

AGENDA

- Measures
- Real and nominal IR
- IR and returns
- Demand/supply and liquidity preference
- Models of asset pricing
- Risk and IR
- Term structure

MEASURES OF IR

Types of credit market instruments:

- Simple/balloon loan: principal is repaid entirely at maturity with interests
- <u>Fixed-payment (fully amortised) loan</u>: repayment occurs periodically and represents interests and a portion of principal
- <u>Coupon bond</u>: repayments of interests occur periodically, whereas principal (face/par/nominal value) is repaid entirely at maturity
- <u>Discount (zero-coupon) bond</u>: no coupons are paid, therefore the present (purchase) value is under its face value, that is repaid entirely at maturity

Variations exist (f.i. variable IR, adjustable maturities, different amortisation plans, etc.)

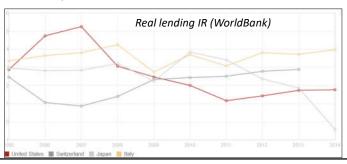
2

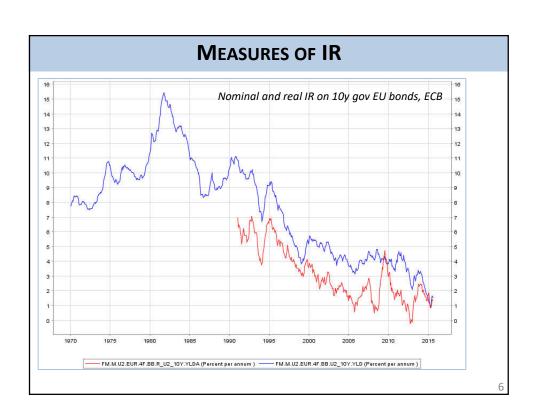
MEASURES OF IR

How to compare different bond instruments quickly and easily?

Yield to maturity (or internal rate of return, or effective interest rate):

- the IR that balances the PV of future cash-flows with its current value
- For simple loans, YTM equals the simple interest rate
- For ZC bonds: $i_{\it YTM} = \sqrt[n]{\frac{NV}{CV}} 1$
- For fixed-payment loans and coupon bonds, calculation is more complex (usually solved through *goal-seek* and similar spreadsheet functions):


$$\begin{aligned} CV_{FP} &= \sum_{t=1}^{n} \frac{FP}{(1+i_{YTM})^{t}} \\ CV_{CB} &= \sum_{t=1}^{n} \frac{C}{(1+i_{YTM})^{t}} + \frac{NV}{(1+i_{YTM})^{n}} \end{aligned}$$


• Note that the greater the YTM, the smaller the current value, meaning that increases in IR reduce the value of a debt instrument

MEASURES OF IR

But as any simple tool, the YTM has its limitations

- You need to keep the instrument until maturity
- Coupons are reinvested at the same IR
- It is a nominal measure... but inflation is known when it's too late
- Ex-ante real IR are adjusted by expected inflation $i = i_r + \pi^e + i_r \cdot \pi^e$
- Ex-post real IR can actually measure performance... when it's over
- But also taxes should be considered to know the net performance (effective real IR)

NEGATIVE IR???

- Pay to lend?
 - Central banks: ECB -0.2% on deposits in 9/2014 (but also DEN, SWE, CH)
 - Governments: DE from -0.4% to 0 for 1m-8y bonds (but also NED, SWE, DEN, CH, AUT), with FIN and DE issuing bonds with negative IR from inception on 2/2015
 - Corporations: Nestlé for its 4y € bonds in 2/2015, f.i.
- Should be good if you are a borrower?
 - Maybe, unless people keep money at home
 - Maybe, unless this shrinks profitability of commercial banks
 - · Maybe, until this triggers a currency war
- · Does it make any sense?
 - Real IR mostly do, considering deflation
 - Storing money, building wealth reserves, accessing settlement services: all cost
 - A number of bonds give access to CB lending, increasing their demand
 - Taxation applies on nominal interest rates

_

IR AND RETURNS

- Rate of return: payments to the owner of a security plus the change in its value as a fraction of its purchase price
- IR and RoR are related but usually differ because of capital gains:

$$RoR = \frac{C + P_{t+1} - P_{t}}{P_{t}} = \frac{C}{P_{t}} + \frac{P_{t+1} - P_{t}}{P_{t}} = i_{c} + g$$

- If holding period equals time to maturity, return equals yield to maturity only for ZCs: reinvestment risk
- The bigger the time to maturity, the bigger the effect on capital gains due to changes in IR: longer term bonds are more volatile (<u>interest-rate</u> <u>risk</u>)
- <u>Increasing IR produces capital losses</u>, decreasing IR produces gains
- Despite capital gains and losses are unrealised, they represent missed opportunities to earn greater rates of return (opportunity cost)
- If holding period is longer than time to maturity, this is another source for reinvestment risk (uncertainty over future IR)

IR AND RETURNS

So, how can we compare bonds with different maturities, coupons and prices?

A simple way is to use the <u>duration</u> (effective maturity)

- It's the weighhed average lifetime of a debt instruments' cashflows
- · For ZCs equal to the time to maturity
- Other instruments are seen as a portfolio of ZCs, weighted by their proportion over the portfolio (a useful additive property)

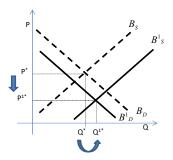
$$DUR = \frac{\sum_{t=1}^{n} \frac{CF_{t}}{(1+i)^{t}} \cdot t}{\sum_{t=1}^{n} \frac{CF_{t}}{(1+i)^{t}}}$$

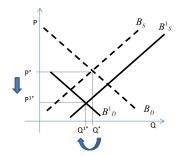
- Longer terms and smaller coupons mean bigger duration
- · Increases in interest rates decrease duration
- For small changes in IR, duration is a good proxy of interest rate risk

$$\%\Delta P = \frac{(P_{t+1} - P_t)}{P_t} = -DUR \cdot \frac{\Delta i}{(1+i)}$$

9

DEMAND AND SUPPLY FRAMEWORK

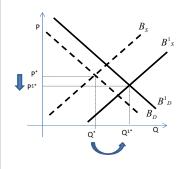

Reasons for changes in interest rates:

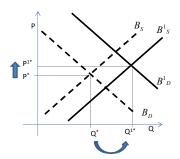

- Bonds' demand:
 - (+) Wealth owned by an individual
 - (+) Expected return relative to other assets
 - (-) Expected future interest rates
 - (–) Expected future inflation
 - (–) Risk (uncertainty in return) relative to other assets
 - (+) Liquidity (how quickly and cheaply turned into cash) relative to other assets
- Bonds' supply:
 - (+) Profitability of investments made with loan proceedings
 - (+) Expected inflation, leading to cheaper borrowing
 - (+) Government deficits, leading to greater issues of public debt

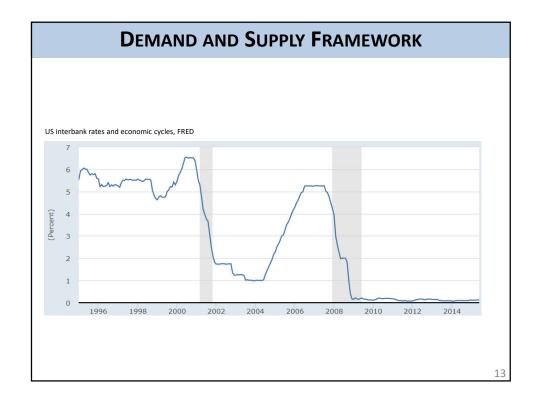
DEMAND AND SUPPLY FRAMEWORK

Changes in IR due to inflation:

- An increase in expected inflation affects simultaneously demand (decrease of expected return) and supply (cheaper borrowing)
- IR will increase (prices fall)
- Effect on quantity is not readily predictable




11


DEMAND AND SUPPLY FRAMEWORK

Changes in IR due to business cycles:

- An economic expansion affects simultaneously demand (increase of wealth) and supply (greater expected returns on investments)
- · Quantity will increase
- IR can increase or decrease (usually, increase and decrease during recessions)

LIQUIDITY PREFERENCE FRAMEWORK

- · Adds to the general model by focusing on bonds and money
- Assumptions:
 - Only risky bonds with return i and safe but costly money (opportunity cost) exist to store wealth
 - Money supply is fixed by the CB
- The bigger *i*, the smaller the quantity of money demanded because of its opportunity cost
- Demand for money changes:
 - (+) because of changes in income, meaning more wealth and more frequent uses of money
 - (+) because of changes in inflation, since people care of wealth in real terms
- Supply of money changes (+) when CB changes its quantity
- When income or inflation rise, IR rise

LIQUIDITY PREFERENCE FRAMEWORK

When CBs increase the money supply, IR should decline, but evidence is mixed:

- Immediate liquidity effect reducing IR
- Economic stimulus: more income (**income effect**) and IR, but it takes time to have effects (wages, investments, ...)
- More inflation (price-level effect) and IR, but it takes time to adjust prices
 of goods and services
- More expected inflation (expected-inflation effect) and IR, with speed of effects depending on people's speed of adjusting expectations
- Result
 - If the liquidity effect is dominant, sharp reduction in IR, then recovery up to a smaller final value
 - If the liquidity effect is insufficient, sharp reduction in IR, then recovery up to a higher final value
 - If the liquidity effect is marginal, people adapt their expectations on inflation and the reduction in IR does not take place, and final IR are higher immediately

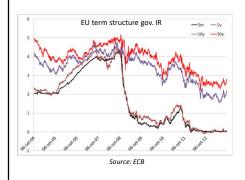
15

RISK AND IR

IR differ also for bonds with equal duration because of default risk:

- government bonds were considered risk-free, yet only few of them now are really like that
- the higher the risk the bigger the risk premium (spread)
- specialised firms (rating agencies) provide judgment over borrowers' default-risk (investment grade VS junk/high yield bonds)
- IR differ also for <u>liquidity risk</u> (adding to the risk premium)

FU long-term gov. IR


FU long-term go

• Finally, some bonds have tax incentives (municipal bonds, Italy's gov., ...)

TERM STRUCTURE OF IR

IR differ also based on bonds' maturity:

- Differences in IR can be plotted at different maturities to derive the term structure of IR (vield curve)
- <u>Usually yield curves are upward-sloping</u>, meaning that longer maturities are charged with higher IR
- Flat or even downward-sloping or inverted yield curves are rare

- · Different maturities move similarly
- When short-term IR are high, inversion is more likely
- Inverted yield curves seem to anticipate recessions ('81, '91, 2000, '07), steep upward curves are associated with economic booms

17

TERM STRUCTURE OF IR

Three theories for explaining the term structure of IR:

Expectations theory

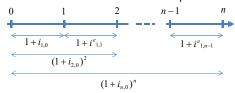
- If bonds at different maturities are perfect substitutes, their expected return must be equal
- $(1+i_{n,0})^n = (1+i_{1,0})(1+i^e_{1,1}) \cdot \ldots \cdot (1+i^e_{1,n-1}) \rightarrow i_{n,0} \approx \frac{i_{1,0}+i^e_{1,1}+\ldots+i^e_{1,n-1}}{n}$
- Predicts flat curves, whereas instead are usually upward-sloping

Market segmentation theory

- Bonds at different maturities are not substitutes and each has a specific market, as well as each investor has a preferred maturity
- Together with interest-rate risk aversion, <u>explains why longer investments require a risk premium</u>
- Does not explain why IR move together along time
- Does not explain why with high short-term IR inversion is more likely

TERM STRUCTURE OF IR

Liquidity premium theory


- · Combines the other two in a comprehensive way
- Adds to expectations theory a liquidity premium for longer term bonds that is subject to market (demand, supply) conditions for that segment
- Bonds are substitutes as long as investors' preferences are compensated with a term (liquidity) premium that is always positive and grows as maturity gets longer
- $i_{n,0} \approx \frac{i_{1,0} + i^e_{1,1} + \dots + i^e_{1,n-1}}{n} + l_{n,n}$
- <u>Explains inverted term structures</u>: when future expectations on short-term IR are of a wide fall, so that their average is not balanced even by a positive liquidity premium (more likely when short-term rates are high)
- Support empirical evidence that:
 - Term structure is a predictor of business cycles and inflation
 - Term structure is less reliable for intermediate movements

10

TERM STRUCTURE OF IR

Forward and spot rates:

• Term structures allow to measure expected IR

- Expected future IR are forward rates, in contrast to spot rates
- Knowing spot IR we can derive market expectations

F.i.:
$$i_{1,1}^e = \frac{(1+i_{2,0})^2}{1+i_{1,0}} - 1$$
 or, generalising: $i_{1,k}^e = \frac{(1+i_{k+1,0})^{k+1}}{(1+i_{k,0})^k} - 1$

• Including liquidity premiums: $i_{1,k}^{\varepsilon} = \frac{(1+i_{k+1,0}-l_{k+1,0})^{k+1}}{(1+i_{k,0}-l_{k,0})^k} - 1$

EXAMPLES

- 1. A selling agent needs a car for his/her job. It is worth 20,000 € today and will allow to earn 15,000 € every year for three years. A three-year loan to buy the car is available at 50% annual interest rate, paid in fixed installments:
- -Is it worth it?
- -Is the charged IR 'ethical'?
- a) Loan's installment: $R = 20,000 \cdot \alpha_{3-50\%} = 14,210.53$
- b) Financial and economic plan:

	•			
	0	1	2	3
Inflow		15,000.00	15,000.00	15,000.00
Outflow		-14,210.53	-14,210.53	-14,210.53
Net flow		789.47	789.47	789.47
Loan	20,000.00	15,789.47	9,473.68	0.00
Earnings		15,000.00	15,000.00	15,000.00
Interests		-6,000.00	-4,736.84	-2,842.11
Profit/loss		9,000.00	10,263.16	12,157.89

EXAMPLES

- 2. What is the present value of:
- a) zero-coupon bond due in 3y for 2,000 with a YTM of 5%
- b) bond due in 5y for 3.000 with an annual coupon of 3% and a YTM of 6%
- c) perpetuity of 100 with YTM of 8%

a)
$$PV = \frac{2,000}{(1+5\%)^3} = 1,727.68$$

a)
$$PV = \frac{2,000}{(1+5\%)^3} = 1,727.68$$

b) $PV = \sum_{t=1}^{5} \frac{90}{(1.06)^t} + \frac{3,000}{(1.06)^5} = 2,620.89$

c)
$$PV = \frac{100}{8\%} = 1,250$$

EXAMPLES

- 3. What is the price effect on the following bonds of market IR increasing from 4% to 4.25%?
- a) zero-coupon bond due in 3y for 2,000 with a YTM of 5%
- b) bond due in 5y for 3.000 with an annual coupon of 3% and a YTM of 6%
- c) a portfolio made of 40% of the bond sub-a) and 60% of the bond sub-b)
- d) what if IR drop from 4% to 3% on all three alternatives?

a)
$$DUR = 3$$
 % $\Delta P \approx -3 \cdot \frac{0.25\%}{1 + 4\%} = -0.72\%$

b)
$$DUR = \left(\sum_{t=1}^{5} t \cdot \frac{90}{1.04^t} + 5 \cdot \frac{3,000}{1.04^5}\right) / \left(\sum_{t=1}^{5} \frac{90}{1.04^t} + \frac{3,000}{1.04^5}\right) = 4.71$$
 $\%\Delta P \approx -4.71 \cdot \frac{0.25\%}{1+4\%} = -1.13\%$

c)
$$DUR = 3 \cdot 40\% + 4.71 \cdot 60\% = 4.03$$
 $\% \Delta P \approx -4.03 \cdot \frac{0.25\%}{1 + 4\%} = -0.97\%$

d)
$$\%\Delta P_1 \approx -3 \cdot \frac{-1\%}{1+4\%} = 2.88\%$$
 $\%\Delta P_2 \approx -4.71 \cdot \frac{-1\%}{1+4\%} = 4.53\%$ $\%\Delta P_3 \approx -4.03 \cdot \frac{-1\%}{1+4\%} = 3.87\%$

23

EXAMPLES

4. Extract from The Economist, 29th June 2013

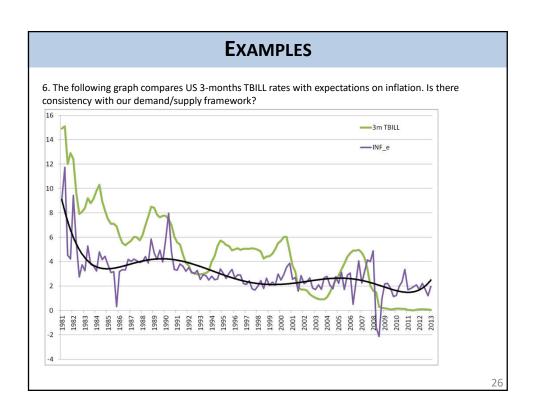
"[...] Bankers in the rich world have moaned incessantly [...] about how low interest rates are squeezing [their profits]. Now [...] long-term interest rates have risen [...] and changes in short-term rates seem closer than they once did [...]. Rising rates may restore banks' profitability but too sudden an increase may damage their health."

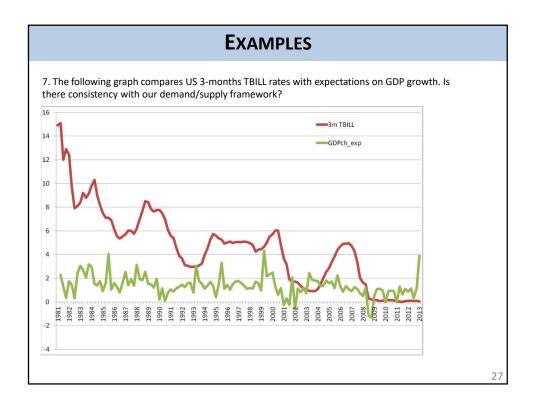
Whv?

"[...] The immediate threat to banks is a fall in the market value of assets that banks hold. [...] A hypothetical three-percentage-point increase in yields across all bond maturities could result in losses to all holders of government bonds equivalent to 15-35% of GDP in countries such as France, Italy, Japan and Britain."

Is that all?

"But simply looking at holdings of government bonds probably understates the risk [...] since they hold many other fixed-income assets that would also fall in value."


Is there anything else?


"[...] A third risk to banks from higher rates is that more of their customers will struggle to repay their loans."

So?

"[...] keeping rates low for long is dangerous. So is letting them rise too quickly."

EXAMPLES 5. On 2^{nd} October 2013, the following spot interest rates on AAA Euro-area government bonds were recorded (by maturity): 0.06% 0.22% 0.44% 0.69% 0.96% 1.22% 1.47% 1.70% 1.90% 2.09% IR spot a) What are the expected one-year IRs? b) What would be the expected IR on a three and five years bond issued in 1, 2 and 3 years from 0.06% 0.22% 0.96% 2.09% 0.44% 0.69% 1.22% 1.47% 1.70% 1.90% $IRspot_t$ IRfwd_1 0.38% 0.88% 1.44% 3.32% 2.05% 2.53% 2.98% 3.51% 3.82% 3y bond 0.90% 1.46% 2.01% 5y bond 1.46% 1.98% 2.47%

