Table 19.7 The correlation of spectroscopic terms for d electrons in O_h complexes

Atomic term	Number of states	Terms in O _h symmetry
S	1	A _{1g}
Р	3	T _{1g}
D	5	$T_{2g} + E_g$
F	7	$T_{1g} + T_{2g} + A_{2g}$
G	9	$A_{1g} + E_g + T_{1g} + T_{2g}$

Diagramma dei livelli di energia per uno ione d¹ in campo ottaedrico

Spettro di assorbimento elettronico del complesso d^1 [Ti(OH₂)₆]³⁺

Diagramma di correlazione di Orgel per ioni d¹, d⁴ (h.s.), d⁶ (h.s.) e d⁹ in campo ottaedrico (debole) e tetraedrico

La molteplicità di spin dipende dalla configurazione elettronica

Table 19.7 The correlation of spectroscopic terms for d electrons in O_h complexes

Atomic term	Number of states	Terms in O _h symmetry
S	1	A _{1g}
Р	3	T _{1g}
D	5	$T_{2g} + E_g$
F	7	$T_{1g} + T_{2g} + A_{2g}$
G	9	$A_{1g} + E_g + T_{1g} + T_{2g}$

Diagramma di correlazione di Orgel per ioni d², d³, d⁷ e d⁸ (tutti h.s.) in campo ottaedrico e tetraedrico

La molteplicità di spin dipende dalla configurazione elettronica

Changing parameter

Diagramma di correlazione di Orgel per ioni d², d³, d⁷ e d⁸ (tutti h.s.) in campo ottaedrico e tetraedrico

La molteplicità di spin dipende dalla configurazione elettronica

Dipendenza della separazione di energia fra i termini in funzione di Δ_{O}

Diagramma di Tanabe-Sugano per la configurazione d² in campo ottaedrico

Diagramma di Tanabe-Sugano per la configurazione d⁶ in campo ottaedrico

21550 e 28500 cm⁻¹

Diagramma di Tanabe-Sugano per la configurazione d³ in campo ottaedrico

Effetto nefelauxetico

Metal ion	k	Ligands	h
Co(III)	0.35	6 Br^-	2.3
Rh(III)	0.28	6 Cl ⁻	2.0
Co(II)	0.24	6 [CN] ⁻	2.0
Fe(III)	0.24	3 en	1.5
Cr(III)	0.21	6 NH ₃	1.4
Ni(II)	0.12	6 H ₂ O	1.0
Mn(II)	0.07	6 F^{-}	0.8

$$\beta = \frac{B}{B^{\circ}}$$
 rapporto nefelauxetico (< 1)