Solventi non-acquosi

Protici (e.g. HF, H₂SO₄, NH₃, MeOH) I solventi protici generano protoni solvatati per auto-ionizzazione

Aprotici (e.g. DMSO, DMF, acetone, CH₂Cl₂, CHCl₃)

Apolari (CCl₄, C₆H₁₂,..) Polari (e.g. CH_2Cl_2 , $CHCl_3$, CH_3NO_2)

1

Costante dielettrica di H₂O

Costanti dielettriche (permittività)

F	=	e ²	in un	mezzo	
L C		4πε _r r		••••	

Solvent	Formula [†]	Relative permittivity, $\varepsilon_{\rm r}$	Dipole moment, μ / debye
Formamide	HC(O)NH ₂	109 (293 K)	3.73
Water	H ₂ O	78.7	1.85
Acetonitrile	MeCN	37.5 (293 K)	3.92
<i>N,N</i> -Dimethylformamide (DMF)	HC(O)NMe ₂	36.7	3.86
Nitromethane	MeNO ₂	35.9 (303 K)	3.46
Methanol	MeOH	32.7	1.70
Ethanol	EtOH	24.3	1.69
Dichloromethane	CH ₂ Cl ₂	9.1 (293 K)	1.60
Tetrahydrofuran	C ₄ H ₈ O (structure 9.2)	7.6	1.75
Diethyl ether	Et ₂ O	4.3 (293 K)	1.15
Benzene	C ₄ H ₆	2 3	0

^{\dagger} Me = methyl; Et = ethyl.

DMSO	46.7	3.96
NH ₃	25.0	1.47

Solventi non-acquosi

Protici (e.g. HF, H₂SO₄, NH₃, MeOH) I solventi protici generano protoni solvatati per auto-ionizzazione

4

Donation Number (DN) per valutare se (e quanto) un solvente è coordinante

$B + SbCl_5 \rightarrow BSbCl_5$ $DN \equiv -\Delta H$

	DN	ε _r
DMSO	29.8	46.7
CH_3NO_2	2.7	38.6
ру	33.1	12.3
etere etilico	19.2	4.3

non c'è correlazione fra DN e costante dielettrica

 Table 4.4 Drago-Wayland

 parameters for some acids and bases*

	Ε	С
Acids		
Antimony pentachloride	15.1	10.5
Boron trifluoride	20.2	3.31
lodine	2.05	2.05
lodine monochloride	10.4	1.70
Phenol	8.86	0.90
Sulfur dioxide	1.88	1.65
Trichloromethane	6.18	0.32
Trimethylboron	12.6	3.48
Bases		
Acetone	2.02	4.67
Ammonia	2.78	7.08
Benzene	0.57	1.21
Dimethylsulfide	0.70	15.26
Dimethylsulfoxide	2.76	5.83
Methylamine	2.66	12.00
<i>p</i> -Dioxane	2.23	4.87
Pyridine	2.39	13.10
Trimethylphosphine	17.2	13.40

* *E* and *C* parameters are often reported to give ΔH in kcal mol⁻¹; we have multiplied both by $\sqrt{(4.184)}$ to obtain ΔH in kJ mol⁻¹.

Parametri di Drago – Wayland

ogni specie è caratterizzata da due parametri *E* e *C*

A(g) + B(g) → A–B(g) – ΔH° (A–B) = $E_A E_B + C_A C_B$ Entalpia standard di formazione

Abbondanze relative nella crosta terrestre

Metallurgia estrattiva

Processi idrometallurgici

Processi pirometallurgici

Processi pirometallurgici

Miniera a cielo aperto di calcopirite, CuFeS₂ di El Chino nel Nuovo Messico

Flottazione di calcopirite CuFeS₂

Cu%: da 0.8–1% \rightarrow 15–30%

Aspetti termodinamici dei processi di riduzione con carbone o CO

- a) $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ $\Delta G^{\circ}(C,CO)$
- b) $\frac{1}{2}C(s) + \frac{1}{2}O_2(g) \rightarrow \frac{1}{2}CO_2(g) \qquad \Delta G^\circ (C, CO_2)$
- c) $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ ΔG° (CO,CO₂)

d) $x M(s \circ I) + \frac{1}{2}O_2(g) \rightarrow M_xO(s) \quad \Delta G^\circ (M, M_xO)$

$\begin{array}{c} (a-d) \ M_x O(s) + C(s) \rightarrow x \ M(s \ o \ I) + CO(g) \\ \Delta G^\circ \ (C, \ CO) - \Delta G^\circ \ (M, \ M_x O) \end{array}$

$\begin{array}{c} (\mathsf{b}-\mathsf{d}) \ \mathsf{M}_{\mathsf{x}} \mathsf{O}(\mathsf{s}) \ + \ \frac{1}{2} \ \mathsf{C}(\mathsf{s}) \ \rightarrow \mathsf{x} \ \mathsf{M}(\mathsf{s} \ \mathsf{o} \ \mathsf{I}) \ + \ \frac{1}{2} \ \mathsf{CO}_2(\mathsf{g}) \\ & \Delta \mathsf{G}^\circ \ (\mathsf{C}, \ \mathsf{CO}_2) \ - \ \Delta \mathsf{G}^\circ \ (\mathsf{M}, \ \mathsf{M}_{\mathsf{x}} \mathsf{O}) \end{array}$

$\begin{array}{c} (c-d) \ M_x O(s) + CO(g) \rightarrow x \ M(s \ o \ I) + CO_2(g) \\ \Delta G^\circ \ (CO, \ CO_2) - \Delta G^\circ \ (M, \ M_x O) \end{array}$

una di queste reazioni complessive deve avere ΔG° negativo

Temperature \longrightarrow

Ore, coke, limestone

Altoforno

1 t di ghisa richiede ca.: 1.7 t di minerale di ferro, 0.5 t di coke, 0.25 t di calcare.

 $Fe_2O_3(s) + 3 CO(g) \rightarrow 2 Fe(I) + 3 CO_2(g)$

 $\begin{array}{l} \mathsf{MnO}+\mathsf{C}\to\mathsf{Mn}+\mathsf{CO}\\ \mathsf{SiO}_2+2\:\mathsf{C}\to\:\mathsf{Si}+2\:\mathsf{CO}\\ \mathsf{P}_4\mathsf{O}_{10}\:(\mathsf{s})+10\:\mathsf{C}\to\mathsf{P}_4(\mathsf{s})+10\:\mathsf{CO} \end{array}$

Ghisa grezza: 4.5% C; 1.7% Mn; 0.3% P; 0.04% S; 1% Si

Decarburazione della ghisa

Processo pirometallurgico della calcopirite CuFeS₂

1. Arrostimento in forno a riverbero per eliminare Fe 1400 C

$$\begin{array}{rl} 2\mathsf{FeS}\ (\mathrm{s})+3\mathrm{O}_2\ (\mathrm{g}) \rightarrow & 2\mathsf{FeO}\ (\mathrm{s})+2\mathrm{SO}_2\ (\mathrm{g})\\ & \mathsf{FeO}\ (\mathrm{s})+\mathrm{SiO}_2\ (\mathrm{s}) \rightarrow & \mathsf{FeSiO}_3\ (\mathrm{I}) \end{array}$$

2. Smelting della metallina di rame in convertitori

$$\begin{array}{rrr} 2\text{Cu}_2\text{S} + 3\text{O}_2 \rightarrow & 2\text{Cu}_2\text{O} + 2\text{SO}_2\\ 2\text{Cu}_2\text{O} + \text{Cu}_2\text{S} & \rightarrow 6\text{Cu} + \text{SO}_2 \end{array}$$

Blister di rame

Per 1 t di Cu grezzo: 1.5 t FeSiO₃ (scoria) + 2 t SO_{2 21}

Raffinazione elettrolitica del rame

0.2–0.3 V, 10.000 – 20.000 A

Processo idrometallurgico per l'estrazione dell'oro

 $4Au(s) + 8CN^{-}(aq) + 2H_2O + O_2 \rightarrow 4[Au(CN)_2]^{-}(aq) + 4OH^{-}$

2 $[Au(CN)_2]^-(aq) + Zn(s) \rightarrow 2 Au(s) + [Zn(CN)_4]^{2-}(aq)$