Tight binding bands - DOS - cyclotron orbits

Exercise 1: Tight binding bands in the square lattice

Consider a square lattice with one s orbital per site, only nearest-neighbor interactions and neglect overlap.

1. Show that the expression of the tight binding s-band is:

$$
E(\mathbf{k})=E_{1 s}-2 \gamma\left(\cos k_{x} a+\cos k_{y} a\right)
$$

where $\gamma=-\int \phi_{1 s}(\mathbf{r}) \Delta U(\mathbf{r}) \phi_{1 s}(\mathbf{r}-\mathbf{R}) ; \mathbf{R}$ are Bravais lattice vectors joining the nearest-neighbour sites to the origin, and $\gamma>0$.
2. Show that the band has remarkable symmetry properties: the band $E(\mathbf{k})$ is symmetric with respect to $E_{1 s}$, in the sense that every state at $E-E_{1 s}$ has a corresponding state at $-\left(E-E_{1 s}\right)$, and, more precisely: $E(\mathbf{k})-E_{1 s}=-\left[E\left(\mathbf{k}-\frac{\pi}{a}(1,1)\right)-E_{1 s}\right]$
3. Show that the Fermi energy coincides with $E_{1 s}$ in case of half-filled band.
4. Plot the Brillouin zone and the Fermi surface in case of half-filled band.
5. Plot $E(\mathbf{k})$ along $\Gamma-M-X-\Gamma$, where $M=\frac{\pi}{a}(1,0)$ and $X=\frac{\pi}{a}(1,1)$.
6. Show that: Γ corresponds to the minimum, X to the maximum, M to a saddle point.
7. Plot the density of states $g(E)$ and show that it diverges at E_{F} (set to 0 in the figure below) with a logarithmic divergence. The figure also shows the occupied states in case of half filling of the band.

Exercise 2: Tight binding bands of "cubium"

Similarly as above, consider now the 3D case. Consider a simple cubic lattice with one s orbital per site, only nearest-neighbor interactions and neglect overlap (a toy model known also as cubium).

1. Show that the expression of the tight binding s-band is:

$$
E(\mathbf{k})=E_{1 s}-2 \gamma\left(\cos k_{x} a+\cos k_{y} a+\cos k_{z} a\right)
$$

where $\gamma=-\int \phi_{1 s}(\mathbf{r}) \Delta U(\mathbf{r}) \phi_{1 s}(\mathbf{r}-\mathbf{R}) ; \mathbf{R}$ are Bravais lattice vectors joining the nearest-neighbour sites to the origin, and $\gamma>0$.
2. Plot $E(\mathbf{k})$ along $\Gamma-X-M-\Gamma-R$, where $X=\frac{\pi}{a}(1,0,0), M=\frac{\pi}{a}(1,1,0)$ and $R=\frac{\pi}{a}(1,1,1)$.
3. Plot the density of states $g(E)$.

Exercise 3: Semiclassical theory of electron dynamics: cyclotron orbits

Consider the problem of a cyclotron orbit in the $\left(k_{x} k_{y}\right)$ plane (suppose an external uniform magnetic field \mathbf{H} applied in the z direction, and $\left.k_{z}(t=0)=\dot{k}_{z}(t=0)=0\right)$ for a SC crystal with band structure:

$$
\mathcal{E}(\mathbf{k})=\mathcal{E}_{0}-2 A\left[\cos \left(a k_{x}\right)+\cos \left(a k_{y}\right)+\cos \left(a k_{z}\right)\right]
$$

1. Show that the equation for the orbit with a given energy \mathcal{E} close to the minimum $\mathcal{E}_{\text {min }}$ is: $\mathcal{E}=\mathcal{E}_{\text {min }}+A a^{2}\left(k_{x}^{2}+k_{y}^{2}\right)$.
2. Calculate the period of the orbit as a function of the parameter A.
3. Describe the orbit in real space.
4. Generalize your result to a crystal with band structure:

$$
\mathcal{E}(\mathbf{k})=\mathcal{E}_{0}-2\left[A \cos \left(a k_{x}\right)+B \cos \left(a k_{y}\right)+C \cos \left(a k_{z}\right)\right]
$$

