the mixture of individuals from two differentiated populations there is no spatial structure to LD;
sites near or far can be in strong LD (n = 25 in each population, 80 loci, data simulated under a
β-binomial model of differentiation (Balding and Nichols, 1995) with FST = 0.9).

there is a tendency for closely situated alleles to show strong to moderate LD, while
more distant ones show much weaker LD. In Figure 27.4(b) there are two strong blocks
of LD separated by a point at which LD breaks down almost completely. In Figure 27.4(c)
there is no apparent spatial structure to LD: alleles can be in strong association whether
they are near each other or far away. These differences in LD patterns reflect different
underlying processes: a region with a moderate and constant crossover rate, a region with
a strong crossover hotspot and low background crossover rate and a series of unlinked loci
sampled from two highly differentiated populations, respectively. Although the pictures
are somewhat noisy, it is clear that an understanding of the spatial distribution of LD can
greatly help in the interpretation of underlying processes.

27.2.3 Various Extensions of Two-locus LD Measures

The previous situation considered how to measure LD in the setting where loci are
bi-allelic and the allelic phase is known. But in many situations neither may be true.
If the sampled individuals are diploid and the haplotype phase of alleles is unknown, it is
possible to estimate the haplotype frequencies, e.g. by maximum likelihood (Weir, 1996).
For two bi-allelic loci, lack of phase information adds remarkably little uncertainty to
estimates of LD (Hill, 1974), because the only two-locus genotype where phase cannot be
accurately inferred is when the individual is heterozygous at both loci. For multi-allelic
loci (such as microsatellites), haplotype estimation can also be achieved by maximum
likelihood, e.g. by the expectation maximisation (EM) algorithm.
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The key problem for multi-allelic systems is how to summarise LD. One approach,
motivated by the relationship between r2 and the χ-square test in the bi-allelic case, is
to use the statistic (Hill, 1975)

Q = 1

n

k∑
i=1

l∑
j=1

(Oij − Eij )2
Eij

=
k∑
i=1

l∑
j=1

D̂2
ij

f̂i f̂j

. (27.13)

Here, as before, Oij and Eij are the observed and expected haplotype counts when
there are k and l alleles respectively at the two loci. Again, under the null hypothesis
H0 : Dij = 0, for all i and j , Qn will be approximately χ2 distributed, though with
(k − 1)(l − 1) degrees of freedom. Of course, as the number of alleles increases, so that the
expected haplotype counts tend to decrease, it becomes more important to use permutation
methods or exact tests, rather than the χ2 approximation, to assess significance. There are
also multi-allele versions of |D′| (Hedrick, 1987). Again, it is informative to present the
result of such analyses graphically.

27.2.4 The Relationship between r2 and Power in Association Studies

Before trying to understand what influences the distribution of LD (and how we can
learn about these processes), it is worth discussing an important, though perhaps rather
misunderstood, relationship between measures of LD and the power of association studies
(Chapman et al., 2003; Pritchard and Przeworski, 2001). An association study is an
experiment that aims to map the genetic basis of phenotypic variation by comparing
the genetic variation between individuals with a disease (cases) and without the disease
(controls) with the aim of identifying variants that are enriched among sufferers of
the disease; similar approaches can be taken for quantitative traits (see Chapter 37).
Typically, only a subset of all polymorphic loci will have been analysed. Nevertheless, if
the causative locus does not happen to be among those analysed, there is still some hope
of identifying the locus through the LD that might exist between the causative variant
and nearby variants that have been analysed in the study (Hirschhorn and Daly, 2005).

To see what reduction in power this leads to we need to specify a way in which the
statistical analysis of the data will be performed. The simplest (though almost certainly
not the most powerful) approach is to measure the difference in allele frequencies between
cases and controls and assess the significance by means of a contingency table analysis.
For simplicity, the diploid nature of most eukaryotes is ignored, though the results shown
here generalise to the diploid case for diseases with additive (or multiplicative) risk
(Chapman et al., 2003). Table 27.2 shows the frequency of each case/allele combination
for a simple disease model where the risk allele, A, increases the chance of getting the
disease by a factor eγ . The population frequencies of the two alleles are fA and fa and the
proportion of the subjects who are cases and controls is φD and φC , respectively. Under
this model, the sample counts are drawn from these frequencies (usually with fixed row
totals) and the association between the disease and genetic variation at the locus could be
summarised by the sample covariance between allelic status and disease status, a statistic
called T here

T = Cov(A,D) = 1
n2 (nADnaC − nACnaD). (27.14)

Where nAD is the number of individuals with the disease and the A allele, etc., and n is
the total number of individuals. Note that this statistic is also equivalent to the standard
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Table 27.2 Frequencies of each case/allele status under
a simple disease model.

Status Allele Totals

A a

Disease
φDfAeγ

fa + fAeγ
φDfa

fa + fAeγ
φD

Control∗ ≈ φCfA ≈ φCfa φC

∗ It is assumed that the allele risk and disease prevalence are
sufficiently small so as not to create a skew in allele frequencies
in the control set.

coefficient of LD between the allelic and disease status (27.3). However, we also wish
to know whether the observed value of T lies outside the range we would expect by
chance if there were no causative association (i.e. whether we can reject the null model
at some specified significance level). Under the null hypothesis, γ = 0 (i.e. when there is
no causal association), we know from (27.4) that

E[T ] = 0

Var(T ) = fAfaφDφC
n

. (27.15)

So under the null hypothesis the statistic

Z = T − E[T ]√
Var(T )

= T√
f̂Af̂aφDφC

n
1
2 (27.16)

is asymptotically normally distributed with mean 0 and variance 1 as the sample size
tends to infinity. Note the hats on the frequencies indicate that these are estimates from the
sample. Under the alternative, γ �= 0, but assuming that γ is small such that eγ ≈ 1+ γ
and the variance of the test statistic does not change appreciably, it follows that

E[T ] ≈ γ × fAfaφDφC
Z = T√

f̂Af̂aφDφC

n
1
2 ∼ Normal

(
n

1
2 [fAfaφDφC]

1
2 γ, 1

)
. (27.17)

Equivalently, the standard test statistic for the 2× 2 contingency table, Z2, is
approximated by the χ2 distribution with 1 df and a non-centrality parameter of

n
1
2 [fAfaφDφC]

1
2 γ . Now consider a marker locus with alleles B and b. The entries in

Table 27.2 can be updated in a simple manner by noting that

Pr(B|D) = Pr(D & B)

Pr(D)

= Pr(B)[Pr(A|B) Pr(D|A)+ Pr(a|B)Pr(D|a)]
Pr(D)
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= fABeγ + faB
fAeγ + fa

≈ fB +DABγ. (27.18)

Substituting this term into Table 27.2 and an equivalent one for the b allele, Pr(b|D) ≈
fb −DABγ , shows that the test statistic at the marker locus

Z = f̂BDf̂bC − f̂BCf̂bD√
f̂B f̂bφDφC

n
1
2 (27.19)

is approximately normally distributed

Z ∼ Normal

(
n

1
2 [φDφC]

1
2 γ

DAB√
fBfb

, 1

)

∼ Normal

(
n

1
2 [fAfaφDφC]

1
2 γ

DAB√
fAfafBfb

, 1

)
(27.20)

The last term in the mean of the distribution should look familiar as (27.6), the
correlation coefficient between the A and B alleles at the two loci. Finally, imagine
two experiments. In the first, we type the causative locus in a total of n1 individuals. In
the second, we type the marker locus in n2 individuals. From (27.17) and (27.20) it should
be clear that the distributions of the test statistics across replicates of the two experiments
will be the same if and only if

n2 =
n1

r2
. (27.21)

The subscript on the square of the correlation coefficient has again been dropped to
indicate that it is the same for all pairs of alleles. Equation (27.21) implies that to achieve
the same power in the experiment at the marker locus the sample size has to be increased
by a factor of 1/r2.

This is a very elegant result and clearly has implications for the design of association
studies. Nevertheless, two critical issues need to be appreciated. The first is that while the
r2 result can be used to define experiments with equal power, it does not follow that in a
given experiment typing a marker locus relative to a causative locus results in a loss of
power of 100× (1− r)%. The relationship between the non-centrality parameter and the
power is non-linear. Consequently, analysing a marker with r2 = 0.5 to an unanalysed
causative allele may result in a drop in power of much less than 50 % if the power to detect
the disease allele (if typed) is very high or a drop of much more than 50 % if the power is
intermediate or low. The second point is that the r2 result, at least as stated, only applies
to one, probably suboptimal, way of analysing the data for association. Indeed, it only
considers an experiment where a single marker has been studied. In reality, more complex
models will be fitted to substantially more complex data sets in which the multiple-testing
issue becomes important (because many markers will be analysed). It is therefore clear
that the magnitude of pairwise r2 values between alleles is only one factor in determining
the power of an association study.
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27.3 MODELLING LD AND GENEALOGICAL HISTORY

It should be clear by now that many different forces can influence the distribution of
LD. These include molecular processes such as mutation and recombination, historical
processes such as natural selection and population history and various aspects of experi-
mental design (marker and subject ascertainment). If we are to have any hope of making
useful inferences about the underlying processes from empirical data, we need to have a
coherent framework within which to assess the way in which they can affect the patterns
of variation we observe. One approach is to use simple probabilistic models to explore
the distribution of patterns of LD we might observe under different scenarios. The aim
of this section is to introduce such models and illustrate how they can be used to provide
insights from empirical data. A key feature is the idea that genealogical models, specifi-
cally the coalescent with recombination (see Chapter 25), provide a flexible and intuitive
approach to modelling genetic variation. The relation between features of the underlying
genealogical history and properties of LD is also shown.

27.3.1 A Historical Perspective

Before introducing the coalescent perspective it is useful to provide a brief historical
sketch of mathematical treatments of LD (see also Chapter 22). These approaches have
given considerable insight into the nature of LD and, in contrast to most of the Monte
Carlo based coalescent work, do provide simple analytical results about quantities of
interest. The description given below is not chronological. All of these models assume a
population of constant size and random mating.

27.3.1.1 The Relationship between LD and Two-locus IBD

Intuitively, the level of LD observed between two loci must be related to the extent to
which they share a common ancestry (i.e. the extent to which the two loci have been
co-transmitted in genealogical history). Indeed this is really the point of coalescent
modelling. Completely linked loci share exactly the same ancestry and typically show
high levels of LD, while unlinked loci have independent ancestries and typically show
low LD. One way of quantifying the degree of shared ancestry between two loci is
two-locus identity by descent (IBD). Single-locus IBD measures the probability that two
chromosomes sampled at random from a population share a common ancestor before some
defined point in the past (note that all chromosomes ultimately share a common ancestor
so the equilibrium value of IBD is 1). The two-locus version simply extends the notion to
measure the probability that two chromosomes sampled at random share a single common
ancestor at both loci before some defined point in the past (and that there has been no
crossover on either pathway from the sample chromosomes to the common ancestor).
Note that IBD does not refer to identity in state (i.e. whether the two chromosomes
carry the same alleles) rather it refers to relatedness. Over time, IBD within a population
increases through genetic drift and decreases through recombination. An expression for
the change in two-locus IBD, Q = Pr(same ancestor), over time can be obtained (Sved,
1971) as a function of the diploid population size, N , and the per generation probability
of a crossing-over event occurring between the two loci, c. Note that in the literature c
can refer to either the genetic map distance between two loci (for details of how genetic
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maps are constructed see Chapter 1) or the probability of crossing over (which cannot
take a value greater than 0.5). In all cases considered here, c is sufficiently small that the
genetic map distance and probability of crossover are approximately the same.

Qt+1 =
1

2N
(1− c)2 +

(
1− 1

2N

)
Qt(1− c)2. (27.22)

Solving for the equilibrium state gives

Q̃ ≈ 1

1+ C , (27.23)

where C = 4Nc. Note that the same result can be obtained more naturally by thinking of
the process backwards in time. Two-locus IBD is just the probability that the first ‘event’
that happens to the chromosomal segment flanked by the two loci on two randomly
sampled chromosomes is a common ancestor event. That is, they coalesce before any
crossover event occurs.

How does two-locus IBD relate to LD? Sved (1971) proposed the following argument.
Consider sampling two chromosomes known to be identical in state at one locus
proportionally to the allele frequencies at that locus. Both loci are bi-allelic with alleles
A/a at the first and B/b at the second. It can be shown that the probability that
these chromosomes are also identical at the second locus, PH, is a function only of
the homozygosity at the second locus, FB = f 2

B + f 2
b where fB is the frequency of the

B allele etc. and the r2 measure of LD between the alleles at the two loci

PH = r2 + (1− r2)FB. (27.24)

If the crossover rate is large relative to the mutation rate then two chromosomes that
show IBD at both loci are likely to also be homozygous at both loci (i.e. under these
conditions IBD also implies identity in state). Consequently,

PH ≈ Q̃+ (1− Q̃)FB. (27.25)

Combining expressions gives

r2 ≈ Q̃ = 1

1+ C . (27.26)

In short, the argument suggests that the expected value of r2 is near 1 for very small
crossover rates and approaches 1/C for C >> 1.

Although this approximation is a useful heuristic (Chakravarti et al., 1984) and is widely
quoted (Jobling et al., 2004), it is limited in application (Weir and Hill, 1986) because
two chromosomes may share a common ancestor yet be different in allelic state due to a
more recent mutation. Implicit within (27.25) is the assumption that allele frequencies do
not change over time. For these reasons, (27.26) will only be a good approximation when
the time scale over which two chromosomes at two loci may share a common ancestor
before recombining is very short, which is only true for large values of C.
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27.3.1.2 Matrix Methods and Diffusion Approximations

There are two alternative, and rather more rigorous, approaches to obtaining results about
the expected value of LD statistics under simple population models. One approach is
to use matrix recursions to describe the change in moments of LD statistics over time
(Hill, 1975; 1977; Hill and Robertson, 1966; 1968). The other is to use a diffusion
approximation (see also Chapter 22), replacing the discrete nature of genes in populations
by a continuous space of allele frequencies (Ohta and Kimura, 1969a; 1969b; 1971).
Although these methods appear somewhat different at first, they are actually closely
related and can be used to examine both the dynamics of change in LD over time and
to obtain expressions for quantities of interest at equilibrium. For example, although it is
not possible to calculate the expected value of r2 at equilibrium, it is possible to calculate
a related quantity

σ 2
d =

E[D2
AB]

E[fA(1− fA)fB(1− fB)]
, (27.27)

for a pair (or a set of equivalent pairs) of bi-allelic loci, where fA and fB are the
allele frequencies at two loci. Under the infinite-sites model (Karlin and McGregor, 1967;
Kimura, 1969), the diffusion approximation leads to the solution (Ohta and Kimura, 1971)

σ 2
d =

10+ C
22+ 13C + C2

. (27.28)

The same result can be obtained as the limit under low mutation rate from models of
bi-allelic loci with a symmetric rate of mutation between alleles (Hill, 1975; Ohta and
Kimura, 1969a). Like the expression of Sved this result predicts that for large C, the
expected value of r2 is approximately 1/C. The main difference between the predictions
of (27.26) and (27.28) is for small C where (27.28) predicts a value considerably less
than 1 (a value of 5/11 for C = 0). Figure 27.5 compares estimates from Monte Carlo
coalescent simulation. Neither approximation provides a particularly accurate prediction
for the expected value of r2, unless rare variants (loci where the rare variant is less than
10 % in frequency) are excluded. Nevertheless, (27.28) does predict the general shape of
the decrease in average r2 with increasing C.

27.3.2 Coalescent Modelling

The single most striking feature about Figure 27.5 is just how noisy LD is; the mean
value of r2 between loci at a given genetic distance captures very little of the complexity
of the full distribution. This has two implications. First, it is hard to obtain an intuitive
understanding of LD by thinking about ‘expected’ values of LD statistics. Second, the
analysis of empirical data by comparing observed LD statistics to their ‘expected’ values
is likely to be only weakly informative.

In order to capture the full complexity of LD patterns it is necessary to use stochastic
modelling techniques to simulate the types of patterns one might observe under difference
scenarios. The advent of coalescent modelling (Hudson, 1983b; Kingman, 1982), and
specifically the coalescent with recombination (Hudson, 1983a), has led to a revolution
in the way genetic variation data is approached. Coalescent models focus on properties of
the sample by considering the genealogical history that relates a set of chromosomes
to each other (see Chapter 25). For recombining data, the ancestral recombination
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Figure 27.5 Analytical approximations for the expected r2 between pairs of alleles as a function
of the population genetic distance, 4Nec, between sites. Sved’s approximation, (27.26): dashed
black line. Ohta and Kimura’s approximation, (27.28): solid grey line. Also shown (grey dots) are
the values of r2 between pairs of alleles at the corresponding genetic distance obtained from a
single infinite-sites coalescent simulation with 50 chromosomes, θ = 100, C = 100 and the sliding
average (solid black line) for all pairs of sites where the minor allele is at frequency of at least
10 %. Although the Ohta and Kimura approximation performs quite well at predicting the mean r2,
its predictive power for any pair of sites is extremely poor due to high variance.

graph (ARG) generalises the idea of a ‘tree’ that relates individuals to each other to
a complex network in which the trees at different positions along a chromosome are
embedded (Griffiths, 1991). Figure 27.6 shows an ARG for two loci. Looking back
in time there are two types of events: coalescent events, in which two lineages find a
common ancestor, and recombination events, in which an ancestral lineage splits. The
marginal trees at the two loci are embedded in the larger graph and the trees at the
two loci, though different, do share some clades. Mutations that lead to variation within
the sample occur along the branches of the ARG. Consequently, the structure of LD
reflects the correlation structure of the underlying genealogical history. In other words,
from a coalescent perspective the best way of understanding genetic variation is to think
about the structure of the underlying genealogy of the sample. Different evolutionary
forces have different effects on the shape and correlation structure of these underlying
genealogies. Although this view is strongly driven by a neutral perspective (the mutations
we observe have not themselves influenced genealogical history), the effects of certain
types of natural selection, such as selective sweeps or balancing selection, on patterns
of linked neutral variation can also be considered from a coalescent or genealogical
viewpoint.

In addition to the various theoretical insights that coalescent theory has made possible,
a genealogical approach has greatly enabled the analysis of genetic variation through the
ability to simulate data under various evolutionary models. In the next three sections the
use of a genealogical framework to understand the distribution of LD is described.

27.3.2.1 LD Patterns in the Absence of Recombination

It may sound strange, but we can actually learn a lot about LD by studying its behaviour
in regions where there is no recombination (Slatkin, 1994). Consider the three data
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(a) (b) (c)

Figure 27.6 An example ancestral recombination graph for two loci and six chromosomes. (a) The
history of the chromosomes can be traced back in time to coalescent events (where pairs meet their
common ancestors) and crossover events, which split the lineage into two. The resulting trees at the
two loci, (b) and (c), share some branches (indicated by the thick lines). Because of recombination,
a mutation on a particular shared internal branch, indicated by the circle, will be present in different
members of the sample depending on which locus it occurs at.
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Figure 27.7 Linkage disequilibrium in non-recombining regions. Despite each example having
no recombination, there can be low, moderate or high LD depending on the structure of the
underlying genealogy. Data simulated with either (a) a constant population size, (b) a strongly
growing population or (c) a population that has experienced a severe recent bottleneck.

sets and their corresponding genealogies in Figure 27.7 corresponding respectively to
simulations with a constant population size, a growing population and a population that
has experienced a strong recent bottleneck (though not one strong enough to wipe out all
pre-existing variation). Apart from the differences in the numbers of polymorphic sites,
there are also strong differences in their structuring. First note that any two mutations
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(a) (b) (c)

Figure 27.8 Crossover events as a point process along the sequence (Wiuf and Hein, 1999).
(a) At any point along the sequence there is an underlying genealogical tree. The distance to the
next crossover event is exponentially distributed with rate dependent on the total branch length of
the current tree and the crossover rate. Having chosen the physical position of the crossover event,
the position on the tree, indicated by the star, is chosen uniformly along the branch lengths. (b) In
an approximation to the coalescent process, called the SMC (McVean and Cardin, 2005), the branch
immediately above the recombination point is erased leaving a floating lineage. (c) The floating
lineage coalesces back into the remaining tree and the process is repeated. In the coalescent, no
branch can be erased.

at two distinct sites that occur on the same branch in the tree will occur in exactly the
same members of the sample, and hence be in ‘perfect’ LD, i.e. r2 = 1. Next note that
mutations on different branches will be only very weakly correlated, r2 << 1, if the
branches are in different parts of the tree and particularly if one or both are near the tips.
It follows that the extent of LD reflects the extent to which the tree shape is dominated
by a few long branches, as in the case of the bottlenecked population (on which lots
of mutations occur and which are therefore in perfect association), or is not, as in the
case of the growing population (mutations occur on branches in different parts of the tree,
particularly towards the tips, and typically show weak association). It follows that (at least
for r2) LD is strongest for the bottlenecked population and weakest for the growing one.
The constant-size population shows a mixture of highly correlated and weakly correlated
alleles, reflecting the distribution of mutations all across the tree. Of course, because of
the inherent stochasticity in the coalescent process it would be unwise to make inferences
about population history from a single non-recombining locus that showed the patterns
in Figure 27.8(b or c).

Digressing slightly, it is interesting to note how classical population genetics theory
concerning the distribution of genetic variation under the infinite-alleles model can be
related to study the structure of LD in infinite-sites models without recombination. For
example, the number of distinct haplotypes in the sample, H , is equivalent to the number
of distinct alleles, k. The classic result then gives an expectation for these quantities for
the case of constant-sized neutral populations (Ewens, 1972),

E[k] =
n−1∑
i=0

θ

i + θ . (27.29)

Here θ = 4NeuL is the population mutation rate over the region of interest, where u is
the per site, per generation mutation rate and L is the number of sites. Similarly, the
Ewens sampling formula (Ewens, 1972) describes the distribution of the numbers of each
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distinct haplotype conditional on the total number of observed haplotypes

Pr(n1, n2, . . . , nk|k, n) ∝
1

n1n2 . . . nk
. (27.30)

This result inspired the first statistical test for the hypothesis that the region of interest
is evolving neutrally: the Ewens–Watterson homozygosity test (Watterson, 1977; 1978),
which compares the observed (haplotype) homozygosity to the distribution expected from
the above formula. Indeed, thinking about the effect of recombination on this test first
led to the development of the coalescent model with recombination (Hudson, 1983a;
Strobeck and Morgan, 1978). Recombination tends to increase the number of observed
alleles (haplotypes) and reduces the skew in allele (haplotype) frequency resulting in a
systematic decrease in (haplotype) homozygosity.

27.3.2.2 LD in Recombining Regions

When recombination occurs within a region, different positions may have different, though
correlated, trees (Figure 27.6). This raises a series of questions. How does recombination
change tree structure? What is the relationship between correlation in tree structure and
LD? How should we measure the correlation in trees? To answer these questions it is
first helpful to think about how trees ‘evolve’ along a sequence through recombination
(Wiuf and Hein, 1999). The following argument gives a sense of how genealogical history
changes because of recombination, specifically crossover events, by considering how to
simulate a sequence of trees along a unit region (i.e. a region where the start is labelled 0,
and the end labelled 1) over which there is a constant crossover rate of C. Readers should
be aware that what follows is an approximation, referred to as the spatially Markov
coalescent (SMC) (McVean and Cardin, 2005). Nevertheless, the distribution of data
generated by the SMC process is almost indistinguishable from that generated by the true
coalescent process (Marjoram and Wall, 2006; McVean and Cardin, 2005).

1. Simulate a coalescent tree (i.e. no recombination) at the far left-hand edge of the
region. The total tree length (in units of 2Ne generations) is TL.

2. The distance along the region to the next crossover event is exponentially distributed
with rate TLC/2. If the position of the next crossover event lies within the unit region,
continue, otherwise stop.

3. Choose a point within the tree to recombine uniformly along its branches. Erase the
remainder of the branch immediately above the chosen point.

4. Allow the recombined lineage to coalesce back to the remaining lineages at a rate
proportional to the number of non-recombined lineages present (note this has to be
updated if there are coalescent events among these). Note also that the recombined
lineage could coalesce beyond the most recent common ancestor (MRCA) of the
current tree.

5. Now assign the total length of the new tree to TL. Return to step 2.

These steps are illustrated in Figure 27.8. Several features should be clear from this
approximation. First, trees change over the region by small steps. Of course, lots of steps
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(resulting from large crossover rates) result in lots of changes, so the tree at the right
hand of the sequence looks very different from that at the left hand. Second, because
of the structure of coalescent trees, many of the crossover events occur deep in the tree
when there are relatively few lineages. These often have remarkably little effect on the
distribution of genetic variation and crossover events during the phase when only two
lineages are present are essentially undetectable. Third, if a pair or group of sequences
shares a very recent common ancestor, this part of the tree will persist over considerable
genetic distances. Consequently, it is often possible to identify pairs or small groups of
sequences that are identical over extremely long regions. To illustrate the effect consider
the statistic TS, the sum of the lengths of the branches shared by the trees at the start and
end of a sequence. The expectation of TS under the SMC is

E[TS] = 2
n−1∑
i=1

1

i + C . (27.31)

For n > C the proportion of the total expected tree length that is shared is approximately
1− log(C)/ log(n) (note that in the coalescent the shared time is likely to be slightly
higher). Consequently, for large sample sizes a considerable proportion of the tree can
be shared even when the total crossover rate is very high. For example, with 1000
sequences, over 15 % of the total expected time is shared by points separated by C = 400,
which in humans of European origin corresponds to about 1 cM. Of course, if the tree
shape is strongly dominated by large recent clades, as e.g. happens if there has been
a recent and strong but partial selective sweep, such parts of the tree can persist over
much greater genetic distances. These considerations emphasise the fact that LD is very
heterogeneous, not just between genomic regions but also between different individuals
within a sample.

27.3.2.3 LD in Populations with Geographical Subdivision and/or Admixture

Although the notion of a tree changing along the sequence provides useful insights into
the nature of LD, there is one aspect that, at least at first glance, it fails to describe: LD
between alleles at unlinked loci (e.g. on different chromosomes) in structured populations.
As demonstrated in Figure 27.4, when the sample contains individuals from one or
more populations LD can exist even between unlinked loci because of differences in
allele frequencies between populations. More generally, any deviation from random
mating will lead to systematic spatial structuring of genetic variation and LD even
between unlinked loci. How can we understand this phenomenon within a genealogical
context?

The answer is simple. LD is determined by the correlation in genealogical history along
a chromosome. Recombination acts to break down such correlations, but if there are
biases induced by geographic or cultural factors in terms of which lineages can coalesce,
some correlation will persist indefinitely. Figure 27.9 illustrates this idea by considering
independent coalescent trees sampled from a pair of populations that diverged some
time ago. Despite their independence, both trees show a strong clustering of individuals
from the same populations. In short, while directly sharing genealogical trees results in
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Figure 27.9 Correlations in genealogical history at unlinked loci. Individuals from two popula-
tions, indicated by the grey and black bars below, have been sampled at two unlinked loci. Although
the trees are independent, there is nevertheless genealogical correlation because a pair of individuals
sampled from within a population are likely to have a more recent common ancestor at both loci
than a pair of chromosomes where one from each population has been sampled. Data simulated
with 25 chromosomes sampled from each of two populations of equal size that diverged exactly
Ne generations ago from an ancestral population of the same size.

genealogical correlation and hence LD, genealogical correlations can also arise indirectly
by forces shaping the nature of coalescence.

27.3.3 Relating Genealogical History to LD

It should be clear by now that LD is a reflection of correlation in the genealogical history
of samples. Informally, if the coalescence time for a pair of sequences sampled at a
given locus is informative about the coalescence time for the same pair of sequences at
a second locus (relative to the sample as a whole), we expect variation at the two loci
to exhibit significant LD. But exactly what is the relationship? Is it possible to be more
quantitative about which aspects of genealogical correlation relate to which measures
of LD?

A partial answer to this question comes from studying the quantity σ 2
d ; see (27.27). It

is well known that D2 between alleles at a pair of loci, x and y, can be written in terms
of two-locus identity coefficients (Hudson, 1985; Strobeck and Morgan, 1978).

D2
xy = F(Cxij , Cyij )− 2F(Cxij , C

y

ik)+ F(Cxij , Cykl). (27.32)

The three terms relate to the probabilities of identity at the two loci for pairs of
chromosomes sampled in different ways. Consider sampling four chromosomes from
a population and labelling them i, j, k and l. The first identity coefficient compares
chromosomes i and j at both the x and the y loci. The second compares chromosomes
i and j at the x locus, but i and k at the y locus. The third compares chromosomes i and j
at the x locus and k and l at the y locus. The expectation of these identity coefficients
over evolutionary replicates therefore determines the average strength of the LD.

What is the relationship between identity coefficients and genealogical history? The
key point is that each identity coefficient relates to the probability that no mutation has
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i j

tij

Figure 27.10 Identity in state and genealogical history. Two chromosomes, i and j , will be
identical in state if no mutation occurs on those branches of the tree that lead to their common
ancestor(s), at time tij . It follows that two-locus identity in state reflects whether mutations at the
two trees fall on the branches to the pair’s common ancestor. In the limit of a low mutation rate,
but conditioning on segregation at the two loci in a sample of size n, identity in state can be written
as a function of the correlations in coalescence time at the two loci, see (27.34).

occurred on the branches of the genealogy that link two chromosomes to their common
ancestor (see Figure 27.10). If we condition on a single mutation occurring at both loci
within a sample of size n and let the mutation rate tend towards 0, we get the result
(McVean, 2002)

E[F(Cxij , C
y

ij )] = lim
θ → 0

E[(Tx − 2txij )(Ty − 2tyij )e
−θ(Tx+Ty)/2]

E[TxTye
−θ(Tx+Ty)/2]

= E[(Tx − 2txij )(Ty − 2tyij )]

E[TxTy]
,

(27.33)

where Tx is the sum of the branch lengths in the tree at locus x and txij is the coalescent
time for chromosomes i and j at locus x. Similar results can be found for the other
identity coefficients and for the denominator in (27.27). Combining these equations, we
get the following result:

σ 2
d =

ρ(txij , t
y

ij )− 2ρ(txij , t
y

ik)− ρ(txij , tykl)
E[t]2/Var(t)+ ρ(txij , tykl)

, (27.34)

where ρ(txij , t
y

kl) indicates the Pearson correlation coefficient between the coalescent time
for chromosomes i and j at locus x and the coalescent time for chromosomes k and l at
locus y and the first term in the denominator is the ratio of the square of the expected
coalescence time for a pair of sequences to its variance.

Equation (27.34) has two important features. First, the required correlations in time
to the common ancestor can be obtained from coalescent theory (Griffiths, 1981; Pluzh-
nikov and Donnelly, 1996), replicating the result of (27.28). More importantly, (27.34)
gives a way of understanding the behaviour of LD, or perhaps more appropriately
r2, under more complex population genetic models. For example, the increase in LD
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that accompanies population bottlenecks can largely be understood through its effect
on the ratio of the mean coalescence time to its standard deviation. Bottlenecks
increase the variance in coalescent time considerably, leading to a reduction in the
denominator of (27.34) and an increase in LD (McVean, 2002). It is also possible to
describe the behaviour of LD under models of population structure (McVean, 2002;
Wakeley and Lessard, 2003) and even selective sweeps (McVean, 2007) using the same
approach.

27.4 INFERENCE

Coalescent modelling provides a framework within which to understand patterns of LD
(see also Chapter 26). But what we are usually interested in is making inferences about
underlying processes from the patterns of genetic variation observed in an experiment.
The aim of this section is to introduce key concepts in statistical inference and to explore
how these relate to understanding patterns of genetic variation.

27.4.1 Formulating the Hypotheses

Let us return to the example of the Lactase gene. Various summaries of the data have been
presented: graphically in Figure 27.2 and numerically in Table 27.1. While the observed
patterns are suggestive of various underlying processes, we need to approach the analysis
of the data in a more rigorous fashion. Indeed, we need to start by asking ourselves
why we are analysing this region in the first place. Do we want to categorically prove
or disprove the hypothesis that it has experienced a selective sweep? Do we want to
identify the simplest model that provides an adequate explanation for the data? Do we
want to use these data as an aid to design an experiment to understand the genetic basis
of lactose intolerance? The motivation determines, and is inseparable from, the approach
to statistical inference.

Suppose that our goal is to determine whether a selective sweep has happened in the
region. How might we go about doing this? Suppose that we knew exactly the process
that shapes genetic variation in the absence of selection, which is referred to as � (a
complete description of mutation rates, crossover and gene conversion rates, changes in
population size, geographic structuring and experimental design). In effect this means
being able to accurately characterise the distribution of sampled genetic variation in
the absence of selection, from which we can calculate the probability (density) of the
collected data (the likelihood of �). Suppose, in addition, that we can calculate the
likelihood under a model that includes �, but also a selective sweep, which is referred to
as � (in what follows it is important that both � and � have specified, though possibly
multidimensional, values). Then the Neyman–Pearson lemma (e.g., Casella and Berger,
1990) tells us that the most powerful test compares the likelihood of the data with the
sweep to the likelihood of the data without the sweep. Specifically, the test compares the
likelihood ratio test statistic against the quantiles of the null distribution such that the null
is rejected if

�(x) = L(�,�; x)
L(�; x) > k, where Pr(�(X) > k|H0) = α. (27.35)
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Here x refers to the data, X refers to the random variable of which x is a realisation and
α is the size of specified rejection region (e.g. α = 0.01).

Although (27.35) looks useful, unfortunately careful consideration reveals many prob-
lems. First, it is very unlikely that we can exactly specify the component values of �.
In fact, the only source of information about many of its details comes from the data
we have just collected. Second, a related problem is that we would not want to restrict
ourselves to considering one specific value of �, rather we would like to estimate the
time of origin of the mutation, its location in the sequence and the strength and nature
of the selection pressure from the data. This raises the problem that estimation of �
may influence estimates of �. Third, there is no simple way of calculating the likeli-
hood given the data. Fourth, we can, of course, never really know �, all we can hope
to do is to capture its key features. Finally, though perhaps least importantly, even if we
could estimate all these parameters from the data, (27.35) does not actually tell us which
hypothesis test or other method of model choice is the most powerful in practice (e.g.
maximum likelihood, etc.).

So how might we proceed? Although it seems daunting, we have to try to learn about
the components of � from the data and through any other sources of information. For
example, we can refer back to the experimenter’s notebook to see how the experiment was
designed. We can also learn about aspects of � from genetic variation in other regions
of the genome. For example, the population history, which should affect all loci more or
less equally, and the mutation rate, which is largely predictable from the DNA sequence
(see Chapter 31). To learn about some processes, such as the fine-scale structure of
recombination rate variation, we may have to use the data, but in the case of Lactase we
have three populations, only one of which is hypothesised to have experienced selection.
In general, when estimating the components of � we are looking for estimators with four
key properties:

• Statistical sufficiency: the estimator uses as much of the information in the data about
the parameter of interest as possible.

• Relative efficiency: the estimator with the lowest mean-square error is preferred.
Accurate estimates of uncertainty are also important.

• Robustness: the methods are not strongly influenced by deviations from the underlying
assumptions.

• Computational tractability: estimation can be achieved within a reasonable time frame
(perhaps no more than a month!).

It should be stressed that in most population genetics problems fully efficient inference is
currently beyond the limits of computational tractability (see Chapter 26). For this reason,
most current approaches to estimating parameters from genetic variation use methods that
are less efficient but computationally tractable.

27.4.2 Parameter Estimation

To illustrate various approaches to parameter estimation in the context of understanding
LD the problem of how to estimate the crossover rate, or rather the population crossover
rate, over a region is considered. All of the methods described consider only a neutrally
evolving population of constant size. The point of covering the various estimators is to
give an indication of the range of possible approaches.
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27.4.2.1 Moment Methods

The first population genetic method for estimating the population crossover rate (Hudson,
1987; Wakeley, 1997) used a method of moments approach. Using the results mentioned
above that relate LD coefficients to two-locus sampling identities, Hudson derived
an expression for the expected sample variance of the number of nucleotide differ-
ences between pairs of sequences under the infinite-sites model. If the number of
pairwise differences between sequences i and j is πij then under the infinite-sites
model

π̄ = 1

n2

n∑
i,j

πij

S2
π =

1

n2

n∑
i,j

π2
ij − π̄2

E[π̄] = (1− 1/n)θ

E[S2
π ] = f (θ, C, n), (27.36)

where f (θ, C, n) is a known function of the two unknown parameters and the sample
size (Hudson, 1987). To obtain a point estimate of C, θ is replaced with a point estimate
from the sample (also obtained by the method of moments) and the equation is solved
(if possible) for C. Similar approaches could be constructed for other single-number
summaries of the data (e.g. those in Table 27.1), although Monte Carlo methods would
have to be used to obtain estimates.

The great strength of this estimator is its simplicity. Unfortunately, the estimator also
has very poor properties (bias, high variance, lack of statistical consistency, undefined
values). This is partly because of the inherent stochasticity of the coalescent process;
so for any given value of C and θ , there is a huge amount of variation in the observed
patterns of variation (hence any estimator of C is expected to have considerable variance).
But it is partly also because it only uses a small fraction of the total information about
crossover present in the data. It is not known how well moment estimators from other
sample properties might perform.

27.4.2.2 Likelihood Methods

As suggested above, a useful quantity to compute is the likelihood of the parameter
(proportional to the probability, or probability density, of observing the data given the
specified parameter value). Ideally, we would like to calculate the probability of observing
the data given the coalescent model and specified values of the population parameters,
perhaps choosing the values that maximise the likelihood as point estimates. While this
problem has received considerable attention (Fearnhead and Donnelly, 2001; Kuhner
et al., 2000; Nielsen, 2000), currently such approaches are only computationally feasible
for small to moderate sized data sets (Fearnhead et al., 2004). A common feature of
all these methods is the use of Monte Carlo techniques (particularly Markov chain
Monte Carlo and importance sampling). For example, in importance sampling, a proposal
function, Q, is used to generate coalescent histories, H (a series of coalescent, mutation
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and recombination events), compatible with the data for given values of θ and C. The
likelihood of the data can be estimated from

L(θ, C; x) = EQ
[

Pr(H |θ, C)
Q(H |θ, C, x) Pr(x|H)

]
, (27.37)

where Pr(H |θ, C) is the coalescent probability of the history (note that this is not a
function of the data), Pr(x|H) is the probability of the data given the history (which is
always exactly one here) and Q(H |θ, C, x) is the proposal probability for the history
(note that this is a function of the data). The main problem is that unless Q is close to
the optimal proposal scheme,

QOPT = Pr(H |θ, C, x), (27.38)

the large variance in likelihood estimates across simulations makes obtaining accurate
estimates of the likelihood nearly impossible.

For larger data sets a more practical alternative is to calculate the likelihood from
some informative summary (or summaries) of the data using Monte Carlo techniques
(Beaumont et al., 2002; Marjoram et al., 2003; Padhukasahasram et al., 2006; Wall, 2000).
Wall’s estimator, based on the number of haplotypes and a non-parametric estimate of the
minimum number of detectable recombination events, while conditioning on the number of
segregating sites, is good in terms of having low bias and variance comparable to the best
alternatives. A great strength of these methods is that they can provide useful summaries
of uncertainty in estimates, e.g. through estimating the Bayesian posterior distribution
of the parameter. However, because some information is thrown away, the resulting
uncertainty will be greater than the true uncertainty. Furthermore, although likelihood
surfaces computed from a summary of the data are expected to mirror likelihood surfaces
computed from full data, such agreement is not guaranteed and, for some pathological
data sets, they may disagree considerably.

27.4.2.3 Approximating the Likelihood

Although it may not be practical to calculate the coalescent likelihood of the entire data, it
is possible to approximate the likelihood function through multiplying the likelihoods for
subsets of the data (Fearnhead et al., 2004; Hey and Wakeley, 1997; Hudson, 2001;
McVean et al., 2002; 2004; Wall, 2004), the resulting quantity being referred to as
a composite likelihood. In effect, the idea is to treat subsets of the data as if they
were independent of each other whereas in reality these subsets (pairs, triples or non-
overlapping sets) are clearly not. Nevertheless, finding the value of the crossover parameter
that maximises this function appears to provide estimates that are at least as accurate as
any other approximate approach.

Perhaps the greatest strength of the composite likelihood approaches lies in their
flexibility, particularly in the use of estimating variable crossover rates and identifying
crossover hotspots (Fearnhead and Donnelly, 2002; Fearnhead and Smith, 2005; McVean
et al., 2004; Myers et al., 2005). For example, consider Hudson’s composite likelihood
approach, which considers pairs of sites. For each pair of sites it is possible to pre-compute
the coalescent likelihood for a specified value of θ per site and a range of crossover rates
between the sites, e.g. using the importance sampling approach (McVean et al., 2002).
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The likelihood of a genetic map g = {g1, g2, . . . , gm}, where each gi is the map position
of the ith site in a set of m ordered sites, is approximated by

LC(θ, g; x) =
∏
i,j>i

L(θ, gj − gi; xij ). (27.39)

Here LC indicates the composite likelihood, L indicates the coalescent likelihood for the
genetic distance between loci i and j and xij is the data at those two sites. In practice,
the value of θ is estimated previously using a moment method. Because of the pre-
computation, searching over the space of g is computationally feasible. McVean et al.
(2004) used a Monte Carlo technique called reversible jump Markov chain Monte Carlo
(Green, 1995) to explore the space of possible genetic maps. The greatest weakness
of this approach is the difficulty in assessing uncertainty. Specifically, because of non-
independence between the pairs of sites, the composite likelihood surface is typically
more sharply peaked compared to the true likelihood surface (even though it uses less
information), resulting in considerable underestimation of uncertainty.

27.4.2.4 Approximating the Coalescent

An alternative approach to approximating the coalescent likelihood function is to devise
an alternative model for the data, motivated by an understanding of the coalescent, but
under which it is straightforward to calculate the likelihood (Crawford et al., 2004; Li
and Stephens, 2003). The product of approximate conditionals (PAC) scheme uses the
following decomposition to motivate an approximate model (see Chapter 26). Consider
the data x = {x1, x2, . . . , xn}, where xi is the ith haplotype in a sample of size n. The
likelihood function can be written as the product of a series of conditional distributions
(the dependence on θ has been dropped for simplicity)

L(C; x) = Pr(x1|C) Pr(x2|x1, C) . . .Pr(xn|x1, x2, . . . , xn−1, C). (27.40)

Of course, knowing the conditional probabilities is equivalent to knowing the coalescent
likelihood. However, the PAC scheme approximates the conditional probabilities by
considering the kth haplotype as an imperfect mosaic of the previous k − 1. Specifically,
the model employed has the structure of a hidden Markov model in which the underlying
state at a given nucleotide position refers to which of the k − 1 other chromosomes the
kth is derived from. The transition probabilities are a function of the crossover rate and
the emission probabilities are a function of the mutation rate and the sample size. This
model captures many of the key features of genetic variation, such as the relatedness
between chromosomes, how this changes through crossover and how, as the sample size
increases, additional chromosomes tend to look more and more like existing ones, but it
is entirely non-genealogical.

This approach was actually derived from the work mentioned above that uses impor-
tance sampling to calculate the full coalescent likelihood of the data (Fearnhead and
Donnelly, 2001; Stephens and Donnelly, 2000). Because of the Markovian structure of
the coalescent, each history that is compatible with the data can be broken down into a
series of events that can be sampled sequentially. The optimal proposal density chooses an
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event (coalescence, mutation and crossover), e, according to its probability given the data

QOPT(e|θ, C, x) = Pr(e|θ, C)Pr(x + e|θ, C)
Pr(x|θ, C) , (27.41)

where Pr(e|θ, C) is the coalescent probability of the event and x + e is the original data, x,
modified by event e. The key insight is to note that x + e and x are very similar. For
example, if e is a coalescent event between the ith and j th sequences (which are also
identical) it follows that

Pr(x + e|θ, C)
Pr(x|θ, C) = Pr(x1, . . . , xi, . . . , xk|θ, C)

Pr(x1, . . . , xi, xj , . . . , xk|θ, C)

= 1

Pr(xj |x1, . . . , xi, . . . , xk, θ, C)
. (27.42)

This is exactly the same conditional probability approximated in the PAC scheme. For
other types of events, similar expressions involving the conditional distributions can be
found (Fearnhead and Donnelly, 2001).

The strengths of the PAC scheme are its computational tractability and the sense that it
uses much of the information in the data about recombination. It is also very flexible and
can potentially be extended to include features such as geographical structuring and gene
conversion. Nevertheless, because the model is not the coalescent, parameter estimates are
typically biased in ways that are unpredictable (and the estimated uncertainty in estimates
may not necessarily reflect the ‘true’ uncertainty). The approximation also introduces an
order dependency into the likelihood function (the true conditionals would, of course,
give rise to the same likelihood no matter how the sequences were considered). This can
be partly overcome by averaging inference over multiple orderings.

27.4.3 Hypothesis Testing

Aside from estimating parameters, it is also often of interest to make categorical statements
about whether particular hypotheses can be rejected. For example, in the case of Lactase,
we want to attempt to categorically reject the hypothesis that the European population has
not experienced adaptive evolution. More generally, we would like to make some choice
about which model provides a better explanation of the data: one with selection or one
without it.

Historically, most approaches to detecting the influence of natural selection in popu-
lation genetic data have used a slightly different approach. Specifically, a battery of
neutrality tests including Tajima’s D (Tajima, 1989), Fu and Li’s D (Fu and Li, 1993),
Fay and Wu’s H (Fay and Wu, 2000), the Hudson, Kreitman, Aguadé (HKA) test (Hudson
et al., 1987), the haplotype partition test (Hudson et al., 1994), the extended haplotype
homozygosity test (Sabeti et al., 2002; Voight et al., 2006) and more are used to reject
the null hypothesis of a neutral model, without rigorously demonstrating that a model that
includes natural selection is a better fit to the data. All of these methods are designed
to look for patterns in the data that are inconsistent with neutral evolution (Sabeti et al.,
2006). Furthermore, Monte Carlo simulation under different scenarios can be used to
assess power and whether the methods are robust to deviations from the assumed model.
A second class of methods look for large between-population differences in genetic vari-
ation; e.g. striking changes in allele frequency (Akey et al., 2002; 2004; Lewontin and
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Krakauer, 1973). Such methods aim to identify geographically restricted selective sweeps,
as thought to be the case for Lactase. However, their major drawback is that it is very
hard to accurately specify the null model, because this requires accurate specification
of the demographic histories of the populations under study. For this reason, population
differentiation–based tests typically rely on comparing a locus to an empirical distribution
derived from the analysis of multiple genomic regions, with the implicit assumption that
loci with unusual patterns have been targeted by selection. It is currently unclear how well
empirical methods perform at identifying true selected loci (Teshima et al., 2006), though
such methods have identified strong candidates for local selective sweeps (McVean et al.,
2005; Sabeti et al., 2006).

There is, however, a class of methods that explicitly attempt to fit a model of a selective
sweep to patterns of genetic variation (Coop and Griffiths, 2004; Kim and Stephan, 2002;
Nielsen et al., 2005; Przeworski, 2003). For example, one method uses a theoretical
approximation to predict how allele frequencies are distorted around a selected allele,
which is fitted to data by a composite likelihood approach (Nielsen et al., 2005). There
are also related methods that attempt to date the age of a potentially selected mutation, e.g.
by examining the amount of variation found ‘under’ a mutation (Slatkin, 2000; Slatkin
and Rannala, 2000; Toomajian et al., 2003). In effect, the age of a mutation is all that
can ever be estimated from genetic variation. The evidence for adaptive evolution comes
from observing recent mutations that exist at much higher frequency in a population than
expected from neutral mutations of the same age.

To understand the signal these methods are looking for, consider the genealogy in
Figure 27.11, in which a recent mutation has risen to high frequency over a short
timescale. The effect is to create drastically different genealogical histories for different
subsets of the chromosomes. Those under the selected mutation have a very short time to
their MRCA compared to the much deeper tree for the other sequences. The impact of this
genealogical distortion on genetic variation will be to dramatically reduce genetic variation
among those chromosomes that carry the beneficial mutation. Furthermore, because of the
short amount of time in the tree under the mutation, it will be some considerable genetic
distance from the selected site before crossover has allowed the genealogy to return to
the neutral distribution. These features are particularly striking in the Lactase example,
where the haplotype structure around the selected mutation persists for several hundred
kilobases from the gene. However, it is also a region of very low crossover, which is
probably why the signal is so remarkable. In regions of high crossover the power to detect
recent adaptive evolution may be considerably lower.

27.5 PROSPECTS

The aim of this chapter has been to introduce a way of thinking about patterns of genetic
variation – the coalescent with recombination – and to explore how to analyse such data.
The reader should be aware that the field of population genetic inference is extremely
dynamic, with new methods appearing at a high rate (Marjoram and Tavare, 2006). The
reader should also be aware that all the methods discussed above for estimating crossover
rates and detecting natural selection have considerable limitations and none are optimal.
It seems likely that the next few years will see intensive research in the development of
more sophisticated and perhaps fully genealogical approaches to the analysis of genetic
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Figure 27.11 The effect of a partial selective sweep on linked genetic variation. A recent selected
mutation distorts genealogical history creating a clade within the tree at the selected site with a
very recent common ancestor. This clade ‘persists’ for long genetic distances leading to a marked
haplotype structuring amongst those individuals that carry the beneficial mutation. The signature is,
however, slowly eroded by crossover. Here the haplotypes are shown vertically, with the genealogy
at the selected locus at the top and the selected mutation indicated by the circle. Data were simulated
using the program SelSim (Spencer and Coop, 2004) for 100 chromosomes, 50 of which carry the
beneficial mutation which has a scaled selective advantage of 4Nes = 400, θ = 200, C = 50.

variation. Indeed, some genealogical methods are already appearing, particularly in the
field of association mapping (Larribe et al., 2002; Minichiello and Durbin, 2006; Zollner
and Pritchard, 2005).
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Montpellier, France

This chapter reviews theoretical models and statistical methods for inference from genetic data
in subdivided populations. With few exceptions, these methods are based on neutral models of
genetic differentiation and have been mainly concerned with estimation of dispersal rates. However,
simulation-based methods allow to draw inferences under models involving additional demographic
processes such as changes in dispersal rates over time. The formulation and main results of
migration matrix, island, and isolation-by-distance models, are briefly described. The definition
and basic properties of F -statistics are reviewed, and moment methods for their estimation are
contrasted with likelihood methods. Then, the application of the different methodologies to simple
biological scenarios is reviewed. Their practical performance is discussed in light of comparisons
with demographic estimates, as well as of their robustness to different assumptions and of concepts
of separation of timescale.

28.1 INTRODUCTION

Since the advent of molecular markers in population genetics, there have been many
efforts to define methods of inference from the spatial genetic structure of populations.
This chapter can only review a small selection of them including, in particular, some
recent developments of simulation-based likelihood methods, and also of less sophisticated
methods in so far as they provide analytical insight and proven performance in realistic
conditions. With few exceptions, I will focus on allele frequency data; some methods for
other types of data are described in Chapter 29.

The perspective taken in this review is that studies of spatial population structure are
conducted in order to make inferences about parameters considered important for the
evolution of natural populations, for example, for the dynamics of adaptation. Thus,
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all such analyses should ultimately be based on models of evolution in subdivided
populations. This would lead to the identification of important parameters in such
processes and to the formulation of appropriate statistical models to estimate them
(assuming it is useful to estimate them in order to test the models). In this perspective,
the material reviewed below may seem imperfect not only because the statistical models
are approximate but also because the important evolutionary parameters are not always
clearly identified.

In all inferences, we will consider a total sample from a population structured by
restricted dispersal in a number of demes (a technical term used in the analysis of the
models) or subpopulations (a somewhat looser term). The population concept must be
carefully distinguished from another concept of ‘population’ often considered in statistics,
which actually refers to the probability distribution of samples under some model. In
general the value of a variable in the biological population is not the expected value of
this variable in this statistical ‘population’, in other words, this is not an expected value
in a theoretical model. In practice the word parameter is used for both, but here it will
be used only for the value in the theoretical model.

A statistical corollary is that by sampling only one locus, one may compute estimates
which will approach the value in the biological population, rather than the parameter
value, as more individuals are sampled. In other words, it will approach a value that will
depend on the realized genealogy in the biological population, and this will be a random
variable. The usual solution to this problem is to analyze several loci with different
genealogies, assumed independent. For a nonrecombining DNA, it may not be very useful
to sequence longer fragments: Since the whole DNA has the same genealogy, any estimate
will depend on the single realized random genealogy in the biological population sampled
(see Chapter 25).

28.2 NEUTRAL MODELS OF GEOGRAPHICAL VARIATION

The major models considered for statistical analysis describe the evolution of neutral
genetic polymorphisms; among models of selected markers, statistical analysis will be
considered only for clines.

28.2.1 Assumptions and Parameters

We consider a set of subpopulations each with Ni adults, and with dispersal rates mij from
subpopulation j to subpopulation i. These dispersal rates are defined as the probability
that an offspring had its parent in some subpopulation: Thus they are defined by looking
backward in time (backward dispersal rates), rather than by looking where offspring go
(forward dispersal rates). Forward and backward rates will differ, for example, when
individuals that disperse at longer distances have a higher probability of dying before
reproduction.

These models are known as migration-matrix models, with migration matrix (mij ).
Limit cases of these models when all deme sizes →∞, all backward rates → 0, with
their products Nimij remaining finite, have been described as ‘structured coalescents’
(see e.g. Chapter 25). With many subpopulations, the number of parameters may be
large. However, some symmetric structure is usually assumed, as in the island and
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isolation-by-distance models developed below. Further, the migration matrix, as well
as the subpopulation sizes Ni , are supposed to be invariant in time. These assumptions
allow for more detailed mathematical analysis. Simulation-based methods have allowed to
investigate more complex historical scenarios involving range expansions, interruptions
of gene flow, and so on. A relatively well-worked case is the isolation-with-migration
model (Nielsen and Wakeley, 2001), according to which an initially panmictic population
differentiates at some time T in the past into two subpopulations that will keep on
exchanging migrants at rate m until the time of sampling.

The island model (Wright, 1931a) with nd subpopulations is the simplest form of
migration-matrix model: For different subpopulations i, j , the dispersal rate is supposed
to be independent of i, j and may be written as mij = m/(nd − 1) where m is the total
dispersal rate; mii = 1−m. The subpopulation sizes Ni = N are also supposed to be
independent of i. The infinite island model is the limit process as nd →∞. This is the
most often considered model, because of its ease of analysis. However, it should be
noticed that most of the results of the infinite island model with Ni = N can easily be
extended to infinite island model with Ni different for different subpopulations and with
total dispersal rate into each subpopulation i being a function of i (see the discussion
of equation (28B.1)). Thus the main defining assumption of such island models is that
immigrants may come with equal probability from any of the other subpopulations.

Dispersal is often localized in space, so that immigrants preferentially come from close
populations. Two kinds of models that take this into account have been considered, one
for demes on a discrete lattice, and one for ‘continuous’ populations (e.g. Malécot, 1951;
1967). In a continuous population, the local density may fluctuate in space and time,
but there is no rigorous mathematical analysis of models incorporating such fluctuations.
In the lattice models, different demes are arranged on a regularly spaced lattice and the
dispersal rates are a function of the distance between demes. There is a fixed number of
adults, N , in every generation on each node of the lattice. Thus the position of individuals
is rigidly fixed and density does not fluctuate. The island model may be recovered as a
specific case.

In models of isolation by distance, the parameter σ 2 often appears (e.g. Malécot, 1967;
Nagylaki, 1976; Sawyer, 1977). This is an average squared distance between parent and
offspring. In two dimensions this is the average square of the projection of the two-
dimensional (vectorial) distance on an axis, also known as the axial distance (Figure 28.1).
This parameter is a measure of the speed at which two lineages descending from a
common ancestor depart from each other in space. The models as formulated above
may be generalized to include age- or stage-structure, and it is possible to generalize
some of the results for island and isolation by distance models given below in terms of
concept of effective dispersal rate and effective deme size or effective population density,
albeit through some approximations (Rousset, 1999a; 2004, Chapter 9). Then, effective
dispersal is the asymptotic rate of increase of the second moment of distance between
two independently dispersing gene lineages per unit time. The definition of population
density also needs to be generalized. First, it is actually not simply a density but a rate of
coalescence per surface and per unit time (Rousset, 1999a). In the basic models, it can be
computed as the expected number of coalescence events per generation among all pairs
of genes in the total population, divided by the total surface occupied by the population
(or habitat length in linear habitats). With age structure, it can be computed as a weighted
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Unsigned

Axial

Figure 28.1 σ 2 in two dimensions. One considers the two-dimensional dispersal distances (gray
arrows) between one parent (large central dot) and different offspring (or different parent–offspring
pairs). The projection of these vectors on two axes yield signed axial distances on each axis. In
terms of variance, σ 2 is the variance of the distribution of one such axial dispersal distance (bottom
right). This is not the variance of the unsigned dispersal distance (top right).

average of such among all pairs, these being weighted by reproductive value weights as
in the computation of the effective dispersal parameter.

28.3 METHODS OF INFERENCE

With few exceptions, explicit formulas for the likelihood of samples under the models
formulated above are not available. This section therefore focuses on moment methods for
which explicit analytical results are available, and on simulation methods for likelihood
inference.

28.3.1 F -statistics

Moment methods are based on the analysis of moments of order k of allele frequencies.
By far the most common of them (analysis of variance) consider only squares of
allele frequencies or equivalently frequencies of identical pairs of genes. This is the
basis for the theory of F -statistics in population genetics. Autocorrelation methods (e.g.
Sokal and Wartenberg, 1983; Epperson and Li, 1997) are constructed from pair-wise
comparisons of genes or genotypes, hence there should be essentially the same information
in such statistics as in the more standard moment methods. The relationship between
autocorrelation methods and some of the methods described below is discussed by Hardy
and Vekemans (1999).

28.3.1.1 Probabilities of Identity and F -statistics

To define genetic identity, we consider a pair of homologous genes and ask whether they
descend without mutation from their most recent common ancestor. If no mutation has
occurred since the coalescence of ancestral lineages, there is identity by descent (IBD).
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By identity in state (IIS) of a pair of genes we simply consider whether they have the
same sequence (if the alleles are distinguished by their sequence), the same length (if
the alleles are distinguished by the number of repeats of a microsatellite motif), the same
electrophoretic mobility, etc. In short, we only look at the allelic state of a gene. IBD
is a specific case of IIS for the infinite allele model, in which each allele produced by
mutation is considered different from preexisting alleles. The generic notation Q will be
used to denote expected values of IIS under any model.

If we consider a population structured in any way (age, geography, etc.), one may
always define Qw, the IIS probability within a class of genes (for example among
individuals of some age class, in the same subpopulation, etc.), andQb, the IIS probability
between two different classes of individuals. In a generic way one may then define:

F ≡ Qw −Qb

1−Qb
. (28.1)

Such quantities are known as F -statistics, but Qw, Qb, and F as defined above are
parameters. That is, Qw and Qb are expectations under independent replicates of the
stochastic process considered, and F is a function of these parameters. In other words, they
are functions of the parameters that define the model under study, such as subpopulation
sizes, mutation rates, migration rates, etc. If (say) deme size is by itself random, then F
and the Qs, being expectations in the process considered, are function of the parameters
of the distribution of deme size. In models of spatial genetic structure, Qw and Qb are
generally not ‘the value in the (biological) population’. Alternative definitions of F -
statistics, as values in biological populations, have been used in the literature (e.g. Nei,
1986; see Nagylaki, 1998 for further discussion), but analytical results below hold only
with the present parametric definitions.

Let Q2 be the IIS probability within subpopulations, and Q3 be the IIS probability
between subpopulations. The well-known FST parameter, originally considered by Wright,
is best defined as

FST ≡
Q2 −Q3

1−Q3

. (28.2)

F -statistics may be described as correlations of genes within classes with respect to genes
between classes, that is as intraclass correlations (Cockerham and Weir, 1987).

28.3.1.2 Generic Methods for Estimation and Testing

The estimation of F -statistics is described at length in the literature (see e.g. Chapter 29,
Weir, 1996) so I will confine myself to emphasizing a few easily missed points.

A simple way to estimate parameters such as FST is to estimate each of the probabilities
of identity by the corresponding frequencies Q̂ of identical pairs of genes in the sample,
computed by simple counting. Thus FST may be estimated by

F̂ ≡ Q̂2 − Q̂3

1− Q̂3

, (28.3)

where Q̂2 and Q̂3 are by definition the frequencies of identical pair of genes in the sample,
within and between deme, respectively. This simple approach to defining estimators may
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be easily adapted to a number of different settings, given that the parameters to be
estimated may be expressed as functions of probabilities of IIS. With balanced samples,
this approach directly yields Cockerham’s estimator of FST (Cockerham, 1973; Weir and
Cockerham, 1984). This estimator has been developed by analogy with the methods of
analysis of variance, and this analogy has proved difficult to understand. Appendix A
details the nature of the analogy and its relationship with 28.3.

It is easy to test for differentiation (nonzero FST) by the usual exact tests for contingency
tables either applied to gametic or genotypic data. These are standard statistical techniques
and their application to genetic data has been discussed elsewhere (e.g. Weir, 1996; Goudet
et al., 1996; Rousset and Raymond, 1997). A general set of techniques to draw confidence
intervals from the moment estimators are the bootstrap (e.g. Efron and Tibshirani, 1993)
and related techniques based on the resampling of loci. However, the simplest applications
of resampling techniques may be misleading. This may be apparent when they lead to
symmetric confidence intervals while the variance of the estimator is expected to be
sensitive to the parameter value, in which case more involved uses of the bootstrap
(DiCiccio and Efron, 1996) may be required.

28.3.1.3 Why F -statistics?

Wright was the first to note that such measures of genetic structure appear in some
theoretical models of adaptation, and his ideas remain among the most influential in
population genetics. He used them to quantify his ‘shifting balance’ model Wright (1931a;
1931b), which remains controversial today (Coyne et al., 1997). Nevertheless, F -statistics
are useful descriptors of selection in one-locus models (Rousset, 2004). Wright also used
them to estimate demographic parameters (Dobzhansky and Wright, 1941) and they have
become a standard tool to ‘estimate gene flow’ or for merely descriptive studies of genetic
population structure. Such studies are not always very convincing and may be questioned
on statistical grounds. Two major objections are (1) the connection between such measures
and the likelihood-based framework of statistics (e.g. Cox and Hinkley, 1974; Lehmann
and Casella, 1998) is not obvious; and (2) although FST bears a simple relationship with
the ‘number of migrants’ Nm in the infinite island model, it is not always clear how this
would extend to more general models of population structure. Also, with the definition
given above in terms of IIS, FST might be expected to depend on mutation processes
at the loci considered, and how this affects estimation of dispersal parameters is not
clear.

One of the main attractions of F -statistics may be their robustness to several factors.
In an infinite island model, the ancestral lineages of two genes sampled within the same
deme coalesce within this deme in a recent past with probability ≈ FST; with probability
≈ 1− FST the lineages separate (looking backward) in different demes as a result of
immigration and will take a long time to coalesce. This implies that FST will depend
mostly on recent events. Before considering the implications in detail, we will see how
this argument can be generalized under isolation by distance.

We consider the probability cj,t that two genes coalesce at time t in the past. The j index
corresponds to the type of pair of genes considered (e.g. j = 2 or ‘w’ for genes within
demes and j = 3 or ‘b’ between demes as above). Identity by descent, here denoted Q̇,
has been defined as the probability that there has not been any mutation since the common
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Figure 28.2 This figure compares the distributions of coalescence times in demes two steps apart
(thick gray points) and within the same deme (thin black points). The inset shows the distributions
on a linear y scale. The distribution for genes within demes is decomposed in two areas, the light
gray one whose height is a constant times the height of the other distribution (hence it is shifted
on the log scale), and the remainder (dark gray) which is the excess probability of coalescence in
recent generations. The distribution were computed for 100 demes of N = 10 haploid individuals,
with dispersal rate m = 1/4.

ancestor. Thus

Q̇j =
∞∑
t=1

cj,t (1− u)2t . (28.4)

(Malécot, 1975, (28.6); Slatkin, 1991). To understand the properties of F -statistics, we
compare the distributions of coalescence times cw,t and cb,t of the pairs of genes that
define these parameters. We can view the area covered by the probability distribution of
coalescence time of the more related pair of genes as the sum of two ‘probability areas’,
one part which is a smaller copy of the area covered by the probability distribution function
of coalescence of less related genes, the other part being the remainder of the area for
more related genes (Figure 28.2). This second part decreases faster than probabilities of
coalescence (it is approximately O(c.,t /t), Rousset, 2006), and is therefore concentrated
on the recent past. As a first approximation, the value of the corresponding F -statistics is
this excess probability of recent coalescence. Let us call ω the value of 1− cw,t /cb,t for
large t . This will also be the excess probability of recent coalescence (as can be deduced
from the fact that both distributions must sum up to 1). Then it can be shown that

Qw:k ≈ (1− ω)Qb:k + ωπk ⇒
Qw:k −Qb:k

πk −Qb:k
≈ ω ≈ F, (28.5)

where πk is the expected frequency of allele k in the model considered. One may obtain
this result by considering that with probability 1− ω, the probability of identity of pairs
of genes ‘within’ is the same as the probability of identity of genes ‘between’ (this
corresponds to the proportional parts of the distributions of coalescence times), and with
probability ω (the excess recent probability mass) the coalescence event has occurred
recently in a common ancestor, of allelic type k with probability πk .
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The above result should not be overinterpreted. Expressions of the form “probability of
identity equals (1− F)p2 + Fp” for F independent of p are not generally valid unless p
is the expectation πk and the probability of identity is the process expectation (Rousset,
2002), although they also correctly describe the conditional probability of identity given
p in the infinite island model, even in cases where p is a random variable.

The above logic will be valid as long as mutations can be neglected within the time span
covered by the probability mass. This time span is shorter for higher migration rates m in
the island model, or for high σ 2 relative to spatial distance in isolation by distance models,
so in practice F -statistics are weakly dependent on mutation rates at small spatial scales.
The same argument can also be used to show that F -statistics more quickly recover their
stationary values than probabilities of identity under the same conditions after a single
demographic perturbation, a fact noticed by several authors (e.g. Crow and Aoki, 1984;
Slatkin, 1993; Pannell and Charlesworth, 1999). This kind of approximate independence is
important for statistical applications since it makes F -statistics analyses at a small spatial
scale interpretable despite the fact that past demographic history and mutation processes
are generally not known. At a local scale, FST is also only weakly dependent on the total
population size.

28.3.2 Likelihood Computations

With few exceptions, likelihood computation in population genetics are based on ‘coales-
cent’ arguments, i.e. they derive the probability of the sample from consideration of the
sequence of states that relate the individuals in the sample to their common ancestor (e.g.
Kingman, 1982; Hudson, 1990, see Chapters 25, and 26). This sequence of events may
be the genealogy, G, of the sample that includes information about the coalescence time
of ancestral lineages and about which lineages coalesce. In other cases it may be a ‘gene
tree’ H , which takes into account the relative timing of coalescence and mutation events,
as well as the nature of mutation events, i.e. the states before and after mutation, but
which does not take into account the time between events, nor which lineage, among
several with identical state, was involved in each event (see Chapter 26, Griffiths and
Tavaré, 1995).

Coalescent arguments are used to estimate the likelihood by simulation using importance
sampling algorithms. In one class of algorithms (see Chapter 26, Beerli and Felsenstein,
1999), the likelihood of the parameters P as a function of the data D may be written as

L(P;D) =
∑
G

Pr(D|G;P) Pr(G;P), (28.6)

where the sum is over all possible genealogies G,

=
∑
G

Pr(D|G;P)Pr(G;P)
f (G)

f (G), (28.7)

for any distribution f (G) such that f (G) > 0 when Pr(G;P) > 0

= E
[

Pr(D|G;P)Pr(G;P)
f (G)

]
, (28.8)
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where E is an expectation over sample paths of a Markov chain with stationary distribution
f (G)

≈ 1

s

s∑
i=1

Pr(D|G(i);P)Pr(G(i);P)
f (G(i))

, (28.9)

where the sum is over the sample path of a Markov chain with stationary distribution
f (G).

In neutral models, given the genealogy G, the data only depend on the mutation process
with parameters N, while the genealogy itself does not depend on the mutation process
but only on demographic parameters D (with P = (N,D)). Thus we may choose the
importance sampling function

g ≡ Pr(G|D;P0) =
Pr(G;D0) Pr(D|G;N)

L(P0;D)
, (28.10)

for some value D0 of D and for P0 = (N,D0). Then from 28.8

L(P;D) = E
[
L(P0;D)

Pr(G;D) Pr(D|G;N)
Pr(G;D0) Pr(D|G;N)

]
= L(P0;D)E

[
Pr(G;D)
Pr(G;D0)

]
, (28.11)

for any N. We try to find the maximum likelihood estimate (MLE) of P or equivalently
the maximum value of

L(P;D)
L(P0;D)

= E
[

Pr(G;D)
Pr(G;D0)

]
, (28.12)

which may be estimated by

L(P;D)
L(P0;D)

≈ 1

s

s∑
i=1

Pr(G(i);D)
Pr(G(i);D0)

, (28.13)

where the G(i)s are generated by a Markov chain with stationary distribution g. Thus an
algorithm to find the maximum must define such a Markov chain (for parameters P0),
and compute Pr(G(i);D)/ Pr(G(i);D0) for different P values and for this single Markov
chain.

Beerli and Felsenstein (1999) have used the importance sampling function (28.10) to
estimate the ratio (28.12). They define a Markov chain on genealogies G, and use the
Metropolis-Hastings algorithm (Hastings, 1970) to ensure that the importance sampling
function g is the stationary distribution of this chain. Their (28.14) shows that the transition
probabilities of this chain are determined by the probabilities Pr(D|G;N), which for
sequence data may be computed as previously described (e.g. Swofford and Olsen, 1990).

Griffiths and Tavaré (1994) have proposed a different class of algorithms. They derive
recursions for the stationary probability Pr(D′|S ′) of a sample D′ given sample size S ′
(here a vector and subsample sizes in different populations) over a time interval (typically
the interval between two genealogical or mutation events). For any state D of ancestors
in the previous time, Pr(D′|S ′) is the probability that a sample of size S ′ derives from a
sample of size S, times the stationary probability of ancestral states Pr(D|S), times the
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forward probability that a sample D′ derives from a sample D given the sample sizes:

Pr(D′|S ′) =
∑
D

Pr(D′|D,S, S ′)Pr(S|S ′)Pr(D|S). (28.14)

It is relatively straightforward to express the backward transition probabilities Pr(S|S′)
and the forward transition probabilities Pr(D′|D,S, S ′) in terms of model parameters
P (further details are lengthy; see de Iorio and Griffiths, 2004b). An importance
sampling algorithm is then derived by writing Pr(D′|D,S, S ′) Pr(S|S ′) in the form
w(D′,D)p(D|D′) where the p(D|D′) define an absorbing Markov chain going backward
over possible ancestral histories,

Pr(D′) =
∑
D

w(D′,D)p(D|D′) Pr(D). (28.15)

Iterating this recursion until the ancestor of the whole sample shows that

Pr(D) = Ep

∏
Di

w(Di,Di−1)

 , (28.16)

where the product is over successive states Di of the ancestry of the sample. Then w is
an importance sampling weight and p is a proposal distribution (compare 28.8).

Different choices of p, and of the implied w, are possible. Griffiths and Tavaré
(1994) describe one such choice and show that the likelihood for different values of
P may be obtained by running the Markov chain for only one value of P. However,
more recent works have aimed to optimize the choice of p for each parameter value
analyzed so that the variance of

∏
Di
w(Di,Di−1) among runs of the Markov chain

would be minimal. An optimal choice of the proposal distribution would be such that
any realization of the Markov chain would give exactly the likelihood of the sample. This
occurs when the proposal distribution has transition probabilities given by the reverse
probabilities in the biological process considered, Pr(D|D′) = Pr(D′|D)Pr(D)/ Pr(D′)
(see Chapter 26). In cases of interest these reverse probabilities cannot be computed from
this formula since the aim is precisely to evaluate the probabilities Pr(D). Nevertheless,
the variance of

∏
Di
w(Di,Di−1) should be low if good approximations for Pr(D)/ Pr(D′)

are used. de Iorio and Griffiths (2004a; 2004b) write such ratios as simple functions of the
probabilities π that an additional gene sampled from a population is of a given allelic type,
conditional on the result of previous sampling, and propose approximations π̂ for them,
from which approximations for Pr(D)/ Pr(D′) and for the proposal distribution follow.
Their approximation scheme method applies in principle for any stationary migration-
matrix model and any Markov mutation model (for allele frequency data). The π̂ are not
given in closed form but as solutions of a system of nd ×K linear equations for a model
of nd populations and K allelic types. By assuming independence between the mutation
and genealogical processes, this can be reduced to a system of nd equations holding for
each of the different eigenvalues of the mutation matrix, a technique used by de Iorio
et al. (2005) to analyze a two-demes model with stepwise mutation.

Despite substantial improvement over previous proposals, the computation times of
the latter algorithm would remain prohibitively long in many practical applications.
A method known as product of approximate conditional likelihoods (PAC-likelihood,
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Li and Stephens, 2003) has been proposed to derive heuristic approximations of the
likelihood estimation. Here a sample of genotypes (gk) is described as a sequential
addition of genotypes, so that the likelihood of an ordered sample is the product of the
probabilities π that an additional genotype is gi given previously added genotypes were
g1, . . . , gi−1. Approximations are then considered for these conditional probabilities. This
was originally applied to inference of recombination rate in a panmictic population. Using
de Iorio and Griffiths’s approximations π̂ in one-locus models, it turns out to perform
well under stepwise mutation, where the expectation of the PAC-likelihood statistic was
indistinguishable from the likelihood, but computation was much faster (Cornuet and
Beaumont, 2007). In a linear stepping stone model, one can find small differences between
the expectation of the PAC-likelihood statistic and the likelihood, but estimation of model
parameters based on PAC-likelihood is essentially equivalent to maximum likelihood (ML)
estimation while again requiring far less computation than likelihood computation via the
importance sampling algorithm (F.R., unpublished data).

28.4 INFERENCE UNDER THE DIFFERENT MODELS

In this section I review the implementation and application of the different methodologies
in specific cases. Published genetic and demographic data from Gainj- and Kalam-
speaking people of New Guinea (Wood et al., 1985; Long et al., 1986) will conveniently
illustrate several conclusions.

28.4.1 Migration-Matrix Models

For any migration matrix at stochastic equilibrium, the distribution of frequencies pki of
allele k in each deme i follows some probability distribution with (parametric) covariances
which can be written as

E[(pki − πk)(pki′ − πk)] = Qii′:k − π2
k , (28.17)

where Qii′:k is the expected frequency of pairs of genes in demes i, i′ that are of allelic
type k. For mutation models assuming identical mutation rates between K alleles, this
is also (Qii′ −

∑K
k=1 π

2
k )/K , where Qii′ is the probability of IIS of pairs of genes in

demes i, i′. Probabilities of IIS Qii′:k or Qii′ may be derived from the probabilities of
IBD for various mutation models (Markov chain models, or stepwise mutation models;
see e.g. Tachida, 1985; Rousset, 2004). For any migration matrix model, probabilities
of IBD within and among demes can be computed as solutions of a linear system of
equations (see e.g. Nagylaki, 1982 or Rousset, 1999a; 2004 for details and examples). In
principle, the demographic parameters can be estimated by inverting such relationships.
This approach has been taken seriously only in a few cases, in particular the island
and isolation-by-distance model, as detailed below, and does not generate likelihood
expressions in a straightforward way, although some heuristic likelihood formulas have
been proposed (Tufto et al., 1996) by using Gaussian approximations for the distribution
of allele frequencies, with the covariances given above.

28.4.2 Island Model

In the island model, one has the well-known approximation FST ≈ 1/(1+ 4Nm) (with 2N
genes per deme, Wright, 1969). This has led to the usage of computing FSTs and expressing
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the results in terms of ‘estimates of Nm’, i.e. in terms of (1/F̂ − 1)/4. This usage is often
problematic. The worst sin is to estimate an FST between a pair of samples far apart, to
translate it into a nonzero ‘Nm’, and to conclude that the populations must have exchanged
migrants in the recent past. In the context of the island model, an FST between a pair of
subpopulations is not a function of the number of migrants exchanged specifically between
these two subpopulations. More generally, in many models of population structure, it
is expected that subpopulations that never exchange migrants will have nonzero ‘Nm’
values. It may be seen from the above definition of FST that its maximum value is the
probability of identity within demes Q2 (when Q3 = 0), which results in a minimum
possible value of ‘Nm’ of (1/Q2 − 1)/4 which may well be > 1 even for demes that
never directly exchange migrants. Likewise, the practice of equating Nm > 1 to panmixia
and Nm < 1 to divergence is not useful.

Likelihood functions for allele frequency data may be derived relatively easily by
diffusion techniques for the infinite island model (see (28B.5)) and can in principle be
recovered by coalescent arguments (Balding and Nichols, 1994). These sampling formulas
allow analytical insight, and may be used to define estimators of Nm as well as to discuss
efficient estimation of FST by moment methods (See Appendix B). Kitada et al. (2000)
have implemented likelihood estimation under this model. Approximation have also been
considered such as the ‘pseudo maximum likelihood estimator’ (PMLE, Rannala and
Hartigan, 1996) of the number of migrants in an island model (see (28B.6)). These
authors found that this estimator of Nm generally (though not always) had lower mean
square error than the moment estimator (1/F̂ − 1)/4, depending on sampling scheme
and Nm values. The MLE is also biased when the number of sampled populations is
small and some corrections have been proposed (Kitakado et al., 2006). For the New
Guinea population, application of pseudo maximum likelihood (PML) estimation yields
an estimate of 10.2 migrants per generation. This is one-fourth of the average value, 41.87,
that can be computed from maternal and paternal dispersal rates and total subpopulations
sizes (Tables 1–3 in Wood et al. (1985)), but it is closer to one third if we take ‘effective
size’ considerations into account following Storz et al. (2001).

In comparison with the simulation methods for likelihood computation, it should be
noted that no mutation model has to be considered here. Wright’s formula (28B.1) is
an approximation for low mutation, common to the different ‘Markov chain’ models of
mutation, and so is the likelihood formula (28B.5). In this respect it is analogous to the
methods based on F -statistics.

28.4.3 Isolation by Distance

Here analytical insight is available only for the moment methods. The results reviewed
here are not tied to a Gaussian model of dispersal. We consider

a(r) ≡ Q0 −Qr

1−Q0
, (28.18)

which is FST/(1− FST) at (vectorial) distance r. Approximations for FST immediately
follow from those for a(r). I will use a dot on a or Q to emphasize that the results given
hold strictly only for IBD, but the differences with IIS do not affect the main practical
conclusions drawn below (Rousset, 1997).
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Two cases are usually considered, the one-dimensional model for populations in a linear
habitat, and the two-dimensional model. In one dimension, at distance r ,

ȧ(r) ≈ A1

4Nσ
+ 1− e −(2u)1/2rσ

4Nσ(2u)1/2
rsmall≈ A1

4Nσ
+ r

4Nσ 2
≈ A1

4Dσ
+ r

4Dσ 2
, (28.19)

where A1 is a constant determined by the dispersal distribution, but not by N nor u. Its
definition is given by Sawyer(1977, eq. 2.4).

In two dimensions, for genes at Euclidian distance r ,

ȧ(r) ≈ − ln((2u)1/2)−K0((2u)
1/2r/σ )+ 2πA2

4Nπσ 2

rsmall≈ ln(r/σ )− 0.116+ 2πA2

4Nπσ 2

≈ ln(r/σ )− 0.116+ 2πA′2
4Dπσ 2

, (28.20)

where K0 is the modified Bessel function of second kind and zero order (e.g. Abramovitz
and Stegun, 1972), and A2 is of the same nature as A1 above. Its definition is given by
Sawyer, (1977, eq. 3.4); see also Rousset (1997 eq. A11).

In the last two equations the first expression is given for σ measured in the length
unit of the model (i.e. one interdeme distance on the lattice), the second is the small
distance/low mutation limit of the first, and the third is the second for any length unit.
They are in terms of population density D per length or surface unit, and the A′2 constant
depends on the length unit.

In the same equations, the second approximation shows a linear relationship between
ȧ(r) and geographical distance in one dimension, and between ȧ(r) and the logarithm of
geographical distance in two dimensions. In both cases, the slope of this relationship is a
function of Dσ 2.

These different expressions emphasize two points. First, differentiation is a function
of the A constants, which are not simple functions of σ 2 but also of other features of
the dispersal distribution. In fact, when the total migration rate is low, the differentiation
between adjacent subpopulations is close to that expected under an island model with the
same total number of migrants. This confirms that σ 2 is not the only relevant parameter
of the dispersal distribution. Second, the value of A′2 depends on the spatial unit chosen
to measure σ and D. A method of inference from A′2 values that would not take into
account the discrepancy between the length unit used and the idealized interdeme distance
would therefore be internally incoherent.

The above approximations allow a relatively simple description of the expected
differentiation in these models as well as relatively simple estimation of Dσ 2 from
genetic data. Estimates of a(r) at different distances may be obtained in some cases
as estimates of FST/(1− FST) for pairs of samples, and simply regressed to spatial
distance (Rousset, 1997, as implemented in GENEPOP, Raymond and Rousset, 1995).
An estimate of 1/(Dσ 2) may be deduced from the slope of the regression. Two early
applications of this method yielded estimates about twice the demographic estimate
(Rousset, 1997). For the New Guinea population, the regression equation FST/(1−
FST) =̂ 0.0191+ 0.0047 ln(distance in km.) provides an estimate of Dσ 2 which is about
twice the demographic estimate (after application of effective density correction following
Storz et al. (2001), and after correction of clerical errors affecting the reported σ 2 of
females and males in Rousset (1997), which should be 3.1 and 0.76 km2 respectively).
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When the migration rate is low, an estimate of the number of immigrants per generation
may also be computed by the ‘(1/F̂ − 1)/4’ method, taking the value of the estimated
regression equation at the distance between the closest subpopulations as an estimate of
F̂ /(1− F̂ ). The estimate of number of migrants in the New Guinea population is then
11.5, close to the pseudo maximum likelihood estimate (10.2, see above). This result
illustrates the approximate convergence of estimates by different methods and under
different dispersal models to Wright’s classic result, even though the dispersal rate in
this study is not precisely low (its average value being 0.43 from demographic data).

The regression of FST/(1− FST) to distance is not always applicable, particularly when
there are no recognizable demes of several individuals, as for ‘continuous’ populations. A
variant based on the comparison of pairs of individuals has been designed to address this
problem (Rousset, 2000). Simulations have shown that this method performs reasonably
well when σ is small (a few times interindividual distance at most) and when most
individuals are sampled within an area of about 20σ × 20σ (Leblois et al., 2003,2004).
For higher dispersal, the variant considered by Vekemans and Hardy (2004) provides
more accurate upper confidence bounds for Dσ 2 (Watts et al., 2007). Several comparisons
have found agreement within a factor of two with independently derived demographic
estimates (Rousset, 2000; Sumner et al., 2001; Winters and Waser, 2003; Fenster et al.,
2003; Broquet et al., 2006; Watts et al., 2007). Whether this is considered an important
discrepancy or not will depend on the accuracy expected from such analyses, but this is
certainly much better than usually reported (see e.g. Slatkin, 1994; Koenig et al., 1996).
They actually go against an earlier long stream of reported discrepancies between genetic
and demographic estimates, which needs explaining.

Part of the discrepancies hinge on misunderstandings of the models. For example,
Wright assumed that the value of F -statistics under isolation by distance (Wright, 1946)
was determined by the ‘neighborhood size’. The value of this parameter would be
4Dπσ 2 under the assumption of two-dimensional Gaussian dispersal and its more general
definition would be a function of ‘the chance that two uniting gametes came from the same
individual’ (Wright, 1946). A third common ‘definition’ found in the literature is that the
‘neighborhood size’ would be the size of a subpopulation that would behave as a panmictic
unit. It is not clear in which respect the subpopulation would behave as a panmictic unit
nor whether there is a subpopulation that behaves as a panmictic unit in some useful sense.
In any case Wright’s measures do not correctly predict the value of unambiguously defined
parameters in unambiguously defined models. In the analysis of Malécot’s model, neither
Dσ 2 (because of the important A2 term), nor the more generally defined neighborhood,
determine the differentiation alone (Rousset, 1997). In one dimension, Wright proposed
that Dσ was the important parameter, but the above results show that Dσ 2 is important.
One must give up the idea that Dσ 2 equals neighborhood equals a number of individuals.
In one dimension, Dσ 2 scales as number of individuals times a length, not as a number
of individuals, since density is a number of individuals per unit length.

The neighborhood concept was an attempt to account for different families of dispersal
distributions. On the other hand, it has recurrently been assumed that differentiation is
essentially a function of σ 2 and not of other features of the dispersal distribution. If so,
it would be easy to seemingly improve on the regression method by considering only a
family of dispersal distributions with a single parameter, completely determined by σ 2, for
example a discretized Gaussian. In this case, FST or a(r) values, not simply their increase
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with distance, would contain information about σ 2. But such improvements would not be
robust to misspecification of the dispersal distribution.

To explain reported discrepancies, it has often been argued that genetic patterns
are highly sensitive to long-distance dispersal, which occurrence is easily missed in
demographic studies. While some genetic patterns are indeed affected by long-distance
dispersal (e.g. Austerlitz et al., 2000), this is much less so for the patterns considered in the
regression analyses, and this contributes to their concordance with demographic estimates.
If a fractionm of immigrants come from an infinite distance (so that the ‘true’ σ 2 is infinite
and does not predict any local pattern of differentiation), such migrants will be unrelated
to their neighbors, and these migration events are analogous to mutation events. Hence
we can deduce the effect of such immigrants from the effect of mutation, e.g.

ȧ(r) ≈ − ln(
√

2m)−K0(
√

2mr/σ̂ )

4Dπσ̂ 2
+ constant, (28.21)

where σ̂ is the parameter of the dispersal distribution for the fraction 1−m of locally
dispersing individuals. This result implies that there is an approximately linear increase of
differentiation, determined by Dσ̂ 2, roughly up to distance 0.56σ̂ /

√
2m (from Figure 3

in Rousset (1997)). For example if we ignore a 1 % (respectively, 0.1 %) tail of the distri-
bution of dispersal distance in a demographic study which estimates σ̂ = 10 distance
units, the prediction of increase of differentiation with distance will reach 20 % error at
0.56σ̂ /

√
2m = 39.6 (respectively, 125) distance units. This is a wide overestimate of the

error for any data set spread over such a distance, but more accurate predictors of bias
will depend on the distribution of spatial distances in the sample.

Naive application of testing methodology has been another factor contributing to
confusion. The absence of a pattern of isolation by distance (null slope of the regression,
Dσ 2 infinite) may be tested by the exact permutation procedure known as the Mantel test
(Mantel, 1967; see Rousset and Raymond, 1997, for a simple description). In practice,
nonsignificant test results have often been interpreted as evidence that dispersal is not
localized. However, the Mantel test has often been applied in conditions of low power.
In many populations with localized dispersal, the value of Dσ 2 will be large, and thus
expected patterns of isolation by distance (increase of differentiation with distance) will
be weak (particularly in two-dimensional habitats), even though differentiation will be
inferred by classical tests for differentiation.

Finally, variation in expected gene diversity due to spatial heterogeneity of demographic
parameters may result in larger variation in expected differentiation than that due to
isolation by distance. For example, if several demes with very small deme size and
restricted dispersal are clustered in space, they will have low expected gene diversity and
will show a larger differentiation between them than with more distant demes with higher
expected diversity, and the above methods will obviously fail unless this heterogeneity is
taken into account (Rousset, 1999b).

28.4.4 Likelihood Inferences

Maximum likelihood methods have not been developed and tested to a comparable level.
The migration matrix models have been implemented for allele frequency and sequence
data in the software MIGRATE. A more restricted set of models based on the ‘isolation-
with-migration’ scenario has been implemented in the software IM (Nielsen and Wakeley,
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2001; Hey, 2005). In the coalescent algorithms as in previous inferences based on per-
locus information from samples taken at one time, it is not possible to estimate the
deme sizes, mutation rates, and immigration rates separately: only products of deme size
with migration probability and mutation probability, and (as a consequence) the ratio of
migration and mutation probabilities, can be estimated. In the latest version of IM it is
possible to analyze the divergence between two populations in terms of their deme sizes
scaled relative to mutation rate (N1µ and N2µ), of immigration rates in each of them
m1 and m2, either scaled relative to deme size (e.g. N1m1) or relative to mutation rate
(e.g. m1/µ), of the scaled size of the ancestral population, and of relative fractions of this
ancestral which contributed to the two descendant populations.

In a two-populations setting, one study has compared ML estimates with demographic
estimates and with some other genetic estimation methods (Wilson et al., 2004). Both
ML and the two-locus method of Vitalis and Couvet (2001) produced estimates roughly
in agreement with demographic data, while FST did not. It appears difficult to estimate
all parameters of a four-demes migration-matrix model (Beerli, 2006). Likewise, it has
not been possible to choose among different scenarios of colonization of the Americas
using the IM software (Hey, 2005). The effect of unsampled demes on estimation of
dispersal between two sampled demes has been investigated by Beerli (2004), for sequence
data (100 000 bp per individual). As expected, the biases increase with immigration
from the unsampled population(s), but it was found that estimates of immigration rate
between the two populations were hardly affected by an equal total immigration rate from
unsampled population(s) (estimates of scaled populations sizes were more affected). Abdo
et al. (2004) argued that confidence intervals given by MIGRATE are not accurate, a fact
attributed to too short run times of the algorithm (Beerli, 2006).

The above simulation scenarios are rather distinct from those considered in the previous
section, and it would be hard to perform ML analyses of the New Guinea data using current
software. With MIGRATE for example, estimation of a full migration matrix from the New
Guinea data has been attempted (R. Leblois and F.R., unpublished results), yielding larger
estimates of dispersal than inferred by the regression method described above and from
demographic data. Attempts to estimate fewer parameters could be more successful. In
addition, one can question the convergence of the Markov chain algorithm, a problem
which remains with no easy solution (e.g. Brooks and Gelman, 1998). In this respect,
the importance sampling algorithms of Griffiths and collaborators are more convenient as
estimates are derived from independent runs of an absorbing Markov chain (28.15), so
traditional techniques based on independent variables apply.

28.5 SEPARATION OF TIMESCALES

The properties of F -statistics illustrate the more general idea of separation of timescales,
in which some events occur at a much faster rate than others. For example, in an island
model, when the number of demes nd increases indefinitely, the rate of coalescence of
ancestral lineages of genes sampled in different demes decreases as 1/nd, while for genes
sampled within the same deme, the probability of coalescence of ancestral lineages in
some recent generation is nonvanishing in this limit. Thus the events in the genealogy of a
sample can be described as a sum of two processes, a fast process by which lineages either
coalesce within the demes they are sampled or separate in distinct demes, at rate O(1) as
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nd →∞, and a slow process by which genes in different demes coalesce at rate O(1/nd)

as nd →∞ (e.g. Wakeley and Aliacar, 2001). This slow process is a rescaled version
of the well-studied coalescence process for an unstructured population (the n-coalescent,
Kingman, 1982; see Chapter 25).

Under a separation of timescales, the likelihood can be expressed in terms of distinct
terms for fast and slow processes (see Nordborg, 1997 for a population with selfing), and
in the above example, analytical results or simulation techniques for the n-coalescent can
be used as soon as ancestral lineages have separated in different demes in a simulation of
the ancestry of a sample. The traditional formula giving probability of identity conditional
on allele frequency as (1− F)p2 + Fp also results from such a separation of timescales,
provided that allele frequency does not change in the total population until the completion
of the fast process.

However, convergence to the n-coalescent may hold under sometimes restrictive
conditions. No convergence to the n-coalescent has been found in one-dimensional models
of isolation by distance (Cox, 1989; Wilkins, 2004). In two-dimensional models on a
lattice of size L× L, the genealogy of genes sampled far enough (at distance O(L))
from each other converges to that of an unstructured population (the n-coalescent) with
coalescence events occurring at rate O(1/[L2 ln(L)]) as L→∞ (Cox, 1989; Zähle et al.,
2005). A separation of timescales may hold if the genealogy of genes sampled closer in
space compounds a process of ‘fast’ coalescence (in less than O[L2 ln(L)] generations)
and the n-coalescent. The closest results are those of Zähle et al. according to which
genes at distance O(Lβ) for 0 < β ≤ 1 either coalesce in less than L2/2 generations
with probability 1− β, or follow the scaled n-coalescent with probability β. This differs
qualitatively from the island model where the fast process becomes negligible in finite
time, so defining a finite time span for a fast process from these results seems less than
straightforward. Instead, they suggest applying n-coalescent approximations in a backward
simulation algorithm when ancestral lineages are distant enough relative to the total size
of the lattice, although the minimal distance to consider is itself not obvious since all
results stand for β > 0 only, i.e. for spatial separation of genes increasing with L. As
shown in Figure 28.2, a separation of timescales holds for fixed distance and fixed Nσ 2,
with the fast process vanishing in finite time, but the slower process is not an n-coalescent.

Some moment methods have attempted to extract more information from the data by
taking into account allele size (for microsatellites) or DNA sequence divergence. However,
in an island model, most of the information about Nm is in whether genes sampled within
a deme have their most recent common ancestor within this deme (in which case they are
identical, unless mutation rates are higher than migration rates). Otherwise, the ancestral
lineages separate in different demes, and in this case the allelic divergence may contain
little useful information about dispersal rates. This may explain why moment methods
based on microsatellite allele size often yield estimates of demographic parameters with
higher variance and mean square error than estimates derived from allelic identity statistics
(Gaggiotti et al., 1999; Balloux and Goudet, 2002; Leblois et al., 2003) despite their lower
asymptotic bias (Slatkin, 1995), except when mutation rates are larger than migration rates
(Balloux et al., 2000) or when genetic correlations are not determined by a distinctly fast
process (Tsitrone et al., 2001). A key issue in evaluating the performance of likelihood
methods will be the extent to which they specifically capture the information from fast
processes and how much better they are than pair-wise identity methods in this respect.
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28.6 OTHER METHODS

As likelihood computations are often difficult, simulation methods based on other
summary statistics have been developed. In essence, the likelihood of the data is
substituted with the probability of observing in simulations values of a summary statistic
S sufficiently close to its value observed in the data. These methods are reviewed
by Beaumont (see Chapter 30) and have been applied to some subdivided population
scenarios (Estoup et al., 2004; Hamilton et al., 2005). There is a huge collection of other
methods of analysis of spatial patterns of genetic variation in the literature. Here again a
small selection is presented on the basis of their impact in the field or of their perceived
practical validity.

28.6.1 Assignment and Clustering

Of particular interest are assignment methods, which aim to assign individuals to their
subpopulations of origin. For example, in an ecological perspective it may be useful
to know whether immigrants differ from residents in some aspects of their behavior,
and therefore to individually identify immigrants; further it might be of interest to
identify their habitat of origin. Sometimes there will be independent information about
the potential source populations. A more challenging problem (on which this section will
focus) is to estimate dispersal rates by inferring the number of subpopulations and then
assigning individuals to them (see Chapter 30 for other aspects of these methods). In this
perspective, the traditional problem of clustering becomes part of the assignment task.

Assignment methods stem from the idea that individuals are more likely to originate
from populations with higher frequencies of the alleles they possess. Thus, considering an
haploid organism for simplicity, for each individual one can compute a statistic such as

K∏
k=1

q̃
xk
ki , (28.22)

where q̃ki is the observed frequency for allele k in sample i (possibly with some correc-
tion such as excluding the focal individual itself), and xk = 1 if the individual bears allele
k and xk = 0 otherwise. This is usually viewed as a likelihood statistic (e.g. Paetkau
et al., 1995). If each locus is considered independent of the others, multilocus statistics
are the product of single locus statistics, and the individual is assigned to the sample i
that maximizes the multilocus statistic.

It can be expected that, given some differentiation between different subpopulations,
this method will preferentially assign an individual to its original subpopulation. It is also
expected that such assignments will be more accurate when differentiation is higher. More
generally, if the individuals are correctly assigned to their subpopulations of origin, then
we could estimate from the same data and the same likelihood formulas the dispersal rates
between each of them in the last round of dispersal, independently of past dispersal rates.
Conversely if we cannot consistently estimate the dispersal rates in this way, this implies
that there is no way to consistently assign individuals to their populations of origin. So
we consider the question whether we can estimate the dispersal rate in order to address
the question whether immigrants can be assigned to their population of origin.

Consider the allele frequencies in the subpopulations before the last round of dispersal
(pki for allele k in subpopulation i), and the dispersal rate for this last round of dispersal
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(mii′ from subpopulation i′ to i). For each locus and each individual in sample i the
likelihood is approximately

∏K
k=1 q

xki
ki where qki =

∑
i′ mii′pki′ is the frequency of allele

k in subpopulation i after the last round of dispersal. For the total sample from nd demes
the likelihood is therefore proportional to

nd∏
i=1

K∏
k=1

q
nki
ki . (28.23)

Since one can always explain the data by some model assuming that there was no dispersal
in the last round, there is not enough information in the data to separately estimate
the dispersal rates and the pkis, at least when each locus is considered independent of
the others as done previously. This implies that it is not possible to consistently assign
individuals to their populations of origin without introducing additional assumptions or
additional knowledge.

The most obvious assumption is to assume no linkage disequilibrium within populations
before dispersal, which is a good approximation for many organisms (though not highly
selfing ones). In principle, one- and two-locus measures of genetic association contain
information which allows to estimate separately dispersal rates and subpopulation sizes. A
numerical method has been developed to use such information (Vitalis and Couvet, 2001).
Assignment methods may be viewed as using multilocus associations, in that their current
formulation relies on assuming no within-population disequilibria. Additional assumptions
have been made, for example specifying a prior probability model for the distribution of
allele frequencies, often a Dirichlet distribution as per an island model (see (28B.1);
Rannala and Mountain, 1997; Falush et al., 2003; Wilson and Rannala, 2003; Corander
et al., 2003). In this respect, although an asserted aim of such methods is to infer migration
rates without the many assumptions of other methods, the stationary island model is still
lurking in the background.

How do these methods perform in practice? Cornuet et al. (1999) reported >75 %
correct assignment probabilities by Rannala and Mountain’s method for populations
diverged since several hundred generations. Évanno et al. (2005) found that the ‘most
likely’ number of populations reported by the program STRUCTURE was a biased estimator
of the actual number of populations. Waples and Gaggiotti (2006) reported that this
program correctly identified the number of populations when the number of immigrants
per population was less than 5, mutation rates were high, and for large sample size
(20 loci genotype in 50 individuals from each population), but quickly degraded in other
conditions. The latter study also reported similar problems with the methods implemented
in the programs BAPS (Corander et al., 2003) and IMMANC (Rannala and Mountain,
1997), and found that a method based on traditional contingency tests of spatial structure
performed better than these different methods in identifying the number of populations.
In a comparison with mark-recapture data, Berry et al. (2004) found good performance
in estimating dispersal. In this study, the populations were known in advance and at most
4, the number of immigrants was known from mark-recapture data to be small, and the
latter information was somehow used as prior information in STRUCTURE.

Most of the recently formulated methods have been presented as ‘Bayesian’, a label
which in practice covers various compromises between subjective Bayesian (e.g. Lindley,
1990) and frequentist (Neyman, 1977) statistics, to the point of being uninformative.
However, numerous accounts of supposed differences between Bayesian and frequentist



964 F. ROUSSET

methods have drawn attention away from the real issue, which is the criterion by which
to measure the performance of statistical methods. It is always possible to generate ‘better
than previous’ methods by changing the measure of average performance. In the context of
estimation of dispersal rates, the results of Beerli (2006) illustrate this, where performance
averaged over a prior distribution for model parameters was better than that of maximum
likelihood ignoring the prior distribution, a predictable result from textbook statistical
theory (Cox and Hinkley, 1974, Chapter 11; Lehmann and Casella, 1998, Chapter 4).
Likewise, the performance of an assignment method defined in terms of priors over
allele frequencies may be evaluated in terms of its performance for any given allele
frequency, or of averaged performance over the distribution of allele frequencies. The
context of scientific inference should determine the appropriate measure of performance,
but the averaged measure can balance misleading assignment inferences in some species
with more efficient inferences in some other species, depending on the spectrum of
allele frequencies in different species. One may need to know when this is the case,
and comparing results for two choices of the prior distribution is not enough in this
respect.

As seen above, a more prosaic problem with assignment methods is that it is
difficult from available information to give simple bounds on the frequency of erroneous
inferences, even averaged over prior distributions.

28.6.2 Inferences from Clines

An important class of models of spatial structure for selected genes are the cline models.
Clines arise in two contexts: selection for two distinct alleles or genotypes in two
adjacent habitats exchanging migrants, or selection against hybrid genotypes between
two taxa (‘tension zones’). Theoretical models predict the shape of clines, notably the
steepness in the cline center, as a function of the σ parameter defined above and of
one or several selection coefficients (for tension zones: Bazykin, 1969; Barton, 1979;
for selection variable in space: Nagylaki, 1975). Additional information on dispersal and
selection is given by linkage disequilibria between loci. Such methods, therefore, depend
on assumptions specific to each case study (e.g. external information on recombination
rates and epistasis between loci).

A typical expression for the shape of a cline, i.e. for allele frequency p at distance
x − x0 from the center of the cline, is p = (

1+ exp((x0 − x)(2s)1/2/σ)
)−1

(Bazykin,
1969; Barton, 1979). In the center of the cline, it holds approximately for different models
of selection (Barton and Gale, 1993) and is relatively insensitive to the shape of the
dispersal distribution, as a small rate of unaccounted long-distance immigration has little
effect on the shape of the center of the cline (Rousset, 2001). Inferences about s and σ
separately are possible by considering multilocus clines and by taking linkage disequilibria
into account. Then, the expected shapes of clines must be computed numerically. Drift is
neglected relative to selection: Allele frequencies in the different subpopulations are fixed
values, functions of the parameters defining the demography and the selection regime,
not random variables as in the neutral models.

The likelihood function is then given by multinomial sampling in each subpopulation.
Thus, the statistical model is conceptually straightforward and relatively easily tailored to
the specific demography and selection regime of different organisms, at least when only
a few loci subject to selection need be considered and when the expected frequencies of
each genotype are directly computed using recursion equations for specific values of the
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parameters to be estimated (e.g. Lenormand et al., 1999). Variants of the Metropolis
algorithm (Metropolis et al., 1953) including simulated annealing (Kirkpatrick et al.,
1983) have been used to find MLEs (a software ANALYSE is distributed by Barton and S. J.
Baird, http://helios.bto.ed.ac.uk/evolgen/Mac/Analyse/). Sites et al.
(1995) reported an agreement with demographic estimates of σ similar to that of isolation-
by-distance analyses reported above.

28.7 INTEGRATING STATISTICAL TECHNIQUES INTO
THE ANALYSIS OF BIOLOGICAL PROCESSES

Several of the methods reviewed in this chapter have been both widely used and widely
criticized. Much of the criticisms rest on the difficulty of formulating precise quantitative
models of population genetic processes. Theoretical studies of robustness are important,
but may themselves overlook factors that turn out to be important in natural populations.
For these reasons, this review has emphasized comparisons with demographic estimates.
Independent demographic estimates may have their own problems, but it will be hard to
detect misapplications of the genetic inferences if no such comparison is made. This last
section discusses some of these problems and partial solutions to them.

We have seen that many discrepancies between ‘models and data’ inferred from
empirical studies using F -statistics derive from various misunderstandings of the models.
The more successful studies, in terms of comparisons with independent estimates, were
conducted at a small spatial scale (between 1 and 20 σ ). This is somehow unavoidable
because of the need for good demographic data in these comparisons, but one may expect
larger discrepancies over larger spatial scales, for many reasons: spatial variation of
demographic parameters should be taken into account; the effects on genetic differentiation
of some demographic events such as range expansions will be more likely to be observed
(Slatkin, 1993); mutation will have measurable consequences (e.g. Estoup et al., 1998);
and selection variable in space may also affect the markers.

A frequently raised concern is the possible nonneutrality of the markers used. On the
positive side a number of authors have realized that divergent selection would increase
levels of differentiation between different subpopulations. Thus potentially selected loci
may be detected in a first step by ‘weak’ statistical approaches such as classifying loci
as showing structure or not by conventional significance tests (see Kreitman, 2000 for
tests of selection at a molecular level not specifically using geographical information).
Formal statistical evidence for selection may be obtained by other experiments in a second
step. This approach has proven efficient (e.g. Feder et al., 1997). Lewontin and Krakauer
(1973) proposed a quantitative test of selection from the heterogeneity of FST estimates.
This procedure was inadequate in several ways, but there have been more recent attempts
to refine the detection of candidate selected loci (e.g. Beaumont and Nichols, 1996; Vitalis
et al., 2001; Beaumont and Balding, 2004).

Another often expressed criticism of the models and analyses reviewed above is that
they assume equilibrium, while the populations are often not at demographic equilibrium,
i.e. population sizes and migration rates fluctuate in time. If so, it is not clear what is
estimated by such techniques: the present demography, an average over ‘recent’ times, a
‘long-term’ average, or none of them? If the fluctuations can be described as a fast process,
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they may be described by some effective size correction. In other cases, such as the range
expansion of a species, this cannot be so, and either modeling the demographic expansion,
or using methods insensitive to it, are the only coherent alternatives. To understand this,
it suffices to note that spatial patterns of pairs of genes approach equilibrium faster the
smaller the spatial scale considered. Therefore, if the effect of a demographic event was
captured by some effective size correction, the effective size would differ at different
scales. Hence this effect cannot be described by a single effective size characterizing the
total population.

One way to avoid some assumptions of equilibrium is to analyze sequential samples.
All the above methods assume that samples have been taken at one point in time, yet
sometimes temporal information is available. See e.g. Robledo-Arnuncio et al. (2006)
for inferences of dispersal distributions from mother–offspring data, Wang and Whitlock
(2003) for estimation of immigration rate and deme size from samples over wider time
spans, and Ewing and Rodrigo (2006) for implementation of Markov chain algorithms
for inference of changes in demographic parameters from sequential samples.

The idea of estimating dispersal parameters such as σ is also open to difficulties. By
allowing an arbitrarily small fraction of immigrants to come from far enough, it is easy
to design cases where the theoretical σ value would be arbitrarily large, and where long-
distance immigrants would have arbitrarily small effect on the likelihood of samples.
The question that one must address prior to statistical analysis is how important such
long-distance immigrants are for population processes. For example, the speed of range
expansions is known to be affected by the most extreme long-distance migrants in a way
generally not characterized by the σ parameter (Mollison, 1977; Clark et al., 2001), so if
one is interested in characterizing such processes, not only it will be difficult to estimate
σ but this may be irrelevant. One the other hand, some processes of local adaptation (as
may lead to allele frequency clines, for example) are not very sensitive to long-distance
migrants, and then approximations ignoring them are not only adequate but required to
formulate good statistical inferences.

Current methods of estimation still have low range of applications, low efficiency,
or both. In principle, this can be improved by the development of likelihood methods,
yet this leaves room for different methodologies, and it is unclear how far research
practices will be improved. One common theme is that genealogical structure is affected
by events occurring at different timescales, and that inferences based on models of the
faster processes could be relatively independent to uncontrolled historical processes, and
therefore perhaps more reliable. It is not yet clear how much complexity we can add in
the models, for given data, nor where will be the limit between reliable and unreliable
inference; further, the answer will likely differ whether sequence data or allele frequency
data are considered.
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Clark, J.S., Lewis, M. and Horváth, L. (2001). Invasion by extremes: population spread with
variation in dispersal and reproduction. American Naturalist 157, 537–554.

Cockerham, C.C. (1973). Analyses of gene frequencies. Genetics 74, 679–700.
Cockerham, C.C. and Weir, B.S. (1987). Correlations, descent measures: drift with migration and

mutation. Proceedings of the National Academy of Sciences of the United States of America 84,
8512–8514.
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APPENDIX A: ANALYSIS OF VARIANCE AND PROBABILITIES
OF IDENTITY

Here we detail the relationship between classical formulas for estimators of F -statistics
and expressions in terms of frequency of identical pairs of genes. In the framework
considered here, negative ‘components of variance’ (which are actually not variances)
arise naturally.

We use the following notation: the total sample is made up of samples of ni
(i = 1, . . . , ns) individuals in ns subpopulations; Xij :k is an indicator variable for gene
j (j = 1, . . . , ni) in sample i being of allelic type k (k = 1, . . . , K), i.e. Xij :k = 1 if
the sampled gene is of type k and Xij :k = 0 otherwise; standard dot notation is used for
sample averages: e.g. for weights wj , X. ≡ (

∑
j wjXj )/(

∑
j wj ) is a weighted average of

the Xs. Here the weighting for each individual will be simply 1. A discussion of optimal
weighting with respect to allele frequencies or samples sizes will be given in Appendix
B. The indicator variables are given a single index (Xj ) if no reference is made to a
specific sample. πk is the expected frequency of allele k, the expectation of Xj :k over
independent replicates of some evolutionary process (typically a mutation–drift stationary
equilibrium, but this is in no way required).
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For haploid data the statistical model is generally described as

Xij :k = µ+ αi + εij , (28A.1)

µ = πk here, αi is a random effect with zero mean and variance σ 2
a , and εij is a random

effect with zero mean and variance σ 2
e . It is also assumed that E[αiαi′ ] = 0 for i �= i′ and

that E[εij εij ′] = 0 for j �= j ′ (e.g. Searle, 1971, p. 384), but this is precisely what we will
not do here, in order to obtain the most general analogy. What remains more generally
valid is a basic algebraic relationship of analysis of variance,∑

j

wj (Xj − µ)2 =
∑
j

wj (Xj −X. +X. − µ)2

=
∑
j

wj (Xj −X.)2 +
∑
j

wj (X. − µ)2, (28A.2)

for any variable X and weights wj because we still have
∑
j wj (Xj :k −X.:k) = 0 by

definition of X.:k .
The method of analysis of variance is then based on the computation of weighted sums

of squares related as follows:

ns∑
samples

ni∑
genes

wi(Xij :k −X..:k)2 =
ns∑ ni∑

wi(Xij :k −Xi.:k)2

+
ns∑ ni∑

wi(Xi.:k −X..:k)2 (28A.3)

≡ SSw[ithin] + SSb[etween]for allele k. (28A.4)

For wi = 1 these sums of squares will be expressed in terms of S1 ≡
∑
i ni and

S2 ≡
∑
i n

2
i , of the observed frequency of pairs of different genes within samples

which are both of type k, Q̂2:k ≡
∑
i

∑
j �=j ′ Xij :kXij ′:k/(S2 − S1), and of the observed

frequency of pairs of different genes between samples which are both of type k,
Q̂3:k ≡

∑
i �=i′

∑
j,j ′ Xij :kXi′j ′:k/(S

2
1 − S2). We first express the sums of squares using

(28A.2), as follows:

SSw =
∑
i

ni∑
j

(Xij :k −Xi.:k)2 =
∑
i

ni∑
j

(Xij :k − πk)2 −
∑
i

ni(Xi.:k − πk)2, (28A.5)

and

SSb =
∑
i

ni∑
j

(Xi.:k −X..:k)2 =
∑
i

ni(Xi.:k − πk)2 − S1(X..:k − πk)2. (28A.6)

The values of different variables that appear in these expressions, (Xj :k − πk)2 and
(Xj :k − πk)(Xj ′:k − πk), for pairs j, j ′ of different genes, are summarized in Table 28.1
where Q:k is the probability that both genes of a pair are of type k. Note that E[(Xj :k −
πk)(Xj ′:k − πk)] is the covariance between allele frequencies in the subpopulations from
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Table 28.1 Values of variables in comparisons of pairs of genes.

Pair of gene kk k, not k None k
Probability of each pair Q:k 2(πk −Q:k) 1− 2πk +Q:k

Frequency in total sample Q̂:k 2(π̃k − Q̂:k) 1− 2π̃k + Q̂:k

Variable Value of variable for each pair

(Xj :k − πk)(Xj ′ :k − πk) (1− πk)2 −πk(1− πk) π2
k

(Xj :k − πk)2 + (Xj ′:k − πk)2 2(1− πk)2 (1− πk)2 + π2
k 2π2

k

which j and j ′ are sampled. From this table we see that

σ 2
a + σ 2

e = E[(Xj :k − πk)2] = πk(1− πk), (28A.7)

E[(Xj :k − πk)(Xj ′:k − πk)] = Q:k − π2
k . (28A.8)

where Q:k is Qw:k = Q2:k for two genes within a sample and Qb:k = Q3:k for two genes
between samples. In particular we have

Q2:k − π2
k = Cov[XijXij ′ ] = σ 2

a + E[εij εij ′], (28A.9)

Q3:k − π2
k = Cov[XijXi′j ′ ] = E[αiαi′ ]. (28A.10)

The latter expression confirms that E[αiαi′ ] �= 0: in general two genes in different
subpopulations are more likely to be identical than two independent genes, i.e. Q3:k −
π2
k > 0. In the present case one could consider a slightly different parameterization of the

model, so that this positive component would appear as a variance (e.g. Cockerham and
Weir, 1987), but more generally this would be confusing because we may also have to
consider negative terms, as shown below for diploid data.

The table also shows that the sample averages of (Xj :k − πk)(Xj ′:k − πk) and (Xj :k −
πk)

2 are Q̂:k + π2
k − 2πkπ̃k and π̂k + π2

k − 2πkπ̃k , respectively. Here π̃k is the average
allele frequency among all pairs of genes for which the average is written. This is
the observed allele frequency by gene counting (denoted π̂k or π̂i:k) when all pairs
in the total sample or in sample i are considered. Among all pairs of genes sampled
without replacement within each sample, this is π̂w:k ≡

∑
i ni(ni − 1)π̂i:k/(S2 − S1).

Among all pairs of genes from two different samples, π̂ has value π̂b:k given by
(S2

1 − S2)π̂b:k + (S2 − S1)π̂w:k = (S2
1 − S1)π̂ .

Then ∑
i

nj∑
j

(Xij :k − πk)2 = S1(X..:k + π2
k − 2πkX..:k). (28A.11)

Next

(X..:k − πk)2 =
(∑

i,j Xij :k − πk
S1

)2

(28A.12)

= 1

S2
1

(∑
i,j

(Xij :k − πk)2
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+
∑

i �=i′,j,j ′
(Xi′j ′:k − πk)(Xi′j ′:k − πk)

+
∑
i,j �=j ′

(Xij :k − πk)(Xij ′:k − πk)
)

(28A.13)

= 1

S2
1

(
S1(π̂ + π2

k − 2π̂πk)+ (S2
1 − S2)(Q̂3:k + π2

k − 2π̂b:kπk)

+ (S2 − S1)(Q̂2:k + π2
k − 2π̂w:kπk)

)
(28A.14)

= (π̂ + π2
k − 2π̂πk)+

1

S2
1

(
(S2

1 − S2)(Q̂3:k − π̂)+ (S2 − S1)(Q̂2:k − π̂)
)
,

(28A.15)

by definition of π̂b:k . Likewise

(Xi.:k − πk)2 =
(∑ni

j=1Xij :k − πk
ni

)2

(28A.16)

= 1

n2
i

 ni∑
j=1

(
Xij :k − πk

)2 +
∑
j �=j ′

(
Xij :k − πk

) (
Xij ′:k − πk

) (28A.17)

= 1

n2
i

(
ni(π̂i:k + π2

k − 2π̂i:kπk)+ ni(ni − 1)(Q̂i2:k + π2
k − 2π̂i:kπk)

)
(28A.18)

= (π̂i:k + π2
k − 2π̂i:kπk)+

ni − 1

ni
(Q̂i2:k − π̂i:k), (28A.19)

hence

ns∑
i=1

ni(Xi.:k − πk)2 = S1(π̂k + π2
k − 2π̂kπk)+

∑
i

(ni − 1)(Q̂i2:k − π̂i:k).(28A.20)

Then from (28A.5), (28A.11) and (28A.20)

SSw = (S1 − ns)(π̂k − Q̂2:k), (28A.21)

and from (28A.6), (28A.15) and (28A.20)

SSb =
∑
i

(π̂i:k − π̂k)+
∑
i

(ni − 1)Q̂i2:k − (S1 − S2/S1)Q̂3:k − (S2/S1 − 1)Q̂2:k.

(28A.22)
Note that as in (28A.20), allele frequencies terms do not reduce to a function of π̂ only:
the term

∑
i(π̂i:k − π̂) will usually be nonzero when sample sizes are unequal. Taking
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expectations, one has

E
[
SSw

] = (S1 − ns)(πk −Q2:k),

E
[
SSb

] = (S1 − S2/S1)(Q2:k −Q3:k)+ (ns − 1)(πk −Q2:k)

= (S1 − S2/S1)(σ
2
a − E[αiαi′]+ E[εij εij ′ ])+ (ns − 1)(σ 2

e − E[εij εij ′ ]).

(28A.23)
These relationships hold whatever the model considered (fixed or random, etc.). They

are formally equivalent to a standard analysis of variance (e.g. Searle, 1971) on the
indicator variables Xij :k , except that (1) E[εij εij ′ ] and E[αiαi′ ] are not assumed null, and
(2) the sums of squares are themselves summed over alleles. When we write these two

modifications as ‘
1→’ and ‘

2→’ the equivalence of expectations in the standard formulas
of analysis of variance with expressions in terms of probabilities of identity is as follows:

σ 2
a

1→ σ 2
a − E[αiαi′ ]+ E[εij εij ′]

2→Q2 −Q3 ≡ (1−Q3)FST

σ 2
e

1→ σ 2
e − E[εij εij ′]

2→ 1−Q2 = (1−Q3)(1− FST). (28A.24)

Hence the ‘intraclass covariance’ σ 2
a /(σ

2
a + σ 2

e ), often taken as a definition of FST, should
be interpreted as

FST =
σ 2
a

σ 2
a + σ 2

e

1→FST =
σ 2
a + E[εij εij ′]− E[αiαi′ ]

σ 2
a + σ 2

e − E[αiαi′]
, (28A.25)

where the latter expression may be considered more general.
For diploid data, the model is Xijl:k = µ+ αi + βij + εij l for gene l (l = 1, 2 for

diploids) of individual j in population i. With σ 2
a ≡ E[α2

i ], σ
2
b ≡ E[β2

ij ], σ
2
e ≡ E[ε2

ij l],
we have

σ 2
a

1→ σ 2
a − E[αiαi′]+ E[βijβij ′]

2→Q2 −Q3 ≡ (1−Q3)FST

σ 2
b

1→ σ 2
b − E[βijβij ′]+ E[εij lεij l′ ]

2→Q1 −Q2 ≡ (1−Q3)FIS(1− FST)

σ 2
e

1→ σ 2
e − E[εij lεij l′ ]

2→ 1−Q1 = (1−Q3)(1− FIS)(1− FST),

(28A.26)
where Q1 is the probability of identity of genes within a diploid individual, Q2 is for
genes between individuals within subpopulations, and Q3 between subpopulations. Thus
in both formalisms we see that the ‘components of variance’ actually translate into more
general expressions that can be negative. When there is an heterozygote excess within
demes (Q1 < Q2), E[εij lεij l′ ] is negative, and σ 2

b − E[βijβij ′]+ E[εij lεij l′ ] is negative.
In the haploid case, (28A.23) implies that

(S1 − ns)E[SSb]− (ns − 1)E[SSw]

(S1 − ns)E[SSb]+ (Wc − 1)(ns − 1)E[SSw]
= Q2 −Q3

1−Q3

, (28A.27)

where SSw and SSb are now summed over alleles (e.g. SSw ≡
∑ns

∑ni
∑
k(Xij :k −

Xi.:k)
2), andWc ≡ (S1 − S2/S1)/(ns − 1). Although we have related the expectation of the
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different terms to ‘components of variance’ in a model such as (28A.1), we note again that
the last equality holds independently of such a model, because it is only based on the basic
relationship (28A.2). Accordingly, an estimator of FST is the ratio of unbiased estimators

(S1 − ns)SSb − (ns − 1)SSw

(S1 − ns)SSb + (Wc − 1)(ns − 1)SSw
. (28A.28)

(see also Weir, 1996, p. 182). One could hope that this estimator is directly interpretable
as (Q̂2 − Q̂3)/(1− Q̂3), where Q̂j =

∑
k Q̂j :k are the frequencies of identical pairs of

genes in the sample, computed by simple counting either within (for Q2) or between (for
Q3) samples (Q̂2 being is an average over the different samples, weighted according to the
number of pairs in each sample). But this is not so when sample sizes are unequal, because
the term

∑
i (π̂i:k − π̂) from (28A.22) remains in the above expression. The expression

closest to (Q̂2 − Q̂3)/(1− Q̂3) that I have found for Weir and Cockerham’s estimator is

Q̃2 − Q̂3

1− Q̂3 +
∑
i (ni − 1)(Q̂i2 − Q̂2)

S2−S1

(S2
1−S2)(S1−ns)

, (28A.29)

in terms of the weighted frequency

Q̃2 =
(S1 − 1)

∑
i (ni − 1)Q̂i2 − (S1 − ns)(S2/S1 − 1)Q̂2

(S1 − ns)(S1 − S2/S1)
, (28A.30)

and where Q̂i2 is the observed frequency of pairs of genes identical in state among all
pairs taken without replacement within sample i. Compared to the analysis-of-variance
estimator, the simple strategy of estimating any function of probabilities of identities by
the equivalent function of frequencies of identical pairs of genes is equally ‘unbiased’,
has no obvious drawback and is easily adaptable to different settings.

For multilocus data it is usual to compute the estimator as a sum of locus-specific
numerators over a sum of locus-specific denominators; see e.g. Weir and Cockerham
(1984) or Weir (1996) for details. Note that the sums are weighted differently in these
two references. The numerator in Weir and Cockerham (1984), eqs. (2) and (10), is n̄/Wc
times the one in Weir (1996), p.178–179. Parallel changes in the denominator ensure that
the one-locus estimators are identical, but the multilocus estimators will be different if
n̄/Wc varies between loci.

APPENDIX B: LIKELIHOOD ANALYSIS OF THE ISLAND MODEL

Sampling Formulas

Consider an infinite island model of haploid subpopulations where there are K alleles and
ns subpopulations are sampled. The following notation will be used: πk is the frequency of
allele k in the total population (which is not a random variable here) and pki is frequency
of allele k in subpopulation i; nki is the number of genes of type k in the sample from
subpopulation i; ni is the size of sample i, n is the average ni , π̃k ≡

∑
i nki/

∑
i ni and

p̃ki ≡ nki/ni are the observed frequencies of allele k in the total sample and in sample i,
respectively.
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The distribution of the pkis in population i follows a Dirichlet distribution,

L(pki, . . . , pKi) = �(M)
∏
k

p
Mπk−1
ki

�(Mπk)
. (28B.1)

This type of distribution arises as a diffusion approximation to the discrete generation
Wright–Fisher model, where M is twice the number of migrant genes per generation
(Wright, 1949), e.g. 2Nm or 4Nm, and more generally in any scenario that can be
approximated by the n-coalescent.

It should be noted that this equation is valid for each subpopulation with its own size,
Ni , and its own immigration rate, mi . Thus the likelihood of samples may be given for
an infinite island model only characterized by the homogeneous dispersal of individuals
to other demes: the Nis and mis need not be identical in all subpopulations. This result
implies that, with a large number of subpopulations, one can only estimate the products
Nimi for each deme.

Consider the vector of counts nki of allele k in subpopulation i, ni ≡ (n1i , · · · , nKi),
and the corresponding multinomial coefficient C(ni ) ≡ ni!/

∏K
k=1 nki!. The conditional

probability distribution of the ith sample, given the subpopulation frequencies pi ≡
(p1i , . . . , pKi), is multinomial:

C(ni )
K∏
k

p
nki
ki . (28B.2)

The probability distribution of a sample ni in subpopulation i must be expressed as a
function only of the parameters, M and of expected allele frequencies (expectations under
stochastic model) π ≡ (π1, . . . , πK), by combining (28B.1) and (28B.2) and summing
over the set S of possible values of allele frequencies pi :

L(M,π; n1i , . . . , nKi) =
∫

· · ·
S

∫
�(M)

K∏
k

p
Mπk−1
ki

�(Mπk)
C(ni )

K∏
k

p
nki
ki dpi (28B.3)

= �(M)

�(M + ni)
C(ni )

K∏
k

�(Mπk + nki)
�(Mπk)

. (28B.4)

This distribution is the Dirichlet-multinomial distribution. In the infinite island model,
subpopulation frequencies are independent from each other in each subpopulation, so that
the likelihood of a total sample from ns subpopulations is

L(M,π) =
(

�(M)

�(M + ni)
)ns ns∏

i=1

C(ni )
K∏
k

�(Mπk + nki)
�(Mπk)

. (28B.5)

The pseudo–maximum likelihood estimator M̂A of M had been previously defined by
Chuang and Cox (1985) as the solution of ∂ lnL/∂M|π=π̃,M=M̂A = 0. From (28B.5), this
is the solution of

0 =
[
K∑
k

ns∑
i

π̃k

(
nki−1∑
k=0

1

π̃kM + k

)
−

ns∑
i

(
ni−1∑
k=0

1

M + k

)]
. (28B.6)
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Efficiency in the Island Model

When M →∞ (high migration rates) the Dirichlet-multinomial distribution converges
to a multinomial with parameter π, so the sampling distribution for the total sample
is a product of multinomials with the same parameter π: this corresponds to the case
of no population differentiation. Thus we can construct asymptotically efficient statistics
for detecting weak differentiation from a study of the properties of the likelihood when
M →∞. To that aim it is simpler to express it as a function of ψ ≡ 1/M and compute
the Taylor expansion near ψ = 0. From (28B.6), it may be shown that

∂ lnL

∂ψ
=

K∑
k

ns∑
i

nki(nki − 1)

2πk
−

ns∑
i

ni(ni − 1)

2
+O(ψ), (28B.7)

and a statistic of interest (effectively a score statistic, Cox and Hinkley, 1974, Chapter 9)
may be constructed as

Ũ ≡ lim
ψ→0

∂ lnL

∂ψ

∣∣∣∣
π=π̃

=
K∑
k

ns∑
i

nki(nki − 1)

2π̃k
−

ns∑
i

ni(ni − 1)

2
, (28B.8)

where the π̃s are the observed allele frequencies in the total sample, which are the MLEs
of the πs in the case ψ = 0. This result draws a connection between the likelihood and
the moment methods (see also Balding, 2003). Since the second sum in (28B.8) is fixed
for given sample sizes ni , the score statistic is essentially a sum of squares and can be
considered in an analysis of variance framework. It shows that asymptotically efficient
weights wk of the sum of squares for the different alleles are proportional to 1/π̃k , and
the weights of the sum of squares for the different samples are proportional to n2

i for
the different samples, i.e. wi = ni for each individual in (28A.3). The allele weighting
is not new: it is implicit in the matrix formulations of Smouse and Williams (1982) and
Long (1986) (see Weir and Cockerham, 1984; Chakraborty, 1992) and in standard test
statistics such as the χ2 or log-likelihood for multinomial models. Consistent with the
above analysis assuming weak differentiation (ψ → 0), it leads to estimators with efficient
properties only for low differentiation (Raufaste and Bonhomme, 2000). By contrast the
sample size weighting is odd and has not been previously considered in analysis of
variance. But it may bring very little (F.R., unpublished data): the allele weighting is
generally sufficient to turn moment statistics into efficient statistics when differentiation
is low.

Weighting according to observed allele frequencies or to other measures of genetic
diversity may have some drawbacks, particularly when one considers more general models
than the island model. This weighting seems to imply that the ratio of expected sum of
squares, conditional on genetic diversity, is independent of the value of the conditioning
variable. As noted in the main Text, this is approximately so in the island model, and
more generally under a separation of timescales when the slow process is an n-coalescent,
but may not hold more generally. Then, the only consistent method would be to sum the
Q̂ terms directly in the numerator and denominator; any other method would introduce a
bias. Further, selection of markers with specific levels of variability–as is often the case
in practice–could also introduce an ascertainment bias.
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This paper reviews the basic measures of intraspecific population subdivision, without assuming any
particular spatial model. The structure of the paper follows from the historical development of the
field, starting with the presentation of Wright’s fixation indexes as correlations of gene frequencies,
then Nei’s extension of F statistics to multiple alleles as function of heterozygosities and his
introduction of G statistics as function of gene diversities, to end with Cockerham’s intraclass
correlations obtained under an analysis of variance (ANOVA) framework. We also present an
extension of the ANOVA approach to handle molecular data (DNA sequences, microsatellites) as
well as dominant data. The relationships between different estimators, different approaches, and
their potential limitations are discussed.

29.1 INTRODUCTION

29.1.1 Effects of Population Subdivision

Species or populations usually do not constitute a single panmictic unit where individuals
breed at random over the whole species range. They are rather subdivided into smaller
entities, which can be arranged in space, time, ecology, or otherwise. Different levels
of population subdivisions may exist, which may be hierarchically arranged or not. A
population can thus be divided into groups or regions, themselves divided into smaller
units, and so on until we reach a basic unit of population that may be treated as a
homogeneous group, a fundamental unit called a deme (Gilmour and Gregor, 1939) or a
neighborhood (Wright, 1946) in the context of continuous habitats. Even within demes,
individuals are often related to each other, due to some shared ancestry and finite deme
sizes, which introduces some local levels of inbreeding often resulting in homozygote
excess.

Population structure, if not properly recognized, can affect our interpretation of the
observed pattern of genetic diversity, and can often mimic the effect of selection. Wahlund
(1928) thus showed that hidden subdivision leads to an apparent excess of homozygotes
(see also Nagylaki, 1985). When several loci are considered, population subdivision can
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lead to observed patterns of linkage disequilibrium, even between physically unlinked
loci (e.g. Ohta and Kimura, 1969; Nei and Li, 1973; Li and Nei, 1974; Ohta, 1982), and
recently admixed populations showing high levels of linkage disequilibrium over long
chromosomal segments can be interesting to locate disease genes (e.g. Chakraborty and
Weiss, 1988; Chapman and Thompson, 2001). At the molecular level, the presence of
hidden and unrecognized population subdivision can increase the number of segregating
sites within samples relative to the average number of substitutions between pairs of
sequences (Tajima, 1993; Wakeley, 1998), while local inbreeding due to selfing can
result in a drastic reduction of genetic diversity (Fu, 1997; Nordborg and Donnelly,
1997). In a population made up of demes interconnected by migrations, the mean
number of pairwise differences (or the number of heterozygous sites within individuals)
only depends on the sum of deme sizes, irrespective of the migration pattern (e.g.
Slatkin, 1987; Strobeck, 1987; Nagylaki, 1998a), but this property does not hold for
the variance (Marjoram and Donnelly, 1994). It follows that statistical tests of selective
neutrality can often be significant in absence of selection, when performed on samples
drawn from subdivided populations (e.g. Tajima, 1993; Simonsen et al., 1995; Nielsen,
2001). Also, hidden subdivision or population stratification can severely affect tests
of genetic association and case control studies (e.g. Pritchard et al., 2000b; Pritchard
and Donnelly, 2001; Marchini et al., 2004). When selection is present, population
subdivision can allow the distinction between several forms of selection that have
different effects on diversity within and between demes (Charlesworth et al., 1997).
The inference of population subdivision is also useful for its own sake. For instance,
in conservation biology it may be crucial to understand phylogeographic patterns and
to recognize subspecies or the effect of settlement history on genetic diversity (e.g.
Taberlet et al., 1998; Hewitt, 2001; Falush et al., 2003b; Jaarola and Searle, 2004; Magri
et al., 2006). Moreover, the presence and the assessment of genetic structure is also
essential in studies of species adaptation under Wright (1932; 1982) shifting balance
theory.

In statistical terms, population structure introduces some correlation or covariance
between genes taken from different subdivision levels. We are interested in describing
here how we can detect, measure and test for the presence of internal subdivisions,
often on the basis of the observed correlations, without assuming any particular migration
model, which should be treated in the section on spatial genetics (Chapter 28). However,
we sometimes have to assume that subdivisions are independent (implying no migration
between demes).

Owing to space limitation, this chapter is not a comprehensive review of the huge
literature on population subdivision. Additional and sometimes more exhaustive reviews
can be found elsewhere (e.g. Jorde, 1980; Weir and Cockerham, 1984; Nei, 1986;
Chakraborty and Danker-Hopfe, 1991; Weir and Hill, 2002; Rousset, 2004). Instead,
we focus on introducing readers to the basic concepts and measures of population
subdivision, trying to preserve the spirit in which they have been initially presented.
We show the foundations and the relationships between different approaches, as well
as their potential limitations. While the treatment presented here assumes that popula-
tions are monoecious, the results apply quite well to species with separate sexes, and
interested readers could consult Wang (1997b) for a specific treatment of dioecious
species.
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29.2 THE FIXATION INDEX F

The fact that a population is subdivided means in genetic terms that individuals do not mate
at random, and that the population is thus not panmictic. This departure from panmixia
translates into various levels of apparent inbreeding when considering the total population.
The concept of fixation index has been introduced by Sewall Wright to describe the effect
of population structure on the amount of inbreeding at a given level of subdivision.
Departure from panmixia indeed creates a correlation between homologous genes in
uniting gametes relative to a pair of genes taken at random from the population. Wright
(1921; 1922) proposed to use this correlation to describe the genetic structure and to
quantify the effect of inbreeding.

As we shall see, the fixation index F is precisely a measure of that correlation. We
shall briefly see how this correlation arises in the simple case of a single locus with two
alleles A and a of respective and unknown frequencies p and 1− p in a total population
subdivided into arbitrary breeding units. Gametes unite to form diploid individuals with
genotype proportions as shown in Table 29.1, where Ho denotes observed proportion of
heterozygotes.

Let us define an indicator variable y, such that, in an elementary experiment
consisting in drawing a gamete at random from the population, y = 1 if a gamete
is of allelic type A and 0 otherwise. We see immediately that over replicates of
this sampling process, E(y) = p.1+ (1− p). 0 = p,E(y2) = p, and var(y) = E(y2)−
E(y)2 = p(1− p). The correlation ρ12 between two uniting gametes G1 and G2 can be
written as

ρ12 =
cov(y1, y2)√

var(y1)var(y2)
. (29.1)

From Table 29.1, it is clear that cov(y1, y2) = E(y1y2)− E(y1)E(y2) = p −Ho/2
− p2 = p(1− p)−Ho/2, leading to

ρ12 = 1− Ho

2p(1− p). (29.2)

Note that the quantity 2p(1− p) is the expected heterozygosity He under
Hardy–Weinberg equilibrium (HWE) (panmixia), and therefore,

ρ12 = 1− Ho
He
. (29.3)

Table 29.1 Pattern of union of gametes in the total population.
Ho and p are the observed proportion of heterozygotes and the
frequency of allele A in the total population respectively. The observed
frequencies of the homozygotes depend only on these two random
variables.

Gamete 2

A a Total

Gamete 1 A p −Ho/2 Ho/2 p

a Ho/2 1− p −Ho/2 1− p
Total p 1− p 1
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For a (total) polymorphic population at an arbitrary time considered to be the beginning
of an evolutionary process, Ho should be equal to He in the initial generation if there
is complete panmixia, and therefore ρ12 = 0. If after an arbitrary period of genetic drift,
there is complete fixation of one or the other allele in every breeding unit (whatever it is),
then Ho = 0 and ρ12 = 1. Therefore, Wright proposed to call this correlation of uniting
gametes the ‘fixation index’ F because it is a relative measure of where the demes are
on their course to fixation due to random genetic drift. Note that this index was first
introduced in studies of inbreeding (Wright, 1921) under the notation f . Later, Wright
(1922) proposed to use f in a narrower sense as a ‘coefficient of inbreeding’, as it is still
known until today.

On the course to fixation, p and Ho are random variables that change at each generation
because of genetic drift and other potential evolutionary forces. Thus, in practice, both Ho
and He fluctuate at each generation in the total population and F , defined as a function
of observed and expected heterozygosities as in (29.3), is also a random variable with
a potentially complex distribution. However, let us consider the simple case where the
number of demes is infinite and where gene frequencies within subdivisions only change
because of genetic drift. In that case, p and therefore He remain constant even though
the size of each deme, say N , is finite. The frequency of heterozygotes Ho in any deme
should decrease on average by a factor [1− 1/(2N)] each generation, such that

F t+1 = 1− H
t+1
o

He
= 1−

(
1− 1

2N

)
Ht
o

He
.

Therefore, the fixation index F should approximately change over time as

F t+1 = 1− H
0
o

He

(
1− 1

2N

)t
= 1− (1− F 0)

(
1− 1

2N

)t
, (29.4)

to asymptotically reach the value of 1.
Note that, in full generality, the observed proportion of heterozygotes Ho can be defined

in terms of allele frequencies and fixation index by rearranging (29.2) as

Ho = 2p(1− p)(1− F). (29.5)

This relationship holds for any level of subdivision, as is shown in the next section.

29.3 WRIGHT’S F STATISTICS IN HIERARCHIC SUBDIVISIONS

Suppose now that the total diploid population is subdivided into a finite number of demes
d . Since the derivation of the fixation index F in the previous section does not require
that the gametes are uniting to produce zygotes, it can apply to any pair of gametes, and
in fact to any pair of genes at a given locus. F can therefore be seen as a correlation
between homologous genes taken from a given subdivision level (individuals, demes,
or any other higher level) relative to any higher subdivision level (Wright, 1943; 1951;
1965; 1969). The correlation between genes within individuals (I) relative to the genes
of the total population (T ) is represented by FIT . The correlation between genes within
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a deme or subdivision (S) relative to the genes of the total population is represented by
FST . Finally, the correlation between genes within individuals relative to those within a
subdivision is Wright’s local inbreeding coefficient f that is represented here by FIS . The
list of F statistics can be easily extended to further levels of subdivisions.

We first consider the correlation of genes within demes FST . In that case, (29.5) still
holds, but Ho is not the observed heterozygosity anymore. Here, the probability is that
two random genes within a subdivision are different, without need for these two genes to
be on the homologous chromosomes of an individual. If we call this probability HS , then
we have

HS = 2p(1− p)(1− FST ). (29.6)

Note that HS can also be defined as an average probability over all d subdivisions as

HS =
1

d

d∑
k

HSk, (29.7)

where HSk is the probability that two genes randomly chosen from the kth deme are
different, which is equivalent to the expected heterozygosity in the kth deme under HWE
and HSk = 2pk(1− pk). It should be clear however that since these two genes do not
necessarily come from the same individual, the assumption of HWE does not need to be
made here. Therefore,

HS =
1

d

d∑
k

2pk(1− pk) = 2

(
p̄ − 1

d

d∑
k

p2
k

)
= 2(p̄ − p2)

HS = 2[p̄ − varS(p)− p2] = 2p̄(1− p̄)− 2varS(p), (29.8)

where the S subscript stresses the fact that the variance of p is computed over subdivisions.
Note that this equation also describes the ‘Wahlund effect’ (Wahlund, 1928), which
represents the deficit of observed heterozygotes in a subdivided population made up of
random mating demes. Rearranging (29.8) with (29.6) leads to the classical relationship

FST =
varS(p)

p̄(1− p̄) . (29.9)

Therefore, the fixation index FST can also be defined as the standardized variance of allele
frequencies. It is the ratio of the observed variance of gene frequencies over subdivisions
divided by the maximum possible variance p̄(1− p̄) that can be reached when alleles
have gone to fixation in all subdivisions, that is when the allele frequencies within each
deme are as divergent as they can be from the average population frequency. Here again,
the fixation index FST is a relative measure of where the subdivisions are in the process
of allelic fixation. Note that FST has not been derived by assuming random mating within
demes, and therefore it should not be affected by local inbreeding. Its definition only
depends on local allele frequencies. However, if there is random mating within demes, the
correlation of pairs of genes within or between individuals is equivalent and FST = FIT .

Let us now consider subdivisions where mating is not at random, so that FIT �= FST ,
and

Ho = 2p̄(1− p̄)(1− FIT ). (29.10)
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The total proportion of heterozygotes Ho can also be expressed as an average over
subdivisions, as for HS in (29.7), but allowing for local inbreeding within subpopulations
it becomes

Ho =
1

d

d∑
k=1

2pk(1− pk)(1− FISk).

Assuming that the level of local inbreeding is independent of the allele frequencies, which
has been rightly criticized (see e.g. Barrai, 1971), Wright (1951; 1965) obtains

Ho = 2(1− F̄IS)(p̄ −
1

d

d∑
k

p2
k ) = 2(1− F̄IS)(p̄ − varS(p)− p̄2), (29.11)

where F̄IS is the unweighted average FIS value over subdivisions. From (29.10), we have

varS(p) =
p̄(1− p̄)(FIT − F̄IS)

(1− F̄IS)
. (29.12)

Combining (29.12) with (29.9) leads to the classical relationship between fixation indexes
as

(1− FIT ) = (1− F̄IS)(1− FST ). (29.13)

The bar over F̄IS is often omitted in the literature, but we keep it to remind us that it is
in fact the average inbreeding value over subpopulations. Note that FST has no meaning
if the population is not subdivided and made up of only one deme. Note also that (29.11)
and therefore (29.13) are valid even when local inbreeding depends on gene frequencies
provided that F̄IS is defined as a weighted average of the form (Wright, 1969, vol. 4,
chap. 3)

F̄ISw =

d∑
k

wkpk(1− pk)FISk
d∑
k

wkpk(1− pk)
, (29.14)

where wk is the weight given to subpopulation k. A common choice is to set the weights
equal to the relative deme effective size, with

∑
k wk = 1. Alternatively, if these sizes

are unknown, one usually assumes that all wk ,s are equal to 1/d , which has the effect of
giving more weight to subpopulations where allele A is of intermediate frequency.

29.3.1 Multiple Alleles

The extension of the above derivations to multiple alleles is straightforward (Nei, 1977).
Consider the case where we have r alleles at a given locus. Within each subpopulation,
r(r − 1)/2 inbreeding coefficients are needed for a complete specification of the genotype
frequencies Pkij (i = 1 . . . r, j = 1 . . . i), as

Pkij = 2pkipkj (1− FISkij ),
Pkii = p2

ki(1− FISkii )+ FISkii pki . (29.15)



986 L. EXCOFFIER

If we only consider the r homozygote genotypes (see Nagylaki, 1998b, for a complete
treatment of all genotypes), a global inbreeding coefficient can be obtained as a weighted
average of the form

FISk =

r∑
i=1
pki(1− pki)FISkii
r∑
i=1
pki(1− pki)

,

which becomes

FISk =

r∑
i=1
(Pkii − p2

ki)

r∑
i=1
pki(1− pki)

= HSk −Hok
HSk

,

where HSk = 1−∑
i p

2
ki and Hok = 1−∑

i Pkii are the expected and the observed
heterozygosities in subpopulation k respectively. Similar to (29.14), we can define an
average inbreeding coefficient over all subpopulations as

F̄IS =

d∑
k

wkHSkFISk

d∑
k

wkHSk

= HS −Ho
HS

, (29.16)

where HS = 1−∑
k

∑
i wkp

2
ki and Ho = 1−∑

k

∑
i wkPkii are respectively the global

expected and observed heterozygosities. Similarly, the other fixation indexes can be
obtained as ratios of heterozygosities

FIT =
HT −Ho
HT

, (29.17)

FST =
HT −HS
HT

, (29.18)

where HT = 1−∑
i p̄

2
i and p̄i =

∑
k wkpki .

With these definitions, fixation indexes can be viewed as ratios of expected or observed
heterozygosities (Nei, 1977), which allows arbitrary numbers of alleles at a locus. This
simplicity, however, hides the fact that subpopulations have to be given weights.

29.3.2 Sample Estimation of F Statistics

Up to this point, F statistics have been defined from population allele and genotype
frequencies (which are random variables if the number of demes and deme sizes are finite
or if there are other random evolutionary forces acting within demes). Some corrections
need to be performed when allele frequencies are estimated from population samples.
An estimation of these fixation indexes has been developed in Nei and Chesser (1983).
The estimators differ from the above definitions by replacing expected and observed
population heterozygosities (Ho,HS , and HT ) by unbiased sample estimates (Ĥo, ĤS ,
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and ĤT ), taking into account sample sizes as (Nei and Chesser, 1983)

Ĥo = 1−
d∑
k=1

r∑
i=1

wkP̂kii

ĤS =
ñ

ñ− 1

(
1−

d∑
i=1

r∑
k=1

wkp̂
2
ki −

Ĥo

2ñ

)
,

ĤT = 1−
r∑
i=1

(
d∑
k=1

wkp̂ki

)2

+ ĤS
ñd
− Ĥo

2ñd
(29.19)

with ñ being the harmonic mean of the sample sizes, and d the number of sampled
demes. Note that the estimates of ĤS and ĤT are only unbiased if one assumes that there
is no correlation between sample size and observed or expected heterozygosity levels
(Nei and Chesser, 1983, p. 255). Sample estimators of FIS, FST , and FIT are obtained
by substituting (29.19) in (29.16), (29.17), and (29.18) respectively.

However, the above estimation procedure only takes into account the sampling process
within demes. It does not consider the sampling of demes within the population and
therefore assumes that all demes have been sampled. Pons and Chaouche (1995) have
developed estimators of F statistics that remove this assumption by extending the approach
of Nei and Chesser (1983) to an additional level of sampling. They considered that d
demes (supposed to be independent from each other) had been sampled and obtained

Ĥ ∗o =
1

d

d∑
i=1

Ĥok = 1−
d∑
k=1

r∑
i=1

P̂kii

Ĥ ∗S =
1

d

d∑
k=1

nk

nk − 1

(
1−

r∑
i=1

p̂2
ki −

Ĥok

2nk

)
,

Ĥ ∗T =
1

d(d − 1)

d∑
k=1

d∑
k′ �=k

(
1−

r∑
i=1

p̂ki p̂k′i

)
(29.20)

where nk is the size of the kth sample. Again, sample estimators of FIS, FST , and FIT
are obtained by substituting (29.20) into (29.16), (29.17), and (29.18) respectively. Ĥ ∗o is
identical to Ĥo defined in (29.19), except that Pons and Chaouche (1995) have preferred
to weight demes equally. The difference between Ĥ ∗S and ĤS is in the weighting scheme
of the sample sizes, but the main difference between the two above approaches is that
between Ĥ ∗T and ĤT , where we note that Ĥ ∗T only depends on the comparison of allele
frequencies between samples.

29.3.3 G Statistics

GST has been defined by Nei (1973) as an analog of FST by extending Nei’s genetic
distance between a pair of populations (Nei, 1972) to the case of a hierarchical structure
of populations. He showed that gene frequency variation at loci with multiple alleles
could be analyzed directly in terms of gene diversity, which is defined as the probability
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that two randomly chosen genes from a population are different (Nei, 1973). For diploid
organisms with random mating, this probability only depends on allele frequencies and
should be equal to the average proportion of heterozygote individuals. However, there are
many organisms or genetic systems where the concept of heterozygosity does not hold, but
where gene diversity would always make sense (e.g. with mitochondrial DNA, haploid,
or haplo-diploid organisms). By analogy with Wright’s FST , Nei defined the coefficient
of gene differentiation

GST =
DST

HT
, (29.21)

expressing the magnitude of gene differentiation among subpopulations, where DST is the
average gene diversity between subpopulations, including comparisons of subpopulations
with themselves. However, for diploid random mating populations DST = HT −HS , and
GST is identical toFST defined in (29.18) as function of heterozygosities.

Some confusion still prevails in the literature about the differences between F statistics
and G statistics. Technically, G statistics are only function of allele frequencies (in gene
diversities) and do not incorporate information on observed proportions of heterozygotes,
unlike F statistics. They can thus only be analogs of F statistics that do not depend
on population genotype frequencies, such as FST , or correlations of gene frequencies at
higher levels of subdivisions.

The concept of gene identity is explicit in the definition of G statistics, where it has
been introduced by Crow and Aoki (1984), but it is also implicit in the definition of
F statistics as correlation coefficients. F statistics defined in (29.16–29.18) can also be
defined in terms of identity coefficients (see Chapter 28) as

F̄IS ≡
QI −QS
1−QS

; FIT ≡
QI −QT
1−QT

; FST ≡
QS −QT
1−QT

, (29.22)

where QI is the probability that two genes within individuals are identical, whereas QS
and QT are the probabilities that two genes within subpopulations and within the total
population are identical, respectively. Of course, the values taken by these probabilities
will depend on a particular spatial and mutation model (see e.g. Crow and Aoki, 1984;
Cockerham and Weir, 1993; Rousset, 2004).

Estimators of G statistics are obtained by estimating gene diversities similarly to
heterozygosities in (29.19) and (29.20), except that they only depend on allele frequencies
(Nei, 1987, p. 191; Pons and Chaouche, 1995).

29.4 ANALYSIS OF GENETIC SUBDIVISION UNDER AN ANALYSIS OF
VARIANCE FRAMEWORK

Cockerham (1969; 1973) has shown how one could decompose the total variance of gene
frequencies into variance components associated to different subdivision levels within the
framework of an ANOVA of gene frequencies. He also showed that variance components,
identity by descent measures (in absence of mutation and migration), and F statistics were
just different ways to express correlations of genes (see Table 29.3). We present below
his basic derivations in some detail, as it has become a method of choice for the analysis
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of population subdivision. We shall use Cockerham’s notations, but we will mention how
to relate them to F statistics, as defined previously.

Cockerham’s ANOVA framework preserves Wright’s definition of F statistics in terms
of correlation of gene frequencies. The notion of demes used in the ANOVA framework
is close to the notion of population in the statistical sense, as demes are supposed
to be independent replicates of the same evolutionary process (drawn from the same
distribution). Here the unknown distribution is a stochastic evolutionary process essentially
shaped by random genetic drift of gene frequencies between generations. The mutation
process will be introduced later.

29.4.1 The Model

We assume that several demes of finite sizes have diverged simultaneously from an ances-
tral population that was at HWE. Since that time, the demes have remained separate
and have been exposed to the same conditions. Samples from different demes are thus
expected to differ from each other because of the sampling process of individuals within
each deme (statistical sampling), and because of the stochasticity in the evolutionary
process between generations (genetic sampling). We will consider a hierarchically struc-
tured diploid population, with genes in individuals, individuals in demes, and demes in
the population.

Let xkij be the j th allele (j = 1, 2) in the ith individual in the kth deme, and ykij be
the indicator variable for any given gene: ykij is equal to 1 if xkij is of type A and 0
otherwise. If p is the population frequency of the allele A, then E(ykij ) = p,E(y2

kij ) = p,
and thus var(ykij ) = p(1− p). Cockerham (1969; 1973) considered a linear model of the
form

ykij = p + ak + bki + wkij . (29.23)

The variable ykij is assumed to differ from the mean p because of the additive, random,
and uncorrelated effects due to demes (a), individuals within demes (b) and genes within
individual (w).

We are interested in defining the relations (correlations, covariances) between genes
found in different levels of the hierarchy. Formally, the expectations of the products of
gene frequencies from different subdivision levels are

E(ykij yk′i′j ′) = cov(ykij , yk′i′j ′)+ E(ykij )E(yk′i′j ′)
= σ 2

T + p2 if k = k′, i = i′, j = j ′
= cova⊃b + p2 if k = k′, i = i′, j �= j ′.
= cova + p2 if k = k′, i �= i′
= covg + p2 if k �= k′ (29.24)

We have assumed that the demes are independent, implying that covg = 0, but this
simplification could be removed, for instance, to accommodate migration (see e.g.
Cockerham and Weir, 1987). The ANOVA layout corresponding to this hierarchy can
be found in Table 29.2.

The covariance of gene frequencies within individuals within demes, cova⊃b, depends
on the probability of genes being identical by descent Fi = Pr(xki1 ≡ xki2), a notion
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Table 29.2 Analysis of variance layout. The total sums of square (SS(T)) is decomposed in
a standard fashion into sums of square due to different sources of variation. The expected mean
squares are expressed here as functions of variance components. Comparisons with (29.27), (29.30),
and (29.34) show that these variance components are a parameterization of the model equivalent
to the correlations θ̄ and F̄ .

Source of variation d.f. Sums of squares∗ Mean squares†
Expected mean

squares

Among demes
(AD)

d − 1 SS(AD) =
d∑
k

2nk(yk.. − y...)2 SS(AD)

d − 1
σ 2
w + 2σ 2

b + 2n′σ 2
a

Among individuals
within demes
(WD)

n− d SS(WD) =
d∑
k

nk∑
i

2(yki. − yk..)2 SS(WD)

n− d σ 2
w + 2σ 2

b

Between genes
within
individuals (WI)

n SS(WI) =
d∑
k

nk∑
i

2∑
j

(ykij − yki.)2 SS(WI)

n
σ 2
w

Total 2n− 1 SS(T) =
d∑
k

nk∑
i

2∑
j

(ykij − y...)2

n =
d∑
k

nk, n
′ =

n−
d∑
k

nk
2

n

d − 1
,

∗ We use the conventional dot notation to specify different means of y (e.g. yki. =∑
j ykij ).

† The mean squares among demes MS(AD), within demes MS(WD), and within individuals MS(WI) are
obtained as usual by dividing the corresponding sum of squares by the appropriate degrees of freedom.

introduced by Malécot (1948), which is equivalent to Wright’s total inbreeding coefficient
FIT here. The two alleles of an individual can be of type A because they are identical
by descent with probability Fi , or not identical by descent with probability (1− Fi)p.
Therefore, Pr(xki1 ≡ A, xki2 ≡ A) = E(yki1yki2) = Pr(xi2 ≡ A|xi1 ≡ A). Pr(xi1 ≡ A) =
[Fi + (1− Fi)p]p. It follows that cov(yki1,, yki2) = Fip(1− p). Taking the average Fi
over all individuals, cova⊃b = F̄ p(1− p), which shows that Malécot’s identity by descent
measure is also equivalent to the correlation of gene frequencies within individuals.

The covariance of gene frequencies between individuals depends on another identity
measure called the coancestry coefficient θii′ by Cockerham, which is the probability
that two random genes from different individuals, i and i′, are identical by descent.
Note that this coancestry coefficient is indeed equivalent for most practical purposes
to Malécot (1948) coefficient of kinship  ii′. We now have Pr(xkij = A, xki′j ′ = A) =
p[θii′ + (1− θii′)p] and cov(ykij,, yki′j ′) = θii′p(1− p), and again taking the average
over all pairs of individuals within demes, cova = θ̄p(1− p) showing that θ̄ is also
the average correlation between two genes from two different individuals within the same
deme. It is worth stressing that θ̄ can only be estimated if we have samples from several
independent demes, because this correlation is relative to the correlation of the least related
individuals in the population, which are assumed to be in different demes and therefore
independent. In that sense, it differs from the coefficient of kinship, which is supposed to
be an absolute measure of relatedness between individuals. In other words, the relatedness
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Table 29.3 Relationship between intraclass correlations, variance components, Cockerham’s gene
correlations, and Wright’s fixation indexes.

Intraclass
correlations

Expressed as
covariances

Expressed as
variance components

Cockerham gene
correlations

Wright’s fixation
indexes

ρa
cova

p(1− p)
σ 2
a

σ 2
a + σ 2

b + σ 2
w

θ̄ FST

ρa⊃b
cova⊃b
p(1− p)

σ 2
a + σ 2

b

σ 2
a + σ 2

b + σ 2
w

F̄ FIT

ρb
covb

p(1− p)
σ 2
b

σ 2
b + σ 2

w

f̄ = θ̄ − F̄
1− F̄ F̄IS

ρw
covw

p(1− p)
σ 2
w

σ 2
w

= 1

between individuals within demes cannot be measured without a reference point, which in
this case is built by comparing individuals between demes. Note that for F or G statistics
estimated from heterozygosities or gene diversities, the reference point is the comparison
of a random pair of genes, either within or between demes, as is made clearer below.
See also Weir (1996, see Chapter 5) for further discussions on this distinction. Because
it is the variability of the genetic process among demes that introduces a correlation of
genes between individuals within demes, a measure of the relatedness between individuals
within demes is also a measure of the degree of differentiation between demes.

In Table 29.3, we have expressed each intraclass correlation ρ as a ratio of variance
components, and made explicit the relationship between Wright’s fixation indexes and
Cockerham’s correlations. We have also introduced the correlation f̄ , which is an average
correlation of genes within individuals, like F̄ , but it is relative to the least related pair
of genes within the same deme, instead of being relative to the least related pair of genes
between demes. It is a composite measure that depends on the two parameters of the
model θ̄ and F̄ ·f̄ is the analog of Wright’s F̄IS , the inbreeding coefficient within demes.

From Table 29.2, (29.27), (29.30), and (29.34) and Table 29.3, we see that

σ 2
a = p(1− p)ρa = cova = p(1− p)θ̄
σ 2
b = p(1− p)(ρa⊃b − ρa) = cova⊃b − cova = p(1− p)(F̄ − θ̄ ).
σ 2
w = p(1− p)(1− ρa⊃b) = σ 2

T − cova⊃b = p(1− p)(1− F̄ ) (29.25)

Thus, despite the conventional σ 2 notation, these variance components are indeed
functions of gene covariances and can therefore take negative values. As explained by
Rousset (2000), these variance components do not represent a decomposition of the total
variance into a sum of variances as in conventional ANOVA.

29.4.2 Estimation Procedure

29.4.2.1 Expected Mean Squares

The correlation of genes at different levels of subdivision are estimated by the method
of moments by equating the mean squares expressed in terms of allele and genotype
frequencies to their expectation in terms of correlation parameters. The expected mean
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squares are derived below in terms of the parameters of the model. From Table 29.2, we
have

E[SS(WI)] = E
 d∑

k

nk∑
i

2∑
j

(ykij − yki.)2


=
d∑
k

nk∑
i

2∑
j

[
E(ykij )

2 + E(yki.)2 − 2E(ykij yki.)
]

= 2n
{[
p2 + p(1− p)]+ [

p2 + 1

2
p(1− p)(1+ F̄ )

]
− 2

[
p2 + 1

2
p(1− p)(1+ F̄ )

]}
= np(1− p)(1− F̄ ) (29.26)

and therefore
E[MS(WI)] = p(1− p)(1− F̄ ). (29.27)

The expectation of the sum of squares between individuals within demes is computed as

E[SS(WD)] = 2E

[
d∑
k

nk∑
i

(yki. − yk..)2
]

= 2
d∑
k

nk∑
i

E(y2
ki.)+ E(y2

k..)− 2E(yki.yk..).

In order to derive this quantity, we need to compute the variance of gene frequencies
within deme var(yk..), which is obtained as

var(yk..) = var

 1

2n

nk∑
i=1

2∑
j=1

ykij


= 1

4n2
k

 nk∑
i=1

2∑
j=1

var(ykij )+ 2
nk∑
i=1

cov(yki1, yki2)

+ 2
nk∑
i=1

nk∑
i′<i

2∑
j=1

2∑
j ′=1

cov(ykij , yki′j ′)


= 1

4n2
k

[
2nk(p(1− p)+ 2

nk∑
i=1

Fip(1− p)+ 2
nk∑
i=1

nk∑
i′<i

4θii′p(1− p)
]

= 1

4n2
k

[
2nkp(1− p)+ 2p(1− p)nkF̄ + 4nk(nk − 1)θ̄p(1− p)]

var(yk..) =
p(1− p)

2nk
[1+ F̄ + 2(nk − 1)θ̄ ], (29.28)
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where θ̄ is the average correlation of genes between individuals (the θii′) or the average
kinship coefficient between the individuals of the sample. The derivation of (29.28) is
instructive, as it shows that the variance of gene frequencies within demes depends on
the breeding structure of the population (F̄ ) and the relatedness of the individuals within
demes (θ̄ ). If the sample was noninbred and made up of unrelated individuals, the genetic
variance would be removed and the variance would simply be equal to the binomial
variance p(1− p)/(2nk).

The expected sum of squares within demes can now be computed as

E[SS(WD)] = 2
d∑
k

nk∑
i

{[
p2 + p(1− p)

2
(1+ F̄ )

]

+
[
p2 + p(1− p)

2nk
(1+ F̄ + (nk − 1)θ̄

]
− 2

[
p2 + p(1− p)

2nk
(1+ F̄ + (nk − 1)θ̄

]}
= (n− d)p(1− p)(1+ F̄ − 2θ̄ ), (29.29)

and therefore

E[MS(WD)] = p(1− p)(1− F̄ + 2(θ̄ − F̄ )). (29.30)

Finally, the expectation of the sum of squares between demes is obtained as

E[SS(AD)] = E
[
d∑
k

2nk(yk.. − y...)2
]
=

d∑
k

2nk[E(y
2
k..)+ E(y2

...)− 2E(yk..y...)].

(29.31)
In order to derive this quantity, we first need to get the total variance of gene frequencies:

var(y...) = var

(
1

2n

d∑
k

nk∑
i

2∑
1

ykij

)
= 1

4n2

[
d∑
k

var(2nkyk..)

+2
d∑
k′<k

16n2
kn

2
k′cov(yk..yk′..)

]
.

Because we have assumed that the demes were independent from each other, the
covariance terms can be ignored, and the total variance reduces to

var(y...) =
[
d∑
k

n2
k

n2
var(yk..)

]
= p(1− p)

2n

1+ F̄ + 2θ̄


d∑
k

n2
k

n
− 1


 . (29.32)
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Then, the expectation of the product of the total mean (y...) and the within population
mean (yk..) is obtained as

E(yk..y...) = E
[
yk..

(
1

2n

d∑
k′=1

2nkyk′..

)]
= nk
n

d∑
k′=1

E[yk′..yk..]

= nk
n

E(y2
k..)+

d∑
k′ �=k

E(yk′..yk..)


= nk
n

p2 + p(1− p)
2nk

[1+ F̄ + 2(nk − 1)θ̄ ]+ (d − 1)p2 +
d∑
k′ �=k

cov(yk′.., yk..)


= p2 + p(1− p)

2n
[1+ F̄ + 2(nk − 1)θ̄ ]. (29.33)

After some algebra, we obtain the expected mean squares between populations as

E[MS(AD)] = E[SS(AD)]

d − 1
= p(1− p)

1− F + 2(θ − F)+ 2θ

d − 1

n−
d∑
k

n2
k

n


 ,

(29.34)
which explains the weighting scheme of the variance components in Table 29.2.

29.4.2.2 Moment Estimators

Unbiased estimators of the variance components are obtained by the method of moments,
equating the observed mean squares to their expectations in Table 29.2, and rearranging as

σ̂ 2
w

∧=MS(WI)

σ̂ 2
b

∧= 1

2
[MS(WD)−MS(WI)],

σ̂ 2
a

∧= 1

2n′
[MS(AD)−MS(WD)] (29.35)

from which the estimators of gene correlations are defined as

ˆ̄F = σ̂ 2
a + σ̂ 2

b

σ̂ 2
a + σ̂ 2

b + σ̂ 2
w

ˆ̄θ = σ̂ 2
a

σ̂ 2
a + σ̂ 2

b + σ̂ 2
w

.

ˆ̄f =
ˆ̄F − ˆ̄θ
1− ˆ̄θ

= σ̂ 2
b

σ̂ 2
b + σ̂ 2

w

(29.36)
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Note that these estimators do not depend on the unknown gene frequency p, and that
they are not necessarily unbiased, as they are just ratios of unbiased quantities.

29.4.2.3 Weighted Averages for Several Alleles and Several Loci

The above derivations have been made for a single allele at a given locus. Similar
computations could be made for each allele of a multiallelic (say r alleles) polymorphism,
giving rise to r − 1 independent estimates of the same parameters f̄ , F̄ , and θ̄ . Noting
that estimators of correlations are ratios of variance components, weighted estimators can
be defined as

ˆ̄Fw =

r∑
u=1
σ̂ 2
bu
+

r∑
u=1
σ̂ 2
wu

r∑
u=1
σ̂ 2
Tu

=
¯̂σ 2
b + ¯̂σ

2
w

¯̂σ 2
T

ˆ̄θw =

r∑
u=1
σ̂ 2
au

r∑
u=1
σ̂ 2
Tu

=
¯̂σ 2
a

¯̂σ 2
T

.

ˆ̄f w =

r∑
u=1
σ̂ 2
bu

r∑
u=1
σ̂ 2
bu
+

r∑
u=1
σ̂ 2
wu

=
¯̂σ 2
b

¯̂σ 2
b + ¯̂σ

2
w

(29.37)

From (29.25), it is clear that these estimators are weighted averages of the intraclass
correlations ρ, with weight for allele u equal to the total variance σ 2

T u = pu(1− pu).
Similarly, if estimators are available from l loci, they can be combined as

ˆ̄Fw =

l∑
t=1

rt∑
u=1
σ̂ 2
btu
+

l∑
t=1

rt∑
u=1
σ̂ 2
wtu

l∑
t=1

rt∑
u=1
σ̂ 2
Ttu

, ˆ̄θw =

l∑
t=1

r∑
u=1
σ̂ 2
atu

l∑
t=1

rt∑
u=1
σ̂ 2
Ttu

, ˆ̄f w =

l∑
t=1

rt∑
u=1
σ̂ 2
btu

l∑
t=1

rt∑
u=1
σ̂ 2
btu
+

l∑
t=1

rt∑
u=1
σ̂ 2
wtu

.

Alternative ways of building average estimators such as unweighted or least-squares
estimators are discussed in Reynolds et al. (1983), while other weighting schemes are
discussed in Weir and Cockerham (1984) and in Robertson and Hill (1984). It appears
that weighted estimators as in (29.37) have a very low bias and are rather insensitive to
unequal sample sizes, even though they may have a slightly larger variance than other
combined estimators (Goudet et al., 1996).

29.4.2.4 Likelihood-based Methods

A number of authors have derived likelihood-based estimators of F statistics by
specifying a given parametric distribution of the unknown allele frequencies (pi) in
subpopulations (e.g. Rannala and Hartigan, 1996; Holsinger et al., 2002; Nicholson
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et al., 2002; Weir and Hill, 2002; Balding, 2003; Kitada and Kishino, 2004; Foll
and Gaggiotti, 2006; Kitakado et al., 2006). While some authors have assumed a
Normal distribution of these allele frequencies (e.g. Nicholson et al., 2002; Weir
and Hill, 2002), most others have chosen to assume that the r allele frequencies
in subpopulations followed a β or a Dirichlet distribution (Wright, 1951; Balding,
2003) with parameters αpi(i = 1, . . . , r), where pi is the unknown frequency of the
ith allele. An interesting discussion on the validity of a Dirichlet distribution for
describing allele frequencies in subpopulations under different evolutionary models or
for different markers can be found in Balding (2003). Under this framework, the
variance of pi over populations is given by var(pi) = pi(1− pi)/(α + 1), showing
that FST = 1/(α + 1) from (29.9), and that α = FST −1 − 1. It follows that the allelic
counts (ni) in each subpopulation follow a multinomial-Dirichlet distribution of the
form

Pr(ni |α, p) =
n!�(α)

�(n+ a)
r∏
i=1

�(ni + αpi)
ni!�(αpi)

, (29.38)

where n =∑
r ni , which provides a simple basis for maximum-likelihood or Bayesian

estimation of FST (Balding, 2003). Note that (29.38) needs to be multiplied across
loci and across subpopulations to get a global likelihood and a global FST esti-
mate. This equation still depends on unknown allele frequencies, which can either
be integrated out or coestimated with FST using an Markov chain Monte Carlo
(MCMC) approach (Balding, 2003; Kitakado et al., 2006). Interestingly, subpopula-
tion specific or locus-specific FST can also be estimated, if one believes that some
demes had distinct histories (e.g. Falush et al., 2003a; Foll and Gaggiotti, 2006), or
that selection has shaped genetic diversity at a given locus (Beaumont and Balding,
2004). Extensions of this approach have been proposed to take into account local
inbreeding (Ayres and Overall, 1999) or linkage disequilibrium between loci (Kitada
and Kishino, 2004).

29.4.3 Dealing with Mutation and Migration using Identity Coefficients

When mutations and migrations are considered, two major changes take place as
compared to previous derivations: the global population allele frequencies cannot
be considered as constant over time (due to mutations), and the subpopulations
cannot be considered as independent (due to migration). Cockerham and Weir (1987;
1993) have overcome these difficulties by expressing correlation measures as func-
tions of the identity coefficients Q. Note that a formalization of the effect of a
population structure in terms of identity coefficients has led to the derivation of
equilibrium values of the fixation indexes for different spatial models incorporating
mutations (see e.g. Nagylaki, 1983; Crow and Aoki, 1984; Cockerham and Weir,
1987; Slatkin, 1991; 1993; Slatkin and Voelm, 1991; Rousset, 1996; 1997; 2004;
Herbots, 1997; Wilkinson-Herbots, 1998; Weir and Hill, 2002; Wilkinson-Herbots and
Ettridge, 2004).

The variance components now depend on migration and mutation parameters as well
as on unknown allele frequencies, but an ANOVA can still be performed. In that case,
however, Cockerham and Weir (1987) showed that the variance components corresponding
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to the linear model described in (29.23) were equal to

σ 2
a = Q1 −Q2

σ 2
b = Q0 −Q1

σ 2
w = 1−Q0, (29.39)

where Q0 is the probability that two genes from the same individual are identical in state,
Q1 is the same identity probability for two genes from different individuals within the
same deme, and Q2 is the identity probability for two genes in different demes. Therefore,
the intraclass correlations defined in the same way as in (29.36) are now given by

ρ0 =
Q0 −Q1

1−Q1

; ρ1 =
1−Q1

1−Q2

; ρ2 =
Q1 −Q2

1−Q2

, (29.40)

where ρ0 ≡ F̄IS, ρ1 ≡ FIT , and ρ2 ≡ FST . Rousset (2002) more recently showed that such
definitions of inbreeding coefficients as ratios of differences of probability of identity in
state are very general and do not depend on a particular evolutionary model.

29.5 RELATIONSHIP BETWEEN DIFFERENT DEFINITIONS
OF FIXATION INDEXES

The use of identity coefficients provides a convenient way to understand the relationship
between the different indexes used to quantify population subdivision. It is interesting to
compare the quantities defined in (29.40) with those defined in (29.22) as functions of
similar but different identity coefficients to understand a major difference between the
gene diversity and the intraclass correlation approach to estimate F statistics. In Nei’s
(1973; 1977) approach, the correlations are always relative to a random pair of genes
at a given subdivision level (QS or QT in (29.22)), whereas in Cockerham’s approach
(1969; 1973) it is always relative to the least related pair of genes for a given subdivision
level (Q1 or Q2 in (29.40)). Note that when the number of sampled diploid individuals
within demes (nk) is large then Q̂S ≈ Q̂1. This is because nk(nk − 1) pairs of genes
are compared when computing Q̂S , whereas only nk(nk − 2) pairs are considered when
computing Q̂1. In other words, the nk pairs of genes within individuals that are not taken
into account when computing Q̂1 (as compared to Q̂S) become negligible relative to
the number of between-individual gene pairs. For a similar reason, Q̂T ≈ Q̂2 when the
number of sampled demes is large, and therefore F statistics defined from gene diversities
or heterozygosities are close to those defined in terms of variance components. We study
below the relationships between different estimators of FST in more detail.

As usual now, let Q be the probability that two random genes are identical in state, but
here we simply have Q1 for genes within the same deme, and Q2 for genes in different
demes. The intraclass correlation within demes equivalent to ρ2 in (29.40) is equal to
(Cockerham and Weir, 1987)

β = Q1 −Q2

1−Q2
, (29.41)
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while Crow and Aoki (1984) have redefined the GST statistic in (29.21) as a parameter
corresponding to FST in (29.22). Following Cockerham and Weir (1993), we call this
parameter GCA (to differentiate it from the GST statistic defined in (29.21)). It is therefore
equal to

GCA =
Q1 − Q̄
1− Q̄ , (29.42)

where Q̄ = [Q1 + (d − 1)Q2]/d is the probability corresponding to QT in (29.22) that
two genes are alike when drawn randomly from the total population. Note that the two
quantities are therefore related by the following relationships (Cockerham and Weir, 1987):

GCA =
(d − 1)β

d − β ; β = dGCA

GCA + d − 1
, (29.43)

which corresponds to the relationship between FST and ρ2 defined in (29.22) and (29.40)
respectively. As explained above, GCA ≈ β if the number of demes is large, but β should
always be slightly larger than GCA (Goudet, 1993).

If we now consider estimators based on these parameters, the relationship between
β̂ and ĜCA would be identical to (29.43), but with d being here the number of sampled
demes (Cockerham and Weir, 1993). For the estimator of GST as defined in (29.21)
or FST as defined from (29.19), its relationship with β̂ and ĜCA depends on both the
numbers of sampled demes and of sampled individuals per deme (see Cockerham and
Weir, 1993, (29.4)). We note here that an estimator of FST based on the estimation of
heterozygosities defined in (29.20) (Pons and Chaouche, 1995) should not depend on the
number of demes.

Comparison between the actual values taken by different estimators has been achieved
through simulations, or by comparing equilibrium values in different spatial models
(e.g. Weir and Cockerham, 1984; Slatkin and Barton, 1989; Chakraborty and Danker-
Hopfe, 1991; Rousset, 1997; Weir and Hill, 2002). The results of these comparisons
vary in details, but the general trend is that estimators behave quite similarly and lead
to nearly identical values provided that sample sizes and the number of sampled demes
are large. For small samples (100 individuals or less), Chakraborty and Danker-Hopfe
(1991) find that both heterozygosity and intraclass correlation approaches overestimate
FST and underestimate F̄IS , while FIT estimates are close to large samples values. From
(29.43), it is clear that expectations and estimations based on heterozygosity are affected
by the number of demes sampled, which is not the case for estimators based on intraclass
correlation. In order to address this deficiency, Nei (1986; 1987, p. 163) has proposed
to modify DST as D′ST = dDST /(d − 1) to remove the comparison of samples with
themselves. He also had to redefine HT as H ′T = D′ST +HS , which results in a new
definition of G′ST = D′ST /H ′T similar to that of β in (29.41). Note that this modification
is not entirely satisfactory, as the actual number of demes is usually unknown, and not
necessarily equal to the number of demes sampled. Thus, even though different approaches
lead to quite similar estimators in most practical situations, the ANOVA approach seems
preferable for its clear statistical foundations (but see Nagylaki, 1998b for a statistically
sound approach based on gene diversities). Another advantage is that the intraclass
correlation approach can easily be applied to dominant data (Peakall et al., 1995; Stewart
and Excoffier, 1996), as well as to molecular markers (Weir and Basten, 1990; Excoffier
et al., 1992; Michalakis and Excoffier, 1996), while retaining exactly the same analytical
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design. Moreover, its connections with identity by descent and kinship coefficients make
it suitable for analyses of regular systems of mating. However, several features of the
ANOVA approach have been criticized. First, estimates of variance components with
the highest subdivision levels can be negative. This can arise by the way they are
extracted from the mean squares using the method of moments (see (29.35)). When the
true value of the variance component is positive but small, slightly negative estimates can
be obtained due to random fluctuations with small samples, but negative values can also
be obtained because the true variance components are negative. This latter situation is
not embarrassing, because they are not obtained by a decomposition of the total variance
into variances. Rather, they are functions of covariances (see Table 29.3 and (29.25)).
As explained in Chapter 28 (Appendix 1), they differ from the strictly positive variance
components in conventional ANOVA because we do not assume that the effects due
to deme (a), individuals (b), and genes (w) are uncorrelated between demes, between
individuals within demes, or between genes within individuals. Negative coefficients can
indeed arise in real populations if alleles are more alike between individuals than within
individuals (if there is self-mating avoidance or separate sexes), or between demes than
within demes (if there is predominant outbreeding) (see e.g. Wright, 1969; Cockerham,
1973 for a discussion on this subject). Note, however, that heterozygosity-based estimates
of F statistics can also become negative in similar situations if random mating is not
assumed (Goudet, 1993). In that case, it is clear that the definition of F statistics as
correlations still makes sense, whereas definitions in terms of identity probabilities do
not. A more justified criticism made to the approach of Weir and Cockerham is that
they consider the different subpopulations as replicates, and therefore as having identical
sizes and being subjected to identical evolutionary forces, which is usually implausible in
biological situations except for experimental populations (Chakraborty and Danker-Hopfe,
1991). On the contrary, approaches based on gene diversity and heterozygosity do not
make any such assumptions and can in principle handle unequal deme sizes if properly
estimated, which may be difficult (Gaggiotti and Excoffier, 2000). It seems therefore
that intraclass correlation approaches should be preferred when the number of demes is
small, supposed so, or totally unknown. On the contrary, in the case of an exhaustive
sampling, or when demes are supposed to be of highly unequal size, gene diversity
and heterozygosity approaches could be preferred due to lower variance consideration
(Cockerham and Weir, 1993). However, maximum-likelihood-based methods (e.g. Beerli
and Felsenstein, 2001; Balding, 2003; Beerli, 2006) should be superior in the context of
gene flow estimations.

29.6 F STATISTICS AND COALESCENCE TIMES

Fixation indexes and related quantities can be conveniently described in terms of average
coalescence times within and between subdivision levels assuming small mutation rates
(Slatkin, 1991; Slatkin and Voelm, 1991). Using this formalization, equilibrium properties
of different spatial models of population subdivision can be easily obtained (see e.g.
Slatkin, 1995; Wilkinson-Herbots, 1998; Rousset, 2004). This approach gives results
essentially identical to classical approaches based on recursions (see e.g. Crow and Aoki,
1984; Cockerham and Weir, 1987; 1993; Rousset, 1996).
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Following Slatkin (1991), let us consider a set of demes that have diverged from an
ancestral population some T generations ago. The demes have remained separate without
exchanging migrants ever since (models with migration are reviewed in Chapter 28). We
assume that the demes are made up of haploid or diploid individuals that randomly unite
their gametes (no inbreeding).

Two genes are of the same allelic type if no mutation occurred since their divergence
from a most recent common ancestor (since their coalescence time), say some t generations
ago. Conditional on t , this event has a probability Q(t) = (1− µ)2t , where µ is the
mutation rate per generation. Then the unconditional expectation of Q is

Q =
∞∑
t=1

(1− µ)2tPr(t) (29.44)

where Pr(t) is the probability that there was a coalescence event t generations ago. For
small µ, it becomes

Q ≈
∞∑
t=1

(1− 2µt) Pr(t) = 1− 2µt̄ (29.45)

where t̄ is simply the average coalescence time. Note that (29.45) is a good approximation
if µt̄ � 1°(Slatkin and Voelm, 1991), but see Wilkinson-Herbots (1998) for the exact
result with large mutation rates. It follows that we can use (29.45) directly to express β
defined in (29.41) as a function of average coalescence times as (Slatkin, 1991)

β = t̄1 − t̄0
t̄1

(29.46)

where t̄1 is the average coalescence time of two genes from different demes and t̄0 is the
average coalescence time of two genes drawn from the same deme. Similarly, Crow and
Aoki’s GCA can be expressed as

GCA =
t̄ − t̄0
t̄
, (29.47)

where t̄ is the average coalescence time of two genes drawn from the whole population,
either in the same or in different demes. This parameterization of the fixation index in
terms of average coalescence times can be extended to higher subdivision levels such
as equivalents of FSC (correlation of a pair of genes taken within demes relative to a
pair of genes taken at random from a group of demes) or FCT (correlation of a pair of
genes taken within a group of demes relative to a pair of genes taken at random from the
population). They are good approximations if migration rates are much smaller between
demes from different subdivision levels than from the same subdivision level (Slatkin and
Voelm, 1991). As more generally stated by Rousset (2002; 2004, p. 58–62), inbreeding
coefficients or F statistics can be seen as the increased probability of recent coalescence
of one pair of genes relative to another pair, the choice of pairs of genes to be compared
defining the inbreeding coefficient.

We can use these relationships to study the rate of approach of these statistics to
equilibrium. The average coalescent time within diploid demes of size N is simply
t̄0 = 2N , while the average coalescence time between demes is given by t̄1 = T + 2N
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(Tajima, 1993), since two genes have to be in the same ancestral population in order to
coalesce, then it takes again on average 2N more generations. From (29.46), it follows
that β = T /(T + 2N), suggesting that

β

1− β =
T

2N
(29.48)

can be used as an estimate of the divergence time (T ) of the demes scaled by the
population size. It is interesting to see that (29.48) is independent from the number
of demes, which means that it can also be used as a genetic distance between popu-
lations (Slatkin, 1995) for loci with low mutation rates. Note that this is not the case
for the same ratio of GCA whose expectation is GCA = (d − 1)T /[(d − 1)T + 2Nd],
implying

GCA

1−GCA
= T (d − 1)

2Nd
. (29.49)

If the true (but usually unknown) number of demes is two, then the ratio of GCA values is
only one half that for β. As GCA depends on the unknown number of demes d , it implies
that the scaled divergence time between demes is poorly estimated from gene diversity
measures like GCA.

29.7 ANALYSIS OF MOLECULAR DATA: THE AMOVA FRAMEWORK

Because conventional ANOVA compares average gene frequencies among populations, it
is not best suited to deal with molecular markers for which we have information not only
on allele frequencies, but also on the amount of differences (mutations) between alleles.
We show hereafter how ANOVA can be modified to directly incorporate this molecular
information and thus to become an analysis of molecular variance (AMOVA) (Excoffier
et al., 1992). AMOVA can be considered as an extension of Cockerham’s ANOVA of
gene frequencies, where intraclass correlation coefficients do depend on the mutational
process. In this sense, it is analogous to Cockerham and Weir’s (1987; 1993) extension
of their correlation measures to identity coefficients to include mutation and migration.
The common denominator between the two approaches is to estimate F statistics through
intraclass correlations defined as ratios of variance components.

29.7.1 Haplotypic Diversity

Molecular information at a given locus can be considered as a particular combination of
alleles at different but completely linked loci, which is one way to define a haplotype.
The nature of the molecular information may vary (DNA sequence, restriction fragment
length polymorphism (RFLP), microsatellites), but the format of the analysis remains the
same. For sake of simplicity, let us assume that each mutation occurs at a different
site (the infinite-site model), and consider a haploid genetic system or assume that
the gametic phase of S-linked polymorphic loci can be determined without ambiguity
(e.g. mitochondrial DNA, Y chromosome, X chromosome in males). In that case, each
haplotype can be coded as a vector of biallelic states of dimension S, where each element
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Table 29.4 Analysis of Molecular Variance (AMOVA) layout for the linear model defined in
(29.50). The sums of squares are expressed here as functions of squared Euclidean distances between
haplotypes i and j (δ2

ij ’s).

Source of
variation d.f.∗ Sums of squares

Mean
squares

Expected mean
squares

Among groups G− 1 SS(AG) = SS(T )

−
G∑
g

1

2ng

d∑
k

d∑
k′

ngk∑
i

ngk∑
j

δ2
ij

SS(AG)

G− 1
σ 2
w + n′′σ 2

b + n′′′σ 2
a

Among demes
within groups

d −G SS(AD) =
G∑
g

1

2ng

dg∑
k

dg∑
k′

ngk∑
i

ngk′∑
j

δ2
ij

−SS(WD)
SS(AD)

d −G σ 2
w + n′σ 2

b

Among haplotypes
within demes

n− d SS(WD) =
G∑
g

dg∑
k

1

2ngk

ngk∑
i

ngk∑
j

δ2
ij

SS(WD)

n− d σ 2
w

Total n− 1 SS(T ) = 1

2n

n∑
i

n∑
j

δ2
ij

d =
G∑
g
dg, n =

G∑
g

dg∑
k

ngk, ng =
dg∑
k

ngk, SG =
G∑
g

dg∑
k

n2
gk

ng
, n′ = n− SG

d −G ,n
′′ =

SG −
d∑
k

n2
k

n

G− 1
, n′′′ =

n−
G∑
g

n2
g

n

G− 1
,

∗ G is the number of groups of demes.

ys is an indicator variable that may have the value 0 or 1. We show later how to handle
multiallelic markers.

We consider here a hierarchical model where genes are within demes, demes within
groups of demes, and groups within the population. In that case, ygki represents the ith
haplotype of the kth deme in the gth group. We shall use a linear model similar to that
seen in conventional ANOVA (29.23),

ygki = p+ ag + bgk + wgki, (29.50)

where p is the vector of the expected allelic states. The effects are here a for the group,
b for the deme, and w for the individual, and, as usual, are assumed random, additive,
and independent, with associated variance components σ 2

a , σ
2
b , and σ 2

c .
The ANOVA layout for this partitioning of the total variance is shown in Table 29.4.

We introduce here an alternative but completely equivalent way of computing the sums of
squares. They are expressed as functions of square Euclidean distances instead of squared
deviations from some mean. As a matter of fact, a sum of squared deviations from the
mean can be written as a sum of squared differences between observations, barring a
given constant, as

SS(z) =
N∑
i=1

(zi − z̄)2 =
1

2N

N∑
i=1

N∑
j=1

(zi − zj )2.
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We can thus rewrite the sum of squares within demes

SS(WD) =
G∑
g

dg∑
k

ngk∑
i

(ygki − ygk.)
′W(ygki − ygk.),

as

SS(WD) =
G∑
g

dg∑
k

1

2ngk

ngk∑
i

ngk∑
j

(ygki − ygkj )
′W(ygki − ygkj )

where W is a square weight matrix that can be used to specify the relationships between the
different loci and/or their respective weights. The expression (ygki − ygkj )

′W(ygki − ygkj )
is nothing else but a squared Euclidean distance δ2

ij between haplotype i and j in a
S-dimensional space. Note that if all loci are assumed independent and equally
informative, then W = I, the identity matrix, and we can write the sum of squares in
a simple way as

SS(WD) =
G∑
g

dg∑
k

1

2ngk

ngk∑
i

ngk∑
j

δ2
ij

=
G∑
g

dg∑
k

1

2ngk

ngk∑
i

ngk∑
j

S∑
s

(ygkis − ygkjs )2. (29.51)

In that case, the squared Euclidean distance is just the number of pairwise differences
between two haplotypes, equivalent to a Hamming distance. The other sums of squares
are given by

SS(AD) = SS(Within Group)− SS(WD)

=
G∑
g

1

2ng

dg∑
k

dg∑
k′

ngk∑
i

ngk′∑
j

δ2
ij −

G∑
g

dg∑
k

1

2ngk

ngk∑
i

ngk∑
j

δ2
ij , (29.52)

SS(AG) = SS(T )− SS(Within Group)

= 1

2n

n∑
i

n∑
j

δ2
ij −

G∑
g

1

2ng

dg∑
k

dg∑
k′

ngk∑
i

ngk∑
j

δ2
ij . (29.53)

We can thus directly express the variance components and the intraclass correlations
as a function of Euclidean distances between haplotypes (Table 29.4). By analogy with
Wright’s F statistics, we have called these intraclass correlations  statistics (Excoffier
et al., 1992). They are conventionally defined as

 ST =
σ 2
a + σ 2

b

σ 2
T

; SC =
σ 2
b

σ 2
b + σ 2

w

; CT =
σ 2
a

σ 2
T

. (29.54)

If W = I, the identity matrix, the estimated  statistics are equivalent to Weir and
Cockerham (1984) weighted correlations of gene frequencies over all loci (Michalakis and
Excoffier, 1996) as defined in (29.37) for another hierarchical model. For other weighting
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schemes, the relationship between  statistics and Weir and Cockerham’s statistics would
be different, even though the underlying parameters (variance components) to estimate
would remain identical.

29.7.2 Genotypic Data

Even though the AMOVA framework has been essentially developed for haplotypic
data, data consisting of diploid genotypes can be accommodated to estimate correlations
between genes in different individuals at any level of subdivision. This is possible because
the correlation of genes between individuals (the coancestry coefficient θ̄ in Cockerham’s
terminology) does not depend on how genes are associated within individuals. Diploid
molecular data can be transformed into pseudohaploid data by defining the arbitrary
gametic phase in all individuals (Michalakis and Excoffier, 1996). If one assumes that
the weighting matrix W has zero entries on off-diagonal elements (implying that the loci
are independent), the Euclidean distances can be computed between pseudohaplotypes as
if they were real haplotypes. Intraclass correlations are estimated as for the haploid case
above, and the sums of squares within and between demes should be insensitive to the
definition of the pseudohaplotypes. This procedure can thus be applied to loci with an
arbitrary degree of linkage and even completely unlinked loci. This is because multilocus
average estimators are constructed by summing up variance components on both the
numerator and denominator, as in (29.37). Even though linkage information does not
affect the way overall sums of squares and variance components are estimated, it should
affect the variance of the estimates, which should be incorporated into the assessment of
the significance of the inferred statistics, as discussed below.

29.7.3 Multiallelic Molecular Data

With the exception of RFLP and single nucleotide polymorphism (SNP) data, more than
two allelic states are possible for most molecular data types like DNA sequences or
microsatellites. Several options for the handling of such data are possible, depending on
the underlying model of mutation we have in mind.

Under a strict infinite-site model, no more than two allelic states should coexist at any
locus, even though the allelic repertoire can be much larger. In that case, the multiallelic
data can be safely re-encoded into binary data.

29.7.3.1 DNA Sequences

Under a finite-site model, multiple allelic states can coexist at a given locus, and identity
in state no longer means identity by descent. One can still re-encode the information
into a binary vector (in an augmented space) if one can infer the phylogenetic tree
underlying the observed data. Efficient techniques have been developed in the case of
DNA sequence (e.g. Felsenstein, 1981; Swofford et al., 1996; Piontkivska, 2004; Boussau
and Gouy, 2006) as well as Chapters 15 and 16, often allowing the reconstruction
of the actual number m of mutations having occurred in the ancestry of a sample of
sequences. The binary vector used to compute the squared distances should then be of
length m and encode the mutational status of each sequence instead of its nucleotide
status. It should have an entry of 1 at a given position if the corresponding mutation
has occurred on the lineage of the haplotype to the most recent common ancestor
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of all haplotypes and an entry of zero otherwise. An unweighted squared Euclidean
distance computed on such vectors is therefore equivalent to counting the number of
mutations having happened on the branches of a phylogeny separating two haplotypes
(a patristic distance). Although we can still partition total genetic diversity into variance
components and perform an AMOVA analysis on such data, it should be clear that the
resulting  statistics are not average correlations of nucleotide frequencies anymore, but
are rather average correlations of mutation frequencies at different subdivision levels.
The weight matrix W could be used in such an analysis to reflect the weight of
different types of mutations, like transitions, transversions, or insertion/deletions. If no
phylogenetic tree is available, the number of pairwise differences between sequences
can be used as a squared Euclidean distance, which would be equivalent to a patristic
distance computed on minimum spanning network relating sequences (Excoffier and
Smouse, 1994).

Note that corrections for multiple substitutions per site (see e.g. Nei and Kumar, 2000)
could be incorporated into a conventional ANOVA framework (see Weir and Basten,
1990). Because these corrections aim at uncovering the true number of mutations having
occurred in the ancestry of a pair of sequences, they could also be incorporated into the
AMOVA framework by using corrected genetic distances as approximations to squared
Euclidean distances. Further work is needed to establish exactly how multiple substitutions
affect the partitioning of genetic variance within and among populations.

A number of other studies have attempted to estimate F statistics from DNA sequences
(Takahata and Palumbi, 1985; Lynch and Crease, 1990; Weir and Basten, 1990; Hudson
et al., 1992a; 1992b; Slatkin, 1993), some of them being reviewed in Charlesworth
(1998). They all attempt in partitioning the total diversity into within and between
components, and can all be related either to gene diversity or variance components
approaches, implying they should lead to similar results for large number of large
samples.

29.7.3.2 Microsatellite Data

Microsatellite data cannot be properly recoded as a binary vector because it is quite
difficult to reconstruct a phylogenetic tree from it. Microsatellite data are supposed to
predominantly follow a stepwise mutation model (SMM) (e.g. Weber and Wong, 1993,
but see Leblois et al., 2003), where identity in state does not mean identity by descent.
However, the difference between allelic states (numbers of repeats of a motif of a few
base pairs) is an indicator of the evolutionary proximity between alleles.

Slatkin (1995) has shown that the square of this difference in allele size increased
approximately linearly with time. He considered a single microsatellite locus, where µ
is the mutation rate per generation. The mutation can lead either to an increase or to a
decrease in repeat number, and the increase size is a random variable with mean 0 and
variance σ 2

m, assumed to be independent of allele size. Note that this mutation model is
more general than the single-step model, for which σ 2

m = 1. Let yi and yj be as usual
indicator variables, here equal to the number of repetitions of the microsatellite motif for
the gene copies i and j respectively. If these gene copies had a most recent common
ancestor t generations ago (i.e. their coalescence time is t) and we assume a Poisson
distribution of mutations, then the expectation of δ2

ij = (yi − yj )2 increases linearly with
coalescence time: E(δ2

ij ) = 2µtσ 2
m. Slatkin (1995) then defined the sum of squares of the
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difference in allele size within d demes, from which samples of n diploid individuals are
supposed to have been drawn, as

SW =
1

d

d∑
k=1

2

2n(n− 1)

2n∑
i=1

∑
j<i

δ2
ij , (29.55)

and the average number of square differences in repeat size between demes as

SB =
2

(2n)2d(d − 1)

d∑
k=1

∑
k′<k

2n∑
i=1

2n∑
j=1

δ2
ij . (29.56)

The average squared difference in repeat size in the total population is then obtained as

S̄ = 2n− 1

2nd − 1
SW +

2n(d − 1)

2nd − 1
SB. (29.57)

By analogy with Nei’s GST , Slatkin (1995) defined an estimator of population subdivision

RST =
S̄ − SW

S̄
. (29.58)

Noting that the δ2
ij s are indeed squared Euclidean distances, the AMOVA framework is

a natural alternative to Slatkin (1995) approach for the analysis of microsatellite data.
It also implies that Slatkin’s analysis is close to an ANOVA of allele size frequencies.
However, it should be clear from the comparison of (29.41) with (29.42) that the analog
of RST should be (Michalakis and Excoffier, 1996; Rousset, 1996),

 ST =
SB − SW

SB
. (29.59)

Therefore, assuming identical sample sizes in all demes, the correct expected relationships
between RST and  ST are

 ST =
RST

1− c(1− RST )
, (29.60)

RST =
(1− c) ST
1− c ST

(29.61)

where c = (2n− 1)/(2nd − 1). (29.60) corrects a typo in (29.9) of Michalakis and
Excoffier (1996). The equilibrium values of a statistic equivalent to  ST under the SMM,
but called ρST , has been defined for an island model by Rousset (1996).

Even though the analysis of microsatellite data has exactly the same form as that of
other data types, estimators based on such data have a much larger associated variance
(Slatkin, 1995), which is essentially due to the SMM, and for which large samples do
not necessarily produce more consistent estimates (Pritchard and Feldman, 1996). Several
authors have underlined the need for a very large number of independent loci to get
meaningful estimates of various genetic quantities from microsatellite data (Goldstein
et al., 1995; Zhivotovsky and Feldman, 1995; Bertorelle and Excoffier, 1998). Thus, even
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though it remains to be investigated in further detail, F statistics derived under the SMM
could have the same limitations and requirements. As has been shown empirically (e.g.
Takezaki and Nei, 1996; Gaggiotti et al., 1999; Balloux and Goudet, 2002), it may be
adequate to compute FST estimates only from allele frequencies if a few microsatellite
loci are available because, even though such estimates would be biased under an SMM,
they would have a smaller mean square error.

29.7.4 Dominant Data

An important fraction of newly generated molecular data are dominant such as randomly
amplified polymorphic DNA (RAPD) markers or amplified fragment length polymorphism
(AFLP) markers. For these markers, diploid individuals typically show, for each locus,
either a positive or a negative scoring. A negative scoring implies that the individual is
homozygote for the recessive allele, while a positive scoring is obtained for individuals
that are either homozygote or heterozygote for the dominant allele. Lynch and Milligan
(1994) have been the first authors to propose an estimation procedure for quantifying
the amount of genetic structure based on such markers. Using second order Taylor series
expansions, they have developed an asymptotically unbiased estimator of GST as defined
in (29.21), that depends on estimated gene diversities within (ĤW) and between (ĤB)

demes, as (Lynch and Milligan, 1994)

ĜST =
ĤB

ĤB + ĤW

(
1+ ĤBvar(ĤW)− ĤWvar(ĤB)+ (ĤB − ĤW)cov(ĤB, ĤW)

ĤB(ĤB + ĤW)
2

)−1

.

(29.62)
Gene diversities are conventionally estimated from allele frequencies. However, instead
of using the maximum-likelihood estimator of the recessive allele frequency (p̂) equal to√
P̂ , where P̂ is the fraction of individuals that do not exhibit the marker allele, Lynch

and Milligan proposed to use an asymptotically unbiased estimator, namely,

p̂ =
√
P̂

(
1− var(P̂ )

8P̂ 2

)−1

, (29.63)

where var(P̂ ) = P̂ (1− P̂ )/(2nk) is the sampling variance of P̂ in deme k. While this
estimator is less biased than the maximum-likelihood estimator, it is still biased for small
sample sizes and low frequencies of the recessive allele. In order to address this problem,
Zhivotovsky (1999) has recently proposed an elegant Bayesian approach to estimate
recessive allele frequencies. He empirically shows that his approach leads to a slightly
improved estimation of recessive allele frequencies and to a much better estimation of
the fixation index.

An alternative and economical way to test for the presence of genetic structure with
dominant data is to consider differences in genotype frequencies between demes. Thus,
Peakall et al. (1995) proposed to analyze multilocus RAPD data under the AMOVA
framework. They used as a Euclidean square distance the number of pairwise difference
between RAPD profile, and obtained in this case  statistics equivalent to the correlation
of phenotype frequencies within or between demes. Because these  statistics were not
comparable to conventional fixation indexes, we (Stewart and Excoffier, 1996) developed
a methodology that allows the computation of correlations of gene frequencies from
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dominant data under the AMOVA framework. This was done by realizing that the
comparison of two diploid phenotypes corresponds to the comparisons of four pairs of
genes. It is therefore possible to replace squared Euclidean distances between phenotypes
by the sum of four expected square Euclidean distances between their constituent genes,
and to adjust the degrees of freedom in order to get estimates of  statistics directly
comparable to those defined from codominant markers. However, for each individual, the
expected number of different genes given its phenotype depends on the frequency of the
recessive allele, which thus needs to be estimated. It also depends quite strongly on a
possible departure of HWE that is quite common in partially selfing plant communities
where RAPD markers are most often used. If the selfing rate is S, then under inbreeding
equilibrium, an asymptotically unbiased (and apparently unpublished) estimator of the
recessive allele frequency equivalent to (29.63) can be obtained if 0 ≤ S < 1 as

p̂ = 1

4(1− S)

(AP̂ + S2)1/2

[
1− A2var(P̂ )

8(AP̂ + S2)2

]−1

− S
 , (29.64)

where A = 8S2 − 24S + 16. Obviously, p̂ = P̂ if S = 1. One can check that (29.64)
reduces to (29.63) if S = 0. If departure from Hardy–Weinberg is not due to self-
fertilization, but to other forms of inbreeding, (29.25) can still be used due to the
relationship S = 2F̄IS/(1+ F̄IS). Note also that Zhivotovsky (1999) has proposed a
Bayesian estimator of p̂ that takes F̄IS into account. More recently, Holsinger et al.
(2002) have introduced a Bayesian approach to estimate F statistics from dominant
markers allowing for unknown amount of local inbreeding. Under the assumption that,
in populations related by migrations, the allele frequencies follow a β distribution (e.g.
Crow and Kimura, 1970; Balding and Nichols, 1995), the parameters of which explicitly
depend on F statistics (see (29.38)), Holsinger et al. (2002) are able to simultaneously
estimate FST (as reported in (29.9)) and the local inbreeding coefficient FIS (assumed to be
identical in all subpopulations). Simulation results show that FST is usually well estimated
but that a large number of loci and populations are necessary to get meaningful estimates
of FIS from dominant data. Further effect of selfing on the estimation of population
subdivision can be found elsewhere (Maruyama and Tachida, 1992; Pollak and Sabran,
1992; Jarne, 1995; Nordborg, 1997; Wang, 1997a; 1997b).

29.7.5 Relation of AMOVA with other Approaches

The AMOVA framework is therefore fully equivalent to Cockerham’s ANOVA frame-
work. AMOVA is also closely related to Long et al. (1986) multivariate extension of
Cockerham’s ANOVA for loci with multiple alleles, which uses variance–covariance
matrices of allele frequencies as weighting matrices similar to W. Explicit relationships
between Long et al. (1986), Nei (1977; 1983), and Weir and Cockerham (1984) estimators
can be found in Chakraborty and Danker-Hopfe (1991). For single-locus estimators, it
is noted that when covariance of allele frequencies are neglected, Long’s estimators are
close to unweighted average F statistics θ̂U (Weir and Cockerham, 1984), while AMOVA
produces estimates completely identical to Weir and Cockerham’s weighted estimators
θ̂W (Weir and Cockerham, 1984). For multilocus estimators, if some individuals are not
typed at all loci, implying that there is some missing data, it is better to perform distinct
analyses for each locus separately, and to combine variance components estimates for
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each locus as in (29.37). In that case, the AMOVA haplotypic framework would wrongly
assume that the squared distances are based on the same number of characters for each
pairwise comparison, which could bias the estimators, particularly if missing data are not
equally balanced among demes. The advantage of the AMOVA framework is therefore to
highly increase the speed of the computations by carrying out a single analysis for arbi-
trary numbers of alleles and loci, and by allowing the covariance of genetic information
(i.e. linkage disequilibrium) across loci to be taken into account.

29.8 SIGNIFICANCE TESTING

Event though the variance of some F statistics estimates has been derived (see e.g. Nei
et al., 1977; Cockerham and Weir, 1983; Weir and Cockerham, 1984), it seems of little use
to build reliable significance tests for small samples. Instead, several traditional resampling
techniques, like bootstrap, jackknife (Efron, 1982), or permutations are commonly used to
assess the significance of the moment-estimated statistics. Likelihood-based estimations
can lead to posterior distributions of the parameters of interest, from which credible
interval can be constructed (e.g. Holsinger et al., 2002; Balding, 2003; Foll and Gaggiotti,
2006), which is not detailed here.

29.8.1 Resampling Techniques

Typically, bootstrap and jackknife methods aim at defining confidence intervals around an
estimated value, implicitly assuming that genetic structure exists. Therefore, appropriate
bootstrapping methods should try to mimic the action of evolutionary forces that have
created the genetic structure (Weir, 1996, p. 174). The use of nonparametric bootstrap
of sampled loci is advocated because the genetic diversity observed at unlinked loci
should be the result of the replication of independent evolutionary (coalescent and
mutational) processes, giving us some idea of the genetic component of the variance. This
nonparametric bootstrapping approach would then satisfactorily explore the stochasticity
of the evolutionary process only if a large number of unlinked loci are available. However,
bootstrapping over linked nucleotide sites of a DNA sequence would certainly not be
appropriate, as it would only give us some idea of the stochasticity of the mutation
process, which is much smaller than the stochasticity of the coalescent process. Even
though nonparametric bootstrap procedures do not always allow one to estimate the
complete stochasticity of the (often unknown) evolutionary process, it may be justified to
appreciate the sensitivity of a given statistic to the choice of alleles, loci, or demes
as is implemented in various computer packages (e.g. Goudet, 1995; Raymond and
Rousset, 1995b; Excoffier et al., 2005). Under an assumed spatial model, some parametric
bootstrap procedure mimicking the coalescent and mutational process would be in
order.

On the other hand, permutational approaches construct confidence intervals for a given
statistic under the hypothesis of no genetic structure (e.g. Manly, 1991; Excoffier et al.,
1992; Hudson et al., 1992a), and therefore do not require to specify the evolutionary forces
at work that would lead to a genetic structure. However, note that mixed bootstrap and
permutational approaches can be used to obtain power curves, for instance, as a function
of the number of sampled loci (Excoffier et al., 1992). Some care should however be taken
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on how to perform permutations, depending on not only the statistic to test (F̄IS, FIT , FST ,
or FCT, as well as their corresponding variance components) but also on the nature of
data (linked or independent loci, dominant data). For haplotypic data, with known gametic
phase, all linked loci can be considered as a single locus, and it would be irrelevant to
bootstrap loci. Differences between haplotypes within individuals within demes (F̄IS)
can be tested by permuting haplotypes between individuals within demes. Differences
between haplotypes within individuals within the total population (FIT ) can be tested
by permuting haplotypes between individuals and between demes. Differences between
demes (FST ) are tested by permuting individuals between demes. If random mating is
assumed or if no information is available on how haplotypes are grouped into individuals,
FST can be tested by permuting haplotypes between demes. Under such permutation
procedures, note that the total sums of squares and degrees of freedom remain unchanged
in an ANOVA approach. If a higher level of subdivision is considered, such as groups
of demes within populations, differences between groups (FCT) are tested by permuting
whole demes between groups, which changes the sums of square and the degrees of
freedom.

With dominant data, F̄IS or FIT cannot be generally estimated (but see Holsinger et al.,
2002), and one has to estimate allele or haplotype frequencies (Lynch, 1991; Lynch and
Milligan, 1994; Stewart and Excoffier, 1996; Zhivotovsky, 1999). Under the hypothesis
of no population structure, genotypes can be permuted between demes only if frequencies
have been estimated at the population level and not at the deme level because, otherwise,
estimated frequencies would change with permutations. This feature of dominant data
makes it much less powerful than codominant markers to study population subdivision
(Lynch and Milligan, 1994; Stewart and Excoffier, 1996).

For data consisting of completely unlinked loci, permutations should be done as for
haplotypic data, but independently for each locus. A problem that is not completely settled
occurs for data consisting of incompletely linked loci. In that case, permutations cannot
be done for each locus independently, as it would disrupt the potentially existing linkage
disequilibrium pattern. Permuting all loci simultaneously as if they were completely linked
seems, however, a conservative but not entirely satisfactory procedure (Michalakis and
Excoffier, 1996).

29.8.2.9 Exact Tests

Exact tests of population subdivision have been proposed for testing differences in allele
(Raymond and Rousset, 1995a) or genotype (Goudet et al., 1996) frequencies among a set
of demes. Contrary to previously described statistics, these tests do not aim at measuring
directly correlations of genes within and among populations. They rather follow from the
application of the classical Fisher exact test on R× C contingency tables. Here, rows
are for demes, whereas columns are for alleles or genotypes. Under the null hypothesis
of absence of genetic differentiation between samples, the conditional probability of the
observed table �0 is computed as

�0 =

d∏
k=1
nk.!

r∏
i=1
n.i!

n..!
d∏
k=1

r∏
i=1
nki!

(29.65)
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where, for allelic data, nki is the number of genes of allelic type i in the kth sample, n.i
is the marginal count of the ith allele in the d samples, nk. is the marginal size of the kth
sample, and n.. is the total allelic counts over all samples. For genotype data, the n’s are
simply genotypic counts instead of allelic counts.

Instead of enumerating all possible contingency tables as in the Fisher exact test (Mehta
and Patel, 1983), a Markov chain is used to efficiently explore the space of all possible
tables by a random walk (see Guo and Thompson, 1992; Raymond and Rousset, 1995a).
It is done in such a way that the probability to visit a particular table corresponds to
its actual probability under the null hypothesis of no genetic structure. The P value
of the test is then defined as the fraction of explored tables that are equally or less
likely than the observed one. Simulations have confirmed that exact tests performed
on genotype counts are less powerful than those performed on allelic counts (Goudet
et al., 1996), as they use less information. The incorporation of additional levels of
subdivision could be envisioned by extending the analysis of two-dimensional tables
to cubic ones, which could be quite challenging to implement in practice. Multilocus tests
can be performed by combining probabilities of single-locus tests, assuming that all loci
are independent.

29.9 RELATED AND REMAINING PROBLEMS

29.9.1 Testing Departure from Hardy–Weinberg Equilibrium

HWE can be disrupted by population subdivision or inbreeding and specific attempts have
been made to detect discrepancy between observed and expected genotype frequencies.
Recent attempts include procedures related to Fisher’s exact test on R× C contingency
tables, where alternative tables are generated either using permutations or by a random
walk along a Markov chain (Guo and Thompson, 1992). Departure from HWE due to
inbreeding can also be tested by the use of likelihood ratio statistics. Numerical methods to
obtain minimum variance and maximum-likelihood estimators of F̄IS have been proposed
in Robertson and Hill (1984) and in Hill et al. (1995). Several Bayesian methods have
been used to estimate inbreeding coefficients within demes in the case of biallelic loci (see
Shoemaker et al., 1998 for a review). For multiple alleles, a Bayesian MCMC method
has been developed to test departure from HWE that is specifically due to inbreeding
(Ayres and Balding, 1998). In that paper, a Bayesian procedure is described to estimate
the posterior distribution of F̄IS statistics associated with each genotype, or a global F̄IS
statistic, along with the distribution of allele frequencies. The use and effect of several
priors are also discussed. Note that, in both maximum-likelihood and Bayesian procedures,
care has to be taken to keep F̄IS estimates within reasonable bounds (Robertson and Hill,
1984; Ayres and Balding, 1998). The power of different testing procedures is reviewed in
Rousset and Raymond (1995). It is found that exact probability tests (Guo and Thompson,
1992) are more powerful than tests based on maximum likelihood (Hill et al., 1995),
minimum variance (Robertson and Hill, 1984), or variance component estimators of F̄IS
(Cockerham, 1969; 1973), when the departure from HWE is due to specific genotypes.
Alternatively, Robertson and Hill’s (1984) estimator is found to perform best when
departure from HWE is due to regular inbreeding that can be accounted for by a single
F̄IS value for all genotypes.
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29.9.2 Detecting Loci under Selection

It has since long been realized (Cavalli-Sforza, 1966; Lewontin and Krakauer, 1973) that
gene frequencies at loci involved in adaptive events should show increased levels of
differentiation among populations, while genes under balancing selection should present
relatively uniform frequencies across populations, and thus lead to low FST values.
Capitalizing on these ideas, Beaumont and Nichols (1996) proposed to detect loci under
selection by comparing observed levels of genetic diversity within (heterozygosity) and
between (FST ) populations to those expected under a simple evolutionary scenario, like
an infinite-island model. This approach does not seem to be sensitive to past population
demography (Beaumont, 2005) and it seems applicable to a wide diversity of genetic
markers assessed in several populations (e.g. Luikart et al., 2003, Table 29.2). It has been
successfully applied to recent genome scans to detect outlier loci (e.g. Wilding et al.,
2001; Storz et al., 2004; Murray and Hare, 2006), which can be considered as candidate
loci for having had a history of selection. More recently, Beaumont and Balding (2004),
proposed a Bayesian method to detect loci under selection based on (29.38), to identify
signatures of selection, and compared its power to that of Beaumont and Nichols (1996)
for loci under positive or balancing selection. They find that both methods can identify
loci under positive selection if the selection coefficient is about five times larger than the
migration rate between populations. However, for low levels of population differentiation
(FST = 0.1), these approaches cannot really distinguish loci under balancing selection,
even for quite strong selection coefficients. Because it is more and more widely recognized
that our ability to evidence patterns of selection depends on a sound knowledge of past
demographic history (e.g. Ometto et al., 2005; Williamson et al., 2005; Kelley et al.,
2006), complex demographic inferences from observed patterns of genetic diversity will
need to be developed to better understand selective processes.

29.9.3 What is the Underlying Genetic Structure of Populations?

The estimation procedures defined above all assumed that the (potentially hierarchical)
genetic structure of the population was known and that the main issue was to estimate
the degree of population subdivision. However, the history and therefore the true genetic
structure of a population are very often unknown. Some attempts have been made to try
to disentangle population history from population structure (e.g. Templeton et al., 1995;
Templeton 2004), but these procedures have not been developed within a clear statistical
framework. Moreover, individuals may not always be grouped into well-recognized
sampling units, such that their assignment to a given subdivision may be a relevant issue.
Quite recently, a number of studies have tried to address some of these problems. They
attempted to partition sampled populations into distinguishable sets (e.g. Holsinger and
Mason-Gamer, 1996; Dupanloup et al., 2002; Corander et al., 2003) to allocate individuals
to specific or reconstructed populations (Pritchard et al., 2000a; Dawson and Belkhir,
2001; Falush et al., 2003a; Wilson and Rannala, 2003; Guillot et al., 2005; Corander
and Marttinen, 2006), or to find the number of hidden subdivisions (Pritchard et al.,
2000a; Guillot et al., 2005; Corander and Marttinen, 2006). Another complicating factor
is that genetic structure estimates may differ depending on which chromosomal segments
are studied (mitochondrial DNA, Y chromosome, or autosomes) because of sex-biased
dispersal and sexual selection (Chesser, 1991; Chesser and Baker, 1996). In that case, the
estimation of sex-specific F statistics has been proposed (e.g. Petit et al., 2001; Vitalis,
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2002; Fontanillas et al., 2004). It appears that the development of statistical procedures to
uncover the demographic or selection history of a set of populations that best explains the
observed genetic structure is certainly one of the most interesting challenges of population
genetics.
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I am grateful to Jérôme Goudet for providing access to his unpublished Ph.D thesis
and for long discussions on various aspects of this work. I would also like to thank
David Balding, Sergei Gavrilets, François Rousset, and Stefan Schneider for their
careful reading of earlier versions of this manuscript and constructive suggestions.
The AMOVA procedures as well as several exact tests described in the present paper
are implemented in the Arlequin package (Excoffier et al., 2005), freely available on
http://cmpg.unibe.ch/software/arlequin3. This work and the development
of the Arlequin package were supported by the Swiss National Science Foundation.

REFERENCES

Ayres, K.L. and Balding, D.J. (1998). Measuring departures from Hardy-Weinberg: a Markov chain
Monte Carlo method for estimating the inbreeding coefficient. Heredity 80, 769–777.

Ayres, K.L. and Overall, D.J. (1999). Allowing for within-subpopulation inbreeding in forensic
match probabilities. Forensic Science International 103, 207.

Balding, D.J. (2003). Likelihood-based inference for genetic correlation coefficients. Theoretical
Population Biology 63, 221–230.

Balding, D.J. and Nichols, R.A. (1995). A method for quantifying differentiation between
populations at multi-allelic loci and its implications for investigating identity and paternity.
Genetica 96, 3–12.

Balloux, F. and Goudet, J. (2002). Statistical properties of population differentiation estimators
under stepwise mutation in a finite island model. Molecular Ecology 11, 771–783.

Barrai, I. (1971). Subdivision and inbreeding. American Journal of Human Genetics 23, 95–96.
Beaumont, M.A. (2005). Adaptation and speciation: what can F-st tell us? Trends in Ecology and

Evolution 20, 435–440.
Beaumont, M.A. and Balding, D.J. (2004). Identifying adaptive genetic divergence among

populations from genome scans. Molecular Ecology 13, 969–980.
Beaumont, M.A. and Nichols, R.A. (1996). Evaluating loci for use in the genetic analysis of

population structure. Proceedings of the Royal Society London, Series B 263, 1619–1626.
Beerli, P. (2006). Comparison of Bayesian and maximum-likelihood inference of population genetic

parameters. Bioinformatics 22, 341–345.
Beerli, P. and Felsenstein, J. (2001). Maximum likelihood estimation of a migration matrix and

effective population sizes in n subpopulations by using a coalescent approach. Proceedings of
the National Academy of Sciences of the United States of America 98, 4563–4568.

Bertorelle, G. and Excoffier, L. (1998). Inferring admixture proportions from molecular data.
Molecular Biology and Evolution 15, 1298–1311.

Boussau, B. and Gouy, M. (2006). Efficient likelihood computations with nonreversible models of
evolution. Systematic Biology 55, 756–768.

Cavalli-Sforza, L.L. (1966). Population structure and human evolution. Proceedings of the Royal
Society London, Series B 164, 362–379.



1014 L. EXCOFFIER

Chakraborty, R. and Danker-Hopfe, H. (1991). Analysis of population structure: a comparative
study of different estimators of Wright’s fixation indices. In Handbook of Statistics, C.R. Rao
and R. Chakraborty, eds. Elsevier Science Publishers, Amsterdam, pp. 203–254.

Chakraborty, R. and Weiss, K.M. (1988). Admixture as a tool for finding linked genes and detecting
that difference from allelic association between loci. Proceedings of the National Academy of
Sciences of the United States of America 85, 9119–9123.

Chapman, N.H. and Thompson, E.A. (2001). Linkage disequilibrium mapping: the role of population
history, size, and structure. Advances in Statistics 42, 413–437.

Charlesworth, B. (1998). Measures of divergence between populations and the effect of forces that
reduce variability. Molecular Biology and Evolution 15, 538–543.

Charlesworth, B., Nordborg, M. and Charlesworth, D. (1997). The effects of local selection,
balanced polymorphism and background selection on equilibrium patterns of genetic diversity in
subdivided populations. Genetical Research 70, 155–174.

Chesser, R.K. (1991). Influence of gene flow and breeding tactics on gene diversity within
populations. Genetics 129, 573–583.

Chesser, R.K. and Baker, R.J. (1996). Effective sizes and dynamics of uniparentally and diparentally
inherited genes. Genetics 144, 1225–1235.

Cockerham, C.C. (1969). Variance of gene frequencies. Evolution 23, 72–83.
Cockerham, C.C. (1973). Analysis of gene frequencies. Genetics 74, 679–700.
Cockerham, C.C. and Weir, B.S. (1983). Variance of actual inbreeding. Theoretical Population

Biology 23, 85–109.
Cockerham, C.C. and Weir, B.S. (1987). Correlations, descent measures: drift with migration and

mutation. Proceedings of the National Academy of Sciences of the United States of America 84,
8512–8514.

Cockerham, C.C. and Weir, B.S. (1993). Estimation of gene flow from F-statistics. Evolution 47,
855–863.

Corander, J. and Marttinen, P. (2006). Bayesian identification of admixture events using multilocus
molecular markers. Molecular Ecology 15, 2833–2843.

Corander, J., Waldmann, P. and Sillanpaa, M.J. (2003). Bayesian analysis of genetic differentiation
between populations. Genetics 163, 367–374.

Crow, J. and Kimura, M. (1970). An Introduction to Population Genetics Theory. Harper and Row,
New York.

Crow, J.F. and Aoki, K. (1984). Group selection for a polygenic behavioral trait: estimating the
degree of population subdivision. Proceedings of the National Academy of Sciences of the United
States of America 81, 6073–6077.

Dawson, K.J. and Belkhir, K. (2001). A Bayesian approach to the identification of panmictic
populations and the assignment of individuals. Genetical Research 78, 59–77.

Dupanloup, I., Schneider, S. and Excoffier, L. (2002). A simulated annealing approach to define
the genetic structure of populations. Molecular Ecology 11, 2571–2581.

Efron, B. (1982). The Jacknife, the Bootstrap and Other Resampling Plans. Regional Conference
Series in Applied Mathematics. Society for Industrial Applied Mathematics, Philadelphia, PA.

Excoffier, L., Laval, G. and Schneider, S. (2005). Arlequin (version 3.0): an integrated software
package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.

Excoffier, L. and Smouse, P. (1994). Using allele frequencies and geographic subdivision to
reconstruct gene genealogies within a species. Molecular variance parsimony. Genetics 136,
343–359.

Excoffier, L., Smouse, P. and Quattro, J. (1992). Analysis of molecular variance inferred from
metric distances among DNA haplotypes: application to human mitochondrial DNA restriction
data. Genetics 131, 479–491.

Falush, D., Stephens, M. and Pritchard, J.K. (2003a). Inference of population structure using
multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.



ANALYSIS OF POPULATION SUBDIVISION 1015

Falush, D., Wirth, T., Linz, B., Pritchard, J.K., Stephens, M., Kidd, M., Blaser, M.J., Graham,
D.Y., Vacher, S., Perez-Perez, G.I., Yamaoka, Y., Megraud, F., Otto, K., Reichard, U., Katzow-
itsch, E., Wang, X., Achtman, M. and Suerbaum, S. (2003b). Traces of human migrations in
Helicobacter pylori populations. Science 299, 1582–1585.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution 17, 368–376.

Foll, M. and Gaggiotti, O. (2006). Identifying the environmental factors that determine the genetic
structure of populations. Genetics 174, 875–891.

Fontanillas, P., Petit, E. and Perrin, N. (2004). Estimating sex-specific dispersal rates with
autosomal markers in hierarchically structured populations. Evolution 58, 886–894.

Fu, Y.X. (1997). Coalescent theory for a partially selfing population. Genetics 146, 1489–1499.
Gaggiotti, O. and Excoffier, L. (2000). A simple method of removing the effect of a bottleneck and

unequal population sizes on pairwise genetic distances. Proceedings of the Royal Society London
B 267, 81–87.

Gaggiotti, O.E., Lange, O., Rassmann, K. and Gliddon, C. (1999). A comparison of two indirect
methods for estimating average levels of gene flow using microsatellite data. Molecular Ecology
8, 1513–1520.

Gilmour, J.S.L. and Gregor, J.W. (1939). Demes: a suggested new terminology. Nature 144, 333.
Goldstein, D.B., Ruiz-Linares, A., Cavalli-Sforza, L.L. and Feldman, M.W. (1995). Microsatellite

loci, genetic distances, and human evolution. Proceedings of the National Academy of Sciences
of the United States of America 92, 6723–6727.

Goudet, J. (1993). The genetics of geographically structured populations. Ph.D., University of
Wales, Bangor.

Goudet, J. (1995). Fstat version 1.2: a computer program to calculate F-statistics. Journal of Heredity
86, 485–486.
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Evolution, P. Donnely and S. Tavaré, eds. Springer-Verlag, New York, pp. 231–255.

Hewitt, G.M. (2001). Speciation, hybrid zones and phylogeography – or seeing genes in space and
time. Molecular Ecology 10, 537–549.

Hill, W.G., Babiker, H.A., Ranford-Cartwright, L.C. and Walliker, D. (1995). Estimation of
inbreeding coefficients from genotypic data on multiple alleles, and application to estimation
of clonality in malaria parasites. Genetical Research 65, 53–61.

Holsinger, K.E., Lewis, P.O. and Dey, D.K. (2002). A Bayesian approach to inferring population
structure from dominant markers. Molecular Ecology 11, 1157–1164.

Holsinger, K.E. and Mason-Gamer, R.J. (1996). Hierarchical analysis of nucleotide diversity in
geographically structured populations. Genetics 142, 629–639.

Hudson, R.R., Boos, D.D. and Kaplan, N.L. (1992a). A statistical test for detecting geographic
subdivision. Molecular Biology and Evolution 9, 138–151.

Hudson, R.R., Slatkin, M. and Maddison, W.P. (1992b). Estimation of levels of gene flow from
DNA sequence data. Genetics 132, 583–589.

Jaarola, M. and Searle, J.B. (2004). A highly divergent mitochondrial DNA lineage of Microtus
agrestis in southern Europe. Heredity 92, 228–234.

Jarne, P. (1995). Mating system, bottleneck, and genetic polymorphism in hermaphroditic animals.
Genetical Research 65, 193–207.



1016 L. EXCOFFIER

Jorde, L. (1980). The genetic structure of subdivided human populations. In Current Developments
in Anthropological Genetics, J. Mielke and M. Crawford, eds. Plenum Press, New York, pp.
135–208.

Kelley, J.L., Madeoy, J., Calhoun, J.C., Swanson, W. and Akey, J.M. (2006). Genomic signatures of
positive selection in humans and the limits of outlier approaches. Genome Research 16, 980–989.

Kitada, S. and Kishino, H. (2004). Simultaneous detection of linkage disequilibrium and genetic
differentiation of subdivided populations. Genetics 167, 2003–2013.

Kitakado, T., Kitada, S., Kishino, H. and Skaug, H.J. (2006). An integrated-likelihood method for
estimating genetic differentiation between populations. Genetics 173, 2073–2082.

Leblois, R., Estoup, A. and Rousset, F. (2003). Influence of mutational and sampling factors on the
estimation of demographic parameters in a “continuous” population under isolation by distance.
Molecular Biology and Evolution 20, 491–502.

Lewontin, R.C. and Krakauer, J. (1973). Distribution of gene frequency as a test of the theory of
the selective neutrality of polymorphisms. Genetics 74, 175–195.

Li, W.H. and Nei, M. (1974). Stable linkage disequilibrium without epistasis in subdivided
populations. Theoretical Population Biology 6, 173–183.

Long, J.C., Naidu, J.M., Mohrenweiser, H.W., Gershowitz, H., Johnson, P.L., Wood, J.W. and
Smouse, P.E. (1986). Genetic characterization of Gainj- and Kalam-speaking peoples of Papua
New Guinea. American Journal of Physical Anthropology 70, 75–96.

Luikart, G., England, P.R., Tallmon, D., Jordan, S. and Taberlet, P. (2003). The power and promise
of population genomics: from genotyping to genome typing. Nature Reviews Genetics 4,
981–994.

Lynch, M. (1991). Analysis of population genetic structure by DNA fingerprinting. Experientia
Supplementum 58, 113–126.

Lynch, M. and Crease, T.J. (1990). The analysis of population survey data on DNA sequence
variation. Molecular Biology and Evolution 7, 377–394.

Lynch, M. and Milligan, B.G. (1994). Analysis of population genetic structure with RAPD markers.
Molecular Ecology 3, 91–99.

Magri, D., Vendramin, G.G., Comps, B., Dupanloup, I., Geburek, T., Gomory, D., Latalowa, M.,
Litt, T., Paule, L., Roure, J.M., Tantau, I., van der Knaap, W.O., Petit, R.J. and de Beaulieu, J.L.
(2006). A new scenario for the quaternary history of European beech populations: palaeobotanical
evidence and genetic consequences. New Phytologist 171, 199–221.
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This chapter reviews some of the statistical methodologies used in the genetic analysis of endangered
and managed populations. The topics covered include the estimation of effective population size,
Ne, the detection of past changes in population size, the estimation of admixture proportions, and
the analysis of local population structure, kinship, and relatedness through genotypic methods. The
reasons why it may be useful to measure Ne are discussed. Using genetic information it is possible
to estimate Ne from changes in gene frequencies between samples taken at different times, or
from genotypic disequilibria in one sample, or from differences in gene frequencies between two
recently descended populations. The different statistical methodologies that have been applied are
discussed in some detail. The ability to detect past changes in population size may also be useful in
conservation management, and some of the more recent approaches are described. Another area of
concern in conservation biology is introgressive hybridisation. At the population level it is possible
to infer admixture proportions by comparing the gene frequencies in the admixed and non-admixed
populations, providing they are available, and the different statistical approaches to analysing this
problem are reviewed. Statistical methods have also been developed to detect immigrant and hybrid
individuals from their multi-locus genotype, and the main methods developed in this area are also
discussed.

30.1 INTRODUCTION

The use of genetic analysis in conservation falls into two main areas (Hedrick, 2001;
DeSalle and Amato, 2004): examination of the genetic consequences of small population
size for mean fitness and the probability of extinction (Frankham, 1995; 2005); and the use
of data from genetic surveys to infer aspects of the demographic history of populations
(Avise, 1994). This latter may then impinge on the former, e.g. in the estimation of
‘effective population size’, but may also be independent – for example, in the detection of
hybrids. In many ways the first aspect, although historically motivating the use of genetics
in conservation, is the most challenging. The theories describing the effect of recurrent
deleterious mutation in small populations (Lynch et al., 1995) depend on parameters whose
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values are the subject of some debate even in model organisms (Keightley et al., 1998;
Lynch et al., 1999; Whitlock et al., 2003). The relative importance of genetic factors on
extinction risk, in comparison with the ecological consequences of small population size,
have been questioned (Lande, 1998). However, an increasing number of studies suggest
that the loss of genetic variation can indeed contribute to extinction (Saccheri et al., 1998;
Spielman et al., 2004), and this remains an area of active investigation in conservation
biology.

This review will concentrate on the problems of statistical estimation that arise when
using genetic data to infer aspects of the demographic history of populations, which can
then be used to make informed decisions in the management of populations (Luikart
and England, 1999). The statistical methodology is derived from the general area of
inference in population genetics covered in Part 2 of this volume. To avoid overlap I
have chosen four topics that have direct relevance to conservation biology – estimation
of effective population size and detecting historical population bottlenecks, the analysis
of hybridisation, and genotypic analysis of local population structure. One area, that of
subdivision and gene flow from different populations, is only tangentially covered in the
sections on hybridisation and genotypic analysis, because it is the subject of chapters
by Excoffier and Rousset (Chapters 28 and 29). Methods for inferring relatedness and
recovering pedigrees from genotypic data are briefly covered at the end of this review.

30.2 ESTIMATING EFFECTIVE POPULATION SIZE

It is useful to estimate the current rate of inbreeding in populations, and recent changes
in this rate, for a number of reasons. First, although the effect of small population size
(large inbreeding rate) on population viability is controversial, it is potentially significant,
and therefore quantification of inbreeding rate in natural populations whose viability can
also be monitored is an important component of any study to resolve these questions.
Second, the inbreeding rate can be useful for calibrating timescales of recent inbreeding.
For example, information on census size is often available, and if the rate of inbreeding
for a given census size can be calibrated for one population then predictions may be made
about other (comparable) populations on other (comparable) timescales (e.g. O’Ryan et al.,
1998).

The idealized ‘effective’ population size that gives rise to the observed rate of inbreeding
is denoted Ne (Wright, 1931). The effect of different mating systems on Ne has been
the subject of many studies (reviewed in Caballero (1994)), and, unsurprisingly, given
the complexity of population genetic phenomena, it turns out that there are subtly
different definitions of effective population size (Crow and Kimura, 1970), depending
on the phenomena studied. For example, for the same theoretical ‘inbreeding effective
size’ (Crow and Kimura, 1970), different mating systems can lead to slightly different
predictions in the degree of linkage disequilibrium observed (Weir and Hill, 1980). Since
these phenomena (e.g. linkage disequilibrium) can be used to infer Ne, a tacit assumption
is that, given the uncertainty in estimation, these differences do not matter very much,
and an estimate of Ne made by one method will lead to reasonable predictions of other
phenomena that depend on Ne. Although a careful consideration of the mating system
can give some estimate of Ne from the census size (Caballero, 1994; Nunney, 1995), it
is often more practicable to estimate Ne directly, using genetic information, and listed
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below are some of the commoner approaches to this problem (see also Schwartz et al.,
1998). A final caveat is that implicit in the methods below, the estimate of Ne is made in
a closed population over a short interval (with Ne the harmonic mean over this interval).
On longer time scales, with mutation, immigration, and past population restructuring,
estimates of (indeed, notions of) Ne obtained from genetic data become highly model
dependent (Wakeley, 2001) and increasingly divorced from any possible measurement of
local census size, mating systems or any factor with relevance to population management.

30.2.1 Estimating Ne Using Two Samples from the Same Population: The Temporal Method

Random genetic drift causes gene frequencies to change over an interval as a function of
the population size and duration of the interval. Thus the gene frequencies in samples taken
from a population at two time points can be compared, allowing Ne to be estimated. This
approach is known as the temporal method and has a wide history of use with allozyme and
microsatellite data (Krimbas and Tsakas, 1971; Nei and Tajima, 1981; Pollak, 1983). The
bulk of the theory has been developed from the consideration of the Wright–Fisher model
(see Jorde and Ryman, 1995, for a treatment with overlapping generations). Method-of-
moments estimators were originally developed (Krimbas and Tsakas, 1971; Waples, 1989)
but in recent years there has been a concentration on likelihood-based approaches. The
general area has recently been reviewed in detail by Wang (2005), and a brief overview
will be given here.

Assume a sample is taken at generation 0 from a diploid population of N individuals,
comprising the total number of individuals available to be sampled. The frequency of
a particular allele is p0. The gene frequency in the next generation, p1 is determined
by taking a sample of size 2Ne with replacement from generation 0. With independent
realisations of this sampling process, the mean, E[p1], is unchanged at p0, and the
variance, E[(p1 − p0)

2], is p0(1− p0)/(2Ne) from binomial sampling. Extrapolating to
t generations of such sampling, gives E[pt ] = p0 and E[(pt − p0)

2] = p0(1− p0)(1−
(1− 1/(2Ne))

t ). Defining F to be (pt − p0)
2/p0(1− p0), E[F ] = 1− (1− 1/(2Ne))

t

and hence, replacing E[F ] by an estimate F̂ one can estimate N̂e as t/(2F̂ ). In general
pt and p0 are unknown and are estimated by x0 and xt , with sample sizes S0 and St ,
using some sampling scheme. The nature of the sampling scheme affects aspects of the
estimation (Nei and Tajima, 1981; Pollak, 1983; Waples, 1989): e.g. whether the samples
are taken with or without replacement. A commonly used method of moments estimator
that takes into account uncertainty in the gene frequencies is

N̂e =
t

2[F̂ − 1/(2S0)− 1/(2St )]
, (30.1)

(Krimbas and Tsakas, 1971; Waples, 1989). A number of different estimators F̂ have
been proposed (Nei and Tajima, 1981; Pollak, 1983).

The likelihood-based method of Williamson and Slatkin (1999) uses the Wright–Fisher
model. They wish to estimate p(n0,nt |N) where n0 and nt are vectors of counts of
different allelic types scored at a locus at generation 0 and generation t , and N is the
number of (diploid) individuals. At time 0 there is a vector p0 of the (unknown) allele
frequencies in the entire population from which n0 is sampled with replacement. In this
model the population allele frequencies are discrete and could be obtained as counts
divided by 2N . A tacit assumption is that N is always Ne in this model. Williamson and
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Slatkin’s method sums over the uncertainty in p0 in the following way. In the simplest
case of diallelic loci, there are 2N + 1 possible states of p0. Denote by x0 the vector of
length 2N + 1 giving the initial (prior) probability distribution of the ordered set of states
of p0. Then

p(n0, nt |N) = (xT
0 s0)x

T
0 Mtst , (30.2)

where s0 and st are vectors of multinomial probabilities of sampling n0 and nt from each
of the possible population frequencies in generation 0 and t , and M is the standard
Wright–Fisher transition matrix (see Ewens, 2004) where the element mij gives the
probability of moving from state i to j by multinomial sampling. Equation (30.2) is
evaluated for a range of possible value ofN to obtain the maximum likelihood estimate. As
Williamson and Slatkin (1999) point out, the likelihood can be evaluated straightforwardly
only when the number of possible states is small. With diallelic loci there are only 2N + 1
possible states and therefore the size of the computational problem will scale as (2N)2.
However with larger numbers of alleles estimation rapidly becomes unmanageable. An
importance-sampling strategy has been proposed by Anderson et al. (2000) to overcome
this.

An advantage of Williamson and Slatkin’s method is that it is straightforward to make
a composite estimate of Ne from samples taken at different time points, and also to make
estimates of population growth rates using genetic samples. In this latter case, population
size changes exponentially from initial size N0 with rate r as Ni = N0r

t , rounded down
to the nearest integer, and Mt in (30.2) is replaced by the multiplied sequence of matrices
Mi with columns equal to the number of possible allelic states in the ith generation and
rows equal to the number of possible states in the (i − 1)th generation. Using simulations,
they demonstrate that with a large number of loci (150) it is possible to obtain reasonably
accurate joint estimates of N0 and r .

Wang (2001) has made two modifications to the approach of Williamson and Slatkin
(1999), resulting in the ability to estimate likelihoods very rapidly, even for multi-allelic
loci. These improvements have enabled detailed simulation testing to be carried out. As
in the study of Williamson and Slatkin (1999), Wang is also able to extend the method to
work with multiple samples and to estimate changes in Ne. One of the changes proposed
by Wang (2001) is to suggest that the likelihoods for multi-allelic loci with K alleles
can be well approximated by converting them into K biallelic loci, whose frequencies
(n0k,ntk) consist of the frequencies of the kth allele and the sum of the frequencies of
the others. The likelihood is then calculated as

p(n0, nt |N) =
(
K∏
k=1

p(n0k, ntk|N)
) k−1

k

.

There is no theory to say why and under what circumstances this approximation will
work. However Wang (2001) extends the transition matrix approach to the three-allele
case, which is feasible for small sample sizes and small N , and is able to demonstrate
that the approximation and the exact method are comparable in precision and accuracy.
The second modification is to use a variety of computational ‘tricks’ to greatly speed
up evaluation of (30.2), the most important of which is to note that only the diagonal
and adjacent off-diagonal elements of M contribute significantly to the calculation of the
likelihood.
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Like Williamson and Slatkin (1999) and Wang (2001) demonstrated modest gains in
accuracy and precision when using the likelihood method. The gains are most substantial
when initial allele frequencies are low. For alleles at intermediate frequencies, however,
as noted by Williamson and Slatkin, the improvement on moment-based methods through
the use of likelihood methods appears to be small. The accuracy and precision are
approximately linearly proportional to sample size, number of generations between
samples, and the number of independent alleles used (i.e. the sum of K − 1 over loci),
and inversely proportion to Ne. The method of Wang (2001) has been further extended
in Wang and Whitlock (2003) to allow for the estimation of immigration rates.

An alternative likelihood-based approach suitable for multiple alleles has been devel-
oped using coalescent theory (Berthier et al., 2002; Beaumont, 2003a; Anderson, 2005).
The use of a coalescent model assumes that the changes in gene frequencies can be accu-
rately described by the diffusion approximation, and will therefore lead to discrepancies
with those based on the Wright–Fisher model when the population size is low.

30.2.2 Estimating Ne from Two Derived Populations

It is commonly the case that a once large population occupying a contiguous area becomes
fragmented into isolated populations. Also, managed populations are often divided into
separate groups. In these cases, when there is knowledge of the time of splitting, it is
possible to infer the Ne for each sub-population from the amount of genetic divergence
between the two populations. Most of the statistical methods devised for this case appear
to be based on the likelihood method (Cavalli-Sforza and Edwards, 1967; Felsenstein,
1981). These authors used a Brownian-motion approximation for genetic drift based on
2-allele models and extensions, discussed in a little more detail in a later section. More
recently, methods based on coalescent theory have been developed which are directly
applicable to multi-allelic models. This approach will be described here.

A method based on coalescent theory for estimating Ne in recently isolated, genetically
diverging populations, was described in O’Ryan et al. (1998) and also by Nielsen et al.
(1998) (see also Saccheri et al., 1999). For a review of coalescent theory see Nordborg
(Chapter 25), Hudson (1991) and Donnelly and Tavaré (1995). In the method described
in O’Ryan et al. (1998), the genetic samples are taken from s isolated populations that are
derived from some common ancestral population at time T in the past. In the discussion
below Ne refers to the number of (diploid) individuals in the population, and sample
sizes refer to the number of chromosomes. The populations are assumed to be have
been isolated sufficiently recently that mutations arising since the time of isolation can
be ignored. The genealogies for a particular locus of the s populations can be traced
back to a set of founder lineages that have descendants in the samples. The founders are
assumed to be sampled from an ancestral gene frequency vector x that is common to all
the populations. The gene frequency configuration in the founder lineages is given by a f,
and that in the sample is given by as. The number of founder lineages, nf , is a random
variable given by

nf = ns − nc,
where ns is the sample size and nc is the number of coalescences over the period T in the
genealogy of the sample. The probability function p(nc|T /(2Ne), ns) is given in Tavaré
(1984; see also O’Ryan et al., 1998). Thus the probability of a sample configuration for
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a particular population can be calculated as

p(as|T /(2Ne), ns, k, x) =
∑

a f

p(as|a f, ns)p(a f|x, nf )p(nc|T /(2Ne), ns), (30.3)

where the summation is over all possible a f. In the case of populations that split from
a common ancestor, the likelihoods can be multiplied over populations, each with their
own T /(2Ne), but assuming a common x. The first term in (30.3) is the probability
of obtaining the sample configuration from the founder configuration by successively
choosing a lineage at random and duplicating it nc times, and is given by

p(as|a f, ns, nf ) =
∏k
i=1

(
asi−1

af i−1

)
(
ns−1

nf−1

) .

This can be derived by considering it as an urn problem (Slatkin, 1996; Nielsen et al.,
1998): the denominator is the number of ways of allocating the ns lineages in the sample
to the nf founder lineages, and the numerator is the number of different ways of allocating
the sample lineages within each allelic class to the corresponding class in the founders.
The second term in (30.3) is the multinomial probability of drawing a f from x given nf .
Clearly the number of possible configurations a f is very large, and evaluation of (30.3) can
be problematic. An additional problem is that the evaluation of p(nc|T /(2Ne), ns) can be
numerically unstable. O’Ryan et al. (1998) use importance sampling (Griffiths and Tavaré,
1994) as an alternative method of evaluation, and this is embedded within a Markov
chain Monte Carlo (MCMC) sampler to infer marginal posterior densities for individual
parameters (see Beaumont, 2003a, for a detailed description of this general approach).

The general scheme for two populations is illustrated in Figure 30.1. Using the MCMC
scheme, marginal posterior distributions for T /(2Ne) can be obtained. In the study of
O’Ryan et al. (1998) a number of isolated populations were modelled in this way and
the effective population size could be estimated because the splitting times were known.
As an example, one population, (St. Lucia), was seeded from another umfolozi-hluhluwe
complex (UHC) 16 years prior to sampling. Cull data suggested that the generation time
was 7.5 years in these park populations. Seven microsatellite loci were analysed in samples
of around 20–30 individuals (the sample size varied among loci due to missing data)
sampled from the two parks. Figure 30.2(a) shows the posterior distribution for Ne in the
St. Lucia population. There was extensive census data available and the harmonic mean
census size was estimated as 58 for the St. Lucia population, giving a modal estimate of
effective to census size of 13 %. In the UHC population, which was estimated to have a
harmonic mean census size over this period of over 2000, the posterior density appeared to
rise to an asymptote (a rectangular prior for Ne was used to make estimation practicable),
and most values from Ne > 500 had similar posterior density (Figure 30.2b). Essentially,
this means that an infinite population size has similar likelihood to most values of Ne
greater than 500.

Obviously this modelling approach is only applicable when it can be assumed that the
time scale is short enough that the effect of mutation can be ignored. Specifically it is
assumed that all the descendent copies of alleles originally present in the founders are
identical.
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Figure 30.1 Illustration of the genealogy of samples taken from two different populations. The
two populations are assumed to have been derived from a common ancestral population with allele
frequencies x1, . . . , xk . The gene frequencies in the two populations diverge over the time period
of duration T . From a genealogical perspective this is illustrated as coalescences of lineages derived
from the present day genetic samples with frequencies as

1 in population 1 and as
2 in population 2.

The rates of coalescence depend on the population sizes N1
e and N2

e .

It is possible to extend the methodology described here to test whether a model of
population splitting and divergence through drift explains the data better than a model of
gene flow. As discussed in (Chapter 28), the probability of the sample configuration as in
a model of gene flow has a very simple description if an infinite island or continent-island
model is assumed. In this case it is given by the multinomial Dirichlet

p(as|M,ns, k, x) =
∏k
i=1

(
asi+Mxi−1

asi

)
(
ns+M−1

ns

) ,

(Rannala and Hartigan, 1996; Balding and Nichols, 1995; 1997). As with the drift model,
the assumption here is that the difference between the gene flow model and the isolation
model is that in the latter case all lineages are available to coalesce until the time the
population is founded whereupon the founder lineages have genotypes drawn at random
from x. By contrast in the gene flow model, looking backward in time, lineages emigrate
out of the population (their genotypes being then drawn at random from x) and are no
longer available to coalesce. This corresponds to the ‘scattering phase’ of Wakeley (1999).
Thus an assumption in this model is that the descendent lineages of each immigrant that
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Figure 30.2 The marginal posterior distributions for Ne over a 16-year period, estimated from
buffaloes sampled from the St. Lucia (a) and UHC (b) national parks in South Africa. Uniform
priors are assumed for Ne. A rectangular prior was used for the UHC population, with an upper
limit on Ne of 2000.

are present in the sample are all identical by descent (IBD), and that the population size
of the external metapopulation, or continent is sufficiently large that x does not change
between the times of the first and last immigration event. The differences between the
two models are illustrated in Figure 30.3.

As described in Ciofi et al. (1999) it is possible to reparameterize both the drift model
and gene flow model in terms of F , the probability that two lineages coalesce before the
type of either lineage is drawn from x as (1− F)/F for M and − log(1− F) for T /Ne.
An indicator variable can then be introduced such that when I = 0 the probability of
the sample configuration is calculated from the isolation-drift model, or when I = 1
the probability is calculated from the gene flow model. Thus it is possible to use
p(as|I, F, ns, k, x) to drive an MCMC scheme as described in Ciofi et al. to estimate
the marginal posterior density p(I |n, k, as). Simulations suggest that with 25 individuals,
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Figure 30.3 The genealogies of samples taken under a model of divergence (as in Figure 30.1)
compared with those in a gene flow model. The symbols are defined in the text.

5 loci, 10 alleles per locus, and 5 populations, the two models can be distinguished
relatively well (contribution by Beaumont in Balding et al. (2002)). Applications of
the approach, implemented in the program 2mod, are described in Ciofi et al. (1999),
Goodman et al. (2001), Palo et al. (2001), and Hanfling and Weetman (2006). A method
with related aims, but allowing for mutation as well as drift, is described in Nielsen and
Wakeley (2001) and Hey and Nielsen (2004). In this case the model consists of a pair of
populations that split from an ancestral population and there is gene flow between them.
The data are assumed to consist of homologous copies of a single sequence (i.e. this is
a one-locus model), and follow an infinite sites mutation model without recombination.
Immigration and time of splitting can be jointly inferred using MCMC, thereby enabling
the relative importance of each to be assessed.

Alternative methods for inference in these drift-based models are those by Wang (2003),
using the Wright–Fisher model and the approximations discussed above, and also another
approximation described by Nicholson et al. (2002), which is somewhat similar in spirit
to that of Cavalli-Sforza and Edwards (1967). In the method of Nicholson et al. (2002),
it is assumed that the data are frequencies of biallelic (SNP) markers, and the sample
frequencies are a random draw from some unknown sub-population gene frequency, which
is in turn a random draw from a distribution with mean corresponding to the baseline gene
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frequency, p (shared between populations), and variance cp(1− p). The distribution is
assumed to be Gaussian, and probability in the tails that extend outside (0,1) are given
as atoms of probability on 0 and 1. The parameter c approximates T /Ne in the standard
Wright–Fisher diffusion model, where T is the time of the split and Ne is the harmonic
mean effective size over the interval. Using MCMC, Nicholson et al. (2002) are able to
integrate out the unknown gene frequencies and obtain marginal posterior distributions
for individual cj for the j th population.

30.2.3 Estimating Ne Using One Sample

Often temporal information is not available for estimating short-term Ne and there
have been attempts to estimate it using genotypic information from single samples.
The essential idea here is that the gametes are sampled by a finite number of zygotes,
which leads to small departures from the expected genotype frequencies both within
and between loci. Thus, there are two possible approaches using genotypic data: to
detect departures from Hardy–Weinberg equilibrium or to detect departures from linkage
equilibrium. Both approaches have been studied and these will be briefly described
here. A fundamental concern is that many other processes can cause departures from
equilibrium. For example, admixture between two partially separated subpopulations
can lead to departure from Hardy–Weinberg expectation (Wahlund effect) and cause
substantial linkage disequilibrium. Furthermore, genotyping errors, particularly prevalent
in microsatellites, can cause apparent substantial deviations from equilibrium proportions
of genotypes, at least for particular loci, which can bias the results.

For a two-allele system with zygotes sampled from a base population with frequencies
p and 1− p, the expected proportion of heterozygotes in a population of size N is
p(1− p)/N in excess of that expected from an infinite population (Robertson, 1965;
see also Cannings and Edwards, 1969). This result can be obtained by noting that
N maternal gametes fuse with N paternal gametes to produce the zygote. The gene
frequencies in these two classes of gamete will be slightly different, with frequencies
pf and pm (having expectation p). Thus the expected proportion of heterozygotes
is pf(1+ pm)+ pm(1+ pf). The expected proportion, based on the combined gene
frequencies, po = (pf + pm)/2, is 2po(1− po). Thus there is a heterozygote excess
of (pf − pm)

2/2. Assuming that E[pf − pm] = 0, the expected value of the squared
difference is given by the sum of binomial sampling variances, giving an expected
heterozygote excess of p(1− p)/N (i.e. the expected frequency of heterozygotes is
2p(1− p)(1+ 1/2N)). Note that Crow and Kimura (1970), following Hogben (1946)
and Levene (1949), suggest 2p(1− p)(1+ 1/(2N − 1)), instead, which can be obtained
by assuming that all gametes contributing to the observed zygotes can potentially be
joined together in a zygote.

Based on the Robertson (1965) result, Pudovkin et al. (1996) proposed an estimator that
appeared to be unbiased. This has been investigated further by Luikart and Cornuet (1999)
through simulation testing in which they aimed to identify the effect of sampling error and
different mating systems on the robustness of the method. They concluded that in general
the method slightly overestimated Ne, but this was generally less than 10 % for sample
sizes of 30, and became smaller with larger sample sizes. The bias was largest (25 %) for
extreme polygyny (1 male mating with 99 females), which is perhaps unsurprising, given
that the method assumes equal male and female contributions. Overall, they note that
relatively large numbers of loci are required because otherwise the confidence intervals
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are typically very wide. The method has been developed further by Balloux (2004),
who extended its use to subdivided population, and corrected some errors in the original
treatment by Pudovkin et al. (1996).

The use of linkage disequilibrium to estimate Ne has been proposed by Langley et al.
(1978), Laurie-Ahlberg and Weir (1979), and Hill (1981). There is an extensive and
technical literature deriving approximate expectations of linkage disequilibrium statistics
in terms of demographic parameters, stemming from the work of Hill and Robertson
(1968) and Ohta and Kimura (1969). These approximation are discussed by Hudson
(1985) and McVean (Chapter 27). The squared correlation in gene frequencies between
two loci is defined to be

r2 = D2

(1− FA)(1− FB)
,

where D2 =∑∑
(fij − pAipBj )2 for loci A and B with alleles i, j , and FA =

∑
(pAi )

2,
FB =

∑
(pBj )

2 (Hudson, 1985; see also McVean, Chapter 27). These definitions are
based on known population gene frequencies. For samples (where usually the gametic
phase of heterozygotes is unknown) there are several estimators available (see Hill, 1981;
Weir, 1996).

In a finite population of Ne diploid individuals at equilibrium E[r2] tends to a steady
state value that is approximately independent of the mutation model and mutation
rate when 4Nec is large, for recombination rate c. An approximation for this value,
E[r2] ≈ 1/(4Nec), was first obtained by Hill and Robertson (1968) based on observations
of simulations, and analytically by Ohta and Kimura (1969). Following these authors,
most analytical approaches have tended to solve E[r2] ≈ E[D2]/E[(1− FA)(1− FB)]. A
number of other approximations have been obtained (see also McVean, Chapter 27), and
the most widely used approximation is

E[r̃2] = (1− c)
2 + c2

2Nec(2− c)
+ 1

n
,

where r̃2 is a sample estimate (Laurie-Ahlberg and Weir, 1979; Hill, 1981, suggest using
the Burrows method in Cockerham and Weir (1977); see Weir and Hill, 1980, for other
approximations for different estimators and mating systems).

Laurie-Ahlberg and Weir (1979) used the equation above to provide an estimator for Ne.
Their analysis was based on 17 enzyme loci surveyed in nine laboratory populations of
Drosophila melanogaster, from which they selected unlinked pairs of loci. Some of these
pairs involved the same loci, and were thus not independent. In total they analysed 4–18
pairs among eight of the nine populations. The sample sizes were generally between 50 and
100. The census sizes fluctuated in these populations, but never exceeded 500–700, and
could reach values as low as 10–12. With c = 0.5, Laurie-Ahlberg and Weir estimated
N̂e = m/3

∑
i[(r̃i

2 − 1/ni)]. In four of the populations the denominator was negative,
implying an estimated Ne of infinity. Of the remaining four populations N̂e varied from
3 to 27. Laurie-Ahlberg and Weir made no attempt to give standard errors on these
estimates.

Laurie-Ahlberg and Weir suggested that it is necessary for n� N̂e to be able to
estimate population size with some precision. For most taxa of conservation interest,
linkage information will be unavailable, and, on the assumption that the markers are
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randomly scattered through the genome (as with microsatellites identified through cloning,
for example) the assumption of c = 0.5 would generally be reasonable.

Hill (1981) performed a similar analysis on other data sets, including linked pairs of
markers. Hill suggested using information on variances to provide a weighted estimator
across pairs of loci. He suggested that pairs of loci could be treated as uncorrelated.
Simulation studies indicated that var[R̃2

i ] ≈ 2(E[R̃2
i ])

2 (i.e. approximating χ2 with 1 df),
and Hill therefore suggested a weighted estimator

1

N̂
=

∑
i αi/var[αi]∑
i 1/var[αi]

=
∑
i γi(r̃i

2 − 1/ni)
/ (

γi
N
+ 1
ni

)2∑
i 1

/ ( 1
N
+ 1
γini

)2 ,

where αi = (r̃i2 − 1/ni)/γi and γi = ((1− ci)2 + c2
i )/(2ci(2− ci)). The variance of N̂ is

approximated as N̂ = var[N̂] = 2N2/
∑
i 1/(1+N/(γini))2. It is necessary to substitute

estimates of N into these equations.
Hill analysed two Drosophila data sets: one based on chromosomes extracted from a

sample of 198 flies isolated from a wild population, and another using a sample of around
700 flies from a caged population. In the first sample, 11 enzyme loci were scored, all of
which were linked with most ci < 0.1, and r̃i

2 was measured in 25 pair-wise comparisons.
The estimate of N̂e was negative for these data. In the caged populations Hill analysed
data from seven loci. The estimated census figure was around 1000. He used 9 pair-wise
comparisons of linked markers (with all ci less than 0.15) and 12 pair-wise comparisons
of unlinked loci. The estimate of N̂e was 363 with standard deviation 170.

Thus these studies appear to indicate that information on linkage disequilibrium has
limited power to estimate effective population size. Even with large sample sizes and
linked loci the standard errors on the estimates are fairly large, and negative estimates
of Ne are common. Furthermore, as Hill (1981) points out, with very tightly linked loci,
estimates of population size will be influenced by earlier demographic events, including
gene flow. Also linked loci are only readily available in model organisms.

Notwithstanding these problems, Waples (1991) pointed out that if many pairs of loci
are used, estimates of E[r̃2] can be made with reasonable precision. His own simulations
confirmed the observation of Hill (1981) that pair-wise comparisons among k loci appeared

to behave as independent data points with
m∑
i=1
r̃i

2, for m = k(k − 1)/2, distributed as

approximately χ2 with m degrees of freedom. Recently it has been noted that the method
of Hill (1981) appears to be quite biased when the sample sizes are low (England et al.,
2006) and Waples (2006) has developed a correction for this effect. Additional simulation-
based tests by England et al. (2006) and Waples (2006) provide some encouragement that
this general approach may be an effective method for estimating current population sizes.

The method has been used to estimate effective population sizes in managed or
endangered populations (e.g. Bartley et al., 1992; Bucci et al., 1997). In the latter example,
as part of a more detailed genetic survey, Ne was estimated in 5 Italian populations of
the endangered pine Pinus leucodermis using 23 RAPD markers, assumed to be unlinked.
The sample sizes were around 20–30 within each population. They estimated Ne using
the method of Laurie-Ahlberg and Weir (1979), and estimated confidence limits for r2

using the χ2 approximation above, as suggested by Waples (1991), which were then
transformed to give approximate limits on N̂e. Two of the 5 populations gave estimates
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of infinity for Ne and the remaining three estimates were: 17 (11–31); 17 (11–30); 31
(14–650).

Thus, in conclusion, there appears to be scope for using multi-locus genotype infor-
mation for estimating Ne with reasonable precision, and it may well be worthwhile
investigating this approach further, perhaps using likelihood-based approaches to extract
as much information as possible from the genotypic information. The development
of methods to calculate approximate likelihoods and posterior distributions based on
summary statistics (Beaumont et al., 2002; discussed further below) may be helpful in
this regard. If unlinked markers are used, low levels of gene flow may not affect the
estimates too greatly, or, alternatively, can be included in an enhanced model.

30.2.4 Inferring Past Changes in Population Size: Population Bottlenecks

In order to obtain a better understanding of the genetic consequences of small size for
population viability, it is useful to be able to identify whether a population has undergone
a recent reduction in population size. For example inbreeding depression is assumed to be
a transient phenomenon. A reduction in population size can inflate the frequency of rare
deleterious recessives at some loci, leading to a reduction in population fitness, which is
then ‘purged’ by natural selection. Thus populations that have had small sizes for a long
time are unlikely to have high frequencies for highly deleterious genes (although mildly
deleterious genes may be at high frequencies because of the strength of drift in small
populations; Lynch et al., 1995). Furthermore, if it is possible to model the time scale of
the reduction in population size, one may be able to distinguish among different ecological
explanations for the reduction. For these reasons the development of statistical methods
to infer past changes in population size is useful in conservation biology. Although the
focus in this section is on past reductions in size, the same methodology can also be used
to detect population expansions, and this case will also be addressed.

A number of methods for detecting historical changes in population size have relied
on discrepancies between different summary statistics that are used to estimate θ = 4Neµ

assuming a stable population model, where Ne is the diploid population size and µ is
the mutation rate. When the data do not fit a stable population model, the different

Expansion Contraction

Figure 30.4 Two extreme examples illustrating how changes in population size affect the shape
of genealogies. On the left is a genealogy that could only occur in the idealized case of a very
small population that instantaneously increases to a size that is sufficiently large for no coalescences
to occur during this interval. On the right is a genealogy that might be found in samples from a
population undergoing a recent population contraction.



1034 M.A. BEAUMONT

summary statistics give differing estimates of θ . This is best explained from a genealogical
perspective (Figure 30.4) (see also Chapter 25). If populations have recently expanded,
coalescences have a higher probability of occurring nearer the time of the most recent
common ancestor than would be expected in a stable population. This is because the
ancestral population size is smaller than the current population size, and therefore the
coalescence rate is relatively higher. It should be noted that the schematic in Figure 30.4
is exaggerated: such a genealogy could only arise if there was a large change in population
size over a very short period. For most reasonable demographic changes there are still
many recent coalescences because the coalescence rate is almost quadratic in the number
of lineages at any time (Chapter 25), and this tends to have a dominating effect on the
shape of genealogies. This tendency for short recent coalescences is intensified when there
is a population contraction. In this case there is a possibility that the most recent common
ancestor occurs within the timescale of the contraction, or alternatively that some lineages
‘escape’ back into the ancestral population, which has longer coalescence times. In the
example in Figure 30.4, two lineages are present in the ancestral population. Mutations
occur along the lineages and thus for a sample from an expanding population most
mutations have only a few descendants (a single descendent in the extreme example in
Figure 30.4). Each gene in a pair differs by unique mutations. By contrast in a contracting
population the majority of mutations have many descendants, and pairs of genes are either
identical because of recent shared ancestry or differ by the same mutations. The differing
distribution of mutations between these two scenarios alters the relationship, e.g. between
summary statistics that are influenced by the total number of mutations in the genealogy
and those that measure pair-wise differences between genes. Thus, conditioning on, say,
measures of pair-wise divergence, there will be too many/too few alleles or segregating
sites if the populations have expanded/contracted. Or, conversely, conditioning on the
number of alleles or segregating sites, there will be too few/too many pair-wise differences
if the populations have expanded/contracted.

There is an asymmetry in the detectable effects of population expansions and contrac-
tions. Contractions, by accelerating drift, produce instantaneous changes in the gene
frequencies, whereas expansions do not. The only information about an expansion comes
from mutations or recombination events that occur in the genealogical history over the
time of expansion. Thus if the expansion has occurred very recently there will be little
information in the data with which to detect it. Similarly if the population contraction is
recent, although it should be easy to detect, without mutations there is no information
on the shape of the contraction and the change in gene frequencies will depend only on
the harmonic mean Ne over the interval. Thus the effects of a recent ‘bottleneck’ which
traditionally means a contraction followed by an expansion, will be difficult to distinguish
from any other model of recent population decline, and are considered together here.

For sequence data there are a large number summary statistics that have been devised to
detect departures from the standard neutral model. Often these have been ascribed to the
effects of selection rather than demographic history. This aspect is discussed in the chap-
ters by Neuheuser (Chapter 22) and McVean (Chapter 27). A number of the tests are car-
ried out by the Arlequin program (http://lgb.unige.ch/arlequin/software/)
and the methodological section of the Arlequin manual provides a good description of
the statistics, tests, and underlying assumptions.

One of the earliest tests for departures from neutrality (and also as a test for past
changes in population size), is the test of Watterson (1978) based on the sampling theory
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of Ewens (1972). This test generates the distribution of sample homozygosity (average
pair-wise similarity),

∑
x2
i , from sample gene frequencies xi , conditional on the observed

number of alleles, assuming the standard neutral model. In a survey of many loci the
observation of homozygosities that are extreme under the theoretical sampling distribution
would then imply a departure from the model assumptions. If only one of the loci studied
was strongly affected, it might be reasonable to infer that departure from neutrality at
that locus was a likely cause. Alternatively, if many loci appeared to show the same
extreme heterozygosities, then it may be more likely that an historic change in population
size is the explanation. If the homozygosity calculated from the real data is too high in
comparison with the theoretical distribution this would suggest a population expansion,
and if too low it would suggest a contraction.

For DNA sequences one of the most commonly used statistics for detecting past changes
in population size is Tajima’s D (Tajima, 1989), which is based on the difference in
estimates of θ , assuming an infinite allele model (IAM), from average pair-wise differences
between sequences and from the number of segregating sites, scaled by an estimate of
the standard deviation of the difference:

D = π − S
a1√

v̂ar
(
π − S

a1

) ,

a1 =
n−1∑
i=1

1

i
.

π is the average number of pair-wise differences between sequences, which directly gives
an estimate of θ (Tajima, 1983). S is the number of segregating sites in the sample, which
is identical to the number of mutations in the genealogical history of the sample under the

infinite sites assumption, and
n−1∑
i=1

1
i

is equal to half the expected total length of lineages

in the genealogy, given the sample size, n, so that E[S] = θ
n−1∑
i=1

1
i

(Watterson, 1975). The

variance of the difference between the two estimators is given in Tajima (1989) as:

V̂ar
(
π − S

a1

)
= S

a1

(
n+ 1

3(n− 1)
− 1

a1

)
+ S(S − 1)

 2(n2+n+3)
9n(n−1) − n+2

a1n
+ a2
a1

2

a1
2 + a2

 ,
where

a2 =
n−1∑
i=1

1

i2
.

Negative values of Tajima’s D indicate population growth (too many segregating sites/too
few pair-wise differences) whereas positive values of Tajima’s D indicate population
contraction (too few segregating sites/too many pair-wise differences). A significance test
can be developed by simulating data sets under the coalescent with the same sample size
and number of segregating sites as in the real data. An obvious caveat is that any test
based on summary statistics such as Tajima’s D measures departures from the standard
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neutral model, assuming a particular mutation model, and not growth or decline per se.
There are many ancestral processes, including variability in mutation rates among sites
and selection, that can affect the value of the summary statistics.

Another summary statistic, similar in spirit to Tajima’s D, is Fu’s FS (Fu, 1997). This
is based on the discrepancy between the number of alleles observed in the sample and that
predicted from Ewens’ sampling theory for the IAM (Ewens, 1972), given θ̂ estimated
as π , discussed above.

FS = log
(

S ′

1− S ′
)
,

where (from Ewens, 1972)

S ′ = p(k ≥ kO |θ = π) =
n∑

k=kO

Skπ
k

Sn(π)
,

and
Sn(π) = π(π + 1) . . . (π + n− 1),

and Sk , an unsigned Stirling number of the first kind, is the coefficient of πk in Sn(π).
If there has been population growth, there will be an excess of alleles (in particular, an
excess of singleton haplotypes) given π , therefore S ′ will be small and FS negative.

The statistical power of tests for population growth based on these summary statistics
has been evaluated under a number of different scenarios using simulations by Ramos-
Onsins and Rozas (2002). They found that tests based on FS of Fu (1997), and another
similar test developed by themselves, had a greatest power to detect population growth.
Interestingly they found that tests based on the distribution of pair-wise differences
(Rogers and Harpending, 1992) tended to be very conservative. The power of the tests to
detect population decline has not been investigated.

A key point to reiterate is that these tests cannot in general be used to distinguish
between departures from the standard neutral model caused by selection or by past
changes in population size. A reasonable way to tackle this problem is to use many
loci, on the assumption that selection will only affect a small proportion of loci, and if
all loci are supporting the same tendency to depart from the standard neutral model it
would be reasonable to ascribe this to the effect of past population history rather than
selection. Until recently the markers that have been best suited for this are microsatellites
because of their polymorphism and the relative ease of obtaining large numbers of loci. In
conservation biology most of the tests for past population bottlenecks have been designed
for microsatellites.

Based on these considerations Cornuet and Luikart (1996) proposed a test for bottle-
necks using many loci in which coalescent simulations are performed to derive distri-
butions of heterozygosities conditional on the observed number of alleles. Cornuet and
Luikart consider two mutation models: the IAM, generally considered to be more appro-
priate for allozyme data; and the stepwise mutation model (SMM), often assumed for
microsatellites (the distributed program, BOTTLENECK, Piry et al., (1999), also incor-
porates the two-phase model (TPM) of Di Rienzo et al. (1994)). In the case of the IAM
they used the method of Watterson (1978) described above, but looking at the distribution
of heterozygosity (calculated as n

n−1 (1−
∑
x2
i )), conditional on the observed number of

alleles. This is independent of θ (Watterson, 1978) and can be simulated by first creating a
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sample genealogy and then adding mutations at a frequency proportional to branch length
until the required number of alleles are obtained. In the case of the SMM, where θ does
affect the distribution of heterozygosities, a uniform prior distribution of θ is assumed and
the conditional heterozygosity is simulated by sampling θ uniformly and then simulating
a genealogy with stepwise mutations, rejecting those that do not give rise to samples with
the required number of alleles (see Cornuet and Luikart, 1996, for specific details of how
to sample θ efficiently).

Cornuet and Luikart propose two methods for using the simulated heterozygosities to
test for significant departures of the observed data from the null hypothesis. Firstly they
propose a type of sign test whereby each locus is scored as having a heterozygosity above
or below its expected value. For each locus it is possible to estimate by simulation the
probability of obtaining a heterozygosity greater than the expected value. From this one
can obtain a probability distribution of observing l = 0 . . . L loci with heterozygosities
greater than the expected value, and thereby estimate the probability of observing at least
lO loci with greater than expected heterozygosity. The other test Cornuet and Luikart
propose is to calculate deviations of the observed heterozygosity from the simulated mean
scaled by the simulated standard deviation in heterozygosity. Under the null hypothesis,
the sum of these should approximate normal deviates with mean 0 and variance equal to
the number of loci. Cornuet and Luikart (1996) carry out a number of tests of their method
using simulated data sets. They suggest that their test is most powerful with loci evolving
according to the IAM compared to the SMM, and find that the second test is somewhat
more powerful than the first, although the difference is not large. If the test is applied to
microsatellites, where there is abundant evidence from pedigree information that the IAM
does not apply, it would seem reasonable never to cite results assuming the IAM because
of the tendency to type-I error, and a case could be made for only citing results for the
TPM model, using parameters that are reasonable, given current pedigree information.

Other summary statistics can also be monitored in microsatellites. For example, Luikart
et al. (1998) suggest that the shape of the frequency spectrum can provide a useful
graphical test of a bottleneck. In the case of microsatellites the distribution of lengths
holds useful information on the past demographic history (Reich and Goldstein, 1998;
Reich et al., 1999). For example, as noted by Cornuet and Luikart (1996) the distribution
of lengths becomes more uneven with gaps when the population has been subject to a
bottleneck. This is exploited in the test of Garza and Williamson (2001), who monitor
the distribution of the statistic M = k/r , where k is the number of alleles, and r is the
difference in length between the longest and shortest microsatellite allele in the sample.
In a population that has a history of recently reduced population size, or bottleneck, there
are expected to be relatively few alleles for a given value of r , giving a small M . The
mean value, M̄O, is calculated across loci and compared to relevant quantiles of simulated
values of M̄ obtained from coalescent simulations corresponding to the same number of
loci, and assuming a TPM model. The critical values depend on the parameters chosen
for the TPM model. If the mutation process allows larger than single-step changes in
length then these can give rise to allele frequency distributions that are similar to those
that arise from population contraction.

An additional summary statistic that has been used to detect population expansions
from microsatellite is the expansion index of Kimmel et al. (1998). This has been shown
by King et al. (2000) to be more sensitive to population growth than summary statistics
based on the kurtosis of the length distribution or the variance among loci of the variances
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in microsatellite length (Di Rienzo et al., 1998; Reich and Goldstein, 1998; Reich et al.,
1999). As with the summary statistics discussed earlier it is based on the discrepancy of
two different estimators of θ in a standard neutral model. For microsatellites evolving
according to a strict stepwise model one estimate of θ is θV = 2V , where V is the sample
variance in allele length. Another estimate is θf = (1/F 2 − 1)/2 (Ohta and Kimura,
1973), where F is the sample homozygosity. The expansion index of Kimmel et al.
(1998) is then

log(β1) = log(θ̂V̄ )− log(θ̂F̄ ).

King et al. (2000) also suggest

log(β2) =
1

L

L∑
i=1

(
(log(θ̂V ))i − (log(θ̂F ))i

)
.

In the first case the two estimates of θ are calculated from the mean homozygosity and
variance across or loci, and hence log(β1) depends only on the marginal distribution
of these statistics. In the second case the two estimates of θ are calculated for each
locus separately, and log(β2) depends on the joint distribution of homozygosity and
variance across loci. King et al. (2000) show that the latter statistic is the most sensitive.
Although devised to detect population growth, the imbalance index should also be useful
for detecting population contractions or bottlenecks.

In addition to performing tests to detect departures from the null model of historically
constant population size, it is possible to estimate parameters in specific models of
population growth and/or decline. Primarily this has been done by the method of
moments (e.g. Rogers, 1995; Reich and Goldstein, 1998; Reich et al., 1999; Schneider
and Excoffier, 1999). Increasingly, however, likelihood-based methods are being used. It
is beyond the scope of this chapter to consider these in detail. Beaumont (2003b) gives a
description of some of these approaches from the point of view of human demographic
history, and general likelihood-based approaches are described in Chapter 26.

An example from an analysis of microsatellite data is given in Figure 30.5, which comes
from Beaumont (1999), using a similar approach to that of Wilson and Balding (1998) and
Wilson et al. (2003). The general idea is that the probability of the data and a genealogy
consistent with the data, as a function of some unknown demographic and genetic
parameters (such as mutation rate), can be derived from coalescent theory: P(G, S| ).
MCMC is then used to obtain P( ,G|S) by sampling over genealogies and parameter
values in the demographic model. In the example illustrated, the method has been applied
to a sample from the last remaining population of the Northern Hairy Nosed Wombat,
studied by Taylor et al. (1994). The species is believed to have undergone a sharp decline
in the last 120 years. Sixteen loci were genotyped in a sample of 28 individuals. Seven
loci were monomorphic and one locus had length differences that were not consistent
multiples of two, leaving eight polymorphic loci. All the loci were polymorphic when
samples from the Southern Hairy Nosed Wombat were included, suggesting that none of
the monomorphic loci had unusually low mutation rates. Two analyses were performed
with the data, one using the polymorphic data only and the other using the combined set
of 15 loci. The results illustrated in Figure 30.5 strongly support a substantial population
bottleneck. The population size was around 70 when the samples were taken, and even
if one assumes that there were only 10 breeding adults, the data would suggest the
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Figure 30.5 The joint posterior density for a parameter measuring the duration over which a
population of wombats has been changing in size and a parameter measuring the degree to which
it has changed. Specifically on the y axis is the logarithm to base 10 of the number of generations
since the population started to change in size divided by the current population size, and on the x
axis is the logarithm to base 10 of the ratio of current population size to ancestral population size.
Contours giving the 10, 50, and 50 % highest posterior density intervals are shown. The dotted
lines show the density for the polymorphic loci only.

decline began at least 1000 years ago, and that there has been a thousand-fold to ten
thousand-fold decline in numbers. These conclusions will be highly model dependent,
as discussed earlier, because of the difficulty in estimating the trajectory of a bottleneck
without mutational information. An additional caveat is that the assumption of the SMM
is restrictive, and inferences about reductions in population size will be affected by the
presence of mutations that cause greater than single-step changes in allele length. Recently
Calmet (2003) has modified the likelihood-based method of Beaumont (1999) to include
the TPM, which corrects for the confounding effects of the mutation process.

It can be seen that there is a significant ascertainment bias associated with the use of the
polymorphic markers alone. The effect is counter-intuitive in that the polymorphic markers
suggest a more severe contraction over a longer time scale. Essentially, as discussed in
Beaumont (1999), the polymorphic markers, while supporting a bottleneck effect imply
a larger number of mutations in the ancestral population than the monomorphic loci. The
number of mutations depends on 2N1µ = θ/r , and thus, for a given prior on θ , smaller
values of r imply larger numbers of mutations in the pre-bottlenecked population. The
ascertainment effect is much stronger for SNP markers, as discussed in Wakeley et al.
(2001).
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In conclusion, there appears to be considerable potential for the use of genetic data
to make inferences about parameters in demographic models. However, a key caveat is
whether one can have confidence in the models. In particular, as emphasised by Wakeley
(1999), models with population structure can mimic many effects of past changes in
population size without any change in census size. It is quite possible that most inferences
about changes in population size are strongly confounded with phylogeographic effects.

30.2.5 Approximate Bayesian Computation

A problem with genealogical inference is that the parameter space is potentially very
large and is not necessarily well explored by Monte Carlo methods, leading, e.g. to
problems of convergence with MCMC. This will be exacerbated by the large volumes
of genetic data that may soon be generated, even for non-model organisms. Motivated
by difficulties in analysing human data a number of approximate approaches have been
developed (Chapter 26). One of these, approximate Bayesian computation (ABC), has
been used extensively for genetic analysis problems in conservation and management
because it is relatively straightforward to model the complex scenarios that frequently
arise in applied problems (as in, e.g. Miller et al. (2005)).

A number of related techniques have been developed (reviewed in Beaumont et al.
(2002)). In particular Weiss and von Haeseler (1998) developed a method whereby a
vector SO of length d summary statistics are measured from the data and then n coalescent
simulations are performed for a fixed parameter value  . For each simulation we measure
summary statistics S1,...,n, and the proportion of simulations that give rise to summary
statistics sufficiently close to those measured from the data are recorded. This provides
an approximate Monte Carlo estimate of the likelihood of P(S = SO| ). If the parameter
values are explored on a grid a likelihood surface can be estimated. Weiss and von
Haeseler (1998) used this approach to detect patterns of population growth and also
decline in different human populations from mtDNA sequence data.

A Bayesian approach taken by Pritchard et al. (1999) is to simulate the parameter values
from the prior,  i ∼ P( ), and then simulate data sets with these parameter values, and
measure the summary statistics, Si ∼ P(S| ), to obtain samples from the joint distribution
P(S, ). The posterior distribution P( |S = SO) is given by the conditional density

p( |S = SO) =
P(SO, )

P (S = SO)
.

As with Weiss and von Haeseler (1998) this is estimated by choosing to accept simulations
that give values of Si that are close to SO within some tolerance. Pritchard et al.
(1999) apply the method to infer population growth from haplotype frequencies of linked
microsatellite loci in the human Y chromosome. They used three summary statistics: the
number of distinct haplotypes, mean heterozygosity, and mean variance in repeat length.
The latter two were motivated by the study of Kimmel et al. (1998), discussed above.
A problem for these methods is that only a limited number of summary statistics can be
used for accurate inference because fewer points will be accepted for a given level of
tolerance as the number of summary statistics is increased. The method of Pritchard et al.
(1999) has been used by Estoup et al. (2001) to explore a relatively complex demographic
and phylogeographic model of the history of introductions of cane toads to islands in the
Caribbean and Pacific.
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Beaumont et al. (2002) have pointed out that the method can be made more efficient
by treating it as a problem of conditional density estimation, and using non-parametric
regression methods to substantially increase the number of points used in the estimation
of the posterior density, thereby allowing many more summary statistics to be used.
Here, SO and S are scaled so that each summary statistic in S has unit variance. The
aim is to estimate the posterior mean α = E( |S = SO) (see, e.g. Ruppert and Wand,
1994, for background to the approach). Beaumont et al. (2002) use least squares to
minimize

n∑
i=1

{
 i − α − βT(Si − SO)

}2
Kδ(‖ Si − S0 ‖),

where ‖ x ‖=
√∑d

i=1 x
2
i , and Kδ() is a weight given by an Epanechnikov kernel. This is

a quadratic function that has a maximum at ‖ Si − S0 ‖= 0, and is zero for ‖ Si − S0 ‖≥ δ

Standard weighted regression gives the estimates α̂ and β̂. In order to estimate posterior
densities, Beaumont et al. (2002), took a heuristic approach, in which they make an
assumption that the errors are constant in the interval and adjust the parameter values
as

 ∗i =  i − (Si − SO)Tβ̂.
Scripts written in R are available to infer parameters using this method (http://www.
rubic.rdg.ac.uk/∼mab/stuff/ABC distrib.zip).

An alternative ABC approach that does not require simulation from the prior, which
will typically be rather inefficient, is that of Marjoram et al. (2003), which uses a rejection
approach as in Pritchard et al. (1999) embedded within an MCMC sampler in which the
likelihood ratio calculation is replaced by an accept/reject step depending on whether
simulated summary statistics lie within a tolerance range (see also Chapter 26). The
method of Beaumont et al. (2002) has been applied to a number of problems in population
genetics, including some in conservation and population management (Estoup et al., 2004;
Chan et al., 2006; Miller et al., 2005).

30.3 ADMIXTURE

Often, closely related taxa that were previously isolated from each other, have been
brought into contact as a consequence of recent habitat disturbance. Hybridisation occurs
when individuals from different taxa mate together and produce offspring, and this may be
followed by introgression when there is back-crossing into either population. Introgressive
hybridisation, and its detection is a significant area of concern in conservation genetics
(Haig, 1998), and can be studied at three levels. At the highest level one can ask questions
based on gene frequencies in separate populations, the subject of this section. At the next
level one can identify hybrid individuals through genotypic modelling, discussed in the
following section. Lastly, at the lowest level, hybrid individuals can be identified by
inferring degrees of relatedness between individuals and the reconstruction of pedigrees,
described in the final section.

The early development of statistical methods to infer admixture proportions was
stimulated by an interest in human populations (e.g. Glass and Li, 1953). Two populations
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diverge from a common ancestor and then hybridize in a single event (Figure 30.6). The
current samples are taken some time after this event from the known descendants of
the two parental populations and the hybrid population. The main aim of the statistical
analyses is to estimate the admixture proportion µ. This has been called an intermixture
model by Long (1991) to distinguish it from a gene flow model where the admixture
occurs on a longer time scale. The various statistical methods that have been developed
to estimate µ have made different simplifying assumptions about the parameters in
the model. In general, other than the approach of Bertorelle and Excoffier (1998),
the relationship between the parental populations has been ignored. Most approaches
have modelled the gene frequency, x, of a particular allele in the hybrid population as
xh = µx1 + (1− µ)x2, where the indices refer to the hybrid, parental 1, and parental 2
populations respectively. Obviously, if there are many alleles at many loci, no single value
of µ will explain all the allele frequencies and a maximum likelihood or least-squares
estimate of µ is made where the variance in xh from its expected value is modelled
according to different assumptions. In the approaches of Glass and Li (1953) and Elston
(1971) genetic drift is assumed absent, sampling error is assumed absent in the parentals,
and all the variation is due to sampling error in the hybrids. The approach of Thompson
(1973) takes into account drift in all populations as well as sampling error. That of Long
(1991) separately estimates both drift and sampling error in the hybrid population, but
assumes that the parental frequencies are known without drift or sampling error. Long
suggests an approach to take into account sampling (but not drift) error in the parental
frequencies, but this is not used in the most widely implemented version of Long’s method,
that of Chakraborty et al. (1992).

Thompson (1973) provides the framework for an analysis of the admixture model
including drift in all populations. The gene frequencies are first arcsine square root
transformed, x ′ = sin−1(

√
x). Under this transformation drift can be modelled as a

Brownian-motion diffusion with variance 1/(8Ne) per generation, where Ne is the
effective number of individuals, assumed to be diploid. In the case of k alleles at
a locus, rather more complex transformations and projection to a k − 1 dimensional
space can be used (see discussion in Thompson, 1975a). At the time of the admix-
ture event the vector of transformed gene frequencies in the hybrid population is
given as x′h = µx′1 + (1− µ)x′2. Following drift, the observed sample vectors are ah,
a1, a2, the component elements of which are normal random variables with mean
xi and variance T /8Ne + 1/8n for sample size n. Thus it is possible to estimate
p(ah, a1, a2|x′h, µ, x′1, x′2). Thompson (1973) uses this to obtain conditional likelihood
functions for µ. This model has also been studied using a coalescent-based method similar
to that discussed in Section 30.2 (Chikhi et al., 2001), and is described in slightly more
detail later.

The method of Long is based on a weighted least squares solution of ah = µx1 +
(1− µ)x2 + ε, where ε has zero mean and separate components of variance due to
sampling and drift. The weighting accounts for the inhomogeneity of the variances, and
is solved iteratively in Long (1991). Chakraborty et al. (1992) provide a closed form
expression:

µ̂ =
∑L
l=1

∑rl
i=1(a1li − a2li )(ahli − a2li )/ahli∑L
l=1

∑rl
i=1(a1li − a2li )

2/ahli

,
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for L loci with rl alleles at each locus. This has mean square error

MSE =
∑L
l=1

∑rl
i=1[(ahli − a2li )− (µ̂a1li − a2li )]

2/ahli∑L
l=1 rl − 1

.

Long (1991) suggests that since the sample size is known, drift in the hybrid population
can be separately estimated as F̂ = (MSE− 1/2n)/(1− 1/2n) where F has the usual
definition (drift variance)/(xh(1− xh)). An estimate of T /Ne can be made using the
Wright’s formula F = 1− exp(−T /(2Ne)).

Another approach to inferring admixture proportions, with relevance to conservation,
is that by Bertorelle and Excoffier (1998). They consider a model where two parental
populations, each of size N chromosomes, themselves diverged from a common popula-
tion over a time period τ , hybridize in one event at time tA from the present to produce a
hybrid population of size N , with µN chromosomes from one population and (1− µ)N
chromosomes from the other.

The essential approach is to define the expected admixture proportion as a function
of the ratios of expected coalescence times between groups of genes. Genetic distances
defined for the genetic marker that is being studied have expectations that depend only on
the product of coalescence time and mutation rate. Assuming a constant mutation rate, the
ratios of coalescence times can be replaced by ratios of expected genetic distances. An
estimator can be obtained by substituting the expected distances by the estimated distances.
Bertorelle and Excoffier define two estimators, one of which is described here. They derive
the expected coalescence times for a pair of genes, one sampled from the hybrid population
and one sampled from a parental. In this case, there can be no coalescences since the time
of admixture. There are two possibilities: with probability µ the hybrid lineage is derived
from the same parental populations as that being compared, and therefore the expected
coalescence time is tA + t1, where t1 is the expected coalescent time in population 1;
alternatively, with probability 1− µ, the hybrid lineage comes from the other parental,
in which case the expected coalescence time is t12. Two equations can be obtained, one
for each of the parental populations in the pair, and a least-squares estimate for µ can
be obtained. The expected times, t1, t2 and t12 are replaced by the estimated genetic
distances d1, d2 and d12, on the assumption that for both microsatellites and sequences
the typical genetic distances have the form d = 2νt , where ν is the mutation rate and t
is the expected coalescence time. Bertorelle and Excoffier denote this estimator mY .

It should be noted that this involves an estimate of tA which is in general unknown.
Bertorelle and Excoffier suggest replacing the estimate of (2ν)tA by the minimum
observed distance in pair-wise comparisons of genes between either parental and the
hybrid population. However, in practice this is almost always equivalent to assuming
tA = 0. For multi-locus data, Bertorelle and Excoffier suggest that the distances should
be calculated as averages over loci, rather than separately calculating estimates of µ for
each locus before averaging.

Using molecular distances, they make comparisons between mY and the estimator of
Roberts and Hiorns (1965), which they denote mR, and that of Chakraborty et al. (1992;
based on Long, 1991, discussed earlier), denoted mC . Their overall finding is that in
general mY is much less biased than either mR or mC , but tends to have a higher variance.
When the parental populations have been separated for a substantial period and when the
mutation rate is high the variance in mY tends to approach that of the other estimators.
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However, with single microsatellite loci, the variance is still substantially larger than that
of the other estimators. With many microsatellite loci (the situation commonly found in
practice), the variance becomes close to that of the other estimators with negligible bias,
while the other estimators remain appreciably biased towards admixture proportions of 0.5.

Bertorelle and Excoffier apply their method to microsatellite data from grey wolf,
coyote, and red wolf populations obtained by Roy et al. (1994). They use the data from
the red wolf, and use data from populations believed to be respectively pure wolf, pure
coyote, wolf hybrid, coyote hybrid. They then infer admixture proportions in the wolf
hybrid, coyote hybrid, and red wolf populations. They suggest that estimates of sampling
error inmY ,mR andmC can be made by bootstrap resampling chromosomes independently
across loci. This is equivalent to adding an extra inbreeding step into each population, and
it is more appropriate to resample among loci, conditioning on the observed frequencies
at each locus. This procedure will take into account both the genealogical and sampling
variance. For reasonable sample sizes the bulk of the variance in the estimators will be
between loci.

For the coyote and wolf hybrid populations they obtain estimates of admixture that
are consistent across estimators – ∼ 0.5 in the case of the wolf hybrid populations and
∼ 0.1–0.15 in the case of coyote hybrid populations. The bootstrap standard error in the
case of the coyote hybrid population is sufficiently large that the estimate is consistent
with the true admixture proportion of zero. Thus, for these known hybrid populations the
results support the conclusions of Roy et al. (1994).

The method of Bertorelle and Excoffier (1998) has been extended to include multiple
parental populations (Dupanloup and Bertorelle, 2001). Essentially the estimation proce-
dure described above for mY , is generalized to allow estimates of multiple µi , where∑d
i=1 µi = 1. Standard errors for the mYi are estimated using the same bootstrapping

procedure as described above. They evaluate the performance of the mYi using simula-
tions and conclude that despite the increased number of parameters the level of precision
in the estimates remains approximately the same as in the original study with two parental
populations. A general improvement to the method of Bertorelle and Excoffier (1998) for
sequence data, assuming an infinite sites model, has been described by Wang (2006). He
derives formulae assuming an infinite sites model for the expected number of segre-
gating sites in each population, in each pair of populations pooled together, and in
all 3 populations pooled together. The actual numbers are counted in the data and the
method of least squares is used to estimate parameters. This method appears to provide
more accurate point estimates for the parameters in the general admixture model of
Figure 30.6.

Chikhi et al. (2001) analyse the same model as that of Thompson (1973) using the
coalescent method described in Section 30.2.2. Importance sampling can be used to
estimate the likelihood p(data|x1, x2, µ, T /N1, T /N2, T /Nh) and then marginal posterior
densities (e.g. p(µ|data), p(T /Nh|data), etc.) are estimated with MCMC. Although the
use of the likelihood method should allow for increased accuracy and precision the method
is highly computer intensive and no simulation-based study of precision and accuracy has
been published to allow comparison with earlier studies. On an example data set of gene
frequencies obtained from Jamaican people, who are assumed to be of mixed European
and African descent (Parra et al., 1998) to the point estimates for µ were similar to
those obtained by the method of Long (1991), but with estimates of error that were more
than twice as great (assuming the posterior distribution is sufficiently close to normal
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so that Bayesian and frequentist estimates are comparable). By estimating the degree
of drift subsequent to admixture for all subpopulations it does provide extra detail in
the analysis, unlike commonly used methods. The posterior distributions for T /N are,
however, generally broad.

As discussed in Section 30.2.1, an alternative way of computing the likelihoods is to
use the Wright–Fisher model. Wang (2003) has inferred the parameters discussed above
using the same approach as in Wang (2001). In addition, like Bertorelle and Excoffier
(1998), and unlike Chikhi et al. (2001), who used uniform Dirichlet priors for the parental
gene frequencies, Wang (2003) explicitly models the genetic divergence between the
parental populations by introducing additional scaled parameters TA, NA1, and NA2, for
the ancestral divergence time, and the ancestral population sizes, using a uniform prior
for the common ancestral gene frequencies. Wang demonstrates that the assumption of
independent uniform priors for the parental gene frequencies is quite problematic for most
scenarios in which there is a high degree of divergence between the ancestral populations
(the ideal case for detecting admixture). In this case there is tendency for estimates
of the admixture proportion to be biased away from 0.5 towards 0 or 1. In a detailed
comparison of the performance of different methods for inferring admixture, Choisy et al.
(2004) noted a similar phenomenon, which could be partially corrected by using Dirichlet
(1/K, . . . , 1/K) priors for the parental gene frequencies, as in Rannala and Mountain
(1997), discussed further below. The prior of Wang (2003) is computationally intensive,
and an alternative would be to use a Dirichlet distribution, parameterized by FST as
discussed in Sections 30.2.2 and 30.4–i.e. Dirichlet (θjx1, . . . , θjxK ), where θj = 1/FSTj
for the j th parental population and x1, . . . , xK are the ancestral allele frequencies for
alleles 1, . . . , K . The method of Wang (2003) is substantially faster than that of Chikhi
et al. (2001), and, because of this, extensive simulation testing is possible, and Wang
demonstrates that the likelihood-based approach has superior performance, generally, than
moment-based estimators.

The likelihood-based models described thus far are models of drift without mutation.
They assume the ancestral variation is partitioned among the descendent populations solely
through drift and admixture. This is due to the convenience of modelling–e.g. it allows
relatively straightforward analytical expressions for the likelihood in Wang (2003). In
order to allow for mutations over the period since the common ancestral population, full
genealogical models would have to be considered. The most straightforward implemen-
tation would be to use MCMC, or to compute likelihoods using importance sampling
(Chapter 26). To date, no such methods have been developed for the specific class
of intermixture models considered here. A Bayesian approach has been introduced for
microsatellite data, however, using the ABC technique discussed above. In this case, 15
summary statistics are computed from the data and compared with those obtained from
simulations. These comprise: for all 3 populations, numbers of alleles, heterozygosity,
a modified version of the M statistic of Garza and Williamson, and pair-wise FST for
all pairs; the (δµ)2 statistic of Goldstein et al. (1995) for the two parental populations;
the linkage disequilibrium estimator, D′ for the hybrid population; and the mY statistic
(above). They use the SIMCOAL2 program (Laval and Excoffier, 2004) to infer the
parameters in the full model of Figure 30.6. When the times since admixture are short
(i.e. when the assumptions of drift-based models are best met) their method has only
marginally weaker performance than that of Wang (2003), and substantially improved
performance when they are longer.
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Figure 30.6 A figure illustrating the model of admixture described in the text. The two parental
populations (1 and 2), diverge from a common ancestor over a period τ and then hybridize to
produce a population h, with a proportion µ of alleles coming from population 1. These populations
then remain distinct and diverge from each other over a period T without intervening migration.

30.4 GENOTYPIC MODELLING

In contrast to the approach described in the previous section, where gene frequencies
are used to infer admixture, a relatively new area of modelling is to use multi-locus
genotypic information to detect individuals that are immigrants or have immigrants in
their recent ancestry. Thus, in effect, the method will only work if there is appreciable
gametic disequilibrium within a population caused by gene flow. An influential paper
in the context of conservation was that of Paetkau et al. (1995; see also Waser and
Strobeck, 1998). They studied populations of polar bears in Canada and were interested
in knowing whether populations managed as independent units were in fact connected
through dispersal of individuals. The approaches that have been taken to address questions
such as this have led to several overlapping areas of research that are outlined in the
following sections.

30.4.1 Assignment Testing

In order to identify migrant individuals Paetkau et al. (1995) made an estimate of the gene
frequencies at each locus in each of the populations from which they had samples. For
each individual they calculated the joint probability of obtaining its multi-locus genotype
from each of the populations by multinomial sampling,

∏
p(aj |x̂j , nj ), with observed

genotype at the j th locus, aj , and estimate of gene frequencies x̂j . The individual was then
‘assigned’ to the population in which this probability was highest. The rationale behind
this approach is that, in the absence of immigration, the genotype of each individual is
a random draw from its own population gene frequencies and therefore, providing gene
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frequencies vary sufficiently among populations, individuals should be assigned to their
own populations. Migrants can be detected because they have a higher probability of being
drawn from some other population. In the study of Paetkau et al. (1995), 4 populations
of polar bears were sampled, using eight microsatellite loci. They found that 60 % of
individuals were assigned to the population in which they were sampled, 33 % to the
nearest population and 7 % to more distant populations. In a later study on brown bears
from seven populations in NW Canada using the same loci (Paetkau et al., 1998), 92 %
were assigned to the population from which they were sampled, and those assigned to
other populations illustrated biologically plausible patterns of dispersal.

Estimation of the population gene frequencies is an important part of the procedure, and
in the method of Paetkau et al. in order to avoid zero elements in x̂, the genotype of each
individual is incorporated into the estimate of x̂ for each population, when the assignment
test is made. Alternative methods may be preferable, and, in particular, it would be useful
to estimate x̂ jointly with the assignment parameters. In the initial study no attempt was
made to estimate confidence intervals, but resampling schemes have latterly been consid-
ered (see http://www2.biology.ualberta.ca/jbrzusto/Doh.php for more
details).

Some of these points are addressed in a study by Rannala and Mountain (1997). Their
approach differs from that of Paetkau et al. in that they include Bayesian estimation of
the allele frequencies in each population, and a likelihood ratio test to compare different
hypotheses. They consider a number of populations with many loci sampled. For ease
of exposition, one locus and two populations are considered here. They condition on
the number of alleles, k, observed at a locus among all populations. The observed allele
frequency counts are given by the vectors a0 and a1 for the two populations. The posterior
distribution for the unknown gene frequency vector x is given by p(x|a0) and p(x|a1).
To estimate this a Dirichlet prior is assumed with parameters all equal to 1/k and written
D(1/k, . . . 1/k), giving a posterior p(x|a0) = D(a0 + 1/k) and p(x|a1) = D(a1 + 1/k).
Rannala and Mountain describe their prior as assigning equal probability density to the
frequencies of the alleles, although this only occurs with a Dirichlet D(1, . . . 1). Clearly
the choice of prior may depend on the genetic model assumed.

Under a model where none of the individuals are immigrants or have immigrant
ancestry, their genotypes are assumed to be multinomial samples of size 2 taken, e.g.
from the posterior p(x|a0), defined above. Integrating out x, the marginal probability of
an individual having genotype X = (Xi, Xj ) is then multinomial-Dirichlet,

p(X|a0) =
∫
p(X|x)p(x|a0) dx.

The probabilities for each locus can then be multiplied together, under the assumption
that they are independent.

Other hypotheses can be considered, e.g. whether the individual has ancestry from one
immigrant d generations earlier. The probability of observing genotype X = (Xi,Xj )
in an individual where one allele is drawn at random from one population and one is
drawn at random from the other population, is p(X|a0, a1) = 1/2(p(Xi |a0)p(Xj |a1)+
p(Xi |a1)p(Xj |a0)), where the probabilities are calculated as single draws from the
multinomial Dirichlet outlined above.

Rannala and Mountain (1997) extend the argument above to consider the probability of
observing the genotype, p(X|a0, a1, d), given that an individual might have one ancestor,
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d generations ago, from a different population (with all other ancestors coming from the
same population). There is a probability of 1/2d−1 that the parent which is immigrant
or has immigrant ancestry contributes an immigrant gene, in which case the probability
is as given above, and there is a probability 1− 1/2d−1 that both genes come from the
same population in which case the probability is calculated as a sample of size 2 from
the multinomial Dirichlet, p(X|a0) or p(X|a1).

Rannala and Mountain suggest that for particular individuals, hypotheses can be tested
using likelihood ratio tests of the form

� = p(X|a0)

p(X|a0, a1, d)
.

Critical regions of a given size can be estimated by parametric bootstrapping–i.e. Monte
Carlo simulations of genotypes X with probability p(X|a0) under the null hypothesis.
The power of the tests can be estimated by additionally simulating under the alternative
hypothesis–genotypes X with probability p(X|a0, a1, d).

A comparative analysis of the performance of the two approaches on test data sets
has been carried out by Cornuet et al. (1999). They introduce the use of a distance-
based method for assigning individuals to populations. The method is analogous to that
of Paetkau et al. but individuals are assigned to populations with the smallest genetic
distance. Cornuet et al. study the most commonly used genetic distances for microsatellite
or allozyme data (Chapter 29), modified to take into account that individuals are
compared with populations. In addition to the question of assigning individuals to
particular populations, Cornuet et al. also consider the question whether an individual
is likely to have come from the population in which it resides. In order to test the
latter, which they term testing for exclusions, Cornuet et al. suggest simulating genotypes
at random from an estimate of the sample population gene frequencies and comparing
the likelihood (or genetic distance) of the individual’s genotype with the distribution of
likelihoods or distances from random sampling.

Cornuet et al. tested the methods using data simulated from a model of diverging
populations with mutations according to either an IAM or SMM. Their overall conclusion
was that the Rannala and Mountain method outperformed all other methods, and the
genetic distance methods, in general, performed less well than the methods using
likelihood. Since Rannala and Mountain’s calculation of likelihoods differs from that
of Paetkau et al. only in the estimation of population frequencies x, this implies that,
taking a Bayesian approach, the choice of a suitable prior distribution for x is an
important consideration. Tests for exclusions also appear to work well using the Rannala
and Mountain method to calculate likelihoods. However, Cornuet et al. noted that the
method used for simulating null distributions was an important component of testing–with
increasing numbers of loci there was a tendency to incorrectly exclude individuals from
all populations.

30.4.2 Genetic Mixture Modelling and Clustering

One aspect of the method of Rannala and Mountain, discussed above, is the necessity for
a large number of hypothesis tests, requiring some care in specifying the critical values
for assessing significance. Also it would be better if the estimates of the population
frequencies x could take into account the possibility that some individuals are immigrant
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rather than resident. An additional feature, common to these approaches (but examined
by Cornuet et al.), is that hypothesis testing is limited to the populations that are
actually included in the survey, whereas immigrants may come from other, unsurveyed,
populations.

These aspects are addressed in a study by Pritchard et al. (2000), which has resulted
in the very widely used program, STRUCTURE. They initially consider the problem in
terms of one sample composed of individuals of possibly heterogenous origin, where the
genotype of each individual is a mixture of alleles drawn from an unknown number of
contributing populations with unknown gene frequencies in each population. The aim is to
infer jointly: (1) the number of populations contributing to the genotypes of individuals;
(2) the allele frequencies in each of these populations; (3) the proportions from each of
these populations contributed to the genotype of each individual. This can be regarded
as a standard mixture problem in statistics (Robert, 1996), often analysed using Bayesian
MCMC methods, and Pritchard et al. use similar approaches to solve it.

In this approach, it is assumed that there are K populations contributing to the gene
pool of the sample population. Pritchard et al. consider two main models: in one case
each individual is drawn from one of the K populations; whereas in the more general
case a proportion of the individual’s alleles are drawn from each of the K populations.
The former situation is a special case of the latter, and this will be described here. The K
potential source populations each have an unknown gene frequency distribution at each
locus, pkl for the k = 1 . . . K populations and l = 1 . . . L loci. The pkl are elements of
some multidimensional vector P. For the ith individual it is assumed that the proportion
of its genotype that is drawn from population k is qik , an element of the vector Q. For the
purpose of analysis they introduce an indicator vector Z where the element zail gives the
population from which allele copy a = 1, 2 at locus l in individual i originates, and can
take any value from 1 . . . K . This use of indicator variables (missing data) is widely used
in Bayesian mixture modelling with Gibbs sampling (e.g. Robert, 1996). The genotype
of each individual is given by vector X with elements xail . It is assumed that the alleles
at each locus in each individual are drawn independently. With this formulation, the
likelihood p(X|Z,P,Q) can be calculated straightforwardly.

The interest is in estimating the posterior distribution p(Z,P,Q|X) for the parameters
of interest. In order to estimate this, priors are required for P, Q, and Z. They assume
a Dirichlet prior for P, as in Rannala and Mountain (1997), but a uniform D(1, . . . 1)
rather than (for J alleles at a locus) the D(1/J, . . . 1/J ) prior of the latter authors. They
assume a prior of p(zail = k) = 1/K for Z. For Q they model the prior hierarchically as a
Dirichlet with form D(α, . . . α). When α is small the genotype of an individual is drawn
almost completely from one population, and when α is large the genotype is evenly mixed
from all the populations. The prior for α is uniform on [0,10]. The posterior distribution
of α gives evidence of the degree to which there is heterogeneity among individuals in
their ancestry.

Generally they wish to estimate p(P,Q, α|X) (marginal to Z, which is introduced to
make the Gibbs sampling tractable, see Robert, 1996). This is performed by succes-
sively sampling from the full conditional distributions p(P,Q|X,Z), and p(Z|P,X,Q)
and updating α using Metropolis–Hastings sampling. The conditional distributions and
sampling methods are given in Pritchard et al. (2000).

The estimation of K , the number of populations contributing to genotype distributions
among the samples, is more problematic. Pritchard et al. develop an ad hoc procedure
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for estimating P(X|K) using the sample mean and variance of the Bayesian Deviance
−2 logp(X|Z,P,Q) over values of Z,P,Q generated by the Gibbs sampler. An assump-
tion of the method is that the sampled values of p(X|Z,P,Q) are lognormal, and Pritchard
et al. argue that it should be viewed as an approximate guide, which appears to give satis-
factory answers with test data. With a suitable prior for K it is then possible to estimate
P(K|X).

An additional point that Pritchard et al. note is that since the population labels
are arbitrary, they can be switched in Z,P,Q without affecting the likelihood. Thus
p(Z,P,Q|X) has K! symmetric modes. If the Gibbs sampler explores these fully then,
for example, a summary statistic such as the posterior mean of the qik will have expectation
1/K irrespective of the amount of substructure in the data. In their analyses the Gibbs
sampler appears to explore only one mode, and thus they find that posterior mean values
and 95 % credible intervals are satisfactory summaries of the posterior distribution. It is
reasonable to assume that when there is less information on population structure label-
switching will be more frequent, and this will in turn make detection of population
structure more difficult if based on such summaries.

The method of Pritchard et al. can also be used to answer questions about the ancestry
of individuals in a similar way to the method of Rannala and Mountain (1997). In order
to avoid restructuring of the model, the approach they have taken is to specify that
individuals have resident ancestry with fixed probability v and non-resident ancestry with
probability 1− v. If they have non-resident ancestry, they can be themselves immigrants
or have one immigrant parent, or one immigrant grandparent, etc. This is equivalent to
using geographic information as a prior to restrict the possible values the qik can take.
The Gibbs sampler can then be run as before, but the qik can only take a restricted set
of values that can be mapped back to each of the above possibilities. In this way, by
interpreting the qik , it is possible to estimate the posterior probability of each type of
ancestry, whether immigrant or non-immigrant, and from which population. The method,
however, relies on the user specifying in advance a particular value of v. The method
offers an improvement on the approach of Rannala and Mountain in that it avoids the
problems of multiple hypothesis testing.

Dawson and Belkhir (2001) have developed a method to partition a sample into
subgroups within which there is random-mating, similar to the model without admixture
analysed by Pritchard et al. (2000). There are, however, a number of differences between
the two approaches. Following the notation of Pritchard et al. (2000), used above, Dawson
and Belkhir calculate the likelihood function p(X|Z,P, K), and use Metropolis–Hastings
sampling to estimate p(Z,P, K|X). The prior for Z is such that all partitions have
equal prior probability, and the prior for P is a Poisson–Dirichlet distribution, which is
appropriate for the infinite alleles model, and is parameterized by θ , which is equivalent
to the scaled mutation rate. A point prior value of θ was used in their examples.
Unlike the method of Pritchard et al. (2000) the number of partitions, K , is allowed
to vary from 1 to some upper value, and within this interval the prior for K is given
by a power function p(K) = AuK for 0 < u ≤ 1. The main concern in Dawson and
Belkhir (2001) is the problem of label-switching discussed above. Although Pritchard
et al. (2000) are careful to highlight this, it still remains the case that in their method the
MCMC ‘works’ only because it does not converge. This seems somewhat unsatisfactory
and Dawson and Belkhir attempt to avoid this by recording the proportion of times
during the MCMC simulation in which groups of individuals co-occur together within
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the same partition. The posterior probability of co-assignment of d individuals to the
same partition forms a measure of similarity among the d individuals, which can then
be used in an agglomerative clustering algorithm to maximize the minimum probability
of coassignment within clusters. In practice, Dawson and Belkhir use d = 2, which
corresponds to the ‘furthest-neighbour’ or ‘complete-linkage’ clustering algorithm. They
find that the resulting tree is a more useful graphical summary to identify cryptic
population structure than the posterior distribution for K , which tends to overestimate
the number of partitions, and appears to be affected by the value chosen for θ . They
suggest that a future improvement would be to put a more diffuse prior on θ .

30.4.3 Hybridisation and the Use of Partially Linked Markers

The method of Pritchard et al. has been used to analyse hybridisation of wildcats with
domestic cats in Scotland (Beaumont et al., 2001). Applying the method, implemented in
the program STRUCTURE, to wild-living cats in Scotland there is very strong evidence
of two groups. In this analysis samples from known domestic cats were also included,
but these were set to have qi = 0 (where the subscript k has been dropped and qi is
the proportion of non-domestic ancestry of individual i). The point estimates of the qi
and their 95 % credible intervals are illustrated in Figure 30.7 for the wild-living cats.
Museum specimens are shown as dotted lines in the figure. Interestingly, when logit
transformed, these point estimates correlate strongly with the results from the first axis
of classical metrical scaling of genetic distances between cats. As discussed in Beaumont
et al. (2001), given that the linkage disequilibrium caused by admixture will decay rapidly
for unlinked genes, the existence of a second group of cats does not necessarily mean
that a ‘pure’ wildcat population with no introgression has been identified. It only suggests
that this group of cats shows little evidence of very recent domestic cat ancestry.
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Figure 30.7 The figure shows the means and 95 % credible intervals for estimates of the
probability that individual wild-living cats have purely non-domestic ancestry. These are plotted
against the rank of the mean estimate. Vertical dashed lines refer to museum specimens.
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Motivated by considerations such as this, Falush et al. (2003) have extended the
basic approach in the program STRUCTURE to allow the use of closely linked (but
recombining) markers. A further improvement lies in the priors used for the parental
gene frequencies, which follow the Dirichlet approximation for modelling immigration-
drift equilibrium. This allows additionally for FST to be inferred in each population, as in,
e.g. the 2mod program of Ciofi et al. (1999) discussed above. To allow for recombination,
in their extension of the method, they modify Z so that the zail are no longer independent
at each locus, but form a Markov chain, with neighbouring loci tending to originate
from the same population with probability inversely related to the map distance between
markers and the total rate of recombination events, r , per unit distance. In this model r can
be loosely equated to the time since admixture. The idea is that the indicator for the first
locus is drawn according to Q above and then the indicator for the second locus is either
the same as this if there is no recombination event, or is drawn randomly from Q if there
is an event. Although this approach has not been used to analyse the Scottish wildcats it
has been used to look at wildcats in Hungary (Lecis et al., 2006). In this case the results
suggested that the admixture was probably ancient, but could not be dated accurately.
More definite results come from an analysis of wolf populations in Italy (Verardi et al.,
2006). In wolves there is the prospect of historical admixture with domestic dogs, and the
aim of this study was to elucidate how much had occurred, and over what period. In this
case they were able to obtain clear estimates of admixture time of 70(±20) generations
(around 140–200 years), although the overall amount of admixture was quite low. This
study illustrates the potential power of genotypic methods to enhance frequency based
analysis of population structure and hybridisation.

The use of multilocus genotypic information to make inferences about recent migration
has great potential, and a number of papers have used methods similar to those of Pritchard
et al. (2000) to study different aspects of population structure. For example, Anderson
and Thompson (2002) have developed a method for inferring the proportion of hybrids
in a sample. In their method they consider hybridisation over n generations. It is then
possible to partition genotype frequencies into classes corresponding to the pedigree of
the individuals–e.g. when n = 2, whether they are purely of one species or the other, or
F1 hybrids, or F2 hybrids, or back-crosses. For each individual the posterior probability
of belonging to one of these genotype frequency classes can be computed using MCMC,
and hence non-admixed individuals can be detected (at least, given the n generations
of admixture). There are similarities between these methods and those used for genetic
stock identification (GSI), where often the population affinities of individuals is of less
interest than some estimate of the degree of admixture. A Bayesian method specifically for
GSI, using MCMC, has also been developed by Pella and Masuda (2001). Corander and
Marttinen (2006) discuss the general problem of quantifying the extent of hybridisation
and admixture in populations, and propose an alternative approach.

30.4.4 Inferring Current Migration Rates

As noted above, the method of Pritchard et al. (2000) also allows calculation of the
posterior probability that an individual has a specified degree of immigrant ancestry. In
order to calculate this a point prior is specified for v, the probability that an individual has
resident ancestry. Taking this approach further, it is possible to use genotypic methods to
infer parameters in a demographic model, such as the current levels of gene flow between
populations. The model of Wilson and Rannala (2003) assumes that all populations in
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the system have been sampled, and that the individuals each have at most one immigrant
ancestor. The data consist of the genotypes (X) and sampling locations of individuals (S),
and the parameters are the population source of the immigrant ancestor for each individual
(M), the number of generations back in the past that the immigrant ancestor occurred (t),
the probability that two alleles in an individual are IBD from a recent ancestor (F ),
leading to a departure from Hardy–Weinberg equilibrium, and the population frequencies
(p). The prior for M and t for each individual can then be written as a function of the
immigration rate, mlq , the proportion of individuals in population q that are immigrant
from population l. It is this hierarchical parameter that is of most interest. MCMC is then
used to obtain the posterior distribution of the parameters. Thus the method can identify the
immigrant ancestry of particular individuals, but it also, for example, constructs a matrix
with point estimates of current migration rates between populations. An example where
this approach has been used is in the study of movement between Orang-utan populations
in Borneo (Goossens et al., 2006). In this case the model of Wilson and Rannala (2003)
was used to demonstrate that there was very little current gene flow between populations
on two sides of a river. Goosens et al note that in more general comparisons the method
appeared to converge well when the migration rate is low, but convergence was more
problematic on data sets with higher migration rates.

The method of Wilson and Rannala (2003) need not be closely correlated with, e.g.
pair-wise FST , both because the latter takes some time to equilibrate and also because
in a migration model FST is a function of the product of the effective size, N , and
migration rate m. Thus it should be possible to obtain estimates of N given information
on the genetic divergence between populations. Interestingly it is not necessary to use a
likelihood framework to make such estimates. Vitalis and Couvet (2001) have developed
method-of-moments estimators to infer effective size and immigration rate using single
locus and two locus measures of identity by state.

30.4.5 Spatial Modelling

A common application of some of these genotypic methods has been to discover clusters
of individuals, with a view to better understand population structure (see Excoffier and
Heckel, 2006, for a general review of software for performing these analyses). Typically
the data are based on individuals of known origin, and the idea is to then apply, e.g. the
program STRUCTURE of Pritchard et al. (2000) to see if it identifies interesting groupings
(see Corander et al., 2003, for an alternative approach to this problem). Thus inference
of parameter K , the number of clusters, becomes a focus of interest, and this is rather
problematic, since it is only estimated through an approximation that may not always be
valid, although further modifications have been suggested (Evanno et al., 2005). These
considerations have motivated the development of methods that identify the number of
groups through model-selection and also incorporate explicit spatial information into the
genotypic models. These spatial models tend to borrow heavily from the techniques of
geostatistics.

One example of this is the study by Guillot et al. (2005), who propose a model similar
to that of Pritchard et al. (2000), with K populations, and with the aim of inferring K .
However the prior for K is structured around a Voronoi tessellation. Here, a series of
points, the number, m, of which is drawn from a Poisson distribution with parameter
λ are located uniformly at random over a rectangle, covering the geographic area of
interest. Around each point it is possible to draw a convex polygon that contains the
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region of the rectangle that is closer to that point than to any other point. The rectangle
can be divided into m such non-overlapping regions. This is a Voronoi tessellation, and,
given K populations, each tile of the tessellation is assumed to be assigned uniformly at
random to one of the K populations. One implication of this model is that, although the
tessellation provides a spatial element, it only specifies loosely, via the interaction of K
and λ, how the space is subdivided. Thus, e.g. if K is 2 and λ is high the two populations
are distributed as a mosaic through the region, whereas if λ is low the region is likely to
be dominated by two main blocks. In contrast to the method of Pritchard et al. (2000),
reversible jump MCMC (Green, 1995) is used to infer the posterior distribution of K .
The method appears able to be able to recover accurately spatial genetic discontinuities
in simulated data sets. In an application of this method (implemented in the program
GENELAND) to roe deer populations in France (Coulon et al., 2006) the method could
find weak evidence of spatial discontinuity into two populations, north and south of a
region including a highway, canal, and river running close together. In contrast, analysis
with Structure suggested that there was only one population.

An alternative spatial model, specifically for assigning individuals to populations
(also possible with Geneland), is presented in Wasser et al. (2004), which includes an
application of their method to the problem of locating the geographic origin in Africa
of elephants from their DNA samples. Theirs is primarily an assignment method, similar
to that of Rannala and Mountain (1997). However, they incorporate a spatial model for
the population frequencies. Importantly also they explicitly allow for genotyping errors
in the microsatellite data that they analyse. The frequencies fjlk for allele j at locus l
in population k are modelled logistically fjlk(θ) = exp(θjlk)/(

∑
j ′ exp(θj ′lk)), and the θ

is modelled by a Gaussian process. A Gaussian process is one that generates random
variables, any sample n of which are drawn from a n dimensional multivariate Gaussian
distribution (and hence any linear combination of these random variables is also Gaussian).
The mean vector and covariance matrix of this distribution are determined by the problem
under consideration. For spatial problems, as here, this is more generally called a Gaussian
random field. In the case of the spatial model here, for the same allele at the same locus
in two different locations k and k′ the covariance depends on d the distance between
the two locations and they use the function given by (1/α0) exp[−(α1d)

α2 ]. Wasser et al.
(2004) further extend the model by allowing a location W to be specified so that genetic
samples can be assigned to locations that are not specified in advance. This is implemented
using MCMC, allowing the posterior distribution of W to be computed. With this method
Wasser et al. analysed samples from 399 individuals, and demonstrated that they were
able to make accurate spatial assignments. The implication of this study is that in future,
DNA from ivory samples could be used to determine their provenance, and thereby help
control the trade in ivory.

30.5 RELATEDNESS AND PEDIGREE ESTIMATION

It is tempting to predict that the genotypic methods discussed above will in future
become less distinct from those based on the kin structure of populations. The latter
aim to estimate the relatedness of pairs of individual, test hypotheses about degrees of
relationships between individuals, and more generally uncover the recent pedigree of a
sample. If such methods could be embedded into a population model, then it would be
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feasible to unite frequency-based methods for uncovering demographic history with the
genotypic approaches. For example, recently methods have been developed for partitioning
a sample of individuals into groups according to their degrees of relationship (e.g. sib,
half-sib, or non-sib groups), and in this regard the methods are similar to the multilocus
techniques described above. Currently, analysis of relatedness has been used to estimate
genetic components of variance of phenotypic trait in outbred populations (e.g. Mousseau
et al., 1998), and thus can potentially be used in conservation to quantify the amount
of phenotypically important genetic variation in endangered populations (Storfer, 1996;
Carvajal-Rodrı́guez et al., 2005; Thomas, 2005). Furthermore information about the kin
structure of populations can help inform conservation decisions (Regnaut et al., 2006).

There have been a number of recent reviews in this area (Blouin, 2003; Thomas, 2005;
Oliehoek et al., 2006; see also Chapters 23 and 24), and further relevant information
is available in the chapters on pedigree analysis in the current volume. The aim of this
section is to briefly introduce the general concepts and mainly follows the treatment in
Thomas (2005) and Oliehoek et al. (2006).

An early interest has been to estimate the coefficient of relatedness, r . In a large random
mating population

r = 2θ = φ/2+�, (30.4)

where θ is the coefficient of coancestry or kinship between two individuals, and is the
probability that an allele taken at random from a locus in one individual is IBD with an
allele taken at random in another individual, φ is the probability that at a particular locus
the two individuals have exactly one allele each i.e. IBD, and � is the probability that
the two individuals have exactly two alleles that are IBD. The only other possibility is
that no alleles are IBD. With inbreeding, it is of course possible that the alleles within
individuals are IBD, leading to more complex possibilities, but those are typically not
considered, by making the assumption of a large random mating population. Different
degrees of relationship have different expected values for r , φ and �. The coefficient of
relatedness can be viewed as the proportion of alleles in one individual that are IBD with
those in another.

There are a number of different ways to estimate r . For example a simple method of
moments estimator can be constructed from the same considerations that are used in the
estimation of FST (Ritland, 1996): a pair of randomly chosen alleles, one from individual
x and the other from individual y, has a probability of being identical in state (IIS), sxy ,
given by sxy = θ + (1− θ)s, where s is the probability of choosing two identical alleles
at random from the population (i.e. the sample homozygosity). This can be rewritten as

θ = sxy − s
1− s . (30.5)

As with estimators of FST , this invites the substitution of sxy and s by estimates from
the data. Various versions of this type of estimator, with different weighting schemes,
are discussed in Ritland (1996), Lynch and Ritland (1999), and Oliehoek et al. (2006). It
should be noted that Lynch and Ritland (1999) suggest that the specific estimator derived
above (their equation 10) has poor sampling variance in comparison with others. It is given
here solely because of its simplicity of derivation. As with FST , less biased estimates will
be obtained by averaging the numerator and denominator across loci before evaluating
the fraction. A more sophisticated class of moment estimators uses a similar approach to
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that above to estimate the parameters in (30.4) (Lynch and Ritland, 1999; Wang, 2002). A
widely-used method of moments estimator, derived using rather different considerations,
is that of Queller and Goodnight (1989), which has often been used to estimate the
relatedness of groups of individuals. It can, however, be used to estimate r for a pair of
individuals, but in this case it is necessary to use multi-allelic loci because the estimator is
undefined for heterozygotes when there are biallelic loci. A recent comparison of methods
based on empirical data with known pedigrees and also on simulated data suggests that the
method of Lynch and Ritland has generally superior performance among these estimators
(Csillery et al., 2006). This is supported, at least for panmictic populations, by the study
of Oliehoek et al. (2006), but they also observed that for structured populations a modified
version of (30.5) was more accurate.

Likelihood-based methods have also been developed (Thompson, 1975b). Maximum
likelihood estimates tend to have marginally improved mean square error performance
but can be biased with small sample sizes (Milligan, 2003; Thomas, 2005). The basic
form of the likelihood calculation that has been used (following Thomas, 2005) is:

P(G|φ,�) =
∏
l

{
(1− φ −�)P[0](gl|x)+ φP[1](gl|x)+�P[2](gl|x)

}
,

where gl is the vector of the four allele types at a particular locus (in this example,
which assumes independence across loci, it is assumed that the alleles in an individual
are unordered with respect to which parent they were inherited from), G is the genotype
across loci, x is the baseline frequency. Note that this will typically be estimated from the
data in a separate computation, although in principle it could be imputed by MCMC, as in
the program STRUCTURE. The indices [0], [1], [2] refer to the number of alleles that are
IBD, giving, e.g. P[1](({a, b}, {a, c})|x) = 2papbpc. Point estimates can then be obtained
by maximising the likelihood (Milligan, 2003). One use of the likelihood approach has
been to estimate heritability in outbred populations (Mousseau et al. 1998). For each pair
of individuals the likelihood of the joint genotypes and phenotypes can be calculated as
a function of the degree of relationship and parameters in a quantitative genetic model,
which can then be inferred. Typically, since the computations are based on all pairs of
individuals, these give composite likelihood estimates and the confidence intervals have
to be computed through bootstrapping.

Recently, moving beyond these pair-wise analyses, there has been an increase in
likelihood-based approaches for uncovering the kin-structure of populations. Methods
have been developed for calculating the likelihood for groups of individuals that share
two parents or none (Painter, 1997). In this case it is equivalent to finding a simple partition
of the sample into full sib families and single individuals. Alternatively it is possible to
identify groups that share two parents (full-sibs), one parent (half-sibs) or none (Thomas
and Hill, 2002; Wang, 2004). The Parentage program of Wilson (in Emery et al. (2001))
directly assigns individuals to parents. It is possible to specify the genotypes of known
potential parents, and impute the genotypes of missing parents. The methods of Wang
(2004) and Emery et al. take care to deal with the possibility of genotyping error, which
can have serious consequences for such analyses. Hadfield et al. (2006) have developed
a method, extending that of Emery et al. that allows for assignment of parents but also
the estimation of a number of parameters relating to social structure, such as the size of
male territories.
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An ideal goal is to be able to reconstruct the pedigree of a sample from genotypic
information (Steel and Hein, 2006). Parentage assignment (Emery et al., 2001; Hadfield
et al., 2006) can be regarded as construction of a pedigree back one generation in a
discrete-generation model, with a population size given by the sum of the number of
observed and missing parents, and with a prior distribution for the genotypes of the
missing parents, as well as for family sizes and mating structure as in Hadfield et al.
(2006). Such a system could then in principle be taken back an arbitrary number of
generations. The pedigree can be regarded as a more detailed genealogical model for a
diploid sexual organism than the coalescent, and, as with the coalescent, it may often be a
nuisance parameter to be integrated out while inferring parameters related to demography
and life-history. The most complete approach to date in this regard is that of Gasbarra et al.
(2007), which is based on a population-based model of pedigrees constructed backwards in
time (Gasbarra et al., 2005). The method of Gasbarra et al. (2007) uses a highly complex
MCMC updating scheme, and can be applied to both unlinked and partially linked genetic
data. The pedigree is constructed back to some pre-specified point in time. Pedigrees are
sampled from their posterior distribution, given the genotypic data. It is also possible
to use the method to infer the phase of multi-locus data. Such a method has enormous
potential in conservation genetics, both in being able to infer social structure as well as
demographic parameters, such as immigration rates.
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Websites

Below is a list of websites containing programs that perform some of the analyses
described in this chapter.

• Estimation of effective size and migration using temporally spaced samples; admix-
ture; relatedness:
http://www.zoo.cam.ac.uk/ioz/software.htm

• Estimation of effective size; changes in population size; migration and isolation; ABC
methods:
http://www.rubic.rdg.ac.uk/~mab/

• Estimation of effective size; hybridization:
http://swfsc.noaa.gov//staff.aspx?Division=FED&id=740

• Assignment testing; bottleneck detection:
http://www.montpellier.inra.fr/URLB/

• General population genetics software (ARLEQUIN); general-purpose programs for
simulating gene-frequency data under a wide variety of conditions; programs for
performing ABC analysis:
http://cmpg.unibe.ch/software.htm
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• Bottleneck detection:
http://swfsc.noaa.gov/textblock.aspx?Division=FED&id=3298

• Estimation of migration rates:
http://www.rannala.org

• Analysis of population structure; population assignment; hybridization:
http://pritch.bsd.uchicago.edu/software.html

• Analysis of population structure; population assignment: hybridization:
http://www.rni.helsinki.fi/~jic/bapspage.html
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Aspects of the evolutionary and historical processes that shaped present-day human diversity can
be inferred from patterns of genetic variation within and between populations. The main questions
currently being addressed include the evolutionary relationships among contemporary humans and
the different human forms documented in the fossil record, the extent and causes of the genetic
differences among modern populations, and the implications of such differences for applied research
in fields such as medical genetics, pharmacogenetics, and forensic science. In this chapter, we outline
the main current models of human evolution and review the available ancient and modern DNA
evidence in the light of these models. We suggest that, despite ongoing controversy, most data are
easier to reconcile with a model in which the ancestors of modern populations dispersed recently
(<200 000 years ago) from Africa and essentially or completely replaced previously settled human
forms. However, it has become increasingly evident that models assuming the expansion of a small
African group are oversimplified, and more complex scenarios need be envisaged, including genetic
substructuring in the expanding population. How much substructure is needed to explain existing
data is unclear, and whether this apparent substructure could be partly due to admixture between
modern and archaic humans is debated. The available studies among modern populations show that
the differences tend to be patterned in geographical space, but that variation tends to be continuous
and strong genetic boundaries rarely occur, suggesting a major role of isolation by distance in
shaping human diversity. As a consequence, global human diversity is not well described by a
small set of well-defined races. The extent to which racial classifications might be useful in some
applications remains to be demonstrated. Throughout the chapter, we emphasise the large amount
of uncertainty surrounding the interpretation of genetic data, when they are used either to make
inferences on our origins or to predict disease risk.
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31.1 INTRODUCTION

Individuals of all species form phenotypic and genotypic clusters that are generally
structured in space and represent the outcome of the species’ evolutionary history.
Identifying the geographical patterns of human genetic diversity, and understanding
their evolutionary and historical causes are the goals of anthropological genetics. Until
recently, to address questions in this field, scientists had only measures of anatomical
traits available and, from the mid twentieth century, a handful of polymorphic genetic
markers. With the development of fast and inexpensive methods for DNA typing, the
amount of relevant information available has increased dramatically, and so has the
possibility to test hypotheses about the evolutionary factors underlying human diversity.
In this way, some traditional questions found an apparently satisfactory answer, but
many others emerged, so that the field seems no less controversial now than it used
to. The main controversies concern the degree of genetic differentiation among human
populations, whether the existing differences can be regarded as discontinuous and, if so,
whether it is possible to agree on a non-subjective list of distinct human groups, each
of which could potentially be associated with specific disease risks. A lesser, but by no
means less debated problem, is whether such groups can or cannot be legitimately called
races.

Interpreting the data bearing on human diversity and on its history is not straightforward
for a number of reasons, including the obvious difficulty for all, including the authors
of this paper, to study our species with the same emotional detachment with which
we study Escherichia coli or Drosophila melanogaster. Words such as diversity and
race do not immediately correspond to obvious biological concepts, and take different
meanings in science from their non-scientific usage. Even in the technical literature, a
high degree of ambiguity is present, so that according to Templeton (1999) the genetic
differences among human populations are among the lowest in mammals, whereas
according to Sarich (2000) they are highest of all mammals. Therefore, it seems
useful to briefly review the available evidence, to outline the main open questions,
and to consider the potentials and the limitations of the approaches chosen to address
them.

In this chapter, we shall deal with some of the many studies leading to our
current understanding of the patterns of human biological diversity and the evolu-
tionary and demographic processes that generated them. Given the increasing role of
genetic data in the debate, we describe in some detail the main methods used to
interpret them. We also outline, the way some concepts took shape in the course
of time. In the next section, we deal with historical inference, outlining the main
lines of evidence that suggest a recent African origin of humankind. We include a
short description of the palaeontological and archaeological data and of the models
that provide the framework necessary for interpreting the biological evidence. In
Section 31.3, we move to the studies describing how human genetic diversity is struc-
tured in space. This leads to a final section in which we deal with a number of
recently emerged practical issues, in fields such as medicine, pharmacogenetics, and
forensics, for which assumptions on the structure of human diversity appear to be
important.
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31.2 HUMAN GENETIC DIVERSITY: HISTORICAL INFERENCES

31.2.1 Some Data on Fossil Evidence

It is currently accepted that hominins, i.e. bipedal primates (Lewin and Foley, 2004),
separated from the other African apes (Gorilla and Pan genera) some 5–8 million
years (MY) ago. On the basis of fossil evidence, the first small-brained clearly bipedal
primates are documented in Africa from at least 6 MY ago in what are now Chad and
Kenya. Between 6 and 4 MY ago, the data are scanty, and it is only from approximately
4 MY ago that the hominin fossil record starts to be wider, with the appearance of the
australopithecines (genus Australopithecus, meaning the ‘southern ape man’), the most
famous being ‘Lucy’ (A. afarensis 3.2 MY old, Figure 31.1). There is no consensus on
the number of australopithecine species that existed between 4 and 1 MY ago (e.g. Klein,
1999), but many believe that there may have been as many as seven, some of them living
at the same time (Toth and Schick, 2005; Klein, 2005; Scarre, 2005).

Australopithecines are usually divided into robust (sometimes referred to as Paran-
thropus) and gracile (genus Australopithecus) forms, and it is from the latter that the
genus Homo (more precisely, H. habilis and H. rudolfensis) probably evolved, perhaps
from east African A. garhi (Figure 31.1). This split probably took place around 2.5 or
2.0 MY ago, when the first stone tools appear in the African archaeological record. The
early Homo forms include H. habilis, H. rudolfensis, and H. ergaster, the latter appearing
sometime around 1.8 MY. It is from H. ergaster that H. heidelbergensis and H. erectus
are thought to have derived, with H. heidelbergensis being regarded as the most likely
ancestor of Neandertals and modern humans. H. erectus separated from H. ergaster less
than 2 MY ago (Figure 31.1). With H. ergaster, H. heidelbergensis, H. neandertalensis,
and H. erectus, we enter the heart of the controversies surrounding the models of modern
human emergence, in particular, the contribution of so-called archaic forms to the ancestry
of modern H. sapiens.
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Figure 31.1 A schematic representation of hominin evolution. X axis: million years ago.
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Until recently, H. erectus was thought to be the first Homo species to have left
Africa and reached eastern Asia more than 1.6 MY ago (Antón and Swisher, 2004).
The recent Dmanisi finds in the Caucasus, attributed to H. ergaster or to a closely related
species (Vekua et al., 2002; Toth and Schick, 2005) and dated about 1.77–1.95 MY
ago, suggested that other Homo species also left Africa, which would imply that the
three species potentially involved in the H. sapiens ancestry developed from H. ergaster
ancestors. It thus appears that between 1 and 2 MY ago these potential ancestors were
already geographically separated, namely H. erectus in eastern Asia, H. neandertalensis in
western Asia and Europe, and H. sapiens in Africa. The first European settlers (ancestors
of H. neandertalensis) are often pooled with their African contemporaries (ancestors of
H. sapiens) under the name H. heidelbergensis, mentioned above, and may have lived
around 1.1–1.3 MY ago.

Many details of this history are unknown and, among those that are known, just a
few can be properly discussed here. But, before moving further to the models of modern
human origins, we note that many fossils are still not assigned with certainty to a genus.
As a consequence, there is still incomplete agreement on how many species of humans (or
australopithecines, for that matter) have lived in the past. In fact, simply deciding which
fossils were part of the human lineage and which were not depends largely on what are
considered the key human features (Tattersall, 1995; Toth and Schick, 2005; Klein, 1999).
We have only a vague idea about variation in time and space within fossil species, and
hence the attribution to species and the reconstruction of their evolutionary relationships
contain elements of arbitrariness (see Figure 31.1). For example, some authors do not
consider the differences between H. erectus and H. ergaster large enough to warrant the
need for a separate H. ergaster species. Moreover, proposed hominid species increased
in numbers during the early twentieth century, decreased when the tendency prevailed
to group together individuals in a limited number of species, and then increased again.
Many early controversies originated from Darwin’s intuition that bipedal locomotion, tool
making, and a large brain case size developed simultaneously. We now know that these
features appeared at different times, respectively around circa 6, 2.5, and 2 MY ago (Klein,
1999; Toth and Schick, 2005). Dating can also be problematic, as has been suggested, for
instance, for the Dmanisi specimen, who might be as recent as 0.79 MY ago, or as old
as 2.4 MY due to stratigraphic uncertainty (Klein, 2005). Finally, technologies are also
not always easily linked to one species, or even one genus. In brief, there is currently no
uncontroversial Homo fossil older than 1.8 MY and no uncontroversial data suggesting
sustained occupation of temperate areas before 1 MY ago (Klein, 2005). The first dispersal
of Homo species outside Africa probably started as early as ∼2 MY, but more recent
dates (∼1 MY) cannot be ruled out (Antón and Swisher, 2004; Klein, 2005).

31.2.2 Models of Modern Human Origins

Despite the many uncertainties, most palaeoanthropologists would agree that H. ergaster
is the ancestor from which Asian H. erectus and African H. heidelbergensis evolved, and
that H. neandertalensis and H. sapiens then evolved from H. heidelbergensis. However,
the relative contributions of these three forms, which may (Tattersall, 1997) or may not
(Wolpoff, 1999) be regarded as separate species, to modern human morphologies remains
controversial, as well as the exact timing (Grine et al., 2007) and route (Anikovich et al.,
2007) of their dispersal in the Near East and Eurasia.
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In recent decades, the debate has focused on two main models of human evolu-
tion. Under the Out of Africa (OOA), or Recent African Origin (Howells, 1976;
Stringer and Andrews, 1988; Stringer, 1989) or Replacement (e.g. Relethford, 2003)
model, present-day populations are regarded as deriving from a major spatial and demo-
graphic expansion of African populations of H. sapiens, starting less than 200 KY ago.
These populations colonised the whole planet, replacing, essentially with no admix-
ture, previously settled H. erectus and H. neandertalensis populations. On the other
hand, the Multi-Regional (MR) model posits that Eurasian populations of H. erectus or
H. neandertalensis are part of the genealogy of present-day humans (Wolpoff et al., 1988).
This means that only one human species existed in the last MY or so, encompassing
all these different morphologies, which should then be simply classified as archaic and
modern forms of a polytypic H. sapiens species (Relethford, 2003). These basic models
really represent the extremes of a range of possible models, whose classification, in turn, is
not completely clear (but see Aiello, 1993). For instance, Bräuer (1984) and Smith (1985)
proposed that both admixture and replacement occurred between expanding African and
previously settled Eurasian populations. Despite their similarities, these two hypotheses
are considered, respectively, as versions of the OOA and of the MR models because of
the greater weight they give to either admixture (Bräuer, 1984) or continuous gene flow
(Smith, 1985) over long periods.

The MR model stems from work by Weidenreich (1943; 1947) and others, who des-
cribed morphological similarities between Asian people and the fossil Sinanthropus
(Peking Man), and between modern Australians and Pithecanthropus (Java Man) fossils,
the so-called regional continuity traits (both Peking and Java man are now classified
as H. erectus). These findings led to the proposal that anatomically modern Africans,
Asians, Australians, and Europeans had descended from anatomically archaic ancestors
who largely occupied the same regions. On the contrary, a comparatively recent origin
of our species was proposed to explain the similarities between the first anatomically
modern Europeans of the Cro-Magnon type and 130-KY-old fossils from the Omo Kibish
region of Ethiopia (Stringer, 1978). In large-scale comparisons of modern and ancient
bone specimens, the data appeared to be in significantly better agreement with the OOA
rather than the MR model (Waddle, 1994; Lahr, 1994).

Further support for the OOA model comes from studies showing little or no evidence
for hybrid populations displaying both archaic and modern traits, which suggests that the
fossil record exhibits a discontinuous process of demographic replacement rather than
continuity (Stringer and Andrews, 1988; Lahr and Foley, 1998). The controversy is still
going on (Zilhão, 2006), and different authors appear to interpret the apparent lack of
continuity in very different ways regarding the admixture process itself. For instance,
it has been claimed that, even with significant admixture, complete continuity is not
expected for morphological traits (Relethford, 1999; 2001), and hence lack of continuity
may not necessarily play against the MR model. If all models involving any contribution
of archaic populations to the modern gene pool are to be considered as versions of the
MR model, rejecting it becomes in effect impossible.

31.2.3 Methods for Inferring Past Demography

Genetic data have the advantages over other types of data that their transmission mode
is well known and that theory describing the evolution of genes in populations is well
developed. In the following, we discuss from a biologist’s point of view the manner in
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which genetic data have been used in recent decades to infer the demographic history of
populations. For more statistical and mathematical treatments, see Chapters 26, 28, 29
and 30.

31.2.3.1 Summary Statistics

Population genetics inference is possible only if past demographic events leave specific
genetic signatures in present-day populations. In particular, the effect of changes in
population size on different summary statistics has been extensively studied. For diploids,
it is customary to define the scaled mutation rate θ = 4Neµ, where Ne is the effective
population size of a stationary (or demographically stable) population and µ the locus
mutation rate.

For neutral markers, evolving under an infinite-allele model in a Wright–Fisher
population, Kimura and Crow (1964) showed that at mutation-drift equilibrium E[H ] =
1/(θ + 1), where E[.] represents expectation and H is the probability that two alleles
drawn at random from the population are the same, which can be estimated by �(ni/n)

2,
where ni is the observed count of the ith allele, and n is the sample size. Ewens (1972)
derived from what is now known as Ewens’ sampling formula, an estimator of H given
nA, the number of distinct alleles in the sample, which depends on and n and θ but not
the observed ni values. Significant differences between these two H estimates can be
interpreted in terms of departure from any of the neutrality, size constancy, or mutation
model assumptions Watterson (1978). For instance, when large populations go through
a bottleneck (Nei et al., 1975), rare alleles are lost first, which only mildly influences
�(ni/n)

2, whereas nA is substantially reduced, and so the former estimate of H is
significantly lower than that expected given nA until a new equilibrium is approached.
Conversely, expanding populations tend to accumulate new (and hence rare) alleles, and
�(ni/n)

2 is initially significantly higher than the estimate of H based on nA.
The rationale behind this approach, and Watterson’s (1978) related approach, has since

been extended to different genetic markers by assuming different mutation models and
using different summaries of the data (Tajima, 1989a; 1989b; Fu and Li, 1993). For DNA
sequence data, the mean number of nucleotide differences between sequences, π, and the
number of segregating sites, S (i.e. single nucleotide polymorphisms (SNPs)), provide two
estimators, θS and θπ , of the scaled mutation parameter, θ , at mutation-drift equilibrium
that are differently affected by demographic events and selection (Tajima, 1989a; 1989b).
Tajima (1989a) hence suggested the use of D = (θπ − θS)/[var(θπ − θS)]1/2, now known
as Tajima’s D (see also Chapter 26), as a measure of departure from equilibrium
conditions. Demographic bottlenecks and balancing selection tend to reduce S without
much affecting π, and hence lead to positive D values, whereas population expansions
and positive selection (selective sweeps) lead to negative values. For microsatellites,
equilibrium equations have not been derived analytically, but simulation-based approaches
have been developed (Cornuet and Luikart, 1996).

Beyond the use of summary statistics, theoretical work has also focused on other
properties of allele-frequency distributions, or, for sequence data, on the properties of
the so-called mismatch distributions. The mismatch distributions are obtained by plotting
a histogram of all pairwise comparisons between sequences in a sample, and have been
shown to be sensitive to demographic changes (Slatkin and Hudson, 1991; Rogers and
Harpending, 1992; Excoffier and Schneider, 1999; Ray et al., 2004). For other markers,



HUMAN GENETIC DIVERSITY AND ITS HISTORY 1073

Marth et al. (2004) studied the properties of the full allele-frequency spectrum under
different demographic scenarios, and found computationally quick ways to estimate these
frequency spectra. Garza and Williamson (2001) have shown that bottlenecked populations
have ‘gappy’ allele-frequency distributions at microsatellite loci because the number of
alleles is strongly reduced, whereas the allelic range is only marginally affected.

Summary statistics based on genetic data may be easy to compute, but may discard
most of the genealogical information in the data (Felsenstein, 1992). As a consequence,
different sets of evolutionary factors can exert similar effects on summary statistics and
cannot be separated unless detailed archaeological or historical information is available.
Furthermore, these methods can detect demographic events, but usually provide poor
quantification or dating of such events.

Indeed, the magnitude of a departure from equilibrium may not be a monotonic function
of the time since the demographic event. Whereas mismatch distributions appear to
follow simple temporal dynamics, this is not the case of Tajima’s D (Fay and Wu,
1999). After a population expansion from a small population size, a unimodal mismatch
distribution is expected whose mode will move from low to high values as mutations
accumulate, whereas its height will decrease (Rogers and Harpending, 1992). On the
contrary, simulations have shown that, after a bottleneck, Tajima’s D is first positive,
and then becomes negative when the population recovers from the bottleneck, before
tending towards equilibrium (Fay and Wu, 1999). Thus, Tajima’s D, one of the most
popular statistics used to detect population size changes, may be transiently positive or
negative, depending on the severity of the change and on the number of generations
since the original demographic event, and hence it can behave differently for haploid and
diploid genomes. The mutation model assumed can also generate significant departures
from equilibrium (Aris-Brosou and Excoffier, 1996), but in many studies rejection of
equilibrium is directly taken as evidence of demographic changes or selection. Future
work will probably need to separate the effects of the mutation model from those of
population structure and selection. Because crucial evolutionary information is lost as
summary statistics are estimated, such an endeavour will require methods that are more
efficient at retrieving information on demographic parameters from genetic data.

31.2.3.2 Likelihood-based and Bayesian Approaches

Following Felsenstein (1992), several authors have developed statistical methods that aim
at extracting information from the full allelic distribution (Griffiths and Tavaré, 1994;
Kuhner et al., 1995; Wilson and Balding, 1998; Beaumont and Rannala, 2004). The aim
of likelihood-based approaches is to compute or approximate the probability PM(D|θ) of
the observed data D under some demographical model M, defined by a set of parameters
θ = (θ1, . . . , θk). This probability is the likelihood LM(θ |D), or simply LM(θ). Some
methods focus on point estimators, e.g. maximum likelihood estimates (MLE), others
take a Bayesian perspective and compute a posterior probability distribution for θ . Using
Bayes formula, we can write the following:

PM(θ |D) = PM(θ)× PM(D|θ)/PM(D) = PM(θ)× LM(θ |D)/PM(D)

= PM(θ)× LM(θ)/PM(D). (31.1)

Since the denominator is constant, given the data, PM(θ |D) is proportional to PM(θ)×
LM(θ). In the Bayesian framework, PM(θ) summarises knowledge (or lack thereof ) about
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θ before the data are observed and is referred to as the prior. PM(θ |D) is the posterior and
represents updated knowledge about θ after the data have been observed. Equation (31.1)
asserts that the posterior is obtained by weighting the prior with the likelihood function.
The use of priors involves subjectivity, but this is introduced via clear and explicit
assumptions about parameters. It also allows one to explicitly account for uncertainty
in all parameters, rather than assuming point values for, say, mutation rates or generation
times (Goldstein et al., 1995; Chikhi et al., 1998).

Computing the likelihood can present a substantial difficulty for these approaches, even
for simple demographic models involving one population (Wilson and Balding, 1998;
Beaumont, 1999; Storz and Beaumont, 2002; Wilson et al., 2003). For complex models,
there is often no solution (but see Kuhner et al., 1995; Chikhi et al., 2001; Nielsen and
Wakeley, 2001; Beerli and Felsenstein, 2001; Rannala and Yang, 2003; Hey and Nielsen,
2004). Whereas population data can be rapidly simulated using coalescent methods (see
Chapters 25, 26, 29 or 30), the probabilities involved are too low for classical Monte
Carlo (MC) integration even for reasonable sample sizes and multilocus data sets.

In order to improve the efficiency of MC integration and significantly reduce the
computation time, importance sampling (IS) schemes have been introduced (Griffiths
and Tavaré, 1994; Stephens and Donnelly, 2000). The idea is to sample coalescent trees
from distributions that are as close as possible to the conditional distribution, given
the data P(T |D), where T represents the trees. One way of doing that is to construct
coalescent trees starting from the data so that trees that cannot possibly produce the data
are not explored (see Griffiths and Tavaré, 1994; Stephens and Donnelly, 2000). Under
the classical frequentist approach, some optimisation algorithm is used to find the MLE.
Alternatively, the likelihood profile is obtained using a grid across the parameter space.
On the contrary, most Bayesian methods of the last decade use Markov chain Monte
Carlo (MCMC) algorithms to obtain samples from the required posterior distribution. This
approach has proven useful to analyse various demographic models, including migration
between splitting populations of variable size (Nielsen and Wakeley, 2001; Hey and
Nielsen, 2004; an application in Hey, 2005) and admixture (Chikhi et al., 2001; 2002).

The application of full-likelihood methods to real data is often difficult, and limited
to specific demographic models. Analyses may run for weeks with no result because
the MCMC algorithm fails to reach equilibrium, due to the high dimensionality of
the problems addressed. This has favoured a renewed interest in approximate methods
(Tavaré et al., 1997; Weiss and von Haeseler, 1998; Excoffier et al., 2005). One line of
research consists in simplifying the calculation of the full likelihood into the product
of simpler components that are treated as if they were independent, sometimes called a
composite likelihood approach (Wang, 2003; McVean et al., 2004). The use of product of
approximate conditionals (PAC) likelihood by Li and Stephens (2003) follows a similar
rationale and was used to simplify inference with recombining sequence data (see also
Chapter 26).

Another possibility is to simulate a parameter value θ under the prior, but accept it
as an approximate simulation from the posterior PM(θ |D) if a dataset D∗ simulated
under the model given this value of θ is sufficiently close to the real data. How
close D∗ must be from the real data and how to measure ‘closeness’ are the focus
of ongoing research. Different authors suggest either the use of summary statistics (e.g.
Pritchard et al., 1999; Beaumont et al., 2002; Marjoram et al., 2003), or the data directly
(Marjoram et al., 2003) to obtain a distance measure d(D∗,D) between the observed
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and simulated data. Not all methods using this approach are Bayesian (e.g. Weiss and
von Haeseler, 1998), but most are, and these have been dubbed Approximate Bayesian
Computation (ABC) methods (Beaumont et al., 2002). Their main advantages are that
they are extremely flexible, suitable for any demographic model under which data can be
simulated, and, contrary to MCMC-based methods, computations do not need to reach
an equilibrium. Non-genetic information, such as that deriving from archaeology, can
also be incorporated into the priors. Figure 31.2 shows a simple example where posterior
distribution obtained using a full-likelihood method is compared to posteriors obtained
using an ABC approach with different summary statistics or combinations thereof (see
also Chapters 26 and 30).

Summary statistics could also be used in simulation-based approaches not requiring
likelihoods or posterior distributions to be estimated. Akey et al. (2004) analysed the
properties of four summary statistics, namely Tajima’s D, Fu and Li’s D∗ and F ∗, and
Fay and Wu’s H , both under the standard neutral model and four alternative demographic
scenarios (an exponential expansion, a bottleneck, a two-island model, and an ancient
population split). They then compared average summary statistics estimated from the data
and from the simulations, choosing parameter values that minimised the difference. By
analysing variation at 132 genes sequenced in African-American and European-American
samples in this way, the authors could (1) reject implausible evolutionary hypotheses,
(2) estimate parameter values under the likely hypotheses, and (3) detect loci potentially
under selection (outliers). Eight loci appeared as outliers under all the simulated scenarios
and were thus termed demographically robust selection genes.

Detection of loci under selection has again come to be a major focus of research
(see Chapters 22, 27 and 30, Beaumont and Balding, 2004; Beaumont, 2005). Many
methods analysing genomic data derive from the suggestion of Cavalli-Sforza (1966) that
all demographic parameters being equal, very high or very low values of the standardised
allele-frequency variance, FST, can only be due, respectively, to diversifying or stabilising
selection. The main problem with this approach is that the null distribution of FST is
unknown (Nei et al., 1977). Possible solutions include simulating the data under simple
models such as Wright’s island model (Beaumont and Nichols, 1996), incorporating
different mutation models (Flint et al., 1999), or avoiding assumptions on the demographic
history by using many random loci (Goldstein and Chikhi, 2002; Akey et al., 2002). Akey
et al. (2002) and Storz et al. (2004) chose this approach to study variation of, respectively,
26 000 SNPs in Africans, Europeans, and Asians, and microsatellite loci in Europeans
and Africans. In both cases, all outlier loci showed reduced variability in non-African
populations. Assuming the OOA model, these results might point to adaptive selective
sweeps following expansion from Africa. However, the choice of the populations sampled
could also generate spurious signals of selection. For instance, complex demographic
processes, such as the wave of advance and admixture proposed by Eswaran (2002) and
Eswaran et al. (2005) could also produce unusual patterns in genomic data, with some
neutral loci showing drastically extreme behaviours. Recent work indicates that the fate
of mutations during spatial expansions, whether to increase in frequency or disappear, is
not easily predicted (Edmonds et al., 2004; Klopfstein et al., 2006).

31.2.4 Reconstructing Past Human Migration and Demography

In the last 25 years, genetic data have been increasingly used to investigate aspects of
the human past that were previously studied only by paleontologists and archaeologists.
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Figure 31.2 A comparison of full-likelihood and ABC approaches. The posterior densities for
log(θ ) are compared, where θ = 2Nu and u is the mutation rate. The horizontal dashed lines
represent the flat prior distributions for log(θ). The data analysed were simulated using a value of
θ = 10. The solid lines in each panel represent the posterior obtained using Beaumont’s (1999)
full-likelihood method as implemented in the msvar software. Three summary statistics were used
in the ABC approaches: expected heterozygosity (He), variance in allele size (va), and number of
alleles (nA). The three curves in each panel were obtained by using He only (dash-dotted line), He

and va (dotted) or He, va and nA (dashed). The upper and lower panels were obtained by changing
the tolerance level. In the upper and lower panel, the summary statistics were allowed to differ
from the real data by 50 and 30 % respectively. Altogether 10 000 coalescent simulations were
performed using an R code originally written by M. Beaumont.

The first large-scale analyses of human DNA diversity were descriptions of mitochon-
drial DNA and showed that, contrary to what was expected at that time, geographical
structuring is weak in humans. The estimated evolutionary trees are rather shallow, with
long terminal branches and an excess of low-frequency polymorphisms (Cann et al.,
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1987; Vigilant et al., 1991; Ingman et al., 2000), all features expected in populations
that expanded rapidly or were subjected to diversifying selection. Because this signal
was also detected in several autosomal regions (Goldstein et al., 1995; Marth et al.,
2003; Voight et al., 2005), it was interpreted as resulting from a demographic process,
thus supporting a comparatively recent origin of our species from a small group of
founders. Various independent lines of evidence suggest that these founders lived in Africa
(Reich and Goldstein, 1998; Takahata et al., 2001). The deepest branches of the mito-
chondrial trees consistently separated African sequences from heterogeneous clusters
containing both African and non-African sequences, a pattern also observed in successive
Y-chromosome studies (Underhill et al., 2000; Ke et al., 2001). Thus, both mitochondrial
and Y-chromosome gene genealogies contained a significant signal of a recent (<200 KY
ago) population bottleneck followed by a demographic (e.g. Slatkin and Hudson, 1991;
Rogers and Harpending, 1992) and spatial (Ray et al., 2004) expansion.

These results are not easy to reconcile with the predictions of the MR model. In addition,
the OOA model seems to better account not only for highest genetic variation in Africa
but also for two other findings, namely the limited human genetic diversity in general and
the limited diversity among continental populations, both greater in all species of great
apes despite their smaller geographical range and census sizes (Gagneux et al., 1999;
Kitano et al., 2003; Fischer et al., 2006, but see Yu et al., 2003). Therefore, in the last
decade of the twentieth century, a relatively clear picture of human demographic history
seemed to be emerging. In synthesis, human genomic diversity appears to result from the
recent expansion of a single African population. This population replaced the pre-existing
human forms encountered in its dispersal across the other continents, in the course of a
process of which the spatial details and the exact timing needed to be worked out.

In the last 5–10 years, however, the resequencing of autosomal regions provided
evidence that it is necessary to envisage more complex sets of evolutionary pressures,
not all of them fully understood yet, to account for the current patterns and levels of
DNA diversity. Indeed, studies of autosomal and X-chromosome variation showed no
general excess of rare polymorphisms (Hey, 1997; Harding et al., 1997; Harris and
Hey, 1999; Hammer et al., 2004). That points to diversifying selection, rather than to
a sudden demographic growth, as the cause of the excess polymorphism observed in
non-recombining DNA regions (Przeworski et al., 2000). In addition, Tajima’s D shows
different values in Africans and non-Africans (reviewed in Garrigan and Hammer (2006)),
which may be explained by different selective pressures in the different continents, and/or
different demographic histories in African versus Eurasian populations.

At present, the conclusion that the human gene pool is entirely derived from a single and
small ancestral population that expanded from East Africa in the last 200 KY is being
questioned anew. Opinions also differ on whether data support a single expansion, or
rather a more complex set of demographic changes, during which distinct archaic African
human forms came in contact and mixed, before or after migrating to other continents
(Garrigan and Hammer, 2006). The latter view is supported by the observation of deep
haplotype divergence and long-range linkage disequilibrium in the X chromosome.

On the other hand, explicit modelling of evolutionary processes in the geographical
space, incorporating population structure, gives results in good agreement with the hypoth-
esis that it was a single group of African hunter–gatherers who expanded dramatically
in numbers. The most recent of such studies concluded that humans started expanding
very recently (<60 KY ago) from a population whose effective size Ne was close to 1000
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individuals (Liu et al., 2006). The likely origin of the expansion was located in East
Africa (Liu et al., 2006), i.e. the region where the oldest modern Homo fossils have been
found (Trinkaus, 2005). An analysis of the correlation between genetic and geographic
distances concluded that current human diversity reflects a series of founder effects starting
from central or western Africa, but paucity of samples from East Africa may have influ-
enced this result (Ramachandran et al., 2005). Ray et al. (2005) also explicitly modelled
the spatial population structure and found a likely expansion centre in north Africa, but
argued that this result is probably an artefact due to ascertainment bias; once the bias is
removed, the most likely origin of modern humans returns to be East Africa.

A certain degree of inconsistency across studies is not surprising. The contrasting
conclusions drawn from analyses of variation at, respectively, autosomal loci and
uniparentally transmitted markers, reflect, at least in part, the different effective popu-
lation sizes for these classes of markers, which in turn have an impact on the temporal
change of various statistical indexes, including Tajima’s D (Fay and Wu, 1999). And,
more generally, current genetic diversity is the result of a history spanning hundreds of
thousand years, of which we can infer from genetic data only some trends through time
and place, with no guarantee that these trends affected in the same way all geograph-
ical regions and time periods. However, at present, the patterns observed in studies of
different markers and different population samples are not easily combined in a coherent
and comprehensive picture (Harris and Hey, 1999; Wall and Przeworski, 2000; Chikhi
and Beaumont, 2005). All factors considered, most authors currently maintain that the
OOA model is in clearer agreement with genetic data, but more elaborate versions of
the model seem necessary to account for the way different genome regions seem to vary
(Excoffier 2002; Goldstein and Chikhi, 2002). Efforts are currently directed at better
understanding the effects of ancient population structuring (Sherry et al., 1998; Gold-
stein and Chikhi, 2002; Excoffier, 2002; Harding and McVean, 2004), which may have
generated genetic patterns of ambiguous interpretation. Indeed, in the absence of detailed
knowledge of ancient gene flow, isolation, and extinctions, models must consider a broad
range of possibilities, and then the data may not contain sufficient information for us to
discriminate between alternative hypotheses.

Two examples, among the many possible, illustrate this problem. High coalescence
times were estimated for some nuclear genes (Harding et al., 1997; Templeton, 2002;
Garrigan et al., 2005; Garrigan and Hammer, 2006), and interpreted as resulting from
admixture between modern and archaic humans, and hence in favour of the MR model.
But with an effective size (Ne) of around 10 000 and a generation time of 20 years, the
expected time to the most recent common ancestor (TMRCA) is close to 800 KY (Goldstein
and Chikhi, 2002), i.e. close to the values estimated by Harding et al. (1997). Even higher
coalescence times such as those found by Garrigan et al. (2005) can be accounted for by
assuming a larger Ne, as has been found by some authors (e.g. Hammer et al., 2004) and a
larger generation length. However, subdivision of the ancestral human population in genet-
ically differentiated subpopulations or, in other words, ancient population structure, seems
to more simply explain the available data. On the other hand, population structure and
extinctions can lead to low Ne estimates, even in populations whose census size was actu-
ally large. Thus, the low Ne value, around 10 000, often estimated and used for humans,
could have been caused by extinctions of early communities that were spread across Africa
and Eurasia, rather than by a really small founding human population (Eller, 2002).
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The second example comes from the study of the geographic distribution of derived
haplotypes (the ‘D’ haplogroups) at microcephalin and abnormal spindle-like micro-
cephaly (ASPM), two loci involved in the determination of brain size, and hence potential
determinants of some cognitive abilities. The D haplogroups are recent (their estimated
ages are 37 and 5.8 KY, with large standard errors) and widespread outside Africa. These
two findings led to the conclusion that the D haplogroups carried a selective advantage,
possibly related with the emergence of modern human cognition, and hence increased
in frequency through a selective sweep (Evans et al., 2005; Mekel-Bobrov et al., 2005).
This conclusion was supported by neutrality tests and by simulations, in which neither a
population expansion from Africa nor presence of ancient population subdivision in Africa
could generate similar patterns in short evolutionary times. However, simulations consid-
ering at the same time the presence of ancestral differences among African subpopulations
and expansion from one subpopulation, did indeed reproduce under neutral conditions the
pattern observed (Currat et al., 2006). Studies currently in progress suggest that non-
pathologic variation at the microcephalin and ASPM loci is not associated with variation
in IQ tests (Mekel-Bobrov et al., 2007); to establish whether or not a selective sweep
played a role in the diffusion of the D haplogroups, more robust demographic models are
still needed.

Data from other fields, such as archaeology and linguistics, provide potentially useful
information to refine demographic models. However, language change may or may not be
associated with population changes, and, similarly, changes in the material culture docu-
mented in the archaeological record are not necessarily caused by demographic changes
(Collard and Shennan, 2000). Therefore, predicting evolutionary change from linguistic
and archaeological information remains a complicated task. Multidisciplinary, compara-
tive studies have enormous potential, but a shared methodology that everybody might be
satisfied with has not yet emerged (cf Cavalli-Sforza et al., 1988; Bateman et al., 1990).

A substantial leap forward in our ability to reconstruct at least aspects of our evolu-
tionary past is represented by the technical possibility to directly study fragments of DNA
coming from fossil bones. The main drawback of the polymerase chain reaction (PCR)-
based methods for the study of ancient DNA is the risk of amplifying contaminating DNA
(Serre et al., 2004). In the study of non-human species, it is simple to tell contaminating,
generally human, from endogenous DNA. Much greater problems of authenticity arise
in the study of human fossil DNA, which cannot differ much from those of potential
contaminators (Pääbo et al., 2004).

The risk to mistake modern human sequences for the sequences endogenous to the
ancient sample has not affected the study of the mitochondrial relationships between
anatomically modern and archaic Europeans, the Neandertals. At present, seven sequences
of the Neandertal mtDNA covering >300 bp have been published, spanning a time range
between 50 and 29 KY ago. All these Neandertal sequences differ from those of modern
individuals by at least 16 fixed nucleotide substitutions (Caramelli et al., 2006), and
hence cannot possibly result from contamination by modern people who manipulated the
specimens. In addition, the Neandertal sequences bear no special resemblance to those
of the Europeans, who, under the MR but not the OOA model, should be their direct
descendants (Krings et al., 2000).

Comparison of the first Neandertal sequence with modern European sequences under
reasonable assumptions on population sizes, and hence on the impact of genetic drift, led
Nordborg (1998) to conclude that a direct genealogical link between them is unlikely,
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but still cannot be ruled out with statistical confidence. However, later work on the
increasing number of sequences available shows that the Neandertal contribution to the
modern European mtDNA gene pool is very limited (Serre et al., 2004) and probably
does not exceed 0.1 % (Currat and Excoffier, 2004). Conversely, Plagnol and Wall (2006),
analysing modern patterns of linkage disequilibrium, concluded that even a value greater
than 5 % is compatible with the data, and suggested that admixture took place outside
Europe, namely in west Africa, a place, however, for which no fossils are currently
available. Admixture between archaic and modern Europeans has also been proposed to
account for the results of a study of the microcephalin locus (Evans et al., 2006). Evidence
against a significant Neandertal contribution to the mtDNA of modern Europeans comes
from the analysis of two sequences from 24-KY old anatomically modern humans of the
Cro-Magnoid type. Despite the limited chronological distance from Neandertals, these
sequences fall in the cluster of modern European sequences, and are clearly distinct
from the cluster formed by the Neandertal sequences, thus suggesting that Neandertals
are unlikely to be the genetic ancestors of anatomically modern Palaeolithic Europeans
(Caramelli et al., 2003).

Because DNA is generally degraded in ancient samples, so far applications have been
essentially limited to the study of mtDNA, which is present in multiple copies in each
cell, and hence has a higher probability to be retrieved in reasonably good, amplifiable,
conditions. Hopefully, technological advances may allow this to change in the near future
(Binladen et al., 2006; Green et al., 2006). However, at present, there is no way to look
directly at past nuclear DNA variation in humans.

The main feature of modern nuclear DNA variation at the global level are the continent-
wide gradients of allele frequencies, spanning much of Eurasia and extending into the
Americas and Oceania (Cavalli-Sforza et al., 1994; Barbujani et al., 1994; Chikhi et al.,
1998; Serre and Pääbo, 2004; Mulligan et al., 2004; Ray et al., 2005; Ramachandran
et al., 2005; Liu et al., 2006; Amos and Manica, 2006), with a more complicated pattern
in Africa, probably reflecting complex gene-flow patterns within the continent, and
selection (Reed and Tishkoff, 2006). Also, in good agreement with processes of gene flow
originating in Africa are measures of genetic diversity estimated from microsatellite data,
with a clear trend from minimal values in the Americas to maximum values in Africa, and
populations known to be of particularly large or small size behaving as outliers (Conrad
et al., 2006).

Even in the absence of data convincing everybody that all modern human genealogies
can be traced back to recent African ancestors, it is clear that Africa played a special role
in human evolution, as shown by patterns of genetic diversity (Watkins et al., 2001) and
of linkage disequilibrium (Tishkoff et al., 1996). Two main migration routes have been
proposed on the basis of the available genetic data. An exit and dispersion through the Near
East into Eurasia is commonly accepted and in good agreement with fossil evidence (Lahr
and Foley, 1998) and nuclear diversity (Ramachandran et al., 2005; Liu et al., 2006) but
another exit through the so-called southern route is currently receiving increasing attention
(Luis et al., 2004; Mellars, 2006). Indeed, mitochondrial DNA diversity in Asian genetic
isolates has been interpreted as suggesting an early (65 KY ago) expansion through the
Red Sea and India, directly into southeast Asia and Oceania (Macaulay et al., 2005).
Levels of linkage disequilibrium are maximal in the Americas and Oceania, lower in
Eurasia and minimal in southern and central Africa, consistent with repeated founder
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effects in the course of an expansion from Africa (Tishkoff and Verrelli, 2003; Tishkoff
et al., 1998; 2000; Sawyer et al., 2005; Montpetit et al., 2006).

31.3 HUMAN GENETIC DIVERSITY: GEOGRAPHICAL STRUCTURE

Humans have been described for centuries as subdivided in discrete and easily identifiable
genetic subgroups or races. During much of the twentieth century, most geneticists
believed that these races differed profoundly in their physical and mental characteristics
and that these differences have a biological basis and are hereditary (Provine, 1986). At
the end of the century, anthropologists and population geneticists had mostly abandoned
this idea, which was perceived to conflict with the available genetic evidence. However,
genetic epidemiologists brought it back to the centre of the attention with the beginning
of the twenty-first century.

Indeed, our probability to develop a disease reflects the interplay between two main
classes of risk factors, genetic and environmental. Both are at present impossible to exactly
measure, either because they are unknown (e.g. all the loci involved in the onset of a
complex disease, and the way they interact) or because they are difficult to quantify (e.g.
the effects on health of our diet, of the exposure to chemicals, smoke, alcohol, and of our
lifestyle in general). As a consequence, epidemiologists are forced to use approximations
in their effort to prevent disease occurrence, and it has been proposed that a way to
approximate genetic disease risks is to classify people in traditional racial categories
(Risch et al., 2002; Burchard et al., 2003; Mountain and Risch, 2004; Tang et al., 2005;
Risch, 2006). The task may not be easy because in the course of history no consensus has
emerged on the number and definition of human races, with catalogues including from
two to hundreds of proposed races.

31.3.1 Catalogues of Humankind

Only in the last few centuries could questions about human diversity be addressed
scientifically, but in fact these questions are as old as humankind. Differences among
humans were evident to the earliest naturalists; descriptions and classifications of human
types can be found in many ancient texts. A central question was whether we belong
to one or to several species. Such polygenistic theories flourished up to the nineteenth
century (Cohen, 1991), but the development of evolutionary studies, and the demonstration
that there is no reduction of fertility in crosses between members of very distant human
populations (Chung et al., 1967) led to their dismissal.

Science has long left creationism and polygenism behind, but the idea that a scientific
study of humans necessarily starts from their racial classification was long unchallenged
(Cohen, 1991) and still remains attractive to some. People differ in their aspect; all of us
recognise variation in facial traits, hair textures, height, body structure, and skin colour.
The typological approach consists in identifying some basic human types, defined on
the basis of such traits, and then attributing individuals to one of those types, or races.
Accordingly, starting with Linnaeus and for at least two centuries, analyses of human
biological diversity were essentially race catalogues, differing from each other for the
number and definition of the various items (Bernasconi, 2001). In turn, racial types were
thought to be associated with other characteristics such as temperament, behaviour, and
intellectual abilities (Cole, 1965). The main difficulty was represented by the fact that
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it is fairly simple to list typical anatomical features of a region or a population, but
each human group, however defined, includes variable proportions of people who do not
resemble much the typical individual. Even in the early years, it was evident that single
morphological traits do not allow a stable classification of humans into discrete groups.
Therefore, races were defined by a combination of several traits, often both biological and
non-biological, the latter including language, house-building and tool-making techniques,
mating systems, and other cultural variables (see Cohen, 1991, where reference to the
original eighteenth and nineteenth century sources can be found).

The consequences of these difficulties are evident in the lists of races described in
Table 31.1. Starting from Linnaeus’ six races and going through Buffon’s, Blumenbach’s,
and Cuvier’s systems into the twentieth century, the number of races increased. In
his Systema naturae, Linnaeus first defined the species Homo sapiens within the order
primates and divided it in six varieties, four corresponding to continents (Australia was

Table 31.1 An incomplete scheme of proposed catalogs of human races. Reference to the original
works can be found in Cohen (1991) and Barbujani (2005).

Author
Number
of races Races proposed

Linnaeus (1735) 6 Europaeus, Asiaticus, Afer, Americanus, Ferus,
Monstruosus

Buffon (1749) 6 European, Tartar, Laplander, south Asian,
Ethiopian, American

Blumenbach (1795) 5 Caucasian, Mongolian, Ethiopian, American, Malay
Cuvier (1828) 3 Caucasoid, Negroid, Mongoloid
Deniker (1900) 29

–
Weinert (1937) 17

–
Von Eickstedt (1937) 38

–
Biasutti (1959) 53

–
Coon (1962) 5 Congoid, Capoid, Caucasoid, Mongoloid, Australoid
Garn (1965) 9 African, European, Asian, Indian, Amerind,

Melanesian, Polynesian, Micronesian, Australian
US Office of Management and

Budget (1997)
5 African-American, White, American Indian or

Alaska Native, Asian, Native Hawaiian or Pacific
Islander

Metropolitan Police Service,
London, UK (2005)
(http://en.wikipedia.
org/wiki/Race)

16 White-British, White-Irish, any other white
background, Asian-Indian, Asian-Pakistani,
Asian-Bangladeshi, any other Asian background,
Black Caribbean, Black African, any other black
background, Chinese, White and Black
Caribbean, White and Black African, White and
Asian, any other mixed background, any other
race

Risch et al. (2002), Figure 1 5 African, Caucasian, Pacific islanders, east Asian,
Native American

Risch et al. (2002), Table 3 5 African Americans, Caucasians, Hispanic
Americans, east Asians, Native Americans
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missing) and two, H.s. ferus and H.s. monstruosus (savage and monstrous), designating
respectively wild human forms whose existence was not confirmed by successive work,
and carriers of congenital malformations. These two races were eliminated from the list
and Australia was added by Buffon, who considered laplanders as an additional, separate
race. At the end of the eighteenth century, it was the German anatomist Blumenbach
who, while refusing a relationship between humans and the other primates, proposed that
humankind be composed of five races, broadly corresponding to the inhabitants of the
five continents, four of them regarded as more or less serious degenerations from the
European race, which he first termed Caucasian.

In the nineteenth and early twentieth centuries, as anthropologists came in contact with
more and more populations, fitting all of them into pre-existing races proved difficult. The
catalogues became broader, crossing in some instances the 100-mark (Molnar, 1975), and
the borders between races therein ambiguous. In this way, the need emerged to explicitly
define what a race is. Although published definitions differ, many converge around the idea
that races are subspecies, namely collections of individuals associated with a geographical
region, and separated by biological boundaries from other groups that differ from them in
some measurable features (Mayr, 1947; Coon et al., 1950). Classical population-genetics
theory and empirical data show that genetic variation is shaped by a combination of factors
affecting the genome (such as mutation, recombination, and selection) and acting at the
population level (such as subdivision, admixture, migration, and population-size changes).
Under reproductive isolation, genetic drift affects independently each reproductive group.
This tends to reduce the group’s internal variation, while groups diverge from each other,
both phenomena causing the onset of zones of rapid genetic change, i.e. boundaries
(Barbujani et al., 1989). Conversely, when groups or populations exchange migrants,
the effects of drift are opposed by those of gene flow, and genetic variation between
populations and groups is continuous (Wright, 1943). Therefore, genetically differentiated
groups that one can legitimately regard as races are surrounded by biological boundaries,
which are the product of genetic drift affecting populations connected by little (or no)
migratory exchanges.

By the second half of the twentieth century, a growing number of investigators had
become unhappy with the idea that the discontinuous entities thus far defined give a
faithful representation of human variation. This assumption appeared to conflict with
the continuous change observed for most morphological (and, later, genetic) traits. An
additional problem was the fact that different traits yield discordant human taxonomies
(King and Wilson, 1975; Brown and Armelagos, 2001). Individuals can be clustered
on the basis of, say, skin colour, but the clusters are not the same if a different trait,
say skull shape, β-globin, or lactose intolerance, is considered (Relethford and Harding,
2001). With the introduction of the concept of cline (Huxley, 1938), namely a gradient
of morphological measures or allele frequencies in the geographical space, continuous
models of human population structure became conceivable, which ultimately led to the
proposal that the concept of race is misleading for describing human biological diversity
(Montagu, 1941; Livingstone, 1962). Dobzhansky (1967) maintained that human races
could nevertheless be defined, if not by fixed allelic differences, at least as open genetic
systems, each differing to some extent from its neighbours for some allele frequencies.
However, it has been objected that according to this definition any human population
would be a distinct race, which does not correspond to the general use of the concept in
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evolutionary biology. This debate is still open, with different authors siding with either
Dobzhansky or Livingstone.

In what can be regarded as the last attempt to base a racial classification on anatomy,
Coon (1963) proposed that the apparent complexity of the human population structure
disappears if one disregards the effects of recent migration. In that way, humans can
be subdivided into five major races, two in Africa, and one in Europe, Australia, and
Asia, the latter including native American populations. However, by the early 1960s,
the typological approach had shown its drawbacks, and the number and definition
of human races had become extremely uncertain. In the meantime, genetic data had
begun to accumulate, as well as quantitative methods for their analysis (Edwards and
Cavalli-Sforza, 1965; Cavalli-Sforza, 1966; Sokal et al., 1989). Most studies of the
last decades of the twentieth century focused, then, on the levels and patterns of
genetic variation in the geographical space, summarised in the atlas of Cavalli-Sforza
et al. (1994).

31.3.2 Methods for Describing Population Structure

In this section, we shall focus on two main sets of methods for assessing the strength
of population structure from multilocus genotypes given a tentative classification based
on some non-genetic criteria such as physical morphology or geography. Under the first
approach, similar to an analysis of variance, genetic diversity is compared within and
among the pre-defined groups. The alternative approach is to define a criterion of similarity
among genotypes and hence classify them into groups ignoring the available group labels.
Later, the group labels are revealed in order to quantify the accuracy of the assignments.
We now discuss these two approaches in more detail.

31.3.2.1 Genetic Diversity within and among Populations

Classical analysis of variance is unsuitable for assessing genetic variance within and
between groups because the distribution of allele frequencies is not expected to be normal,
but is better approximated by the beta or Dirichlet distributions (Wright, 1931). An ideal
statistic for comparing variation within and between groups should have the following
properties: (1) take value 0 when there is no polymorphism; (2) increase with the number
of alleles; (3) reach a maximum when the frequencies of all alleles are equal, for any
number of alleles; and (4) be convex, i.e. it should increase when groups are pooled,
unless these averages are identical (Lewontin, 1972). Wright’s (1943) Fst is an example
of a convex statistics. These criteria led Lewontin (1972) to apportion the global species
diversity at three hierarchical levels using the Shannon information measure, defined as

H = −�pi ln2pi,

where pi is the frequency of the ith allele at a locus, and summation is over all alleles.
H is calculated independently for each locus and each population, and its average is
calculated respectively within populations (Hpop), among populations attributed to one
race (Hrace), and in the entire species (Hspecies). The global genetic diversity was then
partitioned at the three levels as follows:

Variance within populations: Vwp = Hpop/Hspecies
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Variance between populations, within races: Vbp = (Hrace −Hpop)/Hspecies

Variance between races: Vbr = (Hspecies −Hrace)/Hspecies.

Although it is customary to refer to these V indexes as variances, this is not strictly
correct. In particular, since Vbp and Vbr are estimated by subtraction, when there is little
geographical structure these statistics can take negative, if small, values (see e.g. Jorde
et al., 2000).

With the advent of techniques for the direct study of DNA, measures of molecular differ-
entiation between alleles were incorporated into the statistics. Much like in Lewontin’s
approach, analysis of molecular variance (AMOVA) is a non-parametric method for the
analysis of variance that subdivides genetic diversity estimated from molecular data into
hierarchical components (Excoffier et al., 1992; see also Chapter 29).

AMOVA tests by a permutational procedure the significance of each variance compo-
nent, whether estimated from allele-frequency differences or considering molecular infor-
mation also. For this purpose, the null hypothesis is that all samples come from an
unstructured population, without differences among the groups (populations or races)
defined within it, so that all variation is due to the random sampling of individuals or
populations. The three variances (which one can refer to as pseudovariances) are recalcu-
lated by assigning individuals and populations to random geographic locations, according
to three independent resampling schemes; the procedure is repeated many times, so as to
obtain empirical null distributions for the three pseudovariances. The observed variances
are eventually compared with these distributions, and observed values falling in the upper
percentiles are judged significant at the appropriate level.

31.3.2.2 Classification Methods

In discriminant analysis (Ripley, 1996), also known as supervised classification, each
individual’s group allocation is ignored in sequence, and their genotype is assigned to the
most likely source population using the pre-defined allocations of all other individuals
as the reference data set. The similarity between genotypes is usually measured as the
minimum (and most likely) number of mutational events separating them. Both parametric
and non-parametric methods of discriminant analysis are available. However, the standard
parametric methods, namely linear, logistic, and quadratic discriminant analysis, assume
that the variables are at least approximately normal. Rannala and Mountain (1997)
proposed an assignment method specifically designed for genetic data, which has also
been used for discriminant analysis (Romualdi et al., 2002). Under the assumptions
of Hardy–Weinberg and linkage equilibria, this method computes the probability of
multilocus genotypes originating from different potential reference/source populations
and allocates them to the most likely group of origin. Among non-parametric methods,
the simplest approach is to assign each genotype to the group to which the majority of
the k nearest genotypes belong; k is chosen arbitrarily in a range of reasonable values.
Under more complex approaches, such as kernel methods, the density of the genotype
frequencies is initially estimated in each group, and then a new observation (genotype) is
assigned to the group for which its estimated density is maximal.

Unsupervised clustering methods ignore any pre-defined group assignments and infer
from the data groups of genetically similar individuals. The underlying idea is to use a
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model-based approach to define the probability of generating the data assuming K hidden
partitions. Typically, the basic model assumes that, within the partitions, alleles are inde-
pendent within and between loci. Once this probability can be calculated or approximated,
it is possible to construct an MCMC algorithm that will explore the parameter space
in such a way that the parameter values sampled during an MCMC run are visited in
proportion to their posterior probability of generating the data. In the general problem of
uncovering hidden structure, parameters may include the number of partitions (Dawson
and Belkhir, 2001) or the proportion of genes (in a population or in an individual) coming
from any of K partitions conditional on K (Pritchard et al., 2000; Falush et al., 2003).

The most popular such approach is the one originally developed by Pritchard et al.
(2000), later extended by Falush et al. (2003) and implemented in the STRUCTURE
software (hereafter named the Pritchard and Falush method; see also Chapter 30). This
method allows data analysis under two ancestry models, with or without admixture. In
the simplest case of no admixture, the relevant parameters are (1) the population of origin
of each individual and (2) the allele frequencies of each population. When admixture is
assumed, an extra parameter is considered, (3) the proportion of each individual’s ancestry
from each population. The number of partitions K is not estimated and so must be
specified, but Pritchard et al. (2000) proposed a criterion for choosing from multiple runs
of the algorithm that providing the optimal K value. Recent simulation work on complex
population structure where patterns of gene flow are not homogeneous has shown that
this ad hoc method can be misleading (Evanno et al., 2005).

Another approach is the Dawson and Belkhir (2001) method, based on an MCMC
algorithm implemented in the PARTITION software, in which the parameter space is
defined by (1) K , the number of possible partitions; (2) the distribution of individuals in
the K partitions; and (3) the allele frequencies within partitions. During the exploration
of the parameter space, the likelihood of the data is estimated for the different K values
and for possible assignments of individuals to the K partitions. Thus, when the chain
reaches equilibrium, the different values of K have been sampled in proportion to their
probability of generating the data, and so it is possible to estimate the posterior probability
distribution of K . The Dawson and Belkhir method also estimates the probability that sets
of individuals lie in the same partition. Only the maximum number of partitions allowed
has to be specified beforehand, whereas in the Pritchard and Falush method a pre-specified
number of populations, K , is given and the algorithm uses a Gibbs sampler to obtain the
posterior distribution of the parameters, i.e. the values of each parameter conditional on
the observed individual’s genotypes and on the number of populations K considered.

The Pritchard and Falush approach has some drawbacks, but it is also the most
flexible. Besides assigning individuals to their population of origin and identifying possible
migrants or admixed individuals, STRUCTURE can also incorporate information about
the geographic origin of individuals, which is treated as a prior in the cluster analysis.
The algorithm can also allow for allele frequencies to be correlated across populations
(Falush et al., 2003). This can be a crucial point when the groups being studied are not
genetically distinct.

Other recent methods are suitable to detect and quantify population structure (Corander
et al., 2004; 2007; Corander and Marttinen, 2006). Corander and colleagues have devel-
oped Bayesian model–based clustering methods implemented in the different versions
of the BAPS software. In the most recent version, Corander et al. (2007) proposed a
method analogous to Dawson and Belkhir’s in the sense that it tries to find the partition
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that best fits the data, treating as random variables the allele frequencies and the number
of genetically divergent populations. However, contrary to the alternative approaches,
BAPS is based on a priori information provided by the geographic location of sampled
individuals. Given a maximum value of partitions, the algorithm uses a stochastic optimi-
sation procedure (rather than an MCMC approach) to find the clustering solution with the
highest marginal likelihood of K (i.e. the most probable number of differentiated popu-
lations conditional on observed data). For more extensive, recent reviews, the interested
reader should refer to Beaumont (2004) and Chikhi and Bruford (2005).

31.3.3 Identifying the Main Human Groups

In the first global analysis of human genetic diversity, Lewontin (1972) quantified variation
within and among seven groups, namely Caucasians (including western Asians and north

Table 31.2 Estimated percentages of the global human diversity at three hierarchical levels of
population subdivision.

Polymorphism,
number of loci References

Within
population

Between
populations,
within race
or continent

Between
races or

continents

Protein, 17 Lewontin (1972) 85.4 8.3 6.3
Protein, 18 Latter (1980) 84.0 5.6 10.4
Protein, 18 Latter (1980) 87.0 5.5 7.5
Protein, 18 Latter (1980) 83.8 6.6 9.6
Protein, 25 Ryman et al. (1983) 86.0 2.8 11.2
mtDNA Excoffier et al. (1992) 75.4 3.5 21.1
Autosomal DNA, 109 Barbujani et al. (1997) 84.4 4.7 10.8
MtDNA (non-coding) Seielstad et al. (1998) 81.4 6.1 12.5
Y chromosome, 10 Seielstad et al. (1998) 35.5 11.8 52.7
Autosomal DNA, 90 Jorde et al. (2000) 84.8 1.6 13.6
MtDNA (non-coding) Jorde et al. (2000) 71.5 6.1 23.4
Y chromosome, 10 Jorde et al. (2000) 83.3 18.5 −1.8
Autosomal DNA, 21 Romualdi et al. (2002) 82.9 8.2 8.9
Y chromosome, 10 Romualdi et al. (2002) 42.6 17.3 40.1
β-Globin Romualdi et al. (2002) 79.4 2.8 17.8
Autosomal DNA, 377 Rosenberg et al. (2002) 93.2 2.5 4.3
Autosomal DNA, 377 Excoffier and Hamilton

(2003)
87.6 3.1 9.2

Y chromosome, 13 Wilder et al. (2004) 64.3 17.0 18.7
MtDNA (coding) Wilder et al. (2004) 59.9 21.1 18.9
X chromosome, 17 Ramachandran et al.

(2004)
90.4 4.6 4.9

Autosomal indels, 40 Bastos-Rodrigues et al.
(2006)

85.7 2.3 12.1

Median, all locia 82.8 6.1 11.1
Median, autosomala 85.7 4.6 9.7

a These values were obtained by treating all studies equally. The medians at the three levels of population
subdivision do not sum up to 1, and hence they were normalised by dividing them by 100.6 for all loci, 99.0
for autosomal loci.
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Africans), Black Africans, Mongoloids, south Asian aborigines (dark-skinned populations
of India and the Asian southeast), Amerinds, Oceanians, and Australians (Table 31.2).
The estimated variances differed across the 17 loci, as well as the sample sizes but, on
average, 85.4 % of the total was attributed to differences between members of the same
population, 8.3 % to differences between populations of the same group, and 6.3 % to
differences between groups. Lewontin concluded that racial classification has no genetic
or taxonomic significance.

Nei and Roychoudhury (1972) compared three groups, white, black, and Japanese, and
found that allele frequencies in the three groups are remarkably similar, despite the
conspicuous phenotypic differences. They suggested that the genes controlling pigmen-
tation and facial structures evolved under stronger natural selection than ‘average genes’
(Nei and Roychoudhury, 1972), a notion that gained broad acceptance (see, e.g. Rees,
2003). On the other hand, Lewontin’s bold conclusions also prompted a number of crit-
icisms for more than three decades (see Edwards, 2003) discussed below. However,
reanalyses of Lewontin’s data by three alternative methods, based on the proportion of
alleles that two random multilocus genotypes have in common, gave only slightly different
results, with variances within populations estimated around 84.0 % of the total (Latter,
1980). Genetic variances largely overlapping with Lewontin’s and Latter’s estimates were
also inferred from enzyme and serum protein allele frequencies, and from blood groups,
in three populations from Africa, Europe, and Asia (Ryman et al., 1983).

The first apportionment of human genetic variances at the DNA level was an illustration
of the AMOVA algorithm. Excoffier et al. (1992) found that the differences between
continents in mitochondrial DNA RFLP diversity were larger than estimated in protein
studies, and populations contained 75 % of the global mtDNA diversity. Conversely,
in large-scale analyses of autosomal DNA, genetic variances were very close to those
inferred from protein polymorphisms, with differences among individuals of the same
population accounting for 84.5 % of the overall variance for both microsatellites and
RFLPs (Barbujani et al., 1997). Genetic differences among continental populations were
small in absolute terms, between 8 and 11.7 % of the total, but yet significantly greater
than zero at most loci.

Similar figures have been inferred from studies of other autosomal polymorphisms
(Rosenberg et al., 2002), including Alu insertions (Romualdi et al., 2002). Actually, the
variances among continents estimated in the former study, by far the largest so far for
the number of screened loci, are less than 5 %, although a reanalysis of the same data
based on a more appropriate mutational model suggests a twice-as-large value (Excoffier
and Hamilton, 2003). Despite these inconsistencies, the impression one receives from
studies of autosomal polymorphisms (Table 31.2) is that a large share of the global genetic
diversity, very close to Lewontin’s 85 %, is present in each human population, with small
differences between non-coding DNA regions (e.g. Excoffier and Hamilton, 2003) and
coding regions subjected to selection, such as the β-globin locus (Romualdi et al., 2002).

Greater differences between populations and continents are usually inferred from
markers transmitted by one parent only. In studies of biallelic Y-chromosome markers,
between 40 % (Romualdi et al., 2002) and more than half of the total variance (Seielstad
et al., 1998) was found to differentiate continents, but that component was zero in a study
of short tandem repeats (STRs) (Jorde et al., 2000). The absence of detectable differences
among continents in the study of STRs may depend, at least in part, on the high mutation
rate for STRs and on constraints on the number of repeats, both phenomena leading, in
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the long run, populations of all continents to converge towards similar allelic distributions
(Jorde et al., 2000).

In general, given the smaller population sizes for uniparentally transmitted loci (in prin-
ciple, one-fourth of the autosomal population size), higher diversity between populations
and groups thereof should be expected for these markers, under a simple model of popu-
lation differentiation by genetic drift. Therefore, the high variances between populations
and groups inferred from the Y chromosome are easier to reconcile with theory than
the lower variances inferred from mtDNA. This finding may reflect either an increased
average impact of gene flow on females, or of drift on males, or both. Increased female
migration is a consequence of patrilocality, i.e. a higher tendency to move to the spouse’s
place of origin for women than for men (Seielstad et al., 1998); increased drift in males
may mean that their effective population sizes are reduced by their higher variance in
reproductive success, associated with the practice of polygyny (Dupanloup et al., 2003).

All the above factors may have, or have had, an impact on the patterns of human
diversity, but a part of the differences in the apportionment of genetic variances inferred
from different markers may be due to biases in the choice of the markers. After identifying
areas of high polymorphism on the Y chromosome, Wilder et al. (2004) sequenced more
than 6 Kb in individuals from four continents, compared the observed sequence variation
with variation in mtDNA sequences, and actually observed a slight excess of between-
continent diversity for mtDNA than for the Y chromosome. Therefore, when sequences
of random Y-chromosome regions are compared with mtDNA sequences, (1) similar
distributions of variances emerge, and (2) the differences between populations (of the
same or of different continents) is larger than inferred from autosomal DNA, which
makes sense in the light of the different effective population sizes, fourfold larger for
autosomal than for mitochondrial and Y-chromosome polymorphisms.

In all these studies, the global species diversity is probably overestimated because of
(1) the unavoidable selection of populations that are far removed in the geographical
space, to the exclusion of populations that may be of ambiguous classification, such as
those at the boundaries between continents and (2) the over-representation of populations
of anthropological interest, often reproductively isolated and hence presumably highly
differentiated, rather than admixed urban populations. Because the internal diversity also
tends to be low in genetic isolates, one can also expect the fraction of within-population
variance to be underestimated. A random sample of humankind, say based on individuals
collected at the nodes of a regular grid superimposed on the world map and taking popu-
lation densities into account, would contain a greater proportion of admixed individuals
and recent immigrants, presumably resulting in even higher diversity within populations.

On the other hand, genetic differences between putative races or continents, albeit small,
are significantly greater than zero. This prompts the question whether these differences
are large enough to allow one to distinguish discrete racial group, as suggested, among
others, by Edwards (2003).

In evolutionary trees inferred from microsatellites (Bowcock et al., 1994), or combining
information from microsatellites, insertion/deletion and restriction polymorphisms (Jorde
and Wooding, 2004), people of similar geographical origin tend to form clusters, and
plausible evolutionary relationships among populations are apparent. As is commonly
observed in humans (starting from Cann et al., 1987), these trees have little deep structure
and long terminal branches.
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The question whether the limited genetic variances among populations and groups
thereof are large enough for individuals to be accurately classified in continental groups
was addressed considering Alu insertion/deletion polymorphisms and Y-chromosome
SNPs. Using several discriminant analysis methods, Romualdi et al. (2002) could correctly
assign to the right continent up to 73 % of their multilocus genotypes, with Y-chromosome
data allowing a more accurate assignment. Accuracy decreased drastically as the number
of partitions increased, i.e. when genotypes were assigned to subcontinental regions, and
the misclassification rate decreased only slightly by adding new markers, once some 20
polymorphisms were considered (Romualdi et al., 2002).

The choice of the markers and of the populations deeply affects the results of the
analysis, suggesting that discordant variation is not only typical of morphological traits
but also of genetic polymorphisms. Analysis of two sets of Alu polymorphisms by
STRUCTURE showed that, depending on the loci considered, either three clusters
(two worldwide distributed and one Eurasian) or four clusters (two in Eurasia and
two corresponding respectively to Africa with Oceania and Asia with the Americas)
were identified. These clusters did not overlap (Romualdi et al., 2002), neither did they
correspond to the clusters obtained by STRUCTURE in studies of X-chromosome STR
markers, loci of pharmacogenomic relevance (Wilson et al., 2001), and autosomal STR
markers (Rosenberg et al., 2002). Rosenberg et al. (2002) inferred the existence of six
clusters from the analysis of a 377 STR markers from the Centre pour l’Etude des
Polymorphismes Humains (CEPH) Diversity Panel, five of them corresponding to the
main continents (with central Asia clustering with Europe rather than with east Asia),
plus the Kalash population of Pakistan, presumably a genetic isolate. In a successive
analysis of a dataset of almost 1000 STR markers by the same authors, the Kalash no
longer seemed to be a genetic outlier, and appeared to be part of the European-Western-
Central Asian cluster, but things became more complicated in the Americas, where two
new clusters emerged (Rosenberg et al., 2005).

The 377-marker CEPH dataset has been reanalysed by several authors. Using a Bayesian
MCMC approach, Corander et al. (2003) found that more than six groups are needed
to represent global human genetic diversity, with evidence for subdivision in South
America). Barbujani and Belle (2006) used a method for recognising genetic boundaries
in maps of genomic variation (Manni et al., 2004), finding evidence for several distinct
clusters in the Americas, and for three clusters separated by zones of rapid genomic
change in Africa, a result consistent with extensive diversity known to exist in that
continent (Kaessmann et al., 1999; Yu et al., 2003; Watkins et al., 2003). Evidence for
substructuring in Africa had also been detected by STRUCTURE in one analysis where
the inferred clusters were four (Bamshad et al., 2003). On the other hand, Serre and
Pääbo (2004) investigated how study design can influence the inferred clustering. By
resampling the CEPH dataset through a scheme devised to reduce the effects of the
necessary discontinuous geographical collection of samples, they came to the conclusion
that only genetic gradients, and not boundaries, are apparent when individuals are sampled
homogeneously from all continents, and concluded that there is no evidence for major
genetic discontinuities in the human species.

Is there a way to reconcile all these results? And which is the real structure of the
human population? Some inconsistencies may be due to differences in the distribution of
the studied populations. However, several of the above analyses were based on the same
377-STR CEPH diversity dataset, and yet their results are discordant as for the number
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and geographical span of the genetic clusters identified. Studies of different dataset yield
an even more complicated picture (Wilson et al., 2001; Romualdi et al., 2002; Bamshad
et al., 2003; Tang et al., 2005; Barbujani, 2005), and it is legitimate to say that the main
common element one can recognise is that each study is inconsistent with all the others.
One plausible conclusion is then that this incongruence represents a basic feature of human
diversity, and that racial categories are imposed on data rather than inferred from them
(Cooper, 2005). Different genetic polymorphisms show discordant geographic patterns,
i.e. are differently distributed over the planet, and their distributions are generally weakly
correlated or uncorrelated. Genetic clusters can be inferred from the data, but the fact that
two populations fall in the same cluster (or in different clusters) when described at loci
A, B, C does not imply that they will fall in the same cluster (or in different clusters)
based on loci X, Y, Z.

31.3.4 Continuous versus Discontinuous Models of Human Variation

Continuous genetic variation in the geographic space, such as that commonly observed
in humans, may result from three classes of evolutionary phenomena, one of which,
selection along a gradient, is expected to affect single loci, but not the genome as a whole
(Cavalli-Sforza, 1966; Kayser et al., 2003). When clines are observed over a number of
loci, they likely reflect population dispersal, or isolation by distance, or both. Isolation by
distance can be loosely defined as the process whereby the effects of drift are independent
in each population, but gene flow rates are higher between close than between distant
populations, and so genetic similarity tends to decline with the spatial distances (Wright,
1943). Population dispersal differs from isolation by distance in that it entails directional
migration, and can generate clinal genetic change either by demic diffusion or by founder
effects. Demic diffusion (Menozzi et al., 1978) means that the geographical expansion
is accompanied by demographic growth. If the expanding population mixes and forms
hybrids with previously settled populations, the fraction of members of the expanding
population that will contribute to the hybrids decreases with the distance from the place
of origin, and so does their contribution to the gene pool of the hybrid populations.
Repeated founder effects may also result in clines because, as small numbers of individuals
disperse, alleles are lost from their gene pool, and occasionally reintroduced by local
gene flow.

Application of a formal model of isolation by distance to the analysis of worldwide
patterns of protein and DNA polymorphisms, and of craniometric measures, showed an
excellent fit of the model for both genetic and anatomical data, suggesting that patterns
of human diversity can largely be accounted for by the simple interaction of drift and
geographically structured gene flow (Relethford, 2004). These results suggest that, as a
rule, migrational networks left a deep mark in the observed patterns of human biodiversity.
The exceptions, namely zones of rapid genetic change or genetic boundaries, point to
migrational or reproductive barriers. In the few studies so far attempting to map them
at the DNA level, genetic boundaries have been shown to occur mostly between small
genetic isolates, sometimes separated by just a few kilometres, such as the Suruı̀ and
Karitiana populations of Brazil (Barbujani and Belle, 2006). This suggests that, at the
small geographical scale, chance and possibly adaptation to local conditions may lead
to even sharp population differentiation, thus causing local departures from the general
clinal pattern.
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31.4 FINAL REMARKS

As we have seen, the interpretation of the data on human genetic diversity is controversial
in several areas. However, it is at least well established that the main fraction of the
global human genetic diversity is found between individuals of the same population.
We also know that the remaining fraction, representing differences among populations
and population groups, is small but not zero. Indeed, it is large enough for most of
us to form an opinion, if rough, on the likely origin of the people we meet just by
looking at them, and for population geneticists to reconstruct aspects of population
history. However, different loci show uncorrelated, and sometimes very different, patterns
of variation, a phenomenon termed discordant variation (Brown and Armelagos, 2001).
Therefore, predictions of epidemiological relevance based on the patient’s physical aspect
or supposed racial affiliation may be severely inaccurate (Wilson et al., 2001; Cooper
et al., 2003; Cooper, 2005; Orduñez et al., 2005; Bamshad, 2005). Countries or regions
where several subpopulations coexist in reproductive isolation, with little or no genetic
exchange, may represent exceptions. Examples include India, where genetic differences
are apparent among castes (Cordaux et al., 2004; Watkins et al., 2005); the Yanomama
(Neel, 1978) and other Amazonian tribes (Crawford, 1998), in which small population
sizes combined with the tendency of tribes to split along family lines led to extreme
genetic drift effects; and various urban areas of the United States (Shriver et al., 2004).

DNA variation has probably been studied among US population groups more exten-
sively than in any other area of the world, and US ethnic groups show different allele
frequencies at many loci (Shriver et al., 2005; Redd et al., 2006). The problem is to
what extent and for what purposes the results of these studies can be generalised to
other populations. Characteristic alleles, present at high frequencies in one US population
while rare or absent in the others, were initially defined population-specific alleles (PSA),
and proposed for studies of admixture and DNA-based personal identification (Shriver
et al., 1997; Parra et al., 1998). Later, the set of markers was extended and refined, but
also relabelled as AIM (ancestry informative markers), thus suggesting that by using these
markers it is possible to make one more step, namely to correlate skin colour with biolog-
ical ancestry (Shriver et al., 2003). This view was echoed by authors who concluded that
human genomic diversity is discontinuously distributed according to groups that corre-
spond well to ‘common concepts of race’ (Rosenberg et al., 2002; 2005). However, in a
study of Brazilian individuals, Parra et al. (2003) found no correlation between skin colour
and frequency of 10 AIM, selected as those that had shown the maximum differentiation
between Africans and Europeans. Thus, genetic markers that are population specific, and
perhaps even ancestry informative in certain populations, are neither population specific
nor ancestry informative elsewhere. Local genetic differentiation may be sharp for certain
loci and useful for certain purposes, but studies of single countries are unlikely to give
us a sensible, all-purpose description of human diversity in general, especially if these
countries are inhabited by people whose ancestors evolved elsewhere for millennia.

Overall, the global patterns of human diversity are the likely product of a comparatively
short evolutionary history. During less than 200 KY, a population of six billion individuals
has quickly developed, largely or exclusively, from a presumably small number of recent
African founders. In their dispersal across the planet, these ancestors are unlikely to
have mixed with the descendants of people who had previously left Africa. The main
evolutionary processes affecting them were probably repeated bottlenecks, dispersals, and
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isolation by distance, all processes accounting for the broad gradients of genetic diversity
observed (Cavalli-Sforza et al., 1994). However, migration and genetic drift were not the
only forces shaping human genetic diversity. Recent admixture episodes and selection
have left a mark in current genetic diversity. Genomic regions of intense, and often
environment specific, selection have been identified analysing both low-resolution and
high-resolution single nucleotide polymorphism data (Kayser et al., 2003; Akey et al.,
2002; 2004; Storz et al., 2004; Voight et al., 2006), and the different selection regimes,
along with chance, may explain why patterns of genetic variation are discordant across
loci.

Discordant variation has practical implications. Calculating how many polymorphic
markers would be necessary to confidently assign individuals to racial groups, Risch
et al. (2002) estimated that, with average allele-frequency differences between racial
groups = 0.6, 17 markers would be enough, with an error rate as low as 10−5. More
markers would be needed if average allele-frequency differences are = 0.1, but with
474 loci the error rate would still be a comfortable 10−3, and with 901 markers an
excellent 10−5. Because allele-frequency differences ≥0.4 are not uncommon between
US ethnic groups, Risch et al. (2002) concluded that statistically robust racial clusters
can be obtained by typing a few hundred markers. A similar rationale underlies a study
suggesting that the limited genetic differences among putative races are sufficient to define
well-distinct genetic clusters, provided one is willing to combine information at many loci
(Edwards, 2003). The problem is that, for the calculations proposed in both such studies,
genetic diversity is assumed to be concordant across loci; the more the loci in the analysis,
the stronger the signal of differentiation. As we have seen, in humans that is not the case.

An additional problem is that, to test whether genetic differences confirm common
concepts of race (as stated by Risch, 2006), one needs a list of biological races that most
people are reasonably happy with, but so far there has been no agreement on such a list.
This can only mean that, in practice, the task of compiling it is either impossible, or so
difficult that nobody has been able to succeed. In particular, classical attempts to infer
racial subdivision from skin colour have been remarkably unsuccessful (Cohen, 1991), and
now we know why (Jablonski, 2006). Tens of loci affect pigmentation in humans, and they
have epistatic effects. Most likely, these loci evolved under contrasting selective pressures,
so that their current diversity represents a trade-off between protection against UV solar
radiation (greater with darker skins) and the synthesis of vitamin D (more efficient with
lighter skins) (Makova and Norton, 2005). There is evidence of relaxation of selection in
non-African populations (Harding et al., 2000), and different loci were probably selected
at different times and places, so that some candidate genes show evidence of selection
in the ancestral African population(s), others during the exit from Africa, and others in
response to more recent local pressures (McEvoy et al., 2006). Women have, on average,
lighter skins than men of the same population, and this is probably accounted for by the
higher vitamin D requirements during pregnancy and lactation (Madrigal and Kelly, 2006).

The importance of selection in shaping human pigmentation diversity had been
already pointed out in the seventies (Nei and Roychoudhury, 1972), and is indirectly
confirmed by the fact that skin-colour differences between populations and continents
are fourfold greater than genetic differences estimated from autosomal loci (Relethford,
2002). Analogous cases can be made for traits such as lactase persistence and thalassemia.
Because of decreasing levels of the enzyme lactase in the intestine, most people of
the world lose the ability to digest lactose after weaning. However, lactase persists
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through lifetime at high frequency in populations from Europe and Africa, and remains at
substantial frequencies in other populations sharing the habit to drink fresh milk (Campbell
et al., 2005). The alleles for lactose tolerance are different in Africa and Europe (Tishkoff
et al., 2007), and in Europe there is a clear geographic parallelism among variation
in lactose tolerance, cattle milk genes, and locations of the Neolithic farming sites,
implying a gene-culture coevolution between cattle and humans (Beja-Pereira et al., 2003).
Similarly, various pathologic variants of the haemoglobins including those responsible
for thalassemias are common in areas of Africa, Asia, and Europe, where malaria is
endemic. These alleles are maintained by balancing selection, because the heterozygotes
are protected against the malarial parasite (Weatherall, 2001). In all these cases, common
selective pressures have led to evolutionary convergence of populations that had only
comparatively weak evolutionary relationships, and so should not be expected to resemble
each other as much in other genome districts.

Recent analyses of genomic variation have confirmed this broad picture, at the same
time adding intriguing details. Within the context of the International HapMap project,
51 autosomal regions, spanning 13 MB of the human genome, were resequenced (Gabriel
et al., 2002). The study of African, European, and Asian individuals shows that half of
the blocks are cosmopolitan, another quarter is observed only in Africa, and the rest are
essentially shared between continents, with only 4 % of them being restricted to either
Europe or Asia. Similar results were obtained in another study of the HapMap genotype
data, estimating allele sharing for 1536 randomly selected individual SNPs (Montpetit
et al., 2006). In brief, the study of a sizable fraction of the genome in geographically
distant populations shows that both single SNPs and large genomic regions in linkage
disequilibrium are, with few exceptions, either specifically African, or generically human.
Considering the expression level of various genes as variable phenotypes, Spielman
et al. (2007) found substantial population differences, suggesting that variation at a few
regulatory loci may account for even extensive population differences in liability to
diseases.

This distribution of human genetic diversity suggests that the best way to predict
whether certain individuals will have certain health risks or will benefit from pharmaceu-
tical treatment is to study their genes, rather than relying on ill-defined racial stereotypes.
This seems particularly true in the study of individual response to drug treatment, i.e. phar-
macogenomics. Drug response is determined by many genetic and non-genetic factors,
but variation at loci coding for drug-metabolizing enzymes accounts for a large fraction
of the hereditary differences among normal, fast, and slow metabolisers, i.e. respectively
those who benefit from a certain drug at the standard dosage, and those who do not, or
even show negative side effects. Different populations show different allele frequencies
at loci of pharmacogenomic interest (Meyer, 2004). However, most populations contain
the whole spectrum of genotypes, which leaves little hope to develop different drugs,
or drug dosages, specific for the Asian, African, or European market. Rather, it is now
technically conceivable to concentrate the efforts on the genetic dissection of individual
drug metabolism pathways, which in time may lead to tailoring-specific pharmacological
treatment for different classes of metabolisers (Weber, 2001), no matter what their skin
colour is and where in the world they live. Similarly, a serious understanding of the causes
of disease requires an analysis of both their genetic and social causes, the latter being
poorly approximated by ethnic and racial labels (Collins, 2004).
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In the last 10 years, human genetic variation has also been actively studied for forensic
purposes. The police authorities of many countries currently identify crime suspects by
means of DNA profiling, and use the word race to summarise the general appearance of
people. Association between race and patterns of DNA variation has gained a broad
acceptance in courts (Cho and Sankar, 2004) and claims have been made that all
scientific issues associated with DNA-based personal identification are resolved (Lander
and Budowle, 1994). However, comparison of the racial categories used by the American
federal bureau of investigations (FBI) and by the British police (Table 31.1) shows that
these catalogs differ in the number and definition of races. People from the Indian
subcontinent are either classified as whites or blacks in the United States, whereas they
are attributed to three different Indian races under the UK system; the Irish and the
British enjoy a special status in the UK system; and the possibility of mixed origins is
contemplated in the United Kingdom, but not in the US system, where, instead, we find
two races, ‘Hispanics’ and ‘American Indian or Alaska natives’, matching only with the
‘Any other’ race in the UK system. As a matter of fact, these differences do not matter
much; Alaskan natives hardly cause criminal problems in the United Kingdom. However,
these examples show that such race lists include categories that are considered useful for
the practical needs of the local police, and are not all-purpose scientific descriptions of
human variation.

The differences between UK and US forensic race catalogues reflect that common
concepts of race are culture specific. In particular, there is no reason to believe that
people know the race they belong to, and hence that self-assessed racial classification
is a reasonable basis for categorizing genotypes. Under the one-drop rule that has been
used in the United States to define the border between whites and blacks (everybody
with one drop of black blood is black), many are considered (and consider themselves)
as African Americans, because they have even a small documented fraction of black
ancestors. Similarly, the hispanics or latinos (Risch, 2006), namely the Spanish-speaking
community of the United States, include individuals whose origins represent very diverse
mixtures, including native American, African, and European. They are defined as a group
based on two non-biological factors, language and immigration, and would not refer to
themselves as Hispanics in their country of origin. It may make sense to estimate disease
prevalence and perhaps even allele frequencies among Hispanics, but only in very specific
and local contexts. Moreover, disease prevalence also differs according to diverse social
factors such as education level, often more strongly than is reflected in ‘racial’ labels such
as Hispanic (Collins, 2004).

Genomic data are accumulating rapidly, and some or many of the views expressed in
this chapter may have to change in the future. While we wait for the future to come,
however, we have to conclude that the available studies of human biological diversity
have not made it possible yet (1) to agree on a race list; (2) to place races on the world’s
map; and (3) to associate each race with diagnostic alleles or haplotypes. Humans differ
genetically, but their differences do not seem to come in well-defined and consistent
racial packages. After more than a century, it is hard to disagree with Darwin (1871) who
(using the words race and species as synonymous) wrote: ‘But the most weighty of all
the arguments against treating the races of man as distinct species, is that they graduate
into each other, independently in many cases, as far as we can judge, of their having
intercrossed. Man has been studied more carefully than any other animal, and yet there
is the greatest possible diversity amongst capable judges whether he should be classed
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as a single species or race, or as two (Virey), as three (Jacquinot), as four (Kant), five
(Blumenbach), six (Buffon), seven (Hunter), eight (Agassiz), eleven (Pickering), fifteen
(Bory de St-Vincent), sixteen (Desmoulins), twenty-two (Morton), sixty (Crawfurd), or
as sixty-three, according to Burke.’
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Ingman, M., Kaessmann, H., Pääbo, S. and Gyllensten, U. (2000). Mitochondrial genome variation

and the origin of modern humans. Nature 408, 708–713.
Jablonski, N. (2006). Skin. A Natural History. University of California Press, Berkeley, CA.
Jorde, L.B., Watkins, W.S., Bamshad, M.J., Dixon, M.E., Ricker, C.E., Seielstad, M.T. and Batzer,

M.A. (2000). The distribution of human genetic diversity: a comparison of mitochondrial, auto-
somal and Y-chromosome data. American Journal of Human Genetics 66, 979–988.

Jorde, L.B. and Wooding, S.P. (2004). Genetic variation, classification, and ‘race’. Nature Genetics
36, S28–S33.

Kaessmann, H., Heissig, F., von Haeseler, A. and Pääbo, S. (1999). DNA sequence variation in
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This chapter focuses on descriptive analysis in genetic epidemiology and some of its links with
mainstream epidemiology. It starts with incidence and prevalence, briefly reviewing some of the
relevant statistical methods, and then moves on to consider the analysis of correlated responses in
mainstream epidemiology. The core of the chapter describes methods used in descriptive analysis
in genetic epidemiology. These methods are primarily used to describe and draw inferences about
the structure of phenotypic dependencies within families. The appropriate focus of traditional
descriptive epidemiology on representative sampling frames and high response rates is paralleled
by the equal importance of sampling schemes in descriptive genetic epidemiology and a full section
is therefore devoted to non-random ascertainment.

32.1 INTRODUCTION

Epidemiology may be defined as ‘the study of the distribution and determinants of health-
related states and events in populations’ (Last, 2001). The term genetic epidemiology is
less clearly defined. Neel and Schull (1954) referred to epidemiological genetics almost
50 years ago and, since then, different authors have variously emphasised the focus of
genetic epidemiology on familial aggregation (King et al., 1984), inherited disease in
populations (Morton and Chung, 1978), the genetic structure of populations (Roberts,
1985) and on gene–environment interactions (Cohen, 1980). Perhaps the most satisfactory
single definition is that given by Morton when he defined genetic epidemiology as ‘a
science which deals with the aetiology, distribution and control of disease in groups of
relatives and with inherited causes of disease in populations’ (Morton, 1982). The italics
in Last’s definition of epidemiology and Morton’s definition of genetic epidemiology are
after Hopper (1992). Firstly, they draw attention to the fact that both disciplines have a
focus on being able to draw inferences at the level of a population rather than at the level
of an individual (or a single family). This is not to say that some of the analytical methods
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used in genetic epidemiology cannot also be used to draw inferences in individual families,
e.g. in genetic counselling, but that, like mainstream epidemiology, genetic epidemiology
is primarily about the pooling of information across many individuals (or families) with
the aim of drawing more powerful inferences about potentially weak effects at the level
of a population. Secondly, they emphasise that a key difference between epidemiology
and genetic epidemiology is that while the former usually (but not always) focuses on
individuals, the latter often (though again not always) focuses on families and that interest
often centres upon inherited causes of disease. In this regard, it is important to note that the
term inherited does not necessarily imply ‘genes’, but that it also subsumes non-genetic
causes of disease clustering within families and this includes cultural and environmental
mechanisms of inheritance (Burton et al., 2005).

In general terms, the studies conducted by mainstream epidemiological research groups
may be divided into three broad categories: (1) those that aim to describe the distribution
of a disease or a determinant at the level of a population of interest (often the general
population); (2) those that attempt to investigate a potential aetiological link between one
or more specific determinants and a disease of interest; and (3) those aimed at formally
evaluating the effectiveness and/or cost of an intervention applied to individuals or
groups of individuals in the general population. Historically, much of the work of genetic
epidemiology may be viewed as having been of the first type and it is upon this category
that this chapter will concentrate. However, many of the contemporary developments
in genetic epidemiology address studies of the second type, and this category will be
briefly discussed in Section 32.4. It is likely that, in the future, genetic epidemiologists
will become increasingly involved in studies of the third type as they are required to
evaluate interventions developed from the new genetics. However, the issues relevant to
the undertaking of such studies go beyond the remit of this particular chapter.

We make no claim that this chapter represents a definitive review of all of the many
issues it attempts to address. Its primary aim is to consider descriptive analysis in genetic
epidemiology in the light of the analogous aims of mainstream epidemiology, and to
point the reader to some of the highlights of a broad and complex literature. Some of the
issues we raise are also addressed in other chapters in this handbook, and for reviews
of much of the theory and practice of genetic epidemiology, we recommend the book
Biostatistical Genetics and Genetic Epidemiology edited by Elston et al. (2002) and also
the Lancet Series in Genetic Epidemiology (Burton et al., 2005; Cordell and Clayton,
2005; Davey Smith et al., 2005; Hattersley and McCarthy, 2005; Hopper et al., 2005;
Palmer and Cardon, 2005; Teare and Barrett, 2005).

32.2 DESCRIPTIVE EPIDEMIOLOGY

Descriptive studies in the traditional epidemiological setting typically focus upon the
distribution of an outcome of interest (a disease, a health care event or possibly an
aetiological exposure) in the general population, or in some defined subsection of the
general population. A typical example of such a study might be a survey investigating
the prevalence of symptoms related to asthma in children up to five years of age (Luyt
et al., 1993). Such a study might be undertaken for the purpose of determining appropriate
health care provision, or alternatively as a lead into a potential aetiological study by asking
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a question such as, ‘has there been a change in prevalence over time?’ (Kuehni et al.,
2000). In practice, such studies are difficult to conduct. This is because it is essential that
the study population is representative of the target population to be described and careful
study design and conduct are therefore crucial. It is essential that the sampling frame
(the formal list of potential sampling units) is clearly defined and that it is appropriate,
given the specific purpose of the study. It is also crucial that the response rate to the
study (if it involves seeking some form of response from individuals) is high and that
it is unbiased with respect to the outcome of interest. It is important that the outcome
of interest is assessed in a valid and rigorous manner (Hennekens and Buring, 1987;
Rothman and Greenland, 1998). Finally, analysis has to be undertaken with care, in
particular, it is important to ensure that any potential correlation between observational
units is recognised, investigated and taken into appropriate account. Such correlation is
occasionally of interest in its own right and, even if it is not, failure to model it correctly
will lead to incorrect standard errors and sometimes to biased parameter estimates.

All of these concepts apply equally to descriptive studies in genetic epidemiology
(see Section 32.3), but for a variety of reasons, the issues are even more important in
this latter setting. Firstly, there is a wider class of genetic epidemiological studies that
may reasonably be viewed as being primarily descriptive in nature than in traditional
epidemiology. Indeed, if one looks at the history of research in genetic epidemiology,
much of the work that has been undertaken has been descriptive in nature. Historically,
the key question that genetic epidemiologists often addressed was: ‘is the distribution of
disease D between and within families, consistent with there being an inherited component
that might be consequent upon genes?’ Secondly, the option of rendering a study unbiased
at the level of the general population in relation to the outcome of interest, while desirable,
is sometimes not possible in genetic epidemiology. Many conditions of interest to genetic
epidemiologists are simply too rare to be efficiently studied using random samples. Instead
genetic epidemiologists often have to work with samples that are deliberately biased (by
oversampling families with affected individuals) and must then deal with the implications
of this non-random ascertainment in the analysis (Fisher, 1934; Elston and Sobel, 1979;
Burton et al., 2000). Thirdly, the correlation structure between family members, which
is in part consequent upon powerful biological mechanisms, is complex. Furthermore, it
is often of primary interest to genetic epidemiologists and must therefore be modelled
carefully.

Figure 32.1 is a flow chart illustrating a ‘stylised’ overview of the sequence of tasks
that might be taken on by a genetic epidemiologist in trying to determine whether one or
more genes might exist that are likely to have a large enough effect upon the phenotype
of interest to make it worthwhile to invest substantial resources to identify these genes.
Several points should be made. Firstly, this is a rather simplified perspective of the way
that research is (or has ever been) conducted in the real world. Secondly, Figure 32.1
emphasises the fact that this form of descriptive analysis should not be viewed as
an end in itself; its primary objective is to help prioritise the expensive research that
then needs to be undertaken in collaboration with bioscientists. Thirdly, the increasing
focus on complex diseases and the plethora of biological knowledge and data that have
followed in the wake of the human genome project have rendered such a stepped approach
less common in recent times. The most expensive part of many contemporary studies
is the collection of families, and the phenotyping (Thompson, 2002). Therefore once
such data have been collected, there is a natural tendency to jump straight to tests of
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Expression studies
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Drug/diagnostic test
development

Move on
to consider

a new
problem

Is there evidence of phenotypic
aggregation within families?

Is the pattern of correlation consistent
with a possible effect of genes?

Is it likely that there is a gene present
with a large enough effect to make it
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resources trying to identify it?

No

Where in the genome is it most likely
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Figure 32.1 A stylised flow chart outlining a stepped approach in genetic epidemiology. (The
failure to find evidence of genetic variant(s) with large enough effects will not necessarily impede
contemporary aetiological studies shown in subsequent steps. See (Burton et al., 2005) for a
discussion of this issue.)

associations between phenotype and specific biomarkers (including genotypic markers)
rather than investing extensive time and resources examining the familial distribution of
the phenotype. Nevertheless, such analyses continue to be undertaken in an attempt to
provide us with some initial guidance in our first attempts to understand the aetiology
of the complex diseases (Duffy et al., 1990; Palmer et al., 2001). Fourthly, there are
important overlaps with equivalent perspectives in agricultural genetics (see Chapter 20).

32.2.1 Incidence and Prevalence

Much of the descriptive analysis in epidemiology involves the investigation of prevalence
or incidence.

Assuming that disease status is uncorrelated between individuals, the estimated preva-
lence of disease at time t in a population under study is defined as

π̂t =
Dt

Nt
, (32.1)

where Dt is the number of individuals who are diseased at time t , and Nt is the total
number of individuals who were evaluated at that same point in time. Because it relates
to a specific point in time, prevalence is sometimes referred to as point prevalence. The
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statistic π̂t is a proportion and exact or asymptotic inferences may be based on the binomial
log likelihood which (up to a constant) is given by

� = Dt log(πt )+ (Nt −Dt) log(1− πt). (32.2)

Standard errors for π̂t may be obtained in a variety of ways (Clayton and Hills, 1993).
One of the most convenient methods (Clayton and Hills, 1993) is to use the Gaussian
approximation to the binomial log likelihood and to treat logit(π̂t ) as being asymptotically
normally distributed with standard error:√

1

Dt
+ 1

Nt −Dt
. (32.3)

Incidence is a rate (λ) rather than a proportion. It is estimated as the number of new cases
of disease (failures) occurring over a period of time (D) divided by the total number of
person-years of at-risk exposure (Y ) experienced by individuals in the study over that
same period of time (Clayton and Hills, 1993):

λ̂ = D
Y
. (32.4)

The person-years of exposure is obtained by summing the subject-specific periods of
at-risk exposure across all individuals. For most purposes, individuals are not viewed as
being at risk of developing the disease once they have already developed the disease and/or
following an event such as death. These events therefore abbreviate the total person-years
of exposure. Analysis is typically based on the Poisson log likelihood which (up to a
constant) can be expressed as

� ≈ D log(λ)− λY. (32.5)

On the basis of a Gaussian approximation to the Poisson log likelihood, a standard error
for log(λ̂) can conveniently be obtained (Clayton and Hills, 1993) as√

1

D
. (32.6)

Analyses of incidence and prevalence are easily extended to incorporate observed
covariates by using generalised linear modelling (McCullagh and Nelder, 1989) in the
form of logistic or Poisson regression (see also Chapter 36) (Breslow and Day, 1980;
1987; Clayton and Hills, 1993). Incidence data can also be modelled by treating the
analysis as a failure time problem and using conventional survival time methods (Miller
et al., 1981) including Cox proportional hazards regression to incorporate covariates
(Cox, 1972).

32.2.2 Modelling Correlated Responses

Correlation, covariance or association between the discrete outcomes in individual
subjects in descriptive mainstream epidemiology usually reflects one of the following:
(1) cluster sampling by design; (2) a multi-centre study design; (3) longitudinal repeated
measurements over time; (4) a natural clustering structure in the study population, e.g. data
related to patients registered with general practitioners (family physicians); or (5) latent
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determinants of disease which have a tendency to cluster geographically or in time.
Depending upon the purpose of analysis, and the structure of the data, a variety of different
classes of models may be used to analyse such data. A comprehensive review of these
models, and their implications for model interpretation would warrant a full chapter on
its own (e.g. see: Neuhaus, 1992; Breslow and Clayton, 1993; Pendergast et al., 2002)
and we will restrict ourselves to a few brief comments.

The classes of model that may be used include (Neuhaus, 1992; Diggle et al., 1994;
Pendergast et al., 2002): (1) conditional models in which the probability of response
of an individual observational unit is conditioned on all other responses in a cluster;
(2) transition models in which there is a logical ordering to the responses in a cluster
and conditioning can be restricted to those responses that pre-date a response of interest;
(3) marginal models in which one jointly estimates parameters underpinning the marginal
mean and others reflecting the correlation or association between units in a cluster but,
crucially, the model for the marginal mean does not include cluster-specific effects,
and this results in parameters having a ‘population-averaged’ interpretation; (4) cluster-
specific (random effects) models, which differ from marginal models in that they do
have cluster-specific effects in the model for the mean, and parameters therefore have a
‘subject-specific’ interpretation. Many of the models that can be used to analyse correlated
data may be viewed as being different types of generalised linear mixed model (GLMM)
(Breslow and Clayton, 1993) and there are many different approaches to model fitting
(Breslow and Clayton, 1993; Pendergast et al., 2002). We will restrict our comments to
some of the methods that are used most commonly in mainstream epidemiology.

If primary scientific interest focuses on the fixed effects and the correlation structure
is essentially a nuisance, marginal models based on conventional (first order) generalised
estimating equations (GEEs) provide a quick and convenient way to analyse the required
data (Liang and Zeger, 1986; Zeger and Liang, 1986; 1992; Burton et al., 1998; Pendergast
et al., 2002). In a conventional GEE the equations for the fixed effect parameters and the
correlation parameters are assumed orthogonal and estimation is based solely on the
mean and second order correlation components only. Provided the model for the mean
is correctly specified and a robust sandwich-based estimator of the covariance matrix for
the fixed parameter estimates is used (Huber, 1967), and provided inferences are then
based on Wald tests and estimation intervals, the conventional GEE approach generates
consistent (though not necessarily fully efficient) inferences for the fixed regression
coefficients even if the covariance structure is incorrect or varies somewhat from cluster
to cluster. Models based on GEEs can easily be fitted in many standard software packages
including Stata (xtgee) (Stata Corporation, 2005) and SAS (Proc Genmod) (SAS Institute
Inc., 2001).

Unfortunately, models fitted using first-order GEEs will often not provide good
estimators of the parameters underlying the correlation/covariance structure itself (Pickles,
2002). In consequence, if the correlation is of primary interest in its own right, approaches
based on multi-level modelling (Goldstein, 1986; 1991; Breslow and Clayton, 1993),
structural equation modelling (Wright, 1921; Neale and Cardon, 1992) or higher order
GEEs (Prentice and Zhao, 1991; Pendergast et al., 2002; Pickles, 2002) are commonly
used. In practice, models such as these are most often fitted using general purpose
software such as MLWin (Rasbash et al., 1999), Splus (lme, nlme) (MathSoft, 2000),
Lisrel (Jöreskog and Sörbom, 1996) or Mx (Neale et al., 2002) or specialist software such
as GEE4 (Hanfelt, 1993). In recent times there has been an increasing use of Markov chain
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Monte Carlo (MCMC) based approaches (Breslow and Clayton, 1993) particularly Gibbs
sampling (Zeger and Karim, 1991; Breslow and Clayton, 1993; Spiegelhalter et al., 2000).

Although most traditional epidemiological analysis is based upon the binomial and
Poisson distributions, some quantitative outcomes (such as blood pressure) and exposures
are more naturally modelled assuming normality either directly or following transfor-
mation. Standard statistical methods for Gaussian responses may then be used. These
again include univariate methods (Armitage and Berry, 2002), generalised regression-
based techniques (McCullagh and Nelder, 1989) and extensions to deal with correlated
data (Goldstein, 1987; Breslow and Clayton, 1993; Burton et al., 1998). Many mainstream
epidemiologists use SAS (Proc Mixed) (SAS Institute Inc., 2001) or SPSS (GLM repeated
measures) (SPSS Inc., 2002) to model correlated continuous responses.

32.3 DESCRIPTIVE GENETIC EPIDEMIOLOGY

Like any other epidemiologists, genetic epidemiologists sometimes need to undertake
simple descriptive analyses based on prevalence, incidence or quantitative outcomes.
Such analyses may be based on the methods outlined above. In addition, however, genetic
epidemiologists need to be able to carry out the more specialised types of analysis that
permit them to address the questions addressed in the stylised flow chart in Figure 32.1.

32.3.1 Is There Evidence of Phenotypic Aggregation within Families?

Simple familial aggregation can be studied in a number of different ways. For a binary
phenotype (disease absent/present), one of the simplest forms of analysis is to estimate
the recurrence risk ratio in relatives of type R of affected individuals (Risch, 1990). This
risk ratio is defined as

Pr(Disease in relative of type R| affected case)

π̂
, (32.7)

where π̂ is the estimated prevalence of the disease in the general population (Risch,
1990; Kopciuk and Bull, 2002). Most commonly it is the recurrence risk ratio for siblings
(λ̂S) that is estimated. As well as evaluating the evidence in favour or against familial
aggregation, Risch (1990) has shown that this statistic is an important determinant of the
power of affected relative pair studies to detect linkage (see Chapter 34). Despite the
simplicity of the λS statistic, some comments are warranted. Firstly, it reflects aggregation
within a sibship regardless of its cause. It does not specifically estimate aggregation due
to genes. Secondly, particularly in diseases with a late onset, any systematic differences
between the age distribution in the siblings of the affected cases, and the age distribution
in the population sample from which π̂ was estimated could distort the statistic. Thirdly,
in relation to diseases with a high population prevalence, such as asthma (Palmer et al.,
2001), λ̂S has a theoretical upper bound at 1

π̂
which means that one should be cautious

in comparing values between populations that have different prevalences.
A variety of other risk ratios for relatives that may be used to assess familial aggregation

have also been described (Kopciuk and Bull, 2002).
Familial aggregation can also be assessed by estimating appropriate intra-class and inter-

class correlation coefficients. For quantitative phenotypes, this approach dates back more
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than a century to Galton (1877; 1886) and Pearson (1896). From a modern perspective,
the assessment of familial aggregation in this manner is no different to the more general
problem of modelling clustered data with a simple correlation structure in mainstream
epidemiology (see Section 32.2.2). All the same issues therefore apply and the same
models and model fitting approaches may be used. It should however be noted that
certain statistical packages, such as the fortran-based program FISHER (Lange et al.,
1988) which fits maximum-likelihood-based linear mixed models for normally distributed
phenotypes, and Lisrel (Jöreskog and Sörbom, 1996) and Mx (Neale et al., 2002) which
may be used to fit structural equation models have been used much more commonly by
genetic epidemiologists than by mainstream epidemiologists.

32.3.2 Is the Pattern of Correlation Consistent with a Possible Effect of Genes?

If and when it has been demonstrated that there is evidence of simple familial aggregation,
the next logical step is to investigate the structure of the correlation underpinning that
aggregation. The use of variance components models to explore complex correlation
or covariance structures has a long and distinguished history in genetic epidemiology
(Fisher, 1918; Wright, 1921; Jinks and Fulker, 1970; Neale and Cardon, 1992; Hopper,
1993; Khoury et al., 1993a; Hopper, 2002b; Neale, 2002; Rao and Rice, 2002). More
recently, extensive work has been carried out based upon mixed effects models fitted
using MCMC methods (Guo and Thompson, 1992; Sobel and Lange, 1993; Gauderman
and Thomas, 1994; Burton et al., 1999; Scurrah et al., 2000).

As in mainstream epidemiology, many of the relevant models may helpfully be viewed
as being GLMMs (Breslow and Clayton, 1993). In order to facilitate a discussion of these
models and the uses to which they may be put, we will now consider the structure of one
such GLMM in more detail.

32.3.2.1 Model Structure

Combining the notation of several authors (Khoury et al., 1993a; Burton, et al., 1999;
Hopper, 2002b), a general model with wide applicability may be written as

g(µij ) = ηij = α + βTzij + ξij , (32.8)

Yij ∼ f (µij ,!),
ξij ∼ N(0, [σ 2

A + σ 2
D + σ 2

C]),

Cov(ξij,ξik)[j �= k] = 2φij,ikσ
2
A +�ij,ikσ 2

D + γij,ikσ 2
C,

where Yij is the observed phenotype in the j th member of the ith family, µij is its
expected value, f (.) denotes an error distribution (from the exponential family) which
may incorporate a nuisance parameter denoted ! . The expected value of the phenotype
is predicted via a link function g(.) applied (in inverse form) to a linear predictor (ηij )
comprising a baseline mean (α), a vector of observed covariates (zij ), a corresponding
vector of unknown regression parameters (β) and subject-specific random effects ξij
with an appropriate covariance structure. The components σ 2

A, σ
2

D and σ 2
C represent,

respectively, the variances arising from polygenic additive effects, polygenic dominance
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effects and shared environmental effects (Fisher, 1918; Khoury et al., 1993a; Hopper,
2002b). The term φij,ik denotes the kinship coefficient between individuals ij and ik : the
probability of randomly drawing a single allele in individual ij that is identical by descent
(ibd ) to a single allele at the same locus randomly drawn from individual ik. �ij,ik is the
probability that both alleles at a locus are shared ibd by individuals ij and ik. Table 32.1
details the φij,ik and �ij,ik values for selected relative pairs and the total genetic variances
that these imply.

In many models, the elements γij,ik are simply binary indicators denoting whether two
individuals live together (γij,ik = 1) or apart (γij,ik = 0). However, the effect of shared
environment may be modelled in a more sophisticated manner. That is by allowing the
impact of shared environment to increase over time living together and then to decline with
time living apart (Hopper, 1993). Furthermore, one may choose to discriminate between
the effects of living together per se from those of living together as a child by introducing
an additional variance component to model shared sibling environment (σ 2

Cs) (Hopper,
1993; Burton et al., 1999). However, σ 2

Cs is completely confounded with σ 2
D under

most simple family designs (except those including monozygous (MZ) twins, double first
cousins, adoptees or siblings reared apart). Given appropriate data, the genetic component
of variance may be extended to incorporate gene:gene (epistatic) and/or gene:environment
interaction effects.

Under model (32.8) (as it is specified) and regardless of the structure of the residual
error, the distribution of the ξij is multivariate normal within families. This parameterisa-
tion is often chosen for reasons of analytic and interpretational tractability (Burton et al.,
1999). However, depending how the model is fitted, alternative assumptions may be both
possible and preferable. For example, γ frailties are often used in survival time models
(Clayton, 1991; Hougaard and Thomas, 2002).

Table 32.2 lists combinations of error structures and link functions that are commonly
used to model a number of important classes of trait (McCullagh and Nelder, 1989) (see
also Chapter 20).

A variance components GLMM, such as model (32.8), invokes a number of critical
assumptions (see Box 32.1). These include assumptions about the statistical model,
assumptions about the underlying biology and assumptions about the epidemiological

Table 32.1 Genetic components of variance assuming random mating.

Relationship φ � Genetic covariance

Same person 1/2 1 σ 2
A + σ 2

D

Parent–child 1/4 0 1/2σ 2
A

Full-siblings 1/4 1/4 1/2σ 2
A + 1/4σ 2

D

Half-siblings 1/8 0 1/4σ 2
A

Monozygous twins 1/2 1 σ 2
A + σ 2

D
Grandparent–grandchild 1/8 0 1/4σ 2

A

Uncle/aunt–nephew/niece 1/8 0 1/4σ 2
A

First cousins 1/16 0 1/8σ 2
A

Double first cousins 1/8 1/16 1/4σ 2
A + 1/16σ 2

D

Spouses 0 0 0
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Table 32.2 Error-link combinations for common classes of phenotype.

Class of trait f (µij ,
) g(.) Notes

Continuous normally
distributed

N(µij , σ
2

E) identity(.) –

Binary Bernoulli(µij) logit(.) probit(.) is a common alternative link
Count Poisson(µij) log(.) –
Censored survival

time
Poisson(µij) log(.) Response is the binary censoring

indicator, log(survival time) is used as
an offset

Mathematical assumptions

Conditional on fixed and random effects, all responses are independent
Random effects are mutually independent and are independent of the fixed effects
The structure of the model is appropriate (e.g. random effects are multivariate
normal, and the assumed distribution of observed phenotype about its modelled
predictions is correct).

Biological assumptions

The population is in Hardy–Weinberg equilibrium
The biological model is complete
The recorded family structures are correct (e.g. no unrecognised non-paternity).

Epidemiological assumptions

All recorded information (outcomes and covariates) is recorded faithfully
Ascertainment is either random (as assumed in model 1), or else the ascertainment
model is appropriately reflected in the likelihood underpinning the model.

Box 32.1 Modelling assumptions for variance components model.

design. The risk of violation of each assumption and the relevance of a violation should it
occur, will vary from trait to trait and will be influenced by the focus of scientific interest
(Hopper, 1993).

32.3.2.2 Model Fitting

A GLMM equivalent to model (32.8), may be fitted using a range of different techniques.
This includes many of the model-based approaches to analysing correlated data considered
in Section 32.2.2. However, first-order GEE models are not ideal if the covariance structure
is of primary interest. Model fitting using MCMC (for complex likelihoods in either a
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Bayesian or non-Bayesian setting) also offers great flexibility and generalises relatively
easily to a wide variety of non-normal traits and to complex extended pedigrees (Guo
and Thompson, 1992; Hopper, 1993; Gauderman and Thomas, 1994; Burton et al., 1999;
Scurrah et al., 2000). On the other hand, the use of MCMC can be demanding in terms
of time commitment to setting up the data, undertaking the analysis and checking the
MCMC process for convergence (Gilks et al., 1996). Furthermore, it is often considered
undesirable to use an MCMC approach when an exact likelihood-based solution is
available.

32.3.2.3 The Interpretation of Parameters

Model (32.8) is a cluster-specific model that generates subject-specific inferences. This
is because the random effects (ξij ) generating the covariance structure appear on the

linear predictor. Under this model, β̂x estimates the change in ηij , or equivalently
g(µij ), associated with a one unit change in covariate zx in an individual. The variance
components also have a subject-specific interpretation (Burton et al., 1999; Scurrah et al.,
2000). For example, in a model with a logit link, if σ̂ 2

A = 0.5, then it suggests that a
subject at the upper 95 % percentile for additive polygenic effects will have a predicted
log(odds) of disease that will be  (0.95)×√0.5 = 1.645×√0.5 ≈ +1.16 higher than
it would have been if the same subject had been at the median for additive polygenic
effects but nothing else had changed (i.e. observed covariates and other random effects
were unaltered). This corresponds to an odds ratio of exp(1.16) ≈ 3.19.

In a marginal model, the variance components reflect the marginal covariance between
the predicted means based solely on the estimated fixed effects (Breslow and Clayton,
1993; Pendergast et al., 2002). Furthermore, β̃x (estimated under the marginal model) has
a population-averaged interpretation reflecting the difference in the marginal expectation
of ηij associated with a one unit increase in zx . In effect, β̃x is averaged over the full
range of frailties in the particular population under study (Diggle et al., 1994). Under an
identity link β̂x = β̃x . Under logit and probit links β̂x ≥ β̃x . The difference increases as
the variance of the frailties rises, and equality only holds if the frailty variance is zero
(Neuhaus, 1992; Diggle et al., 1994). The estimated variance components obtained from
a marginal model are also shrunk relative to their equivalents in a cluster-specific model
in GLMMs with logit and probit links. For a logarithmic link, there is an offset in the
estimated marginal mean (Zeger et al., 1988).

32.3.2.4 Identifiability of Variance Components

The joint estimation of the different variance components depends upon the availability
of a data set containing a suitable range of different classes of familial relationship.
For example, with no further information, a data set based on standard nuclear families
allows the modelling of different covariances between two spouses, a parent and a child
and between two siblings. This allows the simultaneous resolution of three variance
components such as σ 2

A, σ
2

C and σ 2
Cs or σ 2

A, σ
2

C and σ 2
D (Burton et al., 1999).

Extension to three or more generations will not necessarily increase the number of
variance components that may be identified. For example, despite the provision of an
extra class of relation (grandparent:grandchild) addition of the grandparental generation
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will still not permit simultaneous resolution of σ 2
A, σ

2
C, σ

2
Cs and σ 2

D because σ 2
Cs

and σ 2
D will still be linearly dependent (see Table 32.1). On the other hand, such an

extension will increase the power to resolve σ 2
A, σ

2
C and σ 2

Cs and will markedly improve
mixing in the MCMC setting (Scurrah et al., 2000). In order to increase the number of
components that may be identified, one must either incorporate individuals with different
environmental exposures (e.g. some siblings living together and some living apart) or use
designs including additional genetically informative relative types such as adoptees, half-
siblings or MZ twins. In this context, a particularly attractive design is the twin-family
study (Hansen et al., 2000) which enrols MZ and dizygous (DZ) twin pairs with their
parents and siblings. Even when all members of every family unit cohabit, such a design
permits simultaneous identification of σ 2

A, σ
2

C, σ
2

Cs and σ 2
D.

The classical twin design, MZ and DZ twins reared together (with no information
on other family members) (Merriman, 1924; Siemans, 1924), provides a robust test
of H0 : σ 2

G = 0. This is because under the null hypothesis and assuming an equal
environmental covariance, the covariance between MZ twins and DZ twins should be
the same and any genetic determinants, regardless of their nature, will tend to increase
the covariance between MZ twins more than DZ twins. However, there are important
interpretational limitations (Neale and Cardon, 1992; Neale, 2002). For example, in the
absence of additional information (e.g. some twins are reared together and some apart)
only two variance components may be resolved. This is because there are only two
different covariances: that between a pairs of MZ twins and that between a pairs of DZ
twins. Furthermore, the assumption that the shared environmental covariance between
pairs of MZ and DZ twins is the same may be viewed as suspect. In contrast, if one
is prepared to restrict the model to three covariance terms, the twin-family design (see
above) enables this key assumption to be formally tested (Hansen et al., 2000).

32.3.2.5 Twin Studies

There is no doubt that twin studies have been of great historical importance in the
development of genetic epidemiology. This is principally because they provide a natural
experiment that provides a straightforward means of separating the ‘nature’ and ‘nurture’
underlying phenotypic traits (Galton, 1875; Neale and Cardon, 1992; Spector et al., 1999;
Spector, 2000; Neale, 2002). That said, the classical twin design does have significant
inferential limitations (see above), and it is important that the value of twin studies is not
overstated. The potential role of a twin-based design in answering a scientific question of
interest must be considered just as carefully as the corresponding role of any alternative
design (Neale and Cardon, 1992; Neale, 2002).

From an epidemiological perspective, one of the great advantages of twin studies is
that, as a population subgroup, twins are generally very proud of their status and are
very motivated to join biomedical research studies. In consequence, there are many large
twin registries around the world that provide an important opportunity for genomic and
genetic epidemiological study (Strachan, 2002). A far from exhaustive list of major twin
registries includes: the Australian Twin Register (http://www.twins.org.au/);
GenomEUtwin, a biobank that pulls together twin registers across Europe (http://www.
genomeutwin.org/); and the US Veterans Twins Study (http://www.iom.edu/
CMS/3795/4907.aspx).
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In the post-genomic era, the ability to work directly with characterised genotypes rather
than having to infer genetic etiology indirectly from the covariance structure of a trait
(Burton et al., 2005) has meant that the role of twin registries is changing. They continue
to provide an invaluable source of well-characterised epidemiological information on large
numbers of subjects. But their role in providing a natural experiment to explore nature
and nurture is becoming less crucial. In contrast increasing use is likely to be made of
the special inferential opportunities that arise from twin-based studies. For example, MZ
twins provide an ideal group in which to study gene–environment interactions. This is
because they provide a ‘natural experiment’ in which the impact of different environments
can be compared and contrasted between twins with exactly the same genetic background.
Another opportunity arises from the fact that there is a clear need to increase understanding
of the various sources of error in transcriptomics, proteomics and metabolomics. Twin
studies, and in particular twin-family studies, provide a powerful design upon which to
base such research and, in particular, to discriminate random measurement errors from
variability arising from the systematic effect of modulating genes and environmental
determinants.

32.3.2.6 Negative Variance Components

There is a debate as to whether a variance component such as σ 2
A should be allowed

to take negative values. The biological motivation for variance components in genetic
epidemiology usually invokes unobserved determinants (genetic or environmental) that are
shared more commonly among close relatives. Under such a model, unless determinants
are shared systematically less commonly among close relatives, truly negative correlations
or covariances should not arise. However, unless one believes absolutely in the biological
model motivating the variance components model, it can reasonably be argued that the
only constraint that should be applied to the model is the fundamental requirement
that a variance–covariance matrix should be positive definite; this requires, e.g. that
σ 2

A ≥ −σ 2
Cs (Burton et al., 1999) and is therefore less constraining that the requirement

that it be non-negative. Further, it may be argued that it is only by permitting the
variance components to take legal negative values that one can properly test the
biological assumption that they are individually positive. The use of a less restrictive
parameterisation (Burton et al., 1999; Scurrah et al., 2000) is particularly relevant for
models fitted using an MCMC approach with inferences being based on the posterior
mean, because one is then averaging the posterior distribution across iterations. If a
variance component is in truth positive but close to zero, a conventional likelihood-based
solution will be valid. On the other hand, unless the MCMC chain is allowed to traverse
those legal parts of the parameter space associated with negative values, the MCMC
generated estimate of a variance component will be positively biased (Zeger and Karim,
1991; Burton et al., 1999).

32.3.2.7 Modelling Discrete Traits

Variance components models for discrete traits are often motivated by assuming an
underlying normally distributed latent trait with one or more thresholds (Falconer, 1965;
Hopper, 1993; Khoury et al., 1993a; Todorov and Suarez, 2002). In the simple case
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of a binary disease state, the unobserved value of the latent trait in the j th subject in
the ith family may be denoted Xij and the threshold in that same individual as τij .
The subject is modelled as ‘affected’ if Xij ≥ τij and ‘unaffected’ otherwise. It has
been argued that this model is fundamentally incoherent (Edwards, 1969; Todorov and
Suarez, 2002) because very similar latent trait values on either side of a threshold imply a
discordant affection status, while potentially very different values on the same side imply
concordance. However, this concern has been overstated (Todorov and Suarez, 2002). In
its full generality, the latent trait in the ij th individual could be viewed as being drawn
from a N(θij , σ

2
ij ) distribution. But, a model with subject-specific values for θij , σ

2
ij

and τij would be overparameterised given that the Xij are unobserved. Constraints must
therefore be applied. If one arbitrarily specifies τij = 0 and σ 2

ij = 1 for all i and j ,
and sets θij = ηij (from model 32.8) then the latent trait model can be shown to be
mathematically equivalent to a GLMM with a probit link. Under this model, µij =  (ηij ),
where  (.) is the cumulative distribution function for a standard normal random variable
and µij is the expected probability of disease in the ij th subject. Equivalently, under the
latent trait model, the probability that Xij , a random drawn from a N(ηij , 1) distribution,
equals or exceeds τij = 0 is also  (ηij ). This indicates that the latent threshold model
provides a convenient motivation of what is fundamentally a coherent GLMM, with a
probit link, under which the expected probability of affectation increases monotonically
with the value of the linear predictor (ηij ).

32.3.2.8 Heritability

A starting point for many scientists investigating disease aetiology has often been to study
the heritability of a health-related trait. Formally, the heritability of a continuous trait is
defined as the proportion of its total variance (σ 2

TOT) that is attributable to genetic factors
in a particular population. Narrow sense heritability is defined as σ 2

A/σ
2

TOT and broad
sense heritability as σ 2

G/σ
2

TOT, where σ 2
G includes all genetic components of variance.

Heritability is not about cause per se, but is about the causes of variation in a particular
trait in a particular population (Hopper, 2002a). Heritability varies from study to study
depending on the population being investigated (environmental exposures vary between
populations), the structure of the analytic model and measurement error (Hopper, 1992;
2002a). Fisher (1951) pointed out that, in calculating heritability, whilst the numerator has
a simple genetic meaning, the denominator does not. Scientists and the media sometimes
treat heritability as meaning the proportion of a disease ‘caused’ by genetic factors. This
is incorrect. If a disease process is entirely dependent upon the presence of a particular
allele of a particular gene, but everybody in the population is homozygotic for that allele,
variation at that locus will play no role in variation of the disease phenotype and it will
therefore make no contribution to heritability. On the other hand, the gene is clearly
implicated in the causal architecture of the disease. Equivalently, a near ubiquitous
environmental exposure will make little or no contribution to the denominator, σ 2

TOT.
Interpretational ambiguities are also introduced by decisions about the covariates to be
included in a model and by interactions between genes and environmental determinants.
For example, failure to include an important environmental covariate may well increase
σ 2

E (the residual variance) and therefore σ 2
TOT, while leaving σ 2

A unchanged. This will
apparently decrease the narrow sense heritability. For all of these reasons, it is often
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preferable to quote the magnitude of the variance components (such as σ 2
A) individually,

rather than relying solely on the overall value of the heritability itself (Fisher, 1951).
The individual variance components each have a direct scientific interpretation, and their
estimates can be compared meaningfully within and between populations (Hopper and
Carlin, 1992; Burton et al., 1999).

Because heritability is formally defined in terms of variation in a quantitative trait
(Hopper, 2002a) there are specific interpretational problems that pertain to binary traits
(Lichtenstein et al., 2000; Spector, 2000). Although a binary trait can be modelled using
a latent threshold model or equivalently a GLMM with a probit link (see above), this
does not imply that the concept of heritability generalises directly from quantitative to
binary traits. For example, in the setting of a binary disease state, the key assumption that
the liability is normally distributed (Hopper, 2002a) cannot be tested. Furthermore, an
important component of the variability in a binary problem is Bernoulli variation on the
native scale of the trait. Mapping this to the scale of the linear predictor is a non-linear
problem, and the required approximations are at their worst with binary responses when
the binomial denominator is one (Breslow and Clayton, 1993). For a quantitative trait,
a principal reason for calculating heritability, rather than quoting a raw value for the
variance attributable to additive genetic effects, is that heritability ‘standardises’ σ 2

A for
the ‘intrinsic variability’ of the trait under study. This is of obvious scientific utility. But
for a binary phenotype, the intrinsic variability of the trait is determined principally by the
Bernoulli error, which is fixed mathematically. Furthermore, for a typical complex trait,
the variability will also include random unshared error terms that contribute directly to the
assumed liability; e.g. those reflecting the impact of unmeasured aetiological determinants
that are specific to an individual. In designs involving a single measurement of the trait,
the additional variability arising from these error terms is generally non-identifiable for a
binary phenotype (Neale and Cardon, 1992). In consequence, the ‘variance of the liability’
is fixed by assumption – it is not estimated from the data. There would appear to be little
value in standardising σ 2

A for a quantity that is fixed by assumption, and this suggests
that the calculation of ‘heritability’ for a binary trait in this setting is of rather limited
utility.

Given the many pitfalls in the interpretation of heritability, why bother to calculate it
at all? The power of most studies for discovering genes is positively associated with the
heritability of the trait of interest; so, all else being equal and if the option exists, analytic
efficiency may be enhanced by selecting a study population in which the heritability of
the trait of interest is thought to be high. Furthermore, subject to all of the caveats above,
knowledge that a trait of interest has a high heritability provides support for a study that
proposes to investigate the genetic determinants of that trait. Equally, if heritability is low,
the investigators and funders of the proposed study are forewarned that genetic effects
may be difficult to find. In either case, interpretation demands expert understanding of
the nature of the trait.

32.3.2.9 Transition Models

Most of the preceding discussion has focused on the use of marginal and cluster-
specific models. However, in genetic epidemiology, transition models are also used to
model within-family correlation structures. In particular, Bonney (1984) described a
series of models that account for within-family dependencies by specifying a regression
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relationship between an individual’s phenotype and those of certain ancestors and older
relatives. In special cases such a model reflects a simple first-order Markov process,
but a range of alternative biologically sensible autoregressive dependency structures may
also be specified. Classically, and although his nomenclature has changed somewhat over
time, (Bonney, 1984; 2002; Hopper, 1995) described four major classes of ‘regressive
model’: (Class A) regression on parental phenotypes and on spousal phenotype if spouse
correlations are non-zero; (Class B) add regression on the oldest sibling; (Class C) add the
immediately preceding sibling and (Class D) add all preceding siblings. The advantages
of the regressive approach include the fact that the models can be fitted using standard
regression software (simply by extending the design matrix), and that they may be applied
quite naturally both to continuous normally distributed phenotypes (Bonney, 1984) and
to binary traits (Bonney, 1986; 1987) by choosing an appropriate regression model.
Furthermore, the properties of the models have been investigated extensively and specific
analytical structures have been devised that reflect a wide range of different biological
scenarios (Bonney, 2002). However, the models also have some disadvantages. These
include a potential loss of efficiency arising from the conditioning on earlier responses
(Diggle et al., 1994), occasional ambiguities in how to order a pedigree and how to deal
with missing data (Bonney, 1984), and the indirect manner in which inferences about the
correlation structure are obtained. Regressive models for specialist applications in genetic
epidemiology have been built into the software package SAGE (Elston, 2001).

32.3.3 Segregation Analysis

Having determined that the data are consistent with the presence of genetic effects, one
may then move on to address the third question in Figure 32.1: ‘Is it likely that there
is a gene present with a large enough effect to make it worthwhile dedicating expensive
resources trying to identify it?’ This falls under the heading of segregation analysis and
entails assessing whether there are important variants in one or a small number of major
genes whose segregation (usually in a Mendelian manner) explains all or a substantial
part of the observed variation in the trait of interest. Segregation analysis is already
considered elsewhere in this handbook (Chapter 19 and Chapter 20) and we will keep
our comments brief.

Elston (1981) defines segregation analysis as: ‘The statistical methodology used to
determine from family data the mode of inheritance of a particular phenotype, especially
with a view to elucidating single gene effects’. He goes on to emphasise that segregation
analysis has four major components: (1) the genotypic distribution of mating individuals;
(2) the relationship between phenotype and genotype; (3) the mode of inheritance and
(4) the sampling scheme. He considers each of these components in detail (Elston, 1981).

Segregation analysis can conveniently be split into classical methods (Majumder, 2002)
and more sophisticated model-based approaches which deal with complex segregation
problems, particularly those in which more than one mating type is possible for a
given sibship (Blangero, 2002). Classical segregation analysis often involves estimation
of the segregation ratio: that is the probability that an offspring is affected given
parental genotypes. That this is often not straightforward is generally a reflection of the
complications introduced by non-random ascertainment. Classical estimators have been
designed to deal with a number of simple ascertainment schemes (see Section 32.3.4).
Weinberg (1912) proposed the proband method and derived a simple estimator for use
under single ascertainment. The Li–Mantel estimator (Li and Mantel, 1968) may be
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used under complete ascertainment and Davie (1979) proposed an efficient estimator for
intermediate situations with incomplete ascertainment. In contrast, complex segregation
methods reflect the fact that reality is more complicated and generally aim to build
an analytical component reflecting one or more major genes into a more sophisticated
model that simultaneously reflects other determinants of the phenotype of interest. Two
approaches to complex segregation analysis that have been widely used are Morton and
MacLean’s mixed model (1974) and transition (regressive) models (see Section 32.3.2).
Both of these approaches permit the modelling of a major gene against a background of
polygenic and environmental effects.

Model fitting is often based upon regressive models or variance components models,
sometimes incorporating a component of finite mixtures to reflect the major gene (Palmer
et al., 2001) (see also Chapter 18). Estimation may be based upon maximum likelihood,
higher order GEEs or MCMC. Blangero provides an excellent contemporary review of
complex segregation models (Blangero, 2002).

32.3.4 Ascertainment

Any descriptive study in mainstream epidemiology must invest considerable time and
resource ensuring that its sampling frame is representative of the required target popu-
lation, and that there is a high response rate. This emphasis highlights the importance
of the recruitment process in descriptive epidemiology. Under many circumstances, the
ideal sampling frame is one that permits the ascertainment of a random sample of the
population to be studied. This is very convenient because it means that the ascertainment
process can then be ignored in the analysis.

Unfortunately, genetic epidemiologists do not often have this luxury. If one is interested
in the prevalence of disease Q amongst the offspring of parents who have mutually at-
risk genotypes, then unless the at-risk genotype is relatively common, it is prohibitively
expensive to recruit a random sample of the general population because most families
will not be at risk and will therefore be uninformative. Consequently, it would be very
useful to identify those families at risk and to restrict recruitment to this subset. If the
at-risk genotype is expressed in the phenotype of the parents (e.g. if Q is caused by
a dominant polymorphism with high penetrance at an early age) then it may be cheap
and easy to identify relevant families through the parents. However, if the causative
polymorphism (q) is rare and recessive, then almost all at-risk families will consist of
doubly heterozygotic parents (Qq × Qq) who will both be unaffected. Consequently, in
the absence of biological knowledge of the relevant genotypes, the only direct way to
identify at-risk families is to sample families with affected offspring. From a traditional
epidemiological perspective, this appears counter-intuitive: it would not normally be
recommended that one should deliberately oversample affected individuals if one is trying
to estimate the prevalence of a disease! It might be argued that if one obtained all or a
representative sample of families with offspring affected by Q the problem would be
circumvented. But this is not so. One group of at-risk families consists of parents who are
both Qq heterozygotes, but (by chance) none of their offspring are qq homozygotes and,
thus, none are affected by disease Q. By restricting recruitment to families with at least
one affected child, this subset of families will be missed, and because amongst all those at
risk these particular families have an unusually low prevalence (0 %), their exclusion will
seriously bias a naı̈ve estimate of the prevalence of Q in offspring. Ascertainment bias
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is a recurring problem throughout genetic epidemiology and must always be considered
both in study design and analysis.

Non-random ascertainment refers to a mode of sampling that depends systematically
on the outcome being analysed as the dependent variable. Most commonly, families
containing individuals affected by a disease of interest are preferentially oversampled.
Non-random ascertainment has two important implications. Firstly, it distorts the distri-
bution of the outcome in the sample being studied (see above). This may be referred to
as classical ascertainment bias and its importance has been recognised for many years
(Weinberg, 1928; Fisher, 1934; Morton, 1959). Secondly, in situations of aetiological
heterogeneity, non-random ascertainment leads to the oversampling of families that truly
have an unusually high risk of disease (Burton et al., 2000; Epstein et al., 2002; Glidden
and Liang, 2002; Burton, 2003).

Classically, ascertainment has been addressed using the π model (Weinberg, 1928;
Morton, 1959). This approach is based upon the concept of a proband who may be defined
as: ‘an affected person who at any time was detected independently of the other members
of the family, and who would therefore be sufficient to assure selection of the family
in the absence of other probands’ (Morton, 1959). The ascertainment probability (π) is
then defined as the probability that an affected individual becomes a proband and the
ascertainment probability for a family as the probability that that family contains at least
one proband. Thus, in an ascertainment scheme based upon offspring, a family containing
s children where pj denotes the probability of disease in the j th child under the current
model, the probability that the family is ascertained (assuming that ascertainment events
within sibships are conditionally independent) is given by

1−
s∏
j=1

(1− πpj ). (32.9)

There are two important ‘limiting’ scenarios: (1) complete ascertainment (π = 1) under
which all affected individuals are ascertained and the ascertained sample will include
all families with at least one affected child; and (2) Single ascertainment (π → 0) when
the probability of ascertainment is very low, and the probability that any single family
contains more than one proband becomes vanishingly small. Incomplete ascertainment
refers to any intermediate situation (0 < π < 1).

A variety of classical estimators (see Section 32.3.3) have been devised to address
the estimation of segregation ratios under these various ascertainment schemes (Hodge,
2002). However, the generality of the relevant theory goes beyond this. If one ignores the
ascertainment process, the contribution of an ascertained family F to the likelihood under
a statistical model (M) may be denoted Pr(YF|M) where YF is the response vector for
the family. Under non-random ascertainment, this should be replaced by the conditioned
likelihood Pr(YF|A+F ,M) whereA+F denotes the event that family F has been ascertained.
Standard probability theory implies

Pr(YF|A+F ,M) =
Pr(A+F |YF,M) Pr(YF|M)

Pr(A+F |M)
. (32.10)

Furthermore, if the probability of ascertainment given the response vector is unaffected by
the parameters in the current model, which it will be under many ascertainment schemes,
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this simplifies to

Pr(YF|A+F ,M) ∝
Pr(YF|M)
Pr(A+F |M)

.

In words: Up to a multiplicative constant, the likelihood component for family F condi-
tioned for the fact that family F has been ascertained may be obtained as the likelihood
assuming random ascertainment divided by the probability under the current model (for
affection and for ascertainment given affection) that family F would have been ascertained.

The ability to condition any likelihood for the probability of ascertainment has wide
application and is an important feature of many analyses in genetic epidemiology. Of
course, it is not always necessary. For example, non-random ascertainment is generally
treated as being unimportant in linkage analysis provided ascertainment is based either
on the trait of interest, or the marker, but not both (Hodge, 2002). On the other
hand, there are other circumstances in which a failure to take proper account of non-
random ascertainment can lead to an analysis that is so biased that conclusions are
qualitatively incorrect. For example, Hodge (2002) describes an illustrative example
consisting of a simple sibling-based design under complete ascertainment in which a
true segregation ratio of 25 % (as expected for a rare recessive disease) is incorrectly
estimated at 57.1 % (completely inconsistent with a recessive mode of inheritance) when
the ascertainment scheme is ignored (Burton et al., 2000; Kraft and Thomas, 2000). Failure
to condition on the correct probability of ascertainment may also be due to reasons of
computational infeasibility, rather than ignorance. A prime example is when classical
bias and aetiological heterogeneity bias need to be accounted for in a complex variance
component model of a binary response (Noh et al., 2005). With this in mind, any method
that can partially correct for ascertainment bias, that is also practically feasible should
not be dismissed outright. Burton (Burton et al., 2000; Burton, 2003) shows, e.g. that
it is possible to remove bias due to classical ascertainment, without correcting for the
effects of aetiological heterogeneity. However, after this partial correction, estimates
for the prevalence of disease or the value of any variance component will pertain to
the ascertained sample and not the general population. This method does not therefore
provide a full correction, as noted by Epstein et al. (2002) and Glidden and Liang (2002),
but it has been recently shown that parameter estimates for the ascertained population
can be used to estimate general population parameters via a two-stage approach (Bowden
et al., 2006).

Under single ascertainment, adjustment for the sampling scheme can be based upon
removal of the probands from all families (Khoury et al., 1993b). However, this will
generate inconsistencies under any ascertainment model in which the probability that
an individual family contains a proband does not increase linearly with the number
of affected members. Nevertheless, this is obviously related to the common practice
of dividing the full likelihood without adjustment for ascertainment, by the likelihood
(under the model) of the observed phenotype in each proband (Hopper, 2002b). Although
the option to do this is built into a number of software applications, it is important
that the true ascertainment mechanism is considered properly, and simple conditioning
on the phenotype of the proband should only be undertaken if it makes sense in the given
situation being considered.

In the real world ascertainment schemes are often poorly defined and may not
involve unambiguous probands (Morton, 1959; Hodge, 2002). This means that although
conditioning the likelihood for the probability that each family is ascertained remains
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theoretically possible, it may, in practice, be impossible to express this in terms of the
parameters in M and this may thwart adjustment. Instead, Ewens and Shute (Ewens and
Shute, 1986) proposed an alternative ‘resolution of the ascertainment sampling problem’.
This involved ‘conditioning the likelihood of the sample on that part of the data relevant
to ascertainment’. For example, the number of affected children may represent one such
component (Ewens and Shute, 1986). Provided one conditions for all such components of
the data, it is ‘. . . clear that this method will lead to estimates of genetic parameters free
of any specific mathematical ascertainment assumption’ (Ewens and Shute, 1986). The
problem is that conditioning in this manner can discard much of the information driving
the analysis in the first place. It can therefore be inefficient (Ewens and Shute, 1986).

As in mainstream epidemiology, the importance of study sampling mechanisms to
genetic epidemiology cannot be overstated (Fisher, 1934). Particularly for descriptive
studies, it is essential that the ascertainment strategy is considered carefully during study
design, and is then taken into proper account at the time of analysis. Where possible it
is better for the design to include an explicitly stated sampling scheme (including any
sequential rules for pedigree extension once a family has been ascertained (Hodge, 2002)
as it is generally easier to correct for the impact of a precisely defined mechanism than
for an informal process. It is also important to properly understand the scientific question
being addressed and the mathematical model that is to be used, in order to ensure that the
analysis is conditioned in such a way that inferences are valid and yet valuable information
is not wasted.

We do not believe that there can ever be a single answer to the ‘ascertainment problem’
and it is likely that most genetic epidemiologists will continue to encounter circumstances
in which ascertainment bias is severe (and hence cannot be ignored) and yet the true
sampling model is obscure (and hence it is impossible to identify the ideal approach to
adopt). As a practical solution in such circumstances, it is our belief that one has no option
but to try a variety of tractable approaches to ascertainment adjustment that are consistent
with what is known about the problem. This should potentially include adjusting for
sampling schemes that are more extreme than single or complete (e.g. quadratic schemes
under which the probability of ascertainment of a family increases with the square of
the number of affected children (Ewens and Shute, 1986)). If these produce qualitatively
different answers to one another, then there is true uncertainty and no firm conclusions
can be drawn. On the other hand, if all approaches generate comparable results then one
can at least feel more secure in taking action on the basis of those results. Nevertheless,
one can never completely exclude the possibility that the true ascertainment mechanism
was different, and that if one had been able to properly adjust for it, different conclusions
would have resulted.

32.4 STUDIES INVESTIGATING SPECIFIC AETIOLOGICAL
DETERMINANTS

To finish, we return briefly to the second class of studies that is fundamental to mainstream
epidemiology: ‘studies that attempt to investigate a potential aetiological link between
one or more specific determinants and a disease of interest’. Most such studies are
observational and are based upon cross-sectional, case–control or cohort designs, with
analysis being based upon unconditional or conditional, binomial or Poisson likelihoods
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(Breslow and Day, 1980; 1987; Clayton and Hills, 1993; Greenland and Rothman, 1998).
That we have chosen not to focus our chapter on their equivalents in genetic epidemiology
does not in any sense reflect a belief that such studies are unimportant. Indeed, in the
wake of the human genome project, studies that investigate the relationships between a
phenotype and genomic or proteomic biomarkers are fast becoming the dominant areas of
research in genetic epidemiology. Our reason for choosing to focus elsewhere is because
most of the key issues pertaining to such studies are already dealt with thoroughly in other
chapters in this handbook. Chapter 18 deals with association studies which investigate
‘the detection and analysis of statistical association, at the population level, between a
trait and a genotype’. Linkage analysis investigates ‘the dependence in inheritance of
genes at different genetic loci, on the basis of phenotype observations on individuals’
(see Chapter 33), and model-free methods are addressed in Chapter 34. Chapter 38
describes the classical transmission disequilibrium test. The TDT is a form of matched
case pseudocontrol design, wherein the cases are alleles observed to have been transmitted
to the offspring within familial trios consisting of two parents and an affected child, and
the pseudocontrols are their unobserved counterparts that were not transmitted. One of
the most useful characteristics of the TDT is that it permits the drawing of inferences
pertaining to linkage disequilibrium from an, otherwise rather restrictive, family trio
design in which an affected child has been genotyped and his/her parents have been
genotyped but not necessarily phenotyped. Unfortunately, the TDT approach so rapidly
gained widespread popularity that it is sometimes recommended and used unthinkingly
and without proper regard to all of the cautionary notes originally described (Spielman
et al., 1993).

Contemporary methodological developments in genetic epidemiology are largely
focusing upon ways to investigate specific aetiological determinants. Major areas of
current methodological research and development include issues pertaining to: (1) the effi-
cient and robust use of single nucleotide polymorphisms in both candidate regions and in
genome-wide association studies (Balding, 2006); (2) haplotype analysis; (3) population
admixture and stratification (Freedman et al., 2004; Marchini et al., 2004); (4) the use
of data from genome-wide SNP genotyping arrays (Clayton et al., 2005; de Bakker
et al., 2005; Barrett and Cardon, 2006), comparative genome hybridisation and precise
genotyping technologies such as dynamic allele specific hybridisation (DASH) to infer
copy number variation and ultimately to relate this to disease (Fredman et al., 2004;
Freeman et al., 2006; Redon et al., 2006) and (5) methods for genetic meta-analysis and
cross-study synthesis. There is also increasing interest in the use of graphical models
to provide a flexible and powerful analytic environment within which to develop the
sophisticated models ultimately required to disentangle the complex aetiological archi-
tectures of current interest to international medical science. Much of the relevant theory
relating to many of these developments is discussed in various places throughout this
handbook.

32.5 THE FUTURE

There is a plethora of biological information pertaining to the genome and to the proteome
that is following in the wake of the human genome project (Lander et al., 2001; Venter
et al., 2001). There is also a growing recognition of the fundamental importance (and
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serious resource implications) of ensuring that modern biomedical research is based upon
studies that are not only large enough but also incorporate first-class phenotyping and a
rigorous assessment of co-exposures and co-morbidities. As a result, there are a number
of large national initiatives addressing epidemiology and genetics in several countries
(Davey Smith, Ebrahim et al., 2005) including the United Kingdom (BioBank (Vogel,
2002; Wellcome Trust and Medical Research Council, 2002)), Estonia (Frank, 2000) and
Latvia (Abbott, 2001). Furthermore, many large pre-existing cohort studies such as the
Framingham Study (Joost et al., 2002) and the Nurses Health Study (Haiman et al., 2002)
in the United States, the Busselton Study in Australia (Palmer et al., 2001), and european
prospective investigation of cancer (EPIC) (Basham et al., 2001), the avon longitudinal
study of parents and children (ALSPAC) (Jones et al., 2000; Golding et al., 2001) and
the 1958 National Birth Cohort in Britain (Jefferis et al., 2002) all now have a significant
focus on genetics. In addition, special family-based initiatives such as the deCODE project
in Iceland (Gulcher et al., 2001; Hakonarson et al., 2002), and twin registries around the
world (Hopper, 1995; Hansen, de Klerk et al. 2000; Strachan, 2002) will continue to
produce important information. It is clear that those developing statistical methods in
genetic epidemiology are unlikely to be underemployed. Nevertheless, it is crucial that
genetic epidemiologists continue to work closely with mainstream epidemiologists and
biostatisticians in order to ensure that we do not lose sight of the fact that we not only
share methods but a fundamental scientific philosophy.
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Linkage analysis is the analysis of the dependence in inheritance of genes at different genetic
loci, on the basis of phenotypic observations on individuals. The methods of linkage analysis that
evolved over the years 1920 to 1970 closely followed more general developments in approaches
to statistical inference. In recent years, the wealth of DNA markers and the near completion of the
human genome project have led to changes in approaches to linkage analysis. New computational
methods have been developed to make optimal use of available multilocus marker data. With the
mapping of most simple Mendelian traits and the consequent emphasis on mapping the genes
contributing to more complex traits, methods involving analysis of genome identity by descnt
are increasingly used. In view of the limited numbers of meioses often available for inference,
fine-scale mapping and estimation of accurate meiotic maps remain open challenges. As data on
genetic variation becomes available at more detailed levels, sources of variation in the processes
underlying meiosis can be investigated and more accurate genetic maps obtained. Genomic data
at high resolution can allow models for meiosis outcomes to be tested and more accurate models
developed. These may then be used in the mapping of trait genes.

33.1 INTRODUCTION

The last century has seen enormous change in methods of inference from genetic data,
from the rediscovery of Mendel’s laws in 1900, to near completion of Phase I of
the Human Genome Project 100 years later. However, the scientific questions remain
surprisingly constant: Where are the genes? What do they do? Genetics is the science
of heritable variation, meiosis is the biological process whereby genetic information is
transmitted from parent to offspring, and linkage analysis is inference concerning the
outcomes of meioses from data on the genetic characteristics of individuals.

For the purposes of this chapter, linkage analysis is defined as the analysis of the
dependence in inheritance of genes at different genetic loci, as evidenced in phenotypic
observations on individuals in known pedigree relationships. A pedigree is a specification
of the father and mother of each (nonfounder) individual. Individuals whose parents are
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unspecified are founders: relationships are defined only relative to the specified pedigree.
Dependence in inheritance of genes at different genetic loci reflects synteny of the loci,
and the degree of dependence provides a measure of the genetic distance between them.
When a genetic marker map is available, dependence between the inheritances of the trait
and that at certain marker loci enables the locations of trait loci to be inferred.

Of the biological sciences, genetics is the one with the most clearly defined probability
models, and hence the one in which classical parametric statistical inference has had the
biggest role. Moreover, linkage analysis is the area of genetics which is most dependent
on probability models and parametric inference. From the work of Fisher (1922b) onward,
each major development in parametric statistical inference has been adopted by the
developers of linkage analysis methods, and questions of genetic analysis have prompted
new statistical developments. In many ways, statistical inference and genetic analysis have
developed in parallel over the last 100 years.

33.2 THE EARLY YEARS

Modern genetics started with Mendel (1866), who postulated his two laws as a probability
model. In modern terminology, they can be stated as follows:

• Every diploid organism has two factors [or genes] controlling a given trait, one from
the mother, one from the father.

• When a (diploid) individual has an offspring, a copy of a randomly chosen one of his
two genes is transmitted [or segregates] to the offspring.

• This transmission occurs independently of the other parent, independently for each
child, and independently for each trait [or locus].

Mendel’s work was rediscovered in 1900 and not long thereafter geneticists realized
that independence of segregations for different traits is not always true. Instead, there are
groups of traits, which are linked, the genes controlling them tending to be inherited
by the offspring as a group, not independently. That is, the same combinations of
alleles transmitted from grandparent to parent are transmitted to an offspring. The
basic framework for linkage analysis was quickly established. The genetic material that
underlies inherited characteristics consists of the chromosomes: linear structures of DNA
in the form of a double helix contained within each cell nucleus. In a diploid organism,
chromosomes come in pairs, one deriving from the genetic material of the mother and the
other from the father. In meiosis, the process of formation of a gamete (sperm or egg cell),
a parent provides one chromosome from each chromosome pair. In the formation of this
chromosome, several crossover events may occur between the two parental chromosomes,
such that the transmitted chromosome consists of alternating segments of the two parental
chromosomes. Simple genetic characteristics are determined by the two segments of DNA
sequence (alleles) at a specific location (locus) on a pair of chromosomes. Geneticists soon
associated this dependence in inheritance (linkage) with the chromosomes. Sturtevant
(1913) showed the patterns of coinheritance of genes for different sex-linked traits in
Drosophila were best explained by a linear arrangement of genes and made the first gene
ordering inference using methods analogous to those still used today.
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Mathematically, we define
Si,j = 0 or 1 (33.1)

to denote that in meiosis i at locus j the maternal or paternal gene (respectively) of
the parent is transmitted to the offspring. For ease of notation we define the two sets of
vectors

Sž,j = (Si,j , i = 1, ...,m) for locus j, j = 1, . . . , l

Si,ž = (Si,j , j = 1, ..., l) at meiosis i, i = 1, . . . ,m. (33.2)

These meiosis indicators or switches (Donnelly, 1983) specify the descent of genes
in pedigrees. In experimental organisms, experiments can be designed such that the
grandparental origin of each offspring allele is clear, and often large numbers of offspring
can be observed. For two distinct locations on a chromosome, the recombination frequency
θ is the probability that the alleles derive from different parental chromosomes; that
is, have different grandparental origins. Between two loci, j and j ′, the recombination
frequency is

θjl = Pr(Si,j �= Si,j ′).
The recombination frequency is often assumed not to depend on the specific meiosis i,
or to depend only on the sex of the parent in which meiosis i occurs. In reality, many
factors may affect the frequency of recombination.

For recombination to occur, there must be an odd number of crossovers between the
two loci in the formation of the offspring gamete. For loci that are very close together on
the chromosome, θ is close to 0, and alleles at the two loci will show strong dependence in
their grandparental origins. Under most meiosis models, and apparently in nature, the value
of θ increases with increasing length of chromosome intervening between the two loci,
until for loci that are far apart on a chromosome, or are on different pairs of chromosomes,
θ = 1

2 and the grandparental origins of alleles at the two loci are independent. Loci for
which θ < 1

2 are said to be linked. Linkage analysis is the statistical analysis of genetic
data with the goals of detecting whether θ < 1

2 , of estimating θ , of ordering a set of
genetic loci, and ultimately of placing the loci determining genetic traits of interest at
correct locations in a genetic map.

An understanding of the population–genetic issues was also fundamental to the early
development of statistical genetics. In 1908, G. Hardy and W. Weinberg independently
established the idea of Hardy–Weinberg equilibrium showing that Mendelian segregation
provided for the maintenance of stable genetic variation within a population. In the absence
of selection, in an infinite population, allele frequencies remain constant. Moreover,
for loci on the 22 pairs of autosomes, constant ‘equilibrium’ genotype frequencies are
established by a single generation of random mating (see Hartl and Clark, 1997). For joint
frequencies at two loci, this is not so. Denoting alleles at two diallelic loci A and B by ai
and bi (i = 1, 2), there are four haploypes: a1b1, a1b2, a2b1, and a2b2. If the population
frequencies of these are pk, k = 1, . . . , 4 the standard measure of linkage disequilibrium
or allelic association is

D = Pr(a1b1)− Pr(a1) Pr(b1)
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= p1 − (p1 + p2)(p1 + p3)

= p1p4 − p2p3,

since p1 + p2 + p3 + p4 = 1. Robbins (1918) showed that, after one generation of
random mating, in an infinite population, the allelic association is decreased to

D∗ = D(1− θ). (33.3)

Thus equilibrium haplotype frequencies are not obtained in a single generation even for
unlinked loci (θ = 1

2 ). If linkage is tight (θ ≈ 0), allelic associations persist over many
generations.

Haldane (1919) defined genetic map distance between two loci as the expected number
of crossover events between them; this distance measure is additive regardless of the
meiosis model. One Morgan is the length of chromosome in which one crossover event
is expected; map distances are normally given in centiMorgans (1 cM = 0.01 M). He
also related this additive map distance to recombination frequencies between loci on
the assumption that crossovers occur as a homogeneous Poisson process. (This is the
model of ‘no genetic interference’; a given crossover event does not affect the probability
distribution of the number and locations of other crossover events.) This sparked an
exploration that still continues, on the relationship between physical distance (actual DNA
length in base pairs (bp)) and map distance (the statistical measure based on the degree of
dependence between genetic loci). There is no simple relationship; in terms of physical
distance recombination rates vary widely over the genome. The early statistical geneticists
made clear that only recombination frequencies, and hence genetic map distances, could
be estimated from segregation data alone.

Fisher (1922b) used a different relationship between recombination frequencies and
map distance, assuming one crossover precluded any other crossover in the region of
chromosome he considered. Under this model of ‘complete interference’, recombination
frequencies are themselves additive. With this simplifying assumption, he used the
multinomial distribution of recombination counts in offspring as one of his first examples
of maximum likelihood estimation, citing, and drawing on his theoretical work published
in the same year Fisher (1922a). Thus, by 1925, questions of gene ordering, genetic maps,
linkage disequilibrium, and the relationship between genetic and physical maps had all
been raised.

33.3 THE DEVELOPMENT OF HUMAN GENETIC LINKAGE ANALYSIS

In the 1930s, three British mathematicians, statisticians, and geneticists laid the foun-
dations of most of modern linkage analysis, and did so through the use of statistical
models. Haldane (1934) and Fisher (1934) recognized that the same methods and ideas
that were being increasingly applied to designed crosses of experimental organisms could
be applied also to observed patterns of inheritance in human families. At the same time,
Penrose (1935) pointed out that, with a sufficiently large sample, linkage could be inferred
from associated sharing of traits in sib pairs (see Chapter 34). Haldane (1934) consid-
ered use of likelihood to detect linkage, while Fisher (1934) addressed the estimation
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problem more generally, applying ideas of information and efficiency. Just as the work
of the early years raised many still-topical map issues, the work of the 1930s raised some
human trait issues. Trait heterogeneity in linkage detection was first addressed by Fisher
(1936). While Fisher (1934) focused on the statistical issues of information and power
to detect linkage, he also foresaw both the potential and the problems of using linked
genetic markers in genetic counseling.

Statistically, the problem is one of missing data or latent variables. In human families,
individuals may be unavailable for typing, the traits that are observed may have no
direct correspondence with the underlying alleles, and even where they do the sharing of
common alleles may make grandparental origins of alleles unclear. Since Fisher (1922b)
and Haldane (1934), the usual approach to linkage analysis is through computation of
likelihoods. Evaluation of the likelihood involves summing over all the latent events that
could have led to the observed data. In the early approaches, the genotypes of individuals
are considered the latent variables:

Pr(Y) =
∑

G

Pr(Y|G) Pr(G) =
∑

G

( ∏
observed i

Pr(Yi,ž|Gi,ž)
)

Pr(G), (33.4)

where
Pr(G) =

∏
founders i

Pr(Gi,ž)
∏

nonfounders i

Pr(Gi,ž|GMi,ž,GFi,ž). (33.5)

Here, and throughout, Y denotes phenotypic data at trait and marker loci: Yi,ž denotes
all data on individual i. The bullet subscript denotes that multiple genetic loci may
be involved. For ease of presentation, we assume that phenotypes Yi,ž are condition-
ally independent given the multilocus genotype Gi,ž of individuals i. The population
allele frequencies and allelic associations determine the probabilities Pr(Gi,ž) of founder
haplotypes, while the laws of Mendelian segregation and linkage relationships among
the loci determine the transmission probabilities Pr(Gi,ž|GMi,ž,GFi,ž) for the genotypes
of nonfounder individuals i conditional on those of the parents Mi and Fi of i. Geno-
types of individuals are conditionally independent given those of their parents. In the
context of linkage analysis, recombination frequencies θ are the unknown parameters of
the transmission probabilities, and Pr(Y) is the likelihood L(θ) for θ .

The next big advances came again with application to linkage analysis of new statistical
approaches. Haldane and Smith (1947) developed the uses of the likelihood ratio and
maximum likelihood estimation, including the computation (by hand) of likelihoods on
extended pedigrees, while Smith (1953) investigated the properties of these likelihood
methods and the information for linkage in various pedigree designs. Smith (1953) also
introduced the lod score of Barnard (1949) to linkage analysis. The likelihood ratio for
linkage at a given recombination frequency θ relative to that for unlinked loci θ = 1

2 is
L(θ)/L

( 1
2

)
. The lod score for linkage between two loci is

max
0≤θ≤ 1

2

log
(
L(θ)/L

(
1

2

))
.

Haldane and Smith (1947) also proposed use of a Bayesian prior probability for synteny
of two randomly chosen loci, and for the locations of linked loci. The Bayesian approach
was developed much further by Renwick (1969).
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Statistical developments in hypothesis testing also influenced linkage analysis, contin-
uing the distinction between testing and estimation first emphasized by Fisher (1934).
Using logarithms to base 10, the lod score bounds for declaration of linkage (+3) and
exclusion of linkage (–2) proposed by Morton (1955) derived from a consideration of type
1 and type II error following a sequential probability ratio test (SPRT) of Wald (1947).
This base-10 lod score has become the standard criterion for assessing evidence of linkage.
The use of base-10 logarithms also became standard, and is deeply embedded in current
methodology in this area, although in some recent multipoint linkage approaches natural
logarithms of likelihoods are also used (see location score below).

In the framework of testing, Smith (1963) formalized the ideas of Fisher (1936) to
develop likelihood-based tests for linkage heterogeneity. Edwards (1971) also followed
the likelihood and testing approach to linkage detection, referring to absence of linkage as
‘the only true null hypothesis in biology’. He also considered questions of the amount of
information in a set of observations, converting it to an ‘equivalent number’ of informative
meioses on the basis of the curvature of the likelihood in the neighborhood of the
maximum – in effect using the usual statistical measure of (Fisher) information.

33.4 THE PEDIGREE YEARS; SEGREGATION AND LINKAGE
ANALYSIS

The issues facing linkage analysis in 1970 were primarily computational and statistical.
Data had been collected on pedigrees segregating many Mendelian traits, some exhibiting
more complex patterns of inheritance, and some quantitative traits. Markers remained
few and mostly unmapped, but linkage analysis was increasingly attempted as digital
computers began to provide the necessary computational power. Around 1970, Hilden
(1970), Elston and Stewart (1971), Heuch and Li (1972) laid the basis for what would
remain the primary approach to segregation and linkage analysis computations for the next
20 years. Using very similar ideas, they independently produced algorithms and programs
for the computation of likelihoods on extended pedigrees. Very soon thereafter, Ott (1974)
produced the linkage analysis program LIPED which is still in use today. This program
used the Elston–Stewart algorithm to compute probabilities of data at two loci jointly,
and hence likelihoods for linkage. Over the next several years, computers improved and
computational algorithms were generalized to more complex pedigrees and more complex
trait models (Cannings et al., 1978; 1980).

Although more genetic markers that could be typed in human individuals were gradually
accumulated, these methodological and computational advances would have meant little
without the advent of DNA markers (Botstein et al., 1980). Since 1980, new technology
has made available a wealth of new types of genetic markers, on the basis of characteristics
of the DNA sequence itself rather than on proteins and enzymes determined by the DNA.
These markers rely primarily on length variations in DNA, either in terms of numbers
of copies of a short repeat sequence, or lengths between occurrences of a given short
motif. These genetic markers must first be mapped relative to each other. Then they can
be used to localize the genes contributing to traits of interest. Now, there are thousands
of such markers available, and the Human Genome Project goal of a marker map at
1 cM density has been achieved (Murray et al., 1994). However, even a genetic length of
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1 cM is approximately 1 million base pairs (bp) of DNA. More recent maps contain even
more markers, including single-nucleotide-polymorphisms (SNPs). These may occur as
frequently as 1 per 500 bp.

With the discovery of the first DNA markers, the restriction fragment-length polymor-
phisms (RFLPs), suddenly there was the prospect of markers throughout the genome.
Instead of linkage groups, there would be genetic maps on which the loci contributing to
traits could be placed. Questions of study design and map density arose: Who should be
typed? For what markers? For many simple Mendelian traits, trait data on pedigrees either
already existed or could be relatively easily collected. The marker typing was the expen-
sive component. Again from the statistics arena, the elod entered the literature on genetic
linkage (Thompson et al., 1978). This is simply the expected log-likelihood difference or
base-10 version of the Kullback–Leibler information (Kullback and Leibler, 1951)

elod(θ) = Eθ

(
log10 L(θ)− log10 L

(
1

2

))
,

where the expectation is over the probability distribution of trait and marker data under
a recombination frequency θ between the trait and marker loci. The elod became the key
measure of the information to be expected from data on a set of pedigrees, given a trait
model. Since trait data were often already available, a more relevant measure of expected
information for linkage is the elod conditional on these specific trait data. Ploughman and
Boehnke (1989) solved the problem of providing these conditional expected lod scores in
their program SIMLINK which became a mainstay for those involved in practical linkage
analyses.

Another consequence of the existence of genetic marker maps, was the development of
map-specific multipoint linkage analyses (Lathrop et al., 1984). That is, the marker map
is assumed known and a log-likelihood difference (or location score) is computed for
each hypothesized location of the trait locus relative to the hypothesis that the trait locus
is not linked to this segment of the marker map. Use of multiple marker loci increases
the power of the analysis, combining information from markers that are informative in
different meioses of the pedigree. Even interval mapping, in which a locus is mapped
using data on two hypothesized flanking markers, provides much more information than
mapping with each marker locus separately. These principles are embodied in programs
such as VITESSE (O’Connell and Weeks, 1995) and FASTLINK (Cottingham et al., 1993)
which remain the standards for exact computation of lod scores on extended pedigrees,
using a small number of markers.

With the use of data at larger numbers of marker loci, it becomes simpler to consider
the meiosis indicators of (33.1) as the latent variables, rather than genotypes G. Then
(33.4) becomes

Pr(Y) =
∑

S

Pr(Y|S)Pr(S),

where S is the total set of meiosis indicators {Si,j ; i = 1, . . . , m, j = 1, . . . , l} for the m
meioses of the pedigree and each of the l loci. For ease of presentation, we assume that
the data are specific to known or putative genetic loci, and for convenience we suppose
these to be ordered 1, 2, . . . , l along a chromosome (or chromosomes). Then the data Yž,j ,
attributable to genotypes at locus j , depends only on the descent of genes at locus j . The
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analogue of (33.4) and (33.5) is then

Pr(Y) =
∑

S

 l∏
j=1

Pr(Yž,j |Sž,j )

(
m∏
i=1

Pr(Si,ž)

)
, (33.6)

since different meioses i are a priori independent. Although summation over the space
of all S values is required, this is a smaller space than the space of all multilocus
genotype configurations G on a pedigree, and has a simpler dependence structure.
Moreover, probabilities Pr(S) depend only on the the pedigree structure and on the meiosis
(chromosome) structure. Recombination parameters enter only into this term, while all
other parameters relating to the genetic model for trait and marker loci affect only Pr(Y|S).

In considering a location score curve for linkage of a particular trait, it is conve-
nient to partition the data into the marker data YM and trait data YT , and likewise
partition the meiosis indicators into those at the marker loci, SM , and those at the puta-
tive trait locus ST . Often the genetic model for the marker phenotypes YM is assumed
known. That is, the marker map �M determining Pr(SM) and marker allele frequen-
cies determining Pr(YM |SM) are fixed. Also parameters that are often assumed to be
known are the parameters β relating trait genes and trait phenotypes: Pr(YT |ST ) is a
function of β. The only parameter which is varied is the location γ of the trait locus,
with γ = ∞ corresponding to absence of linkage. Log likelihoods are plotted as a func-
tion of γ . The location score curve is thus twice the (natural) log of L(γ )/L(∞),
where

L(γ ) = Pr(YT ,YM;�M, β, γ ) =
∑

SM,ST

Pr(YT ,YM,SM, ST ;�M, β, γ ) (33.7)

and

Pr(YT ,YM, SM, ST ;�M, β, γ ) = Pr(YM |SM)Pr(SM;�M)
× Pr(YT |ST ;β)Pr(ST |SM; γ ). (33.8)

On the one hand, analysis is simplified by the fact that γ enters only into the final term
Pr(ST |SM; γ ). On the other hand, analysis is complicated by the need to compute across
the whole range of positions γ , and by the fact that there is often strong evidence that the
trait locus is not coincident with any marker locus, leading to 0 or infinitesimal values of
L(γ ) at some marker locations.

The development of genetic maps also initiated the era of genome scans, in which
a test can be made for linkage of a trait with each available marker. The inter-
pretation of lod scores under these multiple dependent tests is not straightforward.
Even when the trait gene is in some map interval, data on a sufficient number of
informative meioses will provide strong evidence for recombination between the trait
locus and an adjacent marker. Thus, the log-likelihood curve for the location of the
trait locus will normally have multiple peaks with sharp decreases at the marker
locations.

The 1980s were the golden years of traditional linkage analysis. By 1990 simple
Mendelian traits had been localized by linkage analysis, except for those so rare that
too few data are available. Methods for fine-scale mapping were developed; many genes
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for simple traits were identified. Ott (1999) covers many of the developments of the last
two sections in his text. He also says:

Linkage analysis is sometimes perceived as a matter of simply using the proper computer
program, so that anyone with sufficient computer expertise could ‘do the linkage analysis’
after family data and marker typing have been obtained. . . . It is dangerous to have linkage
analyses carried out by individuals without the necessary theoretical background.

A full understanding of linkage likelihoods, and particularly of location score curves,
requires that many complex statistical questions be addressed.

33.5 LIKELIHOOD AND LOCATION SCORE COMPUTATION

The basis of the Elston–Stewart algorithm, and related algorithms, is to sum latent vari-
ables sequentially over a pedigree but jointly over loci. Equation (33.4) leads to computa-
tional algorithms that are linear in pedigree size, but exponential in pedigree complexity,
as measured by the number of interconnected pedigree loops. Moreover, algorithms are
linear in the number of potential multilocus genotype triples of a father–mother–child trio,
and hence exponential in the number of genetic loci. Although the efficiency of computer
algorithms for exact likelihood evaluation have been much improved (Cottingham et al.,
1993), and various approximate methods have been proposed (Curtis and Gurling, 1993),
exact computation is intrinsically limited in the number of loci that can be considered.
With multiple linked multiallelic loci, the approach rapidly becomes computationally
infeasible.

A new approach to likelihood computation on pedigrees was provided by Lander and
Green (1987). Their algorithm was based on using Si,j (33.1) as the latent variables (33.6).
They called Sž,j the inheritance vector at locus j . Instead of proceeding sequentially over
the pedigree and jointly over loci, the computation proceeds sequentially along a chro-
mosome, jointly over all meioses. Under the assumption of no genetic interference, the
random vectors Sž,j have a first-order Markov property, and the likelihood (33.6) may be
rewritten as

Pr(Y) =
∑

S

Pr(S,Y) =
∑

S

Pr(Y|S)Pr(S)

=
∑

S

Pr(Sž,1)
l∏
j=2

Pr(Sž,j |Sž,j−1)

l∏
j=1

Pr(Yž,j |Sž,j )

 . (33.9)

Under this Markov assumption, the framework is that of a hidden Markov model
(HMM) and the Baum algorithm provides a computational method which is linear in
the number of loci (Baum, 1972), but exponential in pedigree size. Thus, the method
allows computation of probabilities of marker phenotypes for any number of loci, but on
small pedigrees.

The dependence structure of data on a pedigree is shown in Figure 33.1. This shows the
conditional independencies which underlie both the Elston–Stewart and Lander–Green
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Figure 33.1 The dependence structure of data on a pedigree.

algorithms for likelihood computation on pedigrees. A pedigree is a collection of a priori
independent meioses. In a given meiosis, transmissions are dependent along the chro-
mosome. In the absence of interference this dependence is first-order Markov. Data
are determined by the founder alleles and meioses at a given locus; observation of
data at a locus creates a posteriori dependence of the meioses at that locus. The
Elston–Stewart algorithm uses the a priori independence of meioses, which leads to
conditional independence of genotypes (33.4). The Lander–Green uses the first-order
Markov dependence of meioses along a chromosome (that is, of Sž,j ) in the absence of
genetic interference.

Again the methods have been further developed, allowing for more efficient computa-
tion as implemented in the programs GENEHUNTER (Kruglyak et al., 1996), ALLEGRO
(Gudbjartsson et al., 2000) and MERLIN (Abecasis et al., 2002). A key recognition comes
from placing the problem in the context of general graphical models (Lauritzen and
Spiegelhalter, 1988), so that all dependencies in Figure 33.1 are treated equally. Due to
the a priori independence of meioses, the structure is actually that of a factored HMM
(Fischelson and Geiger, 2004). Thus performance is much improved by summing over the
transitions of each meiosis in turn (from Si,j−1 to Si,j for each i = 1, ...,m), rather than
over the entire inheritance vector jointly (from Sž,j−1 to Sž,j ). Regardless of the values
of these transition probabilities (for example, using sex-specific maps), this factorization
reduces the computation from order 2m × 2m to order m× 2m. These and other computa-
tional advances are embodied in the program SUPERLINK (Fischelson and Geiger, 2004;
Silberstein et al., 2006), which has greatly increased the size of the pedigree on which
exact computation of multimarker location score curve is feasible. However, Figure 33.1
also shows that computation is intrinsically exponential in the number of meioses m, so
pedigree size is a limiting factor in this approach.

A disadvantage of the form (33.6) or (33.9) is the requirement to determine
Pr(Yž,j |Sž,j ), which is potentially more complex than the individual penetrance proba-
bilities Pr(Yi,ž|Gi,ž) of (33.4). Genes are identical-by-descent (ibd) if they are copies of
the same gene in some common ancestor. Disregarding mutation, such genes are neces-
sarily of the same allelic type. The indicators Sž,j = (Si,j ; i = 1, ..., m) determine the
descent of genes from the founders of the pedigree, and hence the pattern of gene ibd
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among observed individuals at locus j . If k denotes a founder gene, a(k) its allelic type,
and qj (a) the population frequency of allele a at locus j , then

Pr(Yž,j |Sž,j ) =
∑
A(j)

(∏
k

qj (a(k))

)
. (33.10)

(Thompson, 1974), where A(j) denotes an allocation of allelic types to the founder genes
labels (FGL) k at locus j , which, given Sž,j , is consistent with the data Yž,j . Computation
requires an efficient algorithm for the summation over all feasible allocations A(j) at
locus j . For marker genotype data observed without error, one such algorithm is given
by Sobel and Lange (1996). Using this algorithm, computation of Pr(Yž,j |Sž,j ) is readily
accomplished, even on large pedigrees. For more general marker models or quantitative
traits, the problem is again one of peeling, this time over FGL k on an FGL graph. The
nodes of this graph are the FGL and there is a dependency link between each pair of
FGL that are, given Sž,j , both present in an observed individual. Details are given by
Thompson (2005).

33.6 MONTE CARLO MULTIPOINT LINKAGE LIKELIHOODS

The structure of dependence shown in Figure 33.1 also lends itself to a variety of Monte
Carlo approaches, in which the latent variables are realized from some importance-
sampling distribution. Even when Pr(Y) cannot be computed exactly, due to the size or
complexity of the pedigree and the number of linked genetic loci, Monte Carlo estimates
of the likelihood or of posterior probabilities can be made.

Since, in linkage analysis, the parameter θ is normally reserved for recombination
frequencies, we use ξ for the full set of parameters of the genetic model. For example,
in the case of the location score curves of (33.7), ξ = (�M, β, γ ). The likelihood of a
genetic model indexed by parameters ξ , given data on a pedigree, can be written

L(ξ) = Pξ (Y) =
∑

X

Pξ (X,Y) =
∑

X

Pξ (Y|X)Pξ (X), (33.11)

where X are latent variables, either the genotypes G of (33.4) or the meiosis indicators S
of (33.6). Thus, for fixed observed data Y,

L(ξ) = Eξ (Pξ (Y|X)), (33.12)

where the expectation is over X having the distribution Pξ (X). Where the variable X is
the set of latent genotypes G, this is the form given by Ott (1979). In principle, L(ξ)
could be estimated by simulating G from the genotype distribution under model ξ and
averaging the value of the penetrance probabilities Pξ (Y|G) for the realized values of G.
This does not work well, except on very small pedigrees, since each realized G is almost
certain to be inconsistent with data Y, or at best to make an infinitesimal contribution to
the likelihood.
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Better ideas normally involve some form of importance sampling:

L(ξ) = EP ∗

(
Pξ (X,Y)

P ∗(X)

)
, (33.13)

where now realizations are made from P ∗(X). An advantage of this approach is that a
single set of realizations from P ∗(X) can be used to provide a Monte Carlo estimate of
L(ξ) over a range of models ξ . However, the importance sampling will be effective only
if P ∗(X) is approximately proportional to Pξ (X,Y). Since

Pξ (X|Y) =
Pξ (X,Y)

Pξ (Y)
∝ Pξ (X,Y), (33.14)

the ideal choice of sampling distribution is Pξ (X|Y). However the constant of propor-
tionality is L(ξ) = Pξ (Y). If Pξ (X|Y) can be computed, so also can L(ξ) = Pξ (Y). Thus
the choice of sampling distribution is a balance between approximation to Pξ (X|Y) and
computational feasibility.

The following approach to choice of importance-sampling distribution P ∗(G) is due to
Kong et al. (1994) and Irwin et al. (1994). Suppose, as before, there are data at l genetic
loci (say a disease and l − 1 markers) on a chromosome, and assume absence of genetic
interference. Note that genotypes Gž,j satisfy the same first-order Markov dependence
over loci as do the meiosis indicators Sž,j (Figure 33.1). Let Yž,j again denote the data
for locus j and Gž,j the underlying genotypes at that locus for all members of the
pedigree. Let Y (j) = (Yž,1, . . . , Yž,j ), and G(j) be analogously defined. For any specified
ξ of interest, a realization G∗ž,j is obtained for each locus in turn from the sequential
imputation distribution

Pξ (Gž,j |G(j−1), Y (j)) = Pξ (Gž,j |Gž,1, . . . Gž,j−1, Yž,1, . . . , Yž,j−1, Yž,j )

= w−1
j Pξ (Yž,j |Gž,j )Pξ (Gž,j |Gž,j−1),

where the predictive weight wj is Pξ (Yž,j |Gž,j−1). Computation of wj is a single-locus
computation which may be done using the Elston–Stewart algorithm. Then it is readily
shown that the joint simulation distribution for G∗ = (G∗ž,1, ...,G∗ž,l) is

P ∗(G∗) = Pξ (Y,G
∗)

Wl(G∗)
,where Wl(G

∗) =
l∏
j=1

wj . (33.15)

Thus
EP ∗(Wl(G

∗)) =
∑
G∗
Wl(G

∗)P ∗(G∗) = Pξ (Y) = L(ξ). (33.16)

A Monte Carlo estimate of L(ξ) is given by the mean value of Wl(G
∗) over repeated

independent repetitions of the sequential imputation process. Repeating the process for
different trait-locus positions γ on the chromosome, keeping other components of ξ fixed,
one can obtain an estimated location score curve (33.7). This procedure is implemented
in the program SIMPLE (Skrivanek et al., 2003), and works well for moderate numbers
of loci.
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Alternative methods use Markov chain Monte Carlo (MCMC) to sample directly
from the conditional distribution of latent variables X given the data Y. We shall not
detail here the various MCMC methods that have been used to realize latent variables
for location score estimation in linkage analysis. The early methods were primarily
single-site methods using either genotypes G (Lange and Sobel, 1991) or meiosis indica-
tors S (Thompson, 1994). More recently a variety of block-updating MCMC algorithms
have been developed, including the locus-sampler (L-sampler) of Heath (1997) and
the meiosis-sampler (M-sampler) of Thompson and Heath (1999), or their combina-
tion (Heath and Thompson, 1997). More recent methods allow the sampling of multiple
meioses (Thomas et al., 2000), and the use of sequential sampling distribution (33.15)
as a Metropolis–Hastings proposal distribution (George and Thompson, 2003). These
samplers require the combination of exact and Monte Carlo methods of analysis. Either
the generalized Elston–Stewart algorithm (Cannings et al., 1978) is used to perform the
required single-locus computations conditional on neighboring loci, or the Lander–Green
version of the Baum algorithm (Baum et al., 1970) is used to resample some subset of
the meioses.

The first MCMC-based linkage location score approach is due to Lange and Sobel
(1991), who, using our current notation, write the likelihood (33.7) in the form

L(β, γ, �M) = Pβ,γ,�M (YT ,YM) ∝ Pβ,γ,�M (YT |YM)
=

∑
XM

Pβ,γ (YT |XM)P�M (XM |YM)

= E�M (Pβ,γ (YT |XM)|YM). (33.17)

Now latent variables XM are sampled from their conditional distribution given the marker
data YM . Provided exact computation of Pβ,γ (YT |XM) is possible for alternative trait
models (β) and locations (γ ), we have a Monte Carlo estimate of L(β, γ, �M), while
comparison to the unlinked base point requires only Pβ(YT ). Since �M is fixed the Monte

Carlo requires only a single set of N realizations X(τ)M , τ = 1, . . . , N . This approach is
implemented in the program SIMWALK (Sobel and Lange, 1996).

The disadvantage of using (33.17) is that Pβ,γ (YT |X(τ)M ) must be computed for each
such realization; this requires a single-locus peeling computation for the trait-locus
data under the trait model. Further, this computation must be done not only for each
realization X(τ)M but also for each β and γ at which a likelihood estimate is required.
In many cases, however, the gains outweigh the costs except when the simulation
distribution P�M (XM |YM) is not close to proportional to the ideal importance-sampling
target distribution Pβ,γ,�M (XM |YT ,YM). This is particularly so for models (trait locations)
γ which are not close to the truth, and for a trait which provides substantial information
about the inheritance patterns of genes at the underlying trait locus, and hence also at
linked marker loci (Thompson, 2000).

An alternative MCMC approach is based on the estimation of likelihood ratios between
models that impose similar distributions on the latent variables conditional on the data, Y.
In this case MCMC is used to sample, not from Pξ (X|Y) but from Pξ0(X|Y), where ξ0 ≈ ξ .
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Then

Pξ (Y) =
∑

X

Pξ (Y,X) =
∑

X

Pξ (Y,X)

Pξ0(X|Y)
Pξ0(X|Y)

= Eξ0

(
Pξ (Y,X)

Pξ0(X|Y)
∣∣∣∣ Y

)
= Pξ0(Y)Eξ0

(
Pξ (Y,X)

Pξ0(Y,X)

∣∣∣∣ Y
)
.

Hence in genetic analysis, or in any latent-variable context, we have

L(ξ)

L(ξ0)
= Pξ (Y)

Pξ0(Y)
= Eξ0

(
Pξ (Y,X)

Pξ0(Y,X)

∣∣∣∣ Y
)
. (33.18)

(Thompson and Guo, 1991). In this expectation, Y is fixed, and the distribution of X is
Pξ0(·|Y). If X(τ), τ = 1, ..., N , are realized from this distribution then the likelihood ratio
can be estimated by

1

N

N∑
τ=1

(
Pξ (Y,X

(τ))

Pξ0(Y,X
(τ))

)
.

For estimation a location score curve (33.7), the form that follows directly from (33.18) is

L(β, γ1, �M)

L(β, γ0, �M)
= Eξ0

(
Pξ1(YT ,YM |XT ,XM)Pξ1(XT ,XM)
Pξ0(YT ,YM |XT ,XM)Pξ0(XT ,XM)

∣∣∣∣ YT ,YM).
for two trait-locus positions γ1 and γ0. Since only the position of the trait locus differs
between numerator and denominator, the above equation reduces to

L(β, γ1, �M)

L(β, γ0, �M)
= Eξ0

(
Pγ1
(XT |XM)

Pγ0
(XT |XM)

∣∣∣∣ YT ,YM). (33.19)

Thus only the conditional probability of trait-locus latent variables given marker-loci latent
variables appears explicitly in the estimator. Although realization of the latent variables is
complex, and requires MCMC methods, computation of the estimate from the realizations
is straightforward (Thompson and Guo, 1991).

For an accurate Monte Carlo estimator based on (33.18) the distribution of X given
Y should be similar under ξ and ξ0. In the context of the location score curve estimator
(33.19), this means that trait locations γ1 and γ0 should lie in the same marker interval.
While effective methods have been developed for combining local likelihood ratio
estimates from (33.18) into a smooth likelihood surface, multipoint location score curves
are far from smooth across marker positions. Attempts to use the estimator (33.19) directly
for locations score curves have thus had only limited success (Thompson, 2000). However,
see also Section 33.7, for another use of (33.18).

Another approach to estimating location score curves has been proposed by George
and Thompson (2003). Since γ is a single scalar parameter, we may regain the likelihood
from a posterior probability distribution:

L(β, γ, �M) =
P(β,�M)(γ | Y)

π(γ )
,
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where (β, �M) are held fixed, and π(γ ) is any chosen prior on trait location γ . Since π(γ )
is a pseudoprior in the sense of Geyer and Thompson (1995), it may be arbitrarily chosen
to improve MCMC performance. In practice, it is chosen as a discrete prior on points
at which the location score curve is to be estimated. To improve MCMC performance,
a preliminary run is used to provide a prior approximately inversely proportional to
the likelihood, so that in the main MCMC run the marginal posterior P(β,�M)(γ | Y) is
approximately uniform.

In Monte Carlo estimation, Rao-Blackwellization (Gelfand and Smith, 1990) can
play an important role in improving estimators. This procedure replaces an estimator
by its conditional expectation given some subset of the sampled variables. Thus the
Rao-Blackwellized estimator requires more intensive exact computations, but benefits
from reduced Monte Carlo sample size to achieve the same accuracy. For dependent
realizations, Rao–Blackwellization does not guarantee reduced Monte Carlo variance
(Liu et al., 1994), but in practice it normally provides significant gains in computational
efficiency. For example, suppose we have realizations (γ (τ),X(τ)), τ = 1, ..., N from
P(β,�M)(γ,X | Y). Rather than estimating the marginal posterior P(β,�M)(γ | Y) by

1

N

N∑
τ=1

I (γ (τ) = γ ),

we instead use the estimators

1

N

N∑
τ=1

E(I (γ (τ) = γ ) | X(τ)M ,Y).

In fact, it is easily shown that

E(I (γ (τ) = γ ) | X(τ)M ,Y) =
P(YT | γ,X(τ)M )π(γ )∑
γ ∗ P(YT | γ ∗,X(τ)M )π(γ ∗)

, (33.20)

leading to an estimator similar in appearance to (33.17) in that both depend on the
probabilities of trait data YT given sampled marker latent variables XM computed for
each desired trait location γ . However, note that here the trait data and trait model β
enter into the sampling of variables XM .

The new MCMC methods can provide accurate location scores on large pedigrees
with substantial missing data for two or three marker loci many times faster than the
exact computational methods, and can estimate multipoint location score curves when
exact computation is infeasible (George and Thompson, 2003). The MCMC lod score
estimation methods of (33.17), (33.19), and (33.20) are all implemented in programs in
the MORGAN package (Thompson, 2005).

33.7 LINKAGE ANALYSIS OF COMPLEX TRAITS

As the traits considered in linkage analyses become increasingly complex, there are
two alternative approaches to analysis. One is to avoid explicit modeling of the
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trait, using so-called ‘nonparametric’ genome-sharing computations for linkage detec-
tion (see Chapter 34). The other is to develop more complex models for more complex
phenotypes. Several factors enhance the detection and resolution of genes contributing
to complex genetic traits. These include joint analysis of data on members of extended
pedigrees, joint analysis of data at multiple genetic markers, and selective sampling of
pedigrees (Wijsman and Amos, 1997). Although data are increasingly available at multiple
tightly linked genetic markers, often a high proportion of the individuals in an extended
pedigree is not observed. Data may be available only on affected individuals, or even on
only a few of their relatives. Moreover, selectively sampled extended pedigrees are often
also complex. Often the traits of interest are not simple genetic traits. They may have
delayed onset, or there may be incomplete penetrance; individuals carrying the disease
allele may never show symptoms. Conversely, there may be individuals who apparently
have the disease but do not carry the gene, there may be several different genetic causes
of a disease, or even several genes interacting to produce the observed characteristics. In
some cases, the traits of interest may be quantitative.

Because of difficulties of likelihood computation, trait model uncertainties, and the mass
of marker data, often with different markers typed or informative in different families, a
number of researchers moved away from likelihood analyses of linkage in the 1980s, and
instead developed a variety of association tests for linkage detection. There are two main
classes of such tests, those at the population level and those at the family or pedigree
level. Genome-sharing methods are based on analysis of marker data, and rely on the
fact that, regardless of the trait model provided it has some genetic component, related
affected individuals or related individuals exhibiting extreme trait values will share genes
ibd at trait loci with some increased probability. Hence also they will share genes ibd
with increased probability at marker loci linked to those trait loci. While genome-sharing
methods on individuals with known relationship derive first from Penrose (1935), and are
best known in the form of sib pair analyses (Suarez et al., 1978) and affected-relative
methods (Weeks and Lange, 1988) they can also involve probability computations on a
pedigree structure. For example, the method of homozygosity mapping for rare recessive
traits developed by Lander and Botstein (1987) can be viewed either as computation of a
linkage likelihood (Smith, 1953) or as an inference based on the genome sharing between
the two haplotypes of inbred affected individuals.

Another area of linkage analysis which uses gene ibd is fine-scale localization of genes.
The resolution of pedigree-based methods of linkage analysis is limited by the number
of meioses in the pedigrees. However, when a new trait allele arises by mutation, it does
so on some specific chromosome with a specific collection of alleles at nearby markers;
that is, there is a specific marker haplotype that carries the new trait mutation. Where
the loci are very tightly linked, associations of the disease allele with an allele at a
linked marker locus may be maintained for many generations before decaying due to
recombination (33.3). Thus, there will be population associations due to chance historical
associations. The study of association can be very useful in narrowing the region in
which a gene is located. For a general discussion of the use of association tests in linkage
analysis, see Chapter 34. Here we focus on aspects relating to analysis of marker data
on extended pedigrees.

There is much more information about genome-sharing patterns in the genome if all
the available data on the pedigree are used to compute ibd probabilities, and if ibd is
scored jointly among the several affected individuals of an extended pedigree, rather than
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pair-wise. Exact computation of gene ibd patterns jointly among relatives in an extended
pedigree, using data at multiple linked markers, is equivalent to likelihood computation
for these marker data, as given by (33.4) or (33.9). Note that the gene ibd at any locus
j is a function of the inheritance vector Sž,j (Section 33.5). For data at multiple marker
loci, exact computation is thus feasible only on a small pedigree. Moreover, although
likelihoods for relationship and the estimates of gene ibd patterns do incorporate the
linkage information and data at all loci, the Baum algorithm (Baum et al., 1970) gives
only estimates of the probabilities Pr(Sž,j | Y) marginally at each locus j . At best, on
small pedigrees, it is possible to obtain the probabilities Pr(Sž,j−1, Sž,j | Y) for pairs of
loci.

However, Monte Carlo sampling of the meiosis indicators SM given marker data
YM provides direct estimates of posterior probabilities of patterns of gene ibd. These
realizations can be scored jointly over loci, and jointly over individuals, and hence
provides for more general analyses of genome sharing in relatives (Thompson, 2000).
Further, given each realization S(τ)M , realizations of the inheritance vector S(γ ) at location
γ may be readily obtained. If γ lies between markers j − 1 and j

Pr(S(γ ) | SM,YM) = Pr(S(γ ) | S(τ)ž,j−1, S
(τ)
ž,j ).

That is, S(γ ) depends only on the realized inheritance vector at the two neighboring
markers. On small pedigrees or for certain ibd patterns of interest exact probability
computations given the realized marker inheritance vectors are often possible.

For linkage analysis, the statistical problem becomes, first, one of development of
appropriate test statistics to detect linkage on the basis of estimated posterior ibd
probabilities (for example, see McPeek, 1999). Second a way of assessing statistical
significance of estimated ibd statistics is needed, taking into account both uncertainties
in the ibd given marker data, that ibd patterns at linked locations with a region of the
genome are highly dependent, and the fact that numerous regions of the genome may
be tested for linkage to the trait of interest. Under the hypothesis of no linkage to the
trait, resimulation of marker data is always possible, but analysis of multiple resimulated
data sets is computationally intensive and this approach is sensitive to marker model
misspecification. Permutation tests (Churchill and Doerge, 1994) are robust, but on an
extended pedigree the set of available valid permutations may be small. A compromise
is provided by the approach of Thompson and Geyer (2007), which, like a permutation
test conditions on the observed marker data, and uses the probability distribution of the
underlying latent variables SM to provide a test of significance.

The alternative general approach for analysis of complex traits uses an explicit trait
model. An early such model was the mixed model (Morton and MacLean, 1974), in which
the phenotypic value is dependent both on the genotype at a ‘major’ Mendelian locus and
on a heritable polygenic Gaussian random effect. While the polygenic component can
be a convenient way to model additional heritable variation, likelihood computation for
the mixed model is problematic, and linkage analysis more so. Increasingly, methods are
being developed for oligogenic models in which several major genes contribute to a trait,
and a Bayesian MCMC analysis is used to detect and localize these genes and estimate
their effects (Heath, 1997). Although these methods have been directed primarily toward
quantitative traits (see Chapter 19), they can also be used to analyze a qualitative trait
controlled by a latent quantitative liability. Age-of-onset of a disease can also be analyzed,
using these methods, by treating it as a censored quantitative trait (Daw et al., 1999).
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Robust genome-sharing methods for linkage detection and Bayesian methods of linkage
estimation are gaining popularity in part because of the difficulties of both computation and
interpretation of linkage likelihoods for complex traits. These difficulties of interpretation
result from uncertainties in the trait model, heterogeneity in the genetic causes of the
trait, and interpretation of location score curves. In terms of assessing sensitivity to trait,
marker, or map model assumptions, (33.18) provides a useful MCMC approach. Recall
that for any probability models, ξ and ξ0

L(ξ)

L(ξ0)
= Pξ (Y)

Pξ0(Y)
= Eξ0

(
Pξ (Y,X)

Pξ0(Y,X)

∣∣∣∣ Y
)
,

provided only that ξ0 assigns positive probability to any latent values X that have positive
probability under ξ . Thus a single set of Monte Carlo realizations at some assumed model
ξ0 can be used to obtain an estimate of the likelihood ratio L(ξ)/L(ξ0) for any model
that is close to ξ . The models ξ may differ from ξ0 in any, or several, parameters.

As data on more complex traits are analyzed, the problems of trait model misspecifi-
cation and trait heterogeneity have assumed increasing importance. The excellent recent
text by Ott (1999) gives a very thorough review of human genetic linkage, and methods
of linkage analysis. The Bayesian approach, with a prior probability distribution for the
location of a trait gene, avoids some of the problems of multiple tests for linkage. These
methods can also be used to test for heterogeneity, providing a posterior probability that
a particular pedigree is segregating a putative trait gene Ott (1999). Although Bayesian
methods have a long history in linkage analysis (Haldane and Smith, 1947) and have
recently attracted more attention, the problems of trait model misspecification and hetero-
geneity are no less with a Bayesian approach. Inference based on the lod score or location
score curve is still the accepted practical approach. Further, new Monte Carlo–based
approaches to lod score estimation can allow for more complex trait models, two such
major loci, and a polygenic component all contributing jointly to a quantitative trait value
(Sung et al., 2006).

33.8 MAP ESTIMATION, MAP UNCERTAINTY, AND THE MEIOSIS
MODEL

In the previous sections, we assumed the marker map �M to be known. However, the
usefulness of multipoint linkage analyses is dependent on the accuracy of both the
marker map and of the trait model. Uncertainties about the marker map can have a
strong impact on the location log-likelihood curve (Halpern and Whittemore, 1999; Daw
et al., 2000). Although there is now a wealth of DNA markers, their exact positions and
the frequencies of their alleles in the study population are often uncertain. Thus, there is a
need to compute location scores under alternative assumptions about the marker loci and
to compute likelihoods relating to estimation of the marker map. Evaluation of multipoint
lod scores is extremely computationally intensive in human pedigrees where there are
often missing data and many alternative patterns of gene descent that are compatible with
the observed data.

Estimation of an accurate meiotic map becomes harder as maps become denser. The
same markers will not be typed in all studies; even if typed, the same will not be
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informative for linkage. Moreover, rather than seeking to estimate recombination rates of
perhaps 20 %, it is necessary to order markers between which recombination rates are less
than 1 %. To analyze these small recombination frequencies, far more data are required.
Typically, the amounts of data available in pedigree studies will not permit a finer scale
of resolution than about 1 cM (Boehnke, 1994). Even 1 cM distance is approximately
1 million DNA base pairs – too great a length for current methods of physical mapping
to be practical.

Many factors influence recombination frequencies. A major one is the sex of the parent;
in humans the total female map length of the 22 chromosome pairs (not including the sex
chromosomes) is 39 M, about 1.5 times the male map length (26.5 M). However, this ratio
is not constant over the genome. In many linkage analyses, male and female recombination
frequencies are estimated jointly, although sometimes they are constrained to be equal,
or a fixed relationship between them may be assumed. Differences in male and female
genetic map distances have an impact on multipoint location scores. However, even the
best current meiotic maps (NIH-CEPH Collaborative Mapping Group, 1992) are based on
very limited numbers of meioses particularly when sex-specific maps are desired. Often a
large study may have as many meioses available for analysis as these standard maps. In
fact, several recent large-scale genotyping studies, such as that of the Icelandic population
by deCODE Genetics, provide large numbers of informative meioses, and will become
a future resource for investigating the relationship between physical and genetic distance
and sources of variation in genetic maps. For example a study of stroke by Gretarsdottir
et al. (2002) yielded over 1000 informative meioses, over five times as many as in the
standard CEPH panel. Map estimation is needed to refine maps in critical regions, where
valid likelihoods for linkage detection or association analyses are desired.

The problem of map estimation is well suited to an EM algorithm approach (Dempster
et al., 1977). As earlier, suppose, we have l marker loci along a chromosome, now with
recombination frequencies θm,j−1 and θf,j−1 in male and female meioses, respectively,
between locus j − 1 and locus j . With data Y and latent variables S consider the complete-
data log-likelihood

log Pr(S,Y) = log(Pr(Sž,1))+
l∑
j=2

log(Pr(Sž,j |Sž,j−1))+
l∑
j=1

log(Pr(Yž,j |Sž,j )) (33.21)

(see equation (33.9)). Now, in the absence of interference, the recombination probabilities
θm,j−1 and θf,j−1 enter only into the term log(Pr(Sž,j | Sž,j−1)) which takes the form

log
(

Pr
(
Sž,j |Sž,j−1

))
= Rm,j−1 log

(
θm,j−1

)
+
(
Mm − Rm,j−1

)
log

(
1− θm,j−1

)
+ Rf,j−1 log

(
θf,j−1

)
+
(
Mf − Rf,j−1

)
log

(
1− θf,j−1

)
,

where Rm,j−1 is the number of recombinations in interval (j − 1, j) in male meioses,
and Mm is the total number of male meioses scored in the pedigree. The recombination
counts Rf,j−1, for j = 2, . . . , l, and total meioses Mf are similarly defined for the female
meioses. Thus computation of the expected complete-data log-likelihood requires only
computation of

R̃m,j−1 = E(Rm,j−1|Y).
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Since this is a simple binomial log likelihood, the M-step sets the new estimate of θm,j−1

to R̃m,j−1/Mm, and similarly for all intervals j = 2, 3, . . . , l and for both the male and
female meioses. On a small pedigree, expectations can be computed exactly, and the EM
algorithm is thus readily implemented to provide estimates of recombination frequencies
for all intervals and for both sexes.

An alternative is Monte–Carlo EM (Guo and Thompson, 1994). Instead of computing
the bivariate distributions of (Sž,j−1, Sž,j ) (Baum et al., 1970) in order to estimate the
expected proportions of recombinations in interval (j − 1), N realizations {S(τ); τ =
1, . . . , N} are obtained from the conditional distribution of Pr(S | Y) under the current
parameter values. Recombinations and nonrecombinations are scored in the realized S(τ),
and Monte Carlo estimates of the expectations are obtained. This Monte Carlo EM is
readily implemented, and, like many Monte Carlo EM procedures, performs as well as the
deterministic version. Initially the Monte Carlo sample size N need not be large, although
for the final EM steps it should be increased to gain precision in the final Monte Carlo
estimates of the maximum likelihood estimates (MLEs) of the recombination frequencies.
A generalization of this basic approach has been developed by Stewart and Thompson
(2006), permitting map estimation on extended pedigrees with extensive missing data.
These methods facilitate assessment of the accuracy and uncertainty in meiotic maps
and provide an approach to combine data sets from several sources, including the large
pedigrees used for disease–gene mapping.

MCMC realization of meiosis indicators S, or of multilocus genotypes G, on a pedigree
under a genetic map given genetic marker data Y also leads directly to methods for
detecting genotype or pedigree error. The meiosis indicators determine imputed multilocus
haplotypes which can be used to detect probable genotyping errors that are apparent only
when multilocus data are analyzed jointly. Methods for detection of such pedigree and
typing errors are important as preliminaries to other multipoint analysis methods and have
been a focus of research in recent years (McPeek and Sun, 2000; Epstein et al., 2000;
Sieberts et al., 2002).

Another aspect of meiotic maps is the presence of genetic interference. In experimental
organisms, genetic interference has been well known and well studied since Haldane
(1919). For example, Weinstein (1936) investigated estimation of multilocus recombi-
nation pattern frequencies using data he had previously collected on seven linked loci
in a sample of 28 239 meioses of Drosophila X chromosomes. Although Bailey (1961)
developed the mathematical theory and models for the process of interference, only now
do we have, in principle, the information to investigate interference on the basis of data
on humans or other mammalian species. For example, King et al. (1991) have shown
almost complete interference in mice over regions up to 10 cM. Genetic interference in
meiosis is a more complex issue than that of sex-specific maps, since it destroys the
first-order Markov conditional-independence-structure of the inheritance vectors along a
chromosome. Although genetic interference exists, it is seldom incorporated into multi-
locus linkage computations. This can reduce the power to detect linkage (Goldstein et al.,
1995). In an analysis of data at multiple tightly linked markers from actual maternal
meioses in loblolly pine, Thompson and Meagher (1998) have shown that interference
can have a significant impact on patterns of cosegregation of genes and gene ibd at
distances of 30–50 cM.

Almost all likelihood computations on pedigrees assume absence of interference, and
hence the independence of recombination in different marker intervals. An earlier practice
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was to transform estimated recombination fractions using some mapping function relating
genetic distance d (in Morgans) to recombination fraction θ . For example, in the absence
of interference

θ(d) = 1

2
(1− exp(−2d)),

(Haldane, 1919), while for the Kosambi map function which exhibits a moderate amount
of interference

θ(d) = 1

2
tanh(2d) = 1

2

(
exp(4d)− 1

exp(4d)+ 1

)
.

Since for all natural map functions, θ ≈ d when both are small, this transformation practice
becomes increasingly futile as maps become denser. Interference must be accommodated
within the multilocus computation itself. The question of the impact of interference
on linkage analysis and linkage detection can only be resolved through likelihood
computation and data analysis under both interference and noninterference models. Two
methods of likelihood evaluation under interference have been proposed. Weeks et al.
(1993) provides an approach for models of count interference (Liberman and Karlin,
1984), while Lin and Speed (1996) provides a method for the renewal process χ-square
models of position interference (Zhao et al., 1995). Both methods are computationally
intensive, and limited to small numbers of loci and/or simple pedigrees.

MCMC and Monte Carlo likelihood methods greatly extend the feasibility of likelihood
evaluation under interference models. If more complex meiosis models are to be consid-
ered, a meiosis-based inheritance-vector M-sampler has advantages over a locus-based
genotypic L-sampler. Using the M-sampler, all the inheritance indicators for all the linked
loci in an entire meiosis are resampled jointly and incorporation of an interference model
is feasible. For a fixed marker map, it is feasible to precompute and store probabilities of
all patterns of recombination and nonrecombination in a set of marker intervals for up to
about 12 markers (211 = 2048). However, as for any multilocus problem, exact likelihood
computation on an extended or complex pedigree remains computationally infeasible. The
MCMC M-sampler can, however, be extended. In that sampler, given marker data Y at
loci j = 0, . . . , K , meiosis indicators at meiosis i, Si,ž = (Si,0, . . . , Si,K ) are realized from

P (H)(Si,ž|Sk,ž, k �= i,Y) ∝ P(Y|S)P (H)(S), (33.22)

where S is the total set of meiosis indicators for all loci at all meioses of the pedi-
gree, and the superscript (H) denotes the Haldane (no-interference) model. Using
(33.22) as the proposal distribution, a Metropolis acceptance step (Metropolis et al.,
1953) can be added into the process to provide the correct conditional distribu-
tion of Si,ž under interference (denoted P (I)). The required Hastings-ratio α

(Hastings, 1970) for the acceptance probability min(1, α) for current S and proposed
S† is

α = P
(I)(S†,Y)
P (I)(S,Y)

P (H)(Si,ž|Sk,ž, k �= i,Y)
P (H)(S

†
i,ž|S†

k,ž, k �= i,Y)

= P
(I)(S

†
i,ž)

P (I)(Si,ž)
P (H)(Si,ž)

P (H)(S
†
i,ž)
. (33.23)
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This considerable reduction, and consequent ease of computation of the acceptance prob-
ability min(1, α) relies on the independence of segregation patterns at different meioses i
(when not conditioned on data Y), and of the fact that the probability of data Y given
meiosis pattern S does not depend on the interference process giving rise to S. Thompson
(2000) gives an example of the use of this Metropolis–Hastings sampler to investigate the
impact of interference on probabilities of patterns of gene identity by descent conditional
on observed marker data on a pedigree.

33.9 THE FUTURE

Just as the questions of linkage analysis have remained unchanged, so also have the
basic approaches. The ideas developed by Sturtevant (1913), Robbins (1918), Haldane
(1919), and Fisher (1922b) are still the basis of analysis of the outcomes of meiosis,
and hence of linkage analysis. With the completion of the Human Genome Project, the
practical relevance of linkage analysis is sometimes questioned, particularly in view of the
variable relationship between the physical map (DNA sequence lengths in base pairs) and
the genetic map (recombination frequencies). However, this issue dates back to (Fisher,
1922b), and despite changing markers and changing traits of interest, analysis of the
cotransmission of genes is still the only route to a fuller understanding of the meiotic
map, and sources of variation in that map. Even when our markers become the DNA
sequence, and traits are levels of gene expression in a given tissue or organ, patterns of
similarity and difference among relatives still provide the basic information of genetic
inheritance.

As data on multiple linked markers have become available, the computational paradigm
has shifted from one based on genotypes of individuals in a pedigree structure (Elston and
Stewart, 1971) to one based on the meiosis indicators along a chromosome (Lander and
Green, 1987). As DNA data become available at even higher resolution, it may become
impractical to study the huge number of marker loci available. Instead of considering
recombination events between discrete marker loci, it becomes possible to analyze the
precise crossover points in a segregation, or the segments of genome shared by relatives,
or by individuals having a trait in common. Such models date back to Haldane (1919) but
became more formalized with Fisher’s theory of junctions (Fisher, 1949). In the context of
data on pedigrees, Donnelly (1983) first developed continuous genome models in terms
of the meiosis indicators of (33.1). As for classical linkage analysis, likelihoods must
be computed, and the computational issues must become more complex. Monte Carlo
estimation of likelihoods will have a role here also (Browning, 2000), in conjunction with
other computational approaches.

From the situation in 1980, when many trait data were available but marker typing was
hard and expensive, we have moved to an era in which the marker typing of available
individuals is relatively cheap, fast, and easy. The major cost of a study of a complex trait
is now in the family collection and trait phenotyping. The limits to resolution in linkage
analysis now lies in the trait data rather than in the markers. Data on extended pedigrees
are necessary to resolve questions of locus and allelic heterogeneity, but in an extended
pedigree a high proportion of individuals may be unavailable. The robustness of linkage
inferences not only to trait model deviations but also to genetic map and meiosis model
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variations remains to be fully investigated. These questions raise further computational
and statistical challenges to be met in the twenty-first century.
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Non-parametric Linkage
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Model-free methods are commonly used to detect linkage to both dichotomous and quantitative
traits. This review begins by discussing the principles underlying model-free methods for detecting
linkage, and their merits relative to traditional lod-score methods (see also Chapter 33). Affected
sib-pair methods and their extensions to include other typed unaffected relatives and extra affected
siblings are discussed, together with model-free methods for the analysis of dichotomous traits on
larger pedigrees. Extensions of the methods for the analysis of covariates, multiple marker loci and
disease loci are reviewed, together with an investigation of methods for meta-analysis of genome
scans. Finally, methods for the analysis of quantitative traits are briefly discussed.

34.1 INTRODUCTION

The basis of the initial (Penrose, 1935) and all subsequent model-free tests for linkage
is that individuals concordant for a given genetic trait should show greater than expected
concordance for another trait (or marker) if the two traits are linked. This is because
concordant pairs are likely to have inherited the same alleles at the first trait locus, and
are therefore likely to have inherited the same alleles at the second trait locus, if this is
linked to the first locus. They are thus likely to be concordant for the second trait also.
The expected degree of concordance if the traits are not linked can be calculated, and a
statistical test performed.

The most commonly used measure of concordance of two individuals at a locus is the
number of alleles they share identical by descent (ibd). This is illustrated for a pair of
siblings in Figure 34.1. If the marker is not linked to a disease susceptibility locus, then,
provided the Mendelian laws of inheritance hold, the probabilities of a sib pair sharing 0,
1 or 2 alleles ibd are 1/4, 1/2, 1/4 respectively. If the marker is linked to a disease locus,
the probability of an affected sib pair sharing alleles ibd is increased. This is because an
affected sib pair is likely to share (disease) alleles at the disease susceptibility locus, and
therefore also at a linked marker locus. This is illustrated in Figure 34.2 for a recessive
trait. The expected ibd sharing probabilities depend on the mode of inheritance. For a
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Figure 34.1 Two individuals are said to share an allele identical by descent if they both inherit a
copy of that allele from a common ancestor.

D d D d disease locus

marker locusa b c d

D D

2 ibd

D D

a b c d

Figure 34.2 Two related affected individuals will exhibit increased ibd sharing at a marker locus
linked to a disease susceptibility locus.

dominant or additive trait, the probability of 2 ibd increases above 1/4, but the probability
of 1 ibd stays close to 1/2. For a recessive trait, the probability of 2 ibd increases, but the
probability of 1 ibd decreases from 1/2 (Suarez, 1978). Concordant unaffected individuals
should also exhibit increased ibd sharing. However, the increase is much smaller for such
pairs, making them relatively uninformative (Suarez et al., 1978), so in practice, such
pairs are not included in linkage analyses of dichotomous traits. For a review of sib-pair
methods for dichotomous traits, see also Holmans (1998). A more general overview of
model-free methods is provided by Elston and Cordell (2001).

34.2 PROS AND CONS OF MODEL-FREE METHODS

A major advantage of model-free methods over the traditional lod-score approach (Ott,
1974) is that they do not require specification of the disease model. Lod-score methods
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are more powerful if the model is known accurately, but their power is reduced if
an incorrect model is used, and the resulting estimate of the recombination fraction
may be biased (Clerget-Darpoux et al., 1986). A common procedure is to perform the
analysis under a number of different disease models, which involves multiple testing and
necessitates adjustment of the significance level of the lod score (MacLean et al., 1993;
Risch, 1991). An alternative is to maximise the lod score over (single-locus) models. For
example, Curtis and Sham (1995) vary the penetrance of the heterozygote in their program
MFLINK. Greenberg et al. (1998) recommend performing analyses with a dominant and a
recessive model, each with 50 % penetrance, and taking the larger lod score. However, the
performance of such methods when the true disease model involves several interacting loci
is unclear. Some model-free methods also make implicit assumptions regarding the disease
model (Whittemore, 1996). For example, the mean test has been shown to be equivalent
to a lod-score analysis assuming a recessive model (Knapp et al., 1994). However, they
require only one test to be performed, avoiding multiple testing and making it easier to
interpret the significance of the test statistics.

Another advantage is that the large multiply affected pedigrees for which traditional lod-
score approaches are most informative are relatively rare, particularly for complex traits
with late onset. However, large samples of relatively small families may still be available.
Indeed, it has been suggested (Risch, 1994) that, for multilocus traits, sib pairs may be
even more informative for linkage than multiply affected pedigrees. This is because the
presence of a large number of affecteds in a pedigree increases the chance that one or
more of the founders was homozygous for the disease allele at the locus being analysed,
which will reduce the amount of ibd sharing. In practice, the decision regarding the
correct method of analysis will be influenced by the structures of the available families.
For complex multifactorial traits, where model-free methods may be advantageous, the
majority of the sample will be affected sib pairs or other small pedigrees. For single-
locus traits, however, large pedigrees containing multiple affecteds will be more likely,
suggesting the use of parametric analyses. A major advantage of model-free methods in
the analysis of complex traits is that it is relatively easy to include covariates, since their
effect on disease penetrance need not be explicitly specified.

Model-free linkage methods also have some drawbacks – they do not give estimates
of the recombination fraction, and are thus of limited use for mapping genes, although
this defect may be overcome to some extent by the use of multipoint analyses. Neither
do they explicitly allow for heterogeneity in the analysis, resulting in greatly reduced
power when heterogeneity is present. Heterogeneity in linkage between samples (e.g.
samples collected in different countries) can be overcome to some extent. For example,
the ibd sharing probability can be modelled as a logistic function including a covariate
with different levels for each sample (Rice, 1997; Levinson et al., 2000). However, it
is not possible to model heterogeneity in linkage between individual pedigrees, unlike
model-based methods.

The conclusion seems to be that model-free analyses such as affected sib-pair methods
are most advantageous in analysing complex multilocus traits where the mode of
inheritance is unclear, particularly if the genetic model involves environmental or clinical
covariates. For single-locus, high-penetrance traits, a lod-score analysis on large pedigrees
will be more powerful. Issues raised in the analysis of complex traits are more fully
reviewed by Lander and Schork (1994) and Weeks and Lathrop (1995), and the relative
merits of model-free and model-based linkage analyses are discussed by Elston (1998).
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It is important to note that the power of all linkage methods applied to dichotomous
traits depends on the frequency of the trait in the population, decreasing as this frequency
increases (Blangero et al., 1998). For a common trait, it might be advantageous to
determine a related quantitative measure and analyse that instead. In particular, one should
not attempt to dichotomise a quantitative trait by applying a threshold, since this may
greatly reduce power (Blangero et al., 1998; Duggirala et al., 1997).

34.3 MODEL-FREE METHODS FOR DICHOTOMOUS TRAITS

34.3.1 Affected Sib-pair Methods

The simplest approach is to count up the number of pairs sharing 0, 1 and 2 ibd and
compare these to the expected frequencies under the hypothesis of no linkage using a
χ2 test (Cudworth and Woodrow, 1975). Alternatively, one could compare the average
number of alleles shared ibd by the affected pairs (the ‘mean test’) or the number of
pairs sharing 2 alleles ibd with their expected values. In each case, an excess of ibd
sharing is taken as evidence for linkage. The powers of these ‘counting’ methods were
investigated by Blackwelder and Elston (1985). Although the relative efficiencies of the
methods depend on the disease model, the mean test was found to perform well in many
situations.

All the above methods assume that the ibd status of the sib pairs can be determined
unequivocally. This is often impossible, except for highly polymorphic markers such
as the HLA system, even when the parents are typed. For an example, see Figure 34.3.
Simply omitting pairs for which the ibd status is not known with certainty is likely to bias
the results against detecting linkage, since it is easier to unequivocally determine pairs
sharing 0 alleles ibd than pairs sharing 1 or 2 ibd (for sib pairs with no typed relatives, it
is only possible to determine 0 sharers unequivocally). The mean test has been adapted to
deal with this problem by estimating the ibd score as the average of the ibd scores under
the various possible parental genotype combinations, weighted by their probabilities, and

ab

ab ab

ab

ab

a b a b

ab ab

a b a b

ab

Could be

2 ibd 0 ibd

or

Figure 34.3 Two alleles which look the same are not necessarily shared ibd.
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is implemented in packages such as SAGE (2006). Whilst the mean test is optimal under
an additive genetic model, it can lose power in certain situations (e.g. under a recessive
model). Whittemore and Tu (1998) considered the range of 1 degree of freedom (df) tests
defined by varying the weight assigned to pairs sharing one allele ibd, and proposed the
‘minimax test’, which counts the 1 sharers as 0.55, rather than 1 as in the means test.

Another commonly used technique is the likelihood-ratio method proposed by Risch
(1990b; 1990c). Here, the likelihood of the observed marker data is expressed as a linear
function of the (unknown) ibd probabilities. The likelihood is then maximised with respect
to these probabilities, and a likelihood-ratio test performed. The power of this method can
be increased by restricting the maximisation to the set of ibd probabilities consistent with
possible genetic models (Holmans, 1993), i.e. Pr(0 ibd) ≤ 1/4, 2Pr(0 ibd) ≤ Pr(1 ibd).
For a more detailed description, see Risch (1990b; 1990c) and Holmans (1993). If the
dominance variance component of the genetic model is small, holding Pr(1 ibd) = 0.5 may
improve the power still further (Lunetta and Rogus, 1998). The method is implemented in
the packages SPLINK (Holmans and Clayton, 1995), MAPMAKER/SIBS (Kruglyak and
Lander, 1995) and ASPEX (Hinds and Risch, 1996). Risch has also extended the method
to other pairs of relatives (Risch, 1990b).

Another approach to the problems caused by incomplete polymorphic marker loci and/or
untyped parents is to consider the number of alleles shared identical by state (ibs). Two
individuals are said to share an allele ibs if they both have a copy of that allele, regardless
of from whom it was inherited. It follows that the ibs status of a pair of typed individuals
can always be calculated with certainty, no matter how uninformative the marker. A
number of ibs methods have been suggested, of which the most notable is the affected-
pedigree-member (APM) method of Weeks and Lange (1988). However, they are generally
less powerful than ibd methods, especially when parental data is available (Davis and
Weeks, 1997), and are thus not in common usage nowadays.

Note that the methods described above are designed for use on autosomal chromosomes.
Variations of the methods are available for X-linked data (e.g. Cordell et al., 1995a)
and are implemented in most analysis software. Particular care must be taken for
pseudoautosomal data (Dupuis and Van Eerdewegh, 2000).

34.3.2 Parameter Estimation and Power Calculation Using Affected Sib Pairs

The ibd sharing probabilities may be expressed in terms of the parameters of the genetic
model in a number of different ways. The observed ibd sharing probabilities can then
be used to obtain estimates of the parameters, or to infer the mode of inheritance. A
major drawback of using affected sib pairs for parameter estimation is that at most
two parameters may be estimated uniquely, since there are only 2 df in the data (3 ibd
probabilities which are constrained to sum to 1). It is therefore necessary to make
assumptions about the other parameters. For example, Thomson and Bodmer (1977)
assumed that the penetrance of the normal trait genotype was zero, in order to test
whether the trait exhibited recessive inheritance. This assumption was also made by
Thomson (1986) to test recessive vs additive inheritance, and to estimate disease gene
frequency. Day and Simons (1976) used sib pairs to estimate both disease gene frequency
and relative risk, but had to specify the mode of inheritance in advance. With data from
larger groups of affected siblings, it is possible to estimate more parameters. Payami et al.
(1985) used affected trios to estimate disease gene frequency in addition to the relative
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risks associated with both heterozygous and homozygous disease genotypes, and to test
various modes of inheritance.

The ability of sib-pair data to yield reliable estimates of genetic parameters may also be
influenced by other factors, such as the method of ascertainment (Risch, 1983; Olson and
Cordell, 2000), selection (Payami et al., 1984) and the presence of other susceptibility
loci (Risch, 1983). For these reasons, it is advisable to be cautious when using affected
sib pairs for estimating genetic model parameters, although it is possible to correct for
ascertainment bias (Cordell and Olson, 2000).

Although it may not be possible to estimate model parameters from the sib-pair sample
itself, they may be available from previous studies. In such situations, the expected values
of the ibd sharing may be calculated, and the power of the study estimated. Formulae
which express the ibd probabilities in terms of quantities which may be estimated from
population data are particularly useful, since power calculations may then be made without
the need for prior segregation analyses. Such formulae were provided by Suarez et al.
(1978), who expressed the ibd probabilities in terms of the prevalence and the additive and
dominance variances, and Risch (1990a), who used the recurrence risks in various types
of relatives of a proband. Power calculations using Risch’s parameterisation are given
by Weeks and Lathrop (1995). Caution should be exercised when using estimates of ibd
sharing or sibling recurrence risks estimated directly from genome-wide scans since these
are prone to upward bias (Goring et al., 2001). Correcting fully for this bias is difficult,
although partial solutions are available (Sun and Bull, 2005).

34.3.3 Typing Unaffected Relatives in Sib-pair Analyses

The power of any sib-pair method is increased by increasing the amount of information
available regarding the ibd status of the affected pairs. For this reason, typing the parents
increases power, especially for relatively unpolymorphic markers (Risch, 1990c; 1992;
Holmans and Clayton, 1995). If parents are unavailable, a degree of information about
their genotypes may be obtained by typing unaffected siblings. Again, the increase in
power is greatest when the information content of the marker is low. For the likelihood-
ratio method, typing both parents was found to reduce the sample size needed for a given
power by at most one-third, while doubling the amount of genotyping. Typing just one
parent or one unaffected sib reduced the sample size by at most one-sixth while increasing
the amount of genotyping by one-half (Holmans and Clayton, 1995). It can therefore be
seen that typing unaffected relatives actually increases the number of individuals who
must be genotyped to obtain a given power. It should be noted that genotyping unaffected
siblings will be necessary if one wishes to analyse discordant sibling pairs (e.g. Xing
et al., 2006).

Typing unaffected relatives has some other major advantages. If there are a limited
number of affected pairs, it may be important to get the maximum amount of infor-
mation out of each pair. Most importantly, if both parents are typed, the probability of
obtaining false-positive linkage evidence will not be increased by population stratification,
Hardy–Weinberg disequilibrium at the marker locus, consanguinity in the population or
incorrect specification of marker allele frequencies. Typing unaffected relatives increases
the chance of detecting genotyping errors in the family (Douglas et al., 2002), thereby
increasing power (since genotyping errors tend to reduce power). Inappropriate correction
for genotyping errors may also inflate Type I error rate (Seaman and Holmans, 2005).
Typing unaffected siblings enables the assumption of Mendelian inheritance to be tested,
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by investigating the distribution of alleles shared ibd in discordant pairs (Khoury et al.,
1991). This depends on the disease penetrance; for low penetrance one would expect
ibd sharing close to the expected values, while for high penetrance one might observe
an excess of pairs sharing 0 ibd. In any case, the proportion of alleles shared ibd by
discordant pairs should be less than for affected pairs. If discordant pairs are found to
show an excess of ibd sharing, then the Mendelian assumption may be false (e.g due to
transmission-ratio distortion), and the usual sib-pair tests invalid. In this situation, one
possibility is to compare haplotype sharing in concordant and discordant pairs (Flanders
and Khoury, 1991; Wang and Elston, 2005). Typing unaffected siblings may also increase
power substantially if there is assortative mating (Sribney and Swift, 1992).

For these reasons, it is desirable to genotype unaffected relatives, particularly both
parents. However, affected pairs without relatives available for typing should not be
discarded (Holmans and Clayton, 1995). If some of the parents in the sample are missing,
the analysis should be repeated on the subset of pairs with both parents typed, to check
that any positive result is not a result of incorrect assumptions about the marker locus.

If parental data is missing, all ibd methods require the specification of marker allele
frequencies. It is possible to use frequencies obtained from a previous study, or a database
such as CEPH; however, if these are incorrect for the population being studied, the false-
positive rate may be increased (Ott, 1992; Freimer et al., 1993). A safer procedure is to
estimate the marker allele frequencies from the sample itself. This eliminates the risk of
using frequencies estimated from a different population, and does not lose much power
compared to the situation where the true frequencies are known (Holmans, 1993).

34.3.4 Application of Sib-pair Methods to Multiplex Sibships

The methods described above were originally designed for use on affected sibling pairs.
In practice, it is likely that the sample collected for an affected sib-pair study will contain
a number of sibships containing three or more affected siblings. There are a number of
ways to analyse such sibships. For some methods, sibships of any size can be analysed
without modification. An example is the binomial maximum-likelihood approach of Abel
et al. (1998), which models the number of affected siblings inheriting a given parental
allele as a binomial distribution, enabling a likelihood-ratio test to be performed.

However, many commonly used methods, such as the likelihood-ratio methods of Risch
(1990b; 1990c), restrict the analysis to sib pairs only. Data from multiply affected sibships
must therefore be broken up. The most common ways to do this, as implemented in
GENEHUNTER (Kruglyak et al., 1996) are: (1) to choose just one affected pair from
each sibship (2) to choose one affected sibling and include all pairs containing this sibling
in the analysis (3) to include all possible sib pairs from the sibship in the analysis. For
example, an affected trio of sibs A, B and C would contribute the affected pair A− B
under (1), the two pairs A− B and A− C under (2), and the three pairs A− B, A− C
and B − C under (3). The main problem with choosing just one sib pair from each sibship
is that a large proportion of the data is discarded, reducing power. Furthermore, the result
may depend on which pair is chosen, giving rise to the possibility, in extreme cases, of
two researchers applying the same analysis to the same dataset, but reaching different
conclusions. The same drawbacks apply to the method of analysing all pairs containing
a given individual.

It is therefore usual to include all possible affected pairs from each sibship in the
analysis. However, pairs obtained in this way from the same sibship are no longer
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independent. A number of weighting schemes for such pairs have been suggested (e.g.
Hodge, 1984) to deal with this problem. The most commonly used weighting scheme
is that of Suarez and Hodge (1979), in which pairs formed from a sibship containing
n affected individuals are weighted by a factor of 2/n. This scheme has the intuitively
appealing result that the total weight assigned to pairs formed from a n-affected sibship
is n− 1 (= n(n− 1)/2 pairs× 2/n), which is the number of independent pairs which
could be formed from the sibship.

In fact, the lack of independence does not inflate the false-positive rate for ‘counting’
methods such as the mean test. This is because the number of alleles shared ibd by two
pairs of affected sibs are independent, even if the sib pairs share a common member
(Blackwelder and Elston, 1985). The variance of the test statistics is therefore unaltered
by the dependence among pairs from the same sibship. For the likelihood-ratio method,
however, there is evidence that analysing pairs from the same sibship as if they were
independent may alter the false-positive rate. If the genotypes of the affected sibs in
the sibship which are not part of the pair being analysed are used to infer missing
parental genotypes (as is the case for programs such as MAPMAKER/SIBS), the test is
conservative even without weighting (Holmans, 2001). Otherwise, the absence of parental
genotypes increased the false-positive rate if no weighting was applied. However, the 2/n
weighting scheme of Suarez and Hodge is too conservative. These effects become more
pronounced as marker informativeness decreases. If parents are genotyped, there is a slight
inflation of false-positive rate without weighting, most pronounced for small nominal p
values (≤ 0.001). The 2/n weighting scheme of Suarez and Hodge was found to be
conservative in all situations.

The behaviour of likelihood-ratio methods when applied to multiplex sibships depends
on both family structure and marker informativeness, so no single weighting scheme
can be correct in all circumstances. Thus, it is advisable to estimate the significance
of observed results by simulation, rather than relying on pre-defined test criteria based
on asymptotic theory, when the sample contains a high proportion of multiply affected
sibships.

Even when the method of analysis does not require the use of weighting to ensure the
correct false-positive rate, it may still be possible to increase power by assigning different
weights to pairs formed from sibships containing different numbers of affected siblings
(Suarez and Van Eerdewegh, 1984; Sham et al., 1997).

34.3.5 Methods for Analysing Larger Pedigrees

The APM method was proposed by Weeks and Lange (1988) for the model-free linkage
analysis of general pedigrees. It compares the sum of the observed number of alleles
shared ibs by each pair of affected relatives, weighted according to the frequency of the
shared allele(s), to its expected value in the absence of linkage. The method was extended
to include unaffected relatives by Ward (1993).

One drawback of the method was that the results were dependent on the (arbitrary)
choice of the weighting function. Another was that, since the APM method used only ibs
information, it was less powerful than methods which inferred ibd, especially when other
relatives were typed (Goldin and Weeks, 1993). Therefore, Davis et al. (1996) developed
SimIBD, which counts the ibd between affected pairs and computes an empirical p value
using conditional simulation. This method was found to perform poorly when analysing
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sibships without typed parents (Davis and Weeks, 1997), although it may be useful for
larger pedigrees.

An alternative approach, proposed by Kruglyak et al. (1996), performs a non-parametric
test (NPL) based on the observed inheritance patterns of the affected individuals, and
is implemented in the program GENEHUNTER. The significance levels of the NPL
statistic calculated by GENEHUNTER assume complete ibd information, and the test is
conservative when this is not the case (Kruglyak et al., 1996), resulting in a loss of power.
This may make the NPL statistics less efficient than other methods for analysing sib-pair
data (Davis and Weeks, 1997), although it appears to be a powerful method of non-
parametric analysis on large pedigrees. The problem of the conservativeness of the NPL
statistics has been addressed by Kong and Cox (1997) in their program GENEHUNTER-
PLUS, and is also implemented in ALLEGRO (Gudbjartsson et al., 2005). Two scoring
functions are commonly available for NPL-type statistics: Spairs, which is based on
numbers of alleles shared ibd by pairs of affected relatives, and Sall, which is based
on ibd patterns among all affecteds in a pedigree. Spairs is equivalent to the mean test
when applied to sibship data. These and other scoring functions were reviewed by McPeek
(1999). The optimal scoring function depends on the (unknown) disease model, but Spairs
was found to perform well over all models tested.

The weighted pairwise correlation (WPC) method (Commenges, 1994) is also designed
to perform non-parametric analysis on arbitrarily large pedigrees. Its basic premise is
that, under linkage, the correlation of the residuals (i.e. the observed trait value minus its
expected value) of a pair of related individuals will increase with the number of alleles
shared ibd. The WPC method can be applied to either quantitative or dichotomous traits
provided the form of the residuals is suitably chosen.

34.3.6 Extensions to Multiple Marker Loci

The power of all methods for detecting linkage increases with the informativeness of the
marker, since this enables the ibd status of the affected individuals to be determined more
accurately. Extra information regarding ibd sharing may be obtained by extending the
methods to analyse two or more linked marker loci simultaneously, thereby increasing
power in both dichotomous (Holmans and Clayton, 1995; Olson, 1995) and quantitative
(Fulker and Cardon, 1994) traits. A further advantage of analysing multiple linked markers
is that a greater area of the chromosome can be studied, and an estimate of the location
of the disease locus provided, although this may not always be very precise, even for
large samples, when the genetic effect is small for complex traits (Roberts et al., 1999,
Cordell, 2001). The likelihood-ratio method of Risch and Holmans has been extended to
multiple linked markers in the program GENEHUNTER (Kruglyak et al., 1996), which
also allows multipoint NPL and parametric analyses of larger pedigrees. The maximum
size of pedigree that GENEHUNTER can analyse is determined by the quantity 2n− f ,
where n is the number of individuals in the pedigree and f the number of founders, and
is limited by the memory of the computer. If the pedigree is too large, either individuals
must be removed or the pedigree must be split, and in some cases the way this is done
may lose power (Romero-Hidalgo et al., 2005). The ALLEGRO package (Gudbjartsson
et al., 2005) performs GENEHUNTER and GENEHUNTER-PLUS analyses, but is faster
and capable of handling larger pedigrees, as is MERLIN (Abecasis et al., 2002). However,
very large pedigrees must still be split, or model-based analyses performed using programs
such as FASTLINK (Cottingham et al., 1993), although these are restricted in the number
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of marker loci they can analyse. Alternatively, Monte-Carlo techniques, such as those
implemented in SIMWALK2 (Sobel and Lange, 1996; Sobel et al., 2002) may be used.

34.3.7 Multipoint Analysis with Tightly Linked Markers

It should be noted that all programs for multipoint analysis assume the marker loci to be
in linkage equilibrium when calculating haplotype frequencies. The presence of linkage
disequilibrium might therefore lead to spurious results in the absence of typed parents.
This is only likely to be a problem if the marker loci are close together (< 1 cM), which
was rarely the case for grids of microsatellite markers. Recent advances in genotyping
techniques have made it feasible to perform genome-wide linkage studies using dense
maps of SNPs. These give more linkage information than the microsatellite grids, and thus
can increase power (Schaid et al., 2004). However, linkage disequilibrium (LD) between
the SNPs can also result in false-positive linkages (Schaid et al., 2004), and the extent to
which Type I error rate is inflated by inter-marker LD has been investigated by several
authors (Huang et al., 2004; 2005; Boyles et al., 2005; Levinson and Holmans, 2005).

One approach to dealing with inter-marker LD is to measure the LD between all pairs
of SNPs, and then remove SNPs until the LD between all remaining pairs of SNPs is
below a pre-set criterion. The choice of criterion differs from study to study: Schaid et al.
used |D′| < 0.7, whereas Levinson and Holmans used r2 < 0.06. The optimal criterion
for controlling Type I error rate while losing as little linkage information as possible is
still unclear (and is likely to depend on the structure of the pedigrees – in particular, the
number of typed parents).

An alternative approach has been implemented in recent versions of MERLIN (Abecasis
and Wigginton, 2005). Here, consecutive SNPs are grouped into clusters such that all pairs
of SNPs within a cluster satisfy a user-selected criterion based either on LD (e.g. r2 < 0.1)
or genetic distance (e.g. less than 0.1 cM). Haplotype frequencies are calculated within
clusters without assuming linkage equilibrium, while different clusters are assumed to
be in linkage equilibrium. Recombination within clusters is assumed to be zero. If a
recombination is observed, data from the entire cluster in that pedigree is dropped from
the analysis, which could reduce power. The relative performances of these approached
under varying LD structures have not as yet been assessed.

If unaffected siblings are typed, an analysis comparing ibd sharing in affected sib pairs
to that in discordant sib pairs can be performed, and this is robust to inter-marker LD
(Xing et al., 2006). However, such an approach is less powerful than a study of affected
sib pairs alone (Blackwelder and Elston, 1985).

34.3.8 Inclusion of Covariates

Since there is often epidemiological evidences showing that measurable environmental
or clinical factors influence disease risk, it is desirable to allow for the effects of these
factors as covariates in a model-free linkage analysis. One approach is to use logistic
regression. Greenwood and Bull (1997; 1999) propose modelling the probability that a
sib pair shares 0, 1 or 2 ibd as a multinomial logistic regression, into which parameters
modelling covariate effects can be incorporated. A similar approach has been taken by
Olson (1999). How best to apply constraints to the ibd probabilities when maximising the
likelihood, as the constraints may not necessarily hold for all covariate values is one issue
with this approach. Olson et al. (2001; 2002) recommend a linear constraint based on the



1178 P. HOLMANS

results of Whittemore and Tu (1998). Alternatively, one can model the probability that an
affected sib pair share a given parental allele ibd as a logistic regression, and to assume
that the ibd probabilities of maternal and paternal alleles are independent (Rice, 1997;
Rice et al., 1999). This avoids the constraint problems, and also requires fewer degrees
of freedom, but may lose power if the true genetic model violates the independence
assumption.

Another approach is to consider the sample as a mixture of linked and unlinked sib
pairs, in a similar way to heterogeneity analysis in parametric linkage (Devlin et al., 2002).
The probability that a sib pair is linked can be modelled in terms of the covariates (e.g. by
logistic regression). Whilst this approach is efficient for modelling linkage heterogeneity,
it does not allow pairs to share fewer alleles ibd than expected under the null (as might
happen under certain gene – environment interaction models where the pairs are discordant
for the environmental factor).

All of the methods described above operate on one sib pair at a time, which may
cause problems when applying them to multiplex sibships, as noted earlier. The binomial
likelihood method of Abel et al. (1998) has been extended (Alcais and Abel, 2001)
to incorporate covariates by performing a logistic regression of disease status on the
covariates, then analysing the residuals as a quantitative trait (Alcais and Abel, 1999). This
method deals easily with multiplex sibships, but would not be able to analyse covariates
defined only on pairs of sibs (e.g. ibd sharing at a second locus).

A final approach, applicable to general pedigrees, is ordered subsets analysis (Hauser
et al., 2004). Here, pedigrees are ranked in order of some covariate (e.g. earliest age
at onset). Pedigrees are added to the sample in rank order, and the linkage analysis
repeated after each. The largest of the resulting linkage statistics is taken as the overall
test statistics, with significance estimated by randomly permuting the order in which
pedigrees are added. Again, this method would not be able to analyse covariates defined
on pairs of sibs. Also, it is limited to the analysis of one covariate at a time, unlike
the other approaches. However, it makes no assumptions (other than monotonicity) on
the relationship of linkage evidence with covariate, so may be advantageous if this is
non-(log)linear.

Power comparisons of these methods were carried out by Tsai and Weeks (2006) under
a variety of models incorporating gene – environment interactions. Pairwise/familywise
covariates were defined as the average of the covariates of the individuals involved. This
raises the question of whether other definitions of pairwise covariate (e.g. differences)
might be superior. This has not yet been studied.

In theory, one can analyse several covariates simultaneously in the logistic-regression
and mixture model approaches. In practice, power may be reduced due to the large number
of degrees of freedom corresponding to the regression parameters. An interesting way of
dealing with this problem is the propensity score method (Doan et al., 2006). Here, logistic
regression of disease status is performed on all covariates simultaneously. Residuals for
the affecteds are used as covariates in a logistic-regression linkage analysis. A drawback
of this approach is that sufficient numbers of unaffected siblings must be genotyped and
measured for the covariates.

Issues regarding the inclusion of covariates in linkage analysis are further discussed by
Schaid et al. (2003).
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34.3.9 Multiple Disease Loci

For many complex traits, there is evidence that more than one locus is involved in the
aetiology, e.g.: schizophrenia (Risch, 1990a), bipolar disorder (Craddock et al., 1995) and
type 1 diabetes (Davies et al., 1994). Schork et al. (1993) extended the lod-score approach
to analyse two trait loci simultaneously, including two marker loci, one linked to each trait
locus, in the analysis. In certain situations, they found a substantial increase in power over
standard analysis involving just one trait locus. However, if just one marker locus is used,
including a second trait locus in the analysis does not greatly increase power (Goldin,
1992; Vieland et al., 1992). Knapp et al. (1994) found that sib-pair analysis applied to
two marker loci, each linked to a different trait locus, could be much more powerful than
analysing the loci separately. The maximum-likelihood method used by Knapp et al. was
refined by Cordell et al. (1995b) to include the restrictions on ibd sharing proposed by
Holmans (1993), and used not only to test for linkage with type 1 diabetes, but also to
distinguish between models of interaction between the disease loci. This approach was
extended to multiple linked trait loci by Farrall (1997). Cordell et al. (2000) extended the
method further to allow likelihood models based on variance components to be fitted to
ibd data from pairs of affected relatives from extended pedigrees at an arbitrary number
of loci, linked or unlinked. This enables the evidence for a disease locus to be tested
while conditioning on the presence of other loci, and for hypotheses regarding epistatic
interactions to be tested, but it is unclear how other covariates could be included. The
logistic-regression method of Olson (1999) is capable of performing two-locus analyses
(Olson et al., 2002). Alternatively, the proportion of alleles shared ibd by each pair at a
second locus may be included as a covariate in the Rice model (Holmans, 2002).

Another approach to testing for epistasis was proposed by Cox et al. (1999). The
principle underlying this approach is that linkage statistics (e.g. NPL score, ibd proportion)
for each sampling unit (pedigree, affected sib pair) at two loci A and B should be positively
correlated if A and B interact epistatically, but negatively correlated if the loci conform
to a heterogeneity model. Then, one can select the families whose test statistics at locus
A is greater (if testing for epistasis) or less (if testing for heterogeneity) than a pre-
defined criterion, and perform analysis at locus B using these families only. Significance
is estimated by randomly sampling replicate sets containing the same number of families
used in the actual analysis without reference to their linkage score at locus A. This method
was used by Cox et al. to detect interactions between susceptibility loci for diabetes. This
is an intuitively appealing procedure, but it is often by no means clear a priori what
criterion should be used in the analysis. Whilst the issue of multiple testing caused by
the use of several criteria giving non-independent tests was addressed by Buhler et al.
(1997), allowing for this may reduce power. Furthermore, it is not clear how to apply this
method when loci A and B are linked, since one would then expect the linkage scores to
be positively correlated whatever the underlying disease model.

A problem with using a two-trait-locus approach is that the number of possible pairs of
marker loci rapidly becomes large, leading to multiple testing problems. For this reason,
such approaches probably ought not to be used in an initial genome scan, but rather to test
sets of candidate loci, or to follow-up loci to which (possibly weak) evidence of linkage
has been found using single trait-locus analysis (Schork et al., 1993). Furthermore, when
only linkage data (rather than a candidate gene) is available, it is unlikely that a two-
trait-locus analysis could give a significant lod without some evidence of linkage being
visible from single-locus analyses (Holmans, 2002).
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34.3.10 Significance Levels for Genome Scans

Advances in genotyping technology mean that genome scans for linkage are now very
common. However, they still involve a large number of linkage tests, and it is thus
necessary to apply a correction for multiple testing to reduce the number of false positives.
Simple corrections such as Bonferroni are inappropriate due to the non-independence of
these tests. Lander and Kruglyak (1995) devised theoretical criteria for linkage statistics
to be deemed genome-wide ‘significant’ (i.e. obtained in fewer than 5 % of genome
scans in the absence of disease loci) or ‘suggestive’ (obtained less than once per genome
scan). These criteria depend on the analysis method. Whilst these criteria are useful
rules of thumb, they are based on the assumption of complete linkage information, and
are conservative in more realistic situations (Sawcer et al., 1997). In addition, as noted
earlier, the distribution of linkage statistics may also depend on the number of affected
sibs, the number of typed parents, and the inclusion of covariates. Thus, significance
levels for observed results should be obtained by simulation.

34.3.11 Meta-analysis of Genome Scans

Genetic effects underlying complex traits are likely to be small. Thus, large-sample sizes
will be required to achieve power, often more than can be collected by any single group.
Ideally, several groups would pool their raw genotype and phenotype data and perform a
single analysis on the combined sample (e.g. Levinson et al., 2000). Often, however, raw
data is unavailable, but summary measures of individual studies (e.g. linkage statistics)
can be obtained. In such situations, studies can be combined via a meta-analysis.

One method for performing meta-analysis (Badner and Goldin, 1999; Badner and

Gershon, 2002) is based on Fisher’s method for combining p values (i.e.−2
n∑
i=1

lnpi ∼ χ2
2n

if none of the studies is a true positive). Zaykin et al. (2002) extended the Fisher method
to use only p values below a certain threshold the truncated product method (TPM), which
may be useful if studies only report significant regions. Some linkage analysis methods
(e.g. likelihood-ratio sib-pair analysis) truncate the test statistics at zero, which can bias
the Fisher method. This bias was overcome by Province (2001).

Another commonly used meta-analysis method is the genome search meta-analysis
(GSMA) proposed by Wise et al. (1999). Here, the genome is split into a number of
‘bins’ of approximately equal width. Within each study, bins are ranked according to
the most significant test statistics occurring in that bin. Ranks for each bin are summed
across studies and compared to the expected distribution in the absence of susceptibility
genes (i.e. ranks assigned randomly). This gives a bin-wise p value pbin. Correction for
testing multiple bins may be performed by randomly permuting ranks within each study.
This yields a p value pord depending on the position of the bin in the ranked pbin values
(e.g. most significant, second-most significant etc.) Combining pbin and pord was shown
to increase power to detect true linkages, as was weighting by sample size (Levinson
et al., 2003). The GSMA has been applied to numerous complex traits, e.g. schizophrenia
(Lewis et al., 2003), and software is now available (Pardi et al., 2005).

The final class of methods involves combining Z scores (i.e. linkage statistics with a
standard normal distribution, such as NPL scores) across studies (Loesgen et al., 2001).
Statistics which do not have a standard normal distribution (such as lod scores) can be
transformed into Z scores (Etzel et al., 2005). Weighting schemes can be applied, such
as by study size or linkage information content (Dempfle and Loesgen, 2004).
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All of these methods are generally applicable, since they do not require that the studies
use the same linkage analysis method, or the same set of markers (although clearly
the different maps must be combined such that their locations agree). The performance
of the Z-score, Fisher, TPM and GSMA methods was compared on simulated data by
Dempfle and Loesgen (2004). The Z-score method was found to be most powerful when
all studies were simulated under the same linkage model. However, if there is linkage
heterogeneity, the TPM method may be preferable (Zaykin et al., 2002), while the power
of the GSMA is reduced (Levinson et al., 2003). Methodolgy has been developed to
test for linkage heterogeneity in the GSMA (Zintzaras and Ioannidis, 2005), although its
power is questionable (Lewis and Levinson, 2006).

34.4 MODEL-FREE METHODS FOR ANALYSING QUANTITATIVE
TRAITS

This topic is also covered in Chapter 19, and thus only a brief overview of the most
commonly used methods for linkage analysis of quantitative traits in humans will be
given.

A commonly used method for analysing quantitative traits is the Haseman–Elston
method (Haseman and Elston, 1972). In this method, the squared trait differences between
pairs of siblings is regressed on the proportion of alleles that the pair is estimated to
share their ibd with. This method retains large-sample validity if all distinct sib pairs
from sibships with three or more members are included in the analysis as independent
pairs (Amos et al., 1989; Collins and Morton, 1995), does not require the trait to be
normally distributed, and allows the testing of multiple trait loci, including interactions,
by multiple linear regression. It was pointed out (Wright, 1997) that using the sib-pair
difference ignores information available in the sib-pair trait sum. The method was therefore
‘revisited’ to use the mean-corrected cross-product of trait values instead (Elston et al.,
2000), thereby increasing power in some situations. This method has been implemented
in the program SIBPAL2, part of the SAGE package. Power may be increased further by
regressing the sum of the squared trait sum and squared trait difference, each weighted
inversely proportional to their variance, of each pair on ibd. This is equivalent to variance-
components analysis on sib-pair data (Sham and Purcell, 2001).

The other major approach to analysing quantitative traits is to use variance-components
analysis (Goldgar, 1990; Amos, 1994; Amos et al., 1996; Blangero and Almasy, 1996).
Here, the covariance matrix for the trait is partitioned into components attributable to
additive genetic variance at each of the trait loci, residual genetic effects and random
environmental effects. The size of each effect is estimated, and its significance tested by
means of a likelihood-ratio test. The main advantage of this approach is its flexibility: it
is applicable to general pedigrees, it enables the effects of covariates, epistasis between
multiple trait loci and gene – environment interactions to be modelled (Blangero and
Almasy, 1997). Multiple traits may be analysed simultaneously, both quantitative and
qualitative (Almasy et al., 1997; Williams et al., 1999). The method appears to be more
powerful than the original (Williams and Blangero, 1997) and ‘revisited’ (Xu et al.,
2000). Haseman–Elston methods, but requires that the traits being analysed have a
normal distribution, with non-normality inflating Type I error rates (Allison et al., 1999).
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Applying transformations (e.g. Box – Cox) to the data in an attempt to approximate
normality appears not to be efficient at correcting the Type I error rate, so estimating
significance by simulation is recommended (Deutsch et al., 2005). Variance-components
analysis is implemented in the SOLAR package (Almasy and Blangero, 1998), and in
MERLIN.

An interesting alternative approach (Sham et al., 2002) is to regress the estimated
ibd sharing of affected relative pairs on the squared sums and differences of their
trait values (i.e. reversing the direction of regression used by Haseman–Elston and
variance-components methods). This has the potential to combine the power of the
variance-components approach with robustness to non-normality (e.g. it can be applied
to samples selected on their trait values). However, the mean and variance of the trait in
the population must be specified. The method is implemented in MERLIN-REGRESS.

34.5 CONCLUSIONS

When the mode of inheritance is known, such as for high-penetrance Mendelian traits,
model-based maximum-likelihood methods applied to multigenerational pedigrees are
the preferred form of analysis, due to their extra power. However, model-free methods
do have some advantages over traditional model-based parametric analyses for the
detection of linkage to complex traits. Firstly, they do not require specification of a
disease model, thereby evading the problem of multiple testing caused by analysing
a number of different (incorrect) models. Secondly, large, multigenerational pedigrees
containing multiple affected members are usually rare for complex traits, especially
those with late onset. Small pedigrees, such as nuclear families or affected sib pairs
are relatively common, enabling large samples to be collected. Model-free methods may
be advantageous in the analyses of such pedigrees. Whilst model-free methods do not
allow direct estimation of the recombination fraction, estimates of the location of the
disease locus are available by using multipoint analysis.

Given the small locus-specific genetic effects observed in complex traits, together with
likely genetic heterogeneity, it is important that future linkage analyses incorporate clinical
subphenotypes and/or environmental risk factors as covariates. Model-free methods are
very suitable for this, as they do not require the relationship between the covariate and
the disease model to be explicitly specified. Numerous methods have been proposed, but
optimal procedures have yet to be determined.

Small genetic effect sizes also require large-sample sizes to achieve power. This, in
turn, increases the importance of efficient meta-analysis methods, and there is scope for
future work on these.

To conclude: carefully designed linkage studies making appropriate use of clinical
and/or epidemiological data, and information from other studies, still have an important
role to play in genetic epidemiology. Their results can be useful in informing the design
of follow-up association studies, and samples of multiply affected pedigrees can be a
powerful resource for such studies.

Related Chapters

Chapter 19; Chapter 33.
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Population admixture and stratification generally occur together. Admixture between subpopulations
generates allelic associations that decay with map distance, whereas stratification generates allelic
associations that are independent of map distance. The autocorrelation of ancestry on gametes
inherited from parents of mixed descent can be exploited to localize genes in which the pool of
disease risk alleles is differentially distributed between subpopulations. Tests for linkage are based
on testing for association of the disease or outcome of interest with locus ancestry, conditioning
on parental admixture proportions to eliminate confounding by genetic background. This approach,
known as admixture mapping, is an extension of the principles underlying linkage analysis of an
experimental cross between inbred strains. Most current approaches to modelling admixture are
based on a standard model in which the stochastic variation of ancestry on gametes inherited
from admixed parents is generated by independent Poisson arrival processes. For such models, the
posterior distribution of locus ancestry and parental admixture proportions can be generated by
Markov chain Monte Carlo simulation, given a sample of individuals typed at ancestry-informative
marker loci. Tests for linkage are constructed by averaging over this posterior distribution. The
same statistical model can be used with unselected marker loci to detect and control for population
stratification in ordinary genetic association studies. For studies using arrays of closely spaced tag
SNPs, this approach has limitations as it requires that the marker loci be spaced far enough apart for
all allelic association to be attributable to admixture and stratification. An alternative approach is
to use principal components analysis to infer a few underlying axes of variation that summarize the
allelic associations in the dataset. This approach is computationally efficient, and can be extended to
datasets with closely spaced markers using a simple adjustment for short-range allelic associations.
Tests of the number of underlying latent variables can be constructed; for a given FST distance
between subpopulations, there is a threshold size of dataset at which stratification can be detected.
With either modelling approach, confounding by stratification can be controlled by adjusting for

Handbook of Statistical Genetics, Third Edition. Edited by D.J. Balding, M. Bishop and C. Cannings.
 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-05830-5.

1190



POPULATION ADMIXTURE AND STRATIFICATION IN GENETIC EPIDEMIOLOGY 1191

genetic background when testing for allelic association; alternative ‘genomic control’ approaches
based on correcting the variance of the test statistic has serious limitations.

35.1 BACKGROUND

Population admixture and stratification are often considered together, because they usually
occur together and because the two phenomena can be modelled with similar statistical
methods. Admixture between subpopulations with different allele frequencies generates
gametes that consist of a mosaic of segments inherited from each of the ancestral
subpopulations. On a gamete inherited from a parent of mixed descent, there will be
autocorrelation of ancestry states: the shorter the distance between two loci, the higher
the probability that the subpopulation of ancestry will be the same at these two loci.
Where allele frequencies vary between ancestral subpopulations, this autocorrelation of
ancestry gives rise to allelic association that decays with distance. This makes it possible
to infer recent admixture from data on a sample of individuals typed at linked marker
loci. Where admixture is recent, the distances over which this association is detectable
are far longer than the few hundred kilobases (kb) over which haplotype block structure
is detectable.

Genetic stratification, on the other hand, generates allelic associations that are inde-
pendent of map distance. In principle, it is possible for genetic stratification to occur
without admixture: one possible scenario is a total population consisting of discrete
endogamous subpopulations, with strong social barriers to mating between subpopula-
tions. Another possible scenario for stratification without admixture is a geographic cline
of allele frequencies, with no migration between regions. Such extreme situations would
usually be obvious to a researcher, without the need to infer stratification from genetic
data. In a stratified population with no admixture, the strength of allelic associations is
independent of map distance beyond the very short distances (typically a few hundred kb
in human populations) over which haplotype structure is detectable. At the other extreme,
it is possible in principle for an admixed population to have no stratification, so that
admixture proportions – the proportions of the individual’s genome that have ancestry
from each ancestral subpopulation – are the same in all individuals. A possible scenario
for this would be an island population where an initial pulse of admixture has been
followed by isolation, with no new gene flow, and mating that has not been assortative
with respect to individual admixture proportions. Usually, stratification and recent admix-
ture occur together. Stratification in admixed populations can be maintained by continuing
gene flow from one or more of the unadmixed ancestral subpopulations, or by assortative
mating resulting from socioeconomic stratification on the basis of genetic background. See
Excoffier (Chapter 29) and Beaumont (Chapter 30) for further discussion of population
stratification and admixture.

Admixture and stratification present both opportunities and challenges to genetic
epidemiology. There are opportunities to exploit the genetic structure of admixed and strat-
ified populations for more efficient approaches to mapping and identification of disease
susceptibility loci. The challenges are to control for hidden population stratification as
a confounder in genetic association studies, and to control for the long-range associa-
tions generated by admixture when undertaking fine mapping of a disease locus. This
chapter begins by discussing the theory of admixture mapping, which exploits the genetic
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structure of admixed populations to localize genes that underlie variation in disease risk
between ethnic groups.

35.2 ADMIXTURE MAPPING

35.2.1 Basic Principles

Because the allelic associations generated by admixture decay with map distance,
admixture generates information about linkage. Early suggestions for exploiting this
information were based on testing the allelic associations generated by admixture in a
manner similar to classical linkage disequilibrium mapping of a Mendelian disease locus
in an isolated population (Chakraborty and Weiss, 1988; Stephens et al., 1994). With this
approach, the information available is limited by the magnitude of allelic associations,
which depend upon the size of the allele frequency differentials between the ancestral
subpopulations. Admixture mapping, in contrast, uses the observed allelic associations
to infer the underlying states of locus ancestry. This can be viewed as an extension,
to outbred admixed populations, of the principles underlying linkage analysis of an
experimental cross between inbred strains (see Chapter 18). In family linkage studies, it
is the segregation indicators at each locus, not the marker alleles, that convey information
about linkage (see Chapter 33). In admixture mapping, it is the locus ancestry states, not
the marker alleles, that convey information about linkage. When exploiting admixture to
localize genetic effects, the marker genotypes are irrelevant once all available information
about locus ancestry has been extracted.

To exploit the information about linkage that is generated by admixture, it is necessary
to model the underlying stochastic variation of ancestry on chromosomes inherited from
admixed parents. To extract information about ancestry, it is desirable to select markers
that are informative for ancestry in that they have large allele frequency differentials
between the ancestral populations.

Admixture mapping is complementary to association studies and family linkage studies:
each has the objective of identifying genes that underlie between-population variation in
disease risk. Where admixture mapping can be applied, it has several advantages in
comparison with linkage or association study designs.

1. To detect loci that generate between-population variation in disease risk, statistical
power is higher for admixture mapping than for family linkage studies. For example,
to detect a locus that underlies a twofold risk ratio between populations by admixture
mapping, the required sample size is much lower than that required to detect a locus
that underlies a twofold sibling recurrence risk ratio in an affected sib-pair study.
The low statistical power of family linkage studies to detect loci of modest effect is
a fundamental property of this study design (Lander and Schork, 1994). To explain
this, consider a study in which the disease locus itself has been typed. The most direct
test for an effect at this locus is to test for association of outcome with genotype.
Family linkage analysis of a single pedigree can be viewed as an association study
in which each gene copy in each founder has been coded as a separate allele, and
the association of outcome with the genotypes defined by these ‘alleles’ is examined
within that pedigree. The direction of association (defined by the coding of founder
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copies as ‘alleles’) is fixed within pedigrees, but random between pedigrees. Unless
the pedigrees are very large and the number of founders is small, tests that combine
information across pedigrees have low statistical power because the direction of
association is integrated out of the likelihood function. In admixture mapping, by
contrast, the direction of association between outcome and locus ancestry is fixed
across all individuals; analysis of an experimental cross between inbred strains can
be viewed as linkage analysis of a single large sibship.

2. The required marker density is much lower for admixture mapping than for genome-
wide association studies. Genome-wide admixture mapping studies typically require
about 2000 ancestry-informative markers, compared with at least 300 K for genome-
wide association studies. Now that high-density genotyping arrays are relatively
inexpensive, this is no longer a key advantage.

3. Admixture mapping, like family linkage studies, is not dependent upon the assumption
of low allelic heterogeneity, as Terwilliger and Weiss (1998) have pointed out. Asso-
ciation studies using haplotype–tagging SNPs depend critically upon the common
disease–common variant hypothesis (Reich and Lander, 2001): if there are many
disease alleles distributed over all the modal haplotypes in each gene, SNP-based
association studies are unlikely to detect them. In contrast, admixture mapping studies
can detect a locus as long as the total pool of risk alleles is differentially distributed
between the ancestral populations that have contributed to the admixed population
under study, whether there are many rare risk alleles or only a few common ones in
the disease susceptibility gene.

In a classic linkage analysis of an experimental cross, inbred strains produced by
brother–sister mating over many generations are crossed over two generations to generate
a sample of F2 intercrosses or F1 backcrosses. These animals are typed at a set of marker
loci at which different alleles have become fixed in each strain, and tested for association
between the trait and the marker genotypes at each locus. In extending this approach to
admixed human populations, three main problems arise.

1. The history of admixture is not under experimental control or even known. In
an experimental cross, the design can be specified so that, for instance, we can
study a sample of individuals that consists entirely of F2 intercrosses. In human
admixed populations, admixture proportions – the proportions of the genome that have
ancestry from each continental group – vary between individuals. This confounds any
associations between a trait and locus ancestry. This confounding can be controlled by
conditioning on parental admixture proportions when testing for association of the trait
with locus ancestry. In an affected-only design, we can compare the observed ancestry
state frequencies at the locus under study with the expected frequencies given parental
admixture proportions of each individual. In a cross-sectional study, we can fit a
regression model for the dependence of the trait upon parental admixture proportions,
and test for association of adjusted trait values with ancestry state frequencies.

2. Human subpopulations are not inbred strains. In a cross between two inbred strains,
the strains of ancestry of the two gene copies at each locus can be inferred directly
from the observed genotypes, as the marker alleles are differentially fixed in the two
strains. In humans, the FST distance between continental populations is typically of
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the order of 0.1–0.15 (Cavalli-Sforza et al., 1994); another way of expressing this is
that human continental groups have lost only 10–15 % of their shared ancestral allelic
diversity. Loci at which alleles have become differentially fixed in each continental
group are rare: one of the few examples is the FY (Duffy antigen) locus, at which
a null allele is fixed in populations originating from sub-Saharan Africa and rare
in other populations. Even when hundreds of thousands of markers are screened
to identify a subset with extreme allele frequency differentials between continental
groups, the average information content for ancestry of these ancestry-informative
markers is typically no more than 40 %. Thus, we cannot directly infer locus ancestry
from the genotype at that locus. As in classical linkage analysis, this problem can be
overcome by a multipoint analysis that combines all genotype information on each
chromosome to infer the posterior distribution of ancestry at each marker locus.

3. The ancestral populations are not available for study. In an experimental cross, the
marker allele frequencies in the ancestral strains are known, or can be estimated
directly in the case of a cross between outbred populations. In human admixture, this
is generally not the case: for instance, we cannot sample the exact mix of West African
subpopulations that contributed genes to the modern African-American population.
This problem can be overcome by re-estimating ancestry-specific allele frequencies
within the admixed population under study, as described below.

35.2.2 Statistical Power and Sample Size

To examine the construction of hypothesis tests for admixture mapping, and the statistical
power of studies based on these tests, initially we assume that parental admixture
proportions, and ancestry at each locus can be inferred without error. For statistical power
calculations, this assumption is reasonable, as any region of putative linkage detected in
an initial analysis can be saturated with additional markers to reduce any uncertainty in
the inference of locus ancestry.

In a study of a binary trait, the parameter under test at each locus is the ancestry
risk ratio r , defined as the risk ratio between individuals with 2 and 0 gene copies
with ancestry from the high-risk population at the locus under study. For simplicity,
we assume a multiplicative model in which there is a linear relationship between the
log risk and the number a of gene copies at the disease susceptibility locus that have
ancestry from the high-risk population. For an individual whose parents’ genomes have
proportions µ1 and µ2 of ancestry from the high-risk population, the probabilities
p0, p1, p2 of 0, 1, 2 gene copies from the high-risk population at any given locus
are

(
1− µ1

) (
1− µ2

)
, µ1

(
1− µ2

)+ (
1− µ1

)
µ2, µ1µ2, respectively. For an affected

individual, given that we observe x gene copies at the locus under study that have ancestry
from the high-risk population, the likelihood L as a function of r , conditional on parental
admixture proportions is

L (r) = pxr
x/2

p0 + p1

√
r + p2r

,

where px is the probability of x gene copies with ancestry from the high-risk population
at the locus under study, defined as above in terms of the parental admixture proportions
µ1, µ2. For calculations of statistical power, and construction of score tests, it is
convenient to evaluate the likelihood as a function of θ = log r , which makes the
asymptotic approximation of the log likelihood by a quadratic function more accurate.
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In a cross-sectional study design, the parameter under test is the regression slope θ for
the dependence of the trait value upon locus ancestry, adjusted for parental admixture
proportions µ. Given data on a single individual with observed trait value y and x gene
copies at the locus under study that have ancestry from the high-risk population, the log
likelihood as a function of θ is

L (θ) = −1

2
ν (y − α − xθ)2 ,

where α is the expected value of y under the null hypothesis θ = 0, and ν is the residual
precision (inverse variance) in the regression model, after including parental admixture
and any other covariates that are adjusted for.

We can approximate the statistical power of any study design that tests the null
hypothesis that a scalar parameter θ has value θ0 from the Fisher information V , defined as
the expectation over repeated experiments of −d logL (θ) /dθ (Clayton and Hills, 1993).
This calculation assumes that the second derivative of the log likelihood is approximately
constant over the plausible range of the parameter under test (equivalent to approximating
the log likelihood by a quadratic function of θ ). For one-sided Type 1 error probability
α, Type 2 error probability β, and effect size θ , the required sample size n is given by

n =
(
Z1−α + Zβ

θ

)2

/V,

where Zp is the pth quantile of the standard normal distribution.
For 90 % power (Zβ = 1.28) to detect an effect of size θ = 1 at a one-sided threshold

p-value of 10−5 (Z1−α = 4.27), we require the Fisher information V to be 30.8. The
required sample size for a given study design and effect size θ = 1 can be calculated by
dividing 30.8 by the average Fisher information contributed by a single individual. The
statistical power for any other effect size can be calculated by dividing by the square of
the effect size.

For an affected-only design testing the null hypothesis that θ = 0 (where θ is the
log ancestry risk ratio), the Fisher information contributed by a single individual whose
parental gametes have proportionate admixture µ is 1

2µ(1− µ). Thus, with µ = 0.2
(a typical value for mean European admixture in African-American populations), a single
affected individual contributes information of 0.08 and 385 individuals are required to
detect a locus that accounts for an effect size θ = 1. The number of individuals required
to detect an ancestry risk ratio r = 2 (equivalent to θ = 0.69) is about 800. A practical
lower limit for the ancestry risk ratio generated by a locus to be detectable with realistic
sample sizes (no more than a few thousand affected individuals) by admixture mapping
is about r = 1.5.

Where cases and controls for a rare disease have been sampled, almost all information
about linkage with locus ancestry is contributed by the cases. If we can assume that
ancestry state frequencies do not vary systematically across the genome within the
admixed population under study, we can compare observed with expected ancestry state
frequencies (calculated from parental admixture proportions) in affected individuals only,
and ignore the controls. If the number of founders of the admixed population is large,
and the effects of selection and drift since admixture can be ignored, the assumption of
no systematic variation of ancestry state frequencies within the admixed population under
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study should be valid. Alternatively, we can relax this assumption, and compare ancestry
state frequencies in cases and controls, adjusting for expected ancestry state frequencies.
This case–control test, however, has lower statistical power (for a given number of
cases) because it is testing for a difference between the observed minus expected ancestry
state frequency in the cases and the observed minus expected frequency in the controls,
rather than comparing the observed ancestry state frequency in the cases to the expected
frequency (which can usually be inferred quite accurately). For a case–control comparison
of locus ancestry to have the same statistical power as an affected-only design, four times
as many individuals must be genotyped as in an affected-only study. It is, however,
useful to sample at least some controls to allow a check on the assumption of no
systematic variation of ancestry state frequencies, and more generally as a sanity check.
Controls may also be required to obtain additional information about ancestry-specific
allele frequencies.

The statistical power of a test for association with a quantitative trait can be calculated
by similar arguments (Hoggart et al., 2004). The null hypothesis is that θ = 0 (where
θ is the slope of regression of the trait upon locus ancestry (coded as the proportion
of copies (0, 1/2, 1) from the high-risk population). The Fisher information contributed
by a single individual whose parental gametes have proportionate admixture µ, for a
trait with residual precision λ, is 1

2λµ(1− µ). Thus for a cross-sectional study of a
quantitative trait, the sample size required to detect a locus that accounts for an effect
size equal to the residual standard deviation (1/

√
λ) is the same as that required to detect

an effect size θ = 1 equivalent to ancestry risk ratio r = 2.7 in an affected-only study. In
practice, effects of locus ancestry on a quantitative trait are unlikely to be as large as this;
with the exception of skin melanin content, there are few quantitative traits for which
the mean difference between continental populations exceeds one standard deviation.
Thus admixture mapping studies of quantitative traits, using unselected cross-sectional
samples from the admixed population under study, typically require larger sample sizes
than studies of extreme phenotypes for which affected-only and case–control designs can
be used. For instance, to detect genes underlying ethnic differences in blood pressure, a
study based on ascertainment of individuals with the extreme phenotype (hypertension)
via clinical records is likely to be more efficient than a cross-sectional study of blood
pressure.

In practice, individual admixture proportions and locus ancestry cannot be inferred
without error from marker genotypes. This is a ‘missing-data’ problem, similar to the
problem of inferring segregation indicators from marker genotypes in classical linkage
studies (Thompson Chapter 33). A general approach to such problems is to generate the
posterior distribution of the missing data – admixture proportions and locus ancestry –
given the observed data – marker genotypes and trait values – under the null hypothesis of
no effect of any locus on the outcome. We can then construct tests based on the likelihood
functions given above by averaging over the posterior distribution of the missing data
under the null hypothesis, as described later.

35.2.3 Distinguishing between Genetic and Environmental Explanations for Ethnic Variation
in Disease Risk

Admixture mapping is most likely to work where there are large ethnic differences in
disease risk and these differences are at least partly attributable to genetic factors. The
classical epidemiological approach to distinguishing between genetic and environmental
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explanations for between-population differences in disease rates is to study migrants
(Reid, 1971). When migrant groups living in the same environment have different disease
rates that are not accounted for by adjusting for known environmental determinants of
disease risk, it is reasonable to consider genetic explanations. Genetic explanations are
most likely where differences in disease rates persist even in migrants who have been
settled outside the home country for several generations, and where such differences
are consistently found in all countries where the migrant group has settled. On these
criteria, genetic factors are likely to underlie the high rates of coronary heart disease
and non-insulin-dependent diabetes, which have been reported in people of South Asian
(Indian, Pakistani, Bangladeshi and Sri Lankan) descent settled overseas (McKeigue et al.,
1989). In contrast, migrant studies suggest that genetic factors are unlikely to account for
the low rates of coronary heart disease, colorectal cancer and breast cancer in native
Japanese compared with European-ancestry populations in the United States; although
initial studies showed that the rates in first-generation Japanese migrants to the United
States were similar to Japanese in Japan, in second- and third-generation migrants the
rates of these diseases are close to those in European-ancestry individuals in the United
States (Dunn, 1975).

A more definitive approach to distinguishing between environmental and genetic
explanations for ethnic differences in disease risk is to study populations in which
the proportionate admixture of genes from high-risk and low-risk populations varies
between individuals. If disease risk is dependent upon the proportion of the individual’s
genome that has ancestry from the high-risk population, independently of environmental
factors, this suggests genetic influences. However, as with any epidemiological study
design, inference of an independent relationship depends on the ability to control for
confounding factors such as socioeconomic status. The shape of the relationship between
disease risk and individual admixture proportions may also be informative. Even if
the difference in disease risk is accounted for by a single locus with an autosomal
recessive or dominant mode of action, the relationship of disease risk to individual
admixture proportions will be approximately linear. It is possible to construct genetic
models in which the relationship of disease risk to admixture proportions is non-linear:
for instance, we could postulate a model in which the risk of disease is highest in
heterozygous individuals. This might be biologically plausible for an autoimmune disease,
as for instance in experimental models of lupus (Rudofsky and Lawrence, 1999). Under
such a model, the risk of disease would show an inverse U-shaped relationship to
admixture, with highest risk in those who have one parent from each of the two ancestral
subpopulations. If a model that allows admixture proportions to differ between the two
parents is fitted, such a relationship can be modelled and tests for linkage can be easily
constructed.

Some examples of ethnic differences in diseases or traits for which epidemiological
evidence points to a genetic explanation are listed in Table 35.1. It is remarkable that
non-insulin-dependent diabetes, obesity and hypertension should be so prominent among
the conditions for which genetic differentiation has apparently led to ethnic differences in
disease risk. This may be because genes influencing risk of these diseases also influence
traits on which there has been differential selection pressure, such as the ability to survive
famine (Neel et al., 1998). Whatever the explanation, these diseases are likely to be the
ones most amenable to admixture mapping.
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Table 35.1 Ethnic differences in disease rates that are likely to have a genetic component.

Disease or trait High-risk groups Low-risk groups

Typical risk ratios
between high-risk

and low-risk groups

Non-insulin-
dependent
diabetes

Pacific islanders,
Native Americans,
Native
Australians, South
Asians (Zimmet,
1992)

Europeans 5–12

Hypertension West Africans
(Prineas and
Gillum, 1985)

Europeans 2–5

Hypertensive renal
disease

West Africans
(Qualheim et al.,
1991)

Europeans 6–20

Generalised obesity Native Americans,
Pacific islanders,
West African
women (Hodge
and Zimmet,
1994)

Europeans 1–2 SD (continuous scale

Central adiposity South Asians
(McKeigue et al.,
1991), Native
Australians
(O’Dea et al.,
1993)

Europeans 1 SD (continuous scale)

Coronary heart
disease

South Asians
(McKeigue et al.,
1989)

West Africans
(Miller et al.,
1989)

2–3

Systemic lupus
erythematosus

West Africans
(Hopkinson et al.,
1994)

Europeans 10

Prostate cancer West Africans
(Merrill and
Brawley, 1997)

Europeans 2–3

Angle-closure
glaucoma

Alaskan Natives and
other Inuit
(Congdon et al.,
1992)

Europeans 5–10

35.3 STATISTICAL MODELS

35.3.1 Modelling Admixture

To combine information from linked marker loci to infer admixture proportions and locus
ancestry, we have to model the stochastic variation of ancestry on gametes generated by
parents of mixed descent. Most current programs for modelling admixture, including
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Figure 35.1 Structure of the standard statistical model of admixture with three ancestral popula-
tions. Genotypes at each locus (two are shown) depend on the ancestral states, which change along
gametes according to a Poisson arrival process.

ADMIXMAP, STRUCTURE and ANCESTRYMAP, specify a model of admixture
between K subpopulations in which the stochastic variation of ancestry on each gamete
is generated by K independent Poisson arrival processes. In this chapter, this is referred
to as the ‘standard statistical model’ of admixture.

In this model (Figure 35.1), the K arrival processes have intensities
(
µ1ρ, . . . , µKρ

)
,

where
(
µ1, . . . , µK

)
is the vector of proportions of the parent’s genome that have

ancestry from each of the K subpopulations, and ρ is the sum of intensities of the K
arrival processes. The probability of a transition to ancestry state j at locus t + 1, given

probability pj of ancestry state j at locus t , is then
[
e−ρdt pj +

(
1− e−ρdt

)
µj

]
, where

dt is the distance in morgans from locus t to locus t + 1. If admixture has occurred in a
single pulse, the arrival rate parameter ρ can be interpreted as the number of generations
back to unadmixed ancestors (Falush et al., 2003). More generally, we can interpret ρ
as the effective number of generations since admixture. The assumption of independent
Poisson arrival processes is convenient for modelling purposes, but has no basis in any
biological model of recombination. Even if we assume a Haldane mapping function – in
which meiotic crossovers occur as a Poisson process with intensity 1 per morgan – the
stochastic variation of ancestry on admixed gametes does not in general follow a Markov
process, except on gametes produced by an F1 individual who has one parent from each
of two unadmixed ancestral populations (McKeigue, 1998). However, this simple model
has been found to perform well in inferring admixture proportions, locus ancestry, and
number of generations since admixture. A key assumption of the model is that there is no
allelic association between markers loci within any of the ancestral subpopulations, and
thus that all allelic association between linked loci can be attributed to admixture. This
assumption is generally valid as long as the spacing between marker loci is at least 1 cM.

35.3.2 Modelling Stratification

To model stratification as well as admixture, we allow the admixture proportion vector
µ to vary between individuals. If we assume that mating in the parental generation is
completely assortative with respect to admixture, we can specify that the admixture
proportion vector µ has the same value on both parental gametes. Alternatively, if we
assume random mating within the parental generation, we can specify a model in which
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Figure 35.2 Graph representing the statistical model for individual admixture and locus ancestry.
This figure does not show the dependence of locus ancestry between linked loci.

the admixture proportions of the two parents are drawn independently from the same
population distribution. As the conjugate prior for a probability vector is a Dirichlet
distribution, it is natural to use this distribution to model the distribution of admixture
proportions over individuals (or gametes) in the population. We place a prior on the
parameters of this Dirichlet distribution, and infer the posterior distribution of these
parameters from the data. If all elements of the Dirichlet parameter vector α are greater
than 1, the distribution of individual admixture proportions in the population is unimodal.
If all elements are less than 1, the distribution of individual admixture proportions is
U-shaped: that is, most individuals have admixture proportions in which one element of
the proportion vector is close to 1 and the others are 0. This is a hierarchical model, as
shown in Figure 35.2; inference about each individual’s admixture proportions uses not
only the information from that individual’s genotype data, but also the inferred distribution
of admixture proportions based on other individuals sampled from the same population.
Where a trait or outcome variable has been measured, the standard model of admixture can
be extended to model the possible dependence of the trait value upon individual admixture
proportions; this extension is implemented in the ADMIXMAP program. The dependence
of trait value on individual admixture can be modelled with logistic regression (for a binary
trait) or linear regression (for a quantitative trait). This is useful not only when we want to
examine the relationship of an outcome variable to individual admixture proportions (for
instance, when attempting to distinguish between genetic and environmental contributions
to ethnic variation in disease risk) but also because the likelihood from the regression
model feeds back into the inference of individual admixture proportions, enhancing the
ability to detect subtle degrees of population stratification.
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In principle, it is possible to specify more complex models for the distribution of
individual admixture proportions in the population – for instance, we could specify a
mixture of two Dirichlet distribution – but this is not implemented in programs currently
available. Where enough information is available from marker data to infer the arrival
rate parameter ρ on each gamete, we can similarly extend the model to allow the
arrival rate to vary across gametes, using a γ distribution to model the distribution of
arrival rates over gametes in the population.

35.3.3 Modelling Allele Frequencies

For admixture mapping, the ancestry-specific allele frequencies are usually estimated from
samples of modern unadmixed descendants of the populations that contributed genes to
the admixed population under study. To allow for sampling error in these estimates, we
can specify Dirichlet priors based on the posterior that would be obtained by combining
the observed counts with a ‘reference’ prior on allele frequencies. For a diallelic locus,
the ‘reference’ prior is β(0.5, 0.5).

More generally, we may be uncertain as to whether the unadmixed modern descendants
are representative of the subpopulations that contributed to the admixed population: for
instance, it is not possible to sample the exact mix of Native American populations that
contributed to the modern Mexican population. To allow for this uncertainty, we can
specify a ‘dispersion’ model in which both the ancestry-specific allele frequencies in the
admixed population and the allele frequencies in the corresponding modern unadmixed
population are drawn from a Dirichlet distribution with parameter vector

(
α1η, . . . , αKη

)
,

where the mean parameter α is a proportion vector, and η is the precision parameter.
The mean parameter vector is allowed to vary across loci, but the precision parameter
is assumed to be constant across loci. The biological basis for this is the Wright–Fisher
model for drift of allele frequencies in subpopulations that have split from an ancestral
total population; the precision parameter η is related to the FST distance between the two
subpopulations by FST = 1/(1+ η) (Lockwood et al., 2001). Thus, for instance, if we
assume that the dispersion of allele frequencies between modern West African populations
and the African-ancestry gene pool is of similar magnitude to the FST distance between
West African subpopulations (estimated to be about 0.02 (Cavalli-Sforza et al., 1994)) we
might specify a prior mean of about 50 (0.98/0.02 = 49) for the African-specific allele
frequency precision parameter in African-Americans. For the European-specific allele
frequency precision parameter, we might specify a prior mean of about 500 based on
estimates that the FST distance between European subpopulations is typically about 0.002
(Cavalli-Sforza et al., 1994).

With large samples from both the admixed population under study and the modern
unadmixed descendants, and a highly informative marker panel, the allele frequency
precision parameter η can be estimated for each of the continental groups under study.
In the few studies that have estimated this parameter for admixed populations such as
African-Americans, the posterior mode for the African-specific precision parameter is
large, implying that the dispersion of allele frequencies between modern unadmixed
West Africans and the African gene pool in the African-American population is fairly
small (Patterson et al., 2004). One reason for this may be that markers that show large
frequency variation between West African subpopulations are typically excluded from
panels of ancestry-informative markers. The practical implication of these results is that
it may only rarely be necessary to specify a dispersion model for allele frequencies, as
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the additional uncertainty generated by dispersion of allele frequencies is usually small
compared with the uncertainty in the Dirichlet prior based on the observed allele counts.

Once we have studied one sample from an admixed population, we can re-use the
posterior distribution of allele frequencies obtained from that study to specify priors on
allele frequencies for any study of new samples from the same admixed population.
For simplicity, we can approximate the posterior distribution of allele frequencies by a
Dirichlet distribution with the same mean and variance, and use the parameters of this
Dirichlet distribution to specify the prior. From this stage onwards, it is unnecessary
to specify a dispersion model, because the posterior distribution from the initial study
has already taken into account our uncertainty about the extent to which we can rely
on modern unadmixed descendants to estimate ancestry-specific allele frequencies in the
admixed population under study. In effect, the ancestry-specific allele frequencies have
been re-estimated within the admixed population under study. To re-use samples from
the posterior distributions of allele frequencies, we can approximate these posteriors by
Dirichlet distributions, equating the means and variances of the Dirichlet distribution with
the mean and variance of the sample.

35.3.4 Fitting the Statistical Model

Two general approaches to model fitting have been used: a fully Bayesian approach
in which the posterior distribution of model parameters is generated by Markov chain
Monte Carlo (MCMC) simulation, and a maximum likelihood approach in which the
model parameters are held at their maximum likelihood values. The Bayesian approach
is more computationally intensive, but has the advantage that samples from the posterior
distribution (under the null) can be used to construct hypothesis tests as outlined below.
As the transitions of ancestry are generated by Poisson arrival processes, the variation of
ancestry along the chromosome is a Markov process. If we assume no allelic association
between loci other than that attributable to the autocorrelation of locus ancestry, this is a
hidden Markov model (HMM). For such models, standard ‘message-passing’ algorithms
are available to calculate the likelihood of the model parameters µ and ρ given the
data, to sample the joint distribution of hidden states (ancestry) at all loci, and to
calculate the marginal distribution of hidden states at each locus, conditional on the
model parameters (MacDonald and Zucchini, 1997). In a Bayesian MCMC approach, we
can use the likelihood calculated from the HMM forward recursion (combined with the
prior specified by the population-level parameters) in a Metropolis algorithm to sample the
model parameters for each individual. If we also calculate the HMM backward recursions,
we can calculate the marginal distribution of ancestry states at each locus, conditional on
the realized model parameters. Alternatively, in the maximum likelihood approach, we
can use the HMM forward–backward algorithm to calculate the marginal expectations of
the numbers of ‘arrivals’ of each state of ancestry, and maximize the likelihood by an
expectation-maximization (EM) algorithm.

The HMM recursions account for most of the computational burden of the MCMC
simulations. When standard HMM algorithms are used to compute the forward and
backward recursions by matrix multiplication, these recursions have complexity O

(
K4

)
for diploid individuals, as the transition matrix for each interval between adjacent loci is
of order K2 and each element of this matrix has to be multiplied by the corresponding
element of the vector of ‘emission’ probabilities. As in other situations where the transition
probabilities in the HMM arise from a simpler stochastic process, the algorithms for the
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forward and backward recursions can be rewritten in a more efficient form that does
not require matrix multiplication, and has complexity O

(
K2

)
for diploid individuals.

Updating the population-level parameters at each iteration requires less computation as
the number of these parameters does not depend upon the number of individuals. The
parameters of the Dirichlet distribution of individual admixture proportions can be updated
with a simple Metropolis random walk. After the ancestry states have been sampled on
each gamete, and the ordered genotypes or haplotype pairs have been sampled conditional
on the realized ancestry states, the allele frequency parameters can be updated with a
conjugate Dirichlet update.

35.3.5 Model Comparison

For any given problem, we have a wide choice of the model to be specified. For instance,
we can specify more subpopulations, we can allow admixture proportions to differ on the
two parental gametes, or we can specify a ‘dispersion model’ for the ancestry-specific
allele frequencies. Two general approaches are available to model choice: construction
of diagnostic tests for specific inadequacies of the model, or evaluating the marginal
likelihood of the model given the data.

35.3.5.1 Model Diagnostics

One approach to model choice is to construct diagnostic tests for specific inadequacies of
the model. For instance, we can construct a test for residual allelic association between
unlinked loci, implying residual population stratification not explained by the model.
To account for this residual stratification, we might have to specify a model with more
subpopulations. Another example would be to test for lack of fit of the observed allele
frequencies to the prior, implying that a dispersion model should be fitted. Where the
diagnostic test can be set up in the form of a test of a null hypothesis for a continuous
parameter, it is possible to evaluate a score test of this null hypothesis by averaging
over the posterior distribution. For example, to test for departure from Hardy–Weinberg
equilibrium that is not explained by the fitted model, we can set up a test of the null
hypothesis of zero inbreeding coefficient. For any realization of the complete data, the
score is then the observed frequency of heterozygotes at a locus minus the expected
frequency given the realized locus ancestry states and ancestry-specific allele frequencies.
Where the diagnostic test cannot be set up as a null hypothesis for a scalar parameter, an
alternative approach is to construct a test based on the posterior predictive distribution
of some scalar variable T that captures the type of deviation from the model that we
are looking for. For instance, to test for dispersion of allele frequencies when the model
specifies no dispersion between ancestry-specific allele frequencies and the corresponding
allele frequencies in unadmixed modern descendants, we can calculate at each realization
of the model parameters a scalar variable Tobs as the log likelihood of the prior parameters
(of the Dirichlet distribution of allele frequencies) given the realized allele frequencies.
Although no obvious sampling distribution (over repeated experiments) is available for
the posterior mean of Tobs, we can compare the posterior distribution of Tobs with the
posterior distribution of a quantity Trep calculated by the same method from a replicate
dataset drawn conditional on the model parameters at each iteration (Rubin, 1984). We can
calculate a posterior predictive check probability (“Bayesian p value”) as the frequency
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with which Trep is more extreme than Tobs. Under the null hypothesis, Tobs and Trep are
exchangeable, and the posterior predictive check probability has expectation 0.5 over
repeated experiments. This provides a useful diagnostic check for bad loci: at loci where
the observed genotype data are incompatible with the prior on ancestry-specific allele
frequencies, the posterior predictive check probability is usually close to 0.

35.3.5.2 Evaluation of the Marginal Likelihood

In a Bayesian framework, formal model comparison is based on the marginal likelihood
P (Y | M) of each model M , given the observed data Y . The ratio of marginal likelihoods
between models M1 and M0 is the Bayes’ factor, which by Bayes theorem is the ratio
of posterior to prior odds in favour of M1 versus M0. The marginal likelihood can be
evaluated by subtracting a measure of ‘complexity’ (the information conveyed by the data,
defined as the decrease in entropy when passing from the prior to the posterior) from a
measure of ‘fit’ (posterior mean of the log likelihood of the model parameters, given
the data). The Bayesian framework for hypothesis testing thus incorporates a penalty for
complexity (Mackay, 2003). It is straightforward to evaluate the posterior mean of the log
likelihood of the model parameters, given the data, from MCMC simulation. Evaluation
of the information is more computationally demanding. In the program STRUCTURE, the
information is approximated by the posterior variance of the log likelihood of the model
parameters (Falush et al., 2003). Although this has been widely used to evaluate how
many subpopulations are required to model admixed and stratified subpopulations, it may
give answers that are rather different from direct calculation of the marginal likelihood. It
is possible, although computationally intensive, to calculate the information from a series
of MCMC runs at different temperatures by the method of thermodynamic integration
(Neal, 1993).

35.3.6 Assembling and Evaluating Panels of Ancestry-informative Marker Loci

Admixture mapping depends critically upon the availability of markers that are informative
for ancestry. Simulations and empirical studies show that to extract about 70 % of
information about locus ancestry across the genome in a population where the effective
number of generations back to unadmixed ancestors is 5, markers with average information
content for ancestry of 40 % are required at average spacing of 1–2 cM (Hoggart et al.,
2004). For admixture between populations originating in different continents, where the
FST distance between these populations is at least 0.1, it is feasible to assemble such
marker panels by screening large numbers of SNPs and selecting those with the most
extreme allele frequency differentials. Before such markers can be used in an admixture
mapping study, it is necessary to re-estimate the allele frequencies in independent
samples of unadmixed individuals. Marker panels informative for West African/European
admixture are already available (Smith et al., 2004), and marker panels for admixture
between other continental populations are being assembled.

In principle, it is possible to model admixture with unselected marker panels at higher
density. Thus, for African/European admixture, using unselected SNP markers (for which
the average marker information content for ancestry is about 0.08) would require only
about five times higher density than using markers informative for ancestry (average
information content for ancestry about 0.4). With arrays that can score tens of thousands
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of markers in parallel, the additional genotyping costs of typing more markers may not
be a barrier. In practice, however, with such a dense panel of markers, it is difficult to
ensure that there is no allelic association between adjacent markers in any of the ancestral
subpopulations, which is a key modelling assumption. Another disadvantage, of course,
is the greater computational burden.

35.4 TESTING FOR LINKAGE WITH LOCUS ANCESTRY

The model of admixture and locus ancestry is based on the null hypothesis that the
effect size parameter θ is 0 at any locus. Such a null hypothesis can be tested by
averaging over the posterior distribution generated by MCMC simulation. Two general
approaches to constructing tests are available: score tests based on the gradient of the
log likelihood at the null value of the parameter, and direct calculation of the likelihood
ratio. To calculate a score test, we calculate for each realization of the missing data X the
gradient d logP (Y,X)/dθ and second derivative d2 logP (Y,X)/dθ2 of the log-likelihood
function. We evaluate the score U as the posterior mean of the realized score, the missing
information as the posterior variance of the realized score, and the complete information as
the posterior mean of the realized information. The observed information V is calculated
by subtracting the missing information from the complete information (Louis, 1982). A
chi-square test statistic can then be evaluated as UV −1U . An attractive feature of this
algorithm for calculating score tests by averaging over the posterior distribution is that the
ratio of observed information to complete information – the ‘proportion of information
extracted’ – can be interpreted as a measure of the efficiency of the study design, relative
to one in which individual admixture proportions and locus ancestry are inferred without
uncertainty.

Alternatively, we can calculate, for each locus and for specified values of the effect
size parameter θ , the likelihood ratio P (Y | θ) /P (

Y | θ0

)
, where Y is the observed data.

We make use of a standard result that P (Y | θ) /P (
Y | θ0

)
is the expectation of the

complete-data likelihood ratio P (Y,X | θ) /P (
Y,X | θ0

)
over the posterior distribution

of the missing data X under the null hypothesis θ = θ0 (Thompson and Guo, 1991). In
linkage analysis of a pedigree, the missing data X are the segregation indicators at the
locus under test; in an admixture mapping study, the missing data for a single individual
are the ancestry states at the locus under test and the parental admixture proportions. In
a multipoint linkage analysis with known marker map, there is no need to include the
recombination fraction as an unknown parameter in the disease model as we can test each
position on the genome and specify a disease model in which the effect is mediated only
through the locus under test. Under this assumption, P (Y | X, θ) is independent of θ .
The likelihood ratio then simplifies to

P (Y | θ)
P
(
Y | θ0

) = 〈
P (Y,X | θ)
P
(
Y,X | θ0

)〉
P(X|Y,θ0)

=
〈
P (Y | X, θ) P (X | θ)
P
(
Y | X, θ0

)
P
(
X | θ0

)〉
P(X|Y,θ0)

=
〈
P (X | θ)
P
(
X | θ0

)〉
P(X|Y,θ0)

,
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where angled brackets denote that expectation is evaluated over the distribution specified
in the subscript.

In an admixture mapping study, we can treat the individual’s admixture proportions µ

as fixed by the design, and evaluate the likelihood ratio as〈
P (x, | µ, θ)
P
(
x | µ, θ0

)〉
P(x,µ|Y,θ0)

,

where x is the individual’s ancestry at the locus under study (Patterson et al., 2004).
Averaging this ratio over the prior on θ yields a Bayes factor (ratio of integrated
likelihoods) comparing the hypothesis of an effect at the locus under test with the null
hypothesis of no disease locus. The log to base 10 of the Bayes factor can be interpreted
as equivalent to a log score in a classical linkage analysis in which the genetic model
parameters are fixed. An extension of this argument is to average the Bayes factor over
all positions on the genome: equivalent to averaging the likelihood over a diffuse prior
on location. This yields a Bayes factor comparing the hypothesis of a single disease locus
at an unknown location with the null hypothesis of no disease locus (Patterson et al.,
2004). With this Bayesian approach to hypothesis testing, it is unnecessary to correct for
multiple testing: averaging over a diffuse prior on location imposes the correct penalty
for not specifying the position of the disease locus.

In an affected-only study, the parameter under test is the ancestry risk ratio r and the
complete-data likelihood can be calculated at each iteration from the realized values of
x and µ using the expression given earlier. For a score test, the asymptotic properties
of the test statistic are improved by evaluating the score and information as functions of
θ = log r . For a single individual, the realized score at θ = 0 is x − (

µ1 + µ2

)
, where x

is the number of gene copies at the locus under test that have ancestry from the high-
risk population, and µ1, µ2 are the parental admixture proportions. This is simply the
observed minus expected proportion of gene copies that have ancestry from the high-risk
population. The complete information is 1

4

(
µ1

[
1− µ1

)+ µ2

(
1− µ2

)]
.

In a case–control or cross-sectional study, we can calculate a conventional test for
association with locus ancestry, conditional on parental admixture proportions. This can
be implemented as a test for the effect size parameter in a regression model, or simply
as a test for dependence of the trait on the observed minus expected proportion of gene
copies that have ancestry from the high-risk population. In comparison with the affected-
only test, the case–control test has lower statistical power but does not depend upon the
assumption of no heterogeneity of ancestry state across the genome within the admixed
population under study.

With either test, the computational burden can be reduced by using the conditional
distribution of locus ancestry given the model parameters λ and averaging over the
posterior distribution of model parameters, rather than using the realized states of locus
ancestry. The conditional distribution of hidden states (locus ancestry) is calculated from
the forward and backward recursions of the hidden Markov model, as described elsewhere
(MacDonald and Zucchini, 1997). To calculate the posterior variance of the score from
posterior samples of the conditional mean 〈U | λ〉 and variance V (U | λ) of the realized
score, we use the identity

V (U) = 〈V (U | λ)〉P(λ) + V (〈U | λ〉)P (λ) ,
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where angled brackets denote taking expectations. This calculation provides a
useful breakdown of the missing information into two components: the expectation
〈V (U | λ)〉P(λ) of the score variance conditional on model parameters λ is a measure
of how much missing information is attributable to uncertainty about locus ancestry. To
reduce this component of missing information, we can increase the density of markers in
the genomic region containing the locus under study. The variance V (〈U | λ〉)P (λ) of the
conditional expectation of the score is a measure of how much missing information is
attributable to uncertainty about model parameters such as parental admixture proportions.
To reduce this component of missing information, we would have to increase the density
or information content of the marker panel in other regions unlinked to the locus under
study.

35.4.1 Modelling Population Stratification

Population stratification is characterized by the presence of allelic associations between
unlinked loci; to model it we have to specify the underlying latent variables that generate
these associations. Where no prior information is available about demographic background
or allele frequencies in ancestral subpopulations, this is an unsupervised learning problem.
Given a dataset in which a sample of individuals from a possibly heterogeneous
subpopulation have been typed at marker loci, one possible modelling approach is to
use principal components analysis to infer a few uncorrelated latent variables that explain
most of the observed allelic associations and to calculate the coordinates of each individual
with respect to these latent variables (Patterson et al., 2006). An alternative approach is to
fit the standard statistical model of admixture and stratification described above and infer
the admixture proportions of each individual (Falush et al., 2003). These two approaches
are described below.

35.4.1.1 Modelling Stratification with Principal Components Analysis

Principal components analysis is a transformation of the data that does not depend upon
any specific statistical model. The theory of this approach is briefly outlined below. Given
a data matrix in which M variables have been measured on N units of observation,
principal components analysis performs an orthogonal rotation of the axes defined by the
M observed variables, so as to define M new variables that are linear combinations of
the original variables and that maximize the proportion of residual variance explained by
each successive latent variable. Algebraically, this reduces to finding the eigenvalues and
eigenvectors of the M ×M covariance matrix, and ranking them in descending order of
magnitude of the eigenvalues. The first eigenvalue λ1 measures the variance explained by
the first principal component, and the corresponding eigenvector represents the loadings
(weights) of each variable on that component. Where the M observed variables have
been measured on different scales, it is usual to standardize them to zero mean and unit
variance. If we specify a statistical model in which the latent variables and measurement
errors have Gaussian distributions, it is not possible to infer anything about how the axes
should be rotated, because orthogonal rotations do not change the multivariate Gaussian
likelihood. It is, however, possible to test hypotheses about the number of independent
latent variables that underlie the observed covariance between observed variables. The
null hypothesis of no latent variable specifies that the M observed variables correspond
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to M independent Gaussian variables. This can be compared with alternative hypotheses
such as, for instance, a model in which a single latent variable gives rise to covariance
between the observed variables. If, for instance, a single latent variable underlies the
observed covariances, we expect that the first eigenvalue λ1 will be large compared with
the other M − 1 eigenvalues; we can thus use the ratio of the first eigenvalue to the sum
of the M eigenvalues λ1/

∑
m λm as a test statistic.

In the context of an MCMC simulation, we can calculate at each realization a test
statistic Tobs as the ratio of the first eigenvalue λ1 to the sum of the M eigenvalues,
and compare it with a test statistic calculated from a replicate dataset drawn from the
distribution defined by the realized model parameters. This yields a posterior predictive
check probability (Rubin, 1984). More recently it has been shown that if M and N
are large, the distribution of the the test statistic λ1/

∑
m λm (appropriately normalized

for the size of the dataset) under the null hypothesis of no latent variable has has a
density discovered by Tracy and Widom from which tests of significance can be obtained
(Johnstone, 2001; Patterson et al., 2006).

Where the observed variables are allele frequencies or allele counts, and all loci are
unlinked, inferring that the number of latent variables is greater than 0 is equivalent
to detecting population stratification. Where a model for stratification has already been
fitted, the expected values can be subtracted from the observed values before calculating
the covariance matrix for the residuals. We can thus test for residual stratification not
explained by the fitted model. In the first applications of principal components analysis
to infer genetic structure, the data matrices consisted of allele frequency estimates in
geographically defined subpopulations. The object was to study geographic clines in
genetic background (Cavalli-Sforza et al., 1994). Such analyses demonstrated that a high
proportion of geographic variation of allele frequencies within the European continent
could be explained by the first principal component, which varies from South-East to
North-West Europe. More recently, principal components analysis has been applied to
individual genotype data, such that each row of the data matrix contains allele counts
(scored as 0, 1, 2), standardized so that each column has zero mean and unit variance
(Price et al., 2006). To allow tightly linked loci to be included as if they were unlinked,
the observed allele counts at locus t can be regressed on the observed counts at loci
t − 1, . . . , t − T , where T is chosen to be the smallest number that makes the residual
allelic associations independent of map distance.

Patterson et al. (2006) has demonstrated how tests for stratification can be constructed
using the asymptotic distribution of the magnitude of the first eigenvalue under the null.
If the first eigenvalue is declared to be significant, the test procedure can be applied to
the remaining eigenvalues λ2, . . . , λM . This procedure is repeated until K − 1 significant
eigenvalues have been retained and the K th eigenvalue is not significant. The number
K inferred by this test for stratification corresponds to the number of subpopulations
in a mixture model of population stratification (Patterson et al., 2006). Patterson et al.
(2006) exploit recent work on the distribution of the largest eigenvalue of a sample
covariance matrix to examine the number of individuals and marker loci required to
detect significance. They show that where the total population consists of two equally
sized subpopulations, the ability to detect stratification with a sample of N individuals
typed at M marker loci depends critically upon whether the fixation index FST between
the two subpopulations is greater than 1/

√
MN . If FST is less than the threshold defined

by the data size, the test statistic will have the distribution expected under the null,
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and stratification will be undetectable. Above this threshold, evidence for stratification
will accumulate very rapidly as the data size is increased. They denote this as a phase-
change phenomenon. Thus for a sample of 103 individuals typed at 105 marker loci,
stratification into two equally sized subpopulations will be detectable if the FST distance
between subpopulations is greater than 10−4. Although this result was derived for detecting
stratification by principal components analysis, it appears to apply to any method for
detecting stratification from marker genotypes alone (Patterson et al., 2006).

A key advantage of using principal components analysis to model stratification is that
the approach is computationally feasible even for very large datasets. Another advantage
is that it is possible to adjust for allelic association between tightly linked loci simply by
regressing the genotype on the last few loci as outlined above. This makes it possible to
analyse data from whole-genome tag SNP arrays. A limitation of principal components
analysis is that it ignores the additional information that may be available from marker
positions. In admixed populations, the decay of allelic associations with map distance
yields additional information about the latent variables that underlie these associations.
In admixed populations, the presence of long-range allelic associations that are not
attributable to stratification will invalidate tests for stratification unless the analysis is
restricted to unlinked loci, although principal components analysis may still be effective
in defining a few axes that summarize most variation in genetic background. In principle,
it is possible to augment the genotype data matrix with phenotypic traits or demographic
variables relevant to genetic stratification, so that inference of genetic structure is based
on ‘supervised’ learning.

35.4.1.2 Modelling Stratification with a Mixture Model

The standard model of admixture and stratification described above can also serve
as a model for population stratification, and programs such as STRUCTURE and
ADMIXMAP can thus be used to infer stratification. In contrast to a principal components
analysis, where the number of ‘dimensions’ to be retained is not fixed at the start
of the analysis, for the admixture/stratification model it is necessary to specify the
number K of discrete subpopulations in advance. Where the demographic background
of the population is not known, or we do not want to make assumptions about the
ancestral subpopulations, the subpopulation-specific allele frequencies can be specified
with uninformative priors. Stratification is inferred from allelic associations between
unlinked loci, and admixture from the decay of allelic associations with map distance.
Thus, in the extreme situation where a population consists of discrete endogamous strata,
the strength of allelic association will be independent of map distance (except over very
short distances where allelic associations are generated by haplotype structure). In the
admixture model, this implies that all individuals have admixture proportions such that
one element of the proportion vector is close to 1 and the others are close to 0. This
distribution can be represented as a Dirichlet distribution with low precision parameter;
the mean vector represents the proportion of the population assigned to each of the K
subpopulations. The problem of inferring the number K of ancestral subpopulations, and
the posterior assignment probabilities of each individual to one of these subpopulations,
then resembles the classical ‘K-means’ clustering problem. To infer K , we can evaluate
the marginal likelihood of models with different values of K as described above, or we



1210 P.M. MCKEIGUE

can construct diagnostic tests for residual stratification not explained by the model, using
principal component analyses of the residuals as described above.

Other plausible models can also be subsumed within the standard model of admixture
and stratification. Thus, a gradient of allele frequencies across a geographic cline can
be represented by an admixture model in which the distribution of individual admixture
proportions in the population is specified by a Dirichlet distribution with moderately high
precision, and the arrival rate parameter is large (so that allelic association does not decay
with distance). Thus, for instance, the north–south gradient of allele frequencies in the
native British population could be modelled as a gradient of admixture between two
ancestral subpopulations corresponding to ‘southern’ and ‘northern’ .

Where the population under study is admixed, and its demographic history is known, as
for African-American and Hispanic-American populations, this information can be taken
into account when specifying the model, so that for instance we can specify two or three
ancestral continental populations and can set informative priors on the ancestry-specific
allele frequencies. If the demographic history of the population is unknown or we do
not wish to make any assumptions about demographic history, uninformative ‘reference’
priors on the allele frequencies can be specified. In this situation, the K subpopulations
are not identifiable, and inference that relies on assuming that the subpopulation labels
do not switch during a sampling run may be unreliable. When using unselected markers
to infer stratification and admixture between less genetically distant subpopulations, with
no prior information about allele frequencies, it is necessary to specify in the model
our prior expectation that the allele frequencies at each locus will be correlated between
subpopulations. This improves the ability to detect subtle degrees of stratification (Falush
et al., 2003). Specifying correlated allele frequencies is equivalent to specifying at each
locus a Dirichlet-multinomial model with Dirichlet parameter vector α = ηµ for the
distribution of allele frequencies across subpopulations. The proportion parameter vector
µ is sampled from a flat Dirichlet prior independently for each locus, with a dispersion
parameter η that is the same across all loci. The Dirichlet parameters are given by
αi = ηµi . Where the allelic associations between unlinked loci are weak, the ability
to detect stratification may be improved further by specifying an informative prior on
the allele frequency precision parameter. With randomly chosen markers, the average
correlation of allele frequencies between subpopulations is given by the fixation index
FST between those subpopulations. Values of FST in the range 0.1–0.2 are typical for
subpopulations originating in different continents, and values less than 0.05 are typical for
subpopulations originating in the same continent. This implies that plausible prior values
for η, in studies of stratification within populations originating from the same continent,
are at least 20.

Where a trait that is strongly dependent upon genetic background has been modelled,
it is possible to allow for this dependence in the model, for instance by specifying a
linear or logistic regression model as implemented in ADMIXMAP. Any demographic
variable, such as self-reported ethnicity or geographic origin, can be included in the model
as a phenotypic trait. This improves the ability to detect subtle degrees of stratification,
because information from the observed trait value is fed back into the admixture model
via the contribution of the regression model to the likelihood.

For modelling population stratification, the standard model of admixture/stratification
has two main limitations: it is computationally intensive, and the assumption of no allelic
association other than that generated by admixture or stratification requires a minimum



POPULATION ADMIXTURE AND STRATIFICATION IN GENETIC EPIDEMIOLOGY 1211

spacing between markers: typically about 1 cM within European-ancestry populations.
Advantages of this approach to modelling are that both marker–trait and marker–marker
associations can be used simultaneously to infer stratification, and that it allows tests
of association based on averaging over the posterior distribution to be constructed as
described below.

35.4.1.3 Controlling for Population Stratification as a Confounder in Genetic Association Studies

With either of the two modelling approaches described above, we can obtain an estimate
of the genetic background of each individual: the coordinates with respect to the retained
components of a principal components analysis, or the posterior means of individual
admixture proportions in a model of admixture with K subpopulations. To control for
possible confounding by genetic background in genetic association studies, we can simply
adjust for estimated genetic background in regression models of the effect of genotype on
outcome. This has been denoted the ‘structured association’ approach, and is implemented
in the program STRUCTURE/STRAT (Pritchard and Donnelly, 2001). A variant of this
approach, implemented in the program ADMIXMAP (Hoggart et al., 2003), is to construct
score tests for association based on averaging over the joint posterior distribution of
individual admixture proportions and parameters of the model for regression of outcome
on admixture proportions. In theory, this one-step procedure has the advantage that it
allows correctly for uncertainty in the inference of individual admixture proportions, where
two-step procedures may fail to allow for residual confounding where the information
about genetic background available from marker loci is limited and the confounding effect
of genetic background is strong. Uncertainty in the inference of genetic background is
quantified as missing information in the score test, and problems of lack of identifiability
of the K subpopulations are eliminated. Where many loci are to be tested for association,
stored samples from the posterior distribution of individual admixture proportions and
regression parameters (inferred from genotypes at a subset of ancestry-informative marker
loci) can be used without having to include all the tested loci in the model of admixture.
In association studies that use DNA pools from multiple individuals, it is possible to
control for stratification if an initial panel of markers has been typed on individuals to
obtain estimates of genetic background, simply by forming pools that are stratified by
genetic background.

A somewhat different method for using marker genotype data is the ‘genomic control’
approach proposed by (Devlin et al., 2003). In this approach, confounding by population
stratification is treated as a random effect that inflates the variance of the χ-square test
statistic. The magnitude of this random effect is inferred from trait–marker associations:
the information available from marker–marker associations is ignored. In effect, genomic
control rescales the crude p values so that the observed Type 1 error rate (over all loci)
approximates the target Type 1 error rate. The re-scaling of the crude χ-square statistic
is equivalent to multiplying the log p values by a constant factor, because the right
tail probability of a chi-square distribution approximates an exponential curve. A serious
limitation of the genomic control approach is that it assumes that the locus under study and
the marker loci are exchangeable with respect to FST . If, for instance, we are studying
a candidate gene that influences a trait such as drug metabolism or immune response,
we might expect allele frequency differentials to be larger for functional polymorphisms
in this candidate gene than for randomly chosen neutral SNPs. In this situation, the
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genomic control method may fail to control for confounding. A recent example is the
demonstration of an association between height and a lactase polymorphism in European-
Americans (Campbell et al., 2005). Adjustment for marker–trait associations at 178 SNPs
by the genomic control method did not reduce the size of the crude effect. However, the
association appeared to be at least partly explained by confounding by demographic origin
(defined on an axis from north-western to south-eastern Europe).

Another limitation of the genomic control approach is that adjustment necessarily
increases the Type 2 error rate. Where the confounding effect of population stratification
and the true effect of genotype at the locus under study on the outcome variable are oppo-
site in direction, adjustment of the test statistic by the genomic control approach will mask
the true effect, whereas adjustment by the structured association approach will unmask
the true effect. These limitations of the genomic control approach are consequences of
modelling confounding as a random effect, rather than measuring the confounder (genetic
background) and modelling its effect on the outcome variable.

35.5 CONCLUSIONS

The statistical problems of admixture mapping with samples of unrelated individuals have
now been largely solved. Panels of ancestry-informative markers are available for West
African/European admixture, and will soon be available for other continental groups also.
Several programs are available to model individual admixture and locus ancestry, using
either Bayesian approaches to generate the posterior distribution of model parameters
(Falush et al., 2003; Patterson et al., 2004; Hoggart et al., 2004) or fitting of model
parameters by maximizing the likelihood. An unsolved problem is how to combine
modelling admixture with other types of genetic model: for instance, modelling pedigree
data, or modelling extended haplotypes using genotypes at tag SNPs scored on arrays.
Modelling admixture and inheritance in pedigrees simultaneously is possible in theory,
by extending the standard HMM algorithms. Thus, we could specify a model in which
the hidden state space is defined by the ancestry of the gametes in each founder in the
pedigree, and by the segregation indicators in each meiosis. Even for a sib pair, the four
founder gametes and two meioses would define a hidden state vector of length 2K4 at each
locus, for which the HMM recursions would be computationally demanding. Modelling
admixture and extended haplotypes simultaneously is even less computationally feasible
with current methods. With more than a few thousand marker loci, it becomes increasingly
difficult to maintain the assumption of no allelic association between marker loci other
than that generated by admixture and stratification. To exploit the information about locus
ancestry and individual admixture that is available from ancestry-informative markers,
one possible approach would be a two-stage analysis in which estimates of individual
admixture or locus ancestry are ‘plugged in’ to a second step in which extended haplotypes
are modelled.

For inferring population stratification with tag SNP arrays that include tens of thousands
or hundreds of thousands of markers, ordination methods such as principal components
analysis are the most feasible approach. The recent development of formal methods to
test for residual stratification unexplained by the retained components strengthens this
approach. Statistical modelling of admixture and stratification may, however, yield results
that are more directly interpretable in terms of genetic structure and population history:
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for instance, the model parameters can be interpreted in terms of the length of time over
which admixture has occurred. One possible approach would be to use ordination methods
to preselect for each continental group, a subset of markers that are highly informative
for stratification, and then to use these markers to model stratification and admixture.
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36
Population Association

D. Clayton

Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK

This chapter relates the analysis of population-based studies of associations between genetic
polymorphism and disease to the established literature on the analysis of epidemiological case-
control studies. Dealing with confounding by use of stratified analyses and regression methods is
discussed. The possible influence of hidden population structure is compared with the more generic
problem of unmeasured confounding in epidemiology.

36.1 INTRODUCTION

This chapter concerns the detection and analysis of statistical association, at the population
level, between a binary trait and genotype. Although the main interest is in disease traits,
many of the methods are relevant to any binary trait. The only methods that are not
more generally applicable are those that depend on the ‘rare disease’ assumption (that the
relative frequency of disease in the population is small).

Population association between genotype at a particular locus and disease can arise in
three ways:

1. the locus may be causally related to the disease, different alleles carrying different
risks (direct association);

2. the locus may not itself be causal, but may be sufficiently close to a causal locus so
as to be in linkage disequilibrium with it (indirect association); and

3. the association may be due to confounding by population stratification or admixture.

If the association has arisen for the last mentioned reason, it is of little scientific interest.
It is therefore important to attempt to exclude such spurious association by appropriate
design and/or analysis of studies.

The problem of confounding is discussed in every textbook of epidemiology. In the
present context, confounding would arise if the population contained several ethnic groups,
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if allele frequencies at the locus of interest differed between groups, and if disease
frequency also differed between groups for reasons quite unrelated to the locus of interest.
Such reasons could include genetic differences at a locus in another part of the genome
or differences in exposure to environmental causes due to differing customs. It should
not be forgotten that such confounding may act to create population association in the
absence of a causal link (or linkage disequilibrium with a causal locus), but it may also
act in the reverse manner to obscure a causal relationship.

A brief plan of the chapter is as follows. Section 36.2 introduces some notation and
discusses statistical measures of association between disease risk and genotype at a
diallelic locus. In Section 36.3 the epidemiological case-control study is briefly described
and its application to genetic association studies discussed. Section 36.4 discusses simple
statistical tests for association in such studies, and Section 36.5 shows how likelihood-
based analyses can be carried out using standard software for logistic regression and the
log-linear model. When stratification of the population is manifest, control for confounding
in case-control studies may be achieved either by post-stratification during analysis
or, at the design stage, by matching; these options are discussed in Section 36.6. But
neither option is available if population stratification is hidden; Section 36.7 analyses
the seriousness of this problem in practice and reviews approaches to dealing with it.
The next two sections discuss problems arising as a result of increased polymorphism;
Section 36.8 extends the discussion to the case of loci with more than two alleles, and
Section 36.9 considers association with haplotypes formed by several closely linked loci.
Finally, Section 36.10 briefly discusses some outstanding problems, notably the extension
of these ideas to quantitative traits.

Sections 36.2–36.6 draw heavily on the epidemiological literature. The present discus-
sion is of necessity brief, concentrating on matters particularly relevant to studies in
genetic epidemiology; for more detailed treatments of this material, see Clayton and Hills
(1993) or Breslow and Day (1980).

36.2 MEASURES OF ASSOCIATION

Table 36.1 introduces some notation for the case of a diallelic locus with alleles A and a.
On the left, Table 36.1(a) shows the probability distributions of disease conditional upon
genotype. Thus, πAA, πAa and πaa are the penetrances of the genotypes AA, Aa and
aa respectively. On the right, Table 36.1(b) shows the distributions of genotype given
presence or absence of disease in the population. These are denoted by γ (1), γ (0) and γ (·),
respectively.

Association is defined by differences between the penetrances πAA, πAa and πaa or,
equivalently, between the distributions γ (1) and γ (0). However, the strength of associ-
ation is most naturally expressed in terms of contrasts in the prevalences. A popular
measure in epidemiology is the relative risk in which each prevalence is expressed rela-
tive to the risk in some ‘reference’ category. If allele a is the more common form, it
would be natural to take genotype aa as reference and express the strength of association
by the two relative risks:

θAA =
πAA

πaa

, θAa =
πAa

πaa

.
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Table 36.1 Population distributions of (a) disease given genotype, and (b) genotype given
disease.

Disease Disease

Genotype Yes No Genotype Yes No All

AA πAA 1− πAA AA γ
(1)
AA γ

(0)
AA γ

(·)
AA

Aa πAa 1− πAa Aa γ
(1)
Aa γ

(0)
Aa γ

(·)
Aa

aa πaa 1− πaa aa γ (1)aa γ (0)aa γ (·)aa

(a) (b)

However, we shall see that it is more convenient to measure strength of association in
terms of odds ratios. The odds of disease contrasts the probability that disease is present
with the probability that it is absent. Thus, for penetrance π , the odds of disease is π/(1−
π) and the two odds ratios that describe association between disease and genotype are

θ∗AA =
πAA

1− πAA

/ πaa

1− πaa
, θ∗Aa =

πAa

1− πAa

/ πaa

1− πaa
.

The convenience of the odds ratios stems from the relationship between the two param-
eterisations set out in Table 36.1(a) and (b). Denoting genotype by i, the connection
between these two is given by

γ
(1)
i = πiγ

(·)
i∑

i πiγ
(·)
i

, γ
(0)
i = (1− πi)γ (·)i∑

i(1− πi)γ (·)i
,

so that
γ
(1)
i

γ
(0)
i

= K πi

1− πi
,

where K is constant across the three genotypes. Thus, ratios of genotype relative frequen-
cies between people with and without disease are proportional to the corresponding odds
of disease, and the odds ratio measures of association can also be written as

θ∗AA =
γ
(1)
AA

γ
(0)
AA

/γ (1)aa

γ
(0)
aa

= γ
(1)
AA

γ
(1)
aa

/γ (0)AA

γ
(0)
aa

, θ∗Aa =
γ
(1)
Aa

γ
(0)
Aa

/γ (1)aa

γ
(0)
aa

= γ
(1)
Aa

γ
(1)
aa

/γ (0)Aa

γ
(0)
aa

.

The practical advantage of odds ratios is that the distributions γ (1) and γ (0) can be
estimated from samples of persons with disease (cases) and of persons free of disease
(controls). Particularly when the disease is rare, such studies are much more efficient than
total population surveys.

When all penetrances are small, there is very little difference between relative risks
and odds ratios. Further, the distribution of genotypes in disease-free subjects (controls)
differs little from the population distribution (i.e. γ (0) ≈ γ (·)). This will normally be the
case, although it may not be so for traits other than diseases.

Before moving on to discuss the design and analysis of population-based case-control
studies, we should consider the case where we can assume that the population distribution
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of genotypes is in Hardy–Weinberg equilibrium (HWE). Then, denoting the relative
frequencies of alleles A and a by α(·)A and α(·)a (= 1− α(·)A ), respectively,

γ
(·)
AA = (α(·)A )

2, γ
(·)
Aa = 2α(·)A α

(·)
a , γ (·)aa = (α(·)a )

2.

In general, if there is association between disease and genotype, this law will not hold
within cases of disease or in controls (although in the latter case the discrepancy may
be imperceptible for the reasons discussed above). For this reason, deviation from HWE
in cases of disease is often taken as preliminary evidence for association. However, in
one special case, association does not lead to deviation from HWE in cases. This occurs
under the multiplicative penetrance model in which each copy of allele A multiplies risk
by a factor ψ . Then θAa = ψ and θAA = (ψ)2 and the distribution of genotypes in cases
can be shown to follow the Hardy–Weinberg law, with modified allele frequencies:

α
(1)
A = ψα

(·)
A

α
(·)
a + ψα(·)A

, α(1)a = α(·)a

α
(·)
a + ψα(·)A

.

When disease is rare, α(·) ≈ α(0) and ψ is very closely approximated by the odds ratio

ψ∗ = α
(1)
A

α
(0)
A

/α(1)a

α
(0)
a

= α
(1)
A

α
(1)
a

/α(0)A

α
(0)
a

.

It seems most logical to refer to the parameters θAA and θAa as genotype relative risks
and the parameter, ψ , of the multiplicative model as a haplotype relative risk, although
these terms have been used somewhat confusingly in the literature.

36.3 CASE-CONTROL STUDIES

In case-control studies of factors that might be associated with disease, the distributions
of such factors are compared in a series of cases of the disease and in a control series.
The fundamental assumption of such studies is that these two series of subjects may be
used to provide unbiased estimates of the corresponding distributions amongst affected
and unaffected members of some underlying population. This underlying population of
interest is often called the study base. When this assumption is met, odds ratio measures
of the strength of associations may be estimated, making use of the fact, demonstrated
in Section 36.2, that odds ratios are stable whether defined in terms of the distribution of
disease conditional upon risk factor or in terms of the distribution of risk factor conditional
upon disease.

However, for many reasons, this fundamental assumption of the case-control study may
not be met in practice, leading to biased findings. In the late 1960s and early 1970s there
emerged an extensive literature cataloguing reasons for such bias. These fall into two
broad classes:

1. selection bias caused by inappropriate sampling of cases and controls, and

2. information bias caused by differential measurement errors in cases and controls
arising because measurements of risk factors are usually made when disease status is
known to both subject and interviewer.



1220 D. CLAYTON

Studies of genetic association are not immune to either of these problems. For example,
cases may be obtained by advertising nationally among clinicians treating the disease of
interest, while controls may be recruited in the locality of the investigating centre. Such a
design may easily introduce selection bias. A better procedure is to attempt to draw cases
from a disease register that seeks to capture all cases of disease in a defined geographical
area. The control group should then be a representative sample of the (disease-free)
population of the same area. In most countries, however, there are no easy ways to draw
such a sample. An alternative approach is to use matched designs; these will be discussed
in Section 36.6.

Since genotype is invariant throughout life, genetic association studies are intrinsically
less prone to information bias than are studies of environmental influences on disease.
The only real danger is posed by poor laboratory procedures; if disease status of subjects
is known to the technician who is scoring alleles, or if all cases and all controls are
genotyped at different times, bias may result. Such bias is easily excluded by genotyping
in random order, remaining blind to disease status.

Another problem in the interpretation of case-control studies has been termed inci-
dence/prevalence bias. This is not really a bias at all but a failure to carefully define the
nature of the disease variable. Thus, a table such as Table 36.1 could describe two rather
different types of studies:

1. a cross-sectional study in which a population is surveyed at a fixed point in time and
current disease status recorded, and

2. a longitudinal study in which a population of subjects, initially free of disease, are
followed for a defined period and new disease occurrence recorded.

In the former case, πAA, πAa and πaa are disease prevalences, while in the latter case they
are incidences. Incidence and prevalence are different quantities and may be influenced
in different ways. Most importantly, a factor that is related to the duration for which a
subject with disease remains in the population before death or migration will be reflected
in prevalence even if it has no influence on incidence. Case-control studies based upon
currently prevalent cases in a population measure effects of risk factors upon disease
prevalence, while studies based around newly occurring cases in a defined period measure
effects on disease incidence.

An example of the data arising from a case-control (incidence) study is shown in
Table 36.2. The study was reported by Dunning et al. (1997) and concerns possible asso-
ciation of common polymorphisms in the BRCA1 gene with breast cancer. Table 36.2(a)
shows the frequency distribution of the Pro871Leu genotype in 800 cases and 572 controls.
These frequencies can be used to estimate the corresponding population distributions and
hence the odds ratios. Taking the Pro/Pro genotype as reference, the odds ratio estimates
are

θ̂∗LL =
89

342

/ 56

266
= 1.236, θ̂∗LP =

369

342

/250

266
= 1.148.

Since occurrence of breast cancer is a rare event, the odds ratios θ∗LL and θ∗LP closely
approximate the corresponding genotype relative risks θLL and θLP in the population.

Table 36.2(b) shows allele frequencies in the 1600 chromosomes of cases and the 1142
chromosomes of controls. These can be used to estimate the allele distributions α(1) and
α(0). Again, since breast cancer is rare, the allele frequencies in healthy controls are very
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Table 36.2 Distributions of Pro871Leu polymorphism in the BRCA1 gene yin breast
cancer cases and in population controls.

Subjects Chromosomes
Pro871Leu Pro871Leu
genotype Case Control allele Case Control

Leu/Leu 89 56 Leu 547 362
Leu/Pro 369 250 Pro 1053 782
Pro/Pro 342 266
Total 800 572 Total 1600 1142

(a) (b)

nearly the same as in the population at large so that α(0) ≈ α(·) and the haplotype relative
risk may be estimated by the odds ratio

ψ̂∗ = 547

1053

/362

782
= 1.122.

The corresponding genotype relative risks, θLL and θLP, predicted by the multiplicative
model are 1.254 and 1.122, respectively. The next section deals more formally with
statistical inference concerning these parameters.

36.4 TESTS FOR ASSOCIATION

The statistical model underlying data such as those of Table 36.2(a) is that of two samples
drawn from multinomial distributions. Denoting observed frequencies by f and genotype
by the subscript i, the corresponding log likelihood is∑

i

(
f
(1)
i log γ (1)i

)
+
∑
i

(
f
(0)
i log γ (0)i

)
.

By re-expressing the case genotype probabilities, γ(1), in terms of γ(0) and θ∗, this may
be written as a function �(θ∗, γ(0)) of the control probabilities and the odds ratios. Since,
by definition, θ∗aa = 1 and since

∑
i α
(0)
i = 1, there are effectively only two free scalar

parameters in each of the vectors θ∗ and γ(0), the former being the parameter of interest
and the latter being a ‘nuisance parameter’.

There are two standard asymptotic tests of the hypothesis of no association, H0 : θ∗ = 1:

1. The log-likelihood ratio (LLR) test. Denoting the maximum- likelihood (ML) estimates

of γ(0) and θ∗ by γ̂(0) and θ̂∗, and the ML estimate of γ(0) under H0 by ˆ̂γ(0), this test
statistic is defined as twice the difference between the corresponding log likelihoods:

2
[
�(θ̂∗, γ̂(0))− �(1, ˆ̂γ(0))

]
.
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2. The score test. If u represents the value of the vector of first derivatives of the log

likelihood with respect to θ∗ evaluated at θ∗ = 1 and γ(0) = ˆ̂γ(0), and V represents an
estimate of its variance under H0 (obtained by standard arguments from the matrix of
second derivatives of the log-likelihood function), this test is defined by the quadratic
form:

utV1u,

where 1 denotes a generalised inverse matrix.

Both of these statistics are asymptotically distributed as χ2 on 2 degrees of freedom (df),
and both can be expressed as simple functions of the observed frequencies, f (1)i and f (0)i ,
and the corresponding ‘expected’ frequencies, e(1)i and e(0)i , fitted under H0:

LLR test = 2
∑
i

(
f (1) log

f (1)

e(1)
+ f (0) log

f (0)

e(0)

)
,

Score test =
∑
i

[
(f (1) − e(1))2

e(1)
+ (f

(0) − e(0))2
e(0)

]
.

The expected frequencies are calculated in the usual manner for tests of independence in
contingency tables:

e
(1)
i = f

(1)· f
(·)
i

f
(·)·

, e
(0)
i = f

(0)· f
(·)
i

f
(·)·

(where · in subscript or superscript denotes summation). In our example of Table 36.2,
the LLR and score tests are 2.056 and 2.055 respectively, corresponding to a P -value
of approximately 0.36, so these tests do not suggest statistically significant association
between breast cancer incidence and this polymorphism.

Asymptotic confidence intervals for estimates of odds ratios are provided by standard
likelihood theory. It is normal to assume that the logarithm of an odds ratio estimate is
asymptotically normally distributed with standard error estimated by the square root of
the sum of reciprocals of the four frequencies used in the estimate. For example, for our
estimate of θLL obtained in Section 36.3, the standard error of the log odds ratio is√

1

89
+ 1

342
+ 1

56
+ 1

266
= 0.189.

The approximate 95 % confidence limits for the log odds ratio are log 1.236± 1.96×
0.189. These correspond to limits on the odds ratio of 0.85 and 1.79. Thus there is no
suggestion that the Leu/Leu genotype is associated with increased risk of breast cancer.

Analysis of the chromosome count table, Table 36.2(b), follows very similar lines.
However, for us to be able to legitimately ignore subject and treat chromosomes as
independent observations, the assumption of HWE is essential. The test of the null
hypothesis only requires that we assume HWE in the population since, under H0, this
ensures that both case and control distributions of genotype obey the Hardy–Weinberg
law. However, for validity of the standard method of calculating a confidence interval for
the odds ratio, we require the additional assumptions of (1) a rare disease (so that controls
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will be in HWE), and (2) the multiplicative model for penetrances (to ensure that cases
are also in HWE).

For the data of Table 36.2(b), the LLR and score test statistics are 1.954 and 1.949
respectively. However, since these are tests of only a single parameter, they should be
compared with the χ2 distribution on 1 df, yielding a P value of approximately 0.16. The
standard error of the log odds ratio estimate is√

1

547
+ 1

1053
+ 1

362
+ 1

782
= 0.0826.

Similar calculations as before lead to 95 % confidence limits for the haplotype relative
risk of 0.95 and 1.32. As before, there is little evidence for association between breast
cancer and this polymorphism.

Since the tests based on chromosomes has only 1 df, it must be expected to be more
powerful that the 2 df tests – at least against alternative hypotheses, which are close
to the multiplicative model. However, the need to assume HWE might be regarded as
undesirable. If so, this assumption can be avoided by analysing the full genotype data of
Table 36.2(a) using the multiplicative model

θ∗LP = ψ∗, θ∗LL = (ψ∗)2.
ML estimation of the parameter of this model can be carried out using logistic regression
(see Section 36.5) and, by comparing maximised log likelihoods under null and alternative
hypotheses, LLR tests are readily computed using this method. The score test of
H0 : ψ∗ = 1 is also relatively well known, being equivalent to the Cochran–Armitage
χ2 test (1 df) for trend in the proportion of cases across rows of Table 36.2(a) (Armitage,
1955). In our example, the ML estimate of ψ∗ is 1.125 and the standard error of its
logarithm is 0.834, leading to confidence limits of 0.95 and 1.32 for ψ∗. The LLR test
statistic is 1.991, while the score test takes the value 1.984. These results agree quite
closely with those obtained by analysis of the chromosome counts (Table 36.2b).

Although the resistance of this approach to deviations from HWE is to be welcomed,
such deviations cannot be entirely ignored. Deviation from HWE constitutes evidence of
population stratification and, when this is present, there is a danger that such stratification
could confound the association between disease and genotype. We will return to this
problem in Section 36.7.

Just as there is a case for relaxing the HWE assumption while carrying out haplotype
relative risk analyses based on the multiplicative model, there can be a case for making
an HWE assumption when carrying out an analysis of genotype relative risks. The first
three columns of Table 36.3 shows some data (also drawn from Dunning et al., 1997)
concerning another polymorphism in BRCA1.

The 2 df LLR test statistic is 11.718 and the (perhaps implausible) suggestion is that
the homozygous Arg/Arg genotype is protective against breast cancer. However, because
the Arg allele is uncommon, the frequency of the Arg/Arg genotype is very low in
controls and, therefore, poorly estimated. Lathrop (1983) pointed out that the power
of the 2 df test could be improved by assuming HWE in the population. With this
assumption, and assuming a rare disease, both cases and controls will be in HWE at
the null hypothesis, while under the alternative hypothesis only controls will be in HWE.
The remaining columns show the expected frequencies under these assumptions. The LLR
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Table 36.3 Distributions of Gln356Arg polymorphism in the BRCA1 gene in breast
cancer cases and in population controls, with expected frequencies assuming HWE.

Observed Expected (H0) Expected (H1)
Gln356Arg
genotype Case Control Case Control Case Control

Arg/Arg 0 7 2.80 2.31 0 3.07
Arg/Gln 81 74 87.00 71.77 81 81.86
Gln/Gln 684 550 675.19 556.92 684 546.07

test for association compares the log likelihoods for these two fitted models and has 2
df. In this example this test statistic is 7.94 –a rather less extreme value than obtained
with the simple 2 df test, which is inflated by the (probably chance) excess of Arg/Arg
genotypes in controls.

The tests described so far in this section rely on asymptotic approximations which
may be rather poor when there are small cell frequencies such as in Table 36.3.
However, exact tests may be easily computed. The natural probability model is that
the distribution of genotypes (or alleles) for case and control subjects (chromosomes)
follow two multinomial distributions, which are identical under H0. However this
model is unsatisfactory for computing the null distribution of test statistics, owing
to unknown ‘nuisance’ parameters – the common genotype (allele) population relative
frequencies. This problem can be avoided by arguing conditionally upon the marginal
genotype (allele) frequencies. The tables then follow hypergeometric distributions under
H0. This is the argument used in the construction of Fisher’s exact test for 2× 2
tables such as Table 36.2(b), but the same argument may be used to calculate exact
P values for any of the statistics discussed above. In practice, complete evaluation of
hypergeometric distributions is often too demanding and a simulation approach must
be used. This proceeds by assigning the observed genotypes to cases and controls at
random, recalculating the test statistic each time and counting the proportion of the time
the statistic exceeds its value for the observed data. Random assignment of genotypes
amongst subjects can be carried out in two ways. For a total of N subjects, we might

1. assign the N observed genotypes to cases and controls at random, or

2. assign the 2N observed alleles to cases and controls with no consideration of the
pairing of alleles in the original genotypes.

The second of these approaches yields the P value under the HWE assumption, while the
first yields a P value that makes no such assumption; this is more generally appropriate,
and has the additional advantage of being rather easier to compute.

One further test should be discussed. This is a 1 df test in which the alternative model
assumes dominance of one allele. This is a conventional test for association in the 2× 2
contingency table in which cases and controls are classified as carriers of the dominant
allele or non-carriers (i.e. homozygous for the recessive allele). In the absence of prior
knowledge, this strategy will require two tests to be carried out since either allele could
be dominant.

The question is, which test should be used? The 1 df tests based on the dominance
model is frequently used in the study of single gene, or ‘Mendelian’ disorders while the
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1 df multiplicative Cochran–Armitage test is more often preferred in studies of ‘complex’
disorders. This largely follows empirical experience and, perhaps, reflects the different
mechanisms that apply in these settings. An additional consideration is that, when the
polymorphism studied is not itself causal but related to disease via linkage disequilibrium
with a nearby causal variant, dominance tends to be masked and the observed risk
relationship becomes closer to the multiplicative penetrance prediction. Many authors
have compared the power of these various tests under different model assumptions.
Except in the case where the minor allele frequency is low, so that there are few subjects
homozygous for the minor allele, the 2 df test against unrestricted alternatives behaves
reasonably well against all alternatives.

36.5 LOGISTIC REGRESSION AND LOG-LINEAR MODELS

In Section 36.4 it was mentioned that maximisation of likelihoods for some models
could be achieved by use of a computer program for logistic regression. However, since
the ‘response’ variable measured in cases and controls is a genotype, which has three
possible values, the relevance of logistic regression is not immediately apparent. This
section explains this and also shows how another standard statistical technique, log-linear
modelling, may be used to reproduce all the analyses described in Section 36.4. This will
be useful for the extensions of this methodology to be discussed in later sections.

Although the natural way to model case-control data is in terms of probability
distributions of genotype conditional upon disease status, reflecting the manner in which
the data are generated, it has been shown that identical results are obtained from a
likelihood-based analysis in which case-control status is regarded as the random outcome
(Prentice and Pyke, 1979). The response variable is taken as the proportions of subjects
with each genotype who are cases, and this is related via a logistic regression model to a
design matrix expressing the precise model to be fitted. If π∗i represents the probability that
a subject, drawn at random from those subjects in the case-control study with genotype i,
is a case. The logistic regression model is

log
π∗i

1− π∗i
= xT

i β,

where xT
i is the ith row of the design matrix. With suitable choice of design matrix, the

regression coefficients, β, are the logarithms of the odds ratio parameters discussed in
Section 36.2.

Table 36.4 illustrates how two analyses of the data of Table 36.2 could be carried
out using logistic regression. The first design matrix fits a fully saturated model and
corresponds to the conventional 2 df test for association in the 3× 2 contingency table.
The coefficients of g1 and g2 in the model are the logarithms of the odds ratios θ∗LP and
θ∗LL respectively, and the 2 df LLR test can be carried out by dropping g1 and g2 from
the model. The second model is the multiplicative model in which θ∗LL = (θ∗LP)

2. The
coefficient of g in this model corresponds to logψ∗ in our earlier notation, and the 1 df
LLR test for trend can be carried out by dropping g from the model. The dominance
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Table 36.4 Logistic regression of the Pro871Leu data.

Design matrices

2 df model 1 df model
Observed
proportion Constant g1 g2 Constant g

89/145 1 0 1 1 2
369/619 1 1 0 1 1
342/606 1 0 0 1 0

model can also be fitted in logistic regression, simply by coding the indicator g as 1 for
carriers of the dominant allele and 0 otherwise (not shown).

This approach argues conditionally upon genotype and hence it is impossible to
incorporate the HWE assumption, which is a model for the distribution of genotypes.
A more flexible, but rather less convenient, alternative – log-linear modelling – allows a
wider class of models to be fitted. In this approach, frequencies in a contingency table
are assumed to be distributed as Poisson variates, the logarithms of their expected values
obeying a linear model. Again it can be shown that this approach leads to likelihood
inferences for odds ratios that are identical to those obtained under the assumption of
multinomial distributions of genotypes conditional upon disease status.

Table 36.5 demonstrates how log-linear modelling can be used to reproduce two
analyses discussed in Section 36.4. The cell frequencies of Table 36.2 are the response
variable, and the first design matrix represents a saturated model in which disease status,
genotype and their interaction are included. The parameters representing interaction in
this model are the coefficients of d.g1 and d.g2 and these are the logarithms of the odds
ratios θ∗LP and θ∗LL respectively. Dropping both these variables from the model provides
the 2 df test for association between disease and genotype.

The second design matrix listed in Table 36.5 is a more restrictive model which assumes
(1) the multiplicative mode for odds ratios, and (2) HWE equilibrium in both cases and
controls. Note that this model must include an ‘offset’ (equivalent to the inclusion of a
variable whose coefficient is constrained to take the value 1). Use of this design matrix
reproduces the simple analysis of the 2× 2 table of chromosome counts; the coefficient
of the variable d.g (the disease–genotype interaction term) is the odds ratio in this 2× 2

Table 36.5 Log-linear modelling of the Pro871Leu data.

Design matrices

2 df model 1 df + HWE model
Observed
frequency Constant d g1 g2 d.g1 d.g2 Offset Constant d g d.g

89 1 1 0 1 0 1 0 1 1 2 2
369 1 1 1 0 1 0 log 2 1 1 1 1
342 1 1 0 0 0 0 0 1 1 0 0
56 1 0 0 1 0 0 0 1 0 2 0
250 1 0 1 0 0 0 log 2 1 0 1 0
266 1 0 0 0 0 0 0 1 0 0 0
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table. An advantage of fitting the model to the full table of genotype counts rather than
to the collapsed table of chromosome counts is that this provides tests of fit of modelling
assumptions that are implicit in the latter analysis. An additional advantage is that the
alternative analyses discussed in Section 36.4 can also be carried out quite easily. Thus,
if the columns d.g1 and d.g2 in the first matrix are replaced by the single column d.g, the
model assumes the multiplicative (1 df) model but does not assume HWE. Conversely,
if the single column d.g in the second matrix is replaced by the two columns d.g1 and
d.g2, we have Lathrop’s model which assumes HWE in controls but allows 2 df for
disease–genotype association. As before, dominance models may also be considered with
appropriate coding of the indicator g.

36.6 STRATIFICATION AND MATCHING

In the introduction to this chapter, the problem of confounding was briefly discussed;
association between disease and genotype might be attributable to a third variable, not
on a causal path between genotype and disease, which is independently related to both
variables. In genetic epidemiology, most concern is usually related to the possibility
of confounding by admixture or ethnic stratification of populations, but there are other
possibilities. For example, a gene that is related to the tendency to smoke cigarettes (and
such genes have been found) may be associated with lung cancer. In one sense such a
gene is indeed a cause of lung cancer but, in the context of the question as to whether
the gene is directly involved in the biology of cancer, cigarette smoking would be more
likely to be regarded as a confounder.1

When the confounding variable has been measured in the study, it is relatively
straightforward to deal with the problem during analysis. The classical method in
epidemiology is by stratification of the analysis by the potentially confounding variable
and testing for association between factor of interest (here genotype) and disease within
strata. Figure 36.1 illustrates this idea.

Each stratum (ethnic group, for example) contributes a contingency table of the form
discussed in Section 36.4 – either a 3× 2 table of counts of subject by genotype or a
2× 2 table of counts of chromosomes by allele.

Since each stratum, taken alone, may contain insufficient data to test for association, it
is necessary to pool the evidence for association over strata. An obvious way of doing this

Subjects

Genotype Cases

aa
Aa

AA

Chromosomes

Allele Cases

a
A

Controls Controls

Figure 36.1 Stratified analysis of case–control studies.

1 This example also illustrates why the concept of confounding is rather difficult to define precisely, since
this depends crucially on the nature of causality.
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would be to simply add the χ2 values over strata, remembering to also add their degrees
of freedom. However, the proliferation of degrees of freedom with this approach indicates
that it is based on a very flexible model for association, with either two or one different
parameter for each stratum. Since all these parameters will be imprecisely estimated, this
approach must be expected to lack power.

An alternative approach is to adopt the model in which the parameters measuring
association between genotype and disease are assumed to be constant across strata,
although the distributions of both disease and genotype are allowed to vary among strata.
With this model as the alternative hypothesis, tests of association have either 1 or 2 df.
In the case of the 1 df tests, the score tests are well known and can be carried out using
hand calculator. The test for association in a stack of 2× 2 tables of allele counts is the
Mantel–Haenszel test and an easily calculated estimate of their common odds ratio, ψ∗,
is also available (Mantel and Haenszel, 1959). If we wish to avoid the HWE assumption,
the 1 df score test is the stratified test for trend in proportions in the stack of 3× 2 tables
of genotype counts (Mantel, 1963); this is often known as the Mantel extension test. The
2 df score test for the stack of 3× 2 tables is rather more difficult to calculate and is
not explicitly described in the literature. The more general case of the k − 1 df test in
a stack of k × 2 tables has been described, but calculation of the variance of the score
vector requires matrix inversion. An approximate procedure is to (1) calculate expected
frequencies under the null hypothesis in each stratum separately, (2) add observed and
expected frequencies over strata and (3) calculate a chi-squared test in this margin using
the usual formula

∑
(O − E)2/E. This approximation can be shown to be conservative –

the value of χ2 obtained this way is always slightly smaller than that obtained if the
variance–covariance matrix of the score vector is calculated correctly.

LLR tests are more difficult to calculate than score tests, since the ML estimates
of common odds ratios require iterative computation. However, the logistic regression
and log-linear modelling approaches of Section 36.5 are easily extended to encompass
stratified analyses.

Since logistic regression argues conditionally on genotype, this method explicitly allows
association between stratum and genotype and to control for confounding it is necessary
only to allow disease status to depend on stratum by including stratum in the regression
model as a categorical variable (or ‘factor’). If there are S strata, this introduces a further
S − 1 parameters in the regression model. Thus the model of no association between
disease and genotype within strata has S parameters, and the alternative model introduces
a further 1 or 2 parameters.

Log-linear modelling is slightly more complicated since the relationship between
genotype and stratum must be explicitly modelled; we require S − 1 parameters for the
distribution of subjects between strata and, if HWE is assumed within strata, we require a
further S − 1 parameters to model variation of allele relative frequencies amongst strata.
As in the logistic regression approach, S − 1 parameters are needed to model association
between disease status and stratum. Thus the model of no association between disease
and genotype within stratum has a total of 3S parameters. Again, the alternative model
introduces a further 1 or 2 parameters for association between disease and genotype. The
design matrix for a two-stratum analysis is illustrated in Table 36.6.

Dropping the last column from the model produces a 1 df LLR test for association
between genotype and disease within strata.
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Table 36.6 Stratified analysis by log-linear modelling.

Design matrix

Stratum Disease Genotype Offset Constant s d g s.d s.g (d.g)

1 Case AA 0 1 1 1 2 1 2 2
1 Case Aa log 2 1 1 1 1 1 1 1
1 Case aa 0 1 1 1 0 1 0 0
1 Control AA 0 1 1 0 2 0 2 0
1 Control Aa log 2 1 1 0 1 0 1 0
1 Control aa 0 1 1 0 0 0 0 0
2 Case AA 0 1 0 1 2 0 0 2
2 Case Aa log 2 1 0 1 1 0 0 1
2 Case aa 0 1 0 1 0 0 0 0
2 Control AA 0 1 0 0 2 0 0 0
2 Control Aa log 2 1 0 0 1 0 0 0
2 Control aa 0 1 0 0 0 0 0 0

Computation of exact P values based on any of these test statistics may be obtained by
simulation, randomly assigning genotypes to subjects within strata while ignoring disease
status.

The use of regression models to control for confounding has much to recommend it,
since such approaches extend without difficulty to deal with several potential confounders.
For this reason, their use has become widespread in epidemiology. But whether analysis
is by regression or by the more classical Mantel–Haenszel methods, it should be noted
that the need to control confounding may result in some loss in precision of the study if
the stratifying variable is strongly related to disease. In this case, some strata may have
many fewer controls than cases, while others may have many fewer cases than controls.
An optimal design would maintain the ratio of cases to controls across strata, and a study
that is carried out so that this is so is called a group matched study.

Within a group matched study, there is no relationship between stratum and disease
status and for some time it was believed that the matched design eliminates confounding
so that the analyses discussed in this section are no longer necessary. Unfortunately this is
not the case, owing to the non-collapsibility of the odds ratio as a measure of association;
even when the distribution of disease status is constant over strata, and when the odds
ratios are constant across strata, the odds ratios in the marginal table are closer to one
than are the stratum-specific odds ratios. Likewise, the test for association in the marginal
table is incorrect. Thus it is still necessary to include stratum effects when modelling data
from a matched study. The only exception to this rule occurs in the degenerate case in
which the distribution of genotype also does not vary among strata.

At the limit, matching can be so fine that each single case has its own control(s).
This is an individually matched case-control study. Although, in principle, the analysis
of such studies is the same as above, we encounter a new technical difficulty; since we
must include stratum effects in the model and since we introduce a new stratum with
each new case, the number of parameters in the model increases just as fast as the total
study size. Unfortunately, the asymptotic properties of likelihood inference in logistic
regression break down in these circumstances. The solution is to use conditional logistic
regression – a variant of logistic regression analysis in which the parameters expressing
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stratum effects are eliminated from the likelihood by use of a conditional argument rather
than by attempting to estimate them. Before concluding the topic of individually matched
studies, it should be noted that an important special case occurs when the matching is by
nuclear family so that cases are compared with unaffected sibling controls. This type of
study is the ‘sib TDT’ study described by Spielman and Ewens (1998); such studies and
their analysis are discussed in Chapter 38 of this handbook.

We have seen that matching controls to cases at the design stage does not simplify
analysis. It has also been shown elsewhere that the gains in efficiency achieved by
matching are modest except when there is very strong confounding. These two facts
might lead us to question its usefulness. However, there is another important motivation
for matched designs. In Section 36.3 attention was drawn to the problem of selection
bias in case-control studies and in particular to the lack of appropriate sampling frames
for controls in most countries. However, matching can simplify the sampling problem. If
controls are matched to cases, e.g. by general practitioner or by neighbourhood, it can be
much easier to ensure that (1) all eligible cases within a given stratum are indeed captured
in the study, and (2) that controls representative of the stratum are selected. It is these
considerations rather than the desire for efficient control of confounding that accounts for
the popularity of matching in case-control studies.

36.7 UNMEASURED CONFOUNDING

A criticism frequently levelled at case-control studies in genetic epidemiology is the
possibility of confounding by unmeasured population stratification or admixture. But the
possibility of unmeasured confounding is not unique to genetic epidemiology. Indeed, one
of the most celebrated controversies of epidemiology surrounded Fisher’s ‘constitutional
hypothesis’, which suggested that unmeasured genetic factors could confound the observed
association between smoking and lung cancer. Ultimately, such explanations can always
be offered for observed associations. In general epidemiology, the only counter argu-
ments are in terms of plausibility. An explanation in terms of unmeasured confounding
must be plausible, both biologically and quantitatively. The quantitative plausibility of
explanations based on unmeasured confounding has, not surprisingly, been the subject of
much attention in the epidemiological literature, but has been largely ignored in the debate
concerning population-based vs family-based association studies in genetic epidemiology.
An early finding of such work was that putative confounders must be very strongly related
to both disease and risk factor for their confounding effect to be appreciable (Bross, 1967).

To carry these arguments over into genetic epidemiology, it is most convenient to
assume HWE and the multiplicative model for association, so that the theory can be
expressed in terms of properties of 2× 2 tables of chromosome counts. Let there be two
hidden strata and assume that the odds ratios between disease status and allele is φ∗ in
each stratum. Then it can easily be shown that the marginal odds ratio is given by

φ∗
[
ζpA + (1− pA)

ζpa + (1− pa)

]
,

where pA represents the proportion of control A alleles drawn from the high-risk stratum,
pa is the proportion of a alleles drawn from this stratum and ζ is the odds ratio between
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stratum and disease. The term in square brackets represents the factor by which the true
odds ratio is inflated or deflated by confounding and has been termed the confounding
risk ratio (Miettinen, 1972). Breslow and Day (1980) give examples of such calculations.

The problem of unmeasured confounding is no more serious when the factor of interest
is a gene than when it is an environment exposure. Indeed it could be argued that it is
considerably less serious, since it is possible to collect evidence for or against the existence
of substantial admixture within a population. This can be checked by typing a number
of genetic markers that are sufficiently distant from the locus of interest to be assumed
to be in linkage disequilibrium with it. The presence of admixture is then indicated by
deviation from HWE at each locus, by population associations amongst pairs of loci and,
if disease risk differs among strata, by widespread association between genotype and
disease – attributable to confounding. Although this possibility has been recognised for
some time, formal methods of analysis have not been proposed until recently. Pritchard
and Rosenberg (1999) propose testing for confounding by unobserved stratification by
summation of χ2 tests for association over markers. They then seek to adjust the P value
for the candidate locus. A full description of approaches to modelling stratification and
admixture is to be found in Chapter 35 of this handbook.

A further approach, ‘genomic control’, is due to Devlin and Roeder (1999), who
suggested that the effect of admixture and stratification is to inflate the 1 df Cochran–Arm-
itage marker/disease association test statistics by a constant factor, which they desig-
nated λ. They showed that λ is expected to increase with the study size, essentially
reflecting the increased sensitivity of large studies to hidden confounding, but argued
that, given a large number of tests for markers widely spread on the genome, λ can be
estimated empirically and the distribution of test statistic corrected. A simple estimate of
λ is the ratio of the mean of the tests falling in the lower part of the distribution with its
expectation under the χ2 assumption. Devlin and Roeder suggested use of the smallest
50 % of test values, but others have suggested that 90 % can be used.

There are a number of difficulties with the idea of genomic control. First, although the
type 1 error is corrected, this correction is achieved at the price of a loss of power to
detect true associations. Secondly, there is an assumption of ‘exchangeability’ of markers;
the estimate of λ will reflect inflation of tests due to small differences in allele frequen-
cies at a large number of loci, due to ‘genetic drift’ at the point of separation of ancestral
populations, However, some loci could have been under selection pressures, resulting
in substantially larger differences. A final difficulty, although less serious given recent
advances in high-throughput genotyping methods, is that accurate estimation of λ requires
very large numbers of loci to be studied.

Devlin and Roeder (1999) discussed the case of ‘cryptic Relatedness’ between study
subjects, leading to violation of the assumption of independent data points. They showed
that this is serious when the relatedness is stronger between pairs of cases (and possibly
pairs of controls) than it is between a case-control pair. Again, they suggested that the
effect of this is to inflate the test statistics by a factor λ that increases with the size of the
study. In principle, cryptic relatedness is no different from the stratification and admixture
effects discussed by other authors. Cryptic relatedness is concerned with the effect of
more recent coalescence of the genealogy of study subjects, while stratification represents
ancient coalescence into a few ancestral populations. The difference is that, whereas the
latter can be approached by modelling structure by using ancestry informative markers,
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cryptic relatedness will not be corrected by such an approach and genomic control remains
the only remedy.

36.8 MULTIPLE ALLELES

The discussion to this point has been limited to the case of a diallelic genetic locus. This
section discusses the case of a locus with K > 2 alleles. The most serious consequence
that must be considered is the proliferation of possible genotypes that follows. A test
based on genotype relative risks has K(K + 1)/2− 1 df and lacks power even for quite
modest values of K . However, the multiplicative model generalises naturally and allows
tests based on haplotype relative risks. Denoting the genotype with alleles j and k by
(j, k), the multiplicative model for genotype relative risks is

θ(j,k) = ψjψk,
where ψj, ψk(j, k = 1 . . . K) are haplotype relative risks. One allele, usually the most
common, is taken as reference so that the corresponding ψj takes the value 1.0 by
definition. The global test of no association, H0 : ψj = 1, j = 1 . . . K has K − 1 df. In
the context of case-control studies, genotype and haplotype relative risks are closely
approximated by the corresponding odds ratio parameters. In particular, taking allele 1 as
reference, ψj is closely approximated by

ψ∗ = α
(1)
j

α
(0)
j

/α(1)1

α
(0)
1

= α
(1)
j

α
(1)
1

/α(0)j
α
(0)
1

.

All of the methods discussed above in the case of a diallelic locus extend naturally.
For example, the model that combines HWE and multiplicative assumptions can be fitted
using the K × 2 table of chromosome counts. Relaxation of the HWE assumption is most
conveniently achieved by logistic regression. Denoting the probability that a subject,
drawn at random from those subjects in a case-control study with genotype (j, k), is a
case by π∗(j,k), the multiplicative model corresponds with the logistic regression model

log
π∗(j,k)

1− π∗(j,k)
= β0 + βj + βk.

The design matrix has K columns, the first column being the unit vector, and the elements
of remaining columns j = 2 . . . K taking values 0, 1 or 2 reflecting the number of times
allele j occurs in each genotype. The dominance model is also readily extended to the
multiple allele case, although there are more versions of the model to consider (since
various combinations of alleles could be dominant). For tests for indirect association, the
model of multiplicative effects of alleles is the one most frequently used.

Tests for association can be calculated by using logistic regression to calculate likelihood
ratio tests. The score test, which generalises the Cochran–Armitage test, is essentially
Hotelling’s T 2 test, comparing the vector of means for the allele indicator variables
between cases and controls (Xiong et al., 2002; Chapman et al., 2003; Fan and Knapp,
2003). To deal with observed potential confounders, the regression model can be extended
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by entering them into the regression model. The equivalent generalisation of the score
test is a stratified version of the Hotelling’s T 2 statistic.

The multiplicative model may also be defined by the property that the genotype relative
risk for a heterozygous genotype is the geometric mean of the two homozygous genotypes
defined by its alleles. In terms of odds ratios,

θ∗(j,k) =
√
θ∗(j,j)θ

∗
(k,k).

A less restrictive approach, which nevertheless avoids the large number of degrees of
freedom of the test between genotype frequencies, is to assume, in the case of a diallelic
locus, only that the heterozygous genotype relative risk falls in the interval bounded by the
two homozygous relative risks. The model could be fitted under these order constraints,
but the asymptotic distribution of the LLR test statistic would be complex. An alternative
approach is suggested by noting that, under the multiplicative model, the effects of the
alleles on the two chromosomes are additive on the log odds scale. This can be extended
by assuming additivity of effects on some other scale. The problem of the scale on which
two effects are additive has received some attention in the epidemiological literature, since
it is central to the discussion of synergism of risk factors.

A natural approach is suggested by generalised linear models (Nelder and Wedderburn,
1972); we may replace the logit transformation of the probabilities π∗ by a more general

‘link function’, g
(

π∗

1− π∗
)

:

g

(
π∗(j,k)

1− π∗(j,k)

)
= β0 + βj + βk,

a convenient choice of link function being the Box–Cox transformation of the odds (Box
and Cox, 1964)

g(x) = xρ−1
ρ
, ρ �= 0,

= log x, ρ = 0.

This extension to the logistic regression model was proposed by Guerrero and Johnson
(1982). In the present context, as ρ →∞, π∗(j,k) tends to the larger of π∗(j,j) and π∗(k,k),
while as ρ →−∞ it tends to the smaller of these values. These extreme cases generalise
the ideas of dominant and recessive inheritance respectively. When ρ = 0 the model
reverts to the simple multiplicative model. For given ρ, this link function is either available
or easily implemented in most generalised linear modelling programs. An important
property of the Box–Cox transformation is that it is continuous in ρ through ρ = 0
so that, in principle, ρ can be treated as an extra model parameter and estimated by ML.
In practice, it is more usual to repeat the analysis on a grid of values for ρ and to plot
the resultant profile log likelihood. Note, however, that the usual asymptotic theory does
not hold for LLR tests for association based upon maximisation with respect to ρ, since
the likelihood is flat with respect to ρ under H0.

A disadvantage of the above approach is that the effect parameters βj , βk are not
invariant under case-control sampling and, following Breslow and Storer (1985), other
authors have concentrated on generalised relative risk models, which, in the present
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context, take the form

log
π∗(j,k)

1− π∗(j,k)
= β0 + log θ∗(j,k),

h(θ∗(j,k)) = βj + βk.
With this model, a heterozygous genotype relative risk is a generalised mean of the two
homozygous genotype relative risks:

θ∗(j,k) = h−1

h
(
θ∗(j,j)

)
+ h

(
θ∗(k,k)

)
2

 .
Moolgavkar and Venzon (1987) have reviewed such approaches, criticising some earlier
proposals on the grounds that the functional form of the model is not maintained under
change of reference category. Their preferred choice of relative risk function is equivalent
to the approach of Guerrero and Johnson (1982).

A widely used alternative to the K − 1 df test is to carry out K separate 1 df tests,
each one focusing on a specific allele and combining all other alleles. This is an efficient
approach when it is reasonable to assume that association is limited to a single allele,
but it is necessary to correct the P value for multiple testing. However, this is not a
straightforward matter since the tests are not independent. In the context of TDT tests
this problem was discussed by Morris et al. (1997), who pointed out that the P value for
the largest of the K correlated 1 df test statistics may be calculated by simulation from the
randomisation distribution. The same approach can be applied in population case-control
studies.

36.9 MULTIPLE LOCI

When the polymorphism of interest is not by itself functional but may be in linkage dise-
quilibrium with a causal locus, it is sometimes easier to demonstrate association between
disease and this region of the genome by using a more polymorphic marker. For example,
a polymorphic marker provides a more detailed discrimination between haplotypes present
in the population, with a correspondingly better chance of identifying the haplotype(s)
carrying a causal variant. But it may happen that there are no highly polymorphic markers
in the region of interest. However, single nucleotide polymorphisms (SNPs), which are
diallelic, occur very frequently throughout the human genome, and an alternative to the
use of a single marker is to relate disease to a haplotype formed by several closely linked
SNPs. Even when a polymorphic marker is available, recent advances in genotyping tech-
nology have been such that, usually, typing several SNPs will be preferred. In this section,
for simplicity, diallelic loci are assumed.

In general, the analysis of association involving extended haplotypes brings new
possibilities and difficulties. However, in one case, the analytical problem becomes
identical to that explored in the previous section. This is the case where K loci to be tested
are in ‘complete’ linkage disequilibrium, defined by all pair-wise values of Lewontin’s
D′ measure of linkage disequilibrium equal to 1. In this case, the markers represent K
mutations, with no mutation occurring more than once and no recombination occurring
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in the region in the population history. In this case, only K + 1 different haplotypes are
observed and the collection of markers behave in exactly the same way as a single
polymorphic marker with K + 1 alleles. In this case, there is no phase uncertainty
when resolving haplotypes (i.e. when assigning alleles along each chromosome). As
an illustration, the logistic regression analysis of the model of multiplicative effects is
achieved by regressing the disease status binary variable on indicator variables for each
diallelic marker genotype, coded 0, 1 or 2. Similarly, the Hotelling’s T 2 test with the
same alternative model compares the vectors of means of these genotype scores for cases
and controls.

Chapman et al. (2003) proposed that, when the pair-wise D′ values are high but fall
somewhat short of 1, this testing strategy can still be preferred to more detailed recon-
struction of haplotypes. This is because there is little power to detect association with
rare recombinant haplotypes, so that the expenditure in the test of the extra degrees of
freedom that they require is not justified. With the availability of very large numbers
of SNP markers and falling typing costs, it is likely that this situation will become
commonplace. In the presence of more common recombinant haplotypes, however, full
haplotype-based approach may be justified.

The main difficulty with haplotype-based analyses is that haplotypes are not directly
observed owing to phase uncertainty. Family-based studies of association are not immune
to this problem (Clayton, 1999), but studies based upon single individuals may be more
seriously affected. If, in such a study, a subject is heterozygous at H of the loci consid-
ered, the observed genotype data are consistent with 2H possible haplotype assignments.
Methods based upon likelihood can be extended to deal with this, most conveniently by
use of the EM algorithm. Each observed ambiguous genotype is expanded into all possible
phases and, at the E step, its total observed frequency is divided between the possible
phases according to their posterior probability, assuming HWE and current estimates of
haplotype probabilities. A high-dimensional contingency table of imputed haplotypes by
disease status can then be calculated, and the log-linear model fitted to this table (M step).
However, some words of caution are necessary. Firstly, it is well known that the likeli-
hood does not always have a unique maximum. When there are multiple maxima, the EM
algorithm will converge to a local maximum and this may not be the global maximum. It
is usually wise to repeat the model fit starting from different initial estimates. A second
consequence of irregular likelihood surfaces is that LLR tests may not conform well to
standard asymptotic theory. Nevertheless, exact P -values may be obtained by simulation
by randomly permuting case-control status between subjects in the study (although this
may be rather demanding in terms of computer time).

Score tests are generalised rather more easily to the case of unknown phase. The value
of the ‘score’ vector, which would have been tested if the phase had been observed,
is replaced by its posterior distribution of phase assignments calculated under the null
hypothesis (Schaid et al., 2002).

There is an extensive literature on further haplotype-based approaches to analysis that
attempt to use estimated ancestral relationships between haplotypes to increase the power
to detect and localise causal variants. These may be informal, and based on ‘cladistic’ clas-
sifications of haplotypes (see, e.g. Seltman et al., 2001) or on more formal approximate
models for ancestral recombination graphs. For detecting rare variants, several authors
have proposed tests based upon extended haplotype sharing in cases (e.g. Tzeng et al.,
2003).
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36.10 DISCUSSION

The discussion of previous sections has demonstrated that the analysis of population-based
association studies can involve many of the statistical methods that have been developed
for the analysis of multivariate categorical data. The main factors that give such analyses
a distinctive flavour are
1. the fact that chromosomes are paired in subjects, and the implications of the HWE

assumption (or its avoidance), and

2. the problem of unknown haplotype phase.
The latter problem, in particular, presents some challenging technical difficulties.

Most of this chapter has been concerned with inference from case-control studies under
the ‘rare disease’ assumption. Although many of the methods described are applicable
for general binary traits, those methods requiring the HWE assumption (in order, e.g. to
resolve unknown haplotype phase) are more problematic. The log-linear models discussed
here assume HWE conditional upon disease status, and this can only be expected to hold
under the rare disease assumption or under the hypothesis of no association. In other
cases, it would only be legitimate to assume HWE marginally. Since HWE holds under
the null hypothesis, the size of tests constructed under conditional HWE models would
be expected to be correct, but LLR and score tests may not have optimal properties and
parameter estimation will be incorrect. For data from representative population samples,
models for the joint distribution of genotype and disease phenotype must be specified in
terms of the factorisation

Prob (disease|genotype)× Prob (genotype) ,
where the HWE assumption is introduced in the second term. Because case-control
sampling distorts the marginal distribution of genotypes, these studies require the rare
disease assumption, which predicts the conditional assumption of HWE.

Lack of space prevents discussion of population association between quantitative traits
and genotype. However, such a discussion would largely parallel that for discrete traits.
Regression methods based on distribution of trait conditional upon genotype would usually
be approached by assuming (or transforming to) normality of conditional distributions
and using the classical (Gaussian) linear model. Proliferation of degrees of freedom may
be avoided by assuming additivity of haplotype effects (i.e. zero dominance variance),
and there is scope for extending such models by the incorporation of flexible ‘link’
functions. For methods that require us to assume HWE, the approach outlined in the
previous paragraph will be satisfactory for the analysis of data drawn from representative
population samples. However, it will be more difficult to incorporate such assumptions
if sampling has been ‘response based’, e.g. if extreme trait values have been deliberately
oversampled. There is scope for further work in this area.
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Whole genome association (WGA) studies have been widely recognised as having great potential to
identify genetic polymorphisms contributing to complex human diseases. With recent advances in
single nucleotide polymorphism (SNP) genotyping technology, WGA studies using > 105 markers
are being undertaken by many research groups worldwide with samples large enough to detect the
modest genetic effects we expect for complex diseases. In this chapter, we review the key issues
for the analysis of data from population-based WGA studies, building on the concepts introduced
by Clayton (Chapter 36). We briefly discuss design issues and describe how to assess genotype
quality from WGA genotyping technology. We discuss techniques for single-locus analysis and
appropriate corrections that can be made to allow for multiple testing of the thousands of SNPs
used in WGA studies. We describe how these methods could be extended to allow for environmental
and other non-genetic risk factors, multiple SNPs, haplotypes, and epistasis. Finally, we emphasise
the importance of replication of the results from WGA studies and discuss the prospects of this
approach for complex disease gene mapping.

37.1 INTRODUCTION

The traditional approach to mapping disease genes has been linkage analysis, which
studies the co-segregation of marker alleles with disease within large pedigrees or smaller
family units such as affected sib pairs (see Chapters 33 and 34). This approach has
proved to be successful for locating genes contributing to simple Mendelian disorders such
as cystic fibrosis and Huntington’s disease, where there is a clear relationship between
phenotype and genotypes at the underlying functional polymorphism(s). However, linkage
studies have proved less reliable for complex diseases, e.g. type 2 diabetes, where
disease status may be difficult to define from multiple intermediate phenotypes, there
may be multiple interacting genes underlying these phenotypes, and the effects of these
genes may differ according to exposure to environmental and other non-genetic risk
factors such as diet and smoking. As a result, individuals affected by complex diseases
are less concentrated within families and affected family members are less likely to
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share the same variants at the underlying functional polymorphisms than for Mendelian
disorders.

Population-based association studies are more powerful than linkage studies for identi-
fying genetic polymorphisms contributing to complex diseases, provided that the under-
lying causative variants are not very rare (Risch and Merikangas, 1996; Zondervan and
Cardon, 2004). Association studies focus on identifying genetic markers that occur with
different frequencies in samples of unrelated affected cases and unaffected controls,
exploiting the fact that it is easier to ascertain large groups of affected individuals sharing
a genetic risk factor for a complex disease across the whole population than within
individual families, which would be required for linkage.

The success of association studies for disease gene mapping relies, in part, on
genotyping the functional polymorphism(s) themselves (so-called direct association), or
flanking genetic markers that are highly correlated with the functional polymorphism(s)
(indirect association). Direct association studies focus on genotyping candidate loci with
a relatively high prior probability of functional relevance, including non-synonymous
polymorphisms, splice-site variants, and copy number polymorphisms. Conversely, indi-
rect association studies incorporate panels of single nucleotide polymorphisms (SNPs),
each of which is unlikely to be directly of functional relevance, but at sufficiently high
density one or more is likely to be correlated with the underlying causative variants.
This correlation is referred to as linkage disequilibrium (LD), generated as a result of the
shared ancestry of a population of chromosomes at proximal loci. As a result, alleles at
flanking loci tend to occur together, in cis, on the same chromosome, with each specific
combination of alleles known as a haplotype.

37.1.1 Linkage Disequilibrium and Tagging

There are numerous measures of LD between a pair of SNPs, most based around the
statistic D = h− p1p2. In this expression, h denotes the population frequency of the MM
haplotype, and p1 and p2 denote the population frequencies of the M allele at each SNP,
where at each locus M and m denote the major and minor alleles, respectively. Under
gametic phase equilibrium, h = p1p2 so that D = 0. More generally, D takes values in
the range [−1, 1], but is highly dependent on population allele frequencies. To reduce
this dependence, two commonly used measures of LD have been proposed:

r2 = D

p1(1− p1)p2(1− p2)
,

and

D′ =


D

max[−p1p2 − (1− p1)(1− p2)]
if D < 0

D

min[p1(1− p2), (1− p1)p2]
if D ≥ 0

.

The statistic D′ can take values in the range [0, 1], where D′ = 1 is consistent with
no recombination between a pair of SNPs in the time since the mutations generating the
polymorphisms occurred. This is referred to as complete LD, and implies that at least
one of the four possible haplotypes has frequency 0. The squared correlation coefficient,
r2, between a pair of SNPs also takes values in [0, 1]. However, r2 = 1 corresponds
to perfect LD, where genotypes at one SNP can be used as proxies for genotypes at a



1240 A.P. MORRIS AND L.R. CARDON

second SNP, referred to as genetically identical by Lawrence et al. (2005). The value of
r2 is directly related to the power to detect association of a disease with a genetic marker
in LD with a flanking functional polymorphism. For a more detailed discussion of LD
measures, see Chapter 27.

With the increasing availability of high-density SNP genotyping technology, many
empirical studies have been undertaken to characterise the extent and distribution of LD
throughout the genome in different populations. Initial studies focused on specific genes
and small genomic regions (Clark et al., 1998; Johnson et al., 2001; Reich et al., 2001;
Gabriel et al., 2002), but later large genomic regions (Taillon-Miller et al., 2000; Dunning
et al., 2000; Abecasis et al., 2001) and whole chromosomes were screened (Patil et al.,
2001; Dawson et al., 2002; Phillips et al., 2003). The clear conclusion from these studies
is that the extent of LD is extremely variable throughout the genome, and across different
populations. Further, much of common human genetic variation can be arranged in blocks
of SNPs in strong LD with each other, maintained by low levels of recombination, bounded
by hotspots of meiotic crossover activity.

Knowledge of the patterns of LD throughout the genome aids study design, since
markers can be selected so as to guarantee coverage of all common SNPs with some
predetermined threshold of r2. The advantage of this approach is that we need not
genotype all SNPs in a candidate gene or region, or even the whole genome, but can
focus on a smaller number of so-called tag SNPs from which we can recover much of
the information about common human genetic variation. Tag SNPs can be selected within
blocks of strong LD by selecting combinations of SNPs that jointly define all common
haplotype variation. Alternatively, SNPs can be allocated to bins of strong LD, based on
pair-wise r2 measurements, and a single tag selected from each bin (Carlson et al., 2004).

One of the key advances in the design of population-based association studies has been
the publication of data from the International HapMap project (The International HapMap
Consortium, 2005). The initial phase of the project genotyped more than 1 million evenly
spaced SNPs genome-wide, in samples from four populations: (1) 30 Yoruba trios (two
parents plus offspring) from Ibadan, Nigeria; (2) 30 trios from the CEPH collection from
Utah, USA, all with north and west European ancestry; (3) 45 unrelated individuals from
Beijing, China; and (4) 44 unrelated individuals from Tokyo, Japan. The second phase
of the project genotyped a further 4.6 million SNPs in the same samples, so that the
average inter-SNP spacing was less than 1 Kb. Genotype data from the project are publicly
available, and can be downloaded for detailed analysis of LD to aid marker selection in
association study design, and interpretation of the results of analysis.

37.1.2 Current WGA Studies

A key determinant of the success of population-based association studies to map complex
disease genes is sample size. We expect the alleles underlying complex disease phenotypes
to each have small individual marginal effects, requiring samples of the order of thousands
of cases and controls. Improvements in high-throughput SNP genotyping technology have
revolutionised the field, making such sample sizes feasible for large candidate regions,
hundreds or thousands of candidate genes, or most recently, whole genome association
(WGA) studies. The latest generation of mapping arrays consist of 105 –106 genome-
wide SNPs. The Affymetrix 500K GeneChip is based on randomly selected SNPs, and
tags approximately 65 % of HapMap phase II polymorphisms with r2 > 0.8 in the CEPH
samples, although coverage is lower for the Yoruba samples, reflecting less extensive
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LD in African populations (Barrett and Cardon, 2006). The Illumina HumanHap300K
BeadArray includes more than 300K tag SNPs, selected to capture common variation
among north and west European populations, covering about 75 % of HapMap phase II
SNPs in the CEPH samples, but only 28 % among the Yoruba samples.

Despite the potential of association studies to identify polymorphisms contributing
susceptibility to complex diseases, the success of initial screens of candidate genes
or larger candidate regions was limited to a handful of major gene effects including
APOE for Alzheimer’s disease (Rubinsztein et al., 1999) and NOD2 for Crohn’s disease
(Hugot et al., 2001). With more recent appreciation of the importance of sample size,
study design and genotype calling the list of reported associations is rapidly expanding.
Several candidate genes have been associated with type 2 diabetes in multiple studies,
including PPARG , KCNJ11, and TCF7L2 (Parikh and Groop, 2004; Grant et al., 2006).
However, several reported associations have been difficult to replicate, including the
G972R polymorphism in the IRS1 gene (Almind et al., 1993), which has more recently
been demonstrated to have no effect on the risk of type 2 diabetes in population-based
studies (Florez et al., 2004; van Dam et al., 2004; Zeggini et al., 2004). This demonstrates
the need to develop statistical methods for WGA studies, with increased power to detect
disease association, while minimising the occurrence of false positives.

One success story for WGA studies was the identification of a causal variant for
age-related macular degeneration (AMD) among Europeans in the complement factor H
(CFH ) gene (Klein et al., 2005). An initial genome scan of more than 100 K SNPs on the
Affymetrix 111K GeneChip in just 96 cases and 50 controls revealed a strong association
of a common intronic polymorphism in CFH with AMD (nominal p value < 10−7).
Investigation of the patterns of LD flanking this signal using HapMap phase I data
revealed this SNP to be part of a block contained wholly within CFH. Resequencing of
the block identified a polymorphism in strong LD with the associated SNP that represents
a tyrosine–histidine change at amino acid 402. This effect size is much larger than we
expect for complex diseases (relative risk of 7.4 for individuals homozygous for the
mutant allele compared to those homozygous for the wild-type allele), and mapping for
complex diseases, in general, is unlikely to be so straightforward. Nevertheless, with such
a small sample size, and the poor coverage of the Affymetrix 111K GeneChip (31 % in
HapMap phase II CEPH samples), this result is encouraging for WGA studies.

A recent WGA study for type 2 diabetes has identified four novel susceptibility loci
in a Fench case–control cohort of more than 1300 individuals (Sladek et al., 2007). The
samples were initially genotyped using the Illumina Infinium Human1 BeadArray, which
assays 110K gene-centric SNPs, in addition to the Illumina HumanHap300K BeadArray.
Markers demonstrating significance of the order of p < 10−4 for the gene-centric array and
p < 5× 10−5 for the 300K array were carried forward for genotyping in a second cohort
of more than 2500 cases and almost 2900 controls. These SNPs included known associa-
tions in the TCF7L2 gene (Grant et al., 2006), but did not include polymorphisms in other
previously identified genes such as PPARG. This demonstrates the difficulties in replicating
results from WGA studies, where effect sizes may be small, studies may be underpowered,
and there may be variable coverage of the genome by the genotyping technologies used.

The Wellcome Trust Case Control Consortium (WTCCC) represents one of the largest
WGA studies to date. The main arm of the study consists of an indirect WGA screen of
2000 unrelated cases each of seven diseases (type 1 diabetes, type 2 diabetes, coronary
heart disease, hypertension, bipolar disorder, rheumatoid arthritis, and inflammatory bowel
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disease) from across the United Kingdom, together with 1500 unrelated controls each from
the 1958 British birth cohort and recruits from the UK national blood service. All samples
have been genotyped using the Affymetrix 500K GeneChip Mapping Array. An additional
direct association study of more than 15K non-synonymous coding SNPs for 1000 cases
each of four additional diseases (breast cancer, autoimmune thyroid disease, multiple
sclerosis, and ankylosing spondylitus) 1500 controls from the 1958 British birth cohort has
also been undertaken as part of the WTCCC using a custom Infinium chip from Illumina.
Analysis of the data generated by the WTCCC will point to the design of further studies for
each disease, focusing on the most interesting positive signals for subsequent investigation.

In this chapter, we describe statistical methods for the analysis and interpretation of
results from WGA studies. We begin by describing procedures to assess the quality of
genotypes obtained from WGA genotyping technology. Then, we discuss techniques for
single-locus analyses to detect association with disease, including appropriate multiple-
testing corrections. Next, we describe extensions to allow for environmental effects and to
include tightly linked multiple SNPs or haplotypes, and epistasic interactions across more
widely spaced SNPs. Finally, we emphasise the importance of replication of the results
from WGA studies, and discuss their prospects for complex disease gene mapping. Balding
(2006) provides an additional review of the design of, and methods for the analysis of,
WGA studies.

37.2 GENOTYPE QUALITY CONTROL

Data filtering to identify genotype errors is a critical aspect of WGA analyses, which
can determine whether real discoveries are made or false positives plague interpretation.
No experimental system involving biological material is without error, and with large
numbers of both SNPs and study subjects in a single study, even the modest error
rates of <0.25 % expected with current technology can be important. If such errors
were distributed randomly across both genotypes and phenotypes, their effect would
be limited to a small loss of statistical power. However, because of the nature of the
experimental technologies available and factors such as DNA quality and preparation,
specific experimental conditions, skill of experimenter, incorrect automated assignment
(or ‘calling’) of experimental intensity values into discrete genotype classes, and stochastic
variation, errors are not always distributed randomly. Non-random distribution of errors
can inflate type I error rates and/or reduce power. The difficulty often lies with the
designation of a heterozygous genotype, which is incorrectly classified as homozygous or
the genotype is labelled as missing because of assignment ambiguity.

Animal models of continuous characters, human data in complex traits and long-
standing theory in biometrical genetics (Wright and Hastie, 2001; Valdar et al., 2006)
all suggest that genetic influences on most multifactorial phenotypes follow an L-shaped
distribution of effects, with a small number of alleles with large effects and a larger
number of small effect sizes. For discrete human diseases, an odds ratio (OR) above
about 1.25 might now be considered large and many more effects are expected to be
smaller than this. These effect sizes mean that most WGA studies aim to identify very
small differences in allele frequencies, often only a few percent, among phenotype groups.
Accordingly, even small amounts of experimental error can have profound effects on the
outcomes (Clayton et al., 2005; Barrett and Cardon, 2006), particularly in the presence
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of rare alleles. It may seem that an experimental ideal would be to identify individual
genotype errors and correct them one at a time, but this is often difficult or impossible
in the WGA setting. Therefore, many filtering procedures aim to identify specific SNPs
yielding errors in multiple individuals (a problem with the marker) or individuals in the
sample with errors across multiple SNPs (a problem with the DNA sample), and simply
exclude them from the study.

Neutral genetic variants in a large random-mating population are expected to display
Hardy–Weinberg equilibrium (HWE), under which expected genotype frequencies
satisfy E(fMM) = p2,E(fMm) = 2p(1− p), and E(fmm) = (1− p)2, where p is the
population frequency of allele M . Genotyping error can alter the observed frequencies
from the expected proportions, and thus tests of deviations from HWE comprise a tradi-
tional approach to detecting genotyping errors and excluding markers with significant
deviations (Weir, 1996). Such a test can be constructed using a Pearson goodness-of-fit
statistic,

HWEX2 =
∑

g=mm,Mm,MM

(fg − E(fg))
2

E(fg)
,

having an approximate χ2 distribution under the null hypothesis of HWE, with 1 degree
of freedom (df) because p is derived from the observed data.

There are three serious problems with the use of HWE tests in this manner: (1) natural
selection and copy-number variants can also lead to significant deviations, and these may
underlay true causal associations, which will be missed if the SNP is excluded because it
‘fails’ a HWE test; (2) the test is insensitive to the modest deviations that are most often
observed in WGA studies; and (3) in the WGA setting of > 105 markers, an appropriate
threshold of ‘significance’ is difficult to determine. As a result of these considerations,
the most prudent use of HWE tests for genotyping error may be only to exclude the most
egregious deviations by setting an extreme significance threshold such as 10−7 or less,
and using exact tests for rare alleles (Weir et al., 2005).

Missing data at individual genotypes is not uncommon, but when missing rates exceed
about 5 % at a SNP, or about 10 % for an individual, there is reason to be suspicious of
the assay or DNA sample and the most prudent course is to repeat the experiment for that
SNP or sample (WTCCC, 2007). For case–control studies, in particular, markers with
differences in missing data rates between cases and controls often yield false positives,
which are sometimes striking in magnitude (Clayton et al., 2005). Several statistics are
available for testing the difference in missing data rates between cases and controls, e.g.
one based on the normal approximation to the binomial distribution:

z = mc −mt√
m(1−m)(1/nc + 1/nt )

,

where mc and mt are the proportions of missing genotypes among cases (c) and controls
(t), samples sizes (missing + non-missing data) are labelled as nc and nt and m is the
overall missing genotype rate at the marker.

Graphical displays are useful for identifying suspicious markers or samples. According
to the L-shaped distribution of effect sizes, a study of 105 –106 genetic markers genotyped
on 1–2K cases and equal numbers of controls should reveal few genuine loci with single-
locus p values below 10−6, with many more associated loci lying in the range 10−3 –10−5
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Figure 37.1 Probability–probability plot for association statistics from a WGA study of type 2
diabetes (T2D) genotyped for the Illumina Human1 BeadArray SNPs, from Sladek et al. (2007,
supplementary Figure 4). Unadjusted p values for the maximum statistic over three tests of
association are plotted against the expected uniform distribution of p values under the null
hypothesis of no association, genome-wide. Systematic deviations from the y = x line are indicative
of the effects of population stratification, and some extreme deviations could reflect genotyping
error. Corresponding values after genomic-control adjustment are also shown, and adhere to the
y = x line over most of the distribution; some of the very small p values that deviate from this line
were subsequently confirmed to be associated with T2D. [Reprinted by permission from Macmillan
Publishers Ltd: Sladek R et al., A genome-wide association study identifies novel risk loci for type
2 diabetes. Nature, 2007; 445: 881–885.]

(Zondervan and Cardon, 2004). Accordingly, if one observes many highly significant loci
in a particular study, they may be less likely to reflect real discoveries and more likely
to reflect systematic genotype error in some of those markers. This logic has led to the
widespread use of quantile–quantile (QQ) plots to examine the overall distribution of test
statistics and assess whether there are too many data points in the tail. This approach, used
to assess HWE deviation by Weir et al. (2005), was shown to be extremely effective in
the case–control context by Clayton et al. (2005). To construct such plots, the ordered test
statistics for association are plotted against the corresponding expected order statistics.
For example, Clayton et al. (2005) plotted ascending values of the Cochran–Armitage
test statistic (see Section 37.3) against F−1[i/(N + 1)], where F [] is the χ2

1 distribution
function. Sladek et al. (2007) use a similar approach of plotting the unadjusted p values
for the maximum statistic over three specific tests of association for each SNP against
the expected uniform distribution (Figure 37.1). In either case, large values deviating
from the y = x null can be a symptom of genotyping error, as demonstrated by Clayton
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et al. (2005). This subjective screening procedure remains extremely useful to determine
whether the data filters (missing data rates, HWE, allele frequency thresholds) in a
particular study are sufficient to eliminate most of the problematic markers.

Another useful graphical procedure involves plotting, for each individual, the fraction of
all markers that are heterozygous against the proportion of missing data for that individual
(WTCCC, 2007). This plotting procedure can identify DNA samples that perform poorly
in WGA genotyping, resulting in a high proportion of missing data and/or too few
heterozygotes.

Genotyping so many markers in WGA studies enables identification of closely related
individuals or duplicate DNA samples. Abecasis et al. (2001) showed that comparing the
average number of alleles that are identical by state for two individuals with the variance
of IBS sharing can identify duplicate samples or MZ twins, full-siblings, parent–offspring
and half-siblings. In other words, for two individuals j and k having genotypes gj and
gk at marker i of N , plot

x̄
(j,k)

ibs = 1

2N

N∑
i=1

x
(j,k)

i ,

against

s2
x
(j,k)

ibs

= 1

N − 1

N∑
i=1

(
x
(j,k)

i − x̄(j,k)ibs

)2
,

where

x
(j,k)

i =
{ 0 if gj , gk = mm,MM

1 if gj , gk = mm,Mm or Mm,MM
2 if gj , gk = mm,mm or Mm,Mm or MM ,MM .

More distant relatives are difficult to distinguish from unrelated individuals using this
approach. See also Devlin and Roeder (1999) and Voight and Pritchard (2005).

37.3 SINGLE-LOCUS ANALYSIS

The current standard practice involves an individual test of each SNP typed in the WGA
study, to identify any promising associations. We now review the main tests employed.

Consider a sample of unrelated cases, affected by the disease of interest, and unaffected
controls, typed at a SNP with alleles denoted by M and m. We can represent the sample
genotype data in a 2× 3 contingency array (Table 37.1). Under the null hypothesis of no
association with the disease, we expect the relative genotype frequencies to be the same in
cases and controls. Thus, as described by Clayton (Chapter 36), we can construct a score
test for association by calculating the standard Pearson’s χ2 statistic for independence of
the rows and columns, given by

X2
Gen =

∑
i=0,1,2

∑
j=A,U

(nij − E[nij ])
2

E[nij ]
, (37.1)
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Table 37.1 Representation of SNP genotype data for a population-based association study in a
2× 3 contingency array. The counts, nij , denote the observed sample frequency of individuals
carrying i copies of allele m, and phenotype j , where j = A corresponds to cases and j = U
corresponds to controls.

Genotype Cases Controls Total

MM n0A n0U n0.

Mm n1A n1U n1.

Mm n2A n2U n2.

Total n.A n.U n..

where

E[nij ] =
ni.n.j

n..
.

The test statistic, X2
Gen, has an approximate χ2 distribution with 2 df under the null

hypothesis of independence (no association).
It may be of interest to investigate the association further by estimating the OR of

disease for each genotype at the SNP. It is customary to calculate the sample OR relative
to the most common genotype in controls as a baseline. For example, the OR for genotype
mm relative to the baseline genotype MM is estimated by

ψmm|MM =
n2An0U

n2Un0A

.

The variance of the log OR is approximately

V[lnψmm|MM ] = 1

n2A
+ 1

n2U
+ 1

n0A
+ 1

n0U
,

with corresponding 95 % confidence interval

lnψmm|MM ± 1.96×
√

V[lnψmm|MM ].

Case–control studies are retrospective in the sense that subjects are ascertained on
the basis of their disease status, and are then genotyped. Since cases are over-sampled,
the disease risk cannot be directly estimated. However, assuming the disease under
investigation to be rare, the OR gives an approximation to the relative risk: an individual
carrying genotype mm is approximately ψmm|MM times more likely to develop the disease
than an individual of genotype MM.

To reduce the df of the association test, we can focus on allelic effects by assuming that
alleles at the SNP act independently in terms of disease risk. In other words, we assume
a multiplicative model for disease penetrances so that ψmm|MM = ψ2

Mm|MM , and hence a
linear (additive) trend in the log-odds of disease with each copy of allele m. Under this
assumption, we can test for association between the SNP and disease by means of the
Cochran–Armitage trend test, given by

X2
C−A =

n..[n..(n1A + 2n2A)− n.A(n1. + 2n2.)]
2

n.A(n.. − n.A)[n..(n1. + 4n2.)− (n1. + 2n2.)
2]
. (37.2)
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Under the null hypothesis of no association between the SNP and disease, X2
C−A, has

an approximate χ2
1 null distribution. We can also calculate the OR for allele m, relative

to allele M , by

ψm|M =
n1An0U/(n0. + n1.)+ n2An1U/(n1. + n2.)+ 4n2An0U/(n0. + n2.)

n0An1U/(n0. + n1.)+ n1An2U/(n1. + n2.)+ 4
√
(n2An2Un0An0U)/(n0. + n2.)

.

The OR can be interpreted as follows: an affected individual is ψm|M times more likely
to carry genotype Mm than genotype MM at the SNP, and ψ2

m|M times more likely to
carry genotype mm.

As discussed by Clayton (Chapter 36), the tests described above rely on asymptotic
assumptions that are unlikely to hold when there are small genotype counts or the minor
allele frequency is low. By conditioning on the marginal frequencies of the contingency
array, exact tests can be constructed for the genotype-based or Cochran–Armitage
statistics.

37.3.1 Logistic Regression Modelling Framework

For complex traits, we expect that disease risk might be modified by environmental
effects that cannot be easily accommodated by the tests described above. A more flexible
framework for modelling the relationship between disease phenotype and SNP genotype
makes use of logistic regression techniques, as described by Clayton (Chapter 36).
Consider, as before, a sample of unrelated cases and controls, yielding genotype data G.
The logistic regression model is parameterised in terms of the log-odds of disease for
each SNP genotype, denoted by β. The log-likelihood of observed phenotype data, y, is
given by

ln f (y|G, β) =
∑
i

[yi lnπi + (1− yi) ln(1− πi)],

where yi denotes the disease phenotype of the ith individual. The probability, πi , that the
ith individual is affected, given their genotype Gi at the SNP, is given by the logit link
function,

πi =
exp ηi

1+ exp ηi
,

where the linear predictor is ηi = βGi .
Under the null hypothesis of no association of the SNP with the disease, we expect

each genotype to have equal odds of disease, so that the linear component ηi = β0.
Evidence of association corresponds to deviation from this null model. Assuming that the
alleles at the SNP act independently in terms of disease risk, in the same way as for the
Cochran–Armitage trend test, there is an additive effect of the two alleles in the log-odds
of disease. Under this additive model, treating allele M as baseline, the linear predictor
for the ith individual is given by

ηi = β0 + βAz(A)i , (37.3)

where βA denotes the additive effect of allele m, and z(A)i is an indicator variable
representing the additive component of the ith genotype, summarised in Table 37.2.
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Table 37.2 Coding of additive and dominance components of SNP
genotypes.

Genotype Additive component z(A)i Dominance component z(D)i

MM −1 0
Mm 0 1
Mm 1 0

Deviation from the additive model is referred to as dominance, and can be thought of
as an interaction between the pair of alleles within each genotype at the SNP. Under this
non-additive model, the linear predictor for the ith individual extends to

ηi = β0 + βAz(A)i + βDz(D)i, (37.4)

where βD denotes the dominance effect of allele m over allele M , and z(D)i is an
indicator variable representing the dominance component of the ith genotype, summarised
in Table 37.2.

We can test for association between disease and the SNP by comparing nested sub-
models of (37.4) with βA = 0 and/or βD = 0 using analysis of deviance. For example,
the log-likelihood ratio statistic,

�Gen = 2 ln f (y|G, β̂0, β̂A, β̂D)− 2 ln f (y|G, β̂0, βA = 0, βD = 0),

provides a genotype-based test of association, having an approximate χ2
2 null distribution,

and the maximum likelihood estimates, β̂, under each model are obtained numerically.
The model in (37.4) is parameterised in a different way compared to the model used in
the 2 df test described by Clayton (Chapter 36). However, although model parameter
estimates are interpreted in different ways, the statistical tests are equivalent, and both
are approximately equal to the Pearson 2 df test defined in (37.1).

Assuming that alleles at the SNP have independent effects on disease risk, we can form
an additive test of association,

�Add = 2 ln f (y|G, β̂0, β̂A, βD = 0)− 2 ln f (y|G, β̂0, βA = 0, βD = 0),

which has an approximate χ2
1 distribution and is equivalent to the Cochran–Armitage test

(37.2). Within this framework, we can also test for deviations from the additive model of
alleles at the SNP on the log odds of disease, given by the statistic

�Dom = 2 ln f (y|G, β̂0, β̂A, β̂D)− 2 ln f (y|G, β̂0, β̂A, βD = 0),

having an approximate χ2
1 distribution under the null hypothesis of no dominance. We

can test other disease models within this framework by imposing constraints in the model
parameters. For example, to allow for a pure recessive effect of allele m, we constrain
βD = −βA, leading to a test of association having an approximate χ2

1 null.
Within the logistic regression framework, it is straightforward to incorporate covariates,

x, in the linear component, to allow for environmental effects. Specifically, the linear
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predictor of the ith individual extends to

ηi = β0 +
∑
j

γj xij + βAz(A)i + βDz(D)i, (37.5)

where xij is the response of the ith individual to the j th covariate, and γj is the
corresponding regression coefficient. Under the null hypothesis of no association of
the SNP with disease, each individual is equally likely to be affected in terms of their
genotype, with risk modified only by the effects of the covariates. Thus, we can consider
the same likelihood ratio tests of association by comparing sub-models of (37.5) subject
to the constraints βA = 0 and/or βD = 0 by analysis of deviance, in the same way as
above.

37.3.2 Interpretation of Results and Correction for Multiple Testing

A significant result in a test of association may suggest that the SNP itself is causative,
directly influencing disease risk. However, such an assertion would need to be established
via further functional studies. In fact, there are a number of possible alternatives.

1. Alleles at the SNP are correlated with alleles at the functional polymorphism, but do
not directly influence disease risk. Such an indirect association occurs as a result of
background LD between the two loci.

2. Alleles at the SNP and the functional polymorphism are confounded with underlying
population structure that is not accounted for in the analysis. In the presence of
structure, cases may be ascertained preferentially from one stratum of the population,
because of higher disease prevalence and/or biased ascertainment. If SNP genotype
frequencies vary between strata, we may detect an apparent association with disease
in the population overall, even if there is no association within each of the individual
population strata. This problem is addressed in more detail below.

3. For tests with significance level α, we expect 100α% of non-associated SNPs tested
to show false positive signals of association.

The choice of significance level α should take account of multiple testing in WGA
studies. For example, if we choose α = 5 % and test 20 independent SNPs for association
with disease, we expect one of them to show significant evidence of association, even if
none is truly associated with disease. It is crucial, therefore, to correct for multiple testing
to maintain the type I error rate for the experiment overall (i.e. for all the SNPs tested in
the association study).

The simplest approach to allow for multiple testing is to make use of a Bonferroni
correction. Under this approach, each test is treated as independent, and the SNP-wise
significance level is adjusted to achieve an overall experiment-wise type I error rate of
100α%. Specifically, when testing N SNPs, we use a significance level of 100α/N %
at each SNP. The disadvantage of this approach is that each test is assumed to be
independent, whereas for WGA studies we expect adjacent SNPs to be correlated owing
to background patterns of LD throughout the genome, and thus the Bonferroni correction
will be conservative. An alternative correction that overcomes the problem of correlated
tests makes use of the false discovery rate (FDR), by fixing the expected number of false
positives among significant associations (Benjamini and Hochberg, 1995). Specifically, if
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we select an uncorrected SNP-wise significance level of α, the FDR is given by Nα/k,
where k is the number of SNPs with a p value of less than α. Therefore, we can fix the
SNP-wise significance level so as to obtain an overall FDR of 5 %.

The most appropriate methods for correcting for multiple testing make use of permuta-
tion procedures. The null distribution of experiment-wise association statistics is generated
by calculating the maximum association statistic over the genome for a large number of
permutations of the original phenotype and genotype data. In the simplest procedures,
phenotype labels are permuted while keeping genotypes fixed, thus maintaining the LD
structure throughout the genome. Corrected p values for each SNP can then be calculated
by comparing the observed test statistic with the distribution of the maximum test statistic
from each permutation. For WGA studies, this process will be extremely computationally
intensive. However, for an empirical experiment-wise significance level of the order of
5 %, as few as 100 permutations of the data may be adequate.

A final approach to take account of multiple testing makes use of Bayesian statistical
theory. Under this approach, we assign a prior probability of association to each SNP,
reflecting our beliefs about the number of disease associated loci before we look at
the observed genotype data. The advantage of the Bayesian framework is that we can
allow our prior probability of association to vary across SNPs, reflecting their functional
relevance or the results of previous linkage and/or association studies.

37.4 POPULATION STRUCTURE

One of the potential problems of population-based association studies is population
structure, which, if not accounted for in the analysis, can inflate the false positive error
rate for detecting associations. Consider a population consisting of two underlying strata,
where the disease is common in stratum one, but rare in stratum two. If cases and controls
are selected at random from the population overall, without regard to the underlying
structure, cases will be preferentially selected from stratum one. As a result, SNPs with
allele frequency differences between the strata will appear to be associated with disease,
even if there is no association within each stratum.

One obvious approach to deal with the problem of structure is to match cases and
controls for stratum of the population, e.g. on the basis of self-described ethnicity or
geographical location. However, with migration and admixture between ethnic groups,
these indicators may not reflect the complex nature of fine-scale structure within popula-
tions. Family-based association studies (see Chapter 38) provide a design-based solution
to the problem, in which, for example, the two alleles of each parent of an affected child
are matched, but this solution is expensive in terms of additional genotyping and limited
to studies for which trios or other suitable family structures are available. For WGA
studies, the problem of population structure can be overcome by statistical methods that
account for the underlying structure in analyses. The most important of such methods are
briefly reviewed here (see Chapters 35 and 36 for more detail and further discussion).

One of the simplest methods to identify, and adjust for, structure in population-based
WGA studies is genomic control (Devlin and Roeder, 1999). Under the null hypothesis
of no disease association, the distribution of Cochran–Armitage test statistics is χ2

1 .
However, in a stratified population, we expect that there would be allele frequency
differences at many SNPs, genome-wide, and hence an excess of false positive signals of
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association. As a result, the observed distribution of association statistics will be inflated,
with the magnitude of the inflation reflecting the extent of structure. The genomic control
method takes account of structure by a linear rescaling of observed test statistics to
approximately restore the χ2

1 null distribution. Figure 37.1 shows a plot of p values
for the WGA of Sladek et al. (2007) before and after genomic-control adjustment. This
approach is appealing in its simplicity, but is limited to a simple test of association which,
for example, do not incorporate environmental effects.

A more complex solution to the problem of population structure has been proposed by
Pritchard et al. (2000a) and has come to be known as structured association. Under
an admixture model, the proportion of an individual’s genome that descends from
each of K specific ancestral strata is treated as unknown. The posterior distribution
of ancestry for each sampled individual is then approximated using Bayesian Markov
chain Monte Carlo (MCMC) methods, using the STRUCTURE algorithm, based on
genotype information from several hundred genome-wide SNPs (see Chapter 30 for
further details). Tests for association then compare allele frequencies between cases and
controls within strata, implemented in the companion STRAT software (Pritchard et al.,
2000b). Alternatively, population ancestry could be included as covariates in a logistic
regression framework to allow for more flexible modelling of genetic and non-genetic
risk factors for complex disease. Potential disadvantages of the structured association
approach include the following: (1) the number of ancestral subpopulations is unknown,
and must be inferred using an ad hoc estimation procedure and (2) the MCMC algorithm
is computationally intensive, and cannot in practice accommodate the numbers of markers
used in WGA studies.

Setakis et al. (2006) have proposed accounting for population structure within the
logistic regression model by treating the genotypes at genome-wide SNPs directly as
covariates. Backward elimination or Bayesian shrinkage model selection techniques are
employed to reduce the over-fitting problem arising from including many covariates in
the model. Reich et al. (2006) have suggested using principal components analysis (PCA)
to infer population structure and provide formal significance tests for between-strata
differences. The eigenvectors and the corresponding loadings for each individual from
the PCA can be used as covariates within a logistic regression framework to account for
the underlying structure. A key advantage of this approach is computational efficiency,
since PCA can be applied to data sets with >105 SNPs.

37.5 MULTI-LOCUS ANALYSIS

One of the most attractive features of SNPs for complex disease gene mapping is
their abundance throughout the genome. However, each individual SNP provides little
information about disease association unless it is highly correlated with the underlying
(unobserved) causal polymorphism. Single-SNP analyses may thus be inefficient for
mapping. For high-density panels of SNPs, such as those utilised in WGA studies,
we expect that there would be correlations between several SNPs flanking a causal
polymorphism, and so simultaneous analyses of multiple SNPs may jointly provide
evidence of association for modest gene effects, even when the individual SNPs do not.

The logistic regression model described above provides a natural framework for multi-
locus association analysis. Additive and dominance effects of all SNPs in the same
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gene or small genomic region can be fitted simultaneously in the logistic regression
model. To allow for correlations between SNPs, and to reduce the problem of over-
parameterisation, standard statistical model building techniques, such as forward selection
and/or backward elimination, can be utilised to identify good combinations of SNPs to
describe the association with disease. Such model building techniques tend to over-fit
the observed phenotype and genotype data, and so appropriate correction for the selection
process should be taken into account to avoid inflation of type 1 error, e.g. by permutation
testing.

37.5.1 Haplotype-based Analyses

An alternative approach to multi-locus analysis is to focus on haplotype effects. Haplo-
types are particularly attractive because much of diversity within blocks of LD is driven
by mutation, rather than recombination. As a result, much of common genetic varia-
tion can be structured into haplotypes within blocks that are rarely disturbed by meiosis.
Furthermore, Clark (2004) emphasises that the functional properties of a protein are
determined by the linear sequence of amino acids, corresponding to DNA variation on
a haplotype. For example, there is evidence that a combination of causal variants in cis
in the HPC2 /ELAC2 gene increases the risk of prostate cancer (Tavtigian et al., 2001).
Finally, a rare causal allele may reside on a specific haplotype background that would not
otherwise be identified through single-locus methods.

It is common to assume that each of the pair of haplotypes, Hi1 and Hi2, forming the
diplotype, Hi , of the ith individual, contributes independent effects to disease risk, where
haplotypes are labelled according to their relative frequency in the population. Under this
assumption, we can parameterise the logistic regression model in terms of the log odds
of disease for each haplotype. Thus, the linear predictor of the ith individual is given by

ηi = β0 +
∑
j

γjxij + βHi1 + βHi2 .

In this expression, βk denotes the log-OR of the kth most frequent haplotype, relative to
the baseline haplotype, usually taken to be the most common, so that β1 = 0. Furthermore,
β0 is the baseline log odds of disease and γj denotes the effect of the j th covariate. An
affected individual is approximately exp[βHi1 + βHi2 ] times more likely to carry diplotype
Hi than to carry two copies of the baseline haplotype.

One of the obvious problems of haplotype-based analyses is that we do not observe
the diplotypes, H, directly from the unphased genotype data. One solution to the problem
would be to take a point estimate of the diplotype for each individual, using statistical
methodology, such as PHASE (Stephens et al., 2001; Stephens and Donnelly, 2003)
or by maximum likelihood via implementation of the expectation–maximisation (E–M)
algorithm (Excoffier and Slatkin, 1995), and to treat this estimate as if it were known.
However, this does not take account of uncertainty in the haplotype reconstruction process,
and as a result, the variances of model parameters are under-estimated, and the false
positive error rate is inflated.

A better approach to allow for unknown phase is to consider the distribution of
diplotypes consistent with each multi-locus genotype, denoted f (Hi |Gi,h) for the ith
individual, given unknown population haplotype frequencies h. The likelihood of observed
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phenotype data, y, given the unphased genotype data, can then be expressed as

f (y|G, x, µ, β, γ, h) =
∏
i

∑
Hi∈Gi

f (yi |Hixi, µ, β, γ )f (Hi |Gih), (37.6)

where Hi ∈ Gi denotes the set of diplotypes consistent with the observed multi-locus
genotype of the ith individual. Under the null hypothesis of no association between SNP
haplotypes and disease, the log odds of disease for each haplotype will be the same, and
β = 0. Thus, we can construct a likelihood ratio test of association by considering the
deviance,

�Hap = 2 ln f (y|G, x, µ̂, β̂, γ̂, ĥ)− 2 ln f (y|G, x, µ̂, β = 0, γ̂, ĥ),

where f (y|G, x, µ̂, β̂, γ̂, ĥ) and f (y|G, x, µ̂, β = 0, γ̂, ĥ) are obtained by maximising the
likelihood (37.6), respectively, over the set of parameters {µ, β, γ,h}, and over {µ, γ,h},
subject to the constraint β = 0. Under the null hypothesis of no association, the deviance
�Hap has an approximate χ2 distribution with d − 1 df, where d is the number of distinct
haplotypes consistent with the observed sample genotypes.

Zaykin et al. (2002) propose a two-stage strategy of first obtaining the distribution of
diplotypes consistent with the unphased genotype of each individual by application of
the E–M algorithm to the complete sample of cases and controls, but other algorithms
for haplotype reconstruction, such as PHASE, could be used to obtain estimates of
f (Hi |Gi, h). In the subsequent test of association, the likelihood (37.6) is maximised only
over the parameters µ, β, and γ. Schaid et al. (2002) use the same two-stage approach,
but perform a score test of association between SNP haplotypes and disease, which is
asymptotically equivalent to the likelihood ratio test of Zaykin et al. (2002).

37.5.2 Haplotype Clustering Techniques

One potential problem with haplotype-based analyses is lack of parsimony, since many
haplotypes may be consistent with the observed unphased genotype data, some of which
may be very rare. In the logistic regression model, a parameter is required for each
haplotype, except the baseline, leading to a test of association with disease that, potentially,
has many degrees of freedom. The effects of rare haplotypes will be difficult to estimate,
and there may be a lack of power to detect association, particularly if only one or two
haplotypes are at high or low risk of disease. We could resolve this problem by combining
rare haplotypes into a single pooled category. However, a more satisfactory approach
to reduce the dimensionality of the problem is to take advantage of the expectation
that similar SNP haplotypes in a small genomic region tend to share recent common
ancestry, and hence are likely also to share the same alleles at the underlying functional
polymorphism(s). Therefore, similar SNP haplotypes are expected to have comparable
disease risks, and thus could naturally be combined in the analysis.

A number of methods that group haplotypes according to some similarity measure and
then assign the same risk to all haplotypes within the same cluster have been proposed
(Templeton et al., 1987; 1988; 1992; Templeton and Sing, 1993; Molitor et al., 2003a;
2003b; Durrant et al., 2004; Morris, 2005; 2006). In this way, we parameterise the
logistic regression model in terms of the log ORs for each cluster, which will be less
than the number of haplotypes, reducing the degree of freedom of the resulting test of
association. Morris (2005) clusters haplotypes according to a Bayesian partition model
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(Knorr-Held and Rasser, 2000; Denison and Holmes, 2001). The model is defined by
specifying the number of clusters of haplotypes and the centre of each cluster, taken
from the set of distinct haplotypes consistent with the observed multi-locus genotype
data, without replacement. All remaining haplotypes are then assigned to the nearest
cluster centre, where distance between a pair of haplotypes is measured in terms of
unweighted SNP allele mismatches. Morris (2005) has developed a Bayesian MCMC
algorithm, GENEBPM, to sample from the posterior distribution of haplotype clusters,
and the corresponding cluster log ORs, allowing for the inclusion of covariates such as
environmental risk factors. Output from the algorithm can be used to (1) estimate the log
OR of disease for each distinct haplotype; (2) identify clusters of haplotypes with similar
disease risks; and (3) estimate the posterior probability of haplotype association with
disease. More recently, Morris (2006) has extended the GENEBPM algorithm to allow
for deviations from the assumption of independent haplotype effects on disease risk.

The evolution of a sample of haplotypes within a population can be represented by
means of a genealogical tree, most readily modelled by the coalescent process with
recombination. A number of methods have been proposed for fine-scale association
mapping with samples of unrelated cases and controls that take account of the shared
ancestry of their chromosomes explicitly (Morris et al., 2002; 2004; Zollner and Pritchard,
2005; Minichiello and Durbin, 2006). These approaches are computationally intensive,
making them impractical for the analysis of large WGA studies. Haplotype similarity
can be represented by means of a dendogram, and can be thought of as representing
their evolution in the population. Thus, haplotype clustering can be thought of as
an approximation to the more complex population genetics processes underlying their
evolution, providing computationally efficient algorithms that can be applied on the scale
of WGA studies, while maintaining the principal features of the shared ancestry of a
sample of chromosomes.

Multi-locus analysis of SNP haplotypes is appropriate within candidate genes or
small genomic regions that have been subject to limited ancestral recombination. In
the context of WGA studies, haplotype-based analyses are appropriate within blocks of
strong LD. Haplotype-based analyses may provide additional information with higher-
density genotyping in a follow-up study of associated regions from an initial genome
scan. Employing clustering techniques may reveal patterns of haplotype similarity that
help to refine the likely location of the underlying causal polymorphisms, and may identify
individuals with high probability of carrying high-risk alleles who could be sequenced in
functional studies.

37.6 EPISTASIS

The traditional definition of epistasis is the masking, or modification, of the effects of
genotypes at one polymorphism by genotypes at a second one. One classical example of
epistasis is the coat colour of Labrador dogs. One gene controls hair colour, differentiating
between black and brown coats. However, a second gene determines the deposition
of hair colour, where dogs carrying one genotype will be golden, irrespective of their
black/brown genotype, masking the effects of the first gene. The existence of epistasis is
not surprising since we expect the biological mechanisms underlying complex diseases
to be extremely intricate, incorporating the effects of multiple genetic risk factors, acting



WHOLE GENOME ASSOCIATION 1255

together in some way. Furthermore, there is increasing evidence from model organisms,
including Drosophila melanogaster and Saccharomyces cerevisiae, that epistasis occurs
frequently, involves multiple polymorphisms, and may contribute large effects to the
genetic component of phenotypic variation (Mackay, 2001; Brem and Kruglyak, 2005;
Brem et al., 2005; Storey et al., 2005).

From a statistical viewpoint, epistasis corresponds to an interaction between genotypes
at two or more loci. Thus, the logistic regression modelling framework described above
for multi-locus analysis generalises naturally to allow for epistasis. For example, to model
interaction between a pair of SNPs, j and k, the linear predictor for the ith individual
can be expressed as

ηi = β0 + βAjz(Aj)i + βDjz(Dj)i + βAkz(Ak)i + βDkz(Dk)i
+ βAAjkz(Aj)iz(Ak)i + βADjkz(Aj)iz(Dk)i + βDAjkz(Dj)iz(Dk)i
+ βDDjkz(Dj)iz(Dk)i , (37.7)

where the SNP genotype indicator variables are defined in Table 37.2. The parameters
βAj and βDj , correspond to the additive and dominance main effects, respectively, of
SNP j , with βAk and βDk interpreted in the same way for SNP k. The four interaction
terms, βAA, βAD, βDA, and βDD, correspond to additive–additive, additive–dominance,
dominance–additive, and dominance–dominance contributions to epistasis between SNPs
j and k.

We can test for joint association of SNPs j and k with disease, allowing for epistasis
between the two loci, by comparing the interaction model (37.7) and the null model
ηi = β0. Under the null hypothesis of no association of either SNP with disease, the
difference in deviances between the two models has an approximate χ2 distribution with
8 df. Furthermore, we can test for epistasis between SNPs j and k in their association
with disease by comparing the interaction model (37.7) with a constrained model βAA =
βAD = βDA = βDD = 0, where the difference in deviances now has 4 df. Alternatively,
standard statistical model building techniques can be utilised to infer the best combination
of main effects and interactions to describe the association with disease. With more than
two SNPs, higher-order interactions could also be incorporated, although these effects are
difficult to estimate without very large sample sizes, and are difficult to interpret.

In the presence of epistasis between SNPs, we would expect modelling interaction
effects to lead to increased power over tests that include only the corresponding main
effects. However, researchers are often reluctant to consider epistasis because of the fear
that a less parsimonious model will decrease the power to detect association unless the
interaction effects are large. Marchini et al. (2005) have shown that this fear is misplaced
by demonstrating that testing for association allowing for additive main effects and
additive–additive epistasis for each of n(n− 1)/2 pairs of SNPs has greater power to
detect association with disease than n single-locus tests with additive-only effects. This
result holds for a range of interaction models, despite the additional burden of multiple
testing via Bonferroni correction.

Evans et al. (2006) have investigated the use of two-stage approaches for testing for
association between pairs of interacting SNPs and disease to reduce the multiple-testing
burden of a complete two-dimensional scan of the genome. In the first stage, a single-locus
test of association is performed at each SNP. Only those SNPs passing some predetermined
threshold of significance are carried forward to the second stage of testing where various
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strategies could be employed to test for association of pairs of SNPs with disease, allowing
for epistasis. For example, we could test for association between SNPs carried forward
to the second stage, or we could consider all possible pairs of SNPs that contain at least
one carried forward to the second stage of testing. The choice of a stringent level of
significance for the first stage of testing reduces the number of tests performed overall,
but also reduces the probability of detecting association of disease with a pair of SNPs
made up of a strong epistatic component with minimal main effects. In fact, the results
of detailed simulations over a wide range of models of epistasis suggest that two-stage
strategies are, in general, less powerful than a two-dimensional scan of the genome,
irrespective of the significance threshold at stage one, even while taking account of the
additional correction for multiple testing.

An alternative approach to allow for epistasis in association studies is to make use
of Bayesian model averaging techniques (Hoeting et al., 1999). This approach can be
used to obtain the joint posterior distribution of the main effects of all SNPs and
interactions between all pairs of SNPs by considering the space of all possible models of
association, conditional on the observed genotypes and disease phenotypes. Conti et al.
(2003) describe a Bayesian MCMC algorithm to sample from the posterior distribution
of models incorporating pair-wise and higher-order epistasis between multiple SNPs in a
candidate gene, together with interaction with non-genetic risk factors. They demonstrate
the utility of this approach to a population-based association study of colorectal polyps
with candidate metabolic genes, allowing for epistasis between polymorphisms and
interaction with non-genetic risk factors including smoking and consumption of well-
done red meat. The main advantage of Bayesian model averaging approaches is that
all SNPs can be considered simultaneously, rather than focusing on each pair of SNPs.
However, these methods are likely to be extremely computationally intensive on the scale
of WGA studies.

37.7 REPLICATION

Because of the small effect sizes of complex traits, the multiple-testing problem, and
limited sample sizes and genotyping resources, most WGA studies have only marginal
power to identify most real effects. As a result, many true results may be difficult to
distinguish from chance results in the initial study. For example, one of the first WGA
studies of Crohn’s disease (Duerr et al., 2006) clearly identified a single locus of large
effect, but several other loci, which were subsequently shown to be genuinely associated,
had significance levels of only 10−3 –10−5 and were initially missed (Cardon, 2006).
These challenges highlight the fact that WGA scans are best considered as hypothesis-
generating mechanisms, and replication studies are needed to validate and refine initial
evidence from WGA studies.

In principle, replication studies are straightforward to design and implement: given
assumptions of effect size and frequency, one can calculate sample sizes needed for a
specified power, and then conduct careful validation experiments. In practice, however,
replication has proved to be one of the most difficult areas in human complex trait genetics,
one with a rich history of confusion and false claims. Surprisingly, this standard of failure
has been observed in the simplest of studies, involving only single candidate genes with
but a few genetic markers and statistical tests. In WGA studies, the challenge will be
even greater, as large numbers of SNPs may need follow up.
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For replication to serve as a useful measure of validation, association studies need to
follow the standard principles of experimental design; i.e. replication studies should match
the conditions of the initial study as closely as possible and test explicitly defined, refutable
hypotheses. In the context of association studies, this means that the same SNPs, same
statistical tests and same phenotypes should be tested in replication as those used in the
initial WGA scans. Historically, however, investigators have often used nearby SNPs and
conducted multiple statistical tests (which may or may not be reported) on samples with
related but non-identical phenotypes, all under the guise of replication. Unsurprisingly, the
results have been highly varied, with ‘replication’ sometimes claimed in error, sometimes
missed, and occasionally, claimed with the opposite allele to that originally identified, a
‘flip-flop’ phenomenon that stretches biological credibility in the absence of unmeasured
confounders (Patterson and Cardon, 2005; Lin et al., 2007).

One of the main problems is that investigators have attempted to combine replication
studies (using the same SNPs) with fine-mapping studies (using additional SNPs to try
to find the strongest associated variants). This is an attractive strategy economically but
creates challenges to the inference process since the former is fundamentally a hypothesis-
testing exercise, while the latter assumes that the null hypothesis has already been rejected.
In the association context, these two strategies are extremely difficult to disentangle. At
present, the most robust strategy is to separate the two and conduct them in their natural
sequential order (Clarke et al., 2007).

Estimating the power and required sample size for a study to replicate WGA findings
is complicated by inflation of effect sizes: for all but the largest genetic effects, the loci
taken forward for replication will have an estimated effect size drawn from the upper
tail of their effect-size distribution over replicate studies, a phenomenon known as the
Winner’s Curse (Bazerman and Samuelson, 1983). The process of selecting only the most
significant loci for further scrutiny is known to invoke the Winner’s Curse in both linkage
(Goring et al., 2001) and association studies (Lohmueller et al., 2003). Accordingly, using
these biased estimates to design replication studies results in overestimates of statistical
power and underestimates of sample size requirements. This poses a power conundrum:
replication studies will be underpowered if they use the biased WGA estimates of effect
size, but if successful, they can provide unbiased effect-size estimates of the loci initially
identified by WGA. Because many factors can influence the degree of bias, it is not easy
to correct the effect-size estimates from WGA studies. Empirical evidence from the large
number of studies currently under way will be extremely valuable in helping to provide
rough brackets on the range of bias that is recoverable in replication studies of practical
size and scope.

37.8 PROSPECTS FOR WHOLE-GENOME ASSOCIATION STUDIES

Initial reports of WGA studies began as early as 2002 (Ozaki et al., 2002), but studies
involving more comprehensive coverage of common variants began in 2005 (Klein et al.,
2005; Duerr et al., 2006; Hampe et al., 2007). The initial reports are promising, with
each study identifying and validating several novel loci for different diseases. These
studies demonstrate that WGA can be successful in identifying common variants for
complex traits in humans. Given the chequered history of human genetic association
studies (Cardon and Bell, 2001; Ioannidis et al., 2001), this is a major advance in the field.
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A large number of WGA studies, each involving thousands of individuals and > 105

genetic markers, are under way and likely to be reported over the next few years. If
the initial trends continue, a number of new genes will soon be identified for complex
traits, thereby uncovering new biological pathways and stimulating a cascade of focused
experimental studies. For statistical genetics research, these studies raise a series of
new opportunities and challenges. Knowledge of new genes will enable detailed studies
of gene–gene and gene–environment interactions, determination of population-specific
effects, and identification of further loci by conditioning on the initial findings. Moreover,
owing to ongoing Biobank initiatives in a number of countries, in which > 105 individuals
are being studied for a wide range of human conditions, it will be possible to conduct
population-based assessments of specific gene or haplotype effects, evaluate longitudinal
genetic effects, and study the impact of particular genes or gene combinations across traits
(pleiotropy).

Ongoing technology advances suggest that WGA studies will not end with the current
paradigm of 300–500K SNPs, or even with the immediate target of million-SNP panels.
There is intense ongoing commercial research into resequencing the DNA of entire
genomes of individuals, which, if achieved, would comprise the first true WGO design.
If this technology eventually is able to be conducted with high accuracy and low cost
so that it can be deployed in large samples, it will fill a void in the current generation
of genetic studies: detection and annotation of rare genetic variants in humans. Present
technologies focus on common genetic variants (typically > 1 % frequency in particular
populations), leaving the majority of human genetic variation unexplored. Rare variants
are known to be of critical importance in human diseases (e.g. BRCA1 and BRCA2), so
the upcoming resequencing information will be of immense biomedical importance. The
statistical challenges facing such studies will be of a difficulty level matching the potential
importance, requiring new designs, inferential frameworks, and theoretical models to
exploit the emerging resource.
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Family-based Association
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Family-based methods are a useful means to protect against the confounding effects of population
stratification and other factors. The transmission/disequilibrium test is a test of linkage and
association that is at once the most popular such method and the starting point for numerous
extensions and generalizations, the most prominent of which are reviewed in this chapter. A
logistic regression formulation leads to natural extensions for multiallelic markers, haplotypes and
quantitative traits. When haplotypes are uncertain, special methods are described for testing for
association within families. An approach suitable for general pedigree structures, which derives the
conditional distribution of a covariance score function given the pedigree structure, is described.
For quantitative traits, ordinary linear regression models are adapted for the family-based design
and allow the modelling of linkage in the error variance. When testing association in the presence
of linkage, some care is required to avoid bias due to correlated transmissions to siblings, and a
likelihood-based solution to this problem that allows for uncertain haplotypes and missing parental
genotypes is presented. Some ongoing work in the area is summarized.

38.1 INTRODUCTION

Family-based association studies include a broad range of methods that aim to detect
association between genetic markers and disease or quantitative phenotypes, using families
as the primary sampling unit. Most often, nuclear families consisting of the two parents
and a number of full siblings are used, but extended pedigrees may also be used for
testing association, as may subsets of nuclear families such as sib pairs or single parent
families. As might be expected given the diversity of family structures, there is a large
range of methods for family-based association; here only the most prominent ones will
be discussed, and these are able to analyse all of the most common family structures.

The appeal of family-based association is due to several reasons. First, in common with
all epidemiological studies, there is the need to match cases to controls at the population
and, ideally, the individual level. As discussed in Chapter 36, inappropriate matching of
cases to controls can lead to selection bias and confounding effects if gene frequencies
differ between case and control populations. A situation of particular concern is population

Handbook of Statistical Genetics, Third Edition. Edited by D.J. Balding, M. Bishop and C. Cannings.
 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-05830-5.

1264



FAMILY-BASED ASSOCIATION 1265

stratification (see Chapter 35) in which the study population actually consists of a mixture
of discrete sub-populations that differ both in gene frequency and disease prevalence.
Case-control sampling might then recruit relatively more cases from the sub-populations
with higher prevalence, leading to differences in marginal gene frequency between cases
and controls even if a gene has no influence on disease.

Secondly, family-based association tests are confounded with linkage (Ott, 1989), in
the sense that association can only be detected in the presence of linkage. While such
confounding effects can present technical difficulties in interpreting results (Whittaker
et al., 2000), they have the positive effect of confirming that truly associated markers are
physically close to the causal genetic variant. This property also reinforces the intuitive
view that genetic phenotypes are inherited and should therefore be detectable in families.

Another important advantage of family-based designs is that they allow parent of origin
studies that allow for imprinting effects and interactions between maternal and foetal
genotypes (Weinberg, 1999). Such analyses are simply not possible in population studies.

By choosing controls from within the same families as the cases, the problem of
population stratification is largely eliminated, and the confounding effects of other factors
can be substantially reduced. For example, members of the same family are likely to share
a high proportion of environmental and dietary exposures, so that differences in phenotype
are more likely to be due to genetic differences than to unmeasured confounders. Family-
based designs are thus attractive from the point of view of identifying true causal effects.
Their principal disadvantages arise from practical matters of recruitment and cost. Suitable
family members may be unavailable for genotyping, for example in late-onset diseases
in which both parents may be deceased. Family controls are over-matched, since they
share, in expectation, up to one-half of their genome with the cases, leading to higher
genotyping costs per unit of information as compared to unrelated controls (Cardon and
Palmer, 2003). For these reasons, unrelated controls are currently favoured for large-scale
genome association scans (see Chapter 37), but family-based controls remain useful,
particularly for replication studies that can confirm previously suggested associations to
a higher standard of evidence.

The current use of family-based controls originated with the haplotype relative risk
method (Falk and Rubinstein, 1987). This uses a sample of affected cases together with
each of their two parents, and for each case, the alleles present in the parents but not
transmitted to the case are combined into a control genotype that can be analysed using
standard methods for unrelated cases and controls (see Chapter 36). A variation, termed
haplotype-based haplotype relative risk, treats the allele rather than the genotype as the
unit of observation, again following standard methods for unrelated subjects (Terwilliger
and Ott, 1992). The problem of estimating genotype relative risks in family-based designs
was first addressed by Self et al. (1991), from which much of the regression methodology
described below is derived.

The transmission/disequilibrium test (TDT) (Spielman et al., 1993) is a landmark in the
development of family-based association, both as a point of departure for many exten-
sions and generalizations, and as the baseline standard to which new methods are often
compared. Its appeal lies in its simplicity, close relation to standard statistical tests and
absolute protection from population stratification. In its simplest form, it is similar to the
haplotype-based haplotype relative risk, except that it performs a matched analysis of
untransmitted alleles versus transmitted alleles, rather than an unmatched analysis. This
basic change allows the TDT to be viewed both as a test of association and as a test of
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linkage, and also protects against deviations from Hardy–Weinberg equilibrium that could
be induced by non-random mating. Because of these properties, the TDT has become a
very popular method and has spawned many extensions. Perhaps more than in other areas
of statistical genetics, these methods have become identified with the software that imple-
ments them, owing to the variety of possible family structures and difficulties in fitting
them to standard statistical models. Here, some of the more established methods will be
reviewed, with references to the relevant software, and some comparisons will be drawn
between these methods.

The structure of the chapter is as follows. Section 38.2 reviews the TDT and some
of its properties. Section 38.3 sets out a logistic regression formulation of the TDT and
describes how it can be used to include multiple alleles, genotypes and environmental
covariates. Section 38.4 discusses the problem of uncertain haplotypes and missing
parental genotypes, and describes the popular TRANSMIT program. In Section 38.5
some approaches for analysing general pedigrees are described, starting with the sib-
TDT for sibships and progressing to a general approach implemented in the FBAT
software. Methods for quantitative traits are discussed in Section 38.6, with emphasis
on the popular QTDT software that allows joint modelling of linkage and association.
Section 38.7 focuses on testing association in the presence of linkage; some solutions
are given, including a likelihood-based program, UNPHASED, that relates closely to the
original TDT. Finally, Section 38.8 gives a summary of ongoing work in this area.

38.2 TRANSMISSION/DISEQUILIBRIUM TEST

In its original form, the TDT considers the transmission of the variant allele of a biallelic
marker from heterozygous parents to affected children. Table 38.1 shows the four cell
counts relating to the transmissions from a parent to an affected child, arranged as a
contingency table. The TDT treats the untransmitted allele as a matched control to the
transmitted allele, in which case only the heterozygous parents are informative. The null
hypothesis is that heterozygous parents transmit the two alleles with equal probability.
Let T = 1 when the parent transmits the variant allele, and T = 0 otherwise; then, under
equally likely transmission E(T ) = 1

2 , var(T ) = 1
4 , and by applying the central limit

theorem over the n12 + n21 heterozygous parents, we have the TDT statistic

TDT = (n12 − n21)
2

(n12 + n21)
, (38.1)

which is asymptotically distributed as χ2 with 1 degree of freedom.

Table 38.1 Counts of transmissions from n parents of affected
children, used in calculating the transmission/disequilibrium test.

Non-transmitted allele

Variant Common Total

Transmitted Variant n11 n12 n1·
allele Common n21 n22 n2·

Total n·1 n·2 n
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It can be formally shown that equal transmission probability occurs either when there
is no linkage between marker and disease, or when there is no association (Ewens and
Spielman, 1995). This can be intuitively seen by considering the parental chromosomes
that carry disease alleles that are penetrant in the child (assume that Mendelian segregation
holds on chromosomes carrying non-penetrant alleles, leading to equal transmission
probability). Figure 38.1 shows the four situations that are possible when a parent carries
a penetrant allele and is heterozygous at the marker. When there is no linkage, either
marker allele is transmitted with the disease allele with probability 1/2 regardless of
the haplotype distribution in parental chromosomes: scenarios (a) and (b) are equally
likely, as are (c) and (d). But when there is no association, there is no information
on which marker allele occurs on the same haplotype as the disease allele, given that
the parent is heterozygous: scenarios (a) and (c) are equally likely, as are (b) and (d).
Therefore, either marker allele occurs on the disease haplotype with probability 1/2 and
is then transmitted with probability 1/2 regardless of the recombination fraction. This
means that the null hypothesis of the TDT may be taken to be either no linkage or no
association.

Although the TDT is often used as a test of association, it was first proposed as a test
of linkage (Spielman et al., 1993). This was motivated by studies of the insulin gene in

(a) (b)

(c) (d)

Figure 38.1 Four transmission scenarios for a parent heterozygous at a test marker. The disease
locus is shown above the marker locus. Disease risk allele is shown in black, variant marker allele
in grey: (a) marker allele on disease chromosome, no recombination; (b) marker allele on disease
chromosome, with recombination; (c) marker allele on normal chromosome, no recombination;
(d) marker allele on normal chromosome, with recombination.
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Table 38.2 Counts of transmissions in n case–parent trios, used in
calculating dominant and recessive versions of the TDT. Allele 1
denotes the common allele and allele 2 denotes the variant alleles.

Offspring genotype

1/1 1/2 2/2 Total

1/1× 1/2 n11 n12 − n1·
Mating type 1/2× 1/2 n21 n22 n23 n2·

1/2× 2/2 − n32 n33 n3·
Total n·1 n·2 n·3 n

type-1 diabetes, which had shown population association in candidate-gene studies but
little evidence for linkage in sib pairs. Thus, the presence of association was established
and the TDT was able to show that this association coincided with linkage, as opposed
to arising, say, from population stratification. This application has remained useful for
candidate-gene studies, but in positional cloning studies that start with genome scans for
linkage, it has been more appropriate to treat the TDT as a test of association for fine
mapping. Now, with the move towards genome-wide association scans (see Chapter 37),
the situation will again arise in which population association is demonstrated without
evidence for linkage, and the interpretation of the TDT will revert to its original sense
as a test of linkage. These considerations have an important bearing on how data are
analysed in extended sibships or pedigrees, as discussed in Section 38.7.

The sampling units for the TDT are single parents of affected children, though both
parents must be available for each child. This treats the alleles in the affected children
as independent, which is true under the null hypothesis. However, when there is linkage
and association, the alleles in the children are independent only under the multiplicative
model of relative risk (see Chapter 36), so the TDT may not be the most powerful test in
other models of risk. TDT statistics have been derived for dominant and recessive models
that may be preferred in those instances (Schaid and Sommer, 1994). These treat the
case–parent trio as the sampling unit, with the relevant cell counts given in Table 38.2.
These give the χ2 statistics

TDT DOM =
[
n23 + n22 − 3

4n2· + n12 − 1
2n1·

]2

3
16n2· + 1

4n1·
(38.2)

and

TDT REC =
[
n33 − 1

2n3· + n23 − 1
4n2·

]2

1
4n3· + 3

16n2·
(38.3)

38.3 LOGISTIC REGRESSION MODELS

The TDT can be derived from a logistic regression model that offers scope for extending
the test in many ways. Recalling that the TDT is equivalent to a matched analysis of
transmitted versus untransmitted alleles, the standard approach from epidemiology is to
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define a conditional logistic regression model with transmission as the random outcome
and alleles as predictors. For a biallelic marker, the log-odds ratio β for transmission is
given by

logit(p) = log
(

p

1− p
)
= β, (38.4)

where p is the probability that the variant allele is transmitted by a heterozygous parent.
The likelihood for n heterozygous parents is

L =
n∏
i=1

exp(δiβ)

1+ exp(β)
, (38.5)

where δi = 1 when parent i transmits the variant allele, and is 0 otherwise. Standard
likelihood theory yields a score test for β = 0 that is identical to that obtained using the
TDT.

For multiallelic markers, the model can be extended to fit a regression parameter to each
pair of transmitted/non-transmitted alleles. However, this can result in a large number of
parameters, and a more economical approach is to define marginal odds ratios for the
transmission of each allele, and to fit these parameters in a model that conditions on the
parental genotype. Thus, for alleles i = 1, . . . , k, we define parameters β1, . . . , βk and for
an i/j parent transmitting allele i we have

logit(pij ) = βi − βj . (38.6)

The likelihood contribution for such a parent is
exp(βi)

exp(βi)+ exp(βj )
. The null hypothesis

is that all βi = 0, which may be tested using a joint score test, or by using a likelihood
ratio test that compares the likelihood under the null to that obtained when it is maximized
over all values of β1, . . . , βk (one parameter must be set to 0 for identifiability). This then
yields maximum likelihood estimates of the odds ratios for transmission, which may be
regarded as relative risks for disease (Cordell and Clayton, 2002). The model can be fitted
using standard software for conditional logistic regression, and the null hypothesis has
been shown to correspond to no linkage between marker and disease, or no association
between any allele and disease (Sham and Curtis, 1995).

The regression model can be extended in many ways. A useful approach is to regard the
analysis not in terms of transmissions from parents, but rather in terms of comparing cases,
the affected children, to controls formed from the other combinations of parental alleles.
The likelihood contribution from a full case–parent trio is equivalent to that obtained
by matching the case to three controls corresponding to each of the other three child
genotypes that could be formed from the parental genotypes. The genotypes may now
be viewed as predictors and the genotype relative risks estimated, and covariate effects
may also be added to the model (Self et al., 1991). Additional markers can be included
as covariates, to distinguish the effects of multiple loci in linkage disequilibrium (Cordell
and Clayton, 2002).

The regression approach also permits a natural model for parent of origin effects. By
defining separate relative risk parameters for the maternal and paternal alleles, tests can be
constructed to compare their effects. For example, if a test of equality between maternal
and paternal relative risks showed a significant difference, this would provide evidence
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of imprinting. If imprinting is present, say in the paternally inherited copy, then a test of
the maternal relative risk alone would be more powerful than one of the marginal relative
risk. Furthermore, the maternal genotype could be included as an additional covariate,
allowing for maternal–foetal genotype interactions at the prenatal stage. Indeed, such
an effect could confound a comparison of maternal and paternal risks, if not properly
accounted for (Weinberg, 1999).

In parent of origin analyses, it is possible to increase the number of family-based
controls by assuming symmetry of parental mating-type probabilities. In other words, the
probability of the mother having genotype g1 and the father having genotype g2 is assumed
to equal that of the mother having g2 and the father having g1. Under this assumption,
further controls can be constructed by exchanging the genotypes of the parents. For
example, suppose the mother has genotype 1/2 and the father 3/4, and the case has
genotype 1/3. Then the family-based controls are 1/4, 2/3 and 2/4, and with the symmetry
assumption we may also use 3/1, 4/1, 3/2 and 4/2 as controls, where the genotypes are
ordered with the maternal allele first. This approach, termed conditioning on exchangeable
parental genotypes (Cordell et al., 2004) can lead to a substantial increase in effective
sample size, compensating for the increased number of parameters that must be estimated
in parent of origin models.

Provided the analysis is conditional on the parental genotypes, the TDT is robust to
population stratification and will also be a test of linkage. However, it is useful to place
the conditional model within an unconditional model, as this will be relevant for the
discussion of missing data approaches. Assuming that case–parent trios are ascertained
through the disease status of the child, the full likelihood of a trio is

L(f ) = Pr(F,M,C|D) = Pr(D|F,M,C) · Pr(F,M,C)

Pr(D)
, (38.7)

where F , M , C are the genotypes of the father, mother and child, respectively, and D
denotes that the child has disease. Assume that (1) conditional on the child genotype, the
disease status of the child is independent of the parental genotypes; (2) there is Mendelian
transmission, so all children are equally likely from the parents; then this simplifies to

L(f ) = Pr(D|C) · Pr(F,M)∑
f,m∈G

Pr(f,m)
∑

c∈S(f,m)
Pr(D|c) , (38.8)

where G is the set of all possible genotypes and S(f,m) is the set of possible child
genotypes for parents f and m. To relate this to the conditional likelihood used for the
TDT, this can be written as

L(f ) = Pr(D|C)∑
c∈S(F,M)

Pr(D|c) ·
Pr(F,M)

∑
c∈S(F,M)

Pr(D|c)∑
f,m∈G

Pr(f,m)
∑

c∈S(f,m)
Pr(D|c)

= L(c) · L(p). (38.9)

In other words, the full likelihood is the product of a conditional likelihood and a
parental contribution that gives the probability of observing the parents of an affected
child. The parental likelihood includes a mating-type distribution Pr(F , M) that could
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be mis-specified under population stratification. Inference on the conditional likelihood,
using a log-odds model for Pr(D|C), gives the conditional logistic regression TDT (38.6).

38.4 HAPLOTYPE ANALYSIS

The use of haplotypes to identify disease loci has received much attention in recent
times (Schaid, 2004) because disease mutations are assumed to have arisen on a single
founder chromosome whose haplotype should be more strongly associated to disease
than any single marker. Furthermore, haplotype analysis can be used to detect and
characterize multiple interacting loci, when haplotypes are constructed from disease alleles
themselves.

In principle, haplotypes can be analysed in the same way as any multiallelic marker.
There is however a practical difficulty in that haplotypes are usually not directly observed,
but must be deduced from genotype data; and then the haplotypes may be ambiguous.
For example, a subject that is heterozygous at two loci, that is, with genotypes 1/2
and 1/2, can have two possible pairs of haplotypes: 1–1 and 2–2, or 1–2 and 2–1.
When haplotypes are ambiguous, statistical methods can be used to model the possible
solutions, for example by maximum likelihood (see Chapter 36) or by coalescent
modelling (see Chapter 25; Stephens et al., 2001). In family data, there are additional
complications, including the fact that many haplotypes are deducible after all, and that
introducing a model of the haplotype distribution may not retain robustness to population
stratification.

When there are complete genotype data available in a family, the haplotypes can often
be deduced with certainty. Ambiguity only occurs when there are markers at which
both parents are heterozygous for the same alleles (a situation known as intercross
in experimental genetics) and the child is also heterozygous. Here, we cannot say
which parent transmitted which allele, although the transmitted and untransmitted alleles
themselves are identifiable. Haplotype ambiguity then occurs if another marker exists
at which more than one allele is present in the parents. Because ambiguous haplotypes
may be relatively uncommon, particularly for multiallelic markers, it may be possible to
perform a standard TDT using just the deduced haplotypes. However, such an approach
is biased unless we allow for the fact that not all families could be used (Dudbridge

Figure 38.2 Family in which haplotypes can be deduced, but would
not be deducible from other children of the same parents.

2
1/2
1/2

1
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1/1
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et al., 2000). Figure 38.2 shows a family in which the haplotypes can be deduced, so that
we can score two transmissions of the 1–1 haplotype. However, for these parents, the
haplotypes can only be deduced in this case and in the case where the 1–1 haplotype
is not transmitted twice, so the expected transmission count is 1, with variance 1. We
have seen that the usual TDT assumes an expected transmission count of 1 for two
parents, with variance 1/2, so scoring just the certain haplotype transmissions would
lead to an underestimate of the true variance and an inflated test statistic. Programs
are available to adjust the TDT for this situation (Dudbridge et al., 2000; Markianos
et al., 2001).

An alternative for analysing only the certain haplotypes is to fit a statistical model
to the missing data, using maximum likelihood. A difficulty is that if we assume
Hardy–Weinberg equilibrium, which is convenient for limiting the number of parameters,
we may mis-specify the distribution of the uncertain haplotypes and lose robustness
to population stratification. Clayton (1999) proposed a compromise solution that is
implemented in the software TRANSMIT. The method uses a model for haplotype
frequencies in a way that reduces its impact on inference on the relative risks.

Recall the factorization of the likelihood contribution from a case–parent trio

L(f ) = Pr(D|C)∑
c∈S(F,M)

Pr(D|c) ·
Pr(F,M)

∑
c∈S(F,M)

Pr(D|c)∑
f,m∈G

Pr(f,m)
∑

c∈S(f,m)
Pr(D|c)

= L(c) · L(p). (38.10)

Let β be the vector of haplotype log relative risks. Let γ parameterize the haplotype

frequencies such that the frequency vector is
exp(γ)∑
exp(γi)

. Thus, β specifies the model for

Pr(D|C) and, assuming Hardy–Weinberg equilibrium, γ specifies the model for Pr(F,M).
The parental likelihood depends on both γ and β, whereas the conditional likelihood
depends only on β. The score function for the full likelihood is

u(f ) =


∂ logL(f )

∂β

∂ logL(f )

∂γ

 =

∂ logL(c)L(p)

∂β

∂ logL(p)

∂γ

 , (38.11)

which could be used to construct score tests for β, but this would depend strongly on
the model for the parental likelihood. Clayton (1999) proposed instead a partial score
function

u(∗) =


∂ logL(c)

∂β

∂ logL(p)

∂γ

 , (38.12)

in which inference about β depends only on the conditional likelihood. When there are
ambiguous haplotypes, the partial score function becomes a weighted mean over the
possible solutions, where the weights are the corresponding full likelihoods. Denoting the
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set of possible haplotype solutions by P , the partial score function can be written as

u(∗)P =
∑
j∈P
L
(f )

(j) u
(∗)
(j)∑

j∈P
L
(f )

(j)

. (38.13)

This can be used to construct a score test for β, which depends on the haplotype
frequency model only through the weights of the possible solutions. Indeed, when there
are no uncertain data, the score test for β is the same as in the original TDT. All the
extensions available in the logistic regression model can be cast in this framework,
although the TRANSMIT program only implements tests of individual haplotypes and
a global test of the whole set of haplotypes.

38.5 GENERAL PEDIGREE STRUCTURES

It is often the case that the available family data do not consist of only case–parent trios
but include a variety of different pedigree structures. This can be a particular problem
for late-onset traits, since parents of affecteds may be deceased at the time of diagnosis,
and also for the testing of association in the presence of linkage, because the linkage
structure needs to be accounted for in the analysis. A well-known problem affecting the
TDT in an ostensibly simple situation arises in the case where one parent is missing
(Curtis and Sham, 1995). Suppose the available parent is heterozygous and the child is
homozygous. Then we might score the transmitted allele, but this overlooks the fact that,
had the child been heterozygous, we would have been unable to identify the transmitted
allele and so score the family. But, if we only score homozygous children, they are likely
to be homozygous for the more common allele, which would lead to a seeming over-
transmission of the common allele even if there were no linkage or association. This is
one of many biases that can occur when data are available for some members of a family
but not for others (Knapp, 2000).

Two general approaches have emerged to deal with the problems of missing family
members. The first is to fit a statistical model to the missing data and conduct an analysis
that takes all of the possible completions into account. Here, the approach used by
TRANSMIT applies equally well to nuclear families with missing parents. The second
approach is to construct test statistics that are unbiased under the null hypothesis while
using only the available data. This approach retains complete robustness to population
stratification and can be readily applied to arbitrary pedigree structures. Some methods of
this type are described in this section.

As noted above, the case of missing parents in late-onset disease is of particular interest.
In this case, unaffected siblings may be used as controls, as long as their relationship to
affecteds is taken into account. One of the first such methods was the sib-TDT, which
uses sibships consisting of at least one affected and one unaffected sib (Spielman and
Ewens, 1998). It counts the number of variant alleles in affected sibs, calculating its
mean and variance for each family under the assumption that the proportion of variant
alleles is the same in affected sibs as it is in unaffecteds. These counts are summed
over the set of families to form a z score. Several other sibling-based methods have been
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suggested (Curtis, 1997; Boehnke and Langefeld, 1998; Horvath and Laird, 1998), though
the sib-TDT remains most closely related to the more recent approaches.

The pedigree disequilibrium test (PDT) combines the principles of the TDT and sib-
TDT into a test for general pedigrees (Martin et al., 2000). It splits a pedigree into a
list of all case–parent trios and discordant sib pairs with genotype data. For trio j,XTj
is defined as the number of transmissions of the variant allele minus the number of its
non-transmissions. For sib pair j,XSj is defined as the number of copies of the variant
allele in the affected sib minus the number in the unaffected sib. A measure of association
for the pedigree is then

D = 1

NT +NS

 NT∑
j=1

XTj +
NS∑
j=1

XSj

 , (38.14)

where NT and NS are the total number of trios and discordant sib pairs, respectively. D
has expectation 0 in any pedigree. After computing this measure for each of i = 1, . . . , N
pedigrees, the PDT statistic

T =

N∑
i=1
Di

N∑
i=1
D2
i

(38.15)

is asymptotically χ2 with 1 degree of freedom. This gives a valid test of linkage or
association in any pedigree structure, although some pedigrees are uninformative, notably
the affected sib pair. The PDT has been adapted to test quantitative traits (Monks and
Kaplan, 2000), haplotypes (Dudbridge, 2003) and genotypes (Martin et al., 2003a).

A very flexible approach for constructing unbiased tests is implemented in the software
FBAT (Lake et al., 2000). The general principle is that under no linkage or no association,
the covariance between genotypes and traits is 0. When Tij denotes the trait value of person
j in pedigree i and Xij denotes some coding of its genotype, a score is constructed as

S =
∑
i

Si =
∑
i

∑
j

TijXij . (38.16)

The mean and variance of each Si are computed with respect to its conditional
distribution given the minimal sufficient statistic for the null hypothesis (Rabinowitz
and Laird, 2000). In practice, this means enumerating all possible founder genotypes
and considering the transmission patterns that result in the same information structure as
in the observed data: an example is given below. After summation over pedigrees, the
standardised score statistic

T = (S − E(S))[var(S)]−1(S − E(S)) (38.17)

may be referred to the χ2 distribution with degrees of freedom equal to the rank of var(S),
which is 1 for a biallelic marker.

The conditional distribution of Si is derived separately for each nuclear family
configuration, which is tedious but not intractable. A recursive algorithm is available
for constructing distributions for general pedigrees. Table 38.3, following Rabinowitz and
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Table 38.3 Conditional distributions used by FBAT when testing for linkage with one
heterozygous 1/2 parent’s genotype available.

Set of genotypes present in children Conditional distribution

{1/1} or {1/2} Observed data have conditional probability 1
{1/1, 1/2} Random assignment of 1/1 and 1/2 that keeps

the number of each invariant
{1/1, 2/2} or {1/1, 1/2, 2/2} Randomly assign 1/1, 1/2 and 2/2 with

probabilities 1/4, 1/2, 1/4, independently to
each sib, discarding outcome without at least
one assignment of 1/1 and one assignment
of 2/2

Laird (2000), shows the derivation when testing for linkage of a biallelic marker when one
parent’s genotype is available. As noted above, when there is only one child, there is no
way to score the family without incurring bias. However, when there are several children,
their genotypes define a set of configurations whose probabilities can be computed exactly,
assuming the null hypothesis. Each configuration gives rise to a value of Si that can be
used to obtain the mean and variance of Si for that family type.

For example, suppose there is one heterozygous parent with three children with
genotypes AA, AB and AA, respectively. Then, row 2 of Table 38.3 is appropriate, and
denoting the value of Si by Si(G1,G2,G3) when the ordered genotypes of the children
are G1,G2 and G3, the mean of Si is

1

3
[Si(AA,AB ,AA)+ Si(AB ,AA,AA)+ Si(AA,AA,AB)] (38.18)

and its variance is

2

9
[(Si(AA,AB ,AA))2 + (Si(AB ,AA,AA))2 + (Si(AA,AA,AB))2

− Si(AA,AB ,AA)Si(AB ,AA,AA)− Si(AA,AB ,AA)Si(AA,AA,AB)

− Si(AB ,AA,AA)Si(AA,AA,AB)]. (38.19)

As described, the FBAT method is appropriate for any trait Tij . For a disease, it
is appropriate to code Tij as 1 for affected and 0 for unaffected. Similarly Xij may
be any coding of genotypes: for biallelic markers, it is convenient to code Xij as the
number of variant alleles carried by the child, which corresponds to the multiplicative
model favoured by the TDT. Dominant or recessive models may be coded using 1 for
risk genotypes and 0 otherwise. Multivariate calculations are possible for multiallelic
markers.

The FBAT approach is more flexible than the PDT, as it can use information from
concordant sibships and also distinguish tests of linkage from tests of association. It
has been subject to numerous extensions, including analysis of haplotypes (Horvath
et al., 2004) and multivariate traits (Lange et al., 2003). Its strengths are the guaranteed
protection from population stratification and applicability to any pedigree structure.
Nevertheless, the approach has some limitations, including difficulty in estimating relative
risk and sub-optimal handling of additional covariates. When these issues are important,
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the likelihood-based approaches described in Sections 38.3 and 38.7 may be more
appropriate.

38.6 QUANTITATIVE TRAITS

So far, the emphasis has been on association to binary traits, but the attractions of
the family-based design apply equally to quantitative traits. In the quantitative setting,
population stratification is taken to mean a difference in the trait mean across sub-
populations, together with a difference in gene frequency. It is usually assumed that
the parametric form of the trait distribution is otherwise unchanged, such as a normal,
and also that the variance and higher moments are also unchanged: therefore the effect
of stratification can be thought of as a shift in location of the trait distribution.

Two types of regression models have been developed for family-based association of
quantitative traits. The first uses logistic regression in a similar way as for discrete traits,
treating transmission as the random outcome. The second uses linear regression with the
genotype as the independent variable and the quantitative trait as the dependent variable,
with adjustment to respect the family-based design. Generally, the methods based on
linear regression are more sensitive to the assumption of normality, and may require
more nuisance parameters than the methods using logistic regression; but they can be
more flexible and powerful when their assumptions are met.

The logistic regression approach treats transmission as the random outcome, as for
discrete traits, and treats the quantitative trait as an effect modifier for alleles acting as
predictors (Waldman et al., 1999). For a biallelic marker, the transmission probability of
the variant allele from a heterozygous parent is given by

logit(p) = α + Yiβ, (38.20)

where Yi is the trait value of child i, regression coefficient β is the transmission parameter
of the variant allele, and the intercept α is included to account for association to a
phenotype for which all the children have been selected. In an unselected sample, the
intercept could be omitted.

For multiallelic markers, a conditional logistic regression model can be defined in a
manner similar to (38.6). For a j/k parent transmitting allele j to child i,

logit(pjk) = αj − αk + Yi(βj − βk). (38.21)

Models of this form are most sensitive to log-linear effects of the trait value on the
transmission probability, and this is appropriate for small effects on normally distributed
traits (Clayton and Jones, 1999). In this case, Yβ is the relative trait mean for a subject
with trait Y carrying the variant allele, compared to a reference allele. If the traits are not
zero-centred, it is prudent to include the intercept term α to implicitly subtract the mean
from each trait value. This model can be extended to genotype association by using a
polytomous logistic regression for multinomial outcomes (Kistner and Weinberg, 2004).
These models can be fitted by standard software.

Linear regression is a natural framework for modelling association to quantitative traits.
Here, the genotypes are treated as categorical variables that predict the expected trait value,
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and we test whether the mean is different for subjects having different genotypes. This
is reminiscent of the one-way analysis of variance, but the main issue is to allow for
different trait means in different population strata. Potentially, each family is in its own
stratum, so the analysis must allow for the mean to differ between families.

A reasonable approach is to conduct ordinary linear regression with the genotypes
normalised within families (Lunetta et al., 2000),

Yi = α + β(Gi − ψi)+ ei, (38.22)

where now α is the overall mean of Y,Gi is a code for the genotype of child i, ψi is
the expected value of Gi given the mating type of the parents and an assumed genetic
model, and ei is the error. For example, for a biallelic marker, we might let G denote
the number of copies of the variant allele. If one parent is homozygous for the variant
allele (G = 2) and the other is heterozygous (G = 1), then we may define ψi = 3

2 for
that family. If both parents are heterozygous, we may have ψi = 1

4 · 0+ 1
2 · 1+ 1

4 · 2 = 1.
This coding is equivalent to a model proposed by Rabinowitz (1997), but the framework
allows for other codings that are more sensitive to dominant or recessive effects (Lunetta
et al., 2000).

A more general model, implemented in the QTDT software, decomposes the total
population association into two orthogonal components: the between-family association,
and the within-family association (Abecasis et al., 2000). The advantage of this model
is that the within-family association is robust to population stratification, but in the
absence of stratification, the same model can give a more powerful test of the total
association. Furthermore, a difference between the between- and within-family association
parameters can be taken as evidence of stratification. The method also allows for
covariance between the traits of multiple siblings, in terms of variance components,
which is not considered by the other models. Since the covariance between siblings
depends upon linkage, the QTDT model allows linkage and association to be modelled
and tested separately, in contrast to most other family-based designs (Cardon and
Abecasis, 2000).

The model for the trait mean of child j in family i is

Yij = α + βbBi + βw(Gij − Bi)+ eij , (38.23)

where βb and βw are between- and within-family coefficients for association, Gij codes
for the genotype of child j in family i, and Bi is an expected value of Bij for family i.
To allow for multiple children, Bi is defined as

Bi = 1
2 (GiF +GiM), (38.24)

where GiF and GiM code for the father’s and mother’s genotypes, respectively, or when
parents are not available

Bi =
1

ni

∑
j

Gij , (38.25)

where ni is the number of children in family i. The likelihood for a nuclear family is
the multivariate normal density with the mean vector obtained by this model and the
variance–covariance matrix constructed from variance components (see Chapter 19).



1278 F. DUDBRIDGE

Likelihood ratios are used to test for within-family association (βw = 0), total association
(βw = 0 and βb = 0, with 2 degrees of freedom) and population stratification (βw = βb).
Furthermore, βw is a valid estimate of the additive genetic value of the test marker (Fulker
et al., 1999; Abecasis et al., 2000).

This model can be regarded as a regression on the within-family component, with the
intercept treated as a random effect that is modelled by the between-family component.
An alternative approach would be to treat the intercept as a fixed effect that depends
upon the parental mating type (Gauderman, 2003), so that the expected trait value within
a family is specified directly:

Yij = αi + βwGij + eij , (38.26)

where αi are set to be equal for families having the same mating type. This approach
has been shown to have improved power for detecting gene–gene and gene–environment
interactions, although it requires more nuisance parameters than the model (38.23): this
can be a serious problem for multiallelic markers or haplotypes.

A potential problem with the linear regression models is that they rely on normality
of the residual distribution and, in the case of the full likelihood implemented in the
QTDT software, on multivariate normality of the trait distribution. These assumptions
may be violated if the underlying distribution is non-normal, or if the sample has been
selected, for example, to have extreme trait values. A solution to this problem is to adopt
a retrospective formulation in which the linear model is used to predict the probability
of genotype given the trait, via Bayes’ theorem (Liu et al., 2002). With some care, this
approach can be implemented in standard software (Gauderman, 2003) but it is worth
noting that, for small effects on normal traits, the logistic regression models (38.21) are
approximately equivalent to the retrospective likelihood approach.

38.7 ASSOCIATION IN THE PRESENCE OF LINKAGE

It was earlier noted that the TDT and related methods can be regarded either as tests of
linkage in the presence of association or tests of association in the presence of linkage.
Often, the two interpretations are interchangeable: we are seeking evidence of a genetic
effect, realised through linkage and association. In some contexts, however, the distinction
is important. A situation that has received much attention occurs in positional cloning,
when a genome scan for linkage identifies a broad genomic region and association
methods are then used to fine map a gene by exploiting the short-range extent of linkage
disequilibrium (see Chapter 27). In this case, family-based association methods must
allow for the fact that linkage has been established for the tested markers, so that the test
is strictly one of association.

To illustrate why this is necessary, consider a nuclear family with two children, typed
for a marker that is completely linked to the disease gene (Figure 38.3). If there is no
association, we have no information on which marker allele occurs together with the
disease allele, given that the parent is heterozygous. But if there is complete linkage, the
same marker allele will be transmitted to both children: in other words, the transmission
to the second child is not independent of the first. Therefore, a standard TDT treating
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(a) (b)

Figure 38.3 Two families that are equally likely under no association, given that the parent is
heterozygous for the marker. Under complete linkage, only 2 or 0 transmissions of the variant allele
can occur.

all transmissions as independent will inflate the evidence for association and increase the
false-positive rate.

This problem only arises when there are multiple offspring in a family and the tested
marker is linked. When all families have just one offspring, there is no need to allow for
linkage. Most of the previously described methods are susceptible to the problem, except
for the QTDT program, which explicitly models the correlation between children’s traits
in terms of the evidence for linkage (Abecasis et al., 2000).

A common approach to allow for dependent observations is to use a variance estimate
that treats the whole family as one sampling unit. When using the logistic regression
models, this can be achieved via score or Wald tests of the odds ratios, counting all
children independently but using a ’cluster’ variance estimate instead of the analytic form
(Gould et al., 2006, chapter 1). The same approach is available in the TRANSMIT, PDT
and FBAT programs. In general terms, the method involves calculating a score Si and
its expectation for each family, as if the children were independent. The variance is then
estimated from the family-wise scores rather than from individual contributions, using the
empirical variance estimator

var(S) =
N∑
i=1

[Si − E(Si)]T[Si − E(Si)]. (38.27)

Because this method is based on treating families as sampling units, the resulting score
tests are unbiased.

A limitation of the empirical variance approach is that it does not easily extend to
maximum likelihood estimation of missing data and uncertain haplotypes. Essentially,
this is because the underlying likelihood still assumes that transmissions are independent,
and the adjustment for correlated transmissions only occurs at the testing stage. While the
TRANSMIT software implements an empirical variance estimate to allow for correlated
transmission, it has been shown to be biased when parents are missing (Martin et al.,
2003b). These authors suggested a method to estimate the degree of linkage and thence
adjust a score test; however, this method is difficult to implement in nuclear families with
more than two children.

A likelihood-based solution to the problem of correlated transmission is based on
the factorization of the nuclear family likelihood into conditional and parental contri-
butions (38.9). Allowing for k affected children, the full likelihood for a nuclear family
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assuming independent transmissions is

L(f ) = Pr(D1, . . . ,Dk|C1 . . . , Ck)∑
c1,...,ck∈S(F,M)

Pr(D1, . . . ,Dk|c1, . . . , ck)

·
Pr(F,M)

∑
c1,...,ck∈S(F,M)

Pr(D1, . . . , Dk|c1, . . . , ck)∑
f,m∈G

Pr(f,m)
∑

c1,...,ck∈S(f,m)
Pr(D1, . . . , Dk|c1, . . . , ck)

= L(c) · L(p). (38.28)

Inferences should be based on the conditional likelihood in order to retain the properties
of the TDT, but the parental likelihood is needed to model the possible completions of
missing data. In order to distinguish the two components, separate sets of relative risk
parameters are specified in each component, with inference being drawn only on those
in the conditional component. Let β be the vector of haplotype log relative risks in the
conditional component, and ϕ those in the parental component. Let γ parameterize the
haplotype frequencies as in (38.11), and let (g1, g2) be the two haplotypes comprising a
genotype g. Assuming a multiplicative model for the joint risk of the children, we have

L(c) =

k∏
i=1

exp(βCi1 + βCi2)[ ∑
c∈S(F,M)

exp(βc1
+ βc2

)

]k (38.29)

and

L(p) =
exp(γF1

+ γF2
+ γM1

+ γM2
)

[ ∑
c∈S(F,M)

exp(ϕc1
+ ϕc2

)

]k
∑

f,m∈G
exp(γf1

+ γf2
+ γm1

+ γm2
)

[ ∑
c∈S(f,m)

exp(ϕc1
+ ϕc2

)

]k (38.30)

performing inference only on β. At this point, the children are still assumed to be
independent. In order to relax this assumption, we then introduce the additional step
of conditioning on an identity-by-descent (IBD) vector. This vector contains one entry
for each transmission to each child, indicating whether the phase of that transmission is
the same as that of the paternal transmission to the first child. The conditional likelihood
can be written down without actually computing the IBD vector, and has the form

L(c|IBD) =
exp

(
k∑
i=1
βCi1 + βCi2

)
exp

(
k∑
i=1
βCi1 + βCi2

)
+ exp

(
k∑
i=1
βCi1 + βUi2

)
+ exp

(
k∑
i=1
βUi1 + βCi2

)
+ exp

(
k∑
i=1
βUi1 + βUi2

)
, (38.31)
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where Ui denotes the genotype formed from the two alleles not transmitted to child i.
The parental contribution becomes

L(p|IBD) = exp(γF1
+ γF2

+ γM1
+ γM2

)

∑
f,m∈G

exp(γf1
+ γf2

+ γm1
+ γm2

)

[ ∑
c∈S(f,m)

exp(ϕc1
+ ϕc2

)

]k

·
[

exp

(
k∑
i=1

ϕCi1 + ϕCi2
)
+ exp

(
k∑
i=1

ϕCi1 + ϕUi2
)

+ exp

(
k∑
i=1

ϕUi1 + ϕCi2
)
+ exp

(
k∑
i=1

ϕUi1 + ϕUi2
)]

(38.32)

and the full likelihood L(f |IBD) = L(c|IBD) · L(p|IBD) is then maximised over the full set of
parameters (β,ϕ, γ). This formulation has the effect of treating the whole family as one
sampling unit, resulting in unbiased inference about β.

When the data are complete, the total likelihood factorises completely into conditional
and parental components, yielding inference on β that is equivalent to the conditional
logistic regression formulation of the TDT. When there are incomplete data, the likelihood
contribution of a family is the sum of the likelihoods for the possible completions.
Then the parental likelihood has the effect of weighting the conditional analysis, in an
analogous manner to the TRANSMIT method. In fact, when ϕ is set to 0, the score
function for the full likelihood is very similar to the partial score function used by
TRANSMIT, with a slight difference in the weights used when the data are incomplete.
The advantage of freely estimating ϕ is that the IBD vector can be identified in the
parental contribution, which is not possible when ϕ = 0, thus eliminating the bias seen
in TRANSMIT.

The model in (38.32) has been implemented in the software UNPHASED (Dudbridge,
2006). The likelihood formulation also allows estimation of odds ratios and testing of
covariate effects, and extends readily to quantitative traits by treating the traits as effect
modifiers as in (38.21).

It might be argued that, despite considerable efforts to devise valid tests of association
in the presence of linkage, the problem is not particularly important. The reason is that, in
many studies of complex disease, the evidence for linkage is fairly weak, resulting in only
moderate dependence between transmissions to multiple children. Furthermore, given the
weak evidence from traditional linkage analysis, it may be more worthwhile to seek
stronger evidence for linkage, via association methods. Nevertheless, in situations in which
the linkage evidence is particularly strong, for example, in some HLA-linked diseases, it
is useful to have methods that are specifically designed to detect association.

38.8 CONCLUSIONS

Family-based methods are a useful and important means to protect against confounding
effects in association studies. All the methods presented here compare, by various
designs, the alleles transmitted to the study subjects to the alleles not transmitted by
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their parents. This genetic matching eliminates the possibility of population stratification,
which is a concern in genetic studies because allele frequencies vary considerably
between populations, owing to several factors including random drift (see Chapter 31).
Furthermore, the shared environment within families ensures that other confounders,
possibly not identified, are automatically controlled for. Together with the fact that family-
based association can only be detected in the presence of linkage, these methods provide
a benchmark that continues to be widely used in candidate-gene studies, and will serve
as an important method for replication as genome-wide scans for population association
become more widespread.

From the original TDT method (Spielman et al., 1993), the field has grown to
encompass a wide range of applications, of which only the most prominent have been
covered here. To a large extent, the field relies on customised software because many
of the methods do not employ standard statistical models and data structures. The
TRANSMIT (Clayton, 1999) and FBAT (Lake et al., 2000) programs are widely used
for hypothesis testing, and the QTDT program (Abecasis et al., 2000) is widely used for
testing and estimation of both linkage and association to quantitative traits. UNPHASED
is a serious alternative for analysis of general nuclear families, providing estimation as
well as hypothesis testing and allowing gene–gene and gene–environment interactions
(Dudbridge, 2006). A further alternative is FAMHAP, which is faster but slightly less
accurate (Becker and Knapp, 2004). Despite the proliferation of custom software, family-
based analysis can be cast into standard models for conditional logistic regression, by
regarding each nuclear family as a stratum with control subjects constructed from the
other possible combinations of parental alleles. Provided these controls are constructed
appropriately, a wide variety of analyses are possible using standard software (Cordell
et al., 2004).

A number of topics have not been covered here, and are the subject of ongoing
research. These include the combination of family-based and population-based studies
(Epstein et al., 2005), and multiple imputation approaches for dealing with missing data
(Kistner and Weinberg, 2005). Recent methods for extracting maximal information from
incomplete data have attracted much interest (Rabinowitz, 2002; Allen et al., 2005)
because they are robust to violations of simplifying assumptions such as Hardy–Weinberg
equilibrium. Currently, their computational complexity is the greatest obstacle to more
widespread use. Bayesian approaches have not been discussed here, but there is some
work in this area (George and Laud, 2002; Bernardinelli et al., 2004; Denham and
Whittaker, 2003). These methods may assume greater importance as investigators aim
to incorporate external information on gene function and interaction into epidemiological
studies.
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Cancer Genetics
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Cancers result from an accumulation of inherited and somatic mutations yielding cells that have
acquired the necessary characteristics for unregulated growth. The development of the tumour can
be viewed as an evolutionary process, involving several classes of genes in tumour initiation and
progression.

This chapter provides an overview of the development of cancer genetic models. The earlier
mathematical and statistical models based on population and cancer family observations, are
followed by evolutionary models applied to molecular genetic sequence data.

39.1 INTRODUCTION

Cancer is a genetic disease, in that a normal cell must undergo mutations to lose
or gain functions allowing a tumour to develop. The earliest evidence indicating a
genetic origin for cancer was reported in 1890. Abnormal configurations of chro-
mosomes were observed in dividing cancer cells (von Hansemann, 1890), though
at that time the link between chromosomes and inheritance was not known. This
was followed by Theodore Bovari’s experiments on the fertilisation of sea urchin
eggs, strongly suggesting that individual chromosomes contained different information
(Bovari, 1904). Bovari had developed procedures by which he could induce aber-
rant chromosome segregation during mitosis. He was then able to study the fate
of these cells after mitosis. In most cases, the unequal distribution of chromosomes
would lead to a detrimental effect on the cell. However, he noted that on rare occa-
sions, some particular configurations of chromosomes would generate a cell with
the ability of unlimited growth, and this effect could be passed on to its progeny.
This suggested that tumours might arise through abnormal segregation of chromo-
somes to daughter cells (Bovari, 1914). He then went on to explore and develop this
hypothesis, which led him to predict many aspects of genetic mechanisms in cancer
development.
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39.2 ARMITAGE–DOLL MODELS OF CARCINOGENESIS

39.2.1 The Multistage Model

In the early 1950s two hypotheses, regarding mechanisms for carcinogenesis, were put
forward based on the studies of cancer mortality. Fisher and Holloman (1951) and
Nordling (1953) studied the mortality rates for several tumour types and found that the
logarithm of the death rate due to cancer increased in direct proportion to the logarithm of
the age at death. More specifically they found that the death rate increased proportionately
to the sixth power of the age at death. This relationship seemed to be limited to mortality
rates between the ages of 25 and 75. It could be argued that data above age 75 were
unreliable and cancer in children and young adults may be affected by other factors.

Fisher and Holloman proposed that this observed relationship between age and mortality
could result if a colony of six or seven cancer cells was the critical mass necessary
for independent growth to be sustained. Experimental data on the relationship between
the dose of carcinogen and cancer incidence already exists and in general, the relation-
ship between the two was more consistent with arithmetic rather than geometric data.
(Berenblum and Shubik, 1949). Based on this apparent contradiction, Armitage and Doll
(1954) felt that this made the Fisher and Holloman hypothesis ‘untenable’. Nordling
proposed an alternative hypothesis that the observed relationship could be explained if
a single cancer cell was the result of seven successive and accumulated mutations. This
model would explain the relationship if the probability of each mutation remains constant
throughout the specified age range.

The development of the tumour can be represented as the following changes occurring
in the cell (or its lineal descendants).

E0

p1−−−→E1

p2−−−→E2 · · ·
pn−−−→En.

E0 represents the normal cell and En the malignant tumour cell. The pi represent the
rate of change or transition to the next stage. The reciprocal of these rates represents the
average sojourn time, spent in years, in state or stage Ei . We denote as t , the time that
the cell enters state En.

p1p2p3p4p5p6p7t
7. (39.1)

The probability that a mutation of type i has occurred by time t is approximately
given by pit , when each pi is small. Thus if seven distinct mutations were required,
the probability that all mutations have occurred by time t is as given above in (39.1).
However, the model requires that the mutations occur in a specific order, and there are
n! of these. Therefore, the probability that a cell is in state En, at time t , is given by
p1p2 · · ·pntn/n!

The probability of malignancy by time t can be thought of as equivalent to prevalence.
The incidence is given by the derivative of the prevalence with respect to t to yield,

p1p2 · · ·pntn−1

(n− 1)!
. (39.2)

Thus the double logarithmic plot should show a straight line with slope (n− 1). The
incidence rate for an individual (as opposed to a cell) is given by (39.2) multiplied by
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Ns, which is the average number of cells in the susceptible target tissue. The above result
will be approximately true when the mutation probabilities (i.e. pit) are small.

This simple model has assumed that the specific mutations can be modelled by constant
rates. Armitage and Doll (1954) went on to derive expressions allowing for variable
mutation rates to illustrate what relationships might be expected in situations where
variable exposure to mutagen influenced the mutation rate. Now assume that one, pc
say, varies with time. The probability that this cth change occurs in the time interval
(t0, t0 + dt0), and the nth in interval (t, t + δt) is given by the product of the following
three probabilities:

1. The probability that (c − 1) changes have occurred in the interval (0, t0) is given as
derived above by, p1 · · ·pc−1t0

c−1/(c − 1)!

2. The probability (conditional that exactly c − 1 changes occurred before t0) that the
cth change occurs in the small interval (t0, t0 + dt0), is given by pc(t0)dt0, where
pc(t0) represents the mutation rate at time t0.

3. The probability (conditional on the cth change before t0) that the (c + 1)th, (c + 2)th,
to nth changes occur in time (t0, t) is given by

pc+1pc+2 · · ·pn−1(t − t0)n−c−1pn

(n− c − 1)!
dt.

This results in the expression for the total probability for the nth event occurring in the
time interval (t, t + dt) as follows:

p1 · · ·pc−1pc(t)pc+1 · · ·pn−1pnt
n−1

(n− 1)!
dt.

The pc(t) is the weighted mean of pc(t0) over the whole time period, with the
weight at time t0 being proportional to tc−1

0 (t − t0)n−c−1, (which takes its maximum
at t0 = t (c − 1)/(n− 2)). Armitage and Doll argue that this slight modification to their
constant rate model is enough to explain the deviations from the sixth power law seen in
some tumours. Since the weighted mean of the varying mutation rate will depend upon the
age, t , the overall incidence will not show a linear relationship with the sixth power of t .

The Nordling model would also explain that the experimentally observed data, i.e.
rate of tumour incidence is directly proportional to the concentration of an effective
carcinogen, if the effect of the carcinogen is to increase the mutation rate. Armitage and
Doll (1954) attempted to test the hypothesis of Nordling by examining cancer mortality
for cancer at a variety of different sites and for each sex. In particular they were interested
to see if the hypothesis could explain data where the significance of carcinogenic factors
was suspected to be variable. They examined the relationship between mortality rate and
age for cancers at the commonest sites. These relationships are shown for a selection of
common cancers but for more recent time periods (CancerStats, Cancer Research UK) in
Figure 39.1. As trends in mortality can be influenced by improvements through treatment,
incidence data only is presented. The log (incidence) for cancer of the colon and lung
shows an approximately similar linear relationship with log (age). However, the log–log
plot for female breast cancer deviates quite strongly from a linear relationship.

By inspection of the log–log plots they found that cancers fell into two main groups.
Those that appeared consistent with proportional relationships, (in their study these were
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Figure 39.1 log(age) – log(incidence) plots for a selection of common site specific cancers.

cancers in the oesophagus, stomach, pancreas, colon and rectum) and those that did
not. In the group that appeared to show linear relationships their regression coefficient
for the slope of the line ranged from 5.0 to 6.5. These cancers show a similar relation
to those reported by Fisher and Holloman and by Nordling. However, the other group
sometimes showed a strong deviation from a linear relationship. These were cancers of
the lung, bladder, female breast, ovary, cervix and uterus. Armitage and Doll pointed out
that this latter group consists of cancers where the effects of causal factors are known
to be variable. Tumours believed to be influenced by hormonal or endocrine secretions,
might be expected to show evidence of age-specific effects. Incidence of bladder cancer
was strongly associated with occupational hazards which may have both cohort and age-
specific effects. A significant proportion of lung cancer was suspected to be due to the
increasing rates of cigarette smoking and therefore exposure to this hazard was also not a
constant with respect to time. Looking at the observed data in this way gave more support
to the original hypothesis of Nordling (1953).

This multistage model appeared to fit the data well and could account for deviations
from a constant mutation rate by allowing a variable rate affected by variations in exposure
to carcinogens or mutagens. However, at the time, experimental data did not demonstrate
evidence for more than two stages in tumour initiation, i.e. an exposure making an impact
at an early versus late stage. As a consequence of this argument and suggestions made by
Platt (1955), Armitage and Doll went on to offer a two-stage model for carcinogenesis.

39.2.2 The Two-stage Model

In this reduced model (Armitage and Doll, 1957), the first or early stage results in a
change that gives one cell (and its descendants) a growth advantage over the adjacent
normal cells. The clinical cancer then results from the second or late event occurring in
this rapidly dividing ‘clone’ of cells.
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This model assumes that the rates of both the first and second stage are influenced
by carcinogenic exposures or agents. Assuming that the exposure is summarised by a
‘dose’ effect parameter d , the number of mutated cells will be proportional to the initi-
ating dose and will also grow at an exponential rate depending upon the relative growth
advantage of the mutated cells over the normal state. So the number of cells at time t
will be nt , which is proportional to d1e

kt , where k is a constant, and d1 is the dose of
the agent influencing the first stage. The resulting cancer incidence will be proportional
to the dose effect influencing the second event (d2) and the number of susceptible cells,
i.e. d1d2e

kt .
Although individuals are likely to be exposed to the inducing agents throughout life,

provided the dose remains constant the resulting incidence will be proportional to both
concentrations. This model gives rise to a similar relationship between age and incidence
as the multistage model.

This parsimonious two-stage model is able to account for all the features observed
in cancer incidence plots. It explains the long latent period often observed after initial
exposure to a carcinogen and, when incidence is low, a linear relationship can be seen
between the concentration of initiating carcinogen and incidence by age. This two-stage
model was also appealing as it reflected the biological process of a cell accumulating two
mutated copies of the same gene or the reduction to homozygosity (which is discussed
below).

39.2.2.1 The Philadelphia (Ph) Chromosome

Developments in cytogenetic techniques meant that by 1956 it was possible to unam-
biguously count the number of chromosomes in a normal cell (Tijo and Levan,
1956; Ford and Hamerton, 1956). With further technical improvements it became
possible to distinguish and classify chromosome groups facilitating comparisons of kary-
otype in different cell types. This led to a major milestone in cancer genetics, the
discovery of the Ph chromosome seen in cells from patients with chronic myeloge-
nous leukaemia (Nowell and Hungerford, 1960). This was first reported as a shortened
chromosome in the G chromosome group (this consisted of chromosomes 21 and 22;
at the time there was no way to distinguish them). For the first time a specific
chromosomal change was associated with a specific tumour type. Many years later
it was found that the Ph chromosome was in fact a translocation between the long
arm of chromosome 9 and a large part of chromosome 22 (Rowley, 1973). Work
continued studying this translocation and it could be demonstrated that the translo-
cation brought two genes together resulting in the production of a chimeric protein
(Heisterkamp et al., 1983) which stimulates a growth signal pathway. This work confirmed
that the genetic translocation was a critical event in the origin and cause of this
cancer.

Over the 1950s and 1960s evidence appeared to accumulate that cancer could arise as
a result of few mutations, though this argument was blurred by the fact that the early and
late stage events could themselves be the result of several ‘changes’. Work on childhood
tumours seemed to confirm that a combination of inherited and somatic mutations played
an essential role in tumour development (Burch, 1962; Falls and Neel, 1951; Crowe
et al., 1956).
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This research culminated in the key publication by Knudson (1971), where he performed
a statistical analysis of retinoblastoma cases and proposed the ‘two-mutation’ hypothesis
for cancer development. Knudson observed that familial cases and sporadic (non-
hereditary) cases could arise from the same genetic mechanism. Experimental evidence
was accumulating for genes that could suppress tumours (Harris et al., 1969) and
Knudson’s hypothesis specifically relating to retinoblastoma would lead to the discovery
of the first tumour suppressor gene (TSG).

Retinoblastoma is a tumour of the retina and can occur in one (unilateral) or both
(bilateral) eyes. Knudson studied the reports of all the cases of retinoblastoma admitted
to the MD Anderson Hospital between 1944 and 1969, consisting of 23 bilateral and 25
unilateral cases. In 14 of the bilateral cases, it was possible to estimate the number of
distinct tumours in one eye. Knudson used other sources of data to derive population
based estimates of the distribution of tumour types among gene carriers (unaffected,
unilateral, and bilateral) of cases. The bilateral cases were assumed to be inherited, though
the inherited lesion was not assumed to be fully penetrant as bilateral cases do occur
in unaffected parents. Assuming that tumours develop according to a Poisson Process,
Knudson found that the observed distribution of tumours, including the numbers in each
eye, was consistent with a Poisson with rate (m =)3.

If n is the total number of target cells (i.e. those cells susceptible to mutation) contained
by the two eyes (or retinae), then m/n is the probability that an (inherited) mutant cell
develops into a primary tumour. Using prior estimates of n, yields an estimated tumour
development rate (in the inherited form) of 0.75× 10−6. Assuming that this rate is the
same in both the sporadic and hereditary form, this represents the probability of the second
event.

Knudson then illustrated that the probability of the first mutation in sporadic tumours
is approximately the same as the probability of a new mutation occurring in the germ
line, which then passed on to future generations. The germinal mutation rate, µg,
is approximately equal to 5× 10−6 per generation. Assuming a generation time of
25 years, this means the sporadic mutation rate (expressed per year) is approximately
2× 10−7.

Conditional on the assumption that bilateral cases have all inherited the first mutation,
if only one second step is involved in retinoblastoma development, the distribution of
bilateral cases should follow an exponential. Therefore, the fraction of total bilateral cases
that occurs in a given interval, the hazard rate, should be constant and the proportion
of survivors (in the cohort of germinal or hereditary mutation carriers) is given by
Sh = exp(−kht), where kh is a constant. For the non-hereditary form where a single
cell must acquire two mutations the proportion of survivors Sn = exp(−knt

2), kn is a
constant representing the non-hereditary mutation rate. Knudson found that the observed
distribution of the ages at onset was consistent with his derived models, though the
mutation rates looked slightly different in the bilateral and unilateral forms, which he
argued could be accounted for by a small proportion of the unilateral cases being
hereditary. Though other models could have accounted for such differences, this model
suggested that the age distribution for familial and nonfamilial cases was resulting from
the accumulation of the same genetic changes. Knudson went on to study the two-
mutation model with application to other childhood cancers, but his theory was not
confirmed through molecular studies until 1983, (see section on mutations resulting in
loss of function).
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39.2.2.2 Mutations Resulting in Gain of Function

In the 1960s it was known that cells in culture could be transformed by a number of viruses
and retroviruses. Cellular genes were found to have similar sequences to those in the
transforming retroviruses. These ‘normal’ genes were involved in regulating growth and
differentiation, the inappropriate activation of which could lead to carcinogenesis. This
class of genes was termed proto-oncogenes. When inappropriately activated they were
termed oncogenes. Many oncogenes were identified through transfection experiments.

The Ph chromosome is an example of a specific balanced translocation giving rise
to an activated oncogene (ABL–BCR fusion gene). Cytogenetic studies confirmed that
chromosomal breakpoints seen in common translocations in other cancers were near
to known proto-oncogenes (Rabbitts, 1994). Oncogenes are not only activated through
translocation, some gain function through chromosomal amplification.

39.2.2.3 Mutations Resulting in Loss of Function

Gene-transfer studies seemed to present strong evidence for a single mutational step in
carcinogenesis, but this is an artifact of the experimental design. However, evidence from
observational studies such as Knudson’s was more consistent with a two-stage process.
In order for the inherited mutated allele to not have deleterious consequences on the
organism, it was likely that this mutation was recessive at the cellular level. Comings
(1973) further postulated that the two mutations might affect the same locus, resulting in
loss of that gene function.

In 1983, through biochemical and molecular studies Cavenee et al. (1983) found
that retinoblastoma development required loss of both copies of a specific region of
chromosome 13. Thus the Rb1 locus was the first cloned example of a TSG, where,
in contrast to the oncogene, loss of function is required for carcinogenesis. This result
confirmed Knudson’s two hit hypothesis, in that the familial and sporadic form of
retinoblastoma were in fact due to the same genetic mechanism.

The success of the Rb story led to two major strategies for identifying further cancer
predisposing genes, familial cancer linkage studies, and ‘loss of heterozygosity’ (LOH)
studies. LOH studies stemmed from comparing genotypes observed in constitutional and
tumour DNA in cancer patients. It was hypothesised that sections of chromosomes that
are lost in tumours are likely to contain TSGs. If a genetic marker was located in a
chromosomal region where one copy of a chromosome had been lost, the genotype would
appear as homozygous as only the ‘non-lost’ allele would be detected. This observation
would only be informative if the constitutional genotype was heterozygous and hence
‘LOH’. There was great enthusiasm for studying familial forms of cancer as these could
be expected to lead more quickly to the discovery of the target/predisposing genes. There
were also many studies concentrating on patterns of allelic loss in tumours from panels of
unrelated individuals. LOH profiles were found to be generally consistent within tumour
types, but this approach alone led to few TSG discoveries (Presneau et al., 2003).

However, genetic linkage studies (see Chapter 33) did lead to the discovery of many
TSGs, though it became clear that single tumour suppressors may account for rare
syndromes or a small fraction of the familial effect (Garber and Offit, 2005). In adult
onset of disease, it can be very difficult to collect sufficient samples for informative
linkage analysis. Often the pedigree comes to the attention of the investigators when
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many of the affected individuals are dead. Techniques were developed so that archived
tumours could be used to reconstruct the constitutional genotypes. Through this strategy
it became apparent that the observations of somatic change in the tumours could be used
in a similar way to further informative meioses. This approach was built into a formal
framework (Teare et al., 1994; Rohde et al., 1995; 1997), and derives from the linkage
approach.

The tumour suppressor model assumes the high cancer risk in selected families is
due to a dominantly inherited defective or predisposing allele. However, at the cellular
level the defective gene acts recessively, as it requires the wild-type allele to be
inactivated or lost. If a genetic marker is in linkage with the disease locus then it
is expected to see over-segregation of one marker allele in affected individuals. By
a simple extension to this, if the predisposing locus behaves as a tumour suppressor
and the wild-type function is lost through loss of chromosomal material during mitosis,
then the marker allele in phase with the wild type would also have a tendency to
be lost in the tumour, and the marker allele in phase with the disease allele would
have a tendency to be retained in the tumour. Besides the parameters used in classic
linkage analysis this model requires parameters representing the probability of ‘loss of
genetic material’ and somatic recombination. Features of the model are illustrated in
Figure 39.2.

In the most general form we require three probabilities (λDD, λDd, λdd) representing
the probability of losing one marker allele in tumour, conditional on the genotype at the
disease locus, and three similar probabilities (εDD, εDd, εdd) representing the probability
of losing both alleles at the marker locus conditional on the disease locus genotype. In
the case where only one allele is lost the parameter ρ represents the probability that the
marker allele lost in the tumour is in phase with the predisposing disease allele in the
germ line. This parameter can be thought of as similar to θ , the probability of meiotic
recombination (Table 39.1).
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Figure 39.2 Examples of genotype configurations in tumour DNA, when marker is located on
the same chromosome as TSG locus. Dd represents genotype at TSG locus, D = defective, d =
wildtype; Mm represents heterozygous marker genotype. (a) Hemizygous, (b) retention of both
alleles, (c) loss of wildtype chromosome followed by duplication, (d) somatic recombination and
loss of chromosome strand bearing wildtype allele, (e) loss of both marker alleles. The model
assumes that the wildtype TSG allele is lost.
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Table 39.1 Probabilities of loss or retention of marker alleles in the tumour conditional on marker
and TSG genotype.

Constitutional TSG genotype

Marker
genotype DD Dd dd

MM MM M− MM M− MM M−
1− λDD − εDD 1/2λDD 1− λDd − εDd (1− ρ)λDd 1− λdd − εdd 1/2λdd

−M – −M – −M –
1/2λDD εDD ρλDd εDd 1/2λdd εdd

Mm Mm M− Mm M− MM M−
1− λDD − εDD 1/2λDD 1− λDd − εDd (1− ρ)λDd 1− λdd − εdd 1/2λdd

−m – −m – −M –
1/2λDD εDD ρλDd εDd 1/2λdd εdd

mm mm m− mm m− mm m−
1− λDD − εDD 1/2λDD 1− λDd − εDd (1− ρ)λDd 1− λdd − εdd 1/2λdd

−m – −m – −m –
1/2λDD εDD ρλDd εDd 1/2λdd εdd

The cells of the table display the four possible genotypes in the tumour DNA, and the conditional probability
of each genotype.

The original studies of LOH were so-called because it was commonly not feasible to
detect loss of one out of two identical alleles; only loss of one out of two different alleles
(i.e. reduction to homozygosity) could be detected. Loss of both marker alleles has been
reported but we would expect it to be rare when the marker is close to a gene where at
least one functional copy is essential. The probabilities in the table relate to phase-known
genotypes but as in any linkage study, these can only be inferred from the segregation
seen in the family. It is, therefore, apparent that the only informative situation for studying
loss of alleles is when the constitutional genotype at the marker is heterozygous.

The benefits of including such observations in classic linkage analysis are mainly
to increase power. If the cancer syndrome leads to individuals suffering multiple
primary tumours, each tumour can be included as an independent observation. Affected
parent–offspring pairs also became informative provided one tumour of the pair was
observed (Rohde et al., 1997). The tumour observations are considered in an extension to
the penetrance function and the evidence for linkage is summarised in the same manner
as classic linkage analysis with the lod score function (see Chapter 33) maximised over
both θ and ρ. This method has so far had limited application as it is difficult to gain
access to sufficient quantities of good quality tumour DNA. With current technological
developments, especially with respect to whole genome amplification this approach may
still prove to have a wide application. The method can also be extended to allow for other
forms of loss of function such as epigenetic silencing (see Chapter 40).

39.2.2.4 Models Attempting to Identify the order of Acquired Mutations and hence Tumour Origin

As implied above, it is possible to develop cancer at more than one site (this is common
in those predisposed to cancer development). However, when tumours are synchronously
(clinically) detected these can be two independently arising tumours, or one primary and
an associated metastatic tumour. If the tumours are of independent origin you would
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expect to see different patterns of mutations in them (even if the mutation targets are the
same). However if one tumour is a ‘clonal outcrop’ related to an original primary, these
tumours would be expected to share more mutation patterns. Establishing the true primary
tumour may have important treatment implications.

An extension of the LOH linkage model was developed to consider the evidence that
two concurrently diagnosed tumours (a and b) shared the same origin. In this setting the
objective is not to map the predisposing locus but to assess how similar the LOH pattern
is between two tumours from the same individual, and to infer which of the two cancers
is the original. The model is formulated as shown in Table 39.2, a contribution to the
likelihood is made for each observed (usually microsatellite) marker. The loss parameter
index refers to c = common origin, a = occurs in a during metastasis, and b = occurs
in b during metastasis. This model was applied to a data set consisting of 62 patients
diagnosed with concurrent endometrial and ovarian cancer (Brinkman et al., 2004).

In the familial cancer setting statistical model development has focused on extending
the mixed model (Lalouel et al., 1983; Antoniou and Easton, 2006). Such models can
allow for effects of known risk genes through mutation screening and linkage data, whilst
fitting models to the residual genetic component.

39.2.2.5 A General Theory of Carcinogenesis

Comings (1973) brought together many of the varied theories of carcinogenesis into a
single model proposing that cancer arises when a cell has accumulated sufficient mutations
to bypass the normal constraints on growth. By studying disease progression in Chronic
Myelogenous Leukaemia patients Nowell (1976) observed that additional chromosomal
alterations (besides the Ph Chromosome) accumulated with disease progression. These
observations led him to propose the clonal evolution hypothesis for carcinogenesis. Under
this model a cell suffers a first mutation, conferring a growth advantage. This generates
a colony of genetically unstable daughter cells, with further mutations accumulating in
successive generations. Thus more malignant subclones would evolve driven by selection
through growth advantage.

Major support for this hypothesis came from molecular genetic studies on colorectal
cancer by Vogelstein and co-workers (reviewed by Vogelstein and Kinzler, 1993). This
form of cancer is recognised to develop through several clear stages of malignancy, from
pre-malignant lesion, through to metastasis, and offers a means to study the accumulation
of genetic changes directly by taking samples of early and late stage lesions. A number
of key somatic changes are now well established, namely, the early event of LOH of
chromosome 5p (the location of the APC gene), and the late event of TP53 mutation.

Table 39.2 Components of the likelihood for each compound allelic state.

Probability At each examined locus, for a pair of tumours a and b
(1− α) Not informative
α(1− λc)(1− λa)(1− λb) Informative, no allele loss detected
α(1− λc)λa(1− λb) Informative, allele loss in a, not in b
α(1− λc)(1− λa)λb Informative, allele loss in b, not in a
α{λc + (1− λc)λaλb[(1− ρ)2+ ρ 2]} Informative, loss of same allele
α[2(1− λc)λaλb(1− ρ)ρ] Informative loss of different alleles
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Recently, Luebeck and Moolgavkar (2002) used a multistage epidemiological model to
fit the age-specific incidence of colorectal cancer in the US SEER registry (Surveillance,
Epidemiology and End Results). Assuming a model of two-stage clonal expansion
(TSCE) they used a maximum likelihood approach to estimate the number of mutations
necessary in the pre-initiated state before the cell acquires the capacity for increased clonal
expansion. They found evidence that the US age-specific incidence data was consistent
with two rare events for the initiation stage, followed by a high frequency event resulting
in rapid clonal expansion. One further rare event was required for the adenoma to progress
to carcinoma.

As can be seen from the example plots in Figure 39.1, the risk of most common
cancers increases with age. However, Peto and Mack (2000) reported evidence of high
constant risk of breast cancer in twins and relatives of breast cancer patients. By plotting
the incidence of breast cancer in relatives from the time that the family index case was
diagnosed, their data appeared to suggest that the risk was constant, with respect to
time and age of the relative at diagnosis. They showed a similar effect in twins and
in studies of cancer incidence in the contra lateral breast. They proposed a ‘molecular
clock’ model, such that breast cancers arise in a subset of susceptible women who, from a
predetermined inherited age-point, are at high constant risk of breast cancer. This pattern
was not observed in other familial cancers, and a later examination of a larger data set
did not confirm the hypothesis, presenting stronger evidence that familial breast cancer
risk did vary with age (Hemminki and Granström, 2002).

39.2.2.6 Mathematical Modelling of Tumour Initiation and Progression

It is now generally accepted that cancer arises as the result of mutations in three distinct
classes of cancer susceptibility genes – gatekeepers, caretakers and landscapers (Vogel-
stein and Kinzler, 2002). Oncogenes and tumour suppressors belong to the gatekeeper
class. Caretakers include DNA repair genes whose function is to ensure genome integrity.
Mutations in caretaker genes lead to genetic instability allowing the cell to accumulate
further mutations more rapidly. Landscapers do not themselves lead to abnormal cellular
growth, but may provide the means for the tumour to resist the immune system and
develop further stromal support systems. Mathematical models examining the abstract
population dynamics of the evolving tumour have been developed by Nowak and
colleagues (reviewed in Michor et al., 2004).

Multicellular organisms are made up of a variety of cell types. Populations of specific
cell types form ‘compartments’ and these compartments of cells develop to perform
or maintain organ specific functions. Homeostatic mechanisms exist to ensure that the
total cell number within a compartment remains constant over time. Therefore, a balance
between cell birth and cell death must be maintained. Tumourigenesis will follow if the
cell birth rate exceeds the death rate.

Michor et al. (2004) have explored the population dynamics of cancer progression by
using a Moran Process. This stochastic process imposes a constant population size. At
time zero, all cells in the compartment are unmutated. The oncogene model requires the
cell to acquire only one mutation to alter its fitness. At each time step a cell is randomly
selected (proportional to its fitness) for duplication, the daughter cell replaces another
randomly selected cell in the compartment. They demonstrate that large compartments
(where number of cells is large) accelerate the accumulation of advantageous (for the
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cell) mutations, but slow down the accumulation of deleterious mutations. The converse
is true for small compartments. This model thus predicts that the size of the compartment
may be influential in determining the type of mutations that are observed.

When modelling the TSG element two mutations (each with distinct mutation rate µ1
and µ2) are necessary for the cell’s fitness to be increased. In addition they assume that
µ1 > µ2. They show that the probability that a cell arises with two mutated copies by
time t , is again influenced by compartment size, denoted as N . When N < 1/

√
µ2, a cell

with one mutated copy reaches fixation before a cell with two copies arises. Hence it takes
two rate-limiting steps to inactivate a TSG in a small compartment. In moderately sized
compartments where, 1/

√
µ2 < N < 1/

√
µ1, a cell with two mutated copies will emerge

before the first mutation has reached fixation. In large compartments, where N > 1/
√
µ1,

cells with one mutated copy will arise immediately and the dynamics is dominated by the
waiting time for the second mutational step. Thus as the compartment size increases the
TSG function is inactivated by two, one or zero rate-limiting steps.

Michor et al. (2004) went on to explore the dynamical effects of chromosomal
instability (CIN) and TSG inactivation. The CIN event has an associated cost or fitness
and the cell with CIN has an increased rate of LOH. In a small compartment, it takes two
rate-limiting steps for a cell to accumulate two mutations in the TSG with or without CIN
present. For a wide range of parameter values one or very few neutral CIN genes in the
genome suffice to ensure that CIN initiates tumour formation in a pathway where a single
TSG must lose function. One or several ‘costly’ CIN genes may initiate tumour formation
in situations where functional loss of two TSGs is necessary. These simple mathematical
models offer insightful explanations for some of the similarities and differences observed
between cancers.

39.2.2.7 Mutational Analyses of Tumour DNA

The development of a cancer involves somatic mutation and selection, and population
genetic approaches introduced in Chapter 22 can be applied. Phylogenetic relationships
(see Chapter 16) can be used in studies of many tumours for the accumulation of specific
mutations within a single gene. Yang et al. (2003) formulated a likelihood based model to
analyse the full range of mutations found in a TP53 database. Their approach specifically
allows the mutation or codon substitution rate to vary depending upon both tumour type
and functional domain. TP53 consists of six distinct functional domains Roemer (1999).
Mutations are generally classified into missense (resulting in amino acid change), nonsense
(non translation or truncation of protein) or silent (no amino acid change).

Parameters exist to represent relative substitution rates; (1) nonsense vs silent
(2) missense vs silent and (3) transition vs transversion. These substitution rates can be
decomposed into domain specific and dinucleotide specific rates, yielding likelihood ratio
tests comparing nested hypotheses. Through applying this method to a TP53 database
(consisting of over 15 000 tumour samples), they found strong evidence that the mutation
rates were domain dependent. They also found evidence that the transition vs transversion
bias varied across different tumour types.

The work by Yang et al. (2003), considered only the mutations detected in TP53 in
many cancer types. However, the cancer cell is the direct result of the accumulation of
mutations at many loci. In terms of the cancer modelling, it is important to be able to
distinguish between target genes that are to be mutated (i.e. the mutation is pathogenic) and
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passenger mutations. Greenman et al. (2006), extend the likelihood approach of Yang et al.
(2003) also deriving test statistics and a means to estimate the parameters incorporated
into their model. The main emphasis of this parameterisation is to distinguish between
those mutations which have driven the cell towards the tumour state and mutations which
can be classed as hitch-hikers or passengers. They do this by explicitly describing the
selection process separately from the mutation process. The set of silent mutations is
used to estimate the mutation rates under the null (i.e. no association between cancer
development and mutation). This method is in essence similar to epidemiological studies
constructed to evaluate risk factors, whilst controlling for confounding factors. The strata
in this setting takes account of mutation types (essentially six different types), as these
may be dependent upon the cell and its environment.

As they are considering many genes, they classify non-silent mutations into three
classes, missense and nonsense, as in Yang et al., but have a further class for non-silent
mutations at splice sites. Their approach assumes that a sample of cancers have been
examined or screened for mutations within a specified and common set of cancer genes
(or a screened genome). They are then able to test for evidence of a drive towards increased
selection for specific non-silent mutation types. They apply this model to a series of 518
genes sequenced in 25 breast tumours (Stephens et al., 2005). This set contained a total
of 91 base substitutions in 71 genes. They found strong evidence of selection on rates
for nonsense and splice-site mutations, and were able to estimate that 29.8 of these base
substitutions were pathogenic.

39.2.2.8 Future Directions

The statistical methods presented here incorporate only a subset of cancer mutation
observations. Methods need to be developed that can handle the full range of genetic
alterations. In tumours these include epigenetic effects and DNA sequence level mutations
ranging from a single base change to loss or duplication of whole chromosomes.
Mathematical models suggest that accounting for the evolutionary dynamics and the size
and structure of the tumour target tissue may assist in successfully distinguishing between
hitch-hiker and functional change mutations.

ELECTRONIC RESOURCES

CancerStats, Cancer Research UK, http://info.cancerresearchuk.org/cancerstats/
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In recent years, epigenetic changes have been implicated to be associated with a number of complex
human diseases. In particular, evidence is mounting that aberrant DNA methylation in the CpG
islands of gene promoters is linked to cancer. These discoveries are in part propelled by high-
throughput technologies, allowing one to interrogate specific CpG sites or profiling methylation
patterns of the entire genome. This chapter provides a review of statistical treatments to several
problems in epigenetics based on DNA-methylation data. The detail of methylation characterization
varies from modeling DNA-methylation patterns in individual cells to high-throughput methylation
profiling in human tissue. The challenge on how to integrate ‘-omics’-scale data, both genetic and
epigenetic, is discussed.

40.1 A BRIEF INTRODUCTION

In almost every cell of a human’s body the DNA content and nucleotide sequence are
nearly identical. However, in order to specialize in function, each cell type expresses a
characteristic subset of genes. For example, an epithelial cell in the colon expresses a
different subset of genes from a ductal epithelial cell in the breast. Epigenetics, derived
from Greek to mean ‘upon’ genetics, refers to the transmission of information regarding
expression of genes to daughter cells at cell division. By contrast, genetic information
is transmitted by the nucleotide sequence of DNA. Mechanisms conveying epigenetic
information in humans are not fully understood, but are known to involve the interrelated
processes of DNA methylation, histone modification and chromatin structure. Although
it is the combination of these factors and others that results in gene expression or
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silencing, DNA methylation, a hallmark of epigenetic information, is the focus of this
chapter.

Mammalian DNA methylation occurs when a methyl group is added to the cytosine
residue of a CpG dinucleotide (Jaenisch and Bird, 2003). Indeed, normally, a large portion
of the genomic DNA (except CpG islands (CGIs) within gene promoters) is methylated at
CpG dinucleotides, which plays an important role in normal X-chromosome inactivation
and genomic imprinting. X-chromosome inactivation is the phenomenon in which one
of the X chromosomes in a female (either the maternally or paternally derived one) is
randomly inactivated in an early embryonic cell, and that the same X in all cells descended
from that cell are inactivated (Ross et al., 2005). This clearly reflects its epigenetic nature
as it is a heritable change in gene function (inactivation) without a change in the sequences
on the X chromosome involved. It is noted that, although normal X inactivation is female
related, X inactivation is not restricted to females. For example, it occurs in males with
Klinefelter syndrome who have more than one X chromosome (Iitsuka et al., 2001).

Genomic imprinting, also known as parent-of-origin effect, is another epigenetic factor.
More than 1 % of all mammalian genes are known to be imprinted and catalogued
(Morison et al., 2001). In addition to DNA methylation, histone modification and differ-
ential packing density of DNA by histone proteins are other mechanisms known to be
involved in the process of imprinting (Bartolomei and Tilghman, 1997; Strauch and
Baur, 2005).

Before birth, the basic pattern of DNA methylation is established (Bird, 2002). These
patterns are replicated at cell division along with DNA sequence. However, with age,
methylated areas may lose methylation and unmethylated areas may gain methylation. For
example, early studies of DNA methylation reported a global decrease in 5-methylcytosine
content with increasing age (Wilson and Jones, 1983). More recent studies of selected
CpG sequences have found age-related increases in DNA methylation (Ahuja et al., 1998;
Toyota et al., 1999). Age-related changes are believed to be influenced by a combination
of local DNA structure (methylation centers), gene expression level and environmental
exposures (Ahuja and Issa, 2000). A recent study of monozygotic twins found that
variation in DNA-methylation levels of twins increased with age (Fraga et al., 2005)
emphasizing the importance of nongenetic factors.

Many human diseases have an epigenetic component (e.g. cancer (Laird, 2005),
Klinefelter syndrome (Iitsuka et al., 2001), systemic lupus (Januchowski et al., 2004;
Patole et al., 2005), and Rett syndrome (Kriaucionis and Bird, 2003)). Similar to changes
seen in cells with aging, cancer is marked by a global loss of methylation (Ehrlich, 2002)
that is seen in conjunction with increased (hyper)methylation of CGIs in the promoter
regions of tumor suppressor genes (Jones and Laird, 1999). Although the study of cancer
genetics has traditionally focused on identifying heritable DNA variants that increase
cancer susceptibility, epigenetic studies have now shown that DNA methylation can be
one ‘hit’ in the pathway to cancer (Jones and Laird, 1999) (see Chapter 39). A large
number of epigenetic changes are observed in cancer cells, suggesting either a defect in
the machinery for maintaining epigenetic signatures, or the clonal expansion of a single
cell that has undergone a number of stochastic changes that have accumulated with age.
The most well-known epigenetic signature defect in cancer is the CpG island methylator
phenotype (CIMP) (Toyota et al., 1999; Weisenberger et al., 2006). CIMP is described by
the hypermethylation of a number of CGIs in a subset of cancers. It was first identified
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for colorectal cancer but now has been reported for numerous other cancer sites (Issa,
2004).

In general, the epigenetic code is considered to be erased during meiosis (Chong and
Whitelaw, 2004; Rakyan et al., 2003). Researchers have argued that the erasing and
reprogramming of the epigenetic state provides a ‘clean slate’ for the fertilized egg
to restore its totipotency. However, for certain loci in plants the transmission of the
epigenetic state through the germline has been demonstrated (Chandler and Stam, 2004).
Now transgenerational epigenetic inheritance has also been observed in mice (Morgan
et al., 1999), rats (Anway et al., 2005) and most recently humans (Chan et al., 2006).
These studies generate great interest since transgenerational epigenetic inheritance has
been suggested as a mechanism for adaptive evolution (Belyaev et al., 1981; Jablonka
and Lamb, 1989; Monk, 1995). Although these processes are extremely important, in this
chapter, we limit our attention to questions involving mitotic inheritance and aberrant
DNA methylation in CGIs that occurs with ageing and cancer.

Implementation of state-of-the-art microarray and other high-throughput technologies
has made possible the measurements of methylation signatures of multiple gene promoters
simultaneously. Recently, the idea of a Human Epigenome Project has been conceptualized
(Jones and Martienssen, 2005). As information from the Human Genome Project has
already had a profound impact in both basic and translational sciences (Collins, 2004;
Ponder, 2001), it is anticipated that the Human Epigenome Project, combined with high-
throughput methylation assays and other types of epigenomic and genomic data, will
facilitate our fundamental understanding of aberrant epigenetic mechanisms and propel
research in areas such as cancer genetics (Jones and Martienssen, 2005; Rakyan et al.,
2004). Mathematical modeling and statistical methods have started to be developed
to mine such massive amount of data, which could help contribute to the successful
realization of the epigenome project.

In this chapter, we will focus on introducing, describing and discussing several pro-
blems and statistical treatments, one related to modeling methylation drift in human cell
populations and others involving cancer genomics and high-throughput methylation data,
either targeted interrogation or whole genome profiling. One of the overarching themes in
many of the statistical treatments is finite mixture modeling, which, to some extent, reflects
the heterogeneity nature of the data, the sample, and the underlying tumor progression
mechanism.

40.2 TECHNOLOGIES FOR CGI METHYLATION INTERROGATION

There are a variety of platforms for analyzing DNA methylation including Bisulfite
genomic sequencing (Frommer et al., 1992), methylation-specific polymerase chain reac-
tion (MSP) (Herman et al., 1996), MethyLight (Eads et al., 2000a), and chip-based
technologies (Schumacher et al., 2006; Khalili et al., 2007). Some approaches sequence
single DNA clones while others quantify methylation frequency in a DNA sample. Some
technologies measure total genomic methylation content while others investigate a single
CpG site or a region of linked CpGs. Several technologies are high throughput, making
possible the measurements of methylation signatures of multiple genes simultaneously. In
what follows, we briefly introduce two high-throughput platforms, namely, MethyLight
and methylation microarrays.



1304 K.D. SIEGMUND AND S. LIN

40.2.1 MethyLight

MethyLight is high throughput in the number of samples (1000), and can analyze large sets
of reactions (10–100). It has been widely used in the analysis of clinical samples (Eads
et al., 2000b; Virmani et al., 2002; Weisenberger et al., 2006; Widschwendter et al., 2004)
but is also amenable to the analysis of formalin-fixed samples such as those collected in
large epidemiological studies (unpublished data). At the same time it is highly sensitive
and has been proposed for the study of early detection of cancer (Laird, 2003).

MethyLight utilizes a fluorescence-based real time quantitative polymerase chain
reaction (PCR) for measuring DNA methylation. The technology uses three different
oligonucleotides, one forward and one reverse PCR primer and one hybridization probe.
Quantitative values are determined from a standard curve of defined dilutions of a
reference sample plotted as log quantity versus C(t) value, the cycle number at which
the fluorescent signal surpasses a detection threshold. The quantitative value for each
experimental sample is derived from a linear regression on this standard curve (Eads
et al., 2000a). Variation in the DNA quantity and integrity and differences in efficiencies of
reactions are controlled by normalizing against methylation-independent and methylated-
reference reactions. Briefly, the quantitative measure from the experimental sample is
normalized to that using a methylation-independent control reaction by computing the
ratio. A reference reaction using an enzymatically methylated sample of SssI-treated
sperm DNA is similarly normalized. The ratio of the normalized value for the experi-
mental sample to that of the methylated-reference sample gives the percent of methylated
reference (PMR).

MethyLight reactions are designed to detect molecules in which all CpGs (usually ∼8)
are methylated. Because of this stringent criterion for detection, methylation is not found
in some samples. This results in a distribution of the data that is quantitative, but having
an ‘excess’ of zeros. This has motivated the development of novel statistical methods for
cluster analysis described in Section 40.4.1.

40.2.2 Methylation Microarrays

One of the genomic strategies for efficient scanning of tumor genome for methylation
alterations is CGI microarrays; the first of which is known as differential methylation
hybridization (DMH ) (Huang et al., 1999). This first generation DMH arrayed GC-
rich tags derived from a human CGI genomic library onto solid supports (e.g. nylon
membranes). Then CpG DNA amplicons derived from paired tumor and normal samples
(probes) are cohybridized to the microarray. Differentially methylated probes can then be
identified, which signify methylation alterations of corresponding sequences in the tumor
sample. There are a number of successful applications using this first generation of DMH
arrays. For example, DMH was used to analyze DNA from 17 paired tumor and normal
breast tissues, and it was observed that approximately 1 % of the CGI loci screened display
tumor-specific hypermethylation (Yan et al., 2001). More sophisticated DMH arrays that
are CGI library based are now commercially available, including the Toronto human
CpG 12K arrays (HCGI12K, University Health Network Microarray Center).

More recently, as new platforms are becoming increasingly available for building
custom microarrays, other technologies for CGI (or large genomic regions) methylation
profiling have mushroomed. Such works include that using the Affymetrix tiling microar-
rays on chromosomes 21 and 22 (Schumacher et al., 2006) and the Agilent’s custom
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CpG promoter Methylation (CpGpM) arrays (Khalili et al., 2007). Another technology
that does not rely on the use of methylation sensitive restriction enzymes is that based on
DNA immunoprecipitation (Keshet et al., 2006; Weber et al., 2005; Mukhopadhyay et al.,
2004). Briefly, sonicated DNA is immunoprecipitated using an anti-5-methylcytosine
monoclonal antibody. Precipitated DNA from tumor samples and sonicated DNA from
normal controls are then fluorescent labeled and cohybridized to the microarrays. There
is a great deal of similarity between methylation microarray experiments and those
performed using other types of microarrays, such as gene expression arrays discussed
in Chapter 6–Chapter 9, but key differences exist, including sample preparation and
experimental conditions.

40.3 MODELING HUMAN CELL POPULATIONS

Variable DNA methylation patterns observed in populations of morphologically identical
cells can carry information about cell dynamics. Since DNA methylation patterns are
copied fairly faithfully from one generation of cells to the next, random errors in
methylation accumulated during cell division may record the histories of the cells.
Molecular clock approaches, used to compare genomes between viruses, are now being
used to make inference on human stem cells (Kim et al., 2005a; 2005b; 2006; Yatabe
et al., 2001). The first study of this kind, set out to determine if stem cells in the colon
are immortal (Yatabe et al., 2001), is described below. Similar methods are being applied
in studies of cancer to determine whether all cancer cells are immortal or whether cancer
stem cells exist.

40.3.1 Background

The epithelial tissue from the human colon is sustained by millions of crypts, each
containing approximately 2000 cells. Each crypt contains a mixture of stem cells and
differentiated cells. The stem cells reside near the bottom of the crypt while their
differentiated offspring migrate toward the colon surface. Mature cells are short lived
and essentially all differentiated cells are replaced in about a week. Copy errors from cell
division are maintained in the only long-lived cells, the stem cells.

The exact number of stem cells and their characteristics are unknown (Kim and Shibata,
2002). Specifically, it is unknown whether stem cells are immortal, each division resulting
in two new cells, one stem cell and one cell that will differentiate, or whether they are
defined by niches. Niches are regions containing cells that are externally directed to
function as stem cells. One approach for inferring which of these two models may be
at work in the human colon is to analyze DNA methylation patterns among crypt cell
populations.

40.3.2 Methylation Patterns

DNA methylation patterns are determined using bisulfite genomic sequencing of cloned
PCR products. The clones are sequenced at a series of 5–8 CpG sites. The data are coded
such that ‘1’ denotes methylated and ‘0’ unmethylated CpGs. The code for a string of
CpG sites is called a tag. An unmethylated tag of eight CpGs is represented by eight 0’s
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(‘00 000 000’). When studying N CpGs, there are a total of 2N possible tags. In Yatabe
et al. (2001), multiple clones are measured for each crypt (range 5–8) and multiple crypts
per subject (range 7–9). The CpG regions studied are CpG-rich and are selected as they
should normally be unmethylated in the colon.

Tags are summarized using three statistics: (1) the proportion of methylated sites
(percent methylation), (2) the number of unique tags per crypt, and (3) the average
Hamming distance, the average number of site differences between any two tags from the
same crypt. In general, percent methylation captures information on the numbers of cell
divisions since birth. Number of unique tags and average Hamming distance are measures
of crypt diversity. The more stem cells or longer-lived stem cell lineages, the greater the
number of unique tags and average Hamming distance.

For diploid genomes, a sensible use of average Hamming distance should only evaluate
pairs of alleles sharing a common ancestor (within lineage). In Yatabe et al. (2001), the
average Hamming distance is from a pool of alleles and represents a mixture of within-
and between-lineage distance for two of the three loci studied (the third being on the X
chromosome and measured only in males). The pure within-lineage average Hamming
distance might be estimable from a statistical model or, in future studies, computed
directly by using a nearby single nucleotide polymorphism to distinguish the different
chromosomal lineages in the cell population.

Measures of cell diversity allow us to asses the histories of cells in the human colon.
Under an immortal stem cell model, sequences will become increasingly diverse over
time and we should observe similarity in the distances (or number of unique tags) among
cells within crypts to those between crypts. For a niche, random loss and replacement of
stem cells within a crypt eventually leads to a series of bottlenecks where all cells are
related to a new most recent common ancestor. This leads to more closely related cells
and would result in smaller distances (or fewer unique tags) among cells within a crypt
than among cells between crypts.

40.3.3 Modeling Human Colon Crypts

Populations of cells in a human colon crypt are characterized using mathematical models
from population genetics. More on such models can be found in Chapter 22. The
parameter of primary interest is the probability that a stem cell divides asymmetrically,
leaving one stem cell and one nonstem cell at each generation. For a niche, each stem
cell division can result in 0, 1, or 2 stem cells as offspring. These occur with probabilities
p0, p1, and p2 respectively, where p0 + p1 + p2 = 1. For an immortal lineage where the
stem cell will never go extinct, p1 = 1 and p0 = p2 = 0. Yatabe et al. (2001) consider a
niche with p1 < 1 and p0 = p2 = (1− p1)/2. The number of stem cells is constrained to
be constant across all generations, but allows for a dynamic population where some stem
cells go extinct and others spread throughout the crypt until their descendents populate
the entire crypt. The models used for constraining the population size from one generation
to the next arose from (Cannings, 1974; Karlin and McGregor, 1964). For details, the
reader is referred to the supplementary material from (Yatabe et al., 2001).

Other parameters in the model include the number of stem cells in the crypt and the
frequency of methylation errors. Methylation errors can allow the addition of a novel
methylation event or loss of a methyl group. The addition or loss of a methyl group can
occur at different frequencies and are assumed to happen independently at each CpG site.
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Future work may determine if these sites are indeed methylated independently or whether
they depend on the methylation status of neighboring sites.

Quantities fixed in the analysis are the number of generations of cell division and the
total number of cells in a crypt. The number of generations of cell division is a function
of age of the individual (e.g. one division each day) and possibly exposures. For instance,
in addition to age, the number of cell divisions in endometrial glands may depend on the
number of live births of the woman and whether she is obese (Kim et al., 2005b). Under
the molecular clock hypothesis, a single choice of parameter values should yield the data
observed for individuals of all ages and exposures.

As direct likelihood computation is difficult, rejection algorithms, a simulation-based
approach, have been used for parameter estimation. In rejection algorithms the goal is to
estimate the posterior distribution of the data given the parameters, P(D|θ). Methy-
lation data are simulated under a proposed phylogenetic model (D′) and compared
to real methylation data (D). Parameters are selected such that the simulated data
reflects the real data. As the chance of the real data being duplicated is extremely
rare, typically summary statistics from the simulated and real data are compared (S′
and S, respectively). The parameters are estimated by values for which the distance
between the summary statistics for the simulated and real data is below some toler-
ance (|S ′ − S| < ε). This approach has been named Approximate Bayesian Computation
(Beaumont et al., 2002).

40.3.4 Summary
Methylation data in the human colon are consistent with the existence of stem cell niches,
each niche containing multiple stem cells (Yatabe et al., 2001). The existence of niches
is also supported by studies of small intestine (Kim et al., 2005a) and endometrial glands
(Kim et al., 2005b). In endometrial glands, an age-related association between mitotic age
and methylation was reported; methylation was increasing with age prior to menopause
and level thereafter. In addition, methylation was higher in obese women or those with
lower parity, important epidemiologic risk factors in cancer. The analysis of random
replication errors may provide new methods for studying cell proliferation with age and
cancer. However, not all tissues show age-related changes in methylation. Methylation in
the brain and heart do not increase with age (unpublished data), as would be expected in
organs whose tissues do not divide in adults.

40.4 MIXTURE MODELING

Statistical modeling using finite mixtures of distributions has become one of the staples
in analyzing large scale biological data, thanks to their flexibility. It provides a mathemat-
ically based approach for modeling a wide variety of random phenomena. Clustering or
classification, either of features or of samples, is a class of problems often treated by such
an approach. For instance, mixture modeling has been used extensively in gene expression
analysis (see McLachlan et al., 2006 and references therein). Analysis of methylation data
has also made use of this versatile modeling framework. We briefly introduce the unified
framework of finite mixture modeling next, which will be followed by three subsections;
each describes a mixture modeling solution to an epigenetic problem.

We let Yi, i = 1, . . . , n, denote a random sample of size n of variable Y , which can
be a scalar or a vector. Without loss of generality, we use f (y) to denote the probability
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density function of Y , where f (y) will be viewed as a probability distribution in the case
that Y is a discrete random variable. Suppose Yi is from a heterogeneous population with
K subpopulations having component densities denoted by fk(y), k = 1, . . . , K . Then the
density f (y) can be written as

f (y|θ) =
K∑
k=1

πkfk(y|θk), (40.1)

where the πk’s are referred to as the mixing proportions (or weights) that are nonnegative
and sum to 1; that is, 0 ≤ πk ≤ 1, k = 1, . . . ,K , and

∑K
k=1 πk = 1. The parameter vector

θ = (θk, k = 1, . . . , K), where θk is the parameter of the kth component density.
In the above formulation of the mixture model, the number of mixture components K

is fixed. However, in many applications, such as in the case of learning the number of
cancer subtypes classified by methylation data as in Section 40.4.1, K is unknown and
has to be estimated along with the weights and the parameters of the component densities.
Typically, in such situations the number of subgroups is determined using the Bayesian
information criterion (BIC = −2×log likelihood + number of parameters × ln(number
of observations)). The BIC allows the comparison of nonnested models having different
numbers of clusters; the model with the lowest BIC is selected as best. By convention,
differences in BIC greater than 2 are considered positive evidence for model differences,
differences between 6 and 10 strong evidence and differences greater than 10 very strong
evidence (Fraley and Raftery, 1998; Kass and Raftery, 1995).

40.4.1 Cluster Analysis

40.4.1.1 Background

Cancer patients with identical diagnoses show variable response to therapy. This has
spawned the use of molecular analysis for the classification of disease subtypes. The use
of cluster analysis, an approach to finding novel subgroups in data, has exploded. DNA
methylation is amenable to disease classification as DNA-based signatures are more stable
than alternate molecular features such as protein or RNA expression. Not only do DNA-
methylation profiles differ across tissues in the body, but also among different cancer
histologies from the same organ (Model et al., 2001; Virmani et al., 2002). This has
motivated the use of DNA methylation for discovering novel disease subtypes.

One approach to clustering samples is to use finite mixture models. The number of
subgroups is determined using the BIC and the mixing weights give the probability
of belonging to each subgroup. Using these weights, samples can be classified by
assigning them to the subgroup to which they have the greatest probability of belonging.
Software exists for fitting mixtures of binary data and mixtures of normals. In order
to accommodate data showing an excess of zeros as is commonly observed using the
MethyLight technology, two novel approaches have been proposed.

40.4.1.2 The Bernoulli–Lognormal Mixture

DNA methylation is the outcome and we use the term feature to refer to the CpG regions
studied. In the Bernoulli–lognormal mixture model, the outcome is modeled using a
mixture of discrete and continuous components. A stringent conditional independence
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assumption is made such that within subgroup k, the methylation levels are independent
across features. The likelihood for a single sample is the product of the density for each
feature across all CpG regions. Suppressing the notation for feature, the distribution for
a single measurement is

fk(y|θ) = (1− pk)I{y=0}
(
pk

1√
2πσ

exp
(−(z− µk)2

2σ 2

))I{y>0}
, (40.2)

where pk is the probability of detecting methylation in class k, I{·} is an indicator function,
which is equal to 1 if the condition in the brackets is satisfied, otherwise it is equal to
0, z is the log-transformed value of y if y > 0, µk is the mean of the (log-transformed)
methylation level among the observations having positive measurements in group k, and
σ 2 is the variance of the positive measurements. The variance could be allowed to vary
by group or feature, but is assumed constant. For each feature 2×K parameters are
estimated, a cluster-specific mean and probability of positive methylation. In total, the
model estimates F × 2×K + 1 parameters, where F is the number of features. The
model has been fit using the expectation maximization (EM) algorithm and multiple
starting values (Siegmund et al., 2004).

40.4.1.3 Truncated Normal

MethyLight data have also been clustered using a truncated normal distribution. This
model assumes that measurements of zero are due to the true methylation value falling
below a threshold of detection; this threshold depends primarily on the biochemical
properties of the reaction. The truncated normal density is

fk(y|θ) =
(

1√
2πσ

exp
(−(z− µk)2

2σ 2

))I{y>τ }
, (40.3)

where z, µk, σ
2 and I{·} are as defined above and τ denotes the detection threshold that

is unique to each MethyLight reaction. For each feature, K + 1 parameters are estimated,
the cluster-specific means and the (common) truncation value. In total F × (K + 1)+ 1
parameters are estimated; fewer parameters than the Bernoulli–lognormal. A version of
this model has been fit using Markov chain Monte Carlo (Marjoram et al., 2006).

40.4.1.4 Summary

The Bernoulli–lognormal model was applied to a study of DNA methylation in 87 lung
cancer cell lines (41 small cells and 46 nonsmall cells). The purpose was to demonstrate
whether subtypes of cancer could be identified using DNA-methylation profiles alone.
Cluster analysis was performed using a subset of seven CpG regions. Applying the BIC
criterion provided very strong evidence for a two-cluster model; however, the classification
of the samples to the known disease subtypes yielded high error rates (∼20 %) (Siegmund
et al., 2004). This suggested that DNA-methylation profiles could distinguish cancer
subtype but that larger numbers of features would be needed to reduce the classification
error rate.

The Bernoulli–lognormal and truncated normal mixture models have been evaluated
via simulation studies. Not surprisingly, those studies demonstrated that the performance
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of both approaches relied on the key properties of the data being analyzed. Standard
lessons were reported such as using the (correct) model that required the fewest number
of parameters tended to result in the lowest classification error rates. This was true of the
truncated normal model performing better than the Bernoulli–lognormal model when the
proportion of zeros was due to a detection threshold (Marjoram et al., 2006). However,
this superiority was lost when the data included (unmodeled) correlation among genes
within a subgroup, perhaps because the more flexible Bernoulli–lognormal model could
absorb model misspecification with its added parameters.

40.4.2 Modeling Exposures for Latent Disease Subtypes

Typically novel disease subtypes identified by epigenetic profiles are characterized using
external information. Sometimes the external information is a clinical endpoint such as
survival or response to treatment. Other times, for instance when studying the etiology of
disease, the external information might be an environmental exposure such as smoking
history or dietary folate intake. Often the analysis proceeds by a two-step procedure
of first, identifying the disease subtypes and second, associating the disease subtypes
with outcomes or exposures. Such an analysis is simple and can be accomplished using
standard statistical software. However, this two-step approach does not take measurement
error of the first step into account. Simple solutions exist for getting unbiased estimates
of association when the latent disease subtypes are the exposure for a clinical endpoint.
In such situations the errors in variables problem relates to measurement error in the
exposure and a quick fix is to substitute the membership probabilities πk instead of a hard
assignment into the most likely category as the exposure (Stram et al., 2003). This method
falls within the general class of single-imputation approaches utilized in epidemiological
studies. However, this shortcut does not work when the latent disease subtype is the
outcome. In that situation one solution is an extension of the finite mixture model.

Let x be vector of q exposures. In the extended finite mixture model

fk(y, x|θ) =
K∑
k=1

πk(x)fk(y|x; θ), (40.4)

where πk(x) is the probability that a sample belongs in disease subtype k given exposures
x. The probabilities π(x) = [π1(x), . . . , πk(x)] are modeled using polytomous logistic
regression, logit π(x) = α + βx, where α is a (K − 1)-dimensional vector and β is a
(K − 1)× q-dimensional matrix. A simplification of this model assumes that the exposure
acts directly on the disease subtype and not on any individual feature such that conditional
on disease subtype, the distribution of the measurements is independent of the exposure
x, (fk(y|θ)).

The extended finite mixture model is fit by Siegmund et al. (2006) using the EM
algorithm. The parameter of interest is β, the log–odds ratio measuring the association
between exposure and disease subtype. Its standard error is computed using the observed
information matrix as described by Louis (1982). Siegmund et al. (2006) found that
estimates from the extended finite-mixture model were unbiased and had the correct
standard error estimates; however, adequate sample sizes were needed in order for the
algorithm to converge. These results were compared to the naı̈ve two-step analysis. When
there is error in the identification of disease subtype, the estimate of the log–odds ratio
was biased toward the null and its standard error underestimated by the two-step analysis.
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When disease subtypes were distinct and could be determined from the methylation data
with certainty, the two-step analysis was adequate.

The two approaches were compared using a real data set of colorectal adenomas.
Researchers hypothesized that low folate availability would be associated with abnormal
methylation across a number of CGIs in colorectal adenomas. An analysis of red blood
cell folate level and DNA-methylation subtype in colorectal adenomas estimated an odds
ratio (OR) of 0.31 (95 % confidence interval (CI) 0.08–1.26) from the extended finite
mixture model (n = 58 case subjects). The OR estimates using the two-phase approach
was 0.44 (95 % CI 0.15–1.28).

40.4.3 Differential Methylation with Single-slide Data

40.4.3.1 Background

Recent discoveries that de novo methylation of CGIs can be associated with multiple
types of cancer have led to tremendous interests in whole-genome methylation profiling
(Gebhard et al., 2006; Ordway et al., 2006; Weber et al., 2005). One of the tasks of making
sense of such methylation profiling is to uncover gene promoters that are hypermethylated
in tumor samples. Such outcomes, combined with other biological findings and evidence,
may lead to the capturing of ‘tumor signatures’.

In some circumstances, especially in pilot studies, a single microarray may be used
to probe the methylation pattern of a sample without either biological or experimental
replicates. For gene expression profiling, there are a number of methods proposed for
single-slide analysis. The earliest method in dealing with single-slide data was based on
some fold–change criterion (Schena et al., 1996). Several methods have been proposed
to provide more formal statistical treatments to the problem, including the gene-pooling
method of Chen et al. (1997), the Bayesian hierarchical γ − γ model of Newton et al.
(2001), and more recently, the normal–uniform (NU) mixture modeling approach of Dean
and Raftery (2005) (see Chapter 6 for more details on single-slide analysis tools.)

Since epigenomic methylation profiling using microarrays is a relatively young field
compared to its mature sister of gene expression profiling (see Chapters 6–8), there
are few methods developed specifically for methylation data. Although methods in the
literature for gene expression analysis may be adapted for methylation data, systematic
evaluations of their performances in the latter context are currently lacking. Furthermore,
features of methylation data may be different from those of gene expression data, and, as
such, it should not be taken for granted that relative performances of statistical methods
for gene expression data would hold for methylation data. Due to these considerations, a
novel mixture modeling approach was proposed (Khalili et al., 2007).

40.4.3.2 A γ -normal-γ Model

CGI loci are to be classified into hypermethylated, hypomethylated, or nondifferentiated
according to normalized logarithms of methylation intensity ratios of the tumor sample
to the normal sample (y). Normalization methods for cDNA-gene expression arrays
(see Chapters 6–9) are applicable to data from methylation microarrays.

Loci that are nondifferentiated are those that have equal methylation intensities in the
tumor and the normal. On the other hand, loci that are hypermethylated will have positive
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log ratios (y > 0), whereas those with negative log ratios (y < 0) are hypomethylated.
Each of the hypomethylated, nondifferentiated, and hypermethylated components can
be modeled by a γ , a normal, and a γ distribution, respectively, leading to a
gamma–normal–gamma (GNG) mixture as follows:

f (y|θ) = π1G(−y|α1, β1)I{−y>0} + π2N(y|µ, σ 2)+ π3G(y|α2, β2)I{y>0}, (40.5)

where the weight parameters πk
(
πk ≥ 0, k = 1, 2, 3;∑3

k=1 πk = 1
)

represent the relative

proportions of the probes belonging to these three components. Again, I is the indicator
function, which is equal to 1 if the condition in the curly brackets is satisfied; otherwise it
is equal to 0. The parameter vector θ = (α1, β1, µ, σ

2, α2, β2, π1, π2, π3;
∑
πk = 1) can

be estimated using the EM algorithm. Once the parameters are estimated, the probability of
each loci belonging to each of the hypomethylated, nondifferentiated, and hypermethylated
components can be computed, leading to a classification rule based on these probabilities
(Khalili et al., 2007).

40.4.3.3 Normal–uniform Model

A two-component NU mixture model can be adapted from Dean and Raftery (2005) to
classify CGI loci into differentially methylated or not.

The NU modeling philosophy differs from that of the GNG model in that the NU
model lumps both the hypermethylated and the hypomethylated loci into a single
component, whereas in GNG, these two types of loci are modeled separately to reflect
their opposite–extremes feature. The normal component is intended to capture those loci
that are nondifferentiated, as in the GNG model, and the uniform component is for those
that are differentially methylated, either hyper- or hypomethylated. Thus, the distribution
for the normalized log methylation intensity ratio is

f (y|θ) = (1− π)N(y|µ, σ 2)+ πU(y|a, b), (40.6)

where π represents the proportion of differentially methylated loci, µ and σ are the mean
and standard deviation of the normal distribution, and [a, b] is the interval on which the
uniform distribution is defined. The parameter vector θ = (µ, σ 2, a, b, π) can also be
estimated using the EM algorithm. Bayes rule with 0–1 loss is used to classify loci into
one of the two components (Dean and Raftery, 2005).

40.4.3.4 Further Comments

Applications of the GNG and NU models to three breast cancer cell lines to profile
their individual methylation signature based on whole-genome methylation intensity data
generated from the CpGpM arrays demonstrated better goodness of fit of the GNG model
over the NU model. High reliability of the predicted hypermethylated loci based on
the GNG model was also ascertained through a bootstrap resampling technique (Khalili
et al., 2007). The reason for the need of analyzing these three breast cancer cell lines
separately as opposed to analyzing them together is that they are inherently heterogeneous
biologically, and thus their methylation signatures are expected to be different as well. As
discussed earlier, the uniform component of the NU model is designed to capture both
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the hyper- and hypomethylated loci, which are the two extremes in the data distribution.
However, the uniform distribution inevitably also captures some of the loci that are
nondifferentiated, which may affect the performance of the overall model. Nevertheless,
it is premature to conclude that the GNG is a better model than the NU model for
identifying CpG loci that are differentially methylated based on single-slide data, as the
results are only from limited experiments and the comparisons are on a relative basis
rather than relying on a ‘gold standard’. For that matter, it is worth noting that other
single-slide analytic methods in the gene expression literature may prove to be better
alternatives for solving this epigenetic problem.

40.5 RECAPITULATION OF TUMOR PROGRESSION PATHWAYS

40.5.1 Background

Recapitulating pathways of tumor progression has significant implications in under-
standing the disease, in influencing the treatment decision, and in developing novel
drug targets. Traditionally, tumor progression pathway studies have largely focused on
discerning relationships among various stages, from precancerous to preinvasive/invasive,
and to metastasis, using morphological data. For example, in breast cancer studies, several
pathways have been proposed to describe the relationship between grades of ductal carci-
noma in situ (DCIS) and grades of invasive ductal carcinoma (IDC) (Buerger et al.,
1999; Gupta et al., 1997; Roylance et al., 2002). Interpreting pathways as compartmental
models, (Sontag and Axelrod, 2005; Subramanian and Axelrod, 2001) used a set of differ-
ential equations to describe the flows of contents between compartments. In particular,
they studied the relative plausibility of four pathways for describing the observed counts
of DCIS and IDC concurrence. It was concluded that breast tumors are heterogeneous
in nature, and pathways that depict simple progression patterns, such as linearity, do not
provide adequate description of such tumor samples.

The heterogeneous nature of tumors suggests that clinical phenotypic data need to be
coupled with molecular signatures in order to lead to a more satisfactory recapitulation
of progression pathways. To this end, it is critical to note that recent advances highlight
an important role of epigenetically mediated gene silencing in tumorigenesis (Baylin,
2005). The number of hypermethylated genes tends to increase in more malignant cells,
and different tumor types may be marked by their unique epigenetic signatures. Thus,
the notion of utilizing DNA-methylation profiles together with clinically observable
phenotypes to recapitulate tumor progression was conceptualized (Wang et al., 2007).
More importantly, the idea is practically feasible as these epigenetic marks are stable
and heritable in tumor genomes (Baylin, 2005), and thus methylation data derived from
tumors of different patients can be used as surrogates for examining progression patterns
of tumors.

40.5.2 Heritable Clustering

A tumor progression pathway can be described by a directed graph with nodes corre-
sponding to tumor stages and each directed edge denoting possible progression from one
stage to another. In the current context, a node is depicted by the epigenetic (methylation)
signature of the selected genes and the clinical variables (phenotypic data); see Figure 40.1
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Figure 40.1 Example progression pathway network.

for an example. The heritable clustering algorithm of Wang et al. (2007) unfolds in three
stages. First, the number of clusters (nodes of the pathway) is determined. Then, the
samples are assigned to clusters and the cluster characteristics, both epigenetically and
phenotypically, are determined. Finally, the clusters are organized into a pathway network
to capture tumor progression to adhere to the notion that the hypermethylated loci acquired
at each node are passed on to subsequent nodes and a progeny node is more aggres-
sive phenotypically than its ancestor nodes. For determining the number of clusters, two
parameters play a central role. One is the weight parameter (w) that is needed to balance
the relative contributions from the methylation signature and the clinical phenotypes.
The other is the within cluster similarity parameter (ε) to guarantee a certain degree of
homogeneity. For each pair of (w, ε), the number of clusters K(w, ε) from a clustering
algorithm and the resulting total similarity TS(w, ε) can be determined. The number of
clusters associated with the pair of parameters that maximizes the following objective
function

f (w, ε) = log(TS(w, ε))−
K(w, ε)

P +G , (40.7)

is the number of nodes of the pathway to be constructed, where P and G are the number
of phenotypes and gene promoters, respectively.

Tumor samples are then classified into these nodes to define their characteristics, both
epigenetically and phenotypically. Wang et al. (2007) considered four distance-based
algorithms, H-clust, K-means, partitioning around medoids (PAM), and simulation-based
(SIM). In addition, they also proposed an iterative likelihood based algorithm, which can
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account for dependencies among variables as well as incomplete data. Briefly, the idea
is to group tumors with similar epigenetic and phenotypic characteristics according to
their parameter vectors. That is, one assumes that tumors within a cluster (Ck) share
the common distributional parameter vector θk = {θkG, θkP }, which represents the cluster
profile and will be updated iteratively. At each iteration, let Ik(t) = 1 if tumor t is in
cluster Ck , otherwise it is 0. Thus, the joint likelihood is

L
(
θkG, θ

k
P , k = 1, . . . , K|Xt ,Yt , t = 1, . . . , T

) = K∏
k=1

{ T∏
t=1

[
P
(
Xt ,Yt |θkG, θkP

)]Ik(t)}
,

(40.8)
where Xt ,Yt , t = 1, . . . , T are the observed methylation signature and phenotypes,
respectively, T is the number of tumor samples, and K is the number of clusters. A
tumor sample that has a larger likelihood in a different cluster than the one it is currently
assigned to is a potential candidate for switching class membership.

Nodes with distinctive characteristics are then assembled into a directed graph to
represent the pathway of tumorogenesis. The characteristics of a node are described by
a center and a score, both epigenetically and phenotypically, signifying the ‘severity’ of
the tumor stage it represents. Directed edges are used to connect any two nodes that
have an ancestor–progeny relationship, where a node is an ancestor of another node
(progeny node) if the progeny node has more severe characteristics, reflecting a temporal
order.

Although strict epigenetic heritability is observed in Wang et al. (2007) in building the
pathway, one may entertain the idea that methylation is reversible by lifting this stringent
requirement.

40.5.3 Further Comments

A key utility of the heritable clustering algorithm is that the resulting pathway offers
an opportunity for scientists to visualize the relationships between methylated gene
promoters, observed clinical phenotypes, and their progression patterns. By utilizing both
epigenetic signature and phenotypic information, pathway of tumor stages can be refined
to better reflect its temporal ordering. For a panel of genes that are tumor-associated or
tumor suppressor genes, hypermethylation in the promoters may lead to tumorigenesis or
tumor progression, and thus their interplay with observable clinical characteristics can lead
to better capturing of progression pathways. For instance, tumors with more aggressive
phenotypes tend to exhibit higher level of methylation in such genes. In the same vein,
other biological data types, such as histone modification, promoter sequence data and
protein–DNA-binding data, which interact with methylation in a complex fashion, may
also help to further define the pathways and offer a more system approach to recapitulate
tumor progression. As the application of the algorithm to a set of primary breast
cancer data demonstrates, the likelihood approach offers a more flexible and competitive
algorithm for obtaining tight clusters than distance-based clustering algorithms (Wang
et al., 2007). Furthermore, the resulting pathway network portrays complex and nonlinear
interplays between the methylation signature of the selected genes and the phenotype
data, echoing the conclusion drawn by Sontag and Axelrod (2005) regarding nonlinearity
and heterogeneity of tumor progression.
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40.6 FUTURE CHALLENGES

A major challenge facing researchers studying complex traits is the integration of data
from the various ‘-omics’ platforms. Numerous biological and biomedical areas are
propelled by recent advances of high-throughput technologies. In addition to whole-
genome methylation profiling, a relatively new comer, whole genome profiling of DNA
variations (single-nucleotide polymorphism (SNP) arrays), genetic changes in terms of
copy number alterations (comparative genomic hybridization (CGH) arrays), transcriptom
profiling (gene expression arrays), protein–DNA binding (chromatin immunoprecipita-
tions (ChIP)–chip), and RA-omics (micro-RNA arrays), are platforms that provide large
amount and diverse types of genomic and epigenomic data. Each of these contains valuable
information on different aspects of the whole biological system, but more importantly,
if all information is considered jointly in a truly integrated fashion, then the whole is
greater than the sum of its parts. Such data integration is a goal of the new NIH-directed
initiative, the Cancer Genome Atlas.

One of the earliest integrated approaches is that of combining DNA variation, gene
expression, and phenotypic data to dissect complex traits (Schadt et al., 2005). A popular
way of studying the interplay of the diverse data types is through treating the gene
expression intensity as a quantitative trait, the expression quantitative trait loci (eQTL)
approach (Schadt et al., 2003; Wayne and McIntyre, 2002). Similar eQTL approach was
also used to study natural variation in human gene expression and potential regulatory
role of SNPs (Morley et al., 2004). Transcription regulation modeling is another area in
which diverse data types have been jointly considered. Microarray gene expression data,
ChIP–chip protein-DNA-binding data, and promoter sequence data are all believed to play
a role in transcription regulation, but their combined information has proved to be much
more powerful in inferring regulatory elements and complex regulatory networks (Bar-
Joseph et al., 2003; Liu et al., 2002; Sun et al., 2006). Integrating methylation profiling
data with other types of epigenomic and genomic data is the natural next step to increase
the power for various predictive investigations, including disease diagnostics, prognostics
and therapeutics. However, cross-platform integration is by no means a trivial exercise, as
different data types are interrelated in a complex manner through a highly sophisticated,
yet unknown, biological system. As such, modeling of such a complex system is highly
challenging. Such interdisciplinary problem requires knowledge in biology, technology,
statistical modeling, and computational skills. From the statistical perspective, hierarchical
modeling holds promises to tackling such problems. Large scale capable computational
methods such as Markov chain Monte Carlo and approximate Bayesian computation are
key to successful implementations of cross-platform models.

In conclusion, the field of epigenetics is in its infancy compared to the field of genetics.
Although the impact epigenetic states will have on dissecting complex traits is still
unknown, it is clear that genetic and environmental factors are not its only determinants
and DNA sequence is not its only heritable unit.
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The ethical, legal and social issues concerning genetic research (genethics) are extensive and
complex. This chapter reviews some of the central issues in current debates. The first part of the
chapter considers the scope of genethics and the relationship between ethics, morality, professional
conduct and genetics research. It then considers the relationship between risk-control and benefit-
maximising models of governance in genetics research. The second part of a chapter, using a
case study of the UK Biobank, looks at the main issues in governance of genetic databases,
including scientific value of the research, recruitment, consent and mental capacity, voluntariness
and incentives to participate, feedback of research results, confidentiality and security. The third
part of the chapter looks at issues in scientific conduct of research, concentrating on stewardship and
benefit sharing with host communities. The fourth part looks briefly at societal issues, concentrating
on two case studies: geneticisation and reductionism, and the issue of race in genetic research.

41.1 INTRODUCTION: SCOPE OF THIS CHAPTER

The ethical, social and legal issues arising in genetic research and its applications are so
extensive that they have generated a whole field of research and scholarship, often referred
to as ethical, legal and social implications (ELSI) of genetics or ‘genethics’ (Clarke and
Ticehurst, 2006; Sherlock and Morrey, 2002). A few examples of topics discussed in
this literature include ethical debates about bio-safety of genetically modified crops, the
morality of patenting genetically engineered living creatures, the obligations researchers
in human biodiversity may have to share the benefits of any commercialisable discoveries
with the donors of samples and the communities of which they are members, the moral
limits on modification of the human genome, and the question of whether prenatal or
pre-implantation genetic testing amounts to discrimination against the disabled or a new
variant eugenics.

These issues are so diverse and complex that to cover them all adequately would require
book-length treatment. In the present chapter I concentrates on issues of primary concern
to statistical geneticists. This is a necessarily selective survey. I concentrates on an issue
that is of considerable practical concern in genetic research – the ethical governance on
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research using biobanks. This topic cuts across many other topics in the ethics of human
genetic research as well as touching on some aspects of research on non-human organisms.
The second part of this chapter discusses the ethics of research using biobanks so far as
this relates to the interests of sample donors. The third part of this chapter discusses
the ethics of such research so far as this relates to the relationships between researchers.
The final part of the chapter discusses the ethics of research so far as this relates to the
interests of society.

Before beginning an examination of these issues, it will be useful to review, in this
first part of the chapter, what the main sources of ethical argument are in the literature.

41.1.1 What is Ethics?

Ethics can be defined as philosophical inquiry into the values, rules of conduct and
character traits, which are involved in right action, doing good and living well. It is
often contrasted with morality, which is the commonly shared set of rules and principles
shared within a community and taken for granted in assessing one’s own behaviour
and that of others. As defined, ethics can be thought of as systematic inquiry into the
foundations of morality and – where necessary – correction of the principles of morality
in the light of reason and evidence (Benn, 1998).

Ethics in this philosophical sense should not be confused with ‘professional ethics’.
Professionals such as doctors or lawyers may refer to conduct as ‘unethical’, by which
they mean that it violates the formal or informal norms of expected behaviour by members
of that profession, as laid out in codes of conduct or as inculcated through professional
training. This usage of the term ethics is analogous to the term morality as defined above.
Professional ethics (or, as I would prefer to say, professional morality) is referred to
as such to distinguish it from common morality, which is the morality shared by most
members of a community whether or not they are members of a profession. Philosophical
ethics may address questions of professional ethics, but professional ethics need not be
philosophical. In recent years there has been a considerable growth in teaching of and
research into professional ethics – for example, medical ethics, which is now taught
formally in all medical schools in the United Kingdom. Professional ethics is developed
in close liaison with the legal and regulatory requirements on professionals.

One important part of philosophical ethics is bioethics. Bioethics can be defined as the
application of principles and methods of analysis of philosophical ethics to the analysis of
moral and social problems arising in the life sciences and medicine. Genethics is therefore
part of bioethics.

The methods of bioethics are generally analytic and philosophical. Nevertheless, in
recent years considerable attention has been paid to the need for ethical arguments to
make use of the best quality social-scientific evidence: as has been said, good ethics
needs good facts. This is particularly important in the area of population and public
health genetics, since studies involve large numbers of participants, and are occasions of
potential controversy. Empirical research has some potential both to clarify what issues are
at stake in the participant community and also to build trust and confidence in the aims and
processes of research. Examples of such research include the large scale social survey
research using the Euro barometer survey into public attitudes and values concerning
biotechnology (Bauer and Gaskell, 2002) and qualitative interview studies into research
participants reasons for agreeing or refusing to take part in biobank research (Haimes and
Whong-Barr, 2004). The Wellcome Trust has funded a major programme of social research
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on genethics aspects of biobank research, summarised in Haimes and Williams (2006) and
on specific issues in pharmacogenomics research, summarised in UK Pharmacogenetics
Study Group (2006). Recent collections presenting empirical research from the United
Kingdom and other European countries are, Tutton and Corrigan (2004) and Ashcroft and
Hedgecoe (2006).

In addition to analytical and empirical methods, research in genethics necessarily
overlaps with research in law and public policy. There has been a considerable growth in
research in medical and biotechnology law over the past twenty years, using both standard
case and statute law resources and also, increasingly, the jurisprudence of human rights.
In the last ten years there have been a number of significant international human rights
declarations concerning genetics, and these are directly relevant to population genetic
research.

41.1.2 Models for Analysing the Ethics of Population Genetic Research

There are a number of different ways of conceiving what ethically is at stake in population
genetics research, each of which goes some way to shaping the regulatory and ethical
framework in which contemporary genetic research is done. We can start by categorising
these into two broad groups: benefit-maximisation models and risk control models. Benefit
maximisation-models of the ethics of population genetic research focus on the benefits
of such research, and seek ways to maximise these. Risk-control models identify specific
risks which may be involved in genetic research and seek to control and in many cases
minimise these. While these might be seen as complementary in that benefit-maximisation
models recognise risk-based constraints, and risk control models try to avoid strong risk
aversion, which might dilute any benefits accruing to such research to the point of futility,
nevertheless they differ in emphasis and orientation.

41.1.2.1 Risk Control Models

For historical reasons, I thinks it is arguable that risk-control models of genethics have
dominated discussion. We can identify a number of factors explaining this. The first is
the history of eugenics, especially in the way eugenic ideas were used to justify forced
sterilisations, barriers to ‘mixed’ or ‘inappropriate’ marriages, racial discrimination, abuse
of the mentally ill and learning disabled, up to mass killings of the genetically ‘unfit’
under the German Third Reich (Paul, 2002). Any genetic research in humans since the
Second World War has needed to establish the distance between its aims and those of
eugenics. Genetic research and genetic medicine is widely seen as an area in which serious
risks of personal harm and social injustice need to be forestalled or overcome. A second
factor is the history of the ethics of research on human subjects. Again because of the
Nazi experience (and parallel episodes in the Japanese empire, and subsequent morally
problematic experiments carried out during the Cold War by NATO and Warsaw Pact
countries and elsewhere), research on human beings has been considered intrinsically
risky (Rhodes, 2005). To the extent that population genetics for medical or non-medical
purposes involves engaging with human subjects, it is seen as a form of research on human
subjects and is governed by the research ethics risk control paradigm. Next, because of
the scale of modern population genetic research two further types of risk have come to
the fore. The first is the role of the state in funding, facilitating and regulating genetics
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research. Concerns of modern citizens about state interference in their lives are read
across into the field of genetics research. The second is the role of the commercial private
sector in developing technologies using genetic research and its applications. Concerns
about the self-interested behaviour of corporate actors are similarly read across into the
field of genetics research. These types of risk are exemplified by concerns about data
protection, confidentiality and privacy, intellectual and real property rights in samples,
data and discoveries, benefit sharing with donors of samples or data, exploitation of
poor individuals or groups (especially transnationally), state coercion and surveillance,
sharing of information with agencies or individuals for non-medical purposes and so on
(Bauer and Gaskell, 2002). Finally, there is a general concern with any kind of research
into the biological characteristics of human beings, that such research undermines human
identity or human dignity. This kind of risk is often invoked in religious contexts, but
it has also been influential in the framing of certain kinds of regulation, most notably
international patent law, and law and regulations prohibiting germline gene therapy and
reproductive cloning (Beyleveld and Brownsword, 2001). Unlike the first four kinds of
risk, this is not clearly linked to any specific historical or political experience, but may be
linked to a more general historical epoch often referred to as ‘modernity’, which many
intellectual historians associate with secularisation or with the ‘scientific revolution’ of the
sixteenth century. Further, this sort of risk is generally considered qualitatively rather than
quantitatively. Notionally it cannot be traded off against other benefits or risks, because
undermining human dignity (for instance by undermining the grounds for considering
human beings fundamentally equal and members of the same human family) would be
absolutely wrong. This sort of risk is held in mind especially in international human rights
declarations.

At this stage, my purpose in describing these five kinds of risk is not to argue about
their scope, significance and centrality to the ethics of genetics research, but rather to
argue that concentrating on these kinds of risk makes sense to many analysts of the ethics
of genetics for historical and political reasons. Because they are seen to be salient, they
frame and shape much of the discussion of the ethics of genetic research, and much of
the regulatory framework for genetic research is fixed by the concern for these risks and
solutions developed in other contexts for managing them.

As well as identifying these five kinds of risk by the context in which they arise and
the sorts of harm or moral danger involved, they can also be categorised by the level at
which they operate: individual, family, social group, society as a whole, humanity as a
whole. There is a pronounced tendency in the literature to concentrate in risks of harm
to identifiable individuals, and to regulate that risk of harm through a dependency on
the informed consent mechanism. As seen, it is harder to regulate risks which operate
at group level, and the troubles attending the extension of informed consent models to
group protection are well known and difficult.

41.1.2.2 Benefit Maximisation Models

Perhaps surprisingly, benefit-maximisation models are rarely articulated formally, but are
instead the ‘common sense of science’. Benefit maximisation arguments can appear in
various forms, from appeals to the future health benefits that will accrue if particular
research lines are (successfully) pursued, to appeals to a right to freedom of scien-
tific inquiry, to more bluntly economic arguments about the inefficiency of research
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ethics regulations. In the current state of ethical debate it is arguable that benefit-
maximisation models function in two ways: first, as a corrective to (excessive) caution
in risk-control models, and second, as substantive arguments about the best way to
get maximum value out of particular research resources. An example of the latter
type of argument is the argument about whether privately funded entrepreneurship and
‘pay-per-view’ style models of access to genetic databases by researchers, or alter-
natively open source, publicly funded databases, are more efficient and effective in
producing high quality genetic science and technologies (Sulston and Ferry, 2002;
Rabinow, 2003).

41.2 A CASE STUDY IN ETHICAL REGULATION OF POPULATION
GENETICS RESEARCH: UK BIOBANK’S ETHICS AND
GOVERNANCE FRAMEWORK

In order to understand the ways in which the different kinds of research risk frame the
governance of population genetic research, while retaining an intention to do research
that is maximally beneficial, it is helpful to consider a case study. The UK Biobank is
a major initiative in studying the interaction between genes and environment in a health
context, using a large cohort study drawn from the UK population. It is described on the
project’s website as follows:

UK Biobank is a long-term national project to build the world’s largest information resource
for medical researchers. It will follow the health of 500 000 volunteers aged 40–69 in the UK
for up to 30 years.

The UK Biobank is funded by the Department of Health, the Medical Research Council, the
Scottish Executive, and the Wellcome Trust medical research charity. The project will help
approved researchers to develop new and better ways of preventing, diagnosing and treating
common illnesses such as cancer, heart disease, diabetes and Alzheimer’s disease.1

On the website, the need for the UK Biobank is explained as follows:

UK Biobank is a medical research study of the impact on health of lifestyle, environment
and genes in 500 000 people currently aged 40–69 from all around the UK. This age group
is being studied because it involves people at risk of developing serious diseases – including
cancer, heart disease, stroke, diabetes, dementia – over the next few decades.

The UK National Health Service treats the single largest group of people anywhere in the
world, and keeps detailed records on all of them from birth to death. Consequently, follow-up
of UK Biobank participants through routine medical and other records will allow identification
of those who develop a wide range of disabling and life-threatening conditions. This will make
UK Biobank a uniquely valuable resource.

Scientists have known for many years that our risks of developing different diseases are due
to the complex combination of different factors: our lifestyle and environment; our personal
susceptibility (genes); and the play of chance (luck). Because UK Biobank will involve
thousands of people who develop any particular disease, it will be able to show more reliably
than ever before why some people develop that disease while others do not. This should help
to find new ways to prevent death and disability from many different conditions.2
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Recruitment and participation are described thus:

People to invite into UK Biobank are identified from central registries. The only information
provided, in confidence, to UK Biobank is name, address, sex, date of birth, and general
practice. These details are processed centrally (in accordance with the Data Protection Act)
and an invitation letter sent directly by UK Biobank. General practitioners are advised that
people registered with their practices may be invited to take part.

Taking part in UK Biobank involves participants in:

• Attending a local study assessment centre for about 90 minutes to answer some simple
questions, to have some standard measurements, and to give small samples of blood
(about 2 tablespoons) and urine;

• Agreeing to allow their health to be followed for many years by UK Biobank directly
through routine medical and other records;

• Being re-contacted by us to answer some additional questions and/or attend a repeat
assessment visit (which would be entirely optional).

A very wide range of tests will be done on the blood and urine samples for approved
medical research, and it is impossible to predict all of the uses to which the samples
might be put during the next few decades. But, since none of these individual test results
will be fed back to participants, their doctors or anyone else, taking part in UK Biobank
should not have any adverse effects on participants (including their employment status or
ability to get insurance).

By analysing the answers, measurements and samples collected from participants,
medical researchers will be able to work out why some people develop particular diseases
while others do not. Although taking part in UK Biobank may not help participants
directly, it should give future generations a much better chance of living their lives free
of diseases that disable and kill.3

The UK Biobank has a detailed governance framework, which I will discuss and
describe in detail below. For the moment, let us examine the issues this initial presentation
of the UK Biobank highlights as being ethically important or of interest to the general
reader of its website.

41.2.1 The Scientific and Clinical Value of the Research

The first thing emphasised in the public presentation of the Biobank is the expected
value of the research. Participants are invited to take part, and the public (and scientific
community) are invited to support the project, on the basis that the Biobank will produce
important new knowledge, which will make a significant contribution to the understanding,
prevention, diagnosis and treatment of major diseases.

In this regard, UK Biobank is typical of most human subjects research involving large
numbers of people (Tutton and Corrigan, 2004). To succeed, it must recruit a large number
of people, and secure their consent to a variety of investigations, some of which may be
painful or inconvenient, and some of which may require long-term contact. Biobank is
presented as a moral enterprise. It is thought not only to be scientifically interesting, but
also to be potentially useful and helpful in advancing a vital interest that all share, their
interest in being healthy and in receiving good medical care. A potential participant might
ask him or herself, ‘why should I volunteer?’ One answer might be: to help scientists do
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something they think is really interesting. For some research participants, this would be a
sufficient reason to take part. Many people do think that science is intrinsically valuable,
and that it is exciting and honourable to play a part in its advance. Yet in fact this appeal
to shared scientific curiosity is relatively rare in modern biomedical research. A risk of
selling science to the public on the grounds of utility is that scientific projects may fail, or
may fail to produce the expected or hoped for results. In clinical trials research, researchers
are aware of the ‘therapeutic misconception’ held by many patients, who believe that they
are receiving the treatment judged to be best for them, when in fact they are participating
in a trial which may or may not benefit them personally. This issue is less pertinent
in epidemiological research, but something similar may apply at the level of society at
large: social participation in research like Biobank is not guaranteed to benefit anyone
individually or as a collective. Yet researchers have an incentive to emphasise the chances
of success, and to play down the chances of failure.

Participants in research like Biobank who take part on the grounds of its expected
usefulness may perceive this utility in one of three ways. First, they may perceive
participation as useful to them personally, here and now. Second, they may perceive
participation as generating benefits, which will be useful to people like them (possibly
including themselves personally) in future. Third, they may perceive participation as
generating benefits, which may benefit people in future, without consideration of their
own personal interests. It is only rarely the case that there are direct personal benefits to
participating in epidemiological research, but see the discussion of feedback of results
to participants below. On the other hand, researchers and research participants alike
frequently emphasise the second and third kind of reason to take part as good reasons.

Participation on the basis of benefits to people like myself (possibly including me) in
future could be called solidary participation: I take part out of solidarity with people I
recognise as my peers and whose suffering I want to ease, on the basis that they would
do the same for me, or that I hope that they would. Participation on the basis of solidarity
is a theme that has long been emphasised in epidemiology, at least in the post-war
period in which epidemiology in the United Kingdom and other welfare states was linked
institutionally to social medicine, to socialised healthcare, and to social movements such
as the Trades Union movement (Ashcroft et al., 2000). Solidarity may be presented in a
more or less moralised form. On the one hand, many commentators would see solidarity
as the basis of any moral relationship with others, since what motivates us to help others is
an understanding of the plight of others based on empathy. On the other hand, solidarity
could be a much more pragmatic motive, where people reason on a quasi-contractual
basis that they are obliged to put into a social relationship more or less what they get
out of it. Some recent work argues that people have a duty to participate in research,
because they have benefited to date from research in which others have participated.
Solidary participation on this understanding is no more than enlightened self-interest.

Participation on the basis of benefits to others without consideration of the relationship
they may have to people can be described as altruistic participation. Appeals to pure
altruism are relatively rare, just as it was noted that appeals to shared curiosity are rare.
In practice, most appeals for research participation appeal either to direct self-interest
(through payment to participants in healthy volunteer research, or through an improved
chance of receiving the treatment that is most effective or safest in a clinical trial) or
to solidarity. The reasons for this are complex and are suspected to be not very well
understood, but part of the explanation may be the dominance of a ‘risk control’ approach



1332 R.E. ASHCROFT

to research ethics. The influential Declaration of Helsinki and most other statements of
research ethics emphasise that the welfare of the individual subject shall take precedence
over the interests of science and society. A consequence of this emphasis is that any
approach to research recruitment emphasises the interests of the participant rather than
the benefits to science or society, even where the interests of the participant are only
minimally affected, or where those interests are entirely consistent with maximising the
scientific and social benefits.

So far i have considered the ways in which appeal to scientific value figure in arguments
persuading participants to take part in Biobank, and in persuading the public to accept
Biobank as a national scientific project using public resources. It is important also to
emphasise the other side to this argument, which is that for these reasons to hold, it must
actually be the case that Biobank represents good value for money and a worthwhile
investment of scientific resources of time, talent and facilities. In general terms, it is
accepted that scientific projects must be well founded in terms of posing a well-defined
question, to which the answer is not already known, and which, if answered, would
generate new knowledge of scientific importance. The twin mechanisms of systematic
review (to establish what is already known, and to what degree of methodological
confidence) and peer review (to establish the credentials of the research team, the likely
scientific value of the research and the value for money the project offers) are intended
to ensure that scientific projects put to the public to invite participation are well founded
scientifically, and thus that the claims made about the utility of the research are as well
supported as is possible.

An important issue in genetic research, however, is that in many cases genetic sample
collections are built up not in the context of a specific research project, with tightly
designed objectives and research questions, but as resources for use in future unspecified
research (Gibbons et al., 2007). Sample collections may be made of those collected for
clinical or other purposes, and are turned into research resources retrospectively; or they
may be collected for use in one research project, and then reused in other future research
projects for other purposes; or they may directly be collected as a sample bank, with the
research uses to be specified later. For example, a researcher may build a collection of
samples taken from the brains of people with Parkinson’s disease, for use by Parkinson’s
disease researchers, without any specific research project in mind at the point of collection.
In a commercial clinical trial, the pharmaceutical company sponsoring the research may
build a collection of samples from participants in the trial for pharmacogenetics research
either prospectively or retrospectively, to help interpret their trial results and assist in
licensing applications. Here, the questions of utility may be more diffuse, and peer review,
if practised at all, would focus more on the governance of the collections, and on the
research projects, which are subsequently proposed that intend to use the collections.

We have seen how Biobank and other research projects start their approach to ethical
governance and recruitment by emphasising the scientific and public value of their
projects. The next topic addressed is the methodology of recruitment.

41.2.2 Recruitment of Participants

Biobank are at pains to emphasise how individuals are identified as possible participants.
This has two elements: selection and identification. Potential participants are selected
on the basis of the inclusion and exclusion criteria, which define the study population in
light of the research objectives of the study. Biobank intends to enrol 500 000 individuals,
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between 40 and 69 years of age, from all over the United Kingdom. Those excluded from
the study are those who are unable to give informed consent (for example, because
of diminished mental capacity), those too ill to take part in data collection and those
who study recruiters deem uncomfortable with any of the conditions of participation.
The latter exclusion essentially is intended to exclude people whom it is felt would
prefer not to consent, or seem not to understand what is required of them, but who
nonetheless seem for one reason or another to be giving their consent. These are
very broad inclusion criteria, as is appropriate for a study, which intends a rather
comprehensive analysis of the relationship between physical and mental health, lifestyle
and environmental factors and genotype. Other studies might have more restrictive
inclusion criteria. Case-control studies, for instance, where ‘cases’ must meet defined
clinical or other criteria for inclusion and where ‘controls’ must be comparable to selected
cases, will have much more specific inclusion and exclusion criteria. In the context of
controlled clinical trials there are important issues concerning the fairness of inclusion
and exclusion criteria in terms of the distribution of the risks and benefits of research
to (non-)participants. This is less of a significant issue in epidemiological research,
but does arise in the context of the interpretation of findings, which will be described
below.

A more important question concerns how individuals eligible for participation are
identified as suitable for recruitment, and how they are then approached. Some studies
simply ask people to volunteer, through placing advertisements. It is up to each individual
to decide whether they are eligible and interested, and then to contact researchers. For most
purposes this is not adequate in terms of constructing an unbiased sample for research, so
the practical issue is how to identify potential research participants, and then to contact
them, without breaching norms of confidentiality and law relating to data protection. If
potential participants are identified through public information (such as electoral rolls or
telephone directories), this is rarely a significant issue. However, where participants may
be identified through information not in the public domain, such as personal medical
records, the situation may be complicated. For a researcher who would not have access
to this information routinely (for instance, in the case of medical records, because he or
she does not have clinical care of these patients), individual consent might be required
for researcher access to these records; but the researcher can only know which records
(or which patients) he or she would like to see, and thus whose consent is needed, when
he or she has had the chance to look at the records. In practice, pragmatic solutions to
this Catch-22 need to be found: either someone who has right of access to the set of
records preselects the individuals for the researcher and makes the first approach to them
to obtain consent to the researcher approaching them, or actually to enrol them into the
study, or the researcher is given a contract with the record-holding organisation that allows
them to see records and places them under a contractual duty not to misuse the records
outside the terms of the contract. Under some circumstances, it might be that a research
project is of such public importance that enrolment of participants may take place without
their consent (if this involves data extraction from records only). Many countries have
regulations in place to permit this. However, in the case of genetics research, while this
method might be used to allow data extraction to identify individuals who are potential
research participant, actual recruitment into the research would almost always involve a
direct approach to the individuals and the seeking of their consent.
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The principal exception to these rules about recruitment of participants are where the
samples to be used are de-identified, in such a way that re-identification of individuals is
impossible. Normally this would occur when a sample bank is used, rather than samples
being collected for a specific research project.

41.2.3 Consent

The central element to the ethics of genetic sample based research is – inevitably –
consent. Consent in epidemiological and genetic research has been much debated in
recent years (O’Neill, 2002; McHale, 2004; Gibbons et al., 2005). This is in part because
genetic research poses new issues, and in part because of the social and economic trends
providing the context against which genetic research takes place now.

The standard requirements for a valid informed consent concern (a) the mental capacity
of the individual to give consent to the research participation; (b) the voluntariness of the
decision; and (c) the information necessary to make a decision (Jackson, 2006).

Mental capacity is a complex topic, and could be treated at length, but for present a
few simple points are sufficient. Mental capacity is the ability to understand and retain
the information one is given to make a decision, to believe it, and to weigh it and make
a choice. A consequence of this definition is that capacity is relative to the nature of the
decision being made: it is much easier to show that someone has the capacity to buy
a newspaper than it is to show that that they have the capacity to consent to a heart
transplant. So one does not simply have ‘mental capacity’, but rather, under a particular
set of circumstances, one can be said to have the capacity to make this sort of decision.
In a medical context, adults are presumed to have mental capacity to make any decision
that they may be asked to make, and considerable evidence and inquiry may be needed
to show that they lack mental capacity to make that decision. This is true even of people
with a psychiatric disorder. In the case of children, for the most part, the opposite is true:
a child under 18 (or, for many purposes, under 16) has to be shown to have the ability to
make a decision, and is presumed to lack that capacity. For medical research purposes,
these assumptions about adults, children and mental capacity are controversial. Should it,
for instance, be assumed that research is necessarily harder to understand than ordinary
clinical treatment? Surely not. But some research is highly complex. Moreover, what may
be difficult to understand is that enrolment in research is voluntary, that according to all
research guidance it is clear that patients are not to be compelled to take part in research,
or threatened with poor treatment if they refuse, or forbidden to leave research once it
is started. Patients (in particular) may believe that participation is either obligatory, or
necessarily in their best interests, or that they ‘owe’ their doctor something, when none
of these need be true. (This, again, is the ‘therapeutic misconception’ mentioned above.)
So what may be the stumbling block in determining capacity is not the complexity of
the technical information, but the changed relationship between researcher and participant
(where it was doctor–patient, it is now a rather different relationship between researcher
and participant).

We can debate whether this is an issue of capacity, or rather one of voluntariness. In
practice, since most epidemiological research is non-therapeutic, people who lack capacity
are simply excluded from research (unless the research links specifically to the reasons for
their incapacity – as in some psychiatric genetic research), since participation in research
can rarely be shown to be in the individual’s best interest. This would be the test of
whether someone can be enrolled in research when they lack mental capacity. A finer
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grained interpretation of this condition can be developed, as in guidelines from the UK
Medical Research Council and other similar bodies (Medical Research Council, 1991).
On this interpretation, a person lacking capacity to consent to a research project can be
included in the research if it is in their best interests, or if the risks are minimal and
this research cannot be conducted in people with capacity and this research would benefit
others in future with a similar condition and participation is not against the individual’s
interests. Under some circumstances research, which is not minimal risk can be permitted,
but there would have to be a compelling case made about why this research was essential
for the welfare of people suffering from this condition under investigation and there was
no other way to carry it out or to resolve the problem under study.

A related difficult issue concerns the achievement at a later date of capacity by someone
enrolled in a study while lacking capacity. For example, a child might be enrolled in a
study at birth. When the child reaches majority, it is sometimes argued (as in the Icelandic
DNA database, for example) that the now adult individual should have the power to
withdraw the consent given on their behalf, or to ratify it. This raises complex issues
concerning what it actually means to leave a study in this context, as it will discussed
below, but also the wider question of how far ‘proxy consent’ can really be considered
valid, and how far parents (or carers) can choose authoritatively for their children (or
incapacitated relative) (Ross, 1998; Archard, 2004).

The voluntariness condition is less controversial. In practice, people may be under a
variety of pressures to participate, but these would not normally amount to coercion. It
is well known that some people are more successful at recruiting research participants
than others, other things being equal, and how far this is due to personal charm or to
conveying the importance of the research or a low tolerance to taking no for an answer
is often difficult to discern! Ethical concern tends to be directed at formal obstacles to
voluntariness. Since the Nuremberg Code of 1947, all research ethics guidelines have
insisted that people who take part in research should be free to leave it at any time, in
the interests of allowing people to change their minds or go back on decisions they regret
or – in the worst case – were suborned into making (Marks, 2006). This poses a difficult
challenge in epidemiological research. Since such research depends on the collection of
large data-sets and the analysis of such sets as collections of data, often longitudinally, it
is not always clear what ‘freedom to leave’ means. Clearly it can mean that once a person
leaves the study, no new data on them can be collected, but existing data can continue
to be used. Or it might mean, more permissively, that once they leave, further data on
them may be collected from routine data without further contact with the person. Or it
might mean, more restrictively, that once they leave existing data on that person should
be removed from the data-set (UK Biobank Ethics and Governance Council, 2006). The
standard view is that the existing data can be used once the person has decided to leave
the study, and that it cannot be removed. To remove the data would compromise the
integrity of the data-set, and may actually be impossible for technical reasons, if data
once added are de-identified. In more principled terms, it is not clear that the person has
a right to request that their data should be removed: firstly, that they agreed to that data
being used and cannot retrospectively revoke that agreement, and secondly, that although
the data may be derived from them, they are not owned by them, but by the researcher
in whom intellectual property in that data resides. What is being negotiated here is the
meaning of ‘leaving the study’. The normal approach here is to be reasonably explicit
about what agreeing to take part in the study amounts to, and about what leaving the study
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amounts to. Nonetheless, it is possible to imagine circumstances under which someone
loses their trust in the researcher or the research project to the extent that they feel that
they have been misled. They might then reasonably say that the data was collected under
false pretences, and that it should be deleted. This might arise in a study of race/ethnic
differences, for instance, where a person feels that the study undermined the dignity or
reputation of their race/ethnic group in a way they could not foresee and were not warned
about. Similarly, it might arise where a child was recruited into a study by his or her
parents in early childhood, and may at adulthood wish to remove his or her data from the
study, which were collected without his or her consent.

A second issue of voluntariness concerns incentives to participate. These may be both
formal and informal. Formal incentives, in the form of payments or offers of services
in exchange for agreement to participate, are controversial for two main reasons. Firstly,
many epidemiologists would feel that people should participate in research for solidary or
altruistic reasons, and offering payments, gifts or in-kind exchanges devalues such reasons
for participation. They would argue that this discourages people from participating in
research unless there is something in it for them. Secondly, ethicists tend to worry that
people who take part when there is an incentive scheme are doing so in order to get the
incentive, rather than with full understanding of the risks and benefits of participation. The
greater the incentive, the greater the risk that this may occur, up to the point where people
put themselves knowingly in danger merely because they want or need the incentive.
Of course, this is the situation with most phase I drug research and many kinds of
employment. But this is felt to be regrettable, if necessary, and not something to be
expanded. One hard issue here is that it is almost, if not actually, impossible to draw a
line separating reasonable from coercive levels of inducement.

Informal incentives to participate comprise reasons to participate in the research, which
are formally part of the research protocol itself, but which are attractive to participants
for reasons unconnected with the research. For example, in many epidemiological studies,
such as Biobank, participation in the research can involve the collection of vital statistics
and medical examinations for the purposes of collecting baseline and study time-point
data, but which are also (potentially) useful health screening data for the research
participants. Many studies are attractive to participants because they are getting free, or
more than usually convenient, ‘health checks’. Sometimes, participants may also believe
that they are getting access to tests or checks on their health that are not normally available.
This is particularly the case in some genetic studies investigating risk factors for common
diseases. A patient in a study of the genetic risks for colon cancer, for example, may
believe that they will be given individual feedback on their genotype, which would allow
them to know whether they were at risk of developing colon cancer.

These informal incentives are highly problematic, and much discussed in the literature
(Haimes and Williams, 2006). It is generally accepted that data that can be interpreted
‘at the bedside’ and which are collected on an identifiable basis should be returned to the
participant on request, although if the participant does not want them, there is no need to
force these data on them. In most epidemiological research, the researcher is not seeing the
participant as a patient, and the researcher has no specific duty of care to the participant,
such that if the participant has a high blood glucose level they should be counselled to
see their general practitioner about possible diabetes mellitus. Indeed, for many of the
tests and measurements that may be done in a research project, the participant would
need to be counselled and consent obtained to the medical test rather than to research
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data collection only if this were done. Nonetheless, if data is collected, which incidentally
suggests that the participant would be wise to see a doctor, it is generally good practice
to pass this on. More controversy surrounds the feedback of research findings to patients,
which only arise out of the analysis of the research data itself. So should it appear that
a particular genotype is at greater risk of colon cancer than normal, there is not thought
to be any obligation to tell individual research participants with this genotype that they
need to see their doctor for further counselling and possible investigations. In part, this is
because the quality of such genetic testing in research is not at clinical grade. Participants
should normally be kept up to date with the progress of the research, in terms of key
findings for instance. But this level of feedback about the group as a whole would not
have implications for specific individuals. Or rather, it does not unless the individual were
to know that the genotype demonstrated to be predictive of colon cancer happened to be
the one he or she carried (Johnstone and Kaye, 2004).

One way to resolve all of this is to be quite explicit up front about what individuals
will be fed back and what they will not be fed back, and what participants should do
if they have further (medical) questions. However, this does not entirely address the
point of principle: do individuals have a right to the data that concerns their health
and genetic constitution? Do the researchers have a duty to give it to them? Within a
medical relationship, doctors are entitled to withhold information from patients if it may
be misinterpreted or if it would be psychologically damaging to the patient to receive
a piece of information, which they are ill-prepared to cope with. This entitlement is
somewhat controversial even within medicine (it is the so-called ‘therapeutic privilege’).
Where the researcher has no medical relationship with the participant it is even less clear
what the answer is. Current practice is not to feed back individual data directly to the
patient, but this may change. In the present context, what is clear is that participants who
think they have an informal incentive to participate in a research project, which is that
they will get early access to innovative tests, need to be clearly told what they can and
cannot expect to receive and why.

This takes us to the most complex issue of all, what is the nature of the information
participants should receive in order that they can give a valid consent. The importance
of information is twofold. First, the quality of the information and style in which the
information is presented has a major influence on the potential participant’s ability to
understand what is being proposed, and consequently on the likelihood that they agree to
take part. Second, the information given defines what it is the participant is consenting
to, and hence what that consent authorises the researcher to do in terms of investigations,
and how data and samples may be used in research. The latter issue has given rise to
heated debate.

One important feature of much epidemiological research is that data and samples hold
much of their value because they can be reused and reanalysed, either directly or in
combination with data collected for other purposes. Thus, a tissue sample collection
created for research on the consumption of salt and cardiovascular disease could be useful
to a researcher interested in the vascular aspects of Alzheimer’s disease. Yet the consent
taken for building the collection for the first purpose would not necessarily authorise the
use of the samples for the second purpose. A sample collection obtained and managed
by one research group could be useful to a different research group, possibly in another
country. A sample collection built up with public money could be transferred to a spin-
out company created by publicly funded researchers, and the samples become a valuable
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commercial resource; yet the samples were collected on the basis that these would be a
public resource rather than the capital for a commercial venture. In each case, the consent
volunteered by research participants may not authorise these changes of use, yet each
change might be seen by the researchers (and indeed by ethics committees and research
funders) as useful ways of getting the best value out of their investment in building up
the sample resource.

The problem here is that consent, to be valid in law, needs to be quite specific, whereas
what researchers typically need is a consent that is quite broad and durable in terms of
what it authorises in the short and long term. Different approaches have been tried to
get around this problem. One approach is to try to create ‘broad’ consents, which allow
participants to consent to a class of uses of their data and sample, rather than to only a
narrow and specific use within a tightly defined protocol. The broad consent is supported
by independent oversight by a research ethics committee and a governance process, which
protects the interests of sample donors or data subjects in place of the protection, which
a series of narrow and specific consents would give. This is largely the approach taken
by UK Biobank. Another approach is to require a new consent each time a new use of
the samples is proposed. In practice this would normally require each individual to be
recontacted by the research team. This is advantageous in terms of ensuring that each new
investigation is formally authorised by each participant, and it provides a mechanism for
the participant to leave, by reminding them that their continued participation is optional.
On the other hand, it is cumbersome and expensive, may cause attrition in the study
population, and may even be burdensome on participants who are willing to continue as
long as they are not bothered too often. This approach is taken in longitudinal studies
where recontact would take place in the normal course of events, for new questionnaires or
invasive investigations to take place. But in most epidemiological research, where direct
contact with participants is unusual after initial recruitment, this approach is unpopular
for pragmatic reasons.

The broad consent approach seems popular with the research community, and in many
ways is supported by empirical evidence about what research participants want to know.
What it does not address is another issue, viz. the ways consent addresses the issues of
most concern to research participants. Consent to participate in research, being developed
on the basis of the risk-control model appropriate to clinical trials, tends to focus on the
risks and benefits of research participation, the nature of the investigations a participant
will undergo, and other issues concerned with the personal safety and integrity of the
individual. However, for many research participants these are not the only important
issues. At least some research participants are interested in issues such as the possible
commercialisation of research findings, the possible uses of their data or samples in
research of which they may not approve. For instance, while a participant might be
entirely happy for their samples to be used in genetic research in cardiovascular disease,
they might disapprove of research in the genetic basis of intelligence, and thus the reuse
of their samples donated for the former by researchers working on the latter. Now, it is
reasonable to say that although participants are the donors of the samples, their donation
of the samples involves ceding control of those samples (ownership, if you like, although
notions of property in biological samples are controversial too), and beyond certain limits
they have no further say in what is done with those samples. Nevertheless, protecting and
promoting trust in the research enterprise and in specific researchers may involve giving
assurances to sample donors about the kinds of use that are foreseen in the long term,
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beyond the terms of narrow and specific consent in the short term and what kinds of use
are excluded. UK Biobank, for example, supplements specific informed consent with a
commitment to long-term engagement with participants through public announcements,
websites, newsletters and other methods.

41.2.4 Confidentiality and Security

One of the more practically important issues of concern to participants, which can have
major consequences for the governance of research sample collections, is confidentiality
(Laurie, 2002). A general principle of the management of confidential information, such
as medical records and genetic information, is that those who have access to it should
have access to it only on a need to know basis. This protects the subject of the information
from disclosure of information to parties who should not have access to particular items
of information. In the context of research, this means that personal information collected
or extracted for research purposes should be recorded in a way which minimises the
extent to which the information allows identification of the individual data subjects. There
is a tension in epidemiological research between the protection of individual privacy
and confidentiality by deidentification measures up to full anonymisation, and retention
of sufficient information that would allow informative analysis of data-sets, linkage of
different items of information, and (re)contact of individuals (for research purposes, or to
disclose clinically relevant information to the individual).

Two approaches are popular. One is to protect privacy through recording information in
minimally identifying form, relative to the kind of information required for the research
project (or sample bank). The advantage of this approach is that it builds in privacy
protection in a once-for-all way. The disadvantage is that it is relatively inflexible to
changes of protocol or for reuse or reanalysis. The other approach, often combined to
some extent with the first, is to protect privacy through access controls and through coding
so that linkage between records can be managed on a limited basis but database queries
are not permitted, which would allow identification of individuals. This is a technology-
based approach, although it is usual for senior management of the project, or, if it exists,
the external governance board, to ‘hold’ the key, which allows deanonymised relinkage,
and that this is done only in accordance with a defined protocol. One concern with this
approach is that technology-based solutions may be subject to attack, and that in some
ways they provide false reassurance about the security of a system which can always be
subject to human intervention or human error.4

41.3 STEWARDSHIP

Moving away from research participant related ethical issues, we turn to the value of
the research resource created in research, which could be a data-set, a sample collection
or indeed a research protocol, which partners can sign up to in whole or in part. Much
debate has centred on the question of whether and how intellectual property rights should
be vested in such resources, and on how the value of these resources can be maintained
in the long term. There is no straightforward answer to these questions, but there is
consensus on one point, which is that resources created with public or charitable money
should normally be regarded as open access resources, and that licensing fees (if any)
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should only be levied to cover the costs of processing the requests and upkeep of the
research resource, on a non-profit basis. Open resources such as these typically also
stipulate that exclusive access licenses will not be granted, and often some requirement
is made that research findings and sometimes any additional data or samples collected in
the course of licensed research using the resource should be deposited with the resource
for future users to access. Some of the challenges here then turn not on use of and
access to the research resource, but in finding ways to guarantee its long-term viability.
Samples need to be stored, which costs money; and access systems also need maintenance
and oversight. At the end of a project lifetime, or when key personnel leave or retire,
sample or data collections can fall into disuse or disrepair. Most public research funders
(such as the UK Medical Research Council) now require detailed plans to be made for
the stewardship of research resources beyond the lifetime of their established funding or
identified management.

This issue of the stewardship of a collection relates to wider issues of scientific
research integrity: scientists are generally expected to share their data and teach their
techniques. This is for three reasons. Firstly, this provides external researchers with a
way of checking that research results are valid and non-fraudulent. Second, it allows
for the sharing of best practice, so as best to allow the rapid development of science.
Third, it encourages the sense of there being a ‘community of science’ engaged in
a common endeavour to advance humanity. Many critics of the commercialisation of
science, especially the use of restrictive contracts and intellectual property rights, are
generally concerned that this process undermines the three objectives stated here. On
the other hand, commercialisation provides its own incentives for entrepreneurship and
ingenuity, and can provide wider social benefits in terms of stimulating the technological
application of scientific knowledge.

41.3.1 Benefit Sharing

As well as the value of the research resource to researchers, and in many cases to
commercial companies, a database or sample collection represents an investment of time
and effort on the part of the participants. In many settings, particularly in the developing
world, there is a strong sense that researchers owe a duty of reciprocity to their participants
to share any financial or clinical benefits of research with their host communities. This may
be negotiated as part of ‘community consent’. In developed world settings, researchers
normally argue that they are dealing with individuals, that the contribution of any given
individual on an identifiable basis to a particular project is minimal, and that it is the
collected research resource, which has value as a composite. In addition, the research
may have been hosted using public infrastructure, and any commercial benefits deriving
from the infrastructure are taxed in such a way as to ensure the reinvestment of part of
the proceeds in the State. However, these arguments carry less weight where researchers
are doing research in a resource poor setting in another country. In such situations it
is arguable that the ratio between benefit accruing to the researcher and sponsor and
that accruing to research participants is far out of balance, and to expect participants
to donate samples altruistically when this may be the only exploitable resource they
have is unreasonable and unfair. Benefit sharing agreements may be quite complex and
difficult to enforce, especially when they are made between groups and researchers rather
than between individuals and researchers. Sometimes benefit sharing may involve money
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payments, but more often involve benefits in kind, such as the provision of hospital
facilities to a community, or other medical services (Parry, 2004).

41.3.2 Community Involvement

Community involvement has been advocated increasingly in recent years (Hansson,
2005; Haimes and Whong-Barr, 2004). In some developing world settings, community
consultation (sometimes involving ‘community consent’) has been seen as essential to the
‘license to do research’ in a setting, partly in view of the history of colonial exploitation of
poor or vulnerable communities. In the developed world, community consultation has been
seen as a useful method for building support for a project, encouraging recruitment, and
allowing feedback to participants. On occasion, researchers allow community consultation
to play a part in the governance of a project, although a more common approach is to
have one or two community members as members of the project steering committee or
ethics governance board.

41.4 WIDER SOCIAL ISSUES

Aside from the impact of the research on individual participants or on host communities,
there are wider social issues raised by genetics research. As noted at the beginning of
this chapter, genetics has many social and ethical issues associated with it. For present
purposes, I will concentrate on just two: geneticisation and race/ethnicity in genetics
research.

41.4.1 Geneticisation

Geneticisation is the process of transforming diseases or other physiological or psycho-
logical traits into traits defined by their genetic causes or risk factors. This is a complex
social process, rarely involving straightforward genetic reductionism, but often involving a
focussing of attention on the genetic factors influencing a trait and away from other social
or biological factors. Genetic reductionism is, roughly, the attempt to explain any phys-
iological or psychological trait exclusively or principally on the basis of genetic factors
(Moss, 2003; Sarkar, 1998). For example, starting from the observation that most crimes
of violence are committed by men, one could seek to show that the explanation of this is
genetic (possibly invoking evolutionary mechanisms) and then to identify specific genes
(or gene variants), which account for this, and then proceed to identify individuals with
these genes (or gene variants) as being potentially violent criminals, and managing them
accordingly. Geneticisation of violent crime need not take as straightforward an approach
as this (Wasserman and Wachbroit, 2001). It might well recognise that many factors other
than genes are relevant in the causal pathway to violent criminal acts, but nonetheless
emphasise that genes are possibly the factor most mutable and controllable in a societal
response to violent crime. To take a more medical example, there are many risk factors for
cardiovascular disease, from diet, to stress, to genetic constitution. A geneticised approach
to cardioprevention would focus on identifying alleles creating higher than average risk
of cardiovascular disease, and screen for the presence of these alleles in a population, and
tailor prevention strategies accordingly. This would contrast with a more classical public
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health approach of changing the behaviour of an entire population in order to reduce the
number of cases of heart disease (Khoury et al., 2000).

Geneticisation is clearly a process of some importance, and to the extent that it is
more sophisticated than simple genetic reductionism, and allows for non-deterministic
causality between gene and phenotype, a language of risk rather than certainty, and
the role of other social and biological mediating factors, it causes less concern than
genetic reductionism. Genetic reductionism can be criticised on many grounds, but
socially the principle risk is that by focussing on heritable characters, it causes increased
attention to be paid to reproductive policy and less attention to be paid to social
policy. Geneticisation need not have this consequence. Nevertheless, attention to genetic
factors over social factors may have the consequences of increased emphasis on indi-
vidual health and behaviour over social conditions, increased emphasis on personal
responsibility for health rather than on collective responsibility for health services
and environmental conditions, emphasis on high technology interventions over low-
cost social interventions and so on (Novas and Rose, 2000; Hedgecoe, 2001; ten
Have, 2001).

While these criticisms have merit in many cases, they risk downplaying the utility that
genetic research can have even in social public health. In some respects it is better to
think of the geneticisation thesis as a descriptive claim about an ongoing social process
rather than as a direct normative critique of such a process. That said, it does capture a
worry that is frequently expressed about an individualistic trend in modern healthcare.
Interestingly, this contrasts with the arguments frequently raised by genetics researchers
about the social basis of their research in trust, community cooperation, benefit sharing
and open source data collection and so on.

41.4.2 Race, Ethnicity and Genetics

Any scientific research on racial or ethnic difference is inherently controversial, but
genetic research, because of the history of eugenics and biological racism, is especially so
(Macbeth and Shetty, 2001; Ellison and Goodman, 2006; see also Chapter 31). Central
elements of the controversy include the following. Firstly, there is controversy over
whether any biological sense can be attributed to socially prevalent conceptions of race,
and hence whether scientific inquiry into purported biological concepts of race can have
any rational justification (Marks, 1995; Nature Genetics, 2004). Second, even allowing
that some biological concept of human variation along race-like lines can be defended,
there is a vexed question over whether the biological concepts map onto the concepts used
in ordinary social life (Smart et al., 2006; Royal, 2006). If they do, can science be seen
as supporting social attitudes to racial difference which may be morally and politically
problematic, and if they do not, does using a language so open to misinterpretation not
confuse issues in a dangerous way (Ashcroft, 2006). Third, assuming some rigorous
and value-neutral concept of racial or ethnic difference can be established, which is
biologically useful, do the ways in which these findings are then applied in medicine
and applied science make sense? And so on. One of the lessons of this complex debate
is quite general across human genetics research, which is that genetic research into the
biological bases of traits which are complex in their structure and in their meanings in
society is very difficult to carry out with ‘clean hands’. This raises large issues about
whether certain questions should not be investigated at all, or only with great care, and
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what ‘approaching an issue with great care’ means in terms of the social responsibilities
of scientists.

41.5 CONCLUSIONS

This chapter has necessarily been highly selective and rather discursive. It intends to give
a summary overview of some of the more important practical and social issues in the
conduct of statistical genetic and genetic sample based research. Although some of the
issues discussed are complex and confusing, three things remain clear. First, that public
trust in medical and biological research remains relatively high, in part because of the
care taken to engage with them about science and to maintain high ethical standards.
Although many of the issues in this chapter may seem frustratingly unresolved at the
level of theory, in practice there is considerable consensus about many of them. For
example, the UK Biobank Ethics and Governance Framework has been published for
about a year at the time of writing, following extensive consultation with the academic
community, commissioned surveys and focus groups, and direct public consultation, and
seems to have general support. Second, there is now an extensive and growing literature
of philosophical, ethical, legal and empirical research which can help frame and illuminate
the issues and help policy-makers, scientists and the public resolve them. Third, that it
remains crucial that scientists remain engaged with these debates, both in informing them
and in steering them in directions which will both control risks to participants and society,
and maximise the benefits that genetic research will generate.
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Insurance

A.S. Macdonald

Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh,
UK

As soon as DNA-based genetic testing became available, questions were asked about its use
by insurers to discriminate against carriers of deleterious alleles. The statistical interest in these
questions lies mainly in the application of genetic epidemiology to the actuarial models used to
price life and health insurance. This chapter surveys the relevant research, including early work
mostly focussed on single-gene disorders, and more recent attempts to predict the relevance of
multifactorial genetics to insurance practice.

42.1 PRINCIPLES OF INSURANCE

42.1.1 Long-term Insurance Pricing

Insurance is an unusual branch of commerce because the basis of its sound operation is
mathematical in nature. Just as airlines (say) must take the mathematics of aerodynamics as
they find it, insurance companies may be in peril if they ignore the actuarial mathematics
and statistics that govern their businesses. But actuaries do not deal with precise and
impersonal qualities like airflow over a wing; they deal with people and their personal
attributes, that lead to an assessment of the risk of making a claim under an insurance
contract. Some personal attributes (sex, race, disability) give rise to stronger sensitivities
than others (age, weight, smoking habits) and the experience of the last 10 years suggests
that any kind of personal genetic information falls in the first group.

The mathematical nature of insurance, and life insurance in particular, is straightfor-
ward. The simplest contract, called whole-of-life insurance, pays an agreed sum (the sum
assured) immediately on the death of the insured person. Suppose a person wishes to buy
whole-of-life insurance with sum assured S. The problem is to determine the premium P

to be paid at outset (in practice, premiums are usually payable monthly but we ignore this
complication). Death being certain, so the insurer will pay out S at some future time with
certainty. Intuitively the ‘fair’ premium before allowing for expenses, profit, etc. appears
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to be S. However, this takes no notice of the insurer’s ability to invest the premium P at
interest. Suppose the insurer can earn interest at rate i per year on invested funds. If the
insured person dies after exactly T years, the insurer will then have assets of P(1+ i)T ,
and will have to pay out S. The ‘fair’ premium that balances the books is clearly:

P = S(1+ i)−T . (42.1)

Future cashflows discounted to allow for interest, such as S(1+ i)−T , are called present
values. Equation (42.1) is an example of the actuarial ‘principle of equivalence’, in which
the present values of future income and future outgo are equated, giving an equation to be
solved for the unknown P . The problem here is that, except in very unusual circumstances,
T is not known in advance.

The problem is resolved by regarding T as a random variable, taking non-negative
values, possibly with an upper limit to represent a feasible lifespan. Then (1+ i)−T is
also a random variable, and the insurer’s books will balance ‘on average’ if the premium
charged is the expected value E[S(1+ i)−T ]. In other words, if the timing of any future
cashflows is uncertain, we equate the expected present values (EPVs) of income and
outgo.

This simple principle is widely applied in practice to insurances extending over very
long terms, typically covering the event of death (life insurance), onset of a serious disease
(critical illness insurance), inability to work (income protection or disability insurance)
and the need for long-term care (long-term care insurance). In all cases, the times or ages
at which the insured events may occur is a crucial element of the pricing problem. This
is what distinguishes life and related insurances from other familiar contracts such as
home or motor insurance, which usually do not extend cover beyond a year or two. In the
following, we will use the generic term life insurance to include all long-term insurance
covering illness, disability or death.

The opportunity to invest funds at interest is only one reason why the times of insured
events are important. Most life insurance contracts do not run for life, but expire at some
advanced age, often an anticipated retirement age. This introduces the possibility that
no payment will be made at all. For example, Table 42.1 shows the probabilities that a
healthy man of selected ages will die within 35 years, according to the AM92 life table
(based on the observation of men with certain types of life insurance contracts in the
United Kingdom in 1991–1994). This shows that many insurances will cover quite rare
events, whose occurrence or non-occurrence depends on the random future lifetime T , or
its analogues. It is evident that good estimates of the distribution of T (denoted FT (t))
and its analogues are needed. Table 42.1 also shows that the financial consequences of
inaccurate estimation of FT (t) could be severe; e.g. attributing, to a person of any given

Table 42.1 Probability that a healthy man
will die within 35 years, based on the AM92
life table.

Age Probability

20 0.042
25 0.067
30 0.111
35 0.186
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age, the mortality of a person 5 years younger, would erroneously reduce the probability of
their death within 35 years by about one-third, with a corresponding effect on premiums.

42.1.2 Life Insurance Underwriting

Estimating FT (t) is the basic problem of survival analysis; FT (t) itself is described
in a life table. Although life tables are often based on very large data sets (such as
national registries or insurance companies’ records) it is evident at once that heterogeneity
is an issue. The following are some of the factors known to influence mortality
and morbidity (some may be mutually confounding): age, sex, socio-economic class,
nationality, education, occupation, diet, smoking and drinking habits, exercise, obesity,
medical history, relatives’ medical histories, marital status, whether insured or not. For
clarity, we suppose individuals are labelled i = 1, 2, . . ., and with the ith person we
associate a vector zi = (z1

i , z
2
i , . . . , z

r
i ) representing the values of these or other covariates.

The distribution of T is now FT |z(t |z), depending on the covariates.
Underwriting is the process of obtaining information about risk factors (covariates)

and adjusting premiums accordingly. Faced with a multitude of possible risk factors,
the underwriter will usually focus on a small number, chosen because of known major
effect, correlation with other risk factors (hence suitability as a proxy), and availability of
data. Using more risk factors than necessary leads to extra expense. Suppose the first
u risk factors are chosen as the basis for underwriting, and define z′i = (z1

i , . . . , z
u
i )

and z′′i = (zu+1
i , . . . , zri ). Let the distribution of z′′ given z′ be Fz′′|z′(z′′|z′), among

those assumed to buy insurance. Suppose the present value of some insurance cashflow
depending on T is π(T ). Then the premium that the ith person ought to be charged under
the equivalence principle is the EPV:

P(z′i ) =
∫

z′′

∫
t

π(t) dFT |z(t |(z′i , z′′)) dF z′′|z′(z
′′|z′i). (42.2)

The actual calculation does not go quite like this, since z′′ is generally unobserved. Define:

GT |z′(t |z′) =
∫

z′′
FT |z(t |z) dF z′′|z′(z

′′|z′). (42.3)

Then the calculated premium ought to be:

P(z′i) =
∫
t

π(t) dGT |z′(t |z′i ). (42.4)

It is possible that more than u risk factors were modelled, given past data, and as a
result of the usual model selection process z′ was chosen as having adequate explanatory
power. Then the reduction step in (42.3) is, in principle, carried out explicitly and
could be revisited if needed. It is equally possible that only the risk factors z′ were
ever investigated, so GT (t; z′) was estimated directly and (42.3) represents completely
unobserved averaging.

Viewed as a prediction problem, (42.2) and (42.4) give correct answers only if the
distributions that appear in them are appropriate. Specifically: (1) the distribution that has
been estimated, GT |z′(t |z′), is the same in the future as it was in the past, or changes in
a predictable way; and (2) the density that averages out the unobserved heterogeneity,
Fz′′|z′(z′′|z′), is unchanging over time. We know that (1) is far from true, because there have
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been great changes in mortality rates over calendar time. Fortunately these have mostly
been decreases (longer lifetimes than predicted) so errors have been profitable for sellers
of life insurance. (Not so for sellers of pensions and annuities.) The truth, or otherwise, of
(2), is impossible to establish. It may be summed up as follows: premiums will be charged
correctly, if the underlying characteristics of the population who actually buy insurance in
future, are the same as those of the population used to estimate GT |z′(t |z′). This explains
why insurers often prefer to estimate life tables based on their own experience, rather
than external data, even if the latter is much more extensive. The insurer may not know
(for example) that heavy smokers are overrepresented among their customers. But as
long as they use life tables based on their own data (or adjust industry standard tables
appropriately) and as long as this behaviour does not change, they do not need to know.
However, ignorance of this kind can be uncomfortable.

If, for some reason, the distribution of the unobserved risk factors among those who
actually do buy insurance is F ∗z′′|z′(z′′|z′) rather than Fz′′|z′(z′′|z′), leading to a different
theoretical premium P ∗(z′i), a profit or loss will arise as a result of actually charging
P(z′i).

42.1.3 Familial and Genetic Risk Factors

Some of the most important risk factors used in life and health underwriting arise from an
applicant’s personal history, which we interpret broadly to include lifestyle and habits as
well as medical history. The most common approach is to charge different premiums based
on a small number of well-understood risk factors such as age, sex and smoking habits,
but otherwise to limit closer investigation of cases to a small proportion indicated by
significantly adverse responses to questions about health and medical history. However,
in more recent times ‘preferred lives’ underwriting has spread quite widely, in which
insurers more actively seek out persons with an advantageous risk profile. Leigh (1990)
gives a review of underwriting practice, while Brackenridge and Elder (1998) is a standard
reference on life insurance underwriting.

Since nearly all life and health insurance is bought by economically active adults
to protect dependents or to secure financial transactions, the genetic disorders that are
relevant are those with late onset, such that a person may be completely healthy at ages
when insurance is purchased. Thus most interest is focused on a small set of relatively
rare single-gene dominantly inherited disorders. In 1996, the genetics advisor to the
Association of British Insurers listed eight disorders as relevant to insurance, namely
Huntington’s disease, familial adenomatous polyposis, hereditary breast cancer, early-
onset Alzheimer’s disease, myotonic dystrophy, multiple endocrine neoplasia, hereditary
motor and sensory neuropathy and adult polycystic kidney disease. The last of these was
soon removed, since it is normally diagnosed by ultrasonography rather than by a DNA
test.

42.1.4 Adverse Selection

Losses arising through unobserved heterogeneity are called adverse selection, a term in
widespread use in economics. It can arise accidentally, or as a result of one party to a
contract deliberately withholding information from the other, or through the actions of
competitors in the market. For example, a motor dealer may conceal a car’s poor service
record, or their customer may conceal their own poor credit record. Similarly, a life insurer
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may conceal high charges behind complicated terms and conditions, or the buyer of life
insurance may fail to mention a poor health record. Sellers try to protect themselves by
demanding information – e.g. credit checks and insurance underwriting – with sanctions
if it is not given honestly and accurately. Buyers, who are often relatively powerless
individuals, look to laws, regulations and professional advisers for their protection.

A classic example of the insurance industry’s reaction to the mere possibility of adverse
selection arose in the United Kingdom, when in 1981 one life insurer introduced separate
premium rates for smokers and non-smokers. Those for non-smokers were lower than
any competitors’ premium rates (which was the point of the exercise) and those for
smokers were correspondingly higher. Other companies faced the prospect of losing all
their non-smoking customers to the innovator, and attracting an all-smoking clientele,
while charging premiums that assumed a ‘normal’ mix of smoking habits. Within a few
years, almost all companies charged different rates to smokers and non-smokers. There
is no evidence that adverse selection actually did appear, but the threat was enough.

The question of why someone wants to purchase insurance lies behind insurers’
concerns about adverse selection. By its nature, insurance covers reasonably rare events,
so a modest premium can secure a large amount of cover. Someone who knows they
are at high risk – either because they possess information and realise its implications,
or because they intend to commit fraud – undermines the sound business model. Not
surprisingly, insurers tend to resist suggestions that they should eschew the use of any
risk factor they think might be relevant, or that they be instructed to move a covariate from
z′ over to z′′. In reality, this only matters if the risk factor in question is likely to influence
the desire for insurance and motivate the informed individual to purchase it. Sometimes
this possibility is very plausible: intimations of mortality as we grow old mean that life
insurance without age discrimination would hardly be a feasible proposition. Sometimes
it is rather implausible: most smokers are aware that, as a group, they die earlier than
non-smokers but: (1) does that knowledge impel them to buy life insurance? and (2) if
not, would the sound basis of the business be threatened if we disallowed discrimination
against smokers?

The question that has fuelled the genetics and insurance debate is the following: where
does personal medical information in general, and genetic information in particular, lie
on this spectrum?

42.1.5 Family Medical Histories

For a long time before DNA-based genetic tests were developed, insurers had routinely
used family medical history in underwriting. The chief source of information was (and is)
a question on the proposal form which typically will ask about: (1) the ages at death and
causes of death of the applicant’s parents; and (2) whether a parent or sibling has suffered
from a disorder that might be inherited. Inquiries rarely if ever extend beyond first-degree
relatives, partly because of the difficulty of verifying and interpreting extended pedigrees.

Such family medical histories may disclose a risk of a Mendelian disorder, but they are
also strongly predictive of the risk of common diseases, such as coronary heart disease
(CHD). In the latter case, the familial link need not be genetic at all, but could lie in
shared environment, habits or socio-economic class.
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42.1.6 Legislation and Regulation

Sex and disability are qualities that have, in the past, been associated with discrimination
that is now deprecated in most modern societies, to the extent of being outlawed in many
jurisdictions. However, it is common for insurance companies to be allowed to use sex
and disability as risk factors, provided they can show evidence of a statistical or actuarial
nature that confirms their relevance. In some countries with such provisions, a commission
or tribunal may assess the evidence; in others the courts.

The question of whether various types of genetic information should be given similar
protection has been widely considered. Nys et al. (2002) give a recent survey of practice
in the European Union. The cases of Australia, Sweden and the United Kingdom are
perhaps of unusual interest, because in each country the task has fallen to a governmental
or legal commission, with some important differences of approach.

1. In the United Kingdom, the Human Genetics Commission (HGC) advises the
government on all aspects of genetics, including insurance questions. The insurance
industry has, since 1996, agreed to a moratorium on the use of DNA-based test results
in underwriting. Its current form, running from 2005 to 2011, has the following key
features: (1) insurers will not ask anyone to take a genetic test; (2) insurers will not
ask about test results acquired in the course of research trials; and (3) insurers will
not ask about existing test results unless a life insurance policy exceeds £500 000
sum assured, or other forms of insurance exceed £300 000 sum assured or equivalent.
However, the use of family medical history is unrestricted.

The UK government has set up the Genetics and Insurance Committee (GAIC) which
is responsible for deciding what genetic test results may be used for underwriting,
when sums assured exceed the limits mentioned above. It will consider applications
submitted to it by the insurance industry, against three criteria: (1) technical relevance:
does the test accurately measure the genetic information? (2) clinical relevance: does
a positive result in the test have likely future adverse implications for the health
of the individual? (3) actuarial relevance: does a positive result justify increased
premiums? Thus for the first time in the United Kingdom, discriminatory pricing has
to be justified in advance, rather than defended in court if challenged. To date GAIC
has approved only one test for use, that is for Huntington’s disease in the case of life
insurance.

2. In Sweden, similar arrangements are in place but family medical history may not
be used. In addition, long-term health insurance for children is sold in Sweden, and
genetic information may not be used at all in respect of these contracts. This is a rare
example of insurance possibly covering early-onset and recessive disorders.

3. The Australian Law Reform Commission (ALRC) reviewed all aspects of human
genetics and their reports (ALRC, 2001; 2002; 2003) are particularly useful refer-
ences. In respect of insurance, they recommended a system quite similar to that in
the United Kingdom.

Many of the social policy aspects of genetics and insurance are discussed in Daykin
et al. (2003) and Doble (2001) and official reports such as ALRC (2001; 2002; 2003),
HCSTC (1995; 2001), HGAC (1997) and HGC (2002).
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42.1.7 Quantitative Questions

By its nature, insurance practice seeks to quantify risk, and for that purpose to build
models of individual life histories. In this respect, actuaries have much the same interests
as epidemiologists. Two quantitative questions address the debate that has grown up
around genetics and insurance:

1. If insurers were allowed to use genetic information (including family history) to
underwrite insurance premiums, by how much would those premiums increase?

2. If insurers were not allowed to use genetic information to underwrite insurance
premiums, what additional costs might they face as a result of adverse selection?

42.2 ACTUARIAL MODELLING

42.2.1 Actuarial Models for Life and Health Insurance

Life and health insurances pay benefits either on the occurrence of an event, or during the
continuation of some status. The simplest example is death: life insurance will pay a lump
sum upon death, while an annuity or pension will continue to be paid until death. Other
events or states that can lead to benefits being paid are suffering one of a specified list
of severe illnesses (critical illness insurance); being unable to work (disability or income
protection insurance) and inability to care for oneself (long-term care insurance). In each
case, the actuary needs a model of an insured person’s life history, including all relevant
events.

The simplest such model was introduced in Section 42.1.1 to illustrate the statistical
principle of insurance, namely that a person’s remaining lifetime is represented by a
positive random variable T . A traditional life table is simply a tabulation of the survival
function ST (t) associated with T , defined by ST (t) = P[T > t]. Clearly this is the
complement of the distribution function FT (t) = P[T ≤ t]. Assuming T to have a density
fT (t) on a suitable age range, the hazard rate λ(t) is defined by λ(t) = fT (t)/ST (t). The
hazard rate has the following intuitive interpretation: conditional on being alive at time
(or age) t , the probability of dying by time t + dt is approximately λ(t)dt , for small dt .
Figure 42.1 illustrates this model, representing death as a transition between an ‘alive’
state and a ‘dead’ state, governed by the hazard rate λ(t).

Faced with more complicated types of insurance, other events have to be modelled and
a useful approach is to represent events in a life history as transitions between suitably
defined states. For example, in Figure 42.2 the ‘able’ state represents fitness to work, and
the ‘ill’ state represents inability to work. Under the simplest disability insurance policy,
the insured person would pay premiums while ‘able’ and receive regular benefits to replace
lost earnings while ‘ill’. It quickly becomes impractical to specify such extended models
using random times between transitions – analogues of T – as the basic quantities. For

0 = Alive 1 = Dead
l(t )

Figure 42.1 A two state model of mortality.
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0 = Able 1 = Ill

2 = Dead

l01(t )

l02(t ) l12(t )

l10(t )

Figure 42.2 A model of illness and death.

example, the number of events (transitions) that may occur in one person’s lifetime in the
model of Figure 42.2 is not even bounded. Instead it is much more convenient to specify
the transition intensities between each pair of states, here denoted λij (t) between states
i and j . These are natural quantities to estimate using occurrence-exposure rates, and if
they depend only on the insured person’s age the resulting model is Markov and most
quantities of actuarial interest can be computed numerically as the solutions of linear
ordinary differential equations. We mention the two most important examples (see Hoem
(1988) and Norberg (1995) for details).

1. Let pij (s, t) be the probability of being in state j at time t , conditional on being in
state i at time s (s ≤ t). Then Kolmogorov’s forward equations are:

∂

∂t
pij (s, t) =

∑
k �=j
pik(s, t)λkj (t)−

∑
k �=j
pij (s, t)λjk(t). (42.5)

2. Suppose a lump sum bij (t) is payable on transition from state i to state j at time t ,
and a continuous payment at rate bi(t) per year is made if the insured person is in
state i at time t (whether these cashflows are payable to or from the insured person
just depends on their signs; we assume positive cashflows are paid to the insured
person). Let V i(t) be the amount the insurance company must hold in reserve at
time t , to honour its future obligations, if the insured person is then in state i. (This
is called the prospective policy value, and may be thought of as the expected value of
the insurer’s future outgo, net of premiums received, allowing for interest.) Suppose
interest can be earned at the instantaneous rate δ per annum. Then Thiele’s equations
are:

d

dt
V i(t) = δV i(t)− bi(t)−

∑
j �= i
λij (t)

(
bij (t)+ V j (t)− V i(t)). (42.6)

In words, the reserve that must be held earns interest, but is depleted by the continuous
payments made as long as the insured person remains in state i, and also by the lump
sum payable on transition into any other state j . However, when such a transition
occurs the reserve that was held, V i(t), is released, but the reserve V j (t) required
by presence in the new state must now be held instead.
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State 0

Healthy

State 1

Contracted
breast cancer

State 2

Contracted
ovarian cancer

State 3
Contracted other

critical Illness
and lived 28 days

State 4

Dead

gl01(t )

gl02(t )

l03(t )

l04(t )

Figure 42.3 A model suitable for pricing critical illness insurance, with breast and ovarian cancer
selected as particular causes of claims. The superscript ‘g’ represents genotype.

For completeness, to illustrate the other insurance contract of practical importance,
Figure 42.3 shows a model suitable for pricing and reserving for critical illness insurance.
Here, breast and ovarian cancers are picked out as particular causes of claiming; all other
causes are combined into a transition into a single state. By letting the transition intensities
that govern onset of breast and ovarian cancer depend on genetype g, we can measure the
impact of known deleterious genotypes on insurance prices. Similar models can be set
up in respect of any genetic disorder, in respect of which the epidemiology is advanced
enough to furnish reasonable estimates of the onset rates. What might be regarded as
‘reasonable’ is a question that could have a bearing on the decisions made by GAIC in
the United Kingdom.

42.2.2 Parameterising Actuarial Models

Actuarial researchers almost never have access to pedigree data. Rare exceptions occur
when epidemiologists publish details of the pedigrees they have used (Gui and Macdonald,
2002a; Espinosa, 2006). Therefore, they rely on the epidemiological literature. Given
the nature of the models described previously, the parameters needed are: (1) age-
dependent rates of onset (equivalently, penetrance estimates); (2) duration-dependent rates
of mortality post-onset (age dependence may have to be considered too); and (3) mutation
frequencies.

Questions concerning known mutation carriers do not require knowledge of the mutation
frequencies, but questions concerning incomplete information do. This arises in two
circumstances:

1. The cost of adverse selection depends on the size of the group who may gain access
to insurance below cost.
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2. When a genetic disorder occurs as a rare subset of a common disorder (such as breast
cancer) then a family history does not identify the presence of a mutation, it just
alters the probability that a mutation is present.

Onset rates and mortality rates may be extracted from the literature by whatever means
present themselves, including when necessary being read from graphs (Macdonald (2003b)
discusses many of these issues). Occasionally point estimates of onset rates are given (e.g.
Ford et al., 1998) which can be used directly, but relative risks, Kaplan-Meier estimates
and odds ratios are also common. In many cases ascertainment bias is likely to be present,
that even the authors of the articles in question were unable to control, in which case the
premium rates obtained from the parameterised model are overstated, and some form of
sensitivity analysis is advisable, e.g. by assuming onset rates to be 50 % or less of those
estimated.

42.2.3 Market Models and Missing Information

Models such as those illustrated in Figures 42.1 to 42.3 may be used to represent the
life history of a person who possesses an insurance contract of the appropriate type.
They are adequate for determining premiums and reserves, provided the model has been
fully parameterised. However, they have to be extended to address questions of adverse
selection or underwriting based on family history.

Adverse selection depends on whether a person decides to buy insurance at a given
price, on the basis of the information they possess. Both the information and the decision,
therefore, have to be represented in the model. Figure 42.4 illustrates such a model, for
the simplest case of critical illness insurance. It represents a person’s life history in an
insurance market. They are assumed to have a known genotype gi , and the label i indexes
the states and the transition intensities. They start in state i0 at (say) age 20. As time
passes, they may decide to buy insurance in the normal way (state i1) or they may decide
to have a genetic test (state i2) and, once they know that their genotype is gi , then decide
to buy insurance (state i3). Once insured, they remain insured until some suitable age,
say 60 or 65, during which time they will receive the benefit if they avoid death (state i5)
and suffer a critical illness (state i4).

State i0State i1 State i2 State i 3

State i4

Not tested
not insured

Not tested
insured

Tested
not insured

Tested
insured

Dead

State i5

CI event

x+ tm
i01

x+ tm
i14

x+ tm
i15

x+ tm
i04 x+ tm

i05

x+ tm
i25x+ tm

i24
x+ tm
i34

x+ tm
i35

x+ tm
i02

x+ tm
i23

Figure 42.4 A Markov model of insurance purchase and critical illness (CI) insurance events for
a person with genotype gi .
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This model assumes the genotype gi to be fixed, even if not known to the individual
at outset. Each possible genotype defines a subset of the population of people who might
be active in the insurance market, and we set up such a model for each of them, with
transition intensities adjusted to represent each genotype. The probabilities of being in
any of the subgroups are just the population frequencies of the genotypes.

In fact we need to refine the partition of the population beyond that defined by genotype,
for two reasons: (1) we wish to allow for underwriting based on family history; and (2)
genetic testing is most likely to be taken up by people who have a family history of the
relevant disorder. An example of such a refinement is illustrated in Figure 42.5, in the case
of a dominantly inherited disorder of purely genetic origin (such as Huntington’s disease).
In such a case, we assume that ‘family history’ means an affected parent or sibling, and
that a healthy person with a family history is ‘at risk’ but inherited the mutation with
probability 1/2. The proportions assumed to be in each subgroup depend on the population
mutation frequency, bearing in mind that members of both ‘at risk’ subgroups have an
affected parent.

This model is flexible enough to answer many questions relating to single-gene
disorders.

1. The rate at which insurance is purchased in the ‘not at risk’ subgroup determines the
size of the insurance market.

2. The rate at which insurance is purchased by persons who have a family history, or
an adverse test result, and the average amount purchased, determines the extent of
adverse selection.

3. The rate of genetic testing, given a family history, can be adjusted to suit the clinical
approach to the disorder.

4. Underwriting classes are defined by collections of ‘insured’ states, within each of
which the same rate of premium is payable. For example, if insurers underwrite on
the basis of family history and there is no genetic testing, states 21, 23, 31 and 33

Not tested
not ins’d

At risk, mutation absent At risk, mutation present

State 24 State 25

State 20State 21 State 22 State 23
Not tested

insured
Tested

not ins’d
Tested
insured

DeadCI event
State 34 State 35

State 30State 31 State 32 State 33
Not tested
not ins’d

Not tested
insured

Tested
not ins’d

Tested
insured

DeadCI event

Not at risk

State 14 State 15

State 10State 11 State 12 State 13
Not tested
not ins’d

Not tested
insured

Tested
not ins’d

Tested
insured

DeadCI event

Figure 42.5 A Markov model allowing for a family history of a Mendelian disorder.
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would form the ‘family history’ underwriting class. The effect of introducing genetic
testing, and moratoria on the use of genetic information, can then be assessed by
changing the composition of the underwriting classes. See Macdonald (2003a) for
details.

The algorithm applied to the model is straightforward: the frequency p determines the
occupancy probabilities in states 10, 20 and 30 at birth. Kolmogorov’s equations solved
forward yield the occupancy probabilities in all states at all relevant ages, then Thiele’s
equations solved backwards from the age at which insurance expires yield EPVs of future
cashflows at all ages back to the age at which insurance purchasing commences. In fact,
since Thiele’s equations give the EPVs in all states, including the insured states, this
model subsumes that of Figure 42.3.

One slightly technical point arises in connection with premium rates. If level premiums
were charged depending on the age at which insurance was purchased, then at any age x,
the rate of premium cashflow in each insured state would be an average over the rates of
premium charged at all earlier ages, involving the age-dependent rate of purchase and the
probabilities of remaining in the insured state since purchase. This is feasible, but can be
avoided simply by charging a rate of premium equal to the weighted average intensity from
the insured states comprising an underwriting class, into the corresponding ‘critical illness
event’ states, the weights being the occupancy probabilities and the amounts assured. The
resulting cashflows are adapted to the Markov framework.

The model can be extended in several ways to meet more demanding problems. Some
examples are as follows (Gui, 2003; Gui et al., 2006; Gutiérrez and Macdonald, 2004;
2007; Lu, 2006).

1. Heterogeneous genetic disorders, where different mutations have different pene-
trances, can be handled by partitioning the population into more subgroups, adding
an extra pair of ‘at risk’ subgroups for each distinguishable mutation.

2. Genetic disorders that account for a small proportion of a common disease, such
as breast cancer, cause the problem that family history does not identify mutation-
carrying families. However, if the definition of ‘family history’ is precise enough,
e.g. ‘two or more first-degree relatives with breast or ovarian cancer before age 50’,
the onset of a family history can be treated as an event in the insured person’s life
history, and represented by transition into a ‘family history’ state.

3. By adding a transition from onset of the disorder to the ‘dead’ state, life insurance can
be modelled. This usually introduces duration dependence, therefore a semi-Markov
model.

4. In the case of progressive disorders, such as Huntington’s disease, a critical illness
insurance claim will usually come much later than onset of the first symptoms, since
it will depend on some advanced level of disability. If post-onset survival is modelled,
as in (3) above, then an accelerated lifetime model derived from this may be used to
model the timing of the insurance claim.

42.2.4 Modelling Strategies

The rarity of single-gene disorders of high relevance to insurance makes it implausible that
adverse selection in a well-developed insurance market will be so great as to disrupt it.
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This can be tested quite simply by choosing parameters for the model that are guaranteed
to be extreme, e.g. that 2 % of the population carry high-penetrance mutations and that
anyone with an adverse genetic test result will be quite likely to purchase insurance
quickly. If the cost of adverse selection, represented for example by premium rate
increases, is small, we can be fairly confident that adverse selection is manageable.
The advantage of this ‘top-down’ strategy is that it does not require detailed studies
of individual disorders to be undertaken, and for that reason it was the approach used
first. Macdonald (1997; 1999) suggested that 10 % was a very conservative upper limit
for premium rate increases in life insurance. Since improving longevity has resulted in
life insurance premiums falling by considerably more than this over two decades, that
particular market seems reasonably safe.

Some caveats must be entered. A similar outcome may be unlikely in a small, less
mature insurance market. But if extreme assumptions suggest that adverse selection could
be expensive, we learn nothing from the ‘top-down’ approach and must turn to the
more laborious ‘bottom-up’ strategy, in which the major relevant disorders are modelled
individually, to try to obtain a realistic estimate of likely costs. In the long run this is
a better basis for discussing genetics and insurance anyway, so it is a program worth
undertaking.

42.2.5 Statistical Issues

As mentioned above, the actuarial researcher rarely has access to the data underlying
published estimates of penetrance or onset rates. This makes it difficult to estimate
sample variances or confidence intervals for any of the actuarial quantities derived from
an epidemiological study, which might have been based on a relatively small number
of subjects. Perhaps because they spring from different traditions in actuarial science,
premium rates for non-life insurance (house, motor, etc.) have long been treated as
estimates in a fully statistical framework, but premiums for life insurance have not.
It seems appropriate to do so when considering medical underwriting on the basis of
epidemiological data.

Premium rates either are or are based upon EPVs, which are the solutions of Thiele’s
equations, so it is clear that they are very complicated functions of whatever data underlie
the transition intensities of the model. Two approaches, both based on bootstrapping, have
been suggested.

1. If a fully parametric model is used with pedigree data (Elston, 1973) the information
matrix will be estimated and can be used to bootstrap values of the parameters,
assumed to be multivariate normal.

2. If a Kaplan-Meier survival curve is obtained, and the underlying event times, numbers
of events and numbers at risk are available, various methods of simulation may be
employed. Lu (2006) and Lu et al. (2007) found that simple resampling and the so-
called weird bootstrap (Andersen et al., 1993) gave similar results, based on studies
of polycystic kidney disease.

It is clear that the absence of information about the sampling distribution of premium
rates is one of the least satisfactory aspects of actuarial modelling of genetic disorders,
but it is equally hard to overcome this disadvantage.
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42.2.6 Economics Issues

An important parameter in the models shown in Figures 42.4 and 42.5 is the rate at
which insurance is purchased normally, in the absence of any genetic or familial risk. In
particular, it influences the severity of any adverse selection. Very few studies exist from
which this quantity could be estimated, so in most applications of the model a plausible
but hypothetical value has been used. This is flawed from the point of view of economic
theory, because if adverse selection increases the price of insurance for everybody, the
demand for insurance on the part of low-risk individuals should decrease, hence the
‘normal’ rate of insurance purchase in the model. Since this increases the proportion of
high-risk individuals purchasing insurance, the premium should increase yet again, and
there is a risk of entering an ‘adverse selection spiral’, whose worst outcome would be
that the price of insurance should rise to the level of the highest-risk individuals.

Several authors have formulated economic market models to explore the nature of
any equilibria that emerge if genetic information is withheld from insurers, see Doherty
and Thistle (1996), Hoy and Polborn (2000) and Hoy and Witt (2005). The last of
these considered a specific disorder, namely breast cancer and the BRCA1/2 genes. They
modelled a life insurance market in which family background, disclosed to the insurer,
produced 13 categories of risk, but other genetic information (test results) was known
only by the applicant. In the presence of a high-risk group, the equilibrium insurance
premium was up to 297 % of the population weighted probability of death. De Jong
and Ferris (2006) suggested a very simple statistical adverse selection model based on
the correlation between a risk factor and the random amount of insurance sought, and
used it to model adverse selection. In the absence of data relating demand for insurance
to genetic risk their main example was the imposition of unisex pricing in the market
for annuities. Pauly et al. (2003) did obtain estimates of how demand for life insurance
might vary with BRCA1/2 genotype, applied in Viswanathan et al. (2007). Macdonald
and Tapadar (2006) used a simple utility model to map out risk thresholds below which
adverse selection was unlikely to appear, given a uniform insurance contract driven by
fixed need. They suggested that multifactorial disorders would not lead to an adverse
selection spiral.

42.3 EXAMPLES AND CONCLUSIONS

42.3.1 Single-gene Disorders

Tables 42.2 and 42.3 show some examples of critical illness insurance premium rates
given by models for selected single-gene disorders. They are expressed as percentages
of the standard premiums a healthy person would pay for the same contract. In a sense
these are worst-case examples, because premium increases in respect of life insurance are
often ameliorated by the significant chances of survival post-onset, but modelling of life
insurance is less complete.

In Table 42.2 we assume an adverse genotype to be known; this therefore represents the
hypothetical consequences of information that insurers in many countries may not use. In
each case a range is shown because of uncertainties within the models, of a non-statistical
nature. For example, different epidemiological studies may be used to parameterise the
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Table 42.2 Examples of premium ratings for CI insurance for female mutation carriers, as
percentages of standard rates..

Disorder Gene
Age 30

Term 30 years
Age 40

Term 20 years
Age 50

Term 10 years
(%) (%) (%)

APKD APKD1/2 335–435 332–468 297–422
BC/OC BRCA1 381–1110 355–1112 259–740
BC/OC BRCA2 252–578 296–768 352–1056
EOAD PSEN1 866–2040 1032–3022 1076–3714
HD IT15 (40 CAG) 165–268 169–298 133–247
HD IT15 (45 CAG) 635–1181 455–1018 224–630
HD IT15 (50 CAG) 1002–2007 591–1372 276–840

Sources: APKD, Gutiérrez and Macdonald (2003); BC/OC, Macdonald et al. (2003); EOAD, Gui and
Macdonald (2002b); HD, Gutiérrez and Macdonald (2004).

Table 42.3 Examples of premium ratings for CI insurance for female applicants with
a family history, as percentages of standard rates.

Disorder Gene
Age 30

Term 30 years
Age 40

Term 20 years
Age 50

Term 10 years
(%) (%) (%)

BC/OC BRCA1/2 103–184 – 102–158
EOAD PSEN1 432–769 363–605 153–198
HD IT15 203–296 142–202 107–128

Sources: BC/OC, Macdonald et al. (2003); EOAD, Gui and Macdonald (2002b); HD, Gutiérrez
and Macdonald (2004).

model (APKD), onset rates may be reduced if ascertainment bias is likely to be present
(breast/ovarian cancer, EOAD) or it may be uncertain at what stage in the progression of
a disease an insurance claim would succeed (Huntington’s disease). Since insurers would
decline to offer cover once the risk indicates a premium greater than about 350 % of the
standard, it is clear that large numbers of mutation carriers would be denied cover. (But
note that life insurance cover would generally be offered up to about 500 % of standard
premiums, so access to life insurance would be less restricted, albeit at a price.)

Table 42.3 assumes that only the presence of a family history (usually an affected
parent) is known; this therefore represents the consequences of information that insurers
in many countries may use. Access to critical illness cover is greatly eased, especially at
older ages. This is because premium rates are averaged over carriers and non-carriers of
mutations, and as persons at risk get older and remain healthy, the chance that they are
a mutation carrier falls to well below 1/2. There may also be an element of averaging
over more and less severe variants of a disease, since the precise causative mutations are
assumed to be unknown.

Table 42.4 shows examples of percentage premium increases that might fall upon all
policyholders, if severe adverse selection resulted from limiting access to certain genetic
test results. The cost is in two parts if family history as well as genetic test results may
not be used, because just adding high-risk individuals to the ‘standard’ insurance pool
will raise premiums, even if nobody changes their behaviour. The meaning of ‘severe’
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Table 42.4 Examples of percentage premium increases ratings for females in
a large CI insurance market, caused by severe adverse selection.

Disorder Gene

‘Lenient’
Moratorium on

genetic tests (%) Moratorium on family history

Pooling cost
(%)

Adverse selection
cost(%)

APKD APKD1/2 0.051–0.072 0.203–0.273 0.111–0.126
EOAD PSEN1 0.014–0.021 0.077–0.118 0.039–0.084
HD IT15 0.014–0.025 0.038–0.069 0.041–0.066

Sources: APKD, Gutiérrez and Macdonald (2003); EOAD, Gui and Macdonald (2002b);
HD, Gutiérrez and Macdonald (2004).

adverse selection is described in the studies cited, but it perhaps implies a level of rational
economic behaviour, not to mention ability to afford insurance, that a sceptic might doubt
would happen in practice. Hence these very small percentages argue against adverse
selection being a serious threat to the critical illness insurance market, let alone the life
insurance market. However, this does depend on: (1) the rarity of relevant disorders; and
(2) the significant size of these insurance markets: it might not hold in other circumstances.
The basic statistical laws that govern insurance, mentioned in Section 42.1.1, have not
altered; it just happens that the numbers are small.

42.3.2 Multifactorial Disorders

The models described above represent single-gene disorders well, because genotype and
family history partition the population into a small number of subgroups. They are in
principle capable of representing multifactorial disorders, but practical limitations are
imposed by increasing complexity, and the fact that current epidemiology does not so
often lead directly to usable onset rates. Therefore, such actuarial research as has been
done has always incorporated some hypothetical features.

1. Macdonald et al. (2005a; 2005b) modelled CHD using three risk factors assumed to
be static (sex, smoking status and body mass index) and three assumed to be dynamic
(i.e. changing through life: diabetes, two levels of hypercholesterolaemia and three
levels of hypertension). The model was parameterised using the Framingham data,
which does not include any genetic covariates. The hypothetical genetic component
of the model was to assume that some genotype would increase the intensities of
transition through the worsening risk factors by a factor of 5 or 50. Table 42.5 shows
some examples of the results using a factor of 5 in the form of the percentage
extra premium that would be charged, above the standard rate (therefore 110 %
in Table 42.2 or 42.3 would be +10 % here). The first column shows risk factors
already present in the person applying for insurance. What is most remarkable is the
negligible increase in premiums for someone presenting no risk factors. Other extra
premiums are reasonably consistent with many underwriting guidelines. Table 42.6,
by contrast, shows the effect of increasing by five times the direct risks of stroke
or heart attack (represented by the transition intensities into those states). The extra
premiums are markedly increased. The conclusion is that multifactorial disorders that
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Table 42.5 Premium ratings for males, non-smokers, normal body mass index (BMI) aged 35
at entry with policy term 10 years, under hypothetical assumptions of genetic influence increasing
the incidence of risk factors five times.

Premium rating factors with five times
the incidence rate of

Type 1 Type 2

Risk factors None H’chol H’tension diabetes diabetes
(%) (%) (%) (%) (%)

No risk factors +0 +5 +13 +2 +6
H’chol Cat 1 +3 +12 +17 +5 +9
Type 1 diabetes +298 +304 +314 – –
Type 2 diabetes +67 +73 +84 – –
H’tension Cat 1 +6 +12 +29 +8 +12
H’chol Cat 2 +25 – +45 +28 +32
H’chol Cat 1 and type 1 diabetes +302 +313 +320 – –
H’chol Cat 1 and type 2 diabetes +71 +82 +89 – –
H’chol Cat 1 and H’tension Cat 1 +9 +19 +34 +11 +15
H’tension Cat 1 and type 1 diabetes +305 +313 +336 – –
H’tension Cat 1 and type 2 diabetes +74 +82 +105 – –
H’tension Cat 2 +34 +44 +53 +37 +41
H’chol Cat 2 and type 1 diabetes +330 – +356 – –
H’chol Cat 2 and type 2 diabetes +99 – +125 – –
H’chol Cat 2 and H’tension Cat 1 +34 – +70 +37 +41
H’tension Cat 1, H’chol Cat 1, type 1 diabetes +309 +322 +342 – –
H’tension Cat 1, H’chol Cat 1, type 2 diabetes +78 +91 +112 – –
H’tension Cat 2 and H’chol Cat 1 +40 +56 +60 +42 +47
H’tension Cat 2 and type 1 diabetes +342 +354 +368 – –
H’tension Cat 2 and type 2 diabetes +111 +124 +137 – –
H’tension Cat 3 +81 +95 – +84 +90
H’chol Cat 2, H’tension Cat 1, type 1 diabetes +342 – +388 – –
H’chol Cat 2, H’tension Cat 1, type 2 diabetes +111 – +158 – –
H’chol Cat 2 and H’tension Cat 2 +81 – +108 +84 +89
H’tension Cat 2, H’chol Cat 1 and type 1

diabetes
+349 +370 +376 – –

H’tension Cat 2, H’chol Cat 1 and type 2
diabetes

+118 +139 +146 – –

H’tension Cat 3 and H’chol Cat 1 +89 +111 – +91 +97
H’tension Cat 3 and type 1 diabetes +407 +423 – – –
H’tension Cat 3 and type 2 diabetes +176 +193 – – –
H’tension Cat 2, and H’chol Cat 2 and type 1

diabetes
+402 – +438 – –

H’tension Cat 2, and H’chol Cat 2 and type 2
diabetes

+172 – +207 – –

H’tension Cat 3 and H’chol Cat 2 +147 – – +150 +157
H’tension Cat 3, H’chol Cat 1, type 1 diabetes +416 +445 – – –
H’tension Cat 3, H’chol Cat 1, type 2 diabetes +185 +214 – – –

Source: Macdonald et al. (2005b).
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Table 42.6 Premium ratings for males, non-smokers, normal BMI aged 35 at entry with
policy term 10 years, under hypothetical assumptions of genetic influence increasing the
incidence of CHD and stroke five times.

Premium rating factors with five times
the incidence rate of

CHD modified by the presence of

Type 1 Type 2

Risk factors None CHD Stroke H’chol H’tension diab diab
(%) (%) (%) (%) (%) (%) (%)

No risk factors +0 +142 +37 +26 +29 +1 +5
H’chol Cat 1 +3 +156 +40 +157 +35 +4 +8
Type 1 diabetes +298 +481 +351 +331 +334 +481 –
Type 2 diabetes +67 +250 +121 +100 +104 – +250
H’tension Cat 1 +6 +168 +44 +36 +168 – +11
H’chol Cat 2 +25 +267 +62 +267 +74 +26 +33
H’chol Cat 1 and type 1

diabetes
+302 +499 +355 +499 +342 +499 –

H’chol Cat 1 and type 2
diabetes

+71 +268 +124 +268 +111 – +268

H’chol Cat 1 and
H’tension Cat 1

+9 +184 +47 +184 +184 +10 +15

H’tension Cat 1 and type
1 diabetes

+305 +513 +361 +343 +513 +513 –

H’tension Cat 1 and type
2 diabetes

+74 +283 +130 +113 +283 – +283

H’tension Cat 2 +34 +298 +83 +82 +298 +35 +43
H’chol Cat 2 and type 1

diabetes
+330 +641 +384 +641 +392 +641 –

H’chol Cat 2 and type 2
diabetes

+99 +411 +153 +411 +161 – +411

H’chol Cat 2 and
H’tension Cat 1

+34 +309 +73 +309 +309 +35 +44

H’tension Cat 1, H’chol
Cat 1, type 1 diabetes

+309 +534 +365 +534 +534 +534 –

H’tension Cat 1, H’chol
Cat 1, type 2 diabetes

+78 +304 +134 +304 +304 – +304

H’tension Cat 2 and
H’chol Cat 1

+40 +324 +89 +324 +324 – +49

H’tension Cat 2 and type
1 diabetes

+342 +681 +414 +403 +681 +681 –

H’tension Cat 2 and type
2 diabetes

+111 +451 +183 +173 +451 – +451

H’tension Cat 3 +81 +450 +213 +147 +450 +82 +93
H’chol Cat 2, H’tension

Cat 1, type 1 diabetes
+342 +694 +398 +694 +694 +694 –

(continued overleaf )
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Table 42.6 (continued ).

H’chol Cat 2, H’tension
Cat 1, type 2 diabetes

+111 +465 +167 +465 +465 – +465

H’chol Cat 2 and
H’tension Cat 2

+81 +528 +130 +528 +528 +82 +96

H’tension Cat 2, H’chol
Cat 1 and type 1
diabetes

+349 +714 +421 +714 +714 +714 –

H’tension Cat 2, H’chol
Cat 1 and type 2
diabetes

+118 +485 +190 +485 +485 – +485

H’tension Cat 3 and
H’chol Cat 1

+89 +485 +220 +485 +485 +90 +102

H’tension Cat 3 and type
1 diabetes

+407 +881 +598 +489 +881 +881

H’tension Cat 3 and type
2 diabetes

+176 +651 +368 +259 +651 – +651

H’tension Cat 2, and
H’chol Cat 2 and type
1 diabetes

+402 +976 +474 +976 +976 +976 –

H’tension Cat 2, and
H’chol Cat 2 and type
2 diabetes

+172 +747 +243 +747 +747 – +747

H’tension Cat 3 and
H’chol Cat 2

+147 +771 +278 +771 +771 +148 +166

H’tension Cat 3, H’chol
Cat 1, type 1 diabetes

+416 +925 +608 +925 +925 +925 –

H’tension Cat 3, H’chol
Cat 1, type 2 diabetes

+185 +696 +377 +696 +696 – +696

H’tension Cat 3, H’chol
Cat 2 and type 1
diabetes

+491 +1293 +682 +1293 +1293 +1293 –

H’tension Cat 3, H’chol
Cat 2 and type 2
diabetes

+260 +1064 +452 +1064 +1064 – +1064

Source: Macdonald et al. (2005b).

act by modifying risk factors for a disease, rather than the disease outcome itself,
present significantly more manageable insurance risks. In particular, the kinds of
simple models of disease onset applicable in the study of single-gene disorders may
be misleading if they are naively applied to the study of multifactorial disorders.

2. Great interest currently centres on large-scale prospective cohort studies in several
countries. In the United Kingdom, the Biobank project will recruit 500 000 people
aged 40–70, and track them for 10 years, with linkage to national health registers.
The resulting data will be made available for analysis in later studies, presumed to be
of nested case-control type. Macdonald et al. (2006) introduced a hypothetical 2× 2
gene–environment model of heart attack risk, and simulated outcomes of the UK
Biobank study. The question of interest was as follows: will the kind of case-control
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studies likely to follow UK Biobank identify different levels of risk that both insurers
and GAIC (in the United Kingdom) might regard as relevant and reliable? The answer
was ‘doubtful’. Only very large studies had sufficient power to pick out the modestly
elevated risk, and that was in the context of a simplified genetic model more akin
to a single-gene disorder than to a genuinely multifactorial disorder. This and other
studies have found no evidence to suggest that increasing knowledge of multifactorial
disorders will lead to changes in insurance practice.
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43
Forensics

B.S. Weir

Department of Biostatistics, University of Washington, Seattle, WA, USA

The use of DNA profiles for human identification often requires statistical genetic calculations. The
probabilities for a matching DNA profile can be evaluated under alternative hypotheses about the
contributor(s) to the profile, and presented as likelihood ratios. It is conditional probabilities that are
needed: the probabilities of profiles given that they have already been seen, and these depend on
the relationships between known and unknown people. The algebraic treatment is greatly simplified
when it can be assumed that allelic frequencies have Dirichlet distributions over populations. The
growing size of DNA profile databases has led to empirical verification of the probabilities of
finding pairs of people with the same profile.

43.1 INTRODUCTION

Human individualisation based on the genome exploits the fact that everyone except for
identical twins is genetically distinguishable. Moreover, human genetic material is found
in every nucleated cell in the body and can be recovered from samples as diverse as
bone, blood stains, saliva residues, nasal secretions and even fingerprints. DNA may be
recovered from very old samples that have been well preserved, and DNA signatures may
even be preserved over successive generations.

Genetic markers have been used for human individualisation since the discovery
of blood groups, and statistical genetic arguments have long played a large part in
parentage dispute cases. The role of statistical genetics in forensic science increased
sharply in the late 1980s when DNA markers began to be used and an emphasis shifted
from excluding specific people as being the sources of evidentiary stains to making
probability statements about genetic profiles if these people were not the sources. As
more markers have been developed, it has become less likely that two people would
share the same DNA profile and therefore more likely that people will be convicted on
the basis of DNA evidence. Given the serious nature of the charges of many crimes
where genetic markers are used, and the serious consequences of conviction for these
crimes, there has been considerable scrutiny paid to the statistical genetic arguments

Handbook of Statistical Genetics, Third Edition. Edited by D.J. Balding, M. Bishop and C. Cannings.
 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-05830-5.
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upon which forensic probabilities are based. These arguments are reviewed in this
chapter.

A common situation is where DNA is recovered from a biological sample left at the
scene of a crime, and there is reason to believe the sample is from the perpetrator of
the crime. DNA is also extracted from a blood or saliva sample from a suspect in the
crime and is found to have the same profile as the crime sample. An immediate question
is how much evidence against the suspect is provided by this matching, and a naive
answer might be that the probability of the suspect having the evidentiary profile, if he
was not the perpetrator, is the population proportion of that profile. High values for this
proportion would favour the suspect and low values would not. How is the proportion to
be estimated?

For genetic profiles based on single loci, it is quite feasible to estimate the population
proportion of any genotype on the basis of a moderate-sized sample of profiles from
that population. The size of the sample would need to be greater for highly variable
loci where there are many different genotypes. There are issues of how the population
is to be defined, and then how it is to be sampled. As the number of loci used for
identification increases, the numbers of genotypes increases substantially and no sample
can hope to capture all genotypes. Current practice in the United States is to use a set
of 13 short tandem repeat (STR) loci, each with at least 9 alleles and 45 genotypes. The
number of 13-locus profiles is therefore considerably more than 1021, so that less than
one profile in a trillion of all possible profiles exists anywhere in the world. Although
there may not, therefore, be much value in declaring that a particular profile is rare, a
first attempt to attach a frequency to a 13-locus profile might be to multiply together the
frequencies of the 26 constituent alleles, along with a factor of 2 for every heterozygote.
The implied assumption of allelic independence, within and between loci, is a statistical
genetic issue.

A more satisfactory approach is to ask the question: What is the probability of an
unknown person chosen from the population having a particular genetic profile given that
the profile has been seen already for the suspect? Calculating this conditional probability
needs to take into account the relationship between the known suspect and the unknown
person. This relationship may be due to close family membership or to shared evolutionary
history. Once again, these are statistical genetic issues.

43.2 PRINCIPLES OF INTERPRETATION

Evett and Weir (1998) suggested that genetic evidence be interpreted according to three
principles:

• First Principle: To evaluate the uncertainty of any given proposition it is necessary
to consider at least one alternative proposition.

• Second Principle: Interpretation is based on questions of the kind ‘What is the
probability of the evidence given the proposition?’

• Third Principle: Interpretation is conditioned not only by the competing propo-
sitions, but also by the framework of circumstances within which they are to
be evaluated.
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The first of these principles leads to the use of likelihood ratios LRs, as will soon be
shown. The second is meant to draw a distinction from the very common ‘prosecutor’s
fallacy’ (Thompson and Schumann, 1987) of quoting probabilities of a proposition given
the evidence. The third principle recognises the difference in the strength of evidence of
a blood stain at the scene of a crime having a profile matching that of a suspect, and
the evidence of bloodstain in the clothing of a suspect away from the crime scene with a
profile matching that of a victim.

The propositions mentioned in the principles refer, in this context, to the source of the
genetic profile in the evidentiary stain. For the immediate discussion these will be taken
to be

Hp: The profile is from the suspect.
Hd: The profile is from some other person.

Suppose Gs and Gc are the profile types from the suspect and the crime stain, and
they are found to match. Then the evidence E is these two profiles: E = (Gs,Gc).
Consideration of alternative propositions is carried out by comparing the probabilities
of E under these propositions by means of the likelihood ratio

LR = Pr(E|Hp)

Pr(E|Hd)
= Pr(Gs,Gc|Hp)

Pr(Gs,Gc|Hd)

= Pr(Gc|Gs, Hp)

Pr(Gc|Gs, Hd)
× Pr(Gs|Hp)

Pr(Gs|Hd)

= 1

Pr(Gc|Gs, Hd)
,

with the last step depending on the assumption that the profiles must be found to match
when they have a common source, and on recognition that Pr(Gs) does not depend on
Hp or Hd.

The forensic question of attaching weight to matching genetic profiles has therefore
reduced to the statistical genetic question of determining the probability of a profile given
that (the same) profile has been seen already. This conditional probability will be referred
to as the match probability. It would be a substantial simplification to assume the two
profiles were independent and work only with the probability of the crime stain profile:

LR = 1

Pr(Gc|Hd)
= 1

Pr(Gc)
.

The use of LRs for DNA evidence has been described in several textbooks: Aitken
(1995), Robertson and Vignaux (1995), Royall (1997), Schum (1994), Evett and Weir
(1998), Balding (2005), Buckleton et al. (2005) and Lucy (2005).

The odds form of Bayes’ theorem relates the probabilities of the propositions after the
evidence to the probabilities prior to the evidence:

Pr(Hp|E)
Pr(Hd|E)

= Pr(E|Hp)

Pr(E|Hd)
× Pr(Hp)

Pr(Hd)
,
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which can be stated as

Posterior odds onHp = LR× prior odds onHp.

It needs to be stressed that the results in this section apply only to the situation where
the DNA evidence refers to material left at the crime scene by the perpetrator, and there is
no DNA evidence at the scene that does not provide a match to the profile of the suspect.
If the evidence refers to a bloodstain found on the clothing of the suspect, e.g. and the
stain has a DNA profile matching that of the victim then additional factors need to be
considered: What is the probability that the victim’s blood would be transferred during
the crime? What is the probability that the suspect would have non-self blood on his or
her clothing? What is the probability that non-self blood on the suspect’s clothing would
match that of the victim?

43.3 PROFILE PROBABILITIES

Although it is conditional profile probabilities (match probabilities) that are needed, these
are most directly calculated as joint divided by marginal probabilities. Dropping the Hd
symbol for convenience:

Pr(Gc|Gs) =
Pr(Gc,Gs)

Pr(Gs)
.

Profile probabilities are therefore needed to calculate match probabilities.
At a single locus A with alleles Au in proportion pu, the probabilities Puv for genotypes

AuAv within a single population may be parameterised as

Puv =
{
p2
u + fpu(1− pu), u = v,

2pupv − 2fpupv, u �= v. (43.1)

As the loci used for individualisation are unlikely to be under the influence of selection,
the use of a single inbreeding coefficient f for all genotypes may be thought reasonable,
although genotype-specific coefficients should strictly be used for loci with allele-specific
mutation processes (Graham et al., 2000). Expressing genotype proportions as functions
of allele proportions is necessary for highly variable loci, when many genotypes are not
seen in a sample and their population frequencies are difficult to estimate.

43.3.1 Allelic Independence

Considerable attention has been paid to the issue of whether f can be assumed small
enough to ignore. Standard testing procedures rarely find significant departures from the
hypothesis that f is zero (Weir, 1992; Maiste and Weir, 1995; Zaykin et al., 1995),
although this may not be very surprising. The goodness-of-fit test has the statistic

X2 =
∑
u

n(P̃uu − p̃2
u)

2

p̃2
u

+
∑
u �=v

n(P̃uv − 2p̃up̃v)
2

2p̃up̃v
,

where P̃uv and p̃u are the sample genotype and allele proportions in a sample of n
individuals. For a locus with m alleles it is distributed as χ2 with m(m− 1)/2 df when
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f is zero. When f is not zero, X2 has non-centrality parameter

λ =
∑
u

[nf 2(1− pu)2]+
∑
u �=v

[n2f 2pupv]

= (m− 1)nf 2.

and this allows the power of the test to be calculated. For a locus with m = 2 alleles,
the test has one degree of freedom and λ needs to be at least 10.5 for the power to be at
least 90 % when the significance level is 0.05. In other words, the sample size must be at
least 10.5/f 2. A sample of 105 000 would therefore be needed to have 90 % chance of
detecting an f as small as 0.01. Even an f value of 0.03 would require a sample of over
11 000. In Table 43.1, the sample sizes needed for 90 % power to detect f = 0.05 are
shown for a range of values of m, along with the powers for that f value when n = 1000.
It is not likely that Hardy–Weinberg disequilibrium, at the level usually thought to exist
in human populations, will be detected with samples of 1000 or less.

What should be done when a test does cause rejection of the null hypothesis? Forensic
agencies routinely test for allelic independence at six or more loci in three or more
samples. A conventional 5 % significance-level test would be expected to give at least one
significant result even if there was independence at all loci in all populations. However,
to ignore single rejections on that basis calls into question the logic of performing the
test in the first place. Requiring each of t tests to meet a 0.05/t significance level in
order to declare rejection, the Bonferroni correction, seems unduly conservative. Zaykin
et al. (2002) examined multiple-testing issues, and showed that Fisher’s procedure for
combining p values may be more informative. When a hypothesis is true, the p value
(the probability of the data or of data with at least as much departure from the hypothesis)
has a uniform distribution and minus twice its logarithm has a χ2 distribution with 2 df.
A set of t independent tests can be said to indicate that at least one of the t hypotheses
is false if the sum of the −2 ln(p) values exceeds the critical value of the χ2 distribution
with 2t df. As an example, LR tests for allelic independence at seven loci were performed
on data in three samples (Scholl et al., 1996) and the p values are shown in Table 43.2.
For a 5 % significance level, ignoring the multiple-testing issue would lead to rejection of
independence at GYPA in the Navajo sample and maybe at D7S8 in that sample. Applying

Table 43.1 Hardy–Weinberg test properties when
f = 0.05.

For 90 % power

m df λ n Power if n = 1000

2 1 10.5 4200 0.35
3 3 14.2 2840 0.44
4 6 17.4 2320 0.50
5 10 20.5 2050 0.54
6 15 23.6 1888 0.57
7 21 26.6 1773 0.60
8 28 29.6 1691 0.63
9 36 32.6 1630 0.64

10 45 35.6 1582 0.65
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the Bonferroni correction for the seven tests conducted for the Navajo data would lead
to no rejections in that sample; applying the correction to the three tests conducted for
GYPA would lead to rejection at that locus; applying the correction to all 21 test would
cause no rejections in the whole set. Fisher’s procedure, however, suggests dependence
in the Navajo sample, but not at the GYPA locus.

An alternative to testing hypotheses about f is to make statements about its value in
the relevant population, by means of either a point estimate or a posterior probability
distribution (Ayres and Balding, 1998; Shoemaker et al., 1998). Given that human
populations do have non-zero values of f , there is some appeal to making probability
statements about f lying in a certain range rather than simply failing to reject the false
hypothesis that it is zero. Other comments about conventional hypothesis tests were made
by Evett and Weir (1998). Although there have been concerns in the past about values of
f in forensic calculations, the concerns may have been overstated. As is discussed below,
the quantity of interest is the match probability or the probability of a profile given that
it as already been seen, and this is a statement about four alleles per locus, whereas
f is used in profile probabilities which are statements about two alleles per locus. The
distinction was made by Ayres and Overall (1999).

43.3.2 Allele Frequencies

Apart from some uncertainty about f values, the difficulty in using 43.1 is that the allele
frequencies are also unknown. This problem is due to uncertainty about the population
to which these frequencies apply. The population is sometimes referred to as being
that of ‘possible perpetrators’ as (under Hd) the unknown perpetrator belongs to the
population. Under Hp, the suspect must also belong to this population. Usually, however,
the population is not defined with sufficient detail to suggest a sampling strategy for
estimating allele frequencies from that group. Even an eyewitness description of the
appearance of the perpetrator may not delineate the population very precisely. There
is also the practical issue of collecting a new sample from which to estimate allele
frequencies for every new crime.

Instead, it is customary to base calculations on samples collected from some population
that is larger than the relevant population, and which may well have substructure. Typically
forensic agencies work with samples of people described by broad racial labels such as
‘Caucasian’ even when these labels refer to admixed groups, as is the case with ‘African

Table 43.2 p values for tests of allelic independence.

Sample

Locus Navajo Peublo Sioux −2
∑

ln(p)

LDLR 0.377 0.397 0.599 0.566
GYPA 0.014 0.470 1.000 0.122
HBGG 0.136 0.168 0.790 0.235
D7S8 0.052 1.000 0.804 0.385
GC 0.259 0.124 0.213 0.125
HLA-DQA1 0.438 0.368 0.562 0.569
D1S80 0.750 0.559 0.211 0.563

−2
∑

ln(p) 0.031 0.430 0.812 0.216
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American’. Assignment of a person to such groups is generally by self reporting, and the
samples tend to be drawn from the geographic area served by the agency. Equation 43.1 is
now to be understood to apply to a subpopulation, i, of some larger sampled population:

Puvi =
{
p2
ui + fipui(1− pui), u = v,

2puipvi − 2fipuipvi, u �= v. (43.2)

A simplifying assumption is that all fi values are equal (and maybe equal to zero), and that
all pui values have the same expected value pu. Taking expectations over subpopulations:

E(p2
ui) = p2

u + pu(1− pu)θ,
where θ or FST is a measure of population structure. The genotype proportions in the
whole population are the expected values of the subpopulation values:

Puv = E(Puvi) =
{
p2
u + Fpu(1− pu), u = v,

2pupv − 2Fpupv, u �= v, (43.3)

where F or FIT is the total inbreeding coefficient, in contrast to the within-population
inbreeding coefficient f = (F − θ)/(1− θ). If the subpopulations are not inbred, then
f = 0 and θ could be used in place of F . The population-wide genotype frequencies in
43.1 may be taken to apply, on average, to any subpopulation.

Although 43.3 appears to circumvent the need to know subpopulation allele frequencies,
it does raise other issues. It is not possible to estimate F or θ from data only at the whole-
population level. Estimation would require observations at the subpopulation level – in
which case this overall formulation would not be needed. In practice, a numerical value
is assigned to F or θ .

Secondly, it is not possible to estimate p2
u as the square of an estimate of pu as

that would ignore the variation in pu that is being described by θ . Suppose the ith
subpopulation has allele Au with frequency pui , and it forms a proportion wi of the whole
population (

∑
i wi = 1). A sample of size n individuals from the whole population has

ni individuals from the ith subpopulation. With random sampling, it might be supposed
that ni = nwi . The sampling properties of p̃ui , the proportion of Au alleles among the
2ni alleles from the ith subpopulation, are (Weir, 1996),

E(p̃ui) = pu
Var(p̃ui) = pu(1− pu)

(
θ + 1− θ

2ni

)
Cov(p̃ui, p̃vi) = −pupv

(
θ + 1− θ

2ni

)
.

Assuming the subpopulations to be independent, therefore,

E(p̃u) = pu

E(p̃2
u) = p2

u + pu(1− pu)
(
θ
∑
i

w2
i +

1− θ
2n

)
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E(2p̃up̃v) = 2pupv − 2pupv

(
θ
∑
i

w2
i +

1− θ
2n

)
, u �= v,

so that estimating squares or products of allele frequencies by squares or products of
estimated allele frequencies causes overestimation for homozygotes and is therefore
conservative, but causes underestimation for heterozygotes and is therefore prejudicial.
The effects will be small for small θ or for highly structured populations (small wi).

43.3.3 Joint Profile Probabilities

The joint genotype probabilities needed to calculate match probabilities require account
to be taken of the relationships among sets of four alleles, two per individual, in the
same way that single genotype probabilities require information about the relationship
of pairs of alleles. In the random-mating situation, where allelic relationships do not
depend on the arrangements of alleles within genotypes, there are four measures of
allelic relationship: θ, γ, δ and � for pairs, triples, quadruples and two pairs of alleles,
respectively (Cockerham, 1971).

The probability that four alleles are all of type Au is just the allele frequency pu if
they are all identical by descent, and this identity situation has probability δ. At the other
extreme, four alleles are all Au with probability p4

u if there is no identity among them,
and this situation has probability (1− 6θ + 8γ + 3�− 6δ). Such arguments lead to the
joint genotype probabilities

Pr(AuAu,AuAu) = (1− 6θ + 8γ + 3�− 6δ)p4
u

+ 6(θ − 2γ −�+ 2δ)p3
u

+ (4γ + 3�− 7δ)p2
u + δpu, (43.4)

Pr(AuAv,AuAv) = 4(1− 6θ + 8γ + 3�− 6δ)p2
up

2
v

+ 4(θ − 2γ −�+ 2δ)pupv(pu + pv)
+ 4(γ − δ)pupv, u �= v. (43.5)

These expressions are greatly simplified under the assumption, made in coalescent
approaches, of evolutionary stationarity. Under that assumption, the set of allele frequen-
cies has a Dirichlet distribution over populations with the consequence that the probability
of drawing allele Au from a population given that n previously drawn alleles contained
nu of that type is

Pr(Au|nu among n) = nuθ + (1− θ)pu
1+ (n− 1)θ

. (43.6)

The Dirichlet assumption also implies that γ = 2θ2/(1+ θ), δ = 6θ3/(1+ θ)(1+ 2θ),
and � = θ2(1+ 5θ)/(1+ θ)(1+ 2θ) and it leads to the match probabilities given by
Balding and Nichols (1994):

Pr(AuAv|AuAv) =


[2θ + (1− θ)pu][3θ + (1− θ)pu]
(1+ θ)(1+ 2θ) , u = v,

2[θ + (1− θ)pu][θ + (1− θ)pv]
(1+ θ)(1+ 2θ) , u �= v.

(43.7)
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Table 43.3 Effects of population structure on match probabilities.

Reciprocal of match probability

θ = 0 θ = 0.001 θ = 0.01 θ = 0.03

p = 0.01 Heterozygote 5000 4152 1295 346
Homozygote 10 000 6 439 863 157

p = 0.05 Heterozygote 200 193 145 89
Homozygote 400 364 186 73

p = 0.10 Heterozygote 50 49 43 34
Homozygote 100 96 67 37

A feature of the Dirichlet distribution is that the frequencies of all pairs of different
allelic types have negative correlations. This is trivially true for biallelic single nucleotide
polymorphism (SNP) loci but it cannot be true for STR loci affected by stepwise mutation
(Graham et al., 2000) although the consequences on match probabilities may not be large
for rare genotypes.

The match probabilities in 43.7 are greater than the profile probabilities in 43.3 for
allele frequencies less than 0.5. Although a profile is rare, as soon as it has been seen
there is an increased probability that there is another copy of it in the population. It
needs to be stressed that the equations apply on average for any subpopulation within the
population. Some numerical consequences of allowing for population structure are shown
in Table 43.3, in the case where all alleles at a locus have the same frequency. The table
shows that even small values of θ can have an appreciable effect when allele frequencies
are small.

A larger dependency between DNA profiles occurs when two people are in the same
family. Brothers, e.g. have at least a 25 % probability of sharing the same genotype at any
locus. If only family relatedness is considered and neither relative is inbred, then 43.4
and 43.5 are replaced by

Pr(AuAu,AuAu) = k0p
4
u + k1p

3
u + k2p

2
u (43.8)

Pr(AuAv,AuAv) = 4k0p
2
up

2
v + k1pupv(pu + pv)+ 2k2pupv, u �= v. (43.9)

Here k0, k1, k2 are the probabilities that the relatives share 0, 1, 2 pairs of alleles identical
by descent. Values for these coefficients for some common types of relationship are given
in Table 43.4 and the match probabilities are

Pr(AuAv|AuAv) =
{
k0p

2
u + k1pu + k2, u = v,

2k0pupv + 1
2k1(pu + pv)+ k2, u �= v.

To complete this section, consider the situation of non-inbred relatives in a population
with population structure parameter θ where allele frequencies follow the Dirichlet
distribution. Equations 43.4 and 43.5 are modified to

Pr(AuAu,AuAu) = k0Pr(AuAuAuAu)+ k1Pr(AuAuAu)+ k2Pr(AuAu)

Pr(AuAv,AuAv) = 4k0Pr(AuAuAvAv)+ k1[Pr(AuAuAv)+ Pr(AuAvAv)]

+ 2k2Pr(AuAv), u �= v.
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Table 43.4 Identity by descent probabilities
for common non-inbred relatives.

Relationship k0 k1 k2

Identical twins 0 0 1
Full-sibs 1

4
1
2

1
4

Parent–child 0 1 0
Double first cousins 9

16
3
8

1
16

Half-sibs∗ 1
2

1
2 0

First cousins 3
4

1
4 0

Unrelated 1 0 0

∗Also grandparent–grandchild and uncle–nephew.

as given by Fung et al. (2003). It needs to be stressed that these results hold only for non-
inbred relatives –siblings whose parents are first cousins, e.g. can both be homozygous
because their four alleles all descend from a single allele carried by their parents’
grandparents. The allelic-set probabilities in these equations refer to the generation to
which the relatives’ most recent common ancestors belong. The match probabilities
become

Pr(AuAv|AuAv) =



k0
[2θ + (1− θ)pu][3θ + (1− θ)pu]

(1+ θ)(1+ 2θ)

+k1
2θ + (1− θ)pu

1+ θ + k2, u = v,

k0
2[θ + (1− θ)pu][θ + (1− θ)pv]

(1+ θ)(1+ 2θ)

+k1
2θ + (1− θ)(pu + pv)

2(1+ θ) + k2, u �= v.
Parameters pu and θ are assumed to have the same value in successive generations, so
that the same level of approximation holds as in 43.7.

43.4 PARENTAGE ISSUES

The previous section considered relationships among pairs of people caused by evolu-
tionary processes and/or by family membership. Family relatedness lies at the heart of
issues concerning parentage, whether these arise in civil paternity suits or in forensic
situations such as incest. The genetic evidence often consists of three genetic profiles:
those of the mother (Gm), her child (Gc) and the alleged father (Ga) although the child’s
genotype may be replaced by its paternal allele (Ap). The child’s maternal allele is either
known from a comparison of Gm and Gc or is assumed to be either of the mother’s alleles
with equal probability when mother and child are both heterozygotes for the same allele –
in either case the paternal allele is deduced by subtraction from Gc. The LR, or paternity
index (PI), can be written in several ways, such as

PI = Pr(Ap|Gm,Ga, A is the father of C)

Pr(Ap|Gm,Ga, A is not the father of C)
.
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The numerator of this expression follows immediately from Mendelian laws, but the
denominator depends on the relationship between the three people: mother, alleged father
and actual father.

If there is no immediate family relatedness among mother, alleged father and actual
father, but they can all be considered to be random members of a population for
which the Dirichlet distribution of the last section holds, then the various values
of the PI are shown in Table 43.5. The first scenario in that table, e.g. has PI of
1/Pr(Au|AuAuAuAu), and the case where mother, child and alleged father are all AuAv
has a PI of 1/[Pr(Au|AuAvAuAv)+ Pr(Av|AuAvAuAv)]. These can be found from 43.6.
Setting θ = 0 leads to the classic results of 1/pAp

or 1/2pAp
, according to whether the

alleged father is homozygous or heterozygous for the parental allele Ap. When θ �= 0,
however, it is necessary to consider the genotype of the mother as well as that of the
alleged father.

Another extension to classic theory is to allow the alleged father to be related to the
actual father for the PI denominator calculations. Provided the alleged father is not inbred
and population structure can be ignored the relatedness between these two men can be
described by the identity by descent coefficients shown in Table 43.4. If the alleged father
is homozygous for the paternal allele Ap, the PI is 2/[(2k2 + k1)+ (k1 + 2k0)pAp

], and
if he is heterozygous for the paternal allele the PI is half that value. The classic PI values
result when k2 = k1 = 0. The quantity (k2/2+ k1/4) is called the coancestry or kinship
coefficient of the two relatives.

Table 43.5 Paternity index for population described by θ .

Gm Gc Ga PI

AuAu AuAu AuAu
1+ 3θ

4θ + (1− θ)pu

AuAw , w �= u 1+ 3θ
2[3θ + (1− θ)pu]

AuAv AvAv
1+ 3θ

2θ + (1− θ)pv

AvAw,w �= v 1+ 3θ
2[θ + (1− θ)pv]

AuAv AuAu AuAu
1+ 3θ

3θ + (1− θ)pu

AuAw,w �= u 1+ 3θ
2[2θ + (1− θ)pu]

AuAv AuAu
1+ 3θ

4θ + (1− θ)(pu + pv)

AuAv
1+ 3θ

4θ + (1− θ)(pu + pv)

AuAw,w �= u, v 1+ 3θ
2[3θ + (1− θ)(pu + pv)]
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43.5 IDENTIFICATION OF REMAINS

Family relatedness may also be involved for identification of remains. A simple forensic
situation is where a bloodstain is found in the car of a person suspected of having murdered
a victim, but there is no body. The DNA profile of the bloodstain could be compared to that
from material known to be from the victim or it could be compared to profiles determined
for the victim’s relatives. In that case, calculations similar to those for parentage issues
are made. The need to identify bones has received attention in recent years with efforts
to identify repatriated Korean and Vietnam War remains. STR profiles were used to
identify 26 of 61 bodies following the Waco, Texas fire disaster (Clayton et al., 1995)
and 139 of 141 individuals in the 1996 Spitsbergen air accident (Olaisen et al., 1997).
There was complete success in identifying tissue recovered from the sites of the 1996
TWA 800 (Ballantyne, 1997) and the 1998 Swissair 111 (Robb, 1999) airplane disasters.
A very large task confronted forensic scientists associated with the 2001 World Trade
Center disaster, and a personal account is given by C.J. Brenner at http://www.dna-
view.com. By the end of April 2005, remains of 1592 of the 2749 missing people had
been identified and DNA profiling was the sole means of identification in 86 % of those
identifications.

As an example of the type of LR calculation that might be undertaken in such cases,
suppose that a DNA profile Gx is produced from remains thought to belong to a man
for whom profiles are available from his wife Gw, his child Gc and his two parents Gm
and Gf. The competing hypotheses, Hp and Hd, are that the remains either are or are not
from the missing man. The LR is

LR = Pr(Gc,Gx,Gw,Gm,Gf|Hp)

Pr(Gc,Gx,Gw,Gm,Gf|Hd)

= Pr(Gc|Gx,Gm,Hp)Pr(Gx|Gm,Gf, Hp)

Pr(Gc|Gw,Gm,Gf, Hd)Pr(Gx)
.

The probabilities of profiles Gw,Gm,Gf do not depend on the two hypotheses and
so cancel out of the ratio. The probability Pr(Gx) depends on allele frequencies and
the remaining three probabilities follow from simple Mendelian calculations. Algebraic
expressions in more complex cases are tedious to derive, but Brenner (1997) has developed
software that will perform the appropriate symbolic manipulations. There is a growing
use of Bayesian networks, or Probabilistic Expert Systems, to provide numerical solutions
following the construction of a graph linking all profiles (Dawid and Evett, 1997; Evett
et al., 2002; Mortera, 2003).

43.6 MIXTURES

Forensic samples may contain material from more than one contributor. A common
situation is for evidence collected in rape cases where material from the victim, possible
consensual partners, and the perpetrator(s) may all be present. Even if some of these people
contributed only a small proportion of the DNA in the sample, improved technology has
made it easier to detect their alleles in the mixed profile. The genetic evidence E for
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mixed-stain cases is the set of alleles found among all the people who have either been
typed directly or whose type is inferred because they are considered to have contributed
to the stain. Consideration of the alleles from people who may have been typed even
though they are excluded and/or are hypothesised not to have contributed to the stain is
necessary to allow for the effects of population structure.

In line with the principles of evidence interpretation, there needs to be alternative
propositions that specify the numbers and profiles of contributors to the evidentiary
sample. Some of these contributors will be known and typed people, and some will be
unknown people. Those contributors, together with any typed people who are known
(under the proposition) not to be contributors, contain among them a set of alleles
whose probability depends on the separate allele proportions and the population structure
parameter θ according to results such as those in 43.6. There is also a factor of 2 for each
known heterozygote, and a term for the number of ways of arranging all 2x alleles from x

unknown people into pairs. There may be different sets of alleles from unknown people
under some propositions, and the probabilities for these sets must be added together. The
LR is the ratio of probabilities under alternative propositions.

Much of the complexity in dealing with mixtures can be removed by a mnemonic
notation, as laid out in Table 43.6 (Curran et al., 1999; Evett and Weir, 1998). There are
sets of alleles (not necessarily distinct) that occur in the crime sample (C). For a particular
proposition there may be alleles (T) carried by typed people declared to be contributors,
alleles (W) carried by unknown contributors to the sample, as well as alleles (V) carried
by people declared not to have contributed to the sample. There are corresponding sets of
distinct alleles, and these sets are indicated by a g subscript. Note that the same person
may be declared to be a contributor to the sample under one proposition, and declared
not to be contributor under another proposition. Note also that the word ‘known’ in Table
43.6 refers to a value specified by the proposition under consideration.

The alleles in the evidence profile are carried either by typed people declared to be
contributors or by unknown people, so that C is the combination (union) of sets T and W.
For a given proposition, the probability of the evidence profile depends also on the alleles
carried by people who have been typed but are declared by that proposition not to have
contributed to the profile. For a proposition in which there are x unknown contributors, the
probability is Px(T,W,V|Cg). This probability is for all 2nC + 2nV = 2nT + 2nW + 2nV
alleles in the sets T,W,V, among which allele Au occurs cu + vu = tu + wu + vu times.
The probabilities are added over all possible nx = (c + r − 1)!/[(c − 1)!r!] distinct sets
of wu. As listed in Table 43.7, c is the number of distinct alleles in Cg and r is the number
of alleles carried by unknown people that can be any one of these c alleles.

Generating the nx sets W is a two-stage process. Some of the alleles in each set must
be present: these are the alleles in the set Cg that are not in set Tg . Other alleles are not
under this constraint because they already occur in Tg , and there are ru copies of Au
alleles in this unconstrained set. It is a straightforward computing task to let r1 range
over the integers 0, 1, . . . , r , then let r2 range over the integers 0, 1, . . . , r − r1, then
let r3 range over the integers 0, 1, . . . , r − r1 − r2, etc. The final count rc is obtained by
subtracting the sum of r1, r2, . . . , rc−1 from r . The total number of Au alleles in set W
is
∑c
u=1wu = 2x where wu = ru for those alleles in both Cg and Tg , and wu = ru + 1 for

alleles in Cg but not in Tg .
For any ordering of the 2x =∑

u wu alleles in W, successive pairs of alleles can be
taken to represent genotypes and there are (2x)!/(

∏c
u=1wu!) possible orderings. This is
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Table 43.6 Notation for mixture calculations.

Alleles in the profile of the evidence sample
C The set of alleles in the evidence profile
Cg The set of distinct alleles in the evidence profile
nC The known number of contributors to C
hC The unknown number of heterozygous contributors
c The known number of distinct alleles in Cg
cu The unknown number of copies of allele Au in C

1 ≤ cu ≤ 2nC ,
∑c
u=1 cu = 2nC

Alleles from typed people that H declares to be contributors
T The set of alleles carried by the declared contributors to C
Tg The set of distinct alleles carried by the declared contributors
nT The known number of declared contributors to C
hT The known number of heterozygous declared contributors
t The known number of distinct alleles in Tg carried by nT declared contributors
tu The known number of copies of allele Au in T

0 ≤ tu ≤ 2nT ,
∑c
u=1 tu = 2nT

Alleles from unknown people that H declares to be contributors
W The sets of alleles carried by the unknown contributors to C
x The specified number of unknown contributors to C: nC = nT + x
c − t The known number of alleles that are required to be in W
r The known number of alleles in W that can be any allele in Cg , r = 2x − (c − t)
nx The number of different sets of alleles W, nx = (c + r − 1)!/[(c − 1)!r!]
ru The unknown number of copies of Au among the r unconstrained alleles in W

0 ≤ ri ≤ r , ∑c
i=1 ri = r

wu The unknown number of copies of Au in W: cu = ti + uu, ∑c
u=1 uu = 2x

If Au is in Cg but not in Tg: uu = ru + 1. If Au is in Cg and also in Tg : wu = ru
Alleles from typed people that H declares to be non-contributors
V The set of alleles carried by typed people declared not to be contributors to C
nV The known number of people declared not to be contributors to C
hV The known number of heterozygous declared non-contributors
vi The known number of copies of Ai in V:

∑
i vi = 2nV

the number of possible sets of unknown genotypes that have each allelic set W. Although
it is the genotypes that correspond to the x unknown people, it is the set of 2x alleles that
determine the probability, in combination with the 2nT + 2nV alleles among the known
people. Because the nT typed people all have specified genotypes, there is just a factor
of 2 for each heterozygote, and there is a factor of 2 for each heterozygote among the set
of nV non-contributors.

Using 43.7, the probabilities of the set of alleles in the evidence is

Px(T,W,V|Cg) =
r∑

r1=0

r−r1∑
r2=0

· · ·
r−r1− ...−rc−2∑

rc−1=0

× (2x)!2
HT+HV∏c

u=1wu!

∏c
u=1

∏tu+wu+vu−1
j=0 [(1− θ)pu + jθ ]∏2x+2nT+2nV−1

j=0 [(1− θ)+ jθ ]
. (43.10)
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Table 43.7 Effects of family relatedness on match probabilities.

Relationship Match Probability

Homozygotes AuAu

Full-sibs
(1+ pu)2 + (7+ 7pu − 2p2

u)θ + (16− 9pu + p2
u)θ

2

4(1+ θ)(1+ 2θ)
Parent and child 2θ + (1− θ)pu

(1+ θ)
Half-sibs [2θ + (1− θ)pu][2+ 4θ + (1− θ)pu]

2(1+ θ)(1+ 2θ)
First cousins [2θ + (1− θ)pu][1+ 11θ + 3(1− θ)pu]

4(1+ θ)(1+ 2θ)
Unrelated [2θ + (1− θ)pu][3θ + (1− θ)pu]

(1+ θ)(1+ 2θ)

Heterozygotes AuAv
(1+ pu + pv + 2pupv)

Full-sibs +(5+ 3pu + 3pv − 4pupv)θ + 2(4− 2pu − 2pv + pupv)θ2

4(1+ θ)(1+ 2θ)
Parent and child 2θ + (1− θ)(pu + pv)

2(1+ θ)
(pu + pv + 4pupv)

Half-sibs +(2+ 5pu + 5pv − 8pupv)θ + (8− 6pu − 6pv + 4pupv)θ2

4(1+ θ)(1+ 2θ)
(pu + pv + 12pupv)

First cousins +(2+ 13pu + 13pv − 24pupv)θ + 2(8− 7pu − 7pv + 6pupv)θ2

8(1+ θ)(1+ 2θ)
Unrelated 2[θ + (1− θ)pu][θ + (1− θ)pv]

(1+ θ)(1+ 2θ)

Likelihood ratios are formed as the ratios of two such probabilities.
Every person typed is declared to be either a contributor or a non-contributor. The

number of people typed, and the alleles they carry among them, are the same for every
proposition. For this reason, nT + nV , HT +HV and wu + vu will be the same in the
probabilities for each proposition.

If population structure is ignored, and θ is set to zero, 43.10 reduces to

Px(T,W,V|Cg) =
r∑

r1=0

r−r1∑
r2=0

· · ·
r−r1− ...−rc−2∑

rc−1=0

(2x)!2HT+HV∏c
u=1wu!

c∏
u=1

ptu+wu+vuu ,

as an alternative to the expression given by Weir et al. (1997). The value of LR
now depends only on the numbers and frequencies of the alleles carried by unknown
contributors. There is no need to consider the genotypes of typed people, whether or not
they contribute to the evidence sample. This is different to the situation where population
structure is taken into account – then the genotypes of all typed people are needed.

The arguments made for incorporating non-contributors can be extended. Several people
may be typed during the course of an investigation. Even if they are excluded from being
contributors, they provide information for the probability calculations when they can be
considered to belong to the same subpopulation as (some of) people not excluded. They
make their contribution to the calculation via allelic set V.
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Gill et al. (2006) discussed the complications for interpreting mixtures when some of
the alleles in the mixed profile may be masked by typing artefacts such as stutter or may
have dropped out completely and are not detected. A complete analysis needs to take into
account the relative amounts of DNA inferred to be present at each of the alleles observed
to be in the mixture. Having to allow for unseen alleles reduces the possibility of being
able to exclude a potential contributor to the mixture simply because that person’s alleles
are not detected. Great care needs to be taken to avoid prejudicial conclusions if it is
decided to ignore those loci in a profile for which interpretation is difficult or alleles are
suspected of not being detected.

43.7 SAMPLING ISSUES

43.7.1 Allele Probabilities

In place of the unknown allele probabilities, it is usual to use the allele proportions
obtained from a sample of individuals from the population (not from the specific
relevant subpopulation). This leads to sampling variation in calculated match probabilities.
Suppose the probability Pl at locus l is estimated as P̃l and that loci can be treated
as being independent. Then the multilocus match probability P = ∏

l Pl is estimated
as P̃ = ∏

l P̃l and the central limit theorem allows ln(P̃ ) to be regarded as having a
normal distribution. A 95 % confidence interval for P is, therefore, (P̃ /C,CP̃ ) where

ln(C) = 1.96
√

Var[ln(P̃ )]. The task is to estimate the variance of ln(P̃ ). From the assumed
independence of loci,

Var[ln(P̃ )] = Var[
∑
l

ln(P̃l)] ≈
∑
l

Var(P̃l)/P
2
l .

As θ is generally assigned a numerical value such as 0.03, rather than being estimated
from sample data, it will be assumed constant. For a profile that is homozygous for allele
u at locus l:

Var(P̃l) ≈
(
∂P̃l

∂p̃lu

)2

Var(p̃lu)

and for a profile heterozygous for alleles u and v:

Var(P̃l) ≈
(
∂P̃l

∂p̃lu

)2

Var(p̃lu)+
(
∂P̃l

∂p̃lv

)2

Var(p̃lv)+ 2

(
∂P̃l

∂p̃lu

)(
∂P̃l

∂p̃lv

)
Cov(p̃lu, p̃lv).

The variances and covariances of for allele proportions are from Section 43.3.2

Var(p̃u) = plu(1− plu)
(
θ
∑
i

w2
i +

1− θ
2nl

)
,

Cov(p̃lu, p̃lv) = −pluplv
(
θ
∑
i

w2
i +

1− θ
2nl

)
,
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where nl individuals are scored at locus l. Note that these include the binomial sampling
variance within a population as well as the Dirichlet variance between populations. This
second term seems necessary when the probabilities P̃l are estimated by substituting
sample allele proportions into 43.7, since those equations are designed to incorporate
evolutionary variation among populations.

The required variance for profile AluAlv is

Var[ln(P̃l)] =



plu(1− plu)(1− θ)2
(
θ
∑
i w

2
i + 1− θ

2nl

)
×
(

1
3θ + (1− θ)plu +

1
2θ + (1− θ)plu

)2

, u = v,

(1− θ)2
(
θ
∑
i w

2
i + 1− θ

2nl

)(
plu(1− plu)

[θ + (1− θ)plu]2

− 2pluplv
[θ + (1− θ)plu][θ + (1− θ)plv] +

plv(1− plv)
[θ + (1− θ)plv]2

)
, u �= v.

In practice, the allele probabilities plu are replaced by sample values p̃lu.
When θ = 0, the variances reduce to

Var[ln(P̃l)] =


2(1− plu)
nlplu

, u = v,
(plu + plv − 4pluplv)

2nlpluplv
, u �= v.

43.7.2 Coancestry

As mentioned earlier, the parameter θ that features so prominently in many of the genetic
forensic calculations is generally assigned a numerical value rather than being estimated
from forensic databases. Part of the reason for this is the difficulty in obtaining data from
subpopulations to allow estimation of θ , the very quantity introduced to avoid having to
collect such data in the first place. If observations were available at the crime-relevant
subpopulation level, there would not be a need for θ in 43.7.

There are occasions, however, when multiple samples are available from the same
major racial classification. Population geneticists have long estimated θ or FST from
such data (e.g. Cavalli-Sforza et al., (1994); Chapter 29). A classical procedure for
estimation rests on the method of moments (Weir and Cockerham, 1984), generally within
a hierarchical sampling framework such as alleles within individuals, individuals within
subpopulations, and subpopulations within populations. Recent work by Weir and Hill
(2002) has re-examined this classical approach, and has considered the effects of assuming
that allele frequencies are normally distributed over populations. For large sample sizes,
θ can be estimated for locus l as

θ̂ = 1

(r − 1)(ml − 1)

r∑
i=1

m∑
u=1

(p̃liu − p̄lu)2
p̄lu

.

In this equation, p̃liu is the sample frequency of allele Alu at locus l in the ith of r
samples, and u ranges from 1 to ml . The quantity p̄lu is the average frequency of Alu
over the whole dataset. Estimates can be averaged over loci under the assumption that θ
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is the same for each locus. The average estimate is distributed as θ times a χ2 distribution
with d = (r − 1)

∑
l(ml − 1) df, so that a 95 % confidence interval for θ is(

dθ̂

X0.975

,
dθ̂

X0.025

)
,

where X0.025, X0.975 are the 2.5th and 97.5th percentiles of the χ2 distribution with d df.
This asymmetric confidence interval is analogous to the asymmetric posterior probability
intervals found by Ayres and Balding (1998) from a Bayesian perspective. It would
be possible to incorporate this variation into expressions for the sampling variation of
estimated profile probabilities.

43.8 OTHER FORENSIC ISSUES

There are several issues in addition to those already covered that affect the interpretation
of DNA evidence. The various problems described in this section could all be avoided
by starting with the principles of evidence interpretation and proceeding to an evaluation
of conditional profile probabilities. Future directions are indicated by efforts to assign
individuals to phenotypic classes or ethnic groups, and to place DNA profile statements
in a hierarchy of propositions.

43.8.1 Common Fallacies

By far the most common fallacy associated with the forensic use of DNA is the
Prosecutor’s fallacy mentioned earlier. Virtually every media account of courtroom
testimony contains statements of the form ‘Based on the DNA evidence, the forensic
scientist testified that there was only one chance in a million that someone other than
the defendant left the crime sample’ whereas the scientist most probably stated the result
correctly as ‘If the defendant did not leave the crime sample, there is only one chance
in a million that it would match his type.’ Weir (2000) has described the frustration in
trying to have journalists write carefully, and even writers for Science are not immune
from the fallacy (Science 278:1407, 1997).

The defense attorney’s fallacy (Thompson and Schumann, 1987) is less common but
may appear compelling to a jury. If the profile in question has a probability of 1 in 1
million, and the defendant lives in a country of 100 million, the defense may claim that he
is merely 1 person among the 100 who have that profile. They may even suggest there is a
99 % chance he is not the source of the crime sample. The fallacy arises from a confusion
between the probability of the profile under Hd (and hence the LR) and the posterior
probability of Hd. It implies the assignment of equal prior probabilities to everyone in the
country, and it shows a lack of appreciation for the distribution of the number of matches
about the expected value. A full discussion of the related ‘island problem’ has been given
by Dawid (1994) and Balding and Donnelly (1995).

43.8.2 Relevant Population

Estimated profile or match probabilities refer to a population. They are not proportions of
people in that population with the profile but instead refer to the probability with which a
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person in the population either has the profile or matches the profile from someone already
typed. Which population is meant? As the calculations usually refer to the alternative
proposition Hd, it is clear that the suspect’s ethnicity, e.g. does not define the population.
That person did not contribute the crime profile, so his characteristics do not define the
population to which the actual contributor belongs (Lewontin, 1993; Weir and Evett,
1992; 1993). However, there is a tendency to concentrate on calculations based on allelic
frequencies in a sample of people with the same racial designation as the suspect.

It is proper to define the population by the circumstances of the crime, and these
may point to a geographic region or an ethnic group. Usually the conditional probability
Pr(Gc|Gs, Hd) will be greater when the actual contributor and the suspect belong to the
same (sub)population, so that focusing on the suspect’s racial group has an element of
conservativeness. Balding (1999) has presented a more satisfactory approach of allowing
the unknown contributor under Hd to belong to one of very many different sets of people
defined by the relationship to the suspect: the suspect’s siblings, his other relatives, other
members of his subpopulation, other members of his racial group, or anyone outside his
racial group.

43.8.3 Database Searches

One of the few remaining statistical areas of debate in the forensic uses of DNA concerns
the effects of database searches. The treatment so far in this chapter has considered the
situation where a suspect has been identified by an investigation and is then typed and
found to have a DNA profile matching that of a crime sample. For crimes with no suspect,
it is now possible to search large databases of profiles from known individuals such as
previously convicted offenders. Does the evidence have any less value against a person
who becomes a suspect because his profile was identified after such a search, than when
the person was a suspect before being found to match? The confusion has arisen because
of the observation that the expected number of matches increases with the size of the
database, and there has been a recommendation (National Research Council, 1996) that
a profile probability of P should be modified to NP when a suspect is identified by
searching a database of size N .

Balding and Donnelly (1996) and Donnelly and Friedman (1999) present careful
analyses to show that the LR for the database search case cannot be greater than for the
single suspect case. The evidence against the one person who goes to trial is essentially
unaltered by the means by which he was identified. It is not the database that is on
trial. In responding to Stockmarr (1999), Evett et al. (2000) show how the confusion can
be avoided by adhering to the Principles of Evidence Interpretation and recognising the
difference between LRs and posterior odds. There could well be an argument made that
the prior odds against the suspect are less if he was identified by a database search, so
that the posterior odds will also be less since the LR is unaltered.

43.8.4 Uniqueness of Profiles

As predicted by Stigler (1995), DNA profiles are now regarded as being as valuable and
reliable as fingerprints. Part of this acceptance rests on the very successful use of DNA
profiling to identify remains after mass disasters such as airplane crashes, and was not
hindered by the anomalous verdict in the criminal trial of O.J. Simpson (Weir, 1995).
With this growing acceptance has come less of a need to present statistical arguments.
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Moreover, the increasing number of loci used for forensic DNA profiles has made any
statistics appear to be beyond credibility. Maybe for these reasons, there has been a
move by the Federal Bureau of Investigation (FBI) to dispense with numbers (reported
in Science 278:1407, 1997).

Some relevant discussion was given by Kingston (1965) long before the advent of DNA
profiling. If a particular item of evidence has a probability P , then he assumed that the
unknown number x of occurrences of the profile in a large population of N people is
Poisson with parameter λ = NP : Pr(x) = λxe−λ/x!. If λ is large the binomial distribution
would be needed. Both Poisson and binomial require profiles from different people to be
independent, so neither can be strictly true for DNA profiles. Suppose a person with
the particular profile commits a crime, leaves evidence with that profile at the scene,
and then rejoins the population. A person with the profile is subsequently found in the
population. A simple model says that the probability that this person is the perpetrator is
1/x. Although x is not known, it must be at least one, so the probability that the correct
person has been identified is the expected value of 1/x given that x ≥ 1:

Pr(correct) =
∑
x≥1

1
x

Pr(x)∑
x≥1 Pr(x)

≈ 1− λ
4
.

For the United States, with a population of about 3× 108, a profile with a probability of
10−10 would give λ = 0.03 and a probability that the correct person had been identified
of 0.9925. Kingston (1965) went on to determine the probability that at least two people
in the population have a particular profile given that at least one person is known to have
it. This probability is

Pr(not unique) = Pr(x ≥ 2)

Pr(x ≥ 1)
≈ λ

2
.

For the USA example, the probability that the profile is unique, (1− λ/2), is 0.985.
An alternative calculation was provided by Balding (1999). He supposed that a person

(the perpetrator) is sampled anonymously and randomly from a population of (N + 1)
people and found to have a certain DNA profile. Each other person has the same
probability P of having that profile. A second person (the suspect) is sampled from
the population and (event E) is found to have the same profile as the first. Event U is
that the second person matches the first and that there is no other person in the population
with the same profile. It is possible (event G), with probability 1/(N + 1) that the second
person is actually the first person. The conditional probability Pr(G|E), from Bayes’
theorem, is 1/(1+NP) since the probability of E given that G did not occur is just P .
The probability of U given both G and E is the probability that none of N people have
the profile: (1− P)N , so

Pr(U |E) = Pr(U |G,E)Pr(G|E) = (1− P)
N

1+NP > 1− 2λ.

For the USA example, this lower bound is 0.94.
It is not clear which of the three probabilities (the two of Kingston or that of Balding)

the FBI wished to determine, but they did want a value of 0.01 which requires P = 1/25N
or P = 1/50N for Kingston and P = 1/200N for Balding. The FBI then reduced P by
a factor of 10 to account for uncertainty in estimating its value. There are two problems
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with this approach (Weir, 1999; 2001). In the first place, all N profiles in a population are
not independent and the Poisson/binomial calculation ignores all the issues of conditional
probabilities, population structure and relatedness discussed above. The more serious
problem may be that of perception – there is quite a difference between telling a jury that
the suspect has been identified as the perpetrator by his DNA profile and telling them
that there is a 1 % chance someone else has this profile. The absoluteness implied by
statements of identity is not a statistical concept.

A related set of calculations has to do with multiple occurrences of any profile, not a
particular profile, in a database. This is the so-called birthday problem. The probability
that at least two of a sample of n people have the same unspecified birthday (or profile)
for the case where every birthday (or profile) has the same probability P , is

Pr(at least one match) = 1− Pr(no matches)

= 1− {1(1− P)(1− 2P) · · · [1− (n− 1)p]}

≈ 1−
n−1∏
i=0

e−iP ≈ 1− e−nλ/2.

In the classic birthday problem, P = 1/365 and the probability exceeds 50 % once n
gets as large as 23. For the USA example of P = 10−10 the chance of some profile being
replicated in the population of N = 3× 108 is essentially 100 %. The Arizona Department
of Public Safety reported a ‘near match’ in a database of 65 493 for a profile that had an
estimated probability of 1 in 3.1 billion. Using that probability, the chance of finding two
matching profiles in the database would be 50 % so it would not have been surprising
if they had found a complete match. There are about two billion pairs of people in the
Arizona database, so the occurrence of one matching pair is seen to still be a rare event.
It is important to stress that the birthday problem requires two or more copies of some
birthday (profile), not two or more copies of a particular profile.

There is an interesting twist to the notion expressed above that DNA profiling has
become as well-accepted as has fingerprinting. Publications have begun to appear that
apply LR approaches to fingerprint minutiæ(Neumann et al., 2006). Such work is needed
to assess the evidential contribution of fingerprints that may be partial, distorted or with
poor signal to noise ratio.

43.8.5 Assigning Individuals to Phenotypes, Populations or Families

An individual’s phenotype depends ultimately on his genetic makeup, and there have been
hopes that DNA profiles could be used to identify the ethnicity or physical appearance
for the unknown donor of an evidentiary stain. There is the trivial example of sex-linked
markers being used to determine gender, or at least X,Y chromosomal composition. There
has also been some progress in predicting phenotype when that is limited to red hair
(Grimes et al., 2001) because many cases of red hair can be associated with the genotype
at a single locus, the melanocortin-1 receptor. Grimes et al. conclude ‘Given that between
5.3 and 11 % of the population of the British Isles are reported to have red hair, a positive
test result could have a major impact on the course of an investigation.’

Much less certainty can be attached to inferring ethnic origin. Lowe et al. (2001)
used the UK Forensic Science Service panel of six STR loci to suggest a means of
reducing the number of interviews needed to resolve a case. They first estimated the
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probability of the crime scene profile G for each ethnic group r for which they have
allele frequencies. If I indicates an investigator’s prior information and Pr(r|I ) his or
her prior probabilities for ethnic origin of the crime-scene stain donor, Bayes’ theorem
provides posterior probabilities of

Pr(r|G, I) = Pr(G|r, I )∑
s Pr(G|s, I )Pr(s|I ) .

If an investigator faces the task of interviewing and/or DNA testing all members of
a population until the true donor of the stain is found, then the expected number
of interviews may be reduced if the posterior probabilities are used. For example, if
the posterior probability is highest for ethnic group R, then preferentially interviewing
members of that group will be efficient if the probability is greater than the proportion of
people in the population who are of origin R.

Shriver et al. (1997) adopted an alternative procedure of looking for DNA loci that
are particularly discriminating. They claimed evidence for a set of 10 loci, selected from
a set of 1000, that would provide good discrimination between African Americans and
European Americans. Their methods and conclusions were challenged by Brenner (1998),
who points to the danger of selecting the most discriminating loci from a large number
of loci based on the performances in small samples. There is the possibility that ‘From
among 1000 loci, one could similarly find a set of 10 loci that differentiate the 9-year olds
from the 10-year olds in the local playground.’ Nevertheless, Brenner supports the work
of Lowe et al. (2001) that the STR loci used by forensic scientists have good potential
for ethnic assignment.

Genetic markers can also be used to assign individuals to families and this is of
particular use following mass disasters. An alternative use of markers for making
inferences about relatedness is that of familial searching. Bieber et al. (2006) describe
the situation where an evidentiary profile is compared to every profile in a database and
the LR for the two profiles being from (specified) relatives or from unrelated people is
calculated. High LRs are suggestive of relatedness, Bieber et al. show by simulation when
the database did contain one true brother or father of the donor of the evidence sample
that, about half the time, the highest LR identified the true relative. To achieve 90 %
probability of identifying a subset of the database that included the true relative, it may
be necessary to consider at least the 100 highest LRs. Other issues in the estimation of
relatedness of relationship from genotypes were reviewed by Weir et al. (2006).

43.8.6 Hierarchy of Propositions

This chapter has been concerned mainly with the statistical procedures to quantify the
strength of the evidence provided by sets of DNA profiles, especially in the case of
matching profiles. These statistical methods are generally straightforward, but they do
not capture all the forensic issues. Evett et al. (2002) have introduced the concept of a
‘hierarchy of propositions’ The highest-level propositions have to do with the guilt or
innocence of a defendant, whereas the lowest-level propositions have to do with whether
a DNA sample is from the defendant. The authors conclude with the substantial point that
‘even if the inference with regard to whether or not the source of a sample of DNA is
effectively indisputable, the inference with regard to whether the defendant is the offender
may be subject to considerable uncertainty’.
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43.9 CONCLUSIONS

Quantifying the evidentiary value of matching genetic profiles requires a comparison of
the probabilities of the evidence under alternative propositions. These probabilities, in
turn, require the probability that an unknown person has the profile given that a known
person has the profile, and this is a statistical genetic quantity. The match probability
depends on the relationship between the two people, whether this is due to joint family
membership, or simply joint membership in some population.

Even though the propositions concerning the origins of a crime stain may list only
one person, other people may have been typed as part of the investigation. Their profiles
affect the match probabilities under a general model that allows for population structure.
All expressions are considerably simplified when the population can be assumed to be
have reached an equilibrium stage under the action of evolutionary forces, but this theory
is presently in place only for single loci. An assumption is made that different loci are
independent, so that match probabilities may be multiplied over loci.

There are many advantages to a general and coherent approach to the interpretation
of genetic evidence. This approach, expounded upon by the authors already cited is
finding acceptance by forensic scientists in many countries, but it requires a willingness
to abandon simplistic approaches that appeal to expedience. The interests of justice, in
the long run, will best be served by sound statistical theories.
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Horváth, L. 967
Horvitz, H.R. 155
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Mervåg, B. 839
Meselson, M. 431
Mesen, A. 1186
Mesiro, J. 712
Mesirov, J. 229
Mesirov, J.P. 228, 264, 325, 1136
Messier, C. 156
Messier, W. 404
Metni Pilkington, M. 1108
Metodiev, S. 1097
Metropolis, N. 95, 457, 487, 841, 970, 1165
Metspalu, A. 1103, 1259
Metzger, J.M. 325, 1320
Metzker, M.L. 1136
Meunier-Rotival, M. 431
Meuwissen, T.H.E. 674, 714, 748, 749
Meuwly, D. 1391
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Herpes simplex virus (HSV) 177
Heterodontus francisci 420
heteroskedasticity 212, 213

of log ratios 208
heterozygosity 870, 986, 991, 1012, 1036
heterozygote excess 976
heterozygous profile 1383
heuristic criteria 361
heuristic searches

hill-climbing and related methods 527–8
limited (local) searches 526–7

HEXON program 124
hidden duplications 188
hidden Markov model (HMM) 67, 71–3, 97, 175, 339,

445, 1149, 1202, 1212
alignment of three sequences 80
Bayesian estimation of parameters 79–81
for cis regulatory module discovery 88–9
computer software 81
graphical illustration 72
independent generation of protein sequences 77
in sequence alignment 77–9
sequence inhomogeneity model 86–7
with three match states 77

hidden semi-MaAov model 67
hierarchical algorithms 361
hierarchical Bayes analysis 475
hierarchical clustering 224, 361–2

algorithms 223–4
model-based 362–3

hierarchical clusters
choice of number of 363
displaying and interpreting results 363–4

hierarchical subdivisions, F ’-statistics in 983–8
high performance chromatography (HPLC) 369
high-resolution mapping 32
hill-climbing and related methods 527–8
Hill–Robertson effect 423
histone modification 1301, 1302
HIV protease modelling 330
HIV-1 vif genes 398

positive selection 397–8
HLA system 1171
HMM-based multiple gene prediction 125–7
HMMER 81
HMMgene program 127
hold out test (HOT) 336
hominin evolution 1069
Homo erectus 1069–70, 1071
Homo ergaster 1069, 1070
Homo habilis 1069
Homo heidelbergensis 1069, 1070
Homo neandertalensis 1069, 1070, 1071, 1079–80

Homo rudolfensis 1069
Homo sapiens ferus 1083
Homo sapiens 1069, 1070, 1071, 1082
Homo sapiens monstruosus 1083
homologous proteins 42
homology 8, 163–4

concept of 41
inference of 58, 62
modelling 330

homozygosity 1038
homozygosity mapping 1156
homozygosity test of neutrality 775
homozygous profile 1383
Hotelling’s T 2 statistic 1233
Hox genes 418
HSGL program 113
HTS 108
Hudson, Kreitman, Aguadé (HKA) test 937
HUGIN procedure 821–3
human cell populations, modelling 1305–7

methylation patterns 1305–6
human chromosome 23

RH mapping 29
STS map 25

human colon crypts, modelling 1306–7
Human Epigenome Project 1303
human genes 409–10

structural characteristics 99
human genetic diversity 1067–108

catalogues of humankind 1081–4
classification methods 1085–7
continuous vs discontinuous models of human variation

1091
drug response 1094
fossil evidence 1069–70
genetic diversity within and among populations 1084–5
geographical structure 1081–91
historical inferences 1069–81
identification of main human groups 1087–91
inferring past demography 1071–5
likelihood-based and Bayesian approaches 1073–5
modern human origins 1070–1
population structure, description of 1084–7
race concept 1093, 1095
reconstructing past human migration and demography

1075–81
summary statistics 1072–3

Human Genome Project 136, 203, 1131, 1141, 1146, 1303
human pigmentation 1093–4
human rights 1327
Human Transcript Map STSs 32
Huntington’s disease 1238, 1349, 1357, 1360
hybridisation 1051–2
hypertension 1241
hypothesis testing 481–2, 561–3, 1048

i-ADHoRe 188
IAM 1048
identical-by-state (ibs) 1172
identical-in-state (IIS) 949, 1055
identification of remains 1379
identity by descent (IBD) 303, 785, 1055
identity coefficients 988, 996–7
identity gene order 171
identity probabilities 948–9, 972–9
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identity process along a chromosome 790–1
identity states

for multiple individuals 787–9
for two individuals 786–7
two siblings given parental states 789–90

identity-by-descent (IBD) 948–9, 1168, 1172, 1280
probabilities of alleles 629–33

Illumina HumanHap300K BeadArray 1241
Illumina Infinium Human1 BeadArray 1241
IM 959–60
im program 905
image quantification 205–6
IMMANC 963
immigrant ancestry 1047, 1052–3
immigrant gene 1047
importance sampling (IS) 885–9, 1074, 1152

application and reliability assessment 888–9
impurity loss 332
inbred line crosses

marker-assisted introgression (MAI) 736–9
marker-assisted selection (MAS) 719 719–730

inbred lines, genetics 590–1
inbreeding coefficient f 785, 1371–4
incidence/prevalence bias 1220
incompatible split systems 521, 522
incompletely penetrant traits 8
index 497
index of total selection 546
indexing system to identify taxa, splits and edges in a tree

497
indirect association 1239
individual fitness surface 549, 551–3

linear and quadratic approximations 553–5
induced breakpoint distance 171
inference 932–8

coalescent 878–908
from clines 964–5
computer programs 904–5
from spatial population genetics 945–79

infinite allele model 765–8, 1035–7
mutation 765–7
selection and mutation 767–8

infinitely many sites model 768
infinitesimal model

allele frequency changes under 537–8
drift under 541–2
linearity of parent–offspring regressions under 538
mutation under 541–2
selection response under 537–42

inflammatory bowel disease 1241–2
information bias 1219
information gain 332
initial data processing (IDP) 233, 235–40
inparalogues 163
Inparanoid program 163
insertion/deletion distance 170
instantaneous rate matrix 465
insurance 1346–67

actuarial models 1352–9
examples 1359–65
legislation and regulation 1351
long-term pricing 1346–8
multifactorial disorders 1361–5
principles 1346–52
quantitative questions 1352

single-gene disorders 1359–61
Integrated Molecular Analysis of Genomes and their

Expression (IMAGE) Consortium 32
intercross 1271
interference models, likelihood evaluation under 1161
intermixture model 1042
internal exon characteristics 129
internal exon recognition 128–9
International Radiation Hybrid Mapping Consortium 32
Internet resources for gene finding 147–50
intersection graph 800
interval mapping 599, 608–10, 615, 1147
intraclass correlations 991
introgression 719
introns 98

evolution 411
origins and functions 411–4

introns-early hypothesis 411
invasive ductal carcinoma (IDC) 1313
inverse probability 462
inversion 165
inverted shift 165
invertible transformations 505
island model 946–7, 956

efficiency 979
likelihood analysis 977–9

isolation by distance model 947–8, 956–9
isolation index 522
isolation-with-migration 959

jackknife 1009
JoinMap 20
joint genotype probabilities 1375
joint posterior distribution 72
joint probabilistic model 68
joint probability distribution 68
joint profile probabilities 1375–7
joint sampling of genotypes 655
joint simulation distribution 1152
Jones–Taylor–Thornton (JTT) model of amino acid

replacement 442
Jukes-Cantor formula 462, 470, 506, 519
junction tree 817, 819–21

k 1085
k-clique 521
k-compatible split systems 521
k−group comparisons 240–2
k-means algorithm 361, 1314
k-mers 89–90
k-nearest neighbour (kNN) algorithm 335–6
Kaplan–Meier survival curve 1358
Karlin-Altschul statistics 47–8
kernel density estimates (KDEs) 366–7
kernel methods 364, 1085
kernel regression 698–9
kernel trick 339
kernels 340
Kimura model 506, 510
kinship coefficient 785–6
KITSCH 175
Klinefelter syndrome 1302
Kluyveromyces waltii 418
Knudson’s two hit hypothesis 1292
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Kolmogorov forward equation 764
Kolmogorov–Smirnov test 192
Kosambi map function 13, 1161
Kruskal–Wallis test 242
Kullback-Leibler information 1147
Kyoto Encyclopedia of Genes and Genomes (KEGG) 253

labelling schemes 204
lactase persistence 1093–4
LAGAN 186–7
Lamarc program 904–5
Lancet Series in Genetic Epidemiology 1112
Lander-Green algorithm 14, 1149–50
Lande’s test 571–2
landscaper genes 1296
latent disease subtypes, modelling exposures for 1310–1
latent variables 1145
least-squares (LS) analysis, linkage mapping via 625–8
Leishmania major 179
Leu/Leu genotype 1222
Leviviridae, phytogeny 481
library sequence similarity scores, distribution 60
life insurance 1347

underwriting 1348–9
likelihood 880

approximation 935–6
and coalescent 883–5
intuition 469–71

likelihood analysis, island model 977–9
likelihood-based inference 879–83, 1045
likelihood calculation 1149–51

under interference models 1161
under models of variable ω ratios among lineages

390–1
under models of variable ω ratios among sites 394–6
on pedigrees 1160–1
on phylogeny 388–9

likelihood function 463–9, 964–5, 1050
parameters 471
in phylogenetic analysis 460–88

likelihood inferences 959–60
likelihood methods 934–5, 952–5
likelihood ratio 1370, 1377, 1382
likelihood ratio test 244, 606, 1048
likelihood surfaces 887–8, 891–3
Li-Mantel estimator 1126–7
LINE sequences 425
linear analysis 1085
linear discriminant analysis 105–6
linear discriminant function (LDF) 105–6, 118, 123
linear regression 1276–7

of relative fitness 553
LINEs 429
LineUp 188
link functions 365
linkage 6, 535

association and 1278–81
linkage analysis 1141–67

application 1145
complex traits 1155–8
definition 1141
development 1144–6
future directions 1162–3
methods 1141

linkage association 591

linkage detection, model-free methods for 1168
linkage disequilibrium (LD) 666–8, 835, 909–44, 981,

1051, 1177, 1216, 1239
complete 1239
definition 909–11
extensions of two-locus measures 918–9
hypothesis testing 937–8
mapping methods 666–8
matrix methods 924
measuring 911–21
methods 666
modelling, genealogical history and 922–32
parameter estimation 933–7
patterns in the absence of recombination 925–8
in populations with geographical subdivision and/or

admixture 929–30
in recombining regions 928–9
relating genealogical history in 930–2
single-number summaries 913–4
spatial distribution 914–8
tagging and 1239–40
two-locus IBD and 922–3

linkage estimation, Bayesian methods of 1158
linkage location score 1153
linkage mapping 666–8

via Bayesian methodology 638–50
via least squares or maximum likelihood and fixed effects

models 625–9
pedigree information 666
of QTLs, Bayesian approach for 649–50
via residual maximum likelihood and random effects

models 629–38
liquid chromatography (LC) 348
liquid chromatography–mass spectrometry (LC-MS) 348,

351
livestock, genetic selection programs of 678
local alignment algorithms 45
local background intensity 206
local pattern discovery methods 225
local regression (loess) normalisation 236
local sequence similarity 45
local similarity scores

for single sequences 48
statistical significance of 47–8

locally collinear blocks (LCBs) 187
location score 1147
location score computation 1149–51
location score curves 1148, 1151
loci, detection under selection 1012
locus-by-locus sampling 654
LOD (log-odds) score 11, 18, 305, 316, 319, 1145, 1233
log mean population fitness surface 560
log ratio 208
logarithms 1146
LogDet (or paralinear) distance 494
LogDet (or paralinear) distance correction 509
logistic analysis 1085
logistic regression 1225–7
logistic regression model 1247–9, 1268–71
logit link function 1247
log-likelihood 389, 395

for beta-globin data 888–9
log-likelihood function 383, 478, 1221
log-likelihood methods 636–8
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log-likelihood ratio (LLR) 102–3, 1221, 1222–3, 1228,
1233, 1235, 1236

log-likelihood surface contour 384
log-linear modelling 1225–7, 1228
logstic regression 1276
longitudinal data, linear and nonlinear models 691–5
longitudinal responses in animal breeding 690–5
loss of heterozygosity (LOH) 1292, 1293, 1295
lung cancer 1289
lysozyme c genes

log-likelihood values and parameter estimates 392
of primates 391

lysozyme evolution, likelihood ratio statistics 393

M3 395
MAFFT 83
Mahalanobis distance 106, 110, 112, 129, 706
majority of genes unchanged property 207
Mallow’s Cp 723
Mantel extension test 959, 1228
map distance 7, 18, 1144
map estimation 1158–62
map uncertainty 1158–62
Map/Map+ 20
MAPMAKER 20
MAPMAKER/SIBS 1172, 1175
mapping as you go 729
marginal likelihood 69
marginal odds ratio 1230
marginal posterior density plots 649
marginal posterior distribution 87
marginal probability 337
marker-assisted gene pyramiding 740–2
marker-assisted introgression (MAI) 736–40

inbred line crosses 736–9
outbred populations 739–40
overview 719

marker-assisted selection (MAS) 718–51
via BLUP 731–2
broadening genetic variability 730
efficiency 722–4
experimental design 724
inbred line crosses 719–30
mixed model formulation 724–5
model selection process 723
multiple traits 727
non-Gaussian traits 726
optimisation over several generations 729–30
outbred populations 730–6
overview 719
refinements 724–30
shrinkage estimation 725–6
within-family 734–6

marker data, highly incomplete 603
marker typing 1162
Markov chain 71, 175, 335–6, 346, 445
Markov chain Monte Carlo (MCMC) 80, 174, 176–7,

460, 476–9, 482, 527–8, 689, 690, 706, 744, 832,
889–99, 934, 996hsg031:6, hsg031:8–10, hsg031:20–1,
hsg031:24, hsg031:25, hsg031:29, hsg031:30, hsg031:32,
hsg031:34, hsg032:20, hsg033:6–7, hsg033:8,
hsg033:10–11, hsg033:17, hsg035:13–15, hsg035:20,
hsg037:13, hsg039:14, hsg043:9
algorithms 70, 71
application and reliability assessment 897–9

algorithms 616
analysis 523
techniques 451

Markov graph 799–800
Markov models 507

of codon substitution 379–81
of insurance purchase and critical illness 1355
family history of Mendelian disorder 1356

Markov process 383
Markov property 816
marriage 811
marriage node graph 781–2, 783, 796–801, 811

derivation of moral graphs from 802–3
drawing 796–8

MARS 90
mass spectrometry (MS) 348
massive molecular data 697–705

motivation 697–8
match probabilities 1375–7, 1382, 1385
matching 1227–30

genetic profiles 1370–1
mathematical models, population genetics 755–80
matrix recursions 924
MAUVE 187, 189
MAVID 186
max gap 188
max-gap clusters 188–9
maximum average likelihood 513–4
maximum evolutionary pathway likelihood 516
maximum likelihood 471–4, 484, 959–60

linkage mapping via 628–9
and parsimony 513–6

maximum likelihood estimate (MLE) 174, 309–10,
382–6, 462, 604–5, 683, 953, 956, 965, 1007, 1221
history in phylogenetics 462–3

maximum likelihood inference 880–2
maximum likelihood method 385, 386

vs. ancestral reconstruction 393
maximum likelihood tree 474
maximum most-parsimonious likelihood 514
maximum parsimony 513
max-propagation 823
Mayesian model 241
MDscan 90
mean fitness surface 549, 551
mean squared error of prediction (MSEP) 704
mechanistic convergence 43
median networks 523
medical ethics 1326
MEGA2 402
meiosis 8–9, 659–61, 1143, 1158
meiosis I 17
meiosis II 17
meiosis-based inheritance-vector M-sampler 1161
meiosis indicator 812, 1143, 1147, 1157
meiosis model 1158–62
membrane proteins 328
MEME 90
Mendelian expectation 1174
Mendelian factors 18, 589–90
Mendelian inheritance 6, 680, 756, 1174
Mendelian laws 5–6, 1141, 1142, 1378, 1168
Mendelian markers 18
Mendelian randomisation 832, 833–6
Mendelian segregation 857, 1143
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Mendelian traits 1148
mental capacity 1334–5
MERLIN 1150, 1176, 1177, 1182
MERLIN-REGRESS 1182
messenger RNA (mRNA) 267, 299

abundances 204–5
metabolic profiling 347–72

data pre-processing 350–1
example data 351–2

metabolites 348
metabolome 348
metabolomics 347
metabonomics 347
Methanococcus jannaschii 41, 44
methylation errors 1306
methylation microarrays 1303, 1304–5
methylation-specific polymerae chain reaction (MSP) 1303
MethyLight 1303, 1304, 1309
Metropolis acceptance step 1161
Metropolis algorithm 528, 1202
Metropolis–Hastings algorithm 453, 642–4, 689, 953
Metropolis–Hastings samplers 744, 1049
Metropolis–Hastings updates 664
MFLINK 1170
Microarray Analysis Software (MAS) 236, 237
microarray coating 209
microarray data, Bayesian methods 267–95
microarray data analysis, limitations 212–4
microarray experiments

batch effects 209–10
components 205

microarray gene-expression study
data analysis 203–30
sample size 256–9
study design 256–9

microarray measurements 205
microarray studies, statistical inference 231–66
microcephalin 1079, 1080
micro-FRNA arrays 1316
micro-RNAs 301
microsatellite data 903, 1005–7, 1044
microsatellites 1001, 1004
micsat program 904
MIGRATE 959, 960
migration 996–7
migration matrix models 946–7, 955, 960
migration rates, current, inferring 1052–3
minimum evolution and related criteria 517–20
minus-add plot (MA-plot) 237
miRNA genes, characteristics and computation identification

141–5
miRNA target prediction 145–7
mismatch (MM) probe 271–2
mismatch distributions 1072, 1073
missing data 69, 1145, 1196
mitochondrial DNA (mtDNA) 768, 1001, 1012
mixed linear model

with random QTL allelic effects 633–4
with random QTL genotypic effects 634–6

mixed model complex traits 1157
mixed model equations (MME) 683–4
mixing proportions 1308
mixture distributions

fitting 595–6
histogram 592–5, 598

mixture models 598–602, 1307–13
MLAGAN 186
mobile DNA 412, 425–30
model-based clustering 361–3
model-based normalisation 236, 237
model-free methods

for dichotomous traits 1171–81
for linkage detection 1168
pros and cons 1169–71
for quantitative traits 1181–2

model selection procedures, uncritical use 614–5
molecular clock model 509, 1296, 1307
molecular data, analysis 1001–9
molecular distances 1043
molecular evolutionary change 408
molecular homology 42
molecular information, statistical use of 709
molecular markers 597–8
molecular phylogenetics 871
molecular score 720
Molquest program 147
moment estimators 994–5
moment methods 934
monogenic trait, Bayesian mapping of 639–41
Monte Carlo EM 1160
Monte Carlo integration 885
Monte Carlo Markov chain see Markov chain Monte Carlo

(MCMC)
Monte Carlo methods 20, 885, 934
Monte Carlo multipoint linkage likelihoods 1151–5
Monte Carlo simulation 382
moral graph 782, 783, 801–5, 817

for colourability and triangulation 804–5
derivation from marriage node graphs 802–3
significance for computation 801

moralising the graph 817
morality 1326
Moran Process 1296
morgans (M) 591
most recent common ancestor (MRCA) 770–1, 845, 849,

861, 863, 867, 870
motif-based local alignment 75–6
motif-based multiple alignment method 82–3
MRCA see most recent common ancestor (MRCA)
MS 350
ms 904
multi-allelic loci 1024
multi-allelic molecular data 1004–7
multi-MUMs 187, 189
multiclass data 283
multicollinearity 562
multilocus analysis 1251–4
multilocus feasible map functions 13
multilocus genotypes 653
multilocus match probability 1383
multilocus models 305–6
multinomial-Dirichlet 996, 1027, 1047–8
multiple alleles 985–6, 1232–4
multiple colouring of chromosomes 21
multiple disease loci 1179
multiple endocrine neoplasia 1349
multiple gene identification in genomic sequences 124
multiple gene prediction

discriminative and probabilistic approaches 125–7
pattern-based 127–8
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multiple-interval mapping (MIM) 611
Multiple Genome Rearrangement (MGR) 176
multiple loci 1234–5
multiple markers 602

loci extensions 1176–7
multiple motifs, extension 87–8
multiple mRNA isolations 217
multiple parental populations 1044
multiple protein sequence alignments 82–3
multiple-QTL models (MQM) 599, 602

mapping 611–4, 612–614
multiple sequence alignment (MSA) 76–84
multiple testing 218, 219–21, 245–53

selection 250–3
significance criteria 248–9

multiple-testing adjustments (MTA) 233
multiple-trait parent-offspring regressions 536–7
multiple-trait selection 566–70
multiplex sibships, sib-pair methods for 1174–5
multiplicative calibration 211–2

and noise 214–6
multiplicative model 1232–4
multiplicative penetrance model 1219
multipoint linkage, analyses 11

with tightly linked markers 1177
multivariate breeders’ equation 537, 566
multivariate gene selection models 288–91

Bayesian shrinkage with sparsity priors 290–1
variable selection approach 289–90

multivariate normal (MVN) phenotypes 557–8
multivariate normal distribution 647
multivariate selection measurement 555–66
multivariate t distribution 647
MULTIZ 187
MUMmer 186
MUPRED 335
Mus musculus 101, 143
MUSCLE 83
mutation 542, 570, 755, 757, 996–7, 1029

infinite-allele model 765–7
under infinitesimal model 541–2
neutral process 845
order of acquiring 1294–5
resulting in gain of function 1292
resulting in loss of function 1292–4
vs. selection 756
see also specific models

myotonic dystrophy 1349

Nadaraya–Watson estimator of the regression function 699
natural map functions 1161
natural selection

Darwin’s theory 41–2, 377–8, 460, 755
Fisher’s fundamental theorem 575–82
Robertson’s secondary theorem 580–2
theorems 575–82

NCBI 137
nearest-neighbour clustering 362
Needleman–Wunsch algorithm 73, 75, 79, 186
negative values 212
neighbour-joining method 76, 491, 526
NeighborNet 522, 523
neofunctionalisation 419
Neurospora crassa 8, 14
neutral coalescent 769–71

neutral models 395, 953
of geographical variation 946–8

neutral mutations 869–70
neutrality, homozygosity test of 775
new disease occurrence 1220
new fold modelling 331
Newton–Raphson iteration 797
Neyman correction 519
Neyman–Pearson lemma 932
niches 1305, 1306
no chromatid interference (NCI) 8, 10–1, 16
no-interference model 10, 12
noise 211–2, 214–6
non-conservative arrangements 164
non-polar residues 329
noncanonical splice pairs 108
noncanonical splice sites 107
noncoding RNAs (ncRNAs) 301
nondeterministic polynomial (NP) 819
nonhierarchical clustering algorithms 223
nonlinear generalised linear models in animal breeding

690–5
nonlinear iterative partial least squares (NIPALS) 352–3,

356
nonparametric linkage 1168–89
nonrecombinants 7
nonsister chromatids 8
nonspecific hybridisation 273–4
nonsynonymous to synonymous rate of substitution
Nordling model 1288
normalised induced breakpoint distance 171
normalisation 236–8, 275–6
normalising fitness function 573
normal–uniform (NU) mixture modelling 1311, 1312–3
nor-optimal fitness function 573
NPLtest 1176
N-scan 161
NSITE 102
nuclear magnetic resonance (NMR) spectroscopy 348,

350, 369, 370
nuisance parameters 1221, 1224
null distribution 1224
null model 70
numbers of trees 501–2

object-oriented Bayesian network (OOBN) 810, 813–4,
815

Ockham’s razor 490, 513, 515
odds ratio 1218
odds-ratio formula 87
offspring conditionally independent given genotypes of

parents (OCIGGOP) property 801
offspring-parent triad 13
oligonucleotide arrays 271, 273–5
oliogogenic models 1157
oncogenes 1292, 1296
OOA 1075
OOA model 1077, 1078
open reading frames (ORFs) 44
operators 299–300
optical mapping 22

restriction mapping via 22
statistical analysis 22

optimality criteria 512–20
ordered clone maps 22–4
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ordered subsets analysis 1178
ordinary least squares (OLS) 355, 356
orthogonal projections to latent structure (P-PLS) 358–9
orthologous proteins 42
orthologous sequences 62
orthologues 163
orthology, inference of 62
outbred pedigrees 623–77
outbred populations

marker-assisted introgression (MAI) 739–40
marker-assisted selection (MAS) 730–6

OUTMAP 20
outparalogues 163
ovarian cancer 1289, 1295, 1354, 1357
overlapping generations 769

p-value 239, 250–3, 1011, 1223, 1224, 1229, 1234, 1235
computing 244–5
for tests of allelic independence 1373

pairwise alignment
Bayesian 73–6
of biological sequences 73–6
distribution 75

pairwise relationships 782–4
pairwise search methods 75
pairwise statistical significance 54–6
PAM matrices 45–7, 73, 75, 76
PAML 402
Pan 1069
Papilio memnon 414
parallel evolution 42
paralogous genes 163
paralogous sequences 43, 62
Paranthropus 1069 1069
parasitic DNA sequences 409
parent-of-origin effect 1302
parent of origin studies 1265
parent–offspring phenotypic covariance 534
parentage issues 1377–8
parental types 7
ParIS genome rearrangement 174
Parkinson’s disease 1332
parsimony 489–532

criterion 517, 519
Fitch algorithm for 516–7
general comments 512–3
and maximum likelihood 513–6
overview 529–30
principle of 513, 515

partial least-squares (PLS) analysis 352, 355–7
partial least-squares discriminant analysis (PLS-DA) 357
partial score function 1272
partially linked markers 1051–2
PARTITION 1086
partitioning algorithms 360–1
partitioning around medoids (PAM) 361, 1314
partitioning methods 361
paternity index (PI) 1377–8
path analysis 808
path coefficients 681
path decomposition 170, 172–5
path implication 72
pattern

definition 496
discovery 221–5

pattern-based algorithms 97
pattern-based multiple gene prediction 127–8
PAUP block 472–3
PAUP program 474, 484
peak picking approach 350–1
Pearson-Lande-Amold regression 554, 559
Pearson’s chi-squared statistic 1245–6
Pearson’s correlation coefficients 242
pedigree 13

dependence structure of data on 1150
graphs 811–2
with inbreeding loop 658
likelihood computations on 1160–1
with loops 657–8
without loops 656
with marriage loop 658
with partial genotype data 663
year 1146

pedigree analysis 808, 824–32
pedigree disequilibrium test (PDT) 1274, 1275, 1279
pedigree estimation 1054–7
pedigree information, representation 811–6
pedigree structures 1273–6
pedigree uncertainty 827–9
peeling algorithm 792–3
peeling 20, 655, 808, 816–24, 821
peeling sequence 656, 661, 817
penalty factor 249
penetrance distribution 816
penetrance function 647, 648
penetrances 1217
peptidases 43
percent of methylated reference (PMR) 1304
perfect match (PM) probe 271–2
performance measures 104–5
permutation 244, 1009–10
permutation tests 1157
person-by-person sampling 654
person-marker 651–2
Petromyzon marinus 418
PHASE 1252, 1253
phenotype 591

assigning individuals to 1388–9
error-link combinations 1120
expression and 240–5
quantitative 242
unrecorded 727–9
see also genotype-phenotype relationship

phenotype-association analysis 232, 233
phenotype-expression association testing 241
phenotype–genotype relationship in protein evolution

439–40
phenotypic aggregation within families 1117–8
phenotypic covariance matrix 536–7
phenotypic distribution, skewed 550
phenotypic evolution models 570–5
phenotypic information, adding 816
phenotypic regressions 535–6
phenotypic variance, equilibrium reduction 574
Philadelphia (Ph) chromosome 1290–1, 1292, 1295
PHOBIC 332
PHYLIP 175
phylogenetic analysis 175–7

likelihood function in 460–88
tree in 884
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phylogenetic inference 872
phylogenetic methods 871

expected accuracy 461
flexibility 461
philosophy 461
testability 461

phylogenetic network 501, 520–4
phylogenetic signals, conflicting 521–4
phylogenetic trees 460–1, 465–6, 469, 501
Phylogenetically Inferred Groups (PhIGs) 163
phylogenetics 489–532

Bayesian inference in 463, 478, 484
and coalescent 870–2
history of maximum likelihood estimation in 462–3
nonstandard usages 501

phylogenies
posterior probabilities of 474
of transposable elements 426–30

phylogeny
Bayesian estimates 479, 480
Bayesian inference 478, 484
Leviviridae 481
likelihood calculation 388–9
primate species 391
uncertainty 480

phylogeny problem 460, 464–5, 471, 473, 484
physical mapping 4, 20–8

bottom-up approach 24
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