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POINTS OF SIGNIFICANCE

Simple linear regression
“The statistician knows…that in nature there 
never was a normal distribution, there never 
was a straight line, yet with normal and linear 
assumptions, known to be false, he can often derive 
results which match, to a useful approximation, 
those found in the real world.”1

We have previously defined association between X and Y as meaning 
that the distribution of Y varies with X. We discussed correlation as 
a type of association in which larger values of Y are associated with 
larger values of X (increasing trend) or smaller values of X (decreas-
ing trend)2. If we suspect a trend, we may want to attempt to pre-
dict the values of one variable using the values of the other. One of 
the simplest prediction methods is linear regression, in which we 
attempt to find a ‘best line’ through the data points.

Correlation and linear regression are closely linked—they both 
quantify trends. Typically, in correlation we sample both variables 
randomly from a population (for example, height and weight), 
and in regression we fix the value of the independent variable (for 
example, dose) and observe the response. The predictor variable 
may also be randomly selected, but we treat it as fixed when mak-
ing predictions (for example, predicted weight for someone of a 
given height). We say there is a regression relationship between X 
and Y when the mean of Y varies with X.

In simple regression, there is one independent variable, X, and 
one dependent variable, Y. For a given value of X, we can estimate 
the average value of Y and write this as a conditional expectation 
E(Y|X), often written simply as m(X). If m(X) varies with X, then 
we say that Y has a regression on X (Fig. 1). Regression is a specific 
kind of association and may be linear or nonlinear (Fig. 1c,d).

The most basic regression relationship is a simple linear regres-
sion. In this case, E(Y|X) = m(X) = b0 + b1X, a line with intercept 
b0 and slope b1. We can interpret this as Y having a distribution 
with mean m(X) for any given value of X. Here we are not interested 
in the shape of this distribution; we care only about its mean. The 
deviation of Y from m(X) is often called the error, e = Y – m(X). It’s 
important to realize that this term arises not because of any kind 
of error but because Y has a distribution for a given value of X. 
In other words, in the expression Y = m(X) + e, m(X) specifies the 
location of the distribution, and e captures its shape. To predict Y 
at unobserved values of X, one substitutes the desired values of X 

in the estimated regression equation. Here X is referred to as the 
predictor, and Y is referred to as the predicted variable.

Consider a relationship between weight Y (in kilograms) and 
height X (in centimeters), where the mean weight at a given height 
is m(X) = 2X/3 – 45 for X > 100. Because of biological variability, 
the weight will vary—for example, it might be normally distributed 
with a fixed s = 3 (Fig. 2a). The difference between an observed 
weight and mean weight at a given height is referred to as the error 
for that weight.

To discover the linear relationship, we could measure the weight 
of three individuals at each height and apply linear regression to 
model the mean weight as a function of height using a straight 
line, m(X) = b0 + b1X (Fig. 2b). The most popular way to esti-
mate the intercept b0 and slope b1 is the least-squares estimator 
(LSE). Let (xi, yi) be the ith pair of X and Y values. The LSE esti-
mates b0 and b1 by minimizing the residual sum of squares (sum 
of squared errors), SSE = S(yi – ŷi)

2, where ŷi = m(xi) = b0 + b1xi are 
the points on the estimated regression line and are called the fitted, 
predicted or ‘hat’ values. The estimates are given by b0 =  – b1  
and b1 = rsX/sY, and where  and  are means of samples X and 
Y, sX and sY are their s.d. values and r = r(X,Y) is their correlation 
coefficient2. 

The LSE of the regression line has favorable properties for very 
general error distributions, which makes it a popular estimation 
method. When Y values are selected at random from the condi-
tional distribution E(Y|X), the LSEs of the intercept, slope and fitted 
values are unbiased estimates of the population value regardless 
of the distribution of the errors, as long as they have zero mean. 
By “unbiased,” we mean that although they might deviate from 
the population values in any sample, they are not systematically 
too high or too low. However, because the LSE is very sensitive to 
extreme values of both X (high leverage points) and Y (outliers), 
diagnostic outlier analyses are needed before the estimates are used.

In the context of regression, the term “linear” can also refer to a 
linear model, where the predicted values are linear in the param-
eters. This occurs when E(Y|X) is a linear function of a known 
function g(X), such as b0 + b1g(X). For example, b0 + b1X2 and 
b0 + b1sin(X) are both linear regressions, but exp(b0+ b1X) is 
nonlinear because it is not a linear function of the parameters b0 
and b1. Analysis of variance (ANOVA) is a special case of a linear 
model in which the t treatments are labeled by indicator variables 
X1 . . . Xt, E(Y|X1 . . . Xt) = mi is the ith treatment mean, and the LSE 
predicted values are the corresponding sample means3.
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Figure 1 | A variable Y has a regression on variable X if the mean of Y (black 
line) E(Y|X) varies with X. (a) If the properties of Y do not change with 
X, there is no association. (b) Association is possible without regression. 
Here E(Y|X) is constant, but the variance of Y increases with X. (c) Linear 
regression E(Y|X) = b0+ b1X. (d) Nonlinear regression E(Y|X) = exp(b0+ b1X).

Figure 2 | In a linear regression relationship, the response variable has a 
distribution for each value of the independent variable. (a) At each height, 
weight is distributed normally with s.d. s = 3. (b) Linear regression of 
n = 3 weight measurements for each height. The mean weight varies as 
m(Height) = 2 × Height/3 – 45 (black line) and is estimated by a regression 
line (blue line) with 95% confidence interval (blue band). The 95% 
prediction interval (gray band) is the region in which 95% of the population 
is predicted to lie for each fixed height.
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Recall that in ANOVA, the SSE is the sum of squared deviations 
of the data from their respective sample means (i.e., their pre-
dicted values) and represents the variation in the data that is not 
accounted for by the treatments. Similarly, in regression, the SSE 
is the sum of squared deviations of the data from the predicted 
values that represents variation in data not explained by regres-
sion. In ANOVA we also compute the total and treatment sum 
of squares; the analogous quantities in linear regression are the 
total sum of squares, SST = (n–1)s2

Y, and the regression sum of 
squares, SSR = S(ŷi –  )2, which are related by SST = SSR + SSE. 
Furthermore, SSR/SST = r2 is the proportion of variance of Y 
explained by the linear regression of X (ref. 2).

When the errors have constant variance s2, we can model the 
uncertainty in regression parameters. In this case, b0 and b1 have 
means b0 and b1, respectively, and variances s2(1/n + 2/sXX) 
and s2/sXX, where sXX = (n – 1)s2

X . As we collect X over a wider 
range, sXX increases, so the variance of b1 decreases. The predicted 
value ŷ(x) has a mean b0 +b1x and variance s2(1/n + (x – )2/sXX). 
Additionally, the mean square error (MSE) = SSE/(n – 2) is an 
unbiased estimator of the error variance (i.e., s2). This is identi-
cal to how MSE is used in ANOVA to estimate the within-group 
variance, and it can be used as an estimator of s2 in the equations 
above to allow us to find the standard error (SE) of b0, b1 and ŷx. 
For example, SE(ŷ(x)) = √(MSE(1/n + (x – )2/sXX)).

If the errors are normally distributed, so are b0, b1 and (ŷ(x)). 
Even if the errors are not normally distributed, as long as they 
have zero mean and constant variance, we can apply a version of 
the central limit theorem for large samples4 to obtain approximate 
normality for the estimates. In these cases the SE is very helpful 
in testing hypotheses. For example, to test that the slope is b1 = 
2/3, we would use t* = (b1 – b1)/SE(b1); when the errors are nor-
mal and the null hypothesis true, t* has a t-distribution with d.f. 
= n – 2. We can also calculate the uncertainty of the regression 
parameters using confidence intervals, the range of values that 
are likely to contain bi (for example, 95% of the time)5. The inter-
val is bi ± t0.975SE(bi), where t0.975 is the 97.5% percentile of the 
t-distribution with d.f. = n – 2.

When the errors are normally distributed, we can also use con-
fidence intervals to make statements about the predicted value for 

a fixed value of X. For example, the 95% confidence interval for 
m(x) is b0 + b1x ± t0.975SE(ŷ(x)) (Fig. 2b) and depends on the error 
variance (Fig. 3a). This is called a point-wise interval because the 
95% coverage is for a single fixed value of X. One can compute a 
band that covers the entire line 95% of the time by replacing t0.975 
with W0.975 = √(2F0.975), where F0.975 is the critical value from the 
F2,n–2 distribution. This interval is wider because it must cover the 
entire regression line, not just one point on the line.

To express uncertainty about where a percentage (for example, 
95%) of newly observed data points would fall, we use the pre-
diction interval b0 + b1x + t0.975 (MSE(1 + 1/n + (x – )2/sXX)). 
This interval is wider than the confidence interval because it must 
incorporate both the spread in the data and the uncertainty in the 
model parameters. A prediction interval for Y at a fixed value of 
X incorporates three sources of uncertainty: the population vari-
ance s2, the variance in estimating the mean and the variability 
due to estimating s2 with the MSE. Unlike confidence intervals, 
which are accurate when the sampling distribution of the estima-
tor is close to normal, which usually occurs in sufficiently large 
samples, the prediction interval is accurate only when the errors 
are close to normal, which is not affected by sample size.

Linear regression is readily extended to multiple predictor vari-
ables X1, . . ., Xp, giving E(Y|X1, . . ., Xp) = b0 + SbiXi. Clever choice 
of predictors allows for a wide variety of models. For example, 
Xi = Xi yields a polynomial of degree p. If there are p + 1 groups, 
letting Xi = 1 when the sample comes from group i and 0 other-
wise yields a model in which the fitted values are the group means. 
In this model, the intercept is the mean of the last group, and the 
slopes are the differences in means.

A common misinterpretation of linear regression is the ‘regres-
sion fallacy’. For example, we might predict weight W = 71.6 kg for 
a larger than average height H = 175 cm and then predict height 
Hʹ = 172.7 cm for someone with weight W = 71.6 kg (Fig. 3b). 
Here we will find Hʹ < H. Similarly, if H is smaller than average, 
we will find Hʹ> H. The regression fallacy is to ascribe a causal 
mechanism to regression to the mean, rather than realizing that 
it is due to the estimation method. Thus, if we start with some 
value of X, use it to predict Y, and then use Y to predict X, the 
predicted value will be closer to the mean of X than the original 
value (Fig. 3b).

Estimating the regression equation by LSE is quite robust to 
non-normality of and correlation in the errors, but it is sensitive 
to extreme values of both predictor and predicted. Linear regres-
sion is much more flexible than its name might suggest, includ-
ing polynomials, ANOVA and other commonly used statistical 
methods.
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Figure 3 | Regression models associate error to response which tends to 
pull predictions closer to the mean of the data (regression to the mean). 
(a) Uncertainty in a linear regression relationship can be expressed by a 95% 
confidence interval (blue band) and 95% prediction interval (gray band). 
Shown are regressions for the relationship in Figure 2a using different 
amounts of scatter (normally distributed with s.d. s). (b) Predictions 
using successive regressions X → Y → Xʹ to the mean. When predicting 
using height H = 175 cm (larger than average), we predict weight W = 71.6 
kg (dashed line). If we then regress H on W at W = 71.6 kg, we predict 
Hʹ = 172.7 cm, which is closer than H to the mean height (64.6 cm). Means 
of height and weight are shown as dotted lines.
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