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Hydrocarbons 

 Aliphatic (áleiphar = Ointment (unguento)).  

 Alkanes (saturated hydrocarbons): hydrocarbons having only 

single C−C and C−H bonds. 

o Linear (normal alkanes, n-alkanes) 

o Branched 

o Cyclic 

 Alkenes (olefins): hydrocarbons having double bonds. 

 Alkynes: hydrocarbons having triple bonds. 

 

 Aromatic 
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Alkanes 

methane 

ethane 

propane 

butane 

pentane 

hexane 

heptane 

octane 

nonane 

decane 

eicosane 

Number of 

C-atoms 

Molecular 

formula 

Name  

(n-alkane) 

Empirical formula: CnH2n+2 



Alkyl Groups 

Root-Suffix (= yl) 

Free 

valence 
methyl 

ethyl 

propyl 
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Alkanes – Structural Isomerism 

 There are two hydrocarbons with empirical formula 

C4H10: butane and isobutane. 

 Butane and isobutane are structural isomers: they have 

the same composition but different physico-chemical 

properties.  

butane 

isobutane 

Linear Alkane 

Branched Alkane 
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Examples 

1ry carbon 

2ry carbon 3ry carbon 

4ry carbon 

H 1ry 
H 2ry 

H 3ry 
methine 

methyl 
methylene 



Nomenclature 

2-metylbutane 2,2,3-trimethylpentane 

3-methyl-6-propylnonane 5-(1-methylethyl)-3-methyloctane 



C-Atoms Structure Name 

5 n-pentyl 

isopentyl 

neopentyl 

sec-pentyl 

C-Atoms Structure Name 

1 methyl 

methylene 

methine 

2 ethyl 

3 n-propyl 

isopropyl 

4 n-butyl 

isobutyl 

sec-butyl 

tert-butyl 

Alkyl Groups 

2 

3 
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Physical Properties 

# C atoms 

T
e

m
p

e
ra

tu
re

 

Boiling point 

Melting point 



b.p. 

Surface area decreases with branching 

m.p. 

Increases with symmetry 

–138 °C –95 °C 

–160°C  –17 °C 

36 °C 69 °C 0 °C 

10 °C 30 °C 36 °C 

Surface area increases with C-atoms 

Physical Properties 

Surface area increases with C-atoms 
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Solubility: soluble in organic solvents (apolar) 

insoluble in water 

Physical state: C1-C4      gas /b.p. -160°-0° 

     C5-C17    liq./m.p.    -130°-20° 

     >C17        solid 

Physical Properties 



Natural sources of alkanes are natural gas and oil.  

 

Natural gas contains mainly methane: minor components are 

ethane, propane and butane. 

Oil is a complex mixture of, mainly, C1-C40 hydrocarbons. 

Distillation of crude oil (refining) separates oil in fractions with 

different boiling point. The main fractions are: 

gasoline: C5H12 – C12H26 

kerosene: C12H26 – C16H34 

diesel oil: C15H32 – C18H38 

Natural Sources 
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Refining 

 In the refining process, crude oil is heated and the volatile 

fractions distill first, followed by fractions with higher boiling 

points.  

Pre-heated crude 

oil and gases 

C1-C4 

C5-C10 

C10-C18 

C18-C25 

gasoline 

kerosene 

diesel oil 

lubricant oil 

Residue (asphalt) 
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Industrial Treatments of Refined Oil  

 Cracking (kerosene, diesel oil) 

Converts high MW hydrocarbons in lower MW hydrocarbons 

(hydrocracking). 

Converts alkanes in alkenes (intermediates for the fine 

chemical industry). 

 Reforming 

 Increases branching 

Converts aliphatic hydrocarbons into aromatics (branched 

and aromatic hydrocarbons are better fuels for  combustion 

engines).  
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Gasoline – Octane 

heptane: 0 Isooctane: 100 



Barrel 

42 gal 

159 l 

fine chemicals and plastics  1.25 gal 3%      

asphalt    1,3   gal 3% 

coolants     2,9  gal   7% 

lubrificants, waxes, solvents   4,2  gal  10%   

kerosene (aeroplanes)    4,2  gal  10% 

gasoline    19,7 gal  47% 

diesel and fuel oil    8,4  gal  20%    

1 US gal = 3.78 l 

Crude Oil 
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Ethane 

 

 

 

 In the eclipsed conformation, all C−H bonds are alligned. 

 In the staggered conformation, C−H bonds on each 

carbon bisect the H−C−H angles on the other carbon. 

60° rotation 

eclipsed staggered 

Conformational Isomerism 
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60° rotation 

View along the C–C bond 

C front 

C back 

 The H−C−C−H angle is called dihedral angle (0° in the 

eclipsed and 60° in the staggered conformation). 

0° 

Staggered conformation Eclipsed conformation 

The front C-H bonds bisect the  H−C−H angles 

on the carbon atom at the back 

Ethane Conformations 
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Newman Projection 

 How to draw a Newman projection 

 [1] Look along the C-C bond and draw a circle (the back C atom) 

with a dot in the centre (the front C atom). 

 [2] Draw the bonds 

 [3] Add the atoms 

C front 

C back 
front bonds 

back bonds 

H 

H 

H 

H H 

H 
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staggered conformation eclipsed conformation 

dihedral angle 
Dihedral angle 

0° 

Newman Projections of Ethane 



21 

P
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te

n
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a
l 
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n
e
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Dihedral angle 

eclipsed 

energy 

maximum 

staggered 

energy 

minimum 

Conformations of Ethane 
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staggered conformation eclipsed conformation 

ehtane propane 

Conformations of Propane 
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Torsional Strain (3.3 kcal/mole) is higher than in ethane. The 

methyl group is bulkier than a hydrogen atom 

Conformations of Propane 

P
o
te

n
ti
a
l 
E

n
e
rg

y
 

eclipsed 

energy 

maximum 

staggered 

energy 

minimum 

H-C-C-CH3 dihedral angle 
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6 different conformations 

eclipsed staggered, anti 

eclipsed staggered, gauche eclipsed 

staggered, gauche 

Conformations of Butane 



25 

Eclipsed conformation 

anti conformation conformazione gauche 

4 

3 1 

The CH3 are at 180° The CH3 are at 60° 

steric strain 

The CH3 are at 0° 

steric strain 

A staggered conformation with two 

large groups at 60° is called gauche. 

A staggered conformation with two 

large groups at 180° is called anti 

Conformations of Butane 
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Staggered conformations:  

 1 (anti) is the absolute 

minimum  

 3,5 (gauche) are relative 

minima 

Eclipsed conformations:  

 4 is the absolute 

maximum (CH3 eclipsed)  

 2,6 are relative maxima 

Conformations of Butane 

P
o
te

n
ti
a
l 
E

n
e
rg

y
 

H3C-C-C-CH3 dihedral angle 
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 A rotational barrier is the energy difference between two 

minima. 

 The most stable conformation of linear hydrocarbons is 

staggered with the bulky groups in anti. Thus long chains are 

usually drawn with a zigzag. 

Interaction Energy (kcal/mole) 

Eclipsing H,H 1 

Eclipsing H,CH3 1.5 

Eclipsing CH3,CH3 4 

Gauche CH3,CH3 0.9 

Torsional Strain in Linear Alkanes 
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Cycloalkanes 
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Cycloalkanes 

• Cycloalkanes have empirical formula CnH2n and contain 

carbon atoms arranged in a cyclic chain 

 

• Nomenclature: cyclo + name of the corresponding alkane 

cyclopropane 

C3H6 

cyclobutane 

C4H8 

cyclopentane 

C5H10 

cyclohexane 

C6H12 
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Stability: Angular Strain (Baeyer’s Strain) 

 Baeyer (1885): as carbon prefers 109° bond angles, rings other 

than five or six membered may be too strained to exist.  

 

 Cycloalkanes from C3 to C30 do exist, but some of them are 

strained because of distorted bond angles and other 

interactions. 
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Cyclopropane C3H6 

 Planar. 

 Angle strain: 60° CCC angles.  

 Torsional strain: all H are eclipsed. 

 May be described as sp3 hybridized with banana bonds.  

H H 

H H 

H H 
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Cyclobutane C4H8 

 In planar cyclobutane all hydrogens would be eclipsed. 

 To relieve torsional strain, cyclobutane is puckered by 

about 25°.  

 In doing so the  CCC bond angles decrease to 88° and 

hydrogens on opposite carbons become closer. 

Puckered 

slightly higher angle strain 

lower torsional strain 

some VdW strain  

H 

H 

H 

H 

H 

H 

H 

H 
25° 

puckering 

angle 

Planar 

angle strain 

torsional strain  
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Ring Strain 

Stability of cycloalkanes depend on ring strain: 

 angle strain: distorted bond angles.  

 torsional strain: eclipsing of C-H bonds.  

VdW or steric strain: repulsions between non bonded atoms. 
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Cyclopentane C5H10 

“envelope” conformation 

eclipsing is partially relieved 

25° 

puckering angle 

envelope and half-chair conformations have similar 

energies and rapidly interconvert into one another 

angle strain  

torsional strain  

envelope  half-chair 
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 Planar cyclohexane. 

 

 

 

 

 Chair conformation. 

angle strain torsional strain 

all H are eclipsed CCC > 109.5° 

H are staggered 

Cyclohexane C6H12 

strainless 
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Strain Energies of Cycloalkanes 

ring size 

s
tr

a
in

 e
n
e
rg

y
 (

k
J
/m

o
l)

 

k
c
a
l/
m

o
l 



 Heats of combustion are used to calculate strain energies of cycloalkanes. 

 Heats of combustion increase with the number of C atoms. 

 Cyclohexane is taken as reference (Strain = 0).  

Per CH2   697 681 658 653 657 658 

kJ/mol    2091       2724          3290           3910             4599              5264 

 

 

 

Strain      132          112             25                  0                28                   40   

Strain Energies of Cycloalkanes 
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How to Draw Chair Cyclohexane 
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 There are two types of hydrogens:  

Axial: perpendicular to the ring’s mid-plane, above and below 

the ring.  

Equatorial: in the ring’s mid-plane, all around the ring. 

 

 

 

 

 There are 6 axial and 6 equatorial hydrogens in 

cyclohexane. 

Chair Conformation of Cyclohexane 

H axial 

H equatorial 

equatorial 
upward 

equatorial 
downward 

axial   
upward 

axial  
downward 
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Ring Flipping 

 Ring flipping is the interconversion between two chair 

conformations of cyclohexane.  

 Upwards C become dawnwards and viceversa.  

 Axial H become equatorial and viceversa.  

chair 1 chair 2 boat 
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chair 1 chair 2 boat 

axial H become equatorial 

equatorial H become axial 

Ring Flipping 
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Conformations of Cyclohexane 

 Chair conformations are 7 kcal/mol more stable than boat 

conformations.  

 Torsional strain. In the boat conformation the H on the 

base are eclipsed. 

 Steric strain. Flag pole H are forced in close proximity. 

H eclipsed 

H eclipsed 

H flagpole 

1.80 Å 

H bowspring 

H bowspring 
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5.5  
kcal/mole 

10.8  
kcal/mole 

6.9  
kcal/mole 

E 

twist-boat 

boat 

half-chair half-chair 

chair chair 

Conformations of Cyclohexane 
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 chair  

no ring strain 

(99.99% at 25°C) 

boat   

- torsional strain 

- steric strain  

ring strain: ~ 7  kcal 

twist-boat  

~ 1.5 kcal more stable 

than the boat 

(0.01% at 25°C) 

Conformations of Cyclohexane 
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 The chair conformations are no longer equivalent: they 

have different energies. 

 

 

 

 The axial conformer is destabilized by 1,3-diaxial 

interactions (VdW interactions) between the substituent an 

axial hydrogens.  

 The larger the substituent, the less stable the axial 

conformation. 

Substitued Cyclohexanes 

1 2 3 

2 
3 



46 

equatorial 

(95%) 

no steric strain 

axial 

(5%) 

steric 

repulsion 

Each CH3 / H interaction destabilizes the axial conformer by 0.9 kcal/mol 

1,3-diaxial 

interactions 

Methylcyclohexane 

G ~ 1.8 kcal 
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tert-Butylcyclohexane 

 The tert-butyl group is so bulky that there is no axial 

conformer at the equilibrium. 

< 0.01% > 99.99% 

G ~ 5.5 kcal 

The tert-butyl group freezes the conformational equilibrium. 
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Disubstitued Cyclohexanes. Geometrical Stereoisomerism 

 There are two isomers of 1,4-dimethylcyclohexane. 

 

 

 

 

 Each geometrical isomer has two possible chair 

conformations. 

cis trans 
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1,4-Dimethylcyclohexane 

G = 0 kcal 

equatorial-axial 

2 1,3-diaxial interactions 

2 x 0.9 = 1.8 kcal 

axial-equatorial 

2 1,3-diaxial interactions  

2 x 0.9 = 1.8 kcal 

bisequatorial 

no repulsions 

bisaxial 

4 1,3-diaxial interactions  

4 x 0.9 = 3.6 kcal 

G ~ 3.6 kcal 

trans 

cis 
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cis-1-t-Butyl-4-methylcyclohexane 

The conformational equilibrium is frozen by the bulky t-butyl 

group. 

G ~ 3.7 kcal 1.8 kcal/mole 5.5 kcal/mol 

But 
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A spiro bicyclic system 

•  One atom is shared by two rings 

Polycyclic compounds 
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Polycyclic compounds 
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Polycyclic Hydrocarbons 

cis-decaline 

trans-decaline 

more stable 

(equatorial substituents) 

less stable 

(1 axial substituent) 



54 

C5H8 Isomers 
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• no lone pairs 

• no π bonds 

• no heteroatoms 

• not nucleophilic 

• not electrophilic 

• strong, not polar C–C, 

C–H bonds 

Alkanes react only at high 

temperatures, with radical 

mechanisms. 

Reactions of Alkanes 
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Halogenation of Alkanes 

 

Chapt. 10 Organic Chemistry, 8th Edition 

John E. McMurry 
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Halogenation of Alkanes 

 In the presence of heat or light, alkanes react with 

halogens, with a radical mechanism, to give alkyl halides. 

 

 

 

 

 

 Halogenation of alkanes is carried out with Cl2 o Br2. The 

reaction with F2 is too violent and the reaction with I2 is too 

slow.  

R–H  +  X2  R–X  +  HX  
 or h

radical substitution 
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Halogenation of Methane 

Initiation 

Stage [1]: formation of Cl. radicals 

Propagation 

Stages [2] and [3]: A new radical is formed for each reacting radical 

Termination 

Stage [4]: Two radicals recombine forming a bond. 

thousands of 

cycles. 

Chain reaction 
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 Alkyl radicals are sp2 hybridized with a trigonal planar 

geometry. 

 The p orbital contains an unpaired electron.  

Structure of Radicals 

a single electron in 

the p orbital 

methyl  

radical 

1ry  

radical 

2ry  

radical 

3ry  

radical 
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36 

32 

24 

16 

8 

H° 

4 

–32 

0 

Energetics 

Eatt +1.2 Kcal/mole 

–32 Kcal/mole 

Eatt +4 Kcal/mole 
+1 Kcal/mole 

Eatt +18 Kcal/mole 

+16 Kcal/mole 

Eatt +34 Kcal/mole 

+33 Kcal/mole 

ΔH°(C-H) 104 

X =  F Cl Br I 

ΔH°(X-H) 136 103 88 71 

ΔH° -32 +1 +16 +33 

H°, Kcal/mole 

F 

Cl 

Br 

I 

Stage [2] is the slow step: 

H°(C-H)  

- H°(X-H) 

H° = H°(C-H) - H°(X-H) 
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 Monohalogenation is only possible with an excess of 

substrate, otherwise polyhalogenation predominates. 

 Problem: mixture of halogenated products.  

 Solution: CH4 in large excess and recycled. 

Halogenation of Alkanes 
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Regioselectivity 

 Isomers are formed in the halogenation of propane and 

higher hydrocarbons: 

substitution of a 2ry H  

observed ratio  1                  :                 1                 

statistical ratio 

substitution of a 1ry H  

/ 
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 Radical stability:   3ry > 2ry > 1ry. 

 Strength of C-H bonds:  3ry < 2ry < 1ry. 

Lower energy, more stable, 

weaker C-H bond. 

98 kcal 95 kcal 

1ry radical 2ry radical 

Regioselectivity 
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R−H  R•  +  H• 

C−H Bond Dissociation Energies 

B
D

E
 

104 kcal/mole 

98 kcal/mole 

98 kcal/mole (1ry C-H) 

95 kcal/mole (2ry C-H) 

91 kcal/mole (3ry C-H) 

Reactivity of C−H bonds: 

3ry > 2ry > 1ry > CH3−H 

DH = BDE bond dissociation energy 

R
E

A
C

T
IV

IT
Y
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Reactivity and Selectivity 

 

Chlorination of alkanes is faster than bromination. 

Bromination of alkanes is more selective. 

57% 43% 

/ 

/ 
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Regioselectivity 

Cl2: 28%           23%                     35%                    14% 

Br2: ~0%           90%                       9%                    ~0% 

isopentane 2ry H 

3ry H 

C-H relative reactivity 3ry 2ry 1ry 

     with Cl2 5.2 3.9 1 

     with Br2 1640 82  1 

1ry H 1ry H 

/ 
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 Allylic carbons are sp3 carbons adjacent to a double bond. 

 A resonance-stabilized allylic radical is obtained by omolysis of 

an allylic C−H bond. 

 

 

 BDEs of allylic C−H bonds are approximately 4 kcal/mol lower 

than BDE for 3ry C−H bonds.  

 The delocalized allylic radical is more stable than a 3ry radical. 

Halogenation of Allylic Carbons 

allylic radical 

radical stability 

radicale allilico 
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The Allylic Radical 



69 

Halogenation of Allylic Carbons 
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 Allylic carbons can be selectively brominated with NBS and 

UV irradiation or a radical initiator. 

 Breaking of the weak N-Br bond of NBS initiates the radical 

chain reaction.  

allylic C 

Halogenation of Allylic Carbons 

/ 
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Halogenation of Allylic Carbons 
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Combustion 

 Combustion is a redox reaction. C is oxidized and O is 

reduced. 

 All hydrocarbons burn giving carbon dioxide, water and 

heat (H <0).  

 C−C e C−H bonds are converted into C-O and H-O bonds. 

Every C atom is converted into CO2 

CnH2n+2 +             O2                             n CO2 +  (n+1)H2O  +  calore 
2 

3n+1 

isoottano 

heat 

heat 

heat 



 Heats of combustion are used to calculate strain energies of cycloalkanes. 

 Heats of combustion increase with the number of C atoms. 

 Cyclohexane is taken as reference (Strain = 0).  

Per CH2   697 681 658 653 657 658 

kJ/mol    2091       2724          3290           3910             4599              5264 

 

 

 

Strain      132          112             25                  0                28                   40   

Strain Energies of Cycloalkanes 
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Stability of Isomers 

 Heats of combustion are used to compare the stability of 

isomers. E.g.: C8H18 

Branched isomers are more stable than linear ones. 

1303.0 kcal 
~ 

~ 
1304.6 kcal 

~ 

~ 
1306.3 kcal 

~ 

~ 
1307.5 kcal 

~ 

~ 

8 CO2 + 9 H2O 


