RNA-seq analysis pipeline

«EASY» PATH

Sequencing

4

Mapping on a annotated
reference genome

Can be applied to model
organisms

O

Frog:
Mus muscu lus nopus lae
Zgbnﬁoll Mustard Plant
l Arabidapsis thaliane
Roundworm

Saccharo myr cerevis Caenorhabditis elegans

Fruit Fly
Drosophila melanogaster

«HARD» PATH

Sequencing

4

De novo assembly to create a
reference transcriptome

4

Several quality checks and
filtering steps

4

Back-mapping on the
reference transcriptome

Has to be applied to non-
model species



RNA-seq: not as straightforward as it seems

First we need to choose THE STRATEGY best suited to our aims and to
understand HOW MUCH sequence data do we need.

Single-end or paired end sequencing? How many lanes do we need?

In any RNA-seq experiment there are a series of biases which we need
to take into account, detect and/or correct -~

* De novo assembly limitations

* Alternative splicing management

* Inter-individual sequence variability
* Calculating gene expression data

* Etc. Etc. Etc... v




Experimental design

with short reads (1x50) is fine when you
already have a reference genome or transcriptome available

with longer reads (2x100) is advisable when
you need to build your own reference transcriptome

How deep is enough? It depends on what you are looking for... As a rule of thumb
30M reads is usually enough for gathering information concerning all importantly
regulated genes, but you may loose detection power for poorly expressed genes with
a lower coverage.

The deeper the better, but it is BETTER to sequence more replicates than to go ultra-
deep in a single sample. No need for technical replicates!

How many replicates should | use? The more you can, the better it is, but
money is always an issue. In order to save sequencing costs, you can choose
to pool replicates before sequencing. This will reduce statistical power and
mask inter-individual variability, but it is a reasonable compromise between
keeping sequencing costs down and getting reliable results.
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Challenges in de novo transcriptome assembly

v" Assemby size much smaller than those of genomes: is it easier?

v' Transcriptome assembly presents challenges of its own

v" Non-uniform coverage of transcripts (some mRNAs are expressed much
more than others)

v Alternative splicings, paralog genes, repetitive sequences, ovelapping
genes, antisense transcription, etc.
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Not all reads are perfect!

v' We need to trim data based on quality scores
v" We need to remove lllumina adaptors and ambiguous nucleotides
v" We need to discard reads too short to be informative

This process is known as TRIMMING
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De novo assembly (De Bruijn graph construction)

c Collapse the De Bruijn graph
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RNAseq linear de-bruijn trans_Erlpts
reads — > contigs — > graphs expression
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This is the Trinity pipeline: highly popular de novo assembler, its output comprises
genes and putative alternatively spliced variants

Dealing with alternatively spliced variants is potentially interesting, but you have high
sequence redundancy. Sometimes it is useful to filter out contigs by only keeping one
transcript per gene (usually the longest one).

Other softwares for de novo transcriptome assembly aim to reuce the complexity of a
transcriptome by only providing one representative transcript (the most supported by
sequence data) per gene




How do we deal with alternative splicing?
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They can be a problem for the calculation of gene expression

Are all these splicing variants real or are they artifacts?

Usually, you do not really need all of them to get the general picture of a
transcriptomic response

One representative transcript per gene is usually ine for this aim

In any case remember that alternatively spliced isoforms may have very
important functional differences!
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RNA-seq of non-model species: contamination

Let’s suppose to plan a RNA-seq experiment on a fish species...

De novo assembled
and annotated
reference
transcriptome

Residual rRNA

protozoa

Mitochondrial
RNA

virus

bacteria



% blotype In sample

Brain v" In any RNA-seq you will get

A LOT of assembled contigs
= . .
o & with no apparent function
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IncRNAs or what?
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Calculating gene expression: not just read counting!

transcript 1 (size = L)

transcript 2
(size=2L)

Count=12

Question: Which transcript is the most expressed one?

Answer: They are equally expressed: the number of reads mapped are directly
proportional both to gene expression level and to the transcript length.

BUT
This just applies to a comparison between genes within the same sample



What about a comparison between two samples?

transcript 1 (sample 1)

Count =6, library size = 600

transcript 1 (sample 2)

Count =12, library size = 1200

Question: is transcript 1 more expressed in sample 1 or in sample 2?

Answer: transcript 1 is equally expressed in both samples, since read count is
also directly proportional to sequencing depth!



Normalizing RNA-seq gene expression data

v' Keep in mind these three factors: gene length, read count and sequencing
depth

v Also keep in mind that we might want to be able to make comparisons
within a sample and between samples

v’ Various methods have been developed for normalizing RNA-seq gene
expression data over the years

normalization (developed for microarrays)
(based on read counts only)
(based on read counts only)

(all three factors are taken into account)
(evolution of the RPKM concept)



Normalizing RNA-seq gene expression data

number of reads of the region

total reads region length
1,000,000 ~ 1,000

RPKM =

v" Proposed by Mortazavi et al (2008) Nature Methods, 5(7), 621
v Highly popular method, as it considers both sequence length and
sequencing depth

v Permits comparison of expression WITHIN samples (i.e. to compare the
expression of gene A and gene B in the same tissue or experimental
condition) and, allegedly, BETWEEN samples (i.e. to compare the
expression of gene A in two different samples)

The second assumption is not correct!!!




Normalizing RNA-seq gene expression data

v" TPM = Transcripts Per Million
v Introduced by Wagner et al. 2012
v' Measure relative to the molar concentration of each mRNA species

v" RPKM of all transcripts in a sample are summed up
v' They are normalized so that the sum of the expression values of all

transcripts = 1 million

v" Allows a reliable comparison between samples, regardless to the
sequencing depth

Short Communication
Theory in Biosciences
December 2012, Volume 131, Issue 4, pp 281-285

First online: 08 August 2012

Measurement of mRNA abundance using
RNA-seq data: RPKM measure is
Inconsistent among samples

Gilnter P. Wagner . Koryu Kin, Vincent J. Lynch



RNA-seq can only provide changes in relative quantities

v Since RNA sequencing works by random sampling, a small fraction
of highly expressed genes may consume the majority of reads

v' TPM, like any other measure of gene expression, assumes that the global
amount of mRNA is the same in all cells, which is obviously not
guaranteed in reality!

v' Example: when the transcription of ALL transcripts equally drops by 50%
no changes in gene expression can be detected by RNA-seq
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How is differential expression calculated?

Based on gene expression

. . 1 ReadWers iz 2 Reads
values (normalized), assuming

a Poisson distribution

Based on statistical
significance testing

1] 1 2 ] B ] 5]

False Discovery Rate or
10 Reads Wersuz 20 Reads

Bonferroni corrected p-values

10

This takes into account the fact
that changes in genes covered
by a low number of counts are ! © . .

not significant 0 0
Each transcript will have a ehead Mo us DDRead
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How to interpret data?

We need to annotate sequences based on BLAST similarity to a target
database

Automated pipelines: Blast2GO and Trinotate
BLAST vs UniprotkKB and Gene Ontology assignment

Search for conserved protein domains with HMMER (PFAM or Interpro
databases

Hypergeometric tests or Gene Set Enrichment analyses to detect
processes, functions and domains significantly over or under-represented
in a subset of differentially expressed genes

S @ blast 2J0
BLAST piam

<3 NCBI Prd.t !

eggNQﬂg WSQLII(Z 7the Gene Ontology

RNA-Seqmp Trinity =) Transcripts/Proteins=p Functional Data=) Discovery u u n % @ g:' m

Automated Higher Order Biological Analysis




Why do my annotation statistics look so bad?

v" Keep in mind that IncRNA and non-coding transcripts in general
may have important functions

v Coding transcripts without an annotation are NOT garbage! They
may represent innovations and they may cover VERY IMPORTANT
functions

v’ Even if you can’t identify their function they might be used as
molecular markers of a certain condition

More than 50% of the assembled transcripts in a non model
species are usually not coding

About 40% of the protein-coding transcripts of a non-model
invertebrate have an unknwon function and lack any kind of
annotation




A case study: Trebouxia gelatinosa

2ea = v Lichens are extremely resistant to
A dehydration

v They can live in a desiccated state
for a very long time and quickly
fully recover rehydration

v’ Lichens are the result of a
symbiotic relationship between
fungi (mycobiont) and unicellular
algae or cyanobacteria
(photobiont)

v’ Trebouxia spp. Is one of the algal
species most commonly
associated with lichens




Different organisms use different strategies to cope
with dehydration (and rehydration)

v’ Resurrection plants

v' Morphological, physiological and
biochemical adaptations

v’ Can we trace back these changes
to alteration of gene expression?

v Can RNA-seq reveal the secrets
behind this remarkable tolerance?




ASANEEENENE NN

Experimental planning

Budget available: 1 lane with 3 libraries is fine
We need to build a reference transcriptome: 2x100 paired-end sequencing is needed
Pooling of 3 biological samples before sequencing

Three experimental samples: fully hydrated control (C), dehydrated for 10 hours (D) and
rehydrated for 12 hours (R)

We expect to have 60-90 million reads per sample
We plan to use Trinity and reduce transcriptome complexity by removing redundant
contigs

S’




From RNA-seq to data interpretation

 We expect to observe adaptations somewhat similar to that of other
dessication-tolerant organisms

* We expect to have some novel/alternative mechanisms which have not
been described before

* Keep in mind that not all adaptations are expected to be reflected by
changes in gene expression

* Most importantly, keep in mind that you need an expert advice to

correctly interpret your result (if you’re not an expert about the topic
yourself)

Can't make sense of huge next-gen sequencing datasets?

We can help.
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Solution to the problem: using ORFs

ADVANTAGES

v" Each ORF corresponds to a single
protein-coding transcript

v It’s automated and unbiased
(TransDecoder)

v" Can be performed even if ORFs
are overlapping

v" No uncertainties about 5’ and 3’
UTR boundaries

DISADVANTAGES

v" The information about IncRNAs
will be lost

v You have to set a minimum ORF
length (i.e. Transcripts encoding
very short proteins will be
discarded)

v" Some ORFs will be erroneously
predicted as protein coding

Sometimes the only possible way to solve a
problem is an heuristic compromise




In this case, the contig is a chimaera which likely comprises 4 partially
overlapping mRNAs
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However...

We need to futher filter CDS
to avoid potential errors (i.e.
ORFs «casually» present in
the transcriptome, which are
not protein coding)

< NCBI
BLAST

Pfam

This is done by:

1: BLAST vs a closely related proteome of a
species with a fully sequenced genome
(Chlorella spp, Asterochloris spp., etc.) ->
positive HIT means high probability of coding
potential

2. Presence of conserved protein domains
(PFAM or InterPro) -> high probability of
coding potential

3. What if you have highly divergent, species-
specific genes? We can include long ORFs (>
300 codons, even if they don’t meet the 2
above mentioned criteria

Final reference set: 13,648
ORFs




Once we have a good reference library, we can
proceed to read mapping of each of the 3
samples to calculate gene expression values

0,75 length fraction and 0,95 similarity fraction
mapping parameters: this means that at least
75% of a read needs to be 95% identical to the
reference in order to be mapped

Calculation of read counts are computed for
each ORF

We also need to annoate our transcriptome,
and we will do that using the Trinotate pipeline

We are now ready to compare and interpret
data



DEHYDRATED - DEHYDRATED - Total gene reads

Comparison of raw read counts

Scatter plot
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DEHYDRATED - DEHYDRATED - RPKM

Comparison of RPKM values

Scatter plot
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DEHYDRATED - DEHYDRATED - Normalized expression values

Comparison of TPM values

Scatter plot
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DEHYDRATED - DEHYDRATED - Transformed values

Let’s switch to a better representation (Log2
transformation)

Scatter plot
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DEHYDRATED - DEHYDRATED - Transformed values

Statistical analysis of differential expression

Scatter plot

Scatter plot

DEHYDRATED - DEHYDRATED - Transformed values
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We can easily spot up- and down-regulated genes.

Log2 transformation gives a «teardrop» effect in the graph

Higher expression changes are needed to achieve the same statistical significance
for poorly expressed genes.

Dehydrated vs control comparison -> 530 up-regulated
transcripts, 427 down-regulated transcripts




Results interpretation

We have way to many DEGs to analyze them one by
one

Is there any class of genes which is up-regulated or
down-regulated?

We can use annotations (Gene Ontology, PFAM,
eggNOG, etc.) to try figuring that out

Hypergeometric tests on annotations can detect these
alterations

eggeNOG

the Gene Ontology version 3.0



Globally...

Dehydrated vs | Rehydrated vs
M Control Dehydrated Number of genes % of the total
Bl - A ‘ S on
- Op = 500 3.66
- 0 v 24 0.18
n = 0 138 1.01
n = = 12479 91.43
- . 4 .
v T 54 0.40
| s v = 366 2.68
| v : oo

91.43% of Trebouxia genes are NOT affected by the treatment. Yet, as
you will see, the relatively low number of DEGs can tell us quite a lot...



Hypergeometric test results: an example — D vs
C comparison (up-regulated genes)

category [ 0| Descripon [ P-value |Proportion] |
Dehydrated vs Control
Up-regulated

ST (olch ] COG0580
eggNOG  [elelchlopL]
2| G0:0009765
[o:1 00 GO:0018298
G0:0015979
GO0:0009736
G0:0005975
[{o):1 00 GO:0006950
G0:0009522
G0:0009523
G0:0009535
GO0:0009538
G0:0016021
GO0:0009543
GO0:0009505
[clo)eel | GO:0005615
G0:0016168
GO0:0008242
G0:0043169
PF0O0504
PF13668
PF01124
PF00134
PF00230
PF01370
PF00106
PF00168
PF13561
PF08659

(1) [28 [28 [2) (1)
@ |w|®
(e} ©|O|©

[0 28 28 28 (2] [2)
O |O |O
(o [ol =]
[a¥ (2N (2} [a] (e}

Glycerol uptake facilitator and related permeases

Dehydrogenases with different specificities
photosynthesis, light harvesting
protein-chromophore linkage
photosynthesis

cytokinin mediated signaling pathway
carbohydrate metabolic process
response to stress

photosystem |

photosystem Il

chloroplast thylakoid membrane
photosystem | reaction center
integral to membrane

chloroplast thylakoid lumen
plant-type cell wall

extracellular space

chlorophyll binding

omega peptidase activity

cation binding

Chlorophyll A-B binding protein
Ferritin-like domain

MAPEG family

Cyclin, N-terminal domain

Major intrinsic protein

NAD dependent epimerase/dehydratase family
short chain dehydrogenase

C2 domain

Enoyl-(Acyl carrier protein) reductase
KR domain

3.91E-4
1.38E-3
2.72E-14
3.67E-12
1.13E-5
9.32E-4
1.09E-3
4.39E-3
2.22E-16
3.87E-12
2.66E-10
2.75E-7
8.95E-6
5.31E-5
9.95E-5
4.46E-3
1.55E-15
2.51E-4
4.27E-3
7.48E-11
1.61E-6
5.63E-6
5.60E-5
1.62E-4
3.20E-4
3.55E-4
3.81E-4
4.41E-4
2.47E-3

4/9
8/50
14/21
14/27
11/47
4/10
10/65
10/78
16/23
14/27
28/146
5/5
96/1319
8/29
5/11
5/23
15/23
4/8
7/46
14/32
7/14
a/a
5/10
5/12
9/46
13/89
6/21
10/58
10/72

Photosynthesis seems to be
predominantly present in
this table

How can we explain this in
desiccation???



Hypergeometric test results: an example — D vs
C comparison (down-regulated genes)

Down-regulated

GO_BP GO0:0006950 response to stress 1.14E-5 12/78
GO_BP G0:0009408 response to heat 1.38E-5 10/55
GO_BP G0:0016485 protein processing 2.42E-4 4/10
GO_CC G0:0005886 plasma membrane 6.14E-4 33/575
GO_CC GO0:0000502 proteasome complex 2.41E-3 5/30
GO_CC G0:0009706 chloroplast inner membrane 7.70E-3 5/39
m G0:0017111 nucleoside-triphosphatase activity 3.35E-3 7/61
KT G0:0043565 sequence-specific DNA binding 6.40E-3 5/37
(PFAM [P Hsp70 protein 4.56E-6 6/14
EIZXV PF00320  GATA zinc finger 6.21E-4 4/12
m PFO0004 ATPase associated with various cellular activities (AAA) 3.88E-3 8/72

Heath Shock Proteins are down-regulated.

How can we explain this???



How do other desiccation-related plants
deal with dehydration?

1 pehdraton || Rehydraton |
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Cell wall modifications = = = = BbAd = % = ™ = N = N
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Structure and phylogeny of DRPs

a. b.
. vascular plants and bryophytes

D® E bacteria
bacteria

. Klebsormidium flaccidum
. - T. gelatinosa DRP1, 2, 3,4, 6 and 7
O - D‘ b T. gelatinosa DRP5
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Cell wall modifications

Upon dehydration, cells are not turgid anymore and the cell wall needs
to be remodeled

Aquaporins (which regulate solute traficking across membranes) are
also upregulated

Consistent with literature!

TURGID CELL: FLACCID CELL:
water enters by osmosis, water lost from cell,
vacuole swells and vacuole shrinks
! EXPANSI ENDOGLUCARASE
pushes against cell wall cell loses shape B ' @ TRANSGLYCOSYLASE 3<CE
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Photoshynthesys

Homoiochlorophyllic vs poikylochlorophyllic plants
Destroy and rebuild vs protect and save energy

If the poikylochlorophyllic strategy is chosen, then there is the need to deal
with photoxidative damage!

We find some genes involved in oxidative stress response upregulated
We find some genes involved in the synthesis of anthocyanins upregulated
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Confirmation by RT-PCR
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