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POINTS OF SIGNIFICANCE

Association, correlation 
and causation
Correlation implies association, but not causation. 
Conversely, causation implies association, but not 
correlation.

Most studies include multiple response variables, and the dependen-
cies among them are often of great interest. For example, we may 
wish to know whether the levels of mRNA and the matching protein 
vary together in a tissue, or whether increasing levels of one metabo-
lite are associated with changed levels of another. This month we 
begin a series of columns about relationships between variables (or 
features of a system), beginning with how pairwise dependencies 
can be characterized using correlation.

Two variables are independent when the value of one gives no 
information about the value of the other. For variables X and Y, we 
can express independence by saying that the chance of measuring 
any one of the possible values of X is unaffected by the value of Y, and 
vice versa, or by using conditional probability, P(X|Y) = P(X). For 
example, successive tosses of a coin are independent—for a fair coin, 
P(H) = 0.5 regardless of the outcome of the previous toss, because a 
toss does not alter the properties of the coin. In contrast, if a system 
is changed by observation, measurements may become associated 
or, equivalently, dependent. Cards drawn without replacement are 
not independent; when a red card is drawn, the probability of draw-
ing a black card increases, because now there are fewer red cards.

Association should not be confused with causality; if X causes 
Y, then the two are associated (dependent). However, associations 
can arise between variables in the presence (i.e., X causes Y) and 
absence (i.e., they have a common cause) of a causal relationship, 
as we’ve seen in the context of Bayesian networks1. As an example, 
suppose we observe that people who daily drink more than 4 cups 
of coffee have a decreased chance of developing skin cancer. This 
does not necessarily mean that coffee confers resistance to cancer; 
one alternative explanation would be that people who drink a lot of 
coffee work indoors for long hours and thus have little exposure to 
the sun, a known risk. If this is the case, then the number of hours 

spent outdoors is a confounding variable—a cause common to 
both observations. In such a situation, a direct causal link cannot 
be inferred; the association merely suggests a hypothesis, such as a 
common cause, but does not offer proof. In addition, when many 
variables in complex systems are studied, spurious associations can 
arise. Thus, association does not imply causation.

In everyday language, dependence, association and correlation are 
used interchangeably. Technically, however, association is synony-
mous with dependence and is different from correlation (Fig. 1a). 
Association is a very general relationship: one variable provides 
information about another. Correlation is more specific: two vari-
ables are correlated when they display an increasing or decreasing 
trend. For example, in an increasing trend, observing that X > μX 
implies that it is more likely that Y > μY. Because not all associations 
are correlations, and because causality, as discussed above, can be 
connected only to association, we cannot equate correlation with 
causality in either direction.

For quantitative and ordinal data, there are two primary mea-
sures of correlation: Pearson’s correlation (r), which measures lin-
ear trends, and Spearman’s (rank) correlation (s), which measures 
increasing and decreasing trends that are not necessarily linear 
(Fig. 1b). Like other statistics, these have population values, usu-
ally referred to as ρ. There are other measures of association that 
are also referred to as correlation coefficients, but which might not 
measure trends.

When “correlated” is used unmodified, it generally refers to 
Pearson’s correlation, given by ρ(X, Y) = cov(X, Y)/σXσY, where 
cov(X, Y) = E((X – μX)(Y – μY)). The correlation computed from 
the sample is denoted by r. Both variables must be on an interval or 
ratio scale; r cannot be interpreted if either variable is ordinal. For a 
linear trend, |r| = 1 in the absence of noise and decreases with noise, 
but it is also possible that |r| < 1 for perfectly associated nonlinear 
trends (Fig. 1b). In addition, data sets with very different associa-
tions may have the same correlation (Fig. 1c). Thus, a scatter plot 
should be used to interpret r. If either variable is shifted or scaled, r 
does not change and r(X, Y) = r(aX + b, Y). However, r is sensitive to 
nonlinear monotone (increasing or decreasing) transformation. For 
example, when applying log transformation, r(X, Y) ≠ r(X, log(Y)). 
It is also sensitive to the range of X or Y values and can decrease as 
values are sampled from a smaller range.

If an increasing or decreasing but nonlinear relationship is sus-
pected, Spearman’s correlation is more appropriate. It is a nonpara-
metric method that converts the data to ranks and then applies the 
formula for the Pearson correlation. It can be used when X is ordinal 
and is more robust to outliers. It is also not sensitive to monotone 

Figure 1 | Correlation is a type of association and measures increasing or 
decreasing trends quantified using correlation coefficients. (a) Scatter plots 
of associated (but not correlated), non-associated and correlated variables. 
In the lower association example, variance in y is increasing with x. (b) The 
Pearson correlation coefficient (r, black) measures linear trends, and the 
Spearman correlation coefficient (s, red) measures increasing or decreasing 
trends. (c) Very different data sets may have similar r values. Descriptors 
such as curvature or the presence of outliers can be more specific.
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Figure 2 | Correlation coefficients fluctuate in random data, and spurious 
correlations can arise. (a) Distribution (left) and 95% confidence 
intervals (right) of correlation coefficients of 10,000 n = 10 samples of 
two independent normally distributed variables. Statistically significant 
coefficients (α = 0.05) and corresponding intervals that do not include r = 0 
are highlighted in blue. (b) Samples with the three largest and smallest 
correlation coefficients (statistically significant) from a.
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enough that r = 0.42 (P = 0.063) is not statistically significant—its 
confidence interval includes ρ = 0.

When the linear trend is masked by noise, larger samples are need-
ed to confidently measure the correlation. Figure 3b shows how the 
correlation coefficient varies for subsamples of size m drawn from 
samples at different noise levels: m = 4–20 (σ = 0.1), m = 4–100 (σ 
= 0.3) and m = 4–200 (σ = 0.6). When σ = 0.1, the correlation coef-
ficient converges to 0.96 once m > 12. However, when noise is high, 
not only is the value of r lower for the full sample (e.g., r = 0.59 for σ 
= 0.3), but larger subsamples are needed to robustly estimate ρ.

The Pearson correlation coefficient can also be used to quantify 
how much fluctuation in one variable can be explained by its cor-
relation with another variable. A previous discussion about analysis 
of variance4 showed that the effect of a factor on the response vari-
able can be described as explaining the variation in the response; the 
response varied, and once the factor was accounted for, the variation 
decreased. The squared Pearson correlation coefficient r2 has a simi-
lar role: it is the proportion of variation in Y explained by X (and vice 
versa). For example, r = 0.05 means that only 0.25% of the variance 
of Y is explained by X (and vice versa), and r = 0.9 means that 81% of 
the variance of Y is explained by X. This interpretation is helpful in 
assessments of the biological importance of the magnitude of r when 
it is statistically significant.

Besides the correlation among features, we may also talk about the 
correlation among the items we are measuring. This is also expressed 
as the proportion of variance explained. In particular, if the units are 
clustered, then the intraclass correlation (which should be thought of 
as a squared correlation) is the percent variance explained by the clus-
ters and given by σb

2/(σb
2 + σw

2), where σb
2 is the between-cluster 

variation and σb
2 + σw

2 is the total between- and within-cluster varia-
tion. This formula was discussed previously in an examination of 
the percentage of total variance explained by biological variation5 
where the clusters are the technical replicates for the same biological 
replicate. As with the correlation between features, the higher the 
intraclass correlation, the less scatter in the data—this time measured 
not from the trend curve but from the cluster centers.

Association is the same as dependence and may be due to direct or 
indirect causation. Correlation implies specific types of association 
such as monotone trends or clustering, but not causation. For exam-
ple, when the number of features is large compared with the sample 
size, large but spurious correlations frequently occur. Conversely, 
when there are a large number of observations, small and substan-
tively unimportant correlations may be statistically significant.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Naomi Altman & Martin Krzywinski

1. Puga, J.L., Krzywinski, M. & Altman, N. Nat. Methods 12, 799–800 (2015).
2. Kulesa, A., Krzywinski, M., Blainey, P. & Altman, N. Nat. Methods 12, 477–

478 (2015).
3. Krzywinski, M. & Altman, N. Nat. Methods 10, 1139–1140 (2013).
4. Krzywinski, M. & Altman, N. Nat. Methods 11, 699–700 (2014).
5. Altman, N. & Krzywinski, M. Nat. Methods 12, 5–6 (2015).

Naomi Altman is a Professor of Statistics at The Pennsylvania State University. 
Martin Krzywinski is a staff scientist at Canada’s Michael Smith Genome Sciences 
Centre.

increasing transformations because they preserve ranks—for exam-
ple, s(X, Y) = s(X, log(Y)). For both coefficients, a smaller magnitude 
corresponds to increasing scatter or a non-monotonic relationship.

It is possible to see large correlation coefficients even for random 
data (Fig. 2a). Thus, r should be reported together with a P value, 
which measures the degree to which the data are consistent with 
the null hypothesis that there is no trend in the population. For 
Pearson’s r, to calculate the P value we use the test statistic √[d.f. × 
r2/(1 – r2)], which is t-distributed with d.f. = n – 2 when (X, Y) has 
a bivariate normal distribution (P for s does not require normality) 
and the population correlation is 0. Even more informative is a 95% 
confidence interval, often calculated using the bootstrap method2. 
In Figure 2a we see that values up to |r| < 0.63 are not statistically 
significant—their confidence intervals span zero. More important, 
there are very large correlations that are statistically significant (Fig. 
2a) even though they are drawn from a population in which the 
true correlation is ρ = 0. These spurious cases (Fig. 2b) should be 
expected any time a large number of correlations is calculated—
for example, a study with only 140 genes yields 9,730 correlations. 
Conversely, modest correlations between a few variables, known to 
be noisy, could be biologically interesting.

Because P depends on both r and the sample size, it should never 
be used as a measure of the strength of the association. It is possible 
for a smaller r, whose magnitude can be interpreted as the estimated 
effect size, to be associated with a smaller P merely because of a large 
sample size3. Statistical significance of a correlation coefficient does 
not imply substantive and biologically relevant significance.

The value of both coefficients will fluctuate with different sam-
ples, as seen in Figure 2, as well as with the amount of noise and/
or the sample size. With enough noise, the correlation coefficient 
can cease to be informative about any underlying trend. Figure 3a 
shows a perfectly correlated relationship (X, X) where X is a set of 
n = 20 points uniformly distributed in the range [0, 1] in the pres-
ence of different amounts of normally distributed noise with a stan-
dard deviation σ. As σ increases from 0.1 to 0.3 to 0.6, r(X, X + σ) 
decreases from 0.95 to 0.69 to 0.42. At σ = 0.6 the noise is high 

Figure 3 | Effect of noise and sample size on Pearson’s correlation coefficient 
r. (a) r of an n = 20 sample of (X, X + ε), where ε is the normally distributed 
noise scaled to standard deviation σ. The amount of scatter and value of r at 
three values of σ are shown. The shaded area is the 95% confidence interval. 
Intervals that do not include r = 0 are highlighted in blue (σ < 0.58), and 
those that do are highlighted in gray and correspond to nonsignificant r values 
(ns; e.g., r = 0.42 with P = 0.063). (b) As sample size increases, r becomes 
less variable, and the estimate of the population correlation improves. Shown 
are samples with increasing size and noise: n = 20 (σ = 0.1), n = 100 (σ = 
0.3) and n = 200 (σ = 0.6). Traces at the bottom show r calculated from a 
subsample, created from the first m values of each sample.
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