Tight binding bands - DOS - cyclotron orbits

Exercise 1: Tight binding bands in the square lattice

Consider a square lattice with one s orbital per site, only nearest-neighbor interactions and neglect overlap.

1. Show that the expression of the tight binding s-band is:

$$E(\mathbf{k}) = E_{1s} - 2\gamma \left(\cos k_x a + \cos k_y a\right)$$

where $\gamma = -\int \phi_{1s}(\mathbf{r}) \Delta U(\mathbf{r}) \phi_{1s}(\mathbf{r} - \mathbf{R})$; **R** are Bravais lattice vectors joining the nearest-neighbour sites to the origin, and $\gamma > 0$.

- 2. Show that the band has remarkable symmetry properties: the band $E(\mathbf{k})$ is symmetric with respect to E_{1s} , in the sense that every state at $E E_{1s}$ has a corresponding state at $-(E E_{1s})$, and, more precisely: $E(\mathbf{k}) E_{1s} = -\left[E\left(\mathbf{k} \frac{\pi}{a}(1,1)\right) E_{1s}\right]$
- 3. Show that the Fermi energy coincides with E_{1s} in case of half-filled band.
- 4. Plot the Brillouin zone and the Fermi surface in case of half-filled band.
- 5. Plot $E(\mathbf{k})$ along Γ -M-X- Γ , where $M = \frac{\pi}{a}(1,0)$ and $X = \frac{\pi}{a}(1,1)$.
- 6. Show that: Γ corresponds to the minimum, X to the maximum, M to a saddle point.
- 7. Plot the density of states g(E) and show that it diverges at E_F (set to 0 in the figure below) with a logarithmic divergence. The figure also shows the occupied states in case of half filling of the band.

Exercise 2: Tight binding bands of "cubium"

Similarly as above, consider now the 3D case. Consider a simple cubic lattice with one s orbital per site, only nearest-neighbor interactions and neglect overlap (a toy model known also as *cubium*).

1. Show that the expression of the tight binding s-band is:

$$E(\mathbf{k}) = E_{1s} - 2\gamma \left(\cos k_x a + \cos k_y a + \cos k_z a\right)$$

where $\gamma = -\int \phi_{1s}(\mathbf{r}) \Delta U(\mathbf{r}) \phi_{1s}(\mathbf{r} - \mathbf{R})$; **R** are Bravais lattice vectors joining the nearest-neighbour sites to the origin, and $\gamma > 0$.

- 2. Plot $E(\mathbf{k})$ along Γ -X-M- Γ -R, where $X = \frac{\pi}{a}(1,0,0), M = \frac{\pi}{a}(1,1,0)$ and $R = \frac{\pi}{a}(1,1,1).$
- 3. Plot the density of states g(E).

Exercise 3: Semiclassical theory of electron dynamics: cyclotron orbits

Consider the problem of a cyclotron orbit in the $(k_x k_y)$ plane (suppose an external uniform magnetic field **H** applied in the z direction, and $k_z(t = 0) = \dot{k}_z(t = 0) = 0$) for a SC crystal with band structure:

$$\mathcal{E}(\mathbf{k}) = \mathcal{E}_0 - 2A[\cos\left(ak_x\right) + \cos\left(ak_y\right) + \cos\left(ak_z\right)]$$

- 1. Show that the equation for the orbit with a given energy \mathcal{E} close to the minimum \mathcal{E}_{min} is: $\mathcal{E} = \mathcal{E}_{min} + Aa^2 (k_x^2 + k_y^2)$.
- 2. Calculate the period of the orbit as a function of the parameter A.
- 3. Describe the orbit in real space.
- 4. Generalize your result to a crystal with band structure:

$$\mathcal{E}(\mathbf{k}) = \mathcal{E}_0 - 2[A\cos\left(ak_x\right) + B\cos\left(ak_y\right) + C\cos\left(ak_z\right)]$$