

Università di Trieste LAUREA MAGISTRALE IN GEOSCIENZE Curriculum Geofisico Curriculum Geologico Ambientale

Anno accademico 2017 – 2017

Geologia Marina

Parte III

Modulo 3.1 Continental Margin Depositional Processes: down-slope processes

> Relatore Dr. Renata G. Lucchi rglucchi@ogs.trieste.it

Sedimentary Processes on Continental Margins

<u>down-slope</u>: driven by gravity forces <u>along-slope</u>: driven by density forces (thermo-haline or water mass accumulation)

the Source to Sink System

Continental shelf

Preferential area of sediment accumulation High sediment accumulation High isostatic subsidence **Continental slope** sediment deposition and transfer toward deeper environments **Continental rise**: sediment deposition (deep sea fans, sediment drifts)

Siliciclastic continental shelves

Tide dominated shelves e.g. North European margins (tides » 3 m)

Wind/wave dominated shelves e.g. Mediterranean margins (tides ≤ 3 m)

Other sedimentary/biological processes

- Storms sediment resuspension sediment bioturbation
- Surface and bottom turbidity currents associated to river output (Hypopycnal and Hyperpycnal flows on deltas and prodeltas)
- Incursions of surface ocean currents on the outern shelf

Deep-Marine Systems

Sedimentary processes on Continental Margins

Depositional process **>** *Deposit*

down-slope processes: driven by gravity forces

» Mass Transport Deposition → MTDs
» Turbidity currents → Turbidites
» Riverine outflows → Hyper (Hypo)- picnites
» Turbid meltwaters → Plumites
» Brine-related deposition

along-slope: driven by density forces (thermohaline origin)

» Contour currents **→** *Contourites*

Classification of MTDs (Mass Transport Deposits):

- Reology (sediment deformation)
- Sediment mass mechanism of support (gravity, flow turbolence, grains interaction)
- Physical properties of the mass flow and deposit (sediment disturbance, shear strength, etc.)
- Morphological characteristics of the deposit

References:

- Dott R. H., 1963. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47, 1, pp. 104-128.
- Lowe, D.R., 1982, Sediment gravity flows II. Depositional models with special reference to the deposits of high-density turbidity currents: Journal Sed. Petrology, 52, pp. 279-297.
- Prior, D.B. (1984). Submarine landslides. Proceedings of the IV International Symposium on Landslides, Toronto, Vol. 2, pp. 179–196.
- Norem, H., Locat, J. and Schieldrop, B. (1990). An approach to the physics and the modelling of submarine landslides. Mar. Geotech., 9, 93–111.
- Martinsen, O. (1994). Mass movements. in: The geological deformation of sediments, (A. Maltman Ed.), Chapman and Hall, London, pp. 127-165.
- Mulder, T. and Cochonat, P. (1996). Classification of offshore mass movements. J. Sediment. Res., 66, 43–57.
- Masson, D.G., Harbitz, C.B., Wynn, R.B, Pedersen, G., Lovholt, F. (2006). Submarine Landslides: processes, triggers and hazard prediction. Phil. Trans. R. Soc. A, 364, pp 2009-2039.

Submarine slides/slumps

They are **ubiquitous** features of submarine slopes in all geological settings and at all water depths, particularly in areas where fine grained sediments predominate.

Adapted from Morgan et al., 2009. Scientific Drilling, available at: http://www.iodp.org/geohazards/

Corso di Geologia Marina 2017-18

Complexity:

Once failure initiates, the event may **progress by means of a number of mass movement processes**. Although various subdivisions and classification schemes for these processes exist, each process represents part of a continuum, whereby one type may evolve into or trigger another.

Many submarine slope failures are likely to have involved a number of processes, possibly active at different stages of failure. Therefore, it is common that the depositional units resulting from submarine mass movements are defined as **'Mass-Transport Complexes (MTC)**'.

UNIVERSITÀ DEGLI STUDI DITRIESTE Dipartimento di Matematica e Geoscienze

STOREGGA SUBMARINE LANDSLIDE, NORWAY

8000 y BP 3500 km³ of debris

Norsk Hydro

E&D Norway

Geophysical Operations

<u>,</u>

HYDRO

Courtesy Petter Bryn

università decli studi di trieste Dipartimento di Matematica e Geoscienze

Goleta landslide, California

UNIVERSITÀ DECLI STUDI DITRIESTE Dipartimento di Matematica e Geoscienze

Deep penetration seismics 2D Sparker

Morgan et al., 2009. Scientific Drilling

Submarine debris avalanches

Volcanic Island Margins Hawaii

Volcanic Island Margins Stromboli, Lipari Islands, Italy

Stromboli Sciara di Fuoco 100.000 y Romagnoli et al., 2009. Marine Geology

Debris flows

Laminar flux supported by the water-rich muddy matrix

Debris flow: mud/sand >1; pebbles >5%
Mud flow: mud/sand <1; pebbles <5%</pre>

Gravity-Driven Downslope Processes in Deep Water

Turbidity flows

Density currents in which the granular support is mantained by the vertical component of the turbolent flux

FLOW

Turbidity flows

Density currents in which the granular support is mantained by the vertical component of the turbolent flux

TYPE OF	Long steady flow (e.g. river fed)
EVENT	Short surge-type (e.g. river floods,
	slope instability)

- High density (higher velocity) >1.1 g/cm³ **FLOW**
- Low density (lower velocity) <1.1 g/cm³ DENSITY

Confined (canyon, channel, levee, deep-sea fan) **TRANSFER** Unconfined

UNIVERSITÀ DEGLI STUDI DITRIESTE Dipartimento di Matematica e Geoscienze

Corso di Geologia Marina 2017-18

135

138

141

GRAIN SIZE	BOUMA (1962) DIVISION	INTERPRETATION
Mud	E - Laminated to homogeneus mud	Deposition from low-density tail or turbiditi current settling of pelagic or hemipelagic particels
Silt	D - Upper mud/silt laminae	Shear sorting of grains and flocs
Sand	C - ripples, climbing ripples wavy or convolute laminae	Lower part of lower flow regime of Simons et al. (1965)
	B - plane laminae	Upper flow regime plane beds
Coarse sand	A - structurless or graded sand to granule	Rapid deposition with no traction transport possible quick (liquefied) beds
	GRAIN SIZE Mud Silt Sand Coarse sand	GRAIN SIZEBOUMA (1962) DIVISIONMudE - Laminated to homogeneus mudSiltD - Upper mud/silt laminaeSiltC - ripples, climbing ripples wavy or convolute laminaeSandB - plane laminaeCoarse sandA - structurless or graded sand to granule

silty turbidite

UNIVERSITÀ DECLI STUDI DI TRIESTE Dipartimento di Matematica e Geoscienze

LOW DENSITY turbidity flows

- Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models – a critical perspective. Marine and Petroleum Geology 17, 285-342.

- Kevin Pickering, Richard Hiscott, 2014. Deep Marine Systems: Processes, Deposits, Environments, Tectonic and Sedimentation. Wiley-Blackwell, ISBN: 978-1-4051-2578-9, 776p.

UNIVERSITÀ DECLI STUDI DITRIESTE Dipartimento di Matematica e Geoscienze

silty turbidites

Geologia Marina 2017-18

università degli studi ditrieste Dipartimento di Matematica e Geoscienze

Corso di Geologia Marina 2017-18

Dipartimento di Matematica e Geoscienze

Corso di Geologia Marina 2017-18

MOST COMMON FEATURES

« Sharp base characterized by sharp grain size change often with sharp color change (careful with sediment oxidation)
« Planar laminations
« Bioturbated top

INDICATION OF SHEAR SORTING

Grain size and compositional sorting trough the deposit. Sorting occur according to size and specific weight (e.g. large forams with medium-size quartz with small-size pyroxene)

COMPOSITION

Presence of alloctonous particle e.g. shelf derived particle in deepsea environments (tipically bryozoa, autigenic glauconite)

Ε

D

С

В

Α

Bouma Size - Velocity Diagram Sequence No Movement on Flat Bed Mean Flow Velocity (cm/sec) 20 Ripples (No Movement on Flat Bed) Flat Bed "C" 3 Ripples 40 Sand Waves 60 Dunes 80 Flat Bed ΈB 00 "A" In-Phase Waves V.F. Sand F. Sand M. Sand C. Sand Mud .04 .06 .08 .1 .2 1.0 .8 .6

Mean Sediment Size (mm)

università degli studi di rieste Dipartimento di Matematica e Geoscienze

	< 40 cm/s + - 0-4 cm/s	< 40 cm/s - 5-10 cm/s	< 40 cm/s > 10 cm/s	0 cm/s - 10 cm/s	
SMALL-SCALE BED FORMS: λ < 20 cm	15D	AT)		200	
	20 cm	20 cm	20 cm	(adapted from Harms et al. 1982, fig.3.7a)	
Bed form	Symmetric small ripples (SSR) regular, 20, symmetrical, sharp crists, straight llanks, bread troughs	SSR + asymmetric small ripples (ASR) more inegular, 2-2,50, still symmetrical rounder crests, some straight and some biconvex flanks	ASR + asymmetric large ripples irregular, 3D, asymmetrical, larger A and height, round biconvia: profiles, pronounced scour on lower end of stoss	Current ripples very inegular, 3D, sharp crests, steep and straight lee, convex-up stoss	
Symmetry index	~1.2	- 1	5	5-10 (Yokokawa 1995)	
Dip of lee side	11-18*		"24-27 " dip of lee side increases with increasing Uu	- angle of repose (30-35°)	antidune formation
Roundness index	0.44	- 0.50	> 0.50	0.5-0.6 (Yokokawa 1995)	
Ripple index		generally between 8-12 for all bed forms	12-32 (Harms 1969) 7-30 (Alten 1985a) 6-11, 5s (Yokokawa 1995) - 20, fsa (Boggs 2001)		
Orbital diameteo/ wavelength	8-15	- 8-15	8-15	NIA	
\square	40-100 cm/s - 0-4 cm/s	40-100 cm/s - 5-10 cm/s	40-100 cm/s > 10 cm/s	0 cm/s +	Co NO
LADOR COMP.					
LANGE-BCALE BED FORMS: λ > 100 cm		220	1990	150cm	bedforms
LANGE-BCALE BED FORMS: λ > 100 cm				150 cm (adapted from Harms et al. 1982, fig.3.10)	bedforms
BED PORMS: λ>100 cm	150 cm Symmetric large ripples (SLR) SLR: 2.50, symmetrical, sharp discontinuous crests = to brink, straight tanks	List cm List cm Hummocky (HM) + SLR + ALR HM: 3D. symmetrical, no brink point, broed round creats, domel, convex up fanks	Asymmetric large ripples (ALR) ALR: 2D-30, asymmetrical, bink not always = to creat, round stoss with break in stope, can have scour pits on lower end of stoss	(adapted from Harms et al. 1962, fig.3.10) Dunes regular (2D) to inegular (3D), sharp creats, steep and straight lee, straight to convex-up stoss	bedforms
BED PORMS: λ > 100 cm Bed form Symmetry index	150 cm 150 cm Symmetric large ripples (SLR) SLR: 2.50, symmetrical, sharp discontinuous creats = to blink, straight tanks - 1.0 (<1.5)	<u>150 cm</u> <u>150 cm</u> Hummocky (HM) + SLR + ALR HM: 3D, symmetrical, no brink point, broad nound creats, domat convex up flanks «2	Asymmetric large ripples (ALR) ALR: 2D-30, asymmetrical, brink not al ways = to creat, round stoss with break in slope, can have scour pils on lower end of stoss > 2	(adapted from Harma et al. 1992, fig.3.10) Dunes regular (2D) to inegular (3D), sharp creats, steep and smaight tee, straight to convex-up stoss	bedforms
EARGE-SCALE BED PORMS: λ > 100 cm Bed form Symmetry index Dip of kee side	150 cm 150 cm Symmetric large ripples (SLR) SLR: 2.50, symmetrical, sharp discontinuous creats = to brink, straight tanks - 1.0 (< 1.5) 14-24* (SLR), 15-29* ro	List cm List cm List cm Hummocky (HM) + SLR + ALR HM: 3D. symmetrical, no brink point, broed round creats, domel, convex up familes <2 verse large ripples (RLR)	Asymmetric large ripples (ALR) ALR: 2D-30, asymmetrical, bink not always = to creat, round stoss with break in stope, can have scour pits on lower end of stoss > 2 	Iso cm (adapted from Harma et al. 1962, fig.3.10) Dunes regular (2D) to inegular (3D), sharp crests, steep and straight liee, straight to convox-up stoas - - angle of repose (30-35*)	bedforms
EARGE-SCALE BED PORMS: λ > 100 cm Bed form Symmetry index Dip of lee side Roundness index	150 cm 150 cm Symmetric large rippies (SLR) SLR: 2.5D, symmetrical, sharp discontinuous crests = to brink, straight tanks - 1.0 (< 1.5) 14-24* (SLR), 15-29* ro - 0.40-0.50 highest for HM bed forms	150 cm Hummocky (HM) + SLR + ALR HM: 3D. symmetrical, no brink point, broed round creats, domal, convex up famils «2 verse large rtppies (RLR) - 9.45-0.60	Asymmetric large ripples (ALR) ALR: 2D-30, asymmetrical, bink not always = to creat, round stoss with break in alope, can have scour pits on lower end of stoss > 2 *23-31* dip of lee side increases with increasing Uu - 0.55-0.75 (up to 0.95)	Iso cm Iso cm Indepted from Harms et al. 1982. fig.3.10) Dunes regular (2D) to inegular (3D), sharp creats, steep and sinaight lee, straight to convox-up stoss - - angle of rapose (30-35*) -	bedforms
EARGE-SCALE BED PORMS: λ > 100 cm Bed form Symmetry index Dip of ice side Roundness index Ripple index	150 cm 150 cm Symmetric large ripples (SLR) SLR: 2.5D, symmetrical, sharp discontinuous crests = to brink, straight tanks -1.0 (<1.5) 14-24* (SLR), 15-29* ro -0.40-0.50 highest for HM bed forms } }	150 cm Hummocky (HM) + SLR + ALR HM: 3D. symmetrical, no birni, point, broed round crests, domal convex up franks <		150 cm 150 cm (adapted from Harma et al. 1982, fig.3.10) Durines regular (2D) to inegular (3D), sharp creats, steep and straight lee, straight to convox-up stoss 	bedforms

UNIVERSITÀ DECLI STUDI DI TRIESTE Dipartimento di Matematica e Geoscienze

0.01°

Talling et al., 2007. Nature 450, 541-544.

Confined systems: Canyons and associated deep see fans

Reflected turbidites and Multi-sources turbidites

DIVISIONS	INTERPRETATION		
Homogeneous silty mudstone cap, with scattered load balls near the base	Rapid deposition of mud flocs under ponded suspension		
Alternating laminated and pseudonoduled very fine sand and silt in couplets that thin upward	Gradual decay of reversing flow in an enclosed basin, leading to ponding		
Wavy and ripple laminated divisions with reverse flow directions and spaced mud partings	multiple reflections and deflections of a single large flow from basin margins. Flow strength and bedform scale decrease exponentially. Mud drapes form between passes of the current		
Parallel and/or cross- stratified coarse sand			

Polonia, et al., 2013. Nature

UNIVERSITÀ DECLI STUDI DI TRIESTE Dipartimento di Matematica e Geoscienze

