CORSO DI PETROFISICA INTEGRATA MODULO DI WELL-LOGGING

STRUTTURA DEL CORSO E MODALITA' DI ESAME

- ***** 2CFU PER 16 ORE DI LEZIONE FRONTALE
- *** ESAME ORALE**

TESTI CONSIGLIATI:

◆ Asquith G., Gibson C., Basic Well Log Analysis for Geologists, Ed. The American

Association of Petroleum Geologists

- ◆ Serra O. & L., Well Logging: data acquisition and applications, Ed. Serralog
- ◆ Serra O. & L., Well Logging and Geology, Ed. Serralog
- ◆ Serra O., Well Logging and Reservoir Evaluation, Ed. Technip

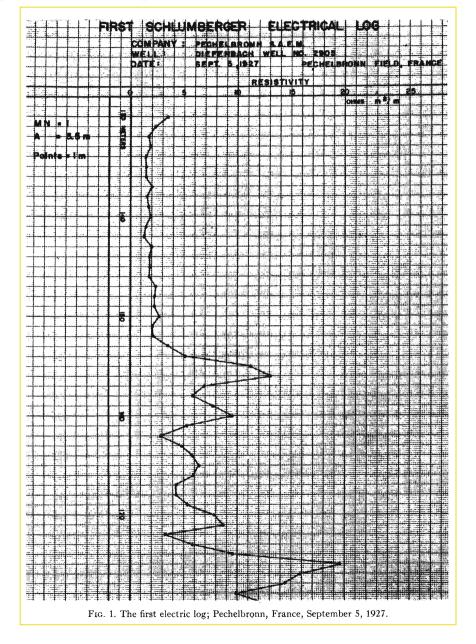
Basics of Geophysical Well Logs: Introduction

www.spwla.org www.glossary.oilfield.slb.com

Obiettivi del modulo:

- Misure in pozzo: fondamenti e utilizzo per la determinazione dei parametri della formazione
- Metodi:
- * Resistivita' e potenziali spontanei
- Log di porosita' (sonic, density,neutron, combinazione neutron-density)
- * Log di litologia e resistivita'
- * Electrical resistivity imaging (RAB-FMS)
- * VSP
- Principi ed esempi di interpretazione

Well logs: what?


Well logs were developed with the objective of the indirect evaluation of the geological and petrophysical characterization of the subsurface formations.

This is achieved by the acquisition, along with the well bore of a drilled well, of a large number of physical measurements (resistivity, density, Hydrogen Index, acoustic waves velocity, etc.) which, by means of a complex interpretation process, are translated into petrophysical properties (Water Saturation, Porosity, Permeability, Volume of shale, etc.), geological characters of the formation (lithology, layer's dip, depositional environments, sedimentary facies, etc.) and thermodynamic data (temperature, fluid composition and viscosity, etc.).

Well logging history

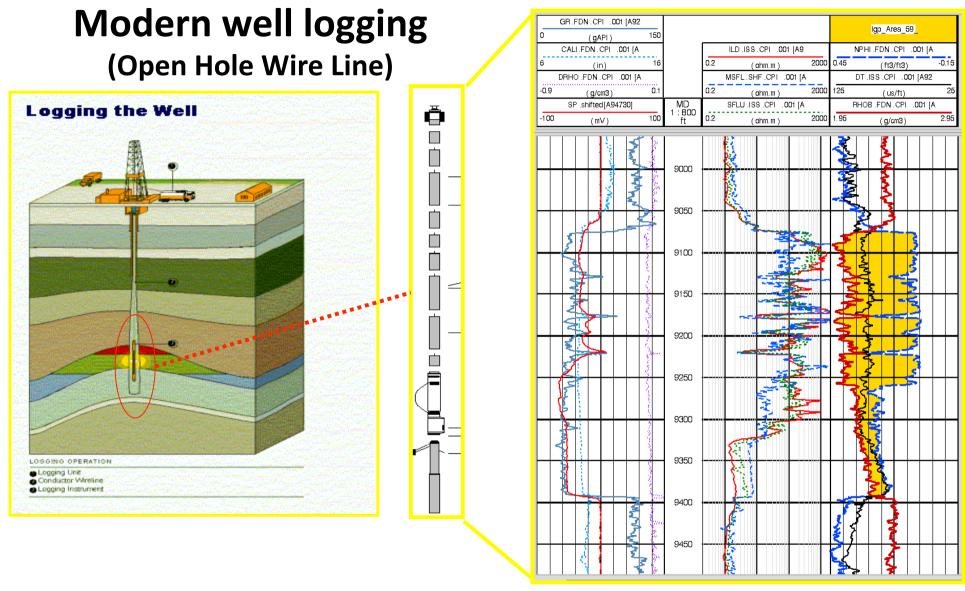
The first electrical log was recorded in 1927 in the well Pechelbronn 7 in the form of a single graph of the electrical resistivity of the formations cut by the well recorded with a stationary method.

The resistivity profile was mainly used, at the beginning of the well logging technology, for correlation purposes and for location of potential hydrocarbon bearing levels

Evolution of well logging technology

Since this first log, the technology evolved very rapidly and, thanks to sophisticated developments, revolutionized the oil and gas Exploration and Production industry.

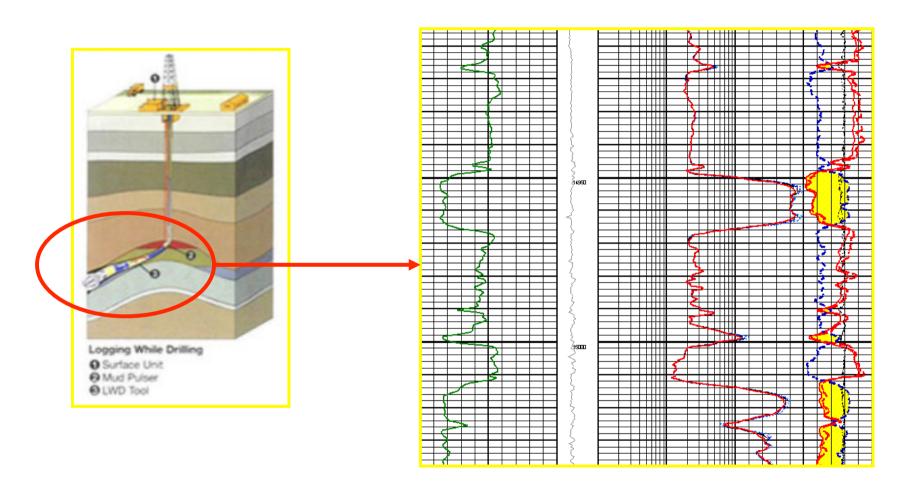
Well logging technology is now used in all the phases of the E&P process from the drilling of the first wildcat well in a field up to the abandonment of the last productive level in the same field.


Due to the exploitation of a large number of physical principles, well logs can now measure a large number of physical properties of the geological formation intersected by a well and both in open and cased hole conditions.

Well logs: what?

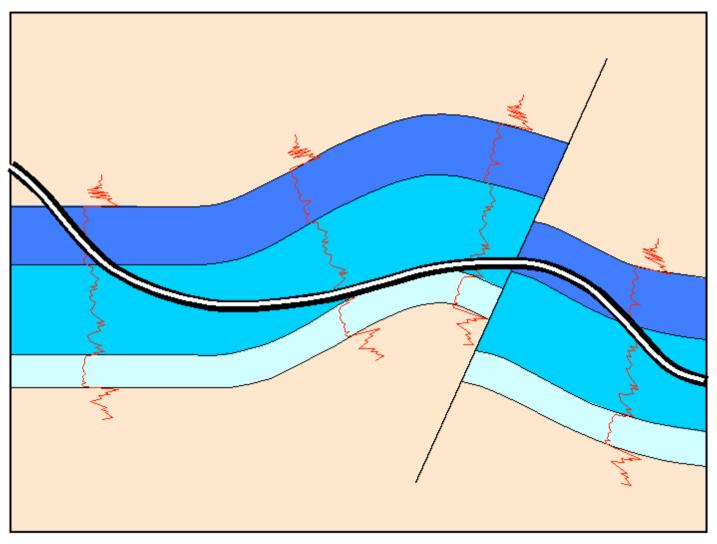
Well logs are acquired and used in all phases of the E&P process:

- during the drilling phase (Logging While Drilling);
- soon after the drilling phase (Open Hole Wire Line Logging);
- after the completion of the well and during the exploitation phase up to the end of the reservoir life (Cased Hole Wire Line Logging and Production Logging).



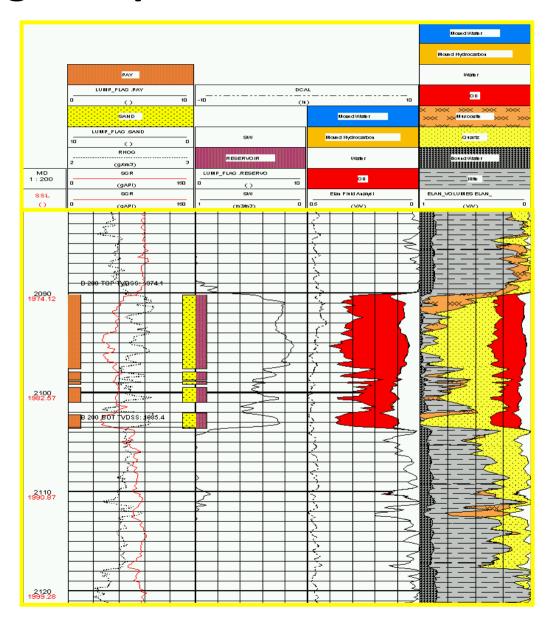
A well log is the product of a survey operation consisting of one or more curves, providing a permanent record of one or more physical measurements as a function of depth in a well bore

Modern well logging

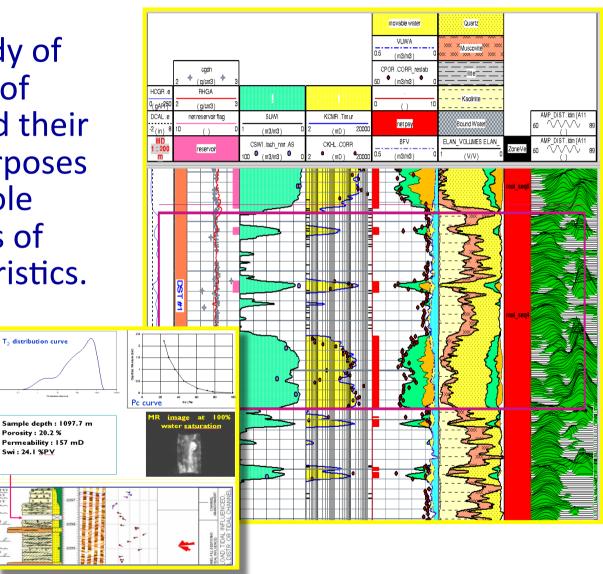

(Open Hole Logging While Drilling)

Modern Logging While Drilling technologies allow the acquisition of high quality logging curves (both in Real Time and Memory modes) for Real Time &/or Near Real Time Formation Evaluation and Geosteering.

Modern well logging

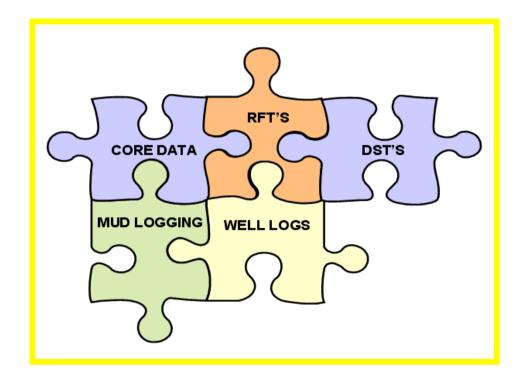

(Open Hole Logging While Drilling)

Geosteering.

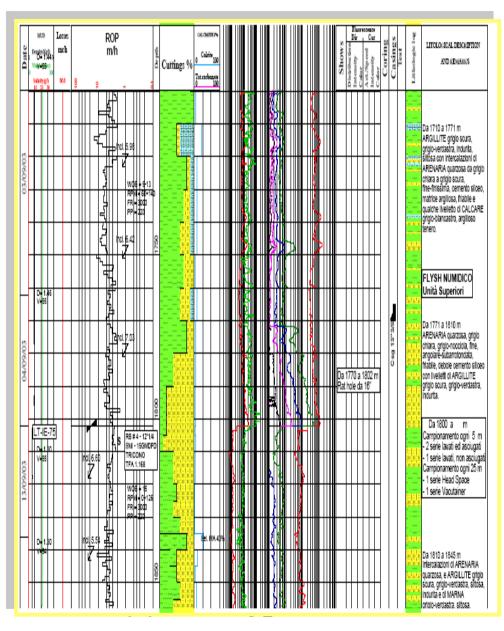

Scope of log interpretation

Log interpretation is the process by which the large number of formation properties measured in a well bore are translated into a desired formation characteristics and petrophysical parameters such as porosity, hydrocarbon saturation, permeability, lithology, reservoir geometry and structure.

Well logging applications


Petrophysics is the study of the physical properties of (sedimentary) rocks and their interstitial fluids for purposes of interpreting down hole measurements in terms of reservoir rock characteristics.

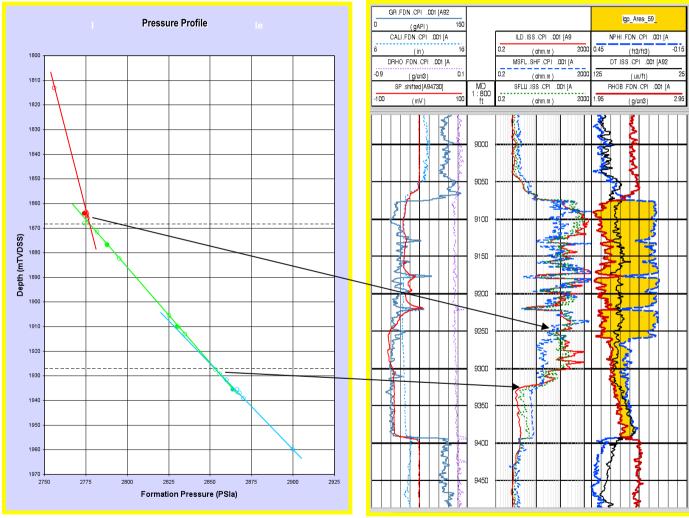
Well logging applications


Formation Evaluation is the analysis and interpretation of well log data, drill stem tests, etc. in terms of the nature of the formations and their fluid content. The objectives of formation evaluation are:

- to determine the best means for their recovery, and
- to ascertain if commercially producible hydrocarbons are present,
- to derive lithology and other information on formation characteristics for use in further exploration and development.

Source: SPWLA Glossary

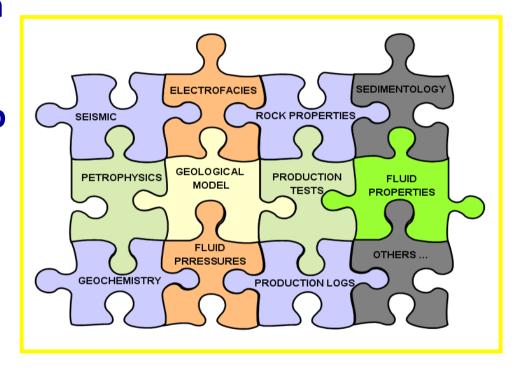
Master log


The Master Log (or Mud Log) is a document showing (in the form of a log) the variation of drilling parameters and while drilling information which are essential to the geological and petrophysical interpretation of well data (well logs included):

- rate of Penetration (ROP),
- drilling parameters,
- lithological description of cuttings,
- chemical composition and calcimetry,
- -gas curves,
- mud data,
- drilling operation (i.e. coring, etc.)
- others.

Pressure Measurements

Localization of fluid contacts within the reservoir

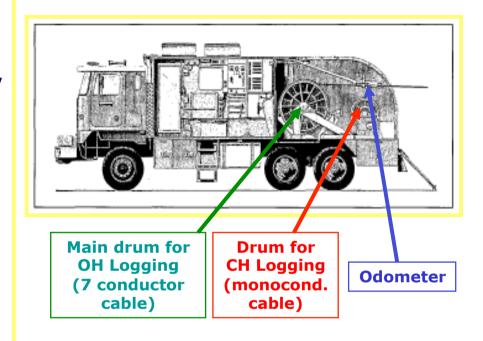


Well logging applications

Reservoir Characterization

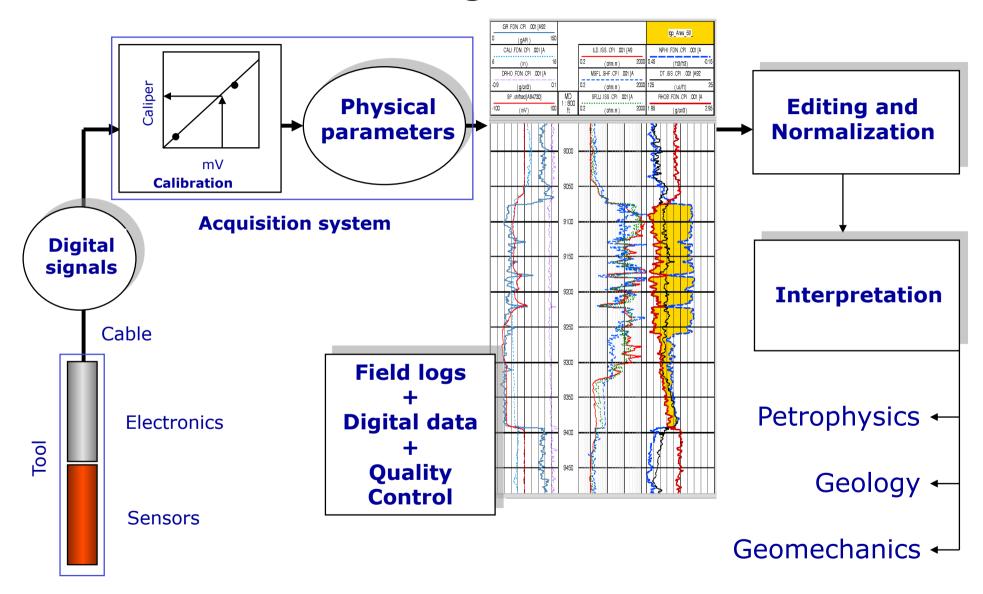
corresponds to the identification of a model for the reservoir, the dynamic behaviour of which must be as similar as possible to that of the reservoir.

Well logs contribute mostly to the static part of the model by gathering information about geological, geochemical, petrophysical and geomechanical characters of the reservoir.


The most important log measurement: depth!

The fundamental measurement provided by the Service Company is depth.

An accurate description of the reservoir may not have a high value without an accurate depth location of the events.


Depth control is of very high importance for the success of any log operation aimed exploration, completion and production of hydrocarbons.

In case of wireline operations the accuracy of depth measurement is of +/- 1 foot (0,3 m), thanks to the techniques in use based on odometers (calibrated wheels), accurate checks (magnetic markers) and while drilling corrections as function of depth, tool weight type of cable, type of mud, etc..

In case of While Drilling (LWD) operations, depth uncertainty is much higher since absolute depth is based on drill pipe length measurements (Drillers depth).

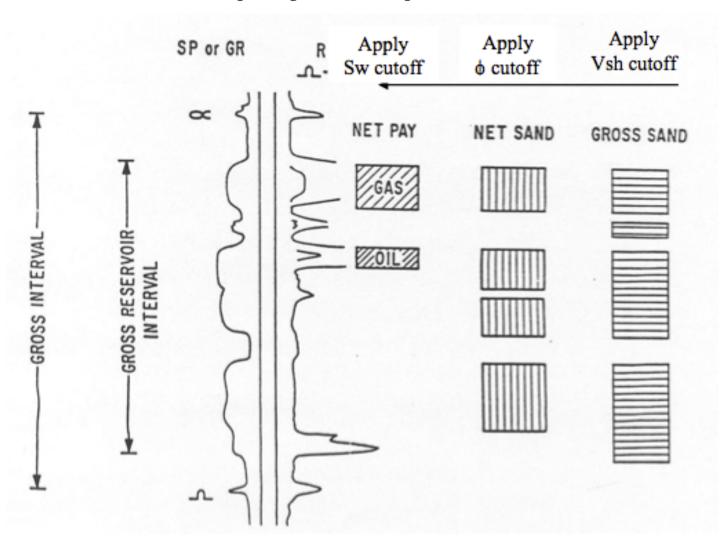
Well logs: what?

The Formation Evaluation Process

Main steps of the process are:

- planning of the well data acquisition,
- acquisition phase with Quality Control,
- pre and/or post processing,
- interpretation,
- delivery of the results and integration.

Petrophysical parameters


Main petrophysical parameters evaluated by means of well log interpretation are:

- porosity (Φ) ,
- water saturation (Sw),
- permeability (K)

By means of well log interpretation, the thickness of productive levels, can be easily evaluated:

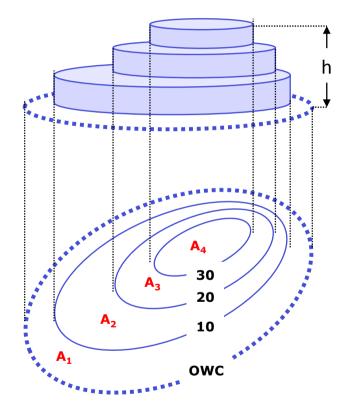
- gross pay,
- net sand,
- net reservoir,
- net pay and net to gross.

Petrophysical parameters

Well logs: what?

The petrophysical parameters derived from well log interpretation can, therefore, be used to compute the volume of hydrocarbon (oil and/or gas) originally in place.

$$7758 \bullet A \bullet h \bullet \Phi \bullet (1-Sw)$$
 STOOIP = ----- (stb) Boi


A • h = Bulk reservoir volume

 Φ = average effective porosity (%)

1- Sw = initial oil saturation

Sw = average Water Saturation

Boi = oil volume factor

Petrophysical parameters: porosity

Porosity is the pore volume per unit volume of formation (ratio between pore volume and rock volume).

$$\Phi_{t}$$
 (%)= Vp/Vt * 100

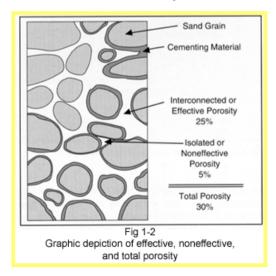
Porosity is expressed in percentage.

Porosity is evaluated by means of the, so called, porosity logs: density, neutron, acoustic, dielectric and Magnetic Resonance.

Porosity logs are sensitive to total porosity ($\Phi_{\rm t}$) while the effective porosity ($\Phi_{\rm e}$) is evaluated, in clastic sequences, by means of empirical relationships between $\Phi_{\rm t}$, $\Phi_{\rm e}$ and Volume of shale (Vsh), according to the distribution of the shales.

In case of laminated shale: $\Phi e = \Phi t$ (1-Vsh)

Total porosity vs effective porosity


Effective porosity

- Core analysis context: pore space that is accessible to helium (or water)
- Log analysis context: pore space that is occupied by free water and hydrocarbons (excludes clay bound water)

Total porosity:

- Core analysis context: coincides with effective porosity (totally inaccessible pores are rare)
- Log analysis context: porosity normally measured by logs (with reference to the pore space occupied by free and bound water)

Porosity	The ratio of the pore volume to the bulk volume. The pore volume is available for the accumulation and storage of oil, gas and water. Porosity is either expressed as a fraction or percentage of bulk volume.
Total porosity	The ratio of the volume of all the pores to the bulk volume, regardless of whether or not the pores are interconnected.
Effective porosity	The ratio of the interconnected pore volume to the bulk volume.

Porosity: primary vs secondary

Formation Porosity can be classified as:

primary and secondary:

- Primary porosity is the porosity of rock formed at the moment of the deposition and modified only for the compaction (therefore not considering the changes due to chemical effects (i.e. fluid migration through the sediments).
- Secondary porosity is the additional porosity generated by post depositional events and generated (or canceled) by chemical dissolution, diagenesis, dolomitization or tectonic events such as the generation of fractures and joints.

Petrophysical parameters: porosity

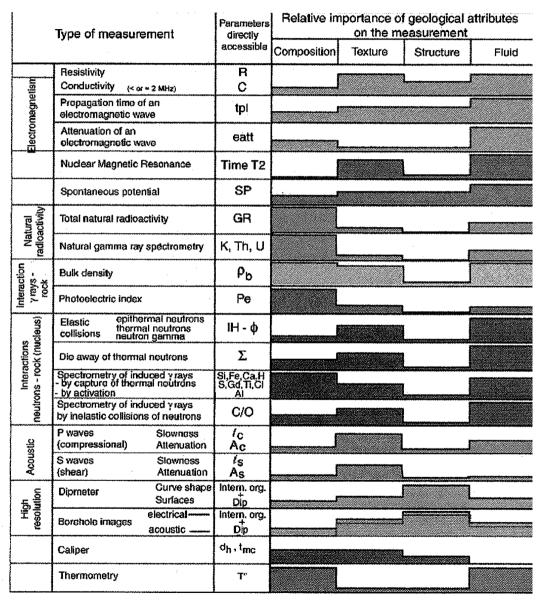
With respect the origin of the pores, porosity can be classified as:

Primary porosity

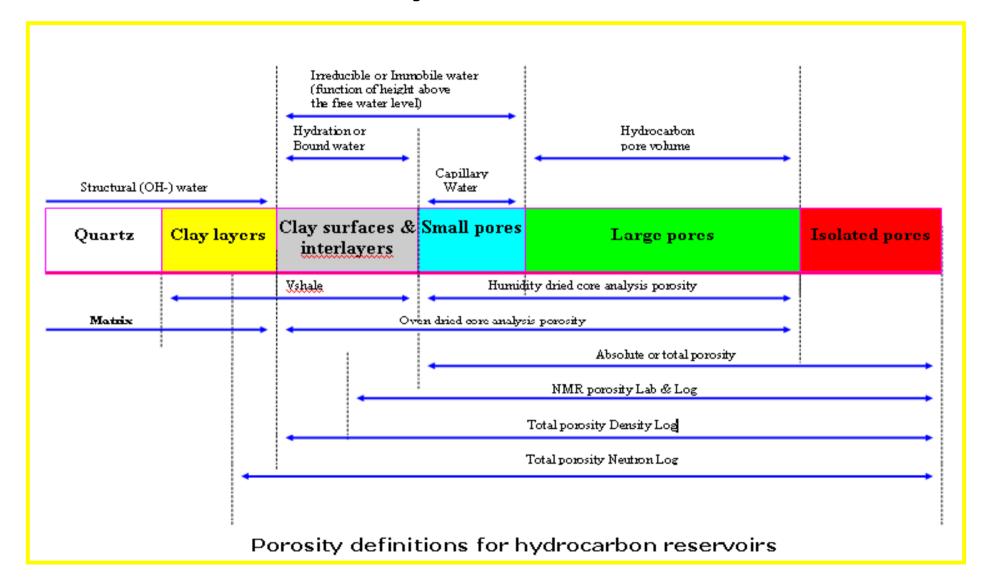
pores formed at the moment of the deposition of the sediment:

- intergranular (spaces between grains, typical of clastic formations such sandstones)
- intercrystalline (spaces between crystals typical of the carbonates)

Secondary porosity


pores formed after the deposition of the sediment:

- due to fracturing (especially in competent rocks),
- due to dissolution (i.e. vuggy porosity),
- due to diagenetic effects (dolomitization, recrystallization, silicification, etc.)


Laboratory petrophysical measurements

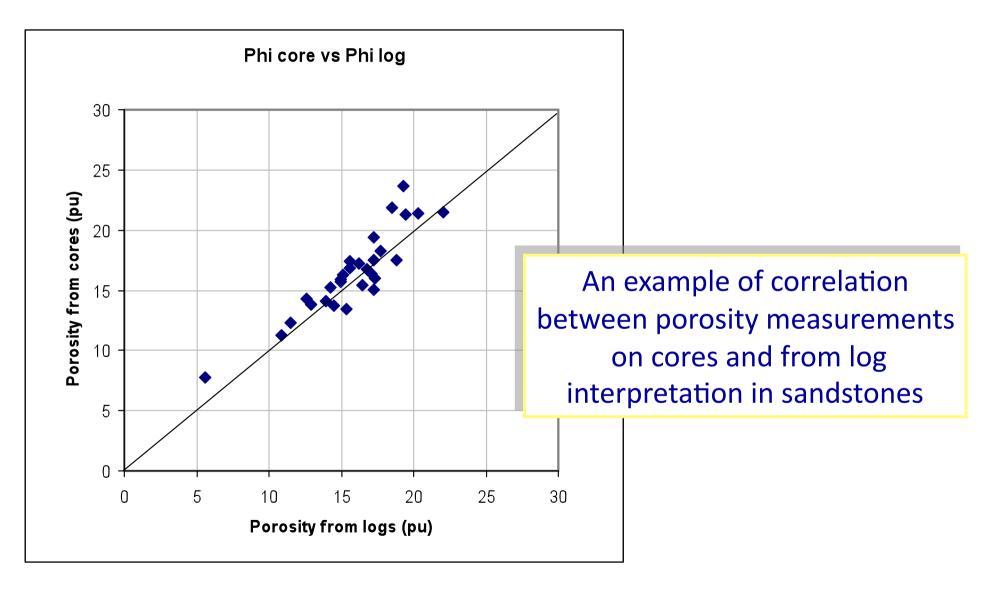
Analysis	Derived Reservoir Description Parameters			
Lithology description	Texture, sedimentary structures, rock types, facies			
X-ray Diffraction, X-ray Fluorescence	Mineral identification/quantification			
Thin section petrography	Mineral identification /rock-pore relationships / petrophysical micro-			
Triin section petrography				
Conversion of twenty and twenty (SEM)	characterization			
Scanning electron microscopy (SEM)	Determination of pore-associated mineralogy			
Petrographic image analysis	Description/quantification of visible pore geometry			
Porosity	Storage capacity – stress sensitivity			
Residual fluid analysis (So, Sg, Sw)	- Fluid identification			
	- Fluid distribution with depth			
	- Amount of filtrate invasion			
Grain density	Grain densities for calibration of density logs			
Permeability	- Flow capacity, distribution and profile			
	- Transmissivity – stress sensitivity			
	- Zonation of reservoir units			
Electrical properties	Log-calibration parameters with respect salinity, confining stress and lithology			
- Formation factor / m				
- Resistivity index / n				
Cation exchange capacity	Petrophysical correction for clay conductance in shaley sands			
Pore volume compressibility	Storage reduction with pore pressure depletion			
Capillary pressure	- Pore throat geometry and size distribution			
- Centrifuge / Porous plate	- Rock typing, texture, lithology			
- High pressure Hg intrusion	- Residual wetting/non wetting phase saturation			
	- Fluid distribution with height			
	- Differentiation of pay from non-pay zones			
NMR properties	- T2 cut-off for NMR log calibration			
- T2 distribution curve	- Permeability estimator			
	- Initial saturation			
	- Porosity			
Acoustic properties	- Lithology and porosity log-calibration			
	- In-situ stress computation for sand control, fracture mechanics, selection			
	of appropriate confining stresses			
	- Seismic amplitude calibration and interpretation			
Relative permeability	- Rock-fluid interactions			
	- Reservoir performance prediction, recovery factors			

Relative influence of geological attributes on well logs

Porosity measurements

The problem of different scales of the measurements

Porosity distribution in sedimentary rocks


Porosities of subsurface formation can vary widely:

- carbonates (limestone/dolomites):
 - from 0 to 45 %
- evaporites (salt, anhydrite, gypsum, silvite, ecc.):
 - practically 0 porosity
- consolidated sandstones:
 - from 5 to 15 %
- unconsolidated sands:
 - 30% and more
- shales or clays:
 - often more than 40 %

Porosity distribution in typical sedimentary rocks

Field	Φ(%) min	Φ(%) max	Lithology
Nigeria	18	35	Clean Sands
Adriatic Sea	25	35	Clean Sands
Adriatic Sea (below 3500 m)	10	15	Clean Sands
Po Valley	20	30	Clean Sands
Persian Gulf (Nowrouz Fm.)	20	25	Clean Sands
Lybia (Bu Attifel)	12	15	Sandstones
Sicily (Gagliano Fm.)	2	6	Low porosity sandstones
Monte Alpi	0	4	Low porosity carbonates
- ·	_		· ·
Sicily (Gela Fm.)	0	5	Low porosity carbonates
Sicily (Gela Fm.) Cavone		5 12	
	0	_	Low porosity carbonates
Cavone	0	12	Low porosity carbonates Oolitic limestones
Cavone Persian Gulf (Arab Fm.)	0 8 8	12 15	Low porosity carbonates Oolitic limestones Limestones
Cavone Persian Gulf (Arab Fm.) Lybia (off shore)	0 8 8 10	12 15 15	Low porosity carbonates Oolitic limestones Limestones Limestones

Petrophysical parameters: porosity

Petrophysical parameters: Water Saturation

Water Saturation of a formation is the fraction of its pore volume occupied by formation water.

Sw (%)= Vw/Vp *100 (Vp pore volume, Vw volume of water)

Saturations are expressed in percentage.

Therefore oil or gas saturation is the fraction of pore volume that contains oil or gas.

The symbols used are:

- > Sw for water saturation;
- > Sh for general hydrocarbon saturation;
- > So and/or Sg for oil and/or gas saturation.

The summation of all saturations, in a given formation rock, must total to 100% and therefore:

$$\triangleright$$
 Sh = 1 - Sw

Petrophysical parameters: Water Saturation

- Water Saturation (Sw) is generally evaluated by the relationships among resistivity and porosity of the reservoir rock.
- This relationship, in clean formations, is expressed by the Archie equations.
- Sw of a formation can vary from 100% to quite small amount (4-5%) always present in the pores: this amount is the, so called, irreducible or connate water saturation Sw_{irr}.

Petrophysical parameters: Water Saturation

ARCHIE'S LAW

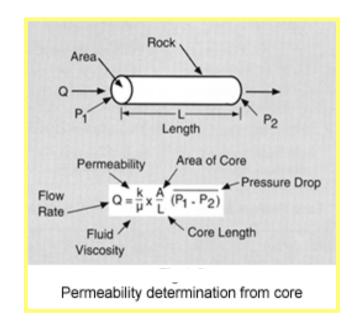
TOTAL SATURATION

 ρ =a Φ -m ρ_w

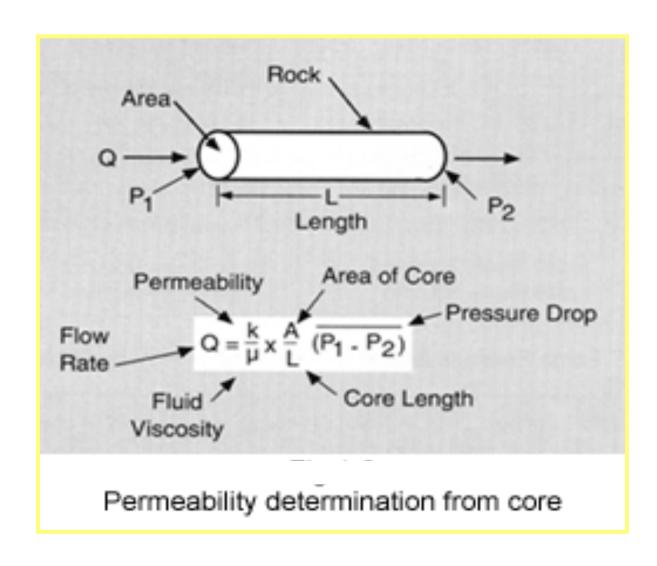
or, in general:

$$\rho = F \rho_w = (a\Phi^{-m} S^{-k}) \rho_w$$

Where Φ =porosity, S= saturation(from 0.1 to 1), a=tortuosity, m=cementation, k=2 (if H₂O> H₂O_{min}, otherwise up to5)

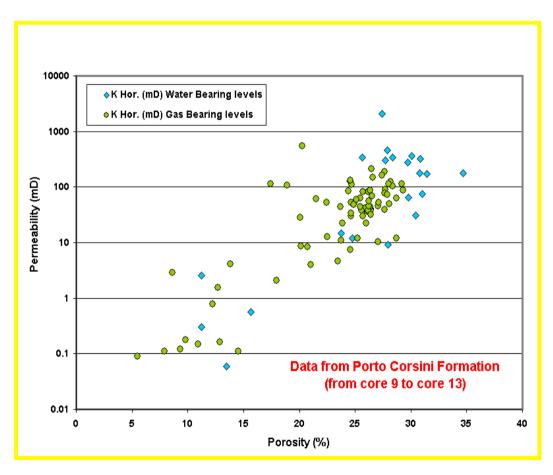

Petrophysical parameters: Water Saturation

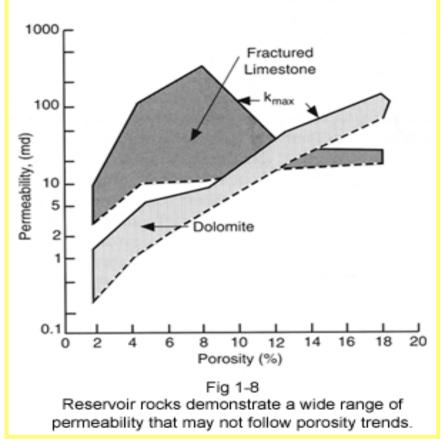
Field	Swirr (%) min	Swirr (%) max	Lithology
Nigeria	5	7	Clean Sands
Po Valley	15	25	Clean Sands
Adriatic Sea	25	30	Clean Sands
Sicily (Gagliano Fm.)	10	20	Low porosity sandstones
North Sea	5	7	Chalky Limestones
Adriatic Sea	30	40	Fractured low porosity limestones
Persian Gulf (Arab Fm.)	50	60	Dolostones
Arabia (Mishrif Fm.)	60	70	Chalky Limestones


Irreducible water saturation (Sw_{irr}) in typical reservoir rocks

Petrophysical parameters: Permeability

- Permeability is a measure of the ease with which fluids can flow through the formation.
- The unit of permeability is the Darcy (D) and the symbol of permeability is K; the practical unit in use is the milliDarcy (1 mD = 1/1000 D).
- The permeability of 1D is defined as the permeability allowing to a fluid of 1cp of viscosity to flow in a section of rock of 1 cm² at a rate of 1 cm³/sec with a pressure gradient of 1 atm/cm.
- 1D = $0.9869 \ 10^{-12} \ \text{m}^2$


Petrophysical parameters: Permeability



Petrophysical parameters: Permeability

Geological control of permeability

- Shaly sands
 - layering,
 - grain size and sorting,
 - orientation and shape of the clasts,
 - packing,
 - cementation,
 - clay content.
- Carbonates
 - degree of diagenesis (i.e. dolomitization),
 - Porosity development,
 - Fracture presence and orientation.

Classification of permeability

Absolute Permeability

The permeability of the reservoir rock when the pores are filled by a single fluid

Relative permeability

The permeability of the reservoir rock when the pores are filled by more than one fluid; it is the ratio between the effective permeability to a fluid in presence of other fluids and absolute permeability.

Effective Permeability

Kw = effective permeability to water

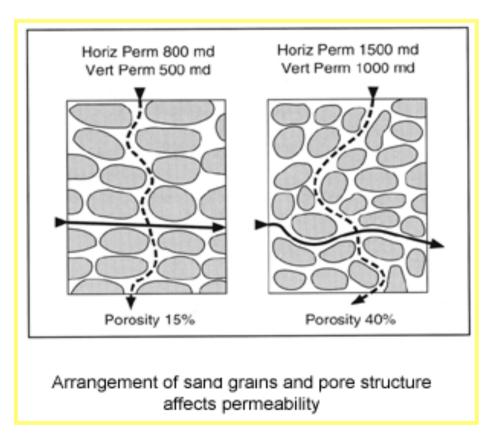
Ko = effective permeability to oil

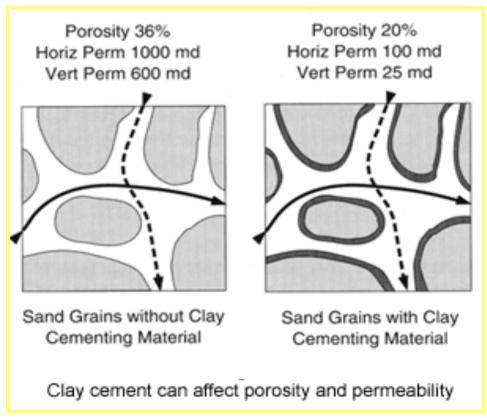
Kg = effective permeability to gas

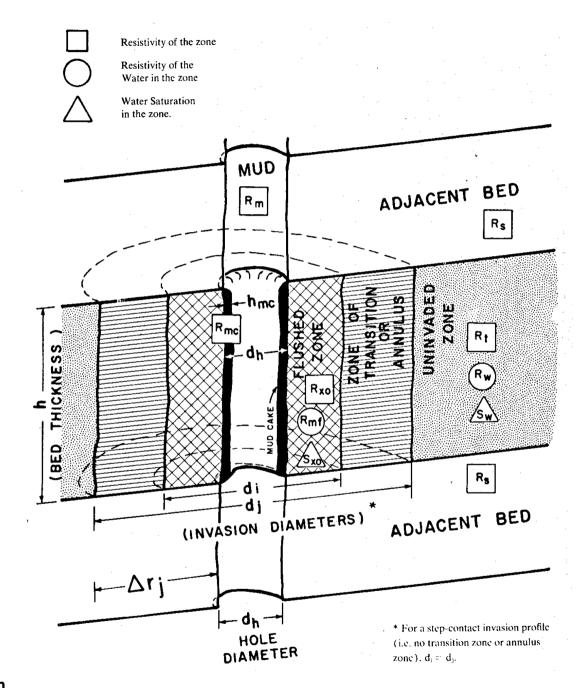
Relative permeability

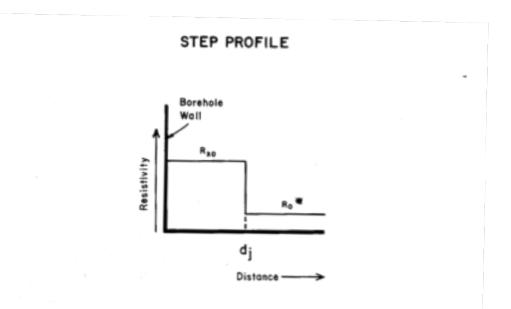
Krw = Kw / K K rel. to water

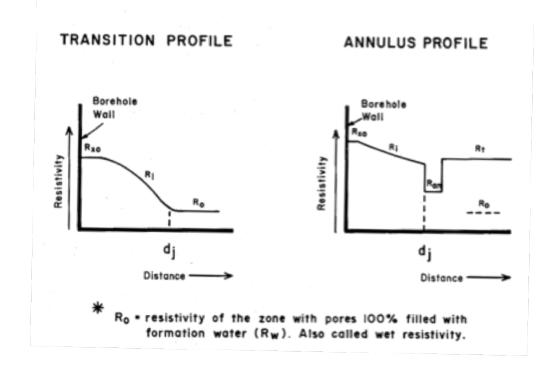
Kro = Ko / K K rel. to oil

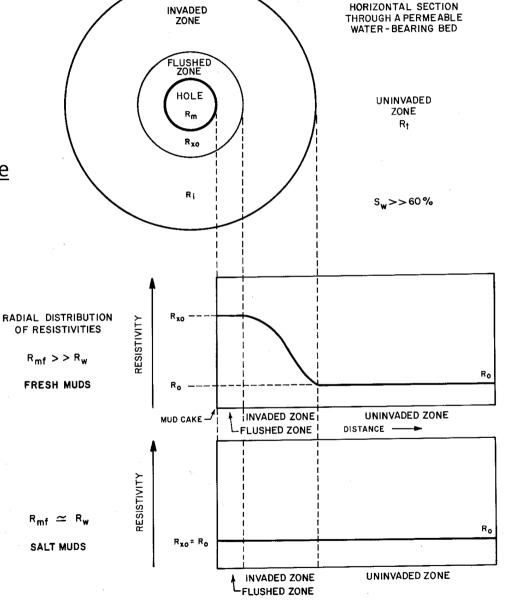

Krg = Kg / K K rel. to gas

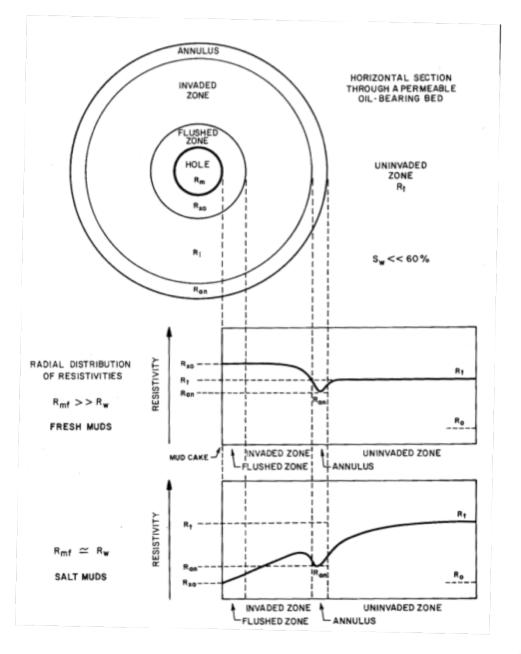

Horizontal Permeability (Kh) and vertical permeability (Kv)


Permeability is a tensorial property which depends on the direction of the measurements;


Kh e Kv in a sedimentary rock may vary as a function of the grain disposition and, in competent rocks, as a function of fracture distribution and orientation.


Horizontal vs vertical permeability




Resistivity profile, hydrocarbon zone

Sw of uninvaded zone >> 60%

Resistivity profile, hydrocarbon zone

Sw in uninvaded zone <<60%

