

Vittorio BUCCI

Progetto di impianti di propulsione navale

4.7 ESERCITAZIONE DIMENSIONAMENTO CONDOTTE GAS DI SCARICO

Anno Accademico 2017/2018

Motori diesel 2T – Dati di progetto del motore

> Condizioni ambientali di riferimento:

Le prestazioni e i parametri di funzionamento del motore sono determinati alle seguenti condizioni di riferimento, che sono in accordo con quelle della norma ISO 3046-1:

✓ Temperatura aria aspirazione : 25 °C
✓ Temperatura aria in sala macchine : 25 °C

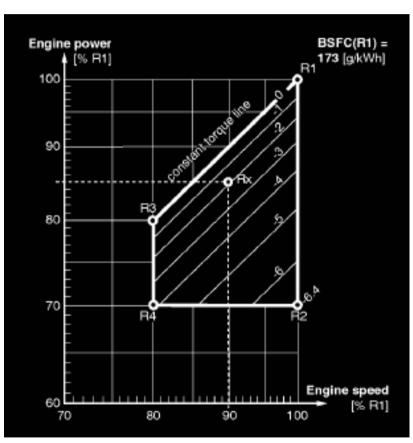
✓ Temperatura acqua prima del refrigerante aria : 25 °C per acqua di mare
✓ Temperatura acqua prima del refrigerante aria : 29 °C per acqua dolce

✓ Pressione barometrica : 1000 mbar
✓ Potere calorifico inferiore del combustibile : 42,7 MJ/kg

Condizioni di progetto:

I parametri di progetto degli ausiliari sono determinati alle seguenti condizioni di riferimento definite "tropicali":

✓ Temperatura aria aspirazione : 45 °C
✓ Temperatura aria in sala macchine : 45 °C


✓ Temperatura acqua prima del refrigerante aria : 32 °C per acqua di mare
✓ Temperatura acqua prima del refrigerante aria : 36 °C per acqua dolce

✓ Pressione barometrica : 1000 mbar
✓ Potere calorifico inferiore del combustibile : 42,7 MJ/kg

Motori diesel 2T – Dati di progetto del motore

- Come è stato illustrato nel capitolo relativo ai campi di utilizzazione del motore, la potenza massima continuativa contrattuale (CMCR) può essere selezionata in ogni punto all'interno del campo di progetto;
- Per ogni punto di funzionamento viene determinata la configurazione del motore e vengono definiti i principali parametri di funzionamento, necessari per il dimensionamento degli ausiliari e degli impianti, che sono riassunti in un fascicolo fornito dal costruttore del motore;
- ➤ Il costruttore fornisce anche l'opportunità di stimare per mezzo di semplici grafici, in funzione del posizionamento del punto CMCR, la variazione dei parametri e dei componenti più importanti, precisamente:
 - ✓ Il "Brake Specific Fuel Consumption" (BSFC), parametro molto importante per valutare il costo di esercizio e l'autonomia nave;
 - ✓ Il "Brake Specific Exhaust Flow" (BSEF) e la "temperature of Exhaust gas after Turbocharger" (tEaT), parametri entrambi importanti per definire nelle prime fasi del progetto la potenzialità del recupero energetico;
 - ✓ Il tipo e il numero di turbosoffianti e di refrigeranti aria;
- > Tali grafici sono illustrati nelle pagine seguenti.

Motori diesel 2T – Dati di progetto del motore Stima del consumo specifico di combustibile

Example:

Estimation of BSFC for 7RTA62U-B CMCR (Rx) specified and for reference condition:

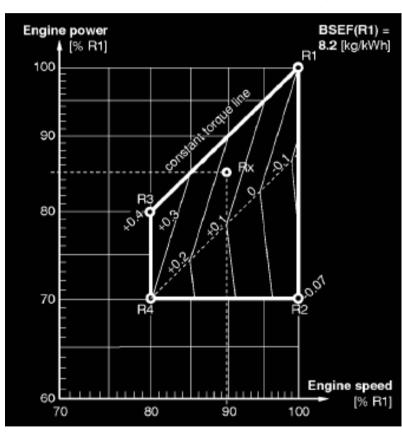
Power (R1) = 15 995 kW

Speed (R1) = 115 rpm

Power (Rx) = 85.0% R1 = 13 596 kW

Speed (Rx) = 89.6% R1 = 103 rpm

BSFC (R1) = 173 g/kWh


BSFC at Rx-point:

 Δ BSFC ≈ - 1.7 g/kWh

BSFC (Rx) = 173 - 1.7 = 171.3 g/kWh

For design (tropical) conditions add 3 g/kWh to the calculated values.

Motori diesel 2T – Dati di progetto del motore Stima della portata dei gas di scarico

Example:

Estimation of BSEF for 7RTA62U-B CMCR (Rx) specified and for reference condition:

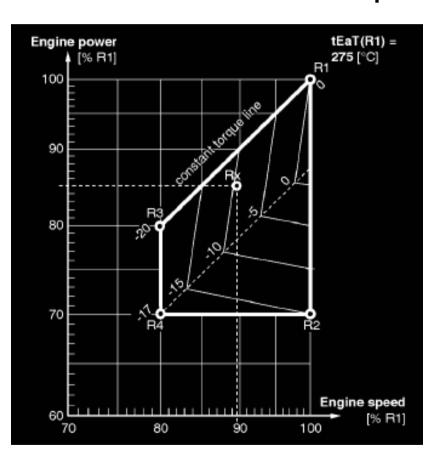
Power (R1) = 15 995 kW

Speed (R1) = 115 rpm

Power (Rx) = 85.0% R1 = 13 596 kW Speed (Rx) = 89.6% R1 = 103 rpm

BSEF (R1) = 8.2 kg/kWh

BSEF at Rx-point:


 Δ BSEF $\approx + 0.16 \text{ kg/kWh}$

BSEF (Rx) = 8.2 + 0.16 = 8.36 kg/kWh

For design (tropical) conditions subtract 0.4 kg/kWh from the calculated values.

The estimated brake specific exhaust gas flows are within a tolerance of \pm 5 per cent. An increase of BSEF by 5 per cent corresponds to a decrease of the tEaT by 15°C.

Motori diesel 2T – Dati di progetto del motore Stima della temperatura dei gas di scarico

Example:

Estimation of tEaT for 7RTA62U-B CMCR (Rx) specified and for reference condition:

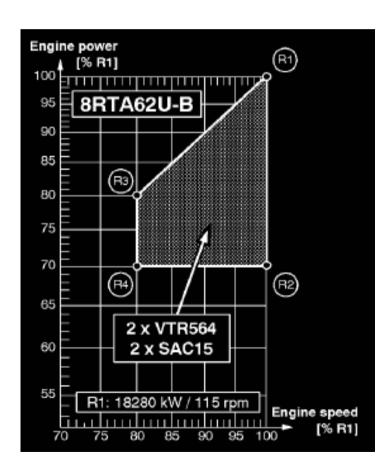
Power (R1) = 15 995 kW Speed (R1) = 115 rpm

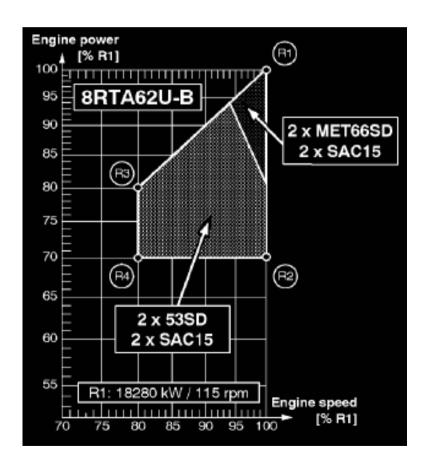
Power (Rx) = 85.0% R1 = 13 596 kW

Speed (Rx) = 89.6% R1 = 103 rpm

tEaT (R1) = 275 °C

tEaT at Rx-point:


 $\Delta tEaT \cong -9.6 \,^{\circ}C$


tEaT (Rx) = 275 – 9.6 = 265.4 °C

For design (tropical) conditions add 30°C to calculated values.

The estimated temperatures after turbocharger are within a tolerance of \pm 15°C. An increase of tEaT by 15°C corresponds to a decrease in BSEF of 5 per cent.

Motori diesel 2T – Dati di progetto del motore Definizione tipo e numero turbosoffianti e refrigeranti aria

Motori diesel 2T – Dati di progetto del motore Pressioni e temperature richieste per servizio continuo

Medium	System		Location of measurement	Gauge pressure [bar]		Temperature [° C]		
				Min.	Max.	Min.	Max.	Diff.
Fresh water	Cylinder cooling		Inlet	3.0	5.0	-	-	approx.
			Outlet cylinder	-	-	80	90	
	Turbine cooling		Inlet TC	1.0	4.5	65	-	approx 10
			Outlet TC	-	-	-	90	
	air cooling	LT circuit (single-stage SAC)	Inlet	1.0	4.0	25	36	*3)
			Outlet	-	-	-	-	
S	Scavenge	Conventional cooling	Inlet	1.0	4.0	25	32	*3)
Sea-water			Outlet	-	-	-	57	
Lubricating oil	Crosshead bearing		Inlet	10.0	12.0	40	50	-
(high pressure)	Free-end balancer		Inlet	4.5	6.0	-	-	-
	PTO	Free-end gear coupling (Geislinger)	Inlet	3.0	3.8	-	-	-
	Main bearing		Inlet	3.0	3.8	40	50	-
	Piston cooling		Inlet	3.0	3.8	40	50	max. 30
I odninatina ail			Outlet	-	-	-	-	
Lubricating oil (low pressure)		Thrust bearing	Outlet	-	-	-	60	-
	Torsional vibration damper (if steel spring damper is used)		Supply	1.0	-	-	-	-
		Integrated axial vibration detuner	Supply	2.8	3.6	-	-	-
		Turbocharger bearing	Housing	-	-	-	120	-

Motori diesel 2T – Dati di progetto del motore Pressioni e temperature richieste per servizio continuo

Medium	System	Location of measurement	Gauge pressure [bar]		Temperature [° C]		
			Min.	Max.	Min.	Max.	Diff.
Fuel oil	Booster (injection pump)	Inlet	7.0 *1)	10.0 *2)	_	150	-
	After retaining valve (injection pump)	Return	3.0	5.0	-	-	-
	Intake from engine room (pressure drop)	Air filter / Silencer	100 mmWG		-	-	-
	Intake from outside (pressure drop)	Ducting and filter	200 mmWG		-	-	-
Scavenge air	Cooling (pressure drop)	New SAC	300 mmWG		-	-	-
		Fouled SAC	500 mmWG		-	-	-
	Starting air	Engine inlet	_	25 or 30	-	-	-
Air	Control air	Engine inlet	6.5	9.0	-	-	-
	Air spring of exhaust valve	Main distributor	6.5	8.0	-	-	-
	Receiver	After cylinder	-	-	-	515	Deviation ±50
Exhaust gas		TC inlet	-	-	-	515	-
		Design max.	300 mmWG		-	-	-
	Manifold after turbocharger	Fouled max.	500 mmWG		-	-	-

Motori diesel 2T – Tubazioni gas di scarico

- > Esercitazione per la determinazione dei diametri della tubazione gas di scarico:
 - ✓ Dati di progetto alle condizioni tropicali
 - Motore 7RTA62U-B;
 - Potenza (R1) = 15995 kW
 - Velocità (R1) = 115 rpm
 - Potenza (Rx) = 85% R1 = 13596 kW
 - Velocità (Rx) = 89,6% R1 = 103 rpm
 - BSEF (R1) = 8,2 kg/kWh
 - tEaT (R1) = 275 °C
 - Numero di turbosoffianti: n_{TC}=2
 - √ Costante dei gas perfetti R = 287,13 J/kg K
 - ✓ Definizione portata gas di scarico alle prestazioni Rx e alle condizioni tropicali:

$$q_m = (8,2 + 0,16 - 0,4) \cdot 13596 = 108224 \text{ kg/h}$$

✓ Definizione temperatura gas di scarico alle prestazioni Rx e alle condizioni tropicali:

$$tEaT = (275 - 9.6 + 30) = 295.4$$
 °C

Motori diesel 2T – Tubazioni gas di scarico

- > Esercitazione per la determinazione dei diametri della tubazione gas di scarico (continua):
 - ✓ Densità del gas di scarico:

$$\rho_{\text{Exh}} = \frac{P}{R T} = \frac{103000}{287,13 \cdot (295,4 + 273)} = 0,631 [\text{kg/m}^3]$$

- ✓ Il valore della densità può essere ricavato anche dal grafico di pagina 2 entrando con i valori di temperatura (295,4 °C) e di perdita di carico (300 mmH₂O corrispondenti a 0,03 bar) noti;
- ✓ Portata in volume dei gas di scarico:

■ Tubazione A:
$$q_{mA} = \frac{q_m}{\rho_{Exh} \cdot n_{TC}} = \frac{108224}{0,631 \cdot 2} = 85756 \, [m^3/h] = 23,821 [m^3/s]$$

■ Tubazione B e C:
$$q_{mB} = q_{mC} = \frac{q_m}{\rho_{Exh}} = \frac{108224}{0,631} = 171512 [m^3/h] = 47,642 [m^3/s]$$

Motori diesel 2T – Tubazioni gas di scarico

- > Esercitazione per la determinazione dei diametri della tubazione gas di scarico (continua):
 - ✓ Calcolo diametro tubazione A:

$$d_{A} = 1000 \cdot \left(\frac{4 \cdot q_{mA}}{\pi \cdot V_{A}}\right)^{\frac{1}{2}} = 1000 \cdot \left(\frac{4 \cdot 23,821}{3,14159 \cdot 40}\right)^{\frac{1}{2}} = 870,8 \text{ [mm]}$$

✓ Calcolo diametro tubazione B:

$$d_{B} = 1000 \cdot \left(\frac{4 \cdot q_{mB}}{\pi \cdot V_{B}}\right)^{\frac{1}{2}} = 1000 \cdot \left(\frac{4 \cdot 47,642}{3,14159 \cdot 25}\right)^{\frac{1}{2}} = 1557,7 \text{ [mm]}$$

√ Calcolo diametro tubazione C:

$$d_{C} = 1000 \cdot \left(\frac{4 \cdot q_{mC}}{\pi \cdot V_{C}}\right)^{\frac{1}{2}} = 1000 \cdot \left(\frac{4 \cdot 47,642}{3,14159 \cdot 35}\right)^{\frac{1}{2}} = 1316,5 \text{ [mm]}$$

- ✓ I valori dei diametri possono essere ricavato anche dal grafico di pagina 3 entrando con i valori di portate A,B e C e con quelli delle velocità elencate a pagina 1;
- ✓ Con i diametri calcolati è necessario verificare che le perdite di carico non sono superiori a 0,03 bar (300 mm H₂O).