
RNA-seq analysis pipeline 

«EASY» PATH 
 

Sequencing 
 
 

Mapping on a annotated 
reference genome 

 
 

Can be applied to model 
organisms 

«HARD» PATH 
 

Sequencing 
 
 

De novo assembly to create a 
reference transcriptome 

 
 

Several quality checks and 
filtering steps 

 
 

Back-mapping on the 
reference transcriptome 

 
Has to be applied to non-

model species 



First we need to choose THE STRATEGY best suited to our aims and to 
understand HOW MUCH sequence data do we need. 
 
Single-end or paired end sequencing? How many lanes do we need? 
 
In any RNA-seq experiment there are a series of biases which we need 
to take into account, detect and/or correct 
 
• De novo assembly limitations 
• Alternative splicing management 
• Inter-individual sequence variability 
• Calculating gene expression data 
• Etc. Etc. Etc... 

RNA-seq: not as straightforward as it seems 



Experimental design 

• Single-end sequencing with short reads (1x50) is fine when you 
already have a reference genome or transcriptome available 

• Paired-end sequencing with longer reads (2x100) is advisable when 
you need to build your own reference transcriptome 

How deep is enough? It depends on what you are looking for... As a rule of thumb 
30M reads is usually enough for gathering information concerning all importantly 
regulated genes, but you may loose detection power for poorly expressed genes with 
a lower coverage. 
 
The deeper the better, but it is BETTER to sequence more replicates than to go ultra-
deep in a single sample. No need for technical replicates! 

How many replicates should I use? The more you can, the better it is, but 
money is always an issue. In order to save sequencing costs, you can choose 
to pool replicates before sequencing. This will reduce statistical power and 
mask inter-individual variability, but it is a reasonable compromise between 
keeping sequencing costs down and getting reliable results.  





Challenges in de novo transcriptome assembly 

 Assemby size much smaller than those of genomes: is it easier? 
 Transcriptome assembly presents challenges of its own 
 Non-uniform coverage of transcripts (some mRNAs are expressed much 

more than others) 
 Alternative splicings, paralog genes, repetitive sequences, ovelapping 

genes, antisense transcription, etc. 



Not all reads are perfect! 

 We need to trim data based on quality scores 
 We need to remove Illumina adaptors and ambiguous nucleotides 
 We need to discard reads too short to be informative 

This process is known as TRIMMING 

good qualiy read                          VS                      bad quality read 



De novo assembly (De Bruijn graph construction) 



This is the Trinity pipeline: highly popular de novo assembler, its output comprises 
genes and putative alternatively spliced variants 
 
Dealing with alternatively spliced variants is potentially interesting, but you have high 
sequence redundancy. Sometimes it is useful to filter out contigs by only keeping one 
transcript per gene (usually the longest one). 
 
Other softwares for de novo transcriptome assembly aim to reuce the complexity of a 
transcriptome by only providing one representative transcript (the most supported by 
sequence data) per gene 



How do we deal with alternative splicing? 

 They can be a problem for the calculation of gene expression 
 Are all these splicing variants real or are they artifacts? 
 Usually, you do not really need all of them to get the general picture of a 

transcriptomic response 
 One representative transcript per gene is usually ine for this aim 
 In any case remember that alternatively spliced isoforms may have very 

important functional differences! 



RNA-seq of non-model species: contamination 

Let’s suppose to plan a RNA-seq experiment on a fish species... 

De novo assembled 
and annotated 

reference 
transcriptome 

Residual rRNA 

Mitochondrial 
RNA 

bacteria 
virus 

protozoa 

microalgae 

X X X X X 
X 



Tarazona et al (2011) Genome research, 
21(12), 2213–23 

 In any RNA-seq you will get 
A LOT of assembled contigs 
with no apparent function 

 Are they contaminants, 
lncRNAs or what? 

 Importance to adopt a pre-
filtering step based on 
sequencing coverage 
 

Anything with a sequencing 
coverage lower than a 

certain threshold can be 
considered as NOT USEFUL 

for downstream analysis 
= 

Not necessarily a 
contaminant, but in most 
cases you will remove just 
small fragments with no 

annotation 



Calculating gene expression: not just read counting! 

transcript 1 (size = L) 

transcript 2 
(size=2L) 

Count =6 

Count = 12 

Question: Which transcript is the most expressed one? 

Answer: They are equally expressed: the number of reads mapped are directly 
proportional both to gene expression level and to the transcript length. 

BUT 
This just applies to a comparison between genes within the same sample 



What about a comparison between two samples? 

transcript 1 (sample 1) 

transcript 1 (sample 2) 

Count =12, library size  = 1200 

Count =6, library size = 600 
 

Question: is transcript 1 more expressed in sample 1 or in sample 2? 

Answer: transcript 1 is equally expressed in both samples, since read count is 
also directly proportional to sequencing depth! 



Normalizing RNA-seq gene expression data 

 Keep in mind these three factors: gene length, read count and sequencing 
depth 
 

 Also keep in mind that we might want to be able to make comparisons 
within a sample and between samples 
 

 Various methods have been developed for normalizing RNA-seq gene 
expression data over the years 
 

 Quantile normalization (developed for microarrays) 
 Upper quartile (based on read counts only) 
 Normalization “by totals” (based on read counts only) 
 RPKM/FPKM (all three factors are taken into account) 
 TPM (evolution of the RPKM concept) 



Normalizing RNA-seq gene expression data 

 Proposed by Mortazavi et al (2008) Nature Methods, 5(7), 621 
 Highly popular method, as it considers both sequence length and 

sequencing depth 
 

 Permits comparison of expression WITHIN samples (i.e. to compare the 
expression of gene A and gene B in the same tissue or experimental 
condition) and, allegedly, BETWEEN samples (i.e. to compare the 
expression of gene A in two different samples) 

The second assumption is not correct!!! 



Normalizing RNA-seq gene expression data 

 TPM = Transcripts Per Million 
 Introduced by Wagner et al. 2012 
 Measure relative to the molar concentration of each mRNA species 

 
 RPKM of all transcripts in a sample are summed up 
 They are normalized so that the sum of the expression values of all 

transcripts = 1 million 
 

 Allows a reliable comparison between samples, regardless to the 
sequencing depth 



 Since RNA sequencing works by random sampling, a small fraction 
of highly expressed genes may consume the majority of reads 

 TPM, like any other measure of gene expression, assumes that the global 
amount of mRNA is the same in all cells, which is obviously not 
guaranteed in reality! 

 Example: when the transcription of ALL transcripts equally drops by 50% 
no changes in gene expression can be detected by RNA-seq  

Ribosomal proteins or 
transcripts with 

important tissue specific 
functions 

RNA-seq can only provide changes in relative quantities 



How is differential expression calculated? 

 Based on gene expression 
values (normalized), assuming 
a Poisson distribution 

 Based on statistical 
significance testing 

 False Discovery Rate or 
Bonferroni corrected p-values 

 This takes into account the fact 
that changes in genes covered 
by a low number of counts are 
not significant 

 Each transcript will have a p-
value and a Fold Change 

 We shoould establish 
thresholds to detect 
differential expression 



How to interpret data? 

• We need to annotate sequences based on BLAST similarity to a target 
database 

• Automated pipelines: Blast2GO and Trinotate 

• BLAST vs UniprotKB and Gene Ontology assignment 

• Search for conserved protein domains with HMMER (PFAM or Interpro 
databases 

• Hypergeometric tests or Gene Set Enrichment analyses to detect 
processes, functions and domains significantly over or under-represented 
in a subset of differentially expressed genes 



 
 Keep in mind that lncRNA and non-coding transcripts in general 

may have important functions 
 Coding transcripts without an annotation are NOT garbage! They 

may represent innovations and they may cover VERY IMPORTANT 
functions 

 Even if you can’t identify their function they might be used as 
molecular markers of a certain condition 

Why do my annotation statistics look so bad? 

More than 50% of the assembled transcripts in a non model 
species are usually not coding 

 
About 40% of the protein-coding transcripts of a non-model 
invertebrate have an unknwon function and lack any kind of 

annotation 



A case study: Trebouxia gelatinosa 

 Lichens are extremely resistant to 
dehydration 

 They can live in a desiccated state 
for a very long time and quickly 
fully recover rehydration 

 Lichens are the result of a 
symbiotic relationship between 
fungi (mycobiont) and unicellular 
algae or cyanobacteria 
(photobiont) 

 Trebouxia spp. Is one of the algal 
species most commonly 
associated with lichens 



Different organisms use different strategies to cope 
with dehydration (and rehydration) 

 Resurrection plants 
 Morphological, physiological and 

biochemical adaptations 
 Can we trace back these changes 

to alteration of gene expression? 
 Can RNA-seq reveal the secrets 

behind this remarkable tolerance? 
 
 



Experimental planning 

 Budget available: 1 lane with 3 libraries is fine 
 We need to build a reference transcriptome: 2x100 paired-end sequencing is needed 
 Pooling of 3 biological samples before sequencing 
 Three experimental samples: fully hydrated control (C), dehydrated for 10 hours (D) and 

rehydrated for 12 hours (R) 
 We expect to have 60-90 million reads per sample 
 We plan to use Trinity and reduce transcriptome complexity by removing redundant 

contigs 
 
 

??? 



From RNA-seq to data interpretation 

• We expect to observe adaptations somewhat similar to that of other 
dessication-tolerant organisms 

• We expect to have some novel/alternative mechanisms which have not 
been described before 

• Keep in mind that not all adaptations are expected to be reflected by 
changes in gene expression 

• Most importantly, keep in mind that you need an expert advice to 
correctly interpret your result (if you’re not an expert about the topic 
yourself) 



Unexpected problem: chimeric contigs 

• We got the raw RNA-seq data 

• We trimmed data and checked quality 

• We performed the de novo assembly: 95,865 contigs 

• We filtered out redundant sequences: 45,261 contigs 

• Everything looks fine: great assembly statistics and 
mapping rate 

• What could be possibly go wrong? 



 



Overlapping genes (and transcripts) 

• They might pose a problem in transcriptome assembly 
when sequencing in not directional 

• More frequent in small genomes 

• The genome of T. gelatinosa (and Trebouxiophyceae, in 
general) is quite small (50-60 Mbp) 

We can try to figure out where a 
transcript starts and where another one 

ends based on shifts in sequening 
coverage 



Solution to the problem: using ORFs 
DISADVANTAGES 
 The information about lncRNAs 

will be lost 
 You have to set a minimum ORF 

length (i.e. Transcripts encoding 
very short proteins will be 
discarded) 

 Some ORFs will be erroneously 
predicted as protein coding 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ADVANTAGES 
 Each ORF corresponds to a single 

protein-coding transcript 
 It’s automated and unbiased 

(TransDecoder) 
 Can be performed even if ORFs 

are overlapping 
 No uncertainties about 5’ and 3’ 

UTR boundaries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sometimes the only possible way to solve a 
problem is an heuristic compromise 



In this case, the contig is a chimaera which likely comprises 4 partially 
overlapping mRNAs 



However... 

 

We need to futher filter CDS 
to avoid potential errors (i.e. 
ORFs «casually» present in 
the transcriptome, which are 
not protein coding) 

This is done by: 
 
1: BLAST vs a closely related proteome of a 
species with a fully sequenced genome 
(Chlorella spp, Asterochloris spp., etc.) -> 
positive HIT means high probability of coding 
potential 
 
2. Presence of conserved protein domains 
(PFAM or InterPro) -> high probability of 
coding potential 
 
3. What if you have highly divergent, species-
specific genes? We can include long ORFs (> 
300 codons, even if they don’t meet the 2 
above mentioned criteria 

Final reference set: 13,648 
ORFs 



• Once we have a good reference library, we can 
proceed to read mapping of each of the 3 
samples to calculate gene expression values 

• 0,75 length fraction and 0,95 similarity fraction 
mapping parameters: this means that at least 
75% of a read needs to be 95% identical to the 
reference in order to be mapped 

• Calculation of read counts are computed for 
each ORF 

• We also need to annoate our transcriptome, 
and we will do that using the Trinotate pipeline 

• We are now ready to compare and interpret 
data 



Comparison of raw read counts 

Obvious bias towards DH 
 
Higher sequencing depth!!! 
 
We need to normalize 



Comparison of RPKM values 

Most genes are found along 
the bisector line 
 
We can still notice some 
over- and under-expressed 
genes 



Comparison of TPM values 

No major visual changes 
compared to RPKM 
 
However, this measure 
makes the comparison 
between samples possible 



Let’s switch to a better representation (Log2 
transformation) 



Statistical analysis of differential expression 

We can easily spot up- and down-regulated genes. 
Log2 transformation gives a «teardrop» effect in the graph 
Higher expression changes are needed to achieve the same statistical significance 
for poorly expressed genes. 

Dehydrated vs control comparison -> 530 up-regulated 
transcripts, 427 down-regulated transcripts 



Results interpretation 

• We have way to many DEGs to analyze them one by 
one 

• Is there any class of genes which is up-regulated or 
down-regulated? 

• We can use annotations (Gene Ontology, PFAM, 
eggNOG, etc.) to try figuring that out 

• Hypergeometric tests on annotations can detect these 
alterations 



Globally... 

Groupp 
Dehydrated vs 

Control 

Rehydrated vs 

Dehydrated 
Number of genes % of the total 

1   6 0.04 

2  = 500 3.66 

3   24 0.18 

4 =  138 1.01 

5 = = 12479 91.43 

6 =  74 0.54 

7   54 0.40 

8  = 366 2.68 

9   7 0.05 

91.43% of Trebouxia genes are NOT affected by the treatment. Yet, as 
you will see, the relatively low number of DEGs can tell us quite a lot... 



Hypergeometric test results: an example – D vs 
C comparison (up-regulated genes) 

Category ID Description P-value Proportion   

Dehydrated vs Control 

Up-regulated   

            

eggNOG COG0580 Glycerol uptake facilitator and related permeases 3.91E-4 4/9   

eggNOG COG1028 Dehydrogenases with different specificities  1.38E-3 8/50   

GO_BP GO:0009765 photosynthesis,  light harvesting 2.72E-14 14/21   

GO_BP GO:0018298 protein-chromophore linkage 3.67E-12 14/27   

GO_BP GO:0015979 photosynthesis 1.13E-5 11/47   

GO_BP GO:0009736 cytokinin mediated signaling pathway 9.32E-4 4/10   

GO_BP GO:0005975 carbohydrate metabolic process 1.09E-3 10/65   

GO_BP GO:0006950 response to stress 4.39E-3 10/78   

GO_CC GO:0009522 photosystem I 2.22E-16 16/23   

GO_CC GO:0009523 photosystem II 3.87E-12 14/27   

GO_CC GO:0009535 chloroplast thylakoid membrane 2.66E-10 28/146   

GO_CC GO:0009538 photosystem I reaction center 2.75E-7 5/5   

GO_CC GO:0016021 integral to membrane 8.95E-6 96/1319   

GO_CC GO:0009543 chloroplast thylakoid lumen 5.31E-5 8/29   

GO_CC GO:0009505 plant-type cell wall 9.95E-5 5/11   

GO_CC GO:0005615 extracellular space 4.46E-3 5/23   

GO_MF GO:0016168 chlorophyll binding 1.55E-15 15/23   

GO_MF GO:0008242 omega peptidase activity 2.51E-4 4/8   

GO_MF GO:0043169 cation binding 4.27E-3 7/46   

PFAM PF00504 Chlorophyll A-B binding protein 7.48E-11 14/32   

PFAM PF13668 Ferritin-like domain 1.61E-6 7/14   

PFAM PF01124 MAPEG family 5.63E-6 4/4   

PFAM PF00134 Cyclin,  N-terminal domain 5.60E-5 5/10   

PFAM PF00230 Major intrinsic protein 1.62E-4 5/12   

PFAM PF01370 NAD dependent epimerase/dehydratase family 3.20E-4 9/46   

PFAM PF00106 short chain dehydrogenase 3.55E-4 13/89   

PFAM PF00168 C2 domain 3.81E-4 6/21   

PFAM PF13561 Enoyl-(Acyl carrier protein) reductase 4.41E-4 10/58   

PFAM PF08659 KR domain 2.47E-3 10/72   

Photosynthesis seems to be 
predominantly present in 
this table 
 
How can we explain this in 
desiccation??? 



Hypergeometric test results: an example – D vs 
C comparison (down-regulated genes) 

Heath Shock Proteins are down-regulated. 
 
How can we explain this??? 

Down-regulated 

GO_BP GO:0006950 response to stress 1.14E-5 12/78 

GO_BP GO:0009408 response to heat 1.38E-5 10/55 

GO_BP GO:0016485 protein processing 2.42E-4 4/10 

GO_CC GO:0005886 plasma membrane 6.14E-4 33/575 

GO_CC GO:0000502 proteasome complex 2.41E-3 5/30 

GO_CC GO:0009706 chloroplast inner membrane 7.70E-3 5/39 

GO_MF GO:0017111 nucleoside-triphosphatase activity 3.35E-3 7/61 

GO_MF GO:0043565 sequence-specific DNA binding 6.40E-3 5/37 

PFAM PF00012 Hsp70 protein 4.56E-6 6/14 

PFAM PF00320 GATA zinc finger 6.21E-4 4/12 

PFAM PF00004 ATPase associated with various cellular activities (AAA) 3.88E-3 8/72 



How do other desiccation-related plants 
deal with dehydration? 

Dehydration Rehydration 

Tg Kc Sr Sl Cp Mf Hr Xh Tg Sr Cp Mf Hr 

Cell wall modifications = = = = ↓↑ = ↓ = ↑ = ↑ = ↑ 

HSPs and other chaperones ↓ = ↑ ↑ = = = = ↓ = = = = 

Late Embryogenesis 

Abundant proteins 
= ↑ ↑ ↑ ↑ ↑ ↑ ↑ = ↑ ↓ ↓ ↓ 

Aquaporins ↑ = = ↑ ↑↓ = = ↓   = ↑ ↑ = = 

Oxidative stress response ↑* ↑ ↑ ↑ ↓ ↑ ↑↓ ↑ = ↑ ↑ ↓ ↑↓ 

Photosynthetic apparatus ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↓   = ↑ ↑ = ↑ 

                              



Structure and phylogeny of DRPs 



Cell wall modifications 

• Upon dehydration, cells are not turgid anymore and the cell wall needs 
to be remodeled 

• Aquaporins (which regulate solute traficking across membranes) are 
also upregulated 

• Consistent with literature! 
 



Photoshynthesys 

• Homoiochlorophyllic vs poikylochlorophyllic plants 
• Destroy and rebuild vs protect and save energy 
• If the poikylochlorophyllic strategy is chosen, then there is the need to deal 

with photoxidative damage! 
• We find some genes involved in oxidative stress response upregulated 
• We find some genes involved in the synthesis of anthocyanins upregulated 



Confirmation by RT-PCR 

 This is often 
asked by referees 

 Need to confirm 
RNA-seq data 
with a differenet 
technique 

 Assessment of 
inter-individual 
response 
variabilty 


