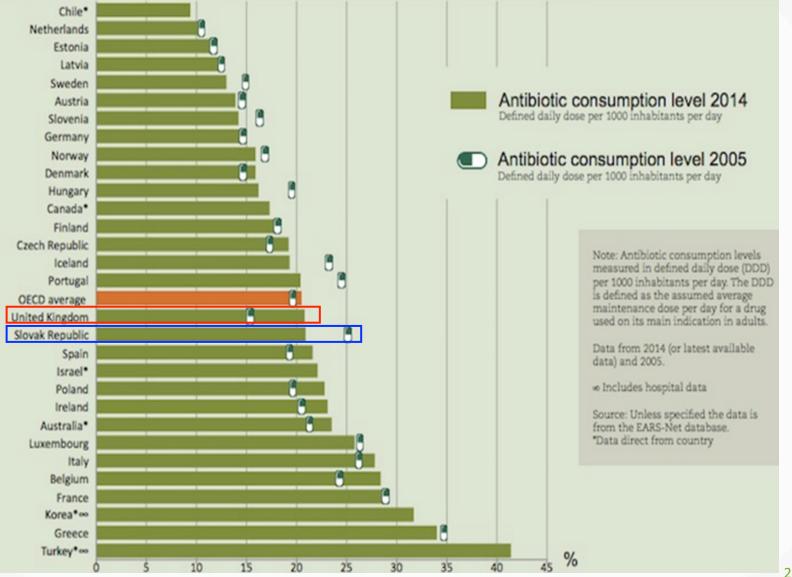
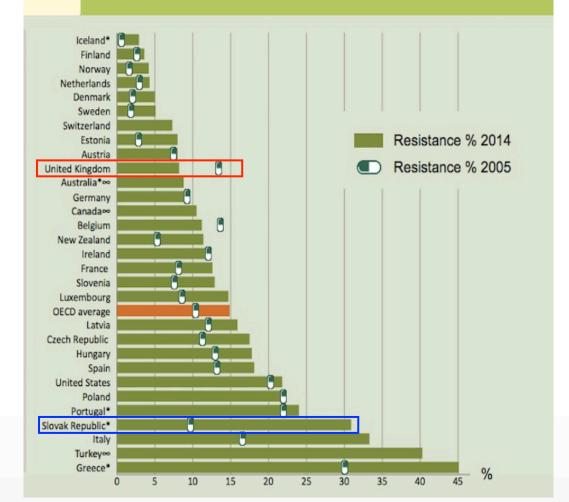
SEMERAL

FarmacistaPiù

Emergenza antibiotico resistenza: nuove strategie per sconfiggere il pericolo


Gianni Sava

all allow from a


FarmacistaPiù

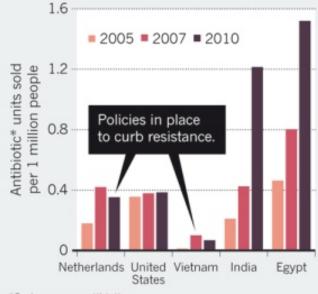
Carl Aster

FarmacistaPiù

OECD 2016

3

But ... in the low- middle-income Countries...

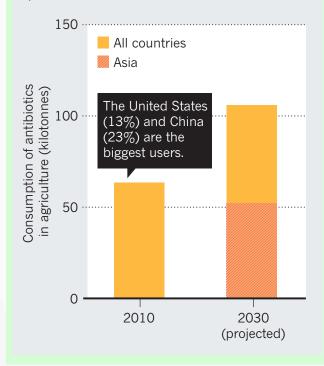

The convergence of factors such as poor public health infrastructure, rising incomes, a high burden of disease, and cheap, unregulated sales of antibiotics has created ideal conditions for a rapid rise in resistant infections.

FarmacistaPiù

Over-the-counter, non prescription sales of carbapenems in India are among the highest in the world and contribute to growing carbapenem resistance among Gram-negative organisms.

A MARKET FOR FUTILITY

Antibiotic use is surging worldwide, especially in the developing world, where unregulated sales are soaring.


ISSOUF SANOGO/AFP/Getty Unregulated sales of medicines in developing countries contribute to the rise in antimicrobial resistance.

FarmacistaPiù

The use of antibiotics in livestock is growing worldwide.

FARM FORECAST

By 2030, the use of antimicrobials in agriculture in Asia alone could equal 82% of global agricultural consumption in 2010. The drugs are largely given to promote growth or prevent infections, rather than to treat disease.

Antibiotic use in livestock has contributed to drug resistance around the world.

Antibiotic pollution of waterways creates superbugs

-up to 80% of an antibiotic dose passes straight through the body; -most of the antibiotics used in medical treatment or during animal production may end up in waste water; -waste treatment plants generally don't remove antibiotics very well.

-most researchers agree that total **agricultural and medical use** exceeds 250,000 tonnes per year.

-if 50% of an antibiotic dose is subsequently excreted, then **125,000** tonnes of antibiotics are released into the environment each year (excluding the release from pharmaceutical plants). Antibiotics are then likely to find their way into rivers, lakes and dams.

-this makes 12.5x10¹⁶ micrograms of antibiotic released into 9x10¹⁶ litres of freshwater each year. This results in a final concentration of about 1.4 micrograms per litre.

7

FarmacistaPiù

The consequences of this pollution are potentially very serious. Where the concentration of antibiotics is enough to inhibit bacterial growth, it's almost certain to result in the appearance of antibiotic-resistant strains.

This happens because microorganisms in the environment collectively carry and share enormous numbers of genes for resistance, virulence and other general nastiness.

These genes can hop from one bacterial species to another, and the presence of antibiotics favours cells that have acquired these genes for resistance.

The most worrying trend is the spread of **resistance to** carbapenems, the **'antibiotics of last resort**'

Methicillin-resistant Staphylococcus aureus (MRSA) is now invulnerable to many antibiotics.

"A post-antibiotic era — in which common infections and minor injuries can kill — far from being an apocalyptic fantasy, is instead a very real possibility for the twenty-first century," WHO PRIORITY PATHOGENS LIST FOR R&D OF NEW ANTIBIOTICS Priority 1: CRITICAL[#]

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

*Enterobacteriaceae**, carbapenem-resistant, 3rd generation cephalosporin-resistant

Priority 2: HIGH

Enterococcus faecium, vancomycin-resistant

Staphylococcus aureus, methicillin-resistant, vancomycin intermediate and resistant

Helicobacter pylori, clarithromycin-resistant

Campylobacter, fluoroquinolone-resistant

Salmonella spp., fluoroquinolone-resistant

Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant, fluoroquinolone-resistant

Priority 3: MEDIUM

Streptococcus pneumoniae, penicillin-non-susceptible

Haemophilus influenzae, ampicillin-resistant

Shigella spp., fluoroquinolone-resistant

FarmacistaPiù

open concerns

Too few novel antibiotics coming to market to replace those lost due to resistance development

Antibiotic innovation in academia is not filling the void due to misaligned incentive structures and lack of vital knowledge of drug discovery

'Targeting an organism inside another organism' have not been given enough attention

FarmacistaPiù

NATURE | NEWS Antibiotics funding splurge gets mixed reception Multimillion dollar initiative **prioritizes drug development over discovery** of new molecules. 28 July 2016

Bioorganic & Medicinal Chemistry 24 (2016) 6409-6419			
Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry journal homepage: www.elsevier.com/locate/bmc Discovery, pharmacology, and clinical profile of omadacycline, a novel aminomethylcycline antibiotic	CossMark	RESEARCH ARTICLE Rational Design of Antibio Plans: A Treatment Strate Evolution and Reversing R Portia M. Mira ¹ , Kristina Crona ² , Devin Greene ² , Jua Miriam Barlow ¹ *	
S. Ken Tanaka, Judith Steenbergen *, Stephen Villano		minan bariow *	
	Editorial For reprint orders, ple	ease contact reprints@future-science.com	Future Medicinal
Circoyan et al. BMC Complementary and Alternative Medicine (2017) 1750 Doi 10.1186/s12906-017-1573-y Alternative Medicine			Chemistry
RESEARCH ARTICLE Open Access Antimicrobial activity of some plant materials used in Armenian traditional medicine		pathogens benefits and of antimicrobials that target rulence instead of growth and	

FarmacistaPiù

The Pew Charitable Trusts / Research & Analysis / A Scientific Roadmap for Antibiotic Discovery

REPORT

A Scientific Roadmap for Antibiotic Discovery

A sustained and robust pipeline of new antibacterial drugs and therapies is critical to preserve public health

May 11, 2016

Antibiotic Resistance Project

Drug name'	Development phase [†]	Company	Type of therapeutic	Potential indication(s) [‡]	
Aerucin	Phase 1	Aridis Pharmaceuticals Inc.	antibody	Bacterial infections	
CF-301	Phase 1	ContraFect Corp.	lysin	Bacteremia (Staphylococcus aureus)	
NDV-3	Phase 1	NovaDigm Therapeutics Inc.	vaccine	Prevention of bacterial infections (S. aureus)	
514G3	Phases 1/2	XBiotech Inc.	antibody	Bacteremia (S. aureus)	
N-Rephasin	Phase 1*	Intron Biotechnology Inc.	lysin	Bacterial infections (S. aureus)	

Alexandra 1

FarmacistaPiù

Drug name'	Development phase [†]	Company	Type of therapeutic	Potential indication(s) [‡]	
Aurexis (tefibazumab)	Phase 2	Bristol-Myers Squibb Co.	antibody	Bacteremia (S. aureus), chronic S. aureus infection in cystic fibrosis patients	
Brilacidin	Phase 2	Cellceutix Corp.	antimicrobial peptide	Acute bacterial skin and skin structure infections	
MED14893	Phase 2	MedImmune Inc.	antibody	Pneumonia (S. aureus)	
Group B Streptococcus vaccine	Phase 2	Novartis International AG*	vaccine	Prevention of Group B Streptococcal infection	
PF-06425090	Phase 2	Pfizer Inc.	vaccine	Recurrent Clostridium difficile infection	
SA4Ag	Phase 2	Pfizer Inc.	vaccine	Prevention of S. aureus infection	
POL7080	Phase 2	Polyphor Ltd.	antimicrobial peptide	Ventilator-associated bacterial pneumonia (Pseudomonas aeruginosa), lower respiratory tract infection, bronchiectasis	
RBX2660	Phase 2	Rebiotix Inc.	probiotic	Recurrent C. difficile infection	
SER-109	Phase 2	Seres Therapeutics Inc.	probiotic	Recurrent C. difficile infection	
VP20621	Phase 2	Shire PLC	probiotic	Recurrent C. difficile infection	

Alather fill at

Drug name'	Development phase [†]	Company	Type of therapeutic	Potential indication(s) [‡]	
Pagibaximab	Phases 2/3	Biosynexus Inc.	antibody	Prevention of bacteremia in very low birth weight neonates (S. aureus)	
IC43	Phases 2/3	Valneva SE	vaccine	Prevention of ventilator-associated bacterial pneumonia (P. aeruginosa)	
Salvecin (AR-301)	Phase 2*	Aridis Pharmaceuticals Inc.	antibody	Pneumonia (S. aureus)	
Aerumab (AR-101)	Phase 2*	Aridis Pharmaceuticals Inc.	antibody	Pneumonia (P. aeruginosa), ventilator- associated bacterial pneumonia (P. aeruginosa)	
MEDI3902	Phase 2*	Medimmune Inc.	antibody	Prevention of ventilator-associated bacterial pneumonia (P. aeruginosa)	
IC84	Phase 2*	Valneva SE	vaccine	Recurrent C. difficile infection	
Bezlotoxumab and Actoxumab	Phase 3	Merck & Co. Inc.	antibody	Recurrent C. difficile infection	
Cdiffense	Phase 3	Sanofi Pasteur SA	vaccine	Prevention of C. difficile infection	

FarmacistaPiù

Review

Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

Gudepalya Renukaiah Rudramurthy ¹, Mallappa Kumara Swamy ^{2,*}, Uma Rani Sinniah ^{2,*} and Ali Ghasemzadeh ²

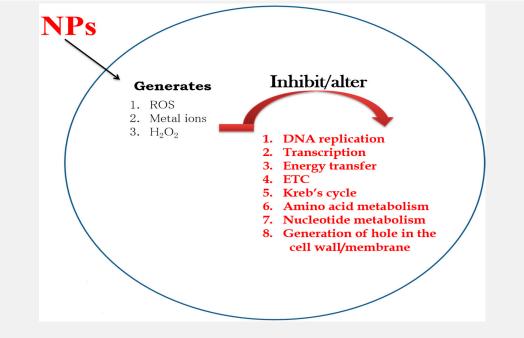


Figure 1. Mechanism of action of various nanoparticles (NPs) on microbial cells.

Molecules 2016, 21, 836

all a the fait

Table 1. Mode of action of various nanoparticles/nanocomposites against pathogenic microbes.

Type of Nanoparticles Mode of Action		Susceptible Microbes		
Silver (Ag) nanoparticles	Interfere with the electron transport chain and transfer of energy through the membrane. Inhibit DNA replication and respiratory chain in bacteria and fungi.	Methicillin-resistant <i>Staphylococcus aureus,</i> <i>Staphylococcus epidermidis.</i> Vancomycin-resistant <i>Enterococcus faecium</i> and <i>Klebsiella pneumoniae</i>		
Magnesium oxide (MgO) nanoparticles	Formation of reactive oxygen species (ROS), lipid peroxidation, electrostatic interaction, alkaline effect.	S. aureus, E. coli, Bacillus megaterium, Bacillus subtilis		
Titanium dioxide (TiO ₂) nanoparticles	Formation of superoxide radicals, ROS, and site-specific DNA damage.	E. coli, S. aureus, and also against fungi		
Zinc oxide (ZnO) nanoparticles	Hydrogen peroxide generated on the surface of ZnO penetrates the bacterial cells and effectively inhibits growth. Zn ²⁺ ions released from the nanoparticles damage the cell membrane and interact with intracellular components.	E. coli, Listeria monocytogenes, Salmonella, and S. aureus		
Gold (Au) nanoparticles	Generate holes in the cell wall. Bind to the DNA and inhibit the transcription process.	Methicillin-resistant S. aureus		
Copper oxide (CuO) nanoparticles	Reduce bacteria at the cell wall. Disrupt the biochemical processes inside bacterial cells.	B. subtilis, S. aureus, and E. coli		
Iron-containing nanoparticles	Through ROS-generated oxidative stress. ROS, superoxide radicals (O^{2-}), singlet oxygen ($^{1}O_{2}$), hydroxyl radicals (OH^{-}), and hydrogen peroxide ($H_{2}O_{2}$).	S. aureus, S. epidermidis, and E. coli.		
Aluminum (Al) nanoparticles	Disrupt cell walls through ROS.	E. coli		
Bismuth (Bi) nanoparticles	Alter the Krebs cycle, and amino acid and nucleotide metabolism.	Multiple-antibiotic resistant Helicobacter pylori		
Carbon-based nanoparticles	Severe damage to the bacterial membrane, physical interaction, inhibition of energy metabolism, and impairment of the respiratory chain.	E. coli, Salmonella enteric, E. faecium, Streptococcus spp., Shewanella oneidensis, Acinetobacter baumannii, Burkholderia cepacia, Yersinia pestis, and K. pneumonia		

FarmacistaPiù

Infect Dis Clin North Am. 2014 Jun;28(2):177-93. doi: 10.1016/j.idc.2014.02.001.

Health care provider education as a tool to enhance antibiotic stewardship practices.

<u>Ohl CA¹, Luther VP².</u>

Antibiotic stewardship education for health care providers gives a foundation of knowledge and an environment that facilitates and supports optimal antibiotic prescribing.

There is a need to extend this education to medical students and health care trainees. Education using passive techniques is modestly effective for increasing prescriber knowledge, whereas education using active techniques is more effective for changing prescribing behavior. Such education has been shown to enhance other antibiotic stewardship interventions.

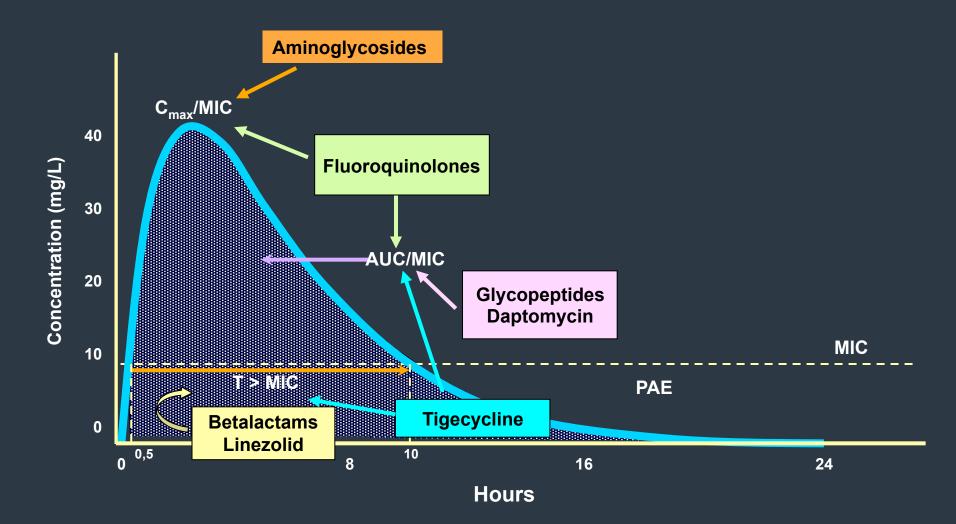
FarmacistaPiù

Virulence 4:2, 192–202; February 15, 2013; © 2013 Landes Bioscience

How to educate prescribers in antimicrobial stewardship practices

Céline Pulcini^{1,2} and Inge C. Gyssens^{3,4,*}

Widespread antimicrobial use has compromised its value, leading to a crisis of antimicrobial resistance. A major cause of misuse is insufficient knowledge of prescribing of antimicrobials in many categories of professionals.

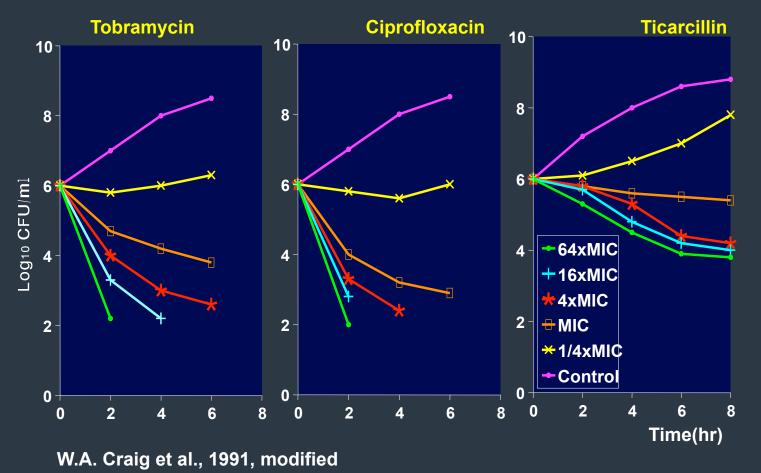

It is now crucial that academia and ministries of Health and Education jointly focus on an adapted undergraduate medical/professional curriculum that teaches all necessary principles of microbiology, infectious diseases and clinical pharmacology, with emphasis on the principles of prudent prescribing.

What can be done in the clinical setting

- Adjust use of antimicrobials according to local epidemiology
 Know the target pharmacokinetic/pharmacodynamic parameter for the specific drug in use
 Select the most appropriate administration modality according to pharmacokinetic/pharmacodynamic parameters
- Remember that standard susceptibility breakpoints may be inaccurate for the clinical scenario
- Maximize dosing, especially in severely ill patients, according to renal function, but limit the duration of therapy when possible
- Assess serum antimicrobial concentrations whenever possible
- Adopt combination therapy for 48-72 hours and then reevaluate empirical therapy
- Perform active surveillance

Adembri C and Novelli A, PK-PD and potential for providing dosing regimens that are less vulnerable to resistance Clin Pharmacokinet, 2009

PK-PD correlations



Antibacterial activity

Time-kill curves against P. aeruginosa ATCC 27853

TIME-DEPENDENT

Lipophilic antibiotics Hydrophilic antibiotics Low Vd High Vd Predominant renal CI Predominant hepatic CI **General PK** Low intracellular Good intracellular penetration penetration • 个 Vd Vd largely unchanged • Cl \uparrow or \downarrow dependent on Cl \uparrow or \downarrow dependent on **Altered ICU** renal function hepatic function PK Fluoroquinolones • β-lactams Aminoglycosides Macrolides **Examples** Lincosamides Glycopeptides Daptomycin Linezolid Colistin Tigecycline

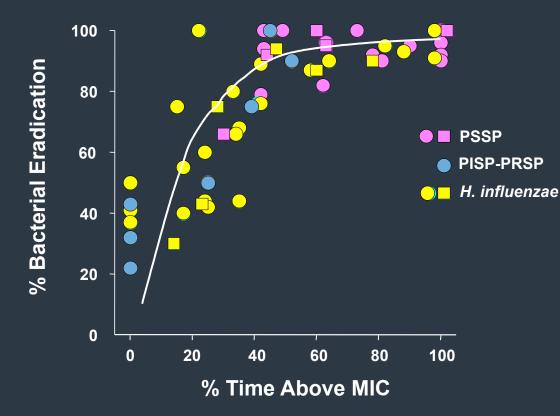
Roberts JA et al., Crit Care Med, 2009, mod

Daptomycin

Mean pharmacokinetic parameters in healthy volunteers and severely ill patients

Parameter	6 mg/kg			8 mg/kg		
	Volunt.ª (6)	Pts. ^c (13)	P *	Volunt. ^b (6)	Pts. ^c (7)	P *
C _{max} (mg/l)	86.4	55.7	< 0.01	106.2	85.1	= 0.05
t½ (h)	7.8	8.8	NS	7.3	8.6	NS
AUC (mg·h/l)	705	406.1	< 0.01	773.3	584.3	< 0.05
CI (ml/h/kg)	8.6	18.0	< 0.05	10.1	20.4	< 0.05
Vd (I/kg)	0.096	0.22	< 0.01	0.102	0.25	< 0.01

() no. Cases * ANOVA test


^a Dvorchik BH et al., Antimicrob Agents Chemother, 2009

^b Benvenuto M et al., Antimicrob Agents Chemother, 2006

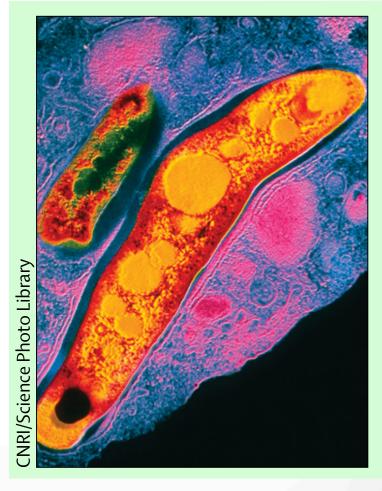
^c Falcone M, Venditti M, Novelli A, 21st ECCMID-27th ISC Milan, Italy, 2011

Relationship between T>MIC for β-Lactams with bacterial eradication in children with otitis media and sinusitis

Double Taps in Otitis Media / Sinusitis

PSSP = penicillin-susceptible *S. pneumoniae;* PISP = penicillin-intermediate *S. pneumoniae;* PRSP = penicillin-resistant *S. pneumoniae; H. influenzae*

Craig WA. Infect Dis Clin North Am. 2003;17:479-501


FarmacistaPiù

Comment

by Rovina Ruslami, *Dick Menzies

Image: Provide the right dose of rifampicin, and the right dose of optimism

After the widespread introduction of rifampicin in the early 1970s, it took and ther two decades, and more than 50 randomised trials with more than 20,000 participants to finalise the drugs, doses, and schedule for the currently recommended regimen for newly diagnosed patients with active tuberculosis. Yet this regimen has important drawbacks, most notably the 6 months duration, and frequent toxicity.

www.thelancet.com/infection Vol 17 January 2017