## Basics of Geophysical Well Logs: Lithology & Resistivity

#### **Spontaneous Potential**

When the well bore is filled by a water based mud and in presence of an alternation of permeable and impermeable layers, due to electrochemical phenomena, electrical currents are spontaneously generated at the interfaces between mud and formation and between impermeable shales and reservoir sands.

The **SP** log is the measurement of the potential of a down hole electrode with respect to a surface reference electrode which is proportional to the intensity of the currents generated.



### **Spontaneous Potential**

The SP log is recorded on the left hand track (track #1) and is used:

- 1. To detect permeable beds
- 2. To detect boundaries of permeable beds
- 3. To determine the formation water resistivity (Rw)
- 4. To determine the volume of shale (Vsh) in permeable beds

### **Determination of Rw from SP log**

The Static Spontaneous Potential (SSP) is the **maximum** SP that a thick, shale-free, porous and permeable formation can have for a given ratio between  $R_{mf}/R_{w}$ :

 $SSP = -K \log (R_{mf}/R_{w})$ 

(where  $K = (.133 x T_f) + 60$ 

Or can be determined by a chart

IMPORTANT: THE SP LOG IS USED ONLY WITH CONDUCTIVE (SALT-WATER BASED) DRILLING MUDS

### Shale baseline

The SP response of shales is relatively constant and follows a straight line called a shale baseline.

SP deflections are measured from this shale baseline.

- PERMEABLE ZONES ARE LOCATED WHERE THERE IS A SP DEFLECTION FROM THE SHALE BASELINE
- THE MAGNITUDE OF SP DEFLECTION IS DUE TO THE DIFFERENCE BETWEEN R<sub>MF</sub> AND R<sub>W</sub> AND NOT TO THE AMOUNT OF PERMEABILITY

#### Examples of SP deflection from the Shale baseline



#### **Spontaneous Potential**



#### **Membrane potential**



Liquid-junction potential

The magnitude of the SP generated is a function of the salinity contrast between mud and formation water. Two are the main SP generation mechanisms:

- membrane potential,
- liquid-junction potential.

The SP log is primarily a permeability contrast indicator as well as a fundamental lithology log especially in shaly sand sequences



### **SP log interpretation problems**

Main problems of SP log interpretation are mostly linked to:

- lack of permeability contrast
- lack of mud/formation water salinity contrast
- thin beds
- hydrocarbon occurrence



#### **SP log interpretation problems**









#### **SP log interpretation problems**





#### Exercise: Rw determination from SP log



#### Exercise: Rw determination from SP log: the data

Given data:

Rmf= 0.51 @ 135° (BHT) Rm= 0.91 @ 135° (BHT) Surface temperature= 60°F Total depth= 8007 ft BHT= 135°F

From log track: SP= -40 mV Bed thickness= 8 ft Resistivity short normal= 28 ohm-m Formation depth= 7446 ft

#### Step 1:

Determine Tf by using chart 1 (Ans. Tf= 130°F)

#### Step 2:

Correct Rm and Rmf to Tf using chart 2: Use Tf= 130°F from step1, Rm= 0.91 @ 135°F and Rmf= 0.51 @ 135°F (Ans. Rm= 0.94 @ 130°F and Rmf= 0.53 @ 130°F)

#### Step 3:

Correct SP to SSP (thin bed effect) Use chart 3 (Ans. SSP=-52mV)

#### Step 4:

Determine Rmf/Rwe Use chart 4: (Ans. Rmf/Rwe=5.0)

**Step 5:** Determine Rwe

Rwe= Rmf/(Rmf/Rwe)=

= 0.53/5.0

Rwe= 0.106

Step 6 (end): Correct Rwe to Rw Use chart 5

(ans. Rw=0.11 ohm-m @ Tf)

#### Formation temperature determination: chart 1



#### Correction of Rm and Rmf @ Tf: chart 2



Basics of Geophysical Well Logs\_Lithology&Resistivity

# Correction of SP to SSP: chart 3

Ri/Rm= 28/0.94

Thickness= 8 ft



#### **Determine Rmf/Rwe: chart 4**



23

#### Correction of Rwe to Rw @ Tf: chart 5



# Volume of Shale (Vsh) Calculation in permeable layers

#### Vsh (in %)= 1.0 – (PSP/SSP)

where

Vsh = volume of shale

PSP= pseudo static potential (SP of shaly formation)

SSP= static SP of thick clean sand or carbonate

SSP= -K x log (Rmf/Rw)

#### K=60+(0.133 x Tf)

### **Geological application of the SP log**



Curve Shape Characteristics<sup>6</sup>

In absence of SP anomalies, when dealing with water saturated formations and with muds of constant salinity in all the wells under evaluation, the SP log may be used for geological correlation among wells and to define the different sedimentary facies (in order to define lateral and vertical evolution of the sedimentary environments).

## Gamma Ray log

The natural radioactivity of geological formations is due to the presence in rock forming minerals of the radioactive isotopes of elements such as Uranium (U), Thorium (Th) and Potassium (K).

These isotopes are mostly related to clay minerals whose content in Th and K is generally higher than associated sand and sandstones.

In carbonate formations the radioactivity is mostly due to the presence of U and the Gamma Ray level is not directly related to formation shalyness.



## Gamma Ray log

Clean sandstones may also produce high gamma ray readings if it contains Potassium feldspars Micas Glauconite Uranium rich water

IF the potential presence of such components is known from geology, A **SPECTRALOG** should be run in parallel with the gamma ray log:

The spectralog breaks the natural radioactivity into the different types of radioactive materials: (1) Thorium (2) Potassium (3) Uranium

## Volume of Shale calculation from Gamma Ray log

1. Calculate gamma ray index I<sub>gr</sub>:

 $I_{gr} = (GR_{log} - GR_{min}) / (GR_{max} - GR_{min})$ 

2. Older consolidated rocks: Vsh= 0.33[2<sup>(2xlgr)</sup>- 1.0]

3. Tertiary unconsolidated rocks: Vsh= 0.083[2<sup>(3.7xlgr)</sup>- 1.0]



Basics of Geophysical Well Logs\_Lithology&Resistivity

#### Gamma Ray log



#### Shale volume from GR log



### **Gamma Ray: environmental corrections**

Main factors affecting GR measurements are:

- hole diameter
- sonde position in the well
- mud loaded with radioactive material



#### **Gamma Ray: environmental corrections**



33

#### **Gamma Ray Spectrometry**



Gamma Ray emission spectra

|     | WLL Services |
|-----|--------------|
| SLB | NGS          |
| SLB | HNGS (PEX)   |
| BA  | SL           |





#### **GR** correlation Log in cased hole

Basics of Geophysical Well Logs\_Lithology&Resistivity



**Formation Evaluation logging in CH** 

## **Caliper log**




0 -- PEF -- 10

45 ····· NPHI ·· -15

1.95

P

4

\_ RHOZ \_ 2.95

## Borehole Geometry Tool (BGT)







## **Resistivity logs**

**Resistivity logs are used to:** 

- Determine hydrocarbon vs. water-bearing zones (most important)
- Indicate permeable zones
- Determine resistivity derived porosity

## Resistivity logs



## **Resistivity logs: Archie's law**

#### **Definitions:**

- $\rho_o$ =resistivity of a water-filled formation
- $\rho_w$ =resistivity of formation water
- F= formation resistivity factor
- m=cementation exponent (function of grain size, grain distribution, tortuosity>> high tortuosity ≡ high m
- S<sub>w</sub>= water saturation
- $\rho_t$ = formation resistivity

### **Resistivity logs: Archie's law**

- $\rho_o = F \times \rho_w$
- $F = \Phi^{-m}$  $S_w = \left(\frac{\rho_0}{\rho_t}\right)^{\frac{1}{n}}$
- n= saturation exponent (between 1.85 and 2.5: most commonly 2.0)

$$S_{w} = \left(\frac{F \times \rho_{w}}{\rho_{t}}\right)^{\frac{1}{n}}$$

## **Classification of Resistivity logs**

#### In relation to depth of investigation

- Macro-devices to measure  $\rho_t$
- Micro-devices to measure  $\rho_{xo}$

## **Classification of tools**

a. Induction based > conductivity measurement

when  $R_{mf} > 3 R_w$  (non-salt-saturated drilling mud)

**b.** Electrode > resistivity

when  $R_{mf} \approx 3 R_{w}$ 

#### In relation to tool physics

- Non focused, galvanic devices (WLL)
- Focused, galvanic devices (WLL e LWD)
- Low frequency induction devices (WLL)
- EM wave propagation devices (LWD)

## Quick choice of induction/electrode



## Depth of resistivity log investigation

| Flushed zone (Rxo)           | Invaded zone (Ri)       | Uninvaded zone (Rt) |
|------------------------------|-------------------------|---------------------|
| Microlog                     | Short normal            | Long Normal         |
| Microlaterolog               | Laterolog-8             | Lateral Log         |
| Proximity log                | Spherically Focused log | Deep Induction Log  |
| Microspherically Focused log | Medium Induction Log    | Deep Laterolog      |
|                              | Shallow Laterolog       | Laterolog-3         |
|                              |                         | Laterolog-7         |
|                              |                         | Induction Log 6FF40 |

#### Induction log: schematic 2-coils induction system



#### Induction electric log

Normally composed of three curves:

- 1. Short normal
- 2. Induction
- 3. Spontaneous potential

Example (see next):

- SP = -40 mV
- R (short normal)=28  $\Omega$  m  $\equiv$  Resistivity invaded zone (Ri)
- R (deep) = 10  $\Omega$  m  $\equiv$  True Resistivity of formation (Rt)



It can be run in oil- , foam- , air-filled boreholes

#### **Dual Induction Focused log**

The DIFL is the modern induction log and it is used in **formations deeply invaded by mud filtrate**.

It consists of 3 measurements performed by 3 different devices:

- 1. Deep reading (Rild  $\equiv$  Rt) similar to previous IEL);
- 2. Medium-reading (Rilm $\equiv$ Ri);
- 3. Shallow-reading > Focused Laterolog ≡ Short normal < reads Rxo

Resistivity values obtained from the 3 readings are used to:

- a. Correct Rild to Rt (due to deep invasion they may not be the same);
- b. Determine diameter of invasion
- c. Determine Rxo/Rt value (used to discriminate water-hydrocarbon bearing zones)

#### **Dual Induction Focused log**



Basics of Geophysical Well Logs\_Lithology&Resistivity

52

#### **Dual Induction Focused log**

In (a): -Gamma ray -SP -Rxo/Rt

In (b):  $R_{ILD} = 70 \Omega m$   $R_{ILM} = 105 \Omega m$  $R_{SFL} = 320\Omega m$ 

And from such values we further get  $R_{SFL}/R_{ILD} = 320/70=4.6$  $R_{ILM}/R_{ILD} = 105/70=1.5$ 

#### Correction of $R_{ILD}$ to Rt

-Plot the  $R_{SFL}/R_{ILD}$  and  $R_{ILM}/R_{ILD}$  values -Read the  $R_T/R_{ILD}$  value >> (0.82) -Read the diameter of invasion  $d_i$  >> (65in) -Read the Rxo/Rt value >> (7.0)

Now: ( $R_T/R_{ILD}$  from the chart ) x log reading =  $R_T$  corrected In this case: 70 x 0.82 = 57.4 ohm m (true formation resistivity)

 $(R_{xo}/R_T \text{ from the chart}) \times R_T \text{ corrected} = R_{xo} \text{ corrected}$ 

#### **Resistivity derived porosity**

Porosity in a porous and permeable water-bearing formation can be related to shallow resistivity (Rxo) by:

$$S_{xo} = \sqrt{F \cdot \frac{R_{mf}}{R_{xo}}}$$

Where Sxo=1.0 (100%) in water-bearing zones, therefore

$$1.0 = \sqrt{F \cdot \frac{R_{mf}}{R_{xo}}} = F \cdot \frac{R_{mf}}{R_{xo}}$$
$$F = \frac{R_{xo}}{R_{mf}}$$

#### **Resistivity derived porosity**

But 
$$F = \frac{a}{\Phi^m} = \frac{R_{xo}}{R_{mf}}$$
$$\Phi = \left(\frac{a R_{mf}}{R_{xo}}\right)^{\frac{1}{m}}$$

With

a = 1, 0.62, 0.81 for carbonates, unconsolidated-consolidated sands respectively

m = 2.0 for consolidated sands and carbonates, 2.15 for unconsolidated sands

## Environmental effects affecting resistivity measurements







## Invasion and related resistivity profiles







## Non focused electrical resistivity tools



## **Old E (electrical) logs**

#### **Conventional Electrical Log (ES)** Depth Track 1 Track 2 Track 3 SN (ohmm) SP (mv) **IN** (ohmm) Ampl. SN (ohmm) LN (ohmm) Linear Linear Linear scale scale scale

SN = Short Normal (spacing 16")
Ampl. SN = Amplified Short Normal
LN = Normal (spacing 64")
IN = Inverse or Lateral (spacing 18' 8")



## **Old E (electrical) logs**



SN = Short Normal (spacing 16")
Ampl. SN = Amplified Short Normal
6FF40 R = Induction log deep (40") resistivity
6FF40 C = Induction log deep (40") conductivity





# Normal and lateral resistivity logs





normal curve's electrode spacing

### Normal electrical log responses: normal



## Lateral electrical log responses: lateral







Resistivity tools: Wire Line (WLL) & While Drilling (LWD)

## **Dual Laterolog**



/т

0



## **Sferically Focused Log**




Environmental effects on focused galvanic tools

## **Induction logging**







ILD/SFL exampleblack curve ILDred curve SFLU

North Adriatic fresh WBM



#### **Caliper - GR**

Resistivity

### **Density/Neutron**



# While Drilling resistivity logging

While Drilling resistivity logging are of two types:

- galvanic;
- EM wave propagation.

While Drilling Galvanic logs (Anadrill RAB only) can be used only in presence of Water Based conductive Muds.

EM wave propagation logs, due to the presence of metallic body of the system, can be obtained only using higher frequencies with respect to the Wire Line induction ones with advantages and disadvantages.



## **LWD Propagation Resistivity**



## LWD resistivities: Real time vs memory



Basics of Geophysical Well Logs\_Lithology&Resistivity